Merge remote-tracking branch 'origin/drm-intel-next-queued' into drm-intel-next-queued
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int link_bw;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { DP_LINK_BW_1_62,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { DP_LINK_BW_2_7,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int chv_rates[] = { 162000, 202500, 210000, 216000,
99 243000, 270000, 324000, 405000,
100 420000, 432000, 540000 };
101 static const int default_rates[] = { 162000, 270000, 540000 };
102
103 /**
104 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
105 * @intel_dp: DP struct
106 *
107 * If a CPU or PCH DP output is attached to an eDP panel, this function
108 * will return true, and false otherwise.
109 */
110 static bool is_edp(struct intel_dp *intel_dp)
111 {
112 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
113
114 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
115 }
116
117 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
118 {
119 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
120
121 return intel_dig_port->base.base.dev;
122 }
123
124 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
125 {
126 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
127 }
128
129 static void intel_dp_link_down(struct intel_dp *intel_dp);
130 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
131 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
132 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
133 static void vlv_steal_power_sequencer(struct drm_device *dev,
134 enum pipe pipe);
135
136 static int
137 intel_dp_max_link_bw(struct intel_dp *intel_dp)
138 {
139 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
140
141 switch (max_link_bw) {
142 case DP_LINK_BW_1_62:
143 case DP_LINK_BW_2_7:
144 case DP_LINK_BW_5_4:
145 break;
146 default:
147 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
148 max_link_bw);
149 max_link_bw = DP_LINK_BW_1_62;
150 break;
151 }
152 return max_link_bw;
153 }
154
155 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
156 {
157 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
158 struct drm_device *dev = intel_dig_port->base.base.dev;
159 u8 source_max, sink_max;
160
161 source_max = 4;
162 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
163 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
164 source_max = 2;
165
166 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
167
168 return min(source_max, sink_max);
169 }
170
171 /*
172 * The units on the numbers in the next two are... bizarre. Examples will
173 * make it clearer; this one parallels an example in the eDP spec.
174 *
175 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
176 *
177 * 270000 * 1 * 8 / 10 == 216000
178 *
179 * The actual data capacity of that configuration is 2.16Gbit/s, so the
180 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
181 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
182 * 119000. At 18bpp that's 2142000 kilobits per second.
183 *
184 * Thus the strange-looking division by 10 in intel_dp_link_required, to
185 * get the result in decakilobits instead of kilobits.
186 */
187
188 static int
189 intel_dp_link_required(int pixel_clock, int bpp)
190 {
191 return (pixel_clock * bpp + 9) / 10;
192 }
193
194 static int
195 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
196 {
197 return (max_link_clock * max_lanes * 8) / 10;
198 }
199
200 static enum drm_mode_status
201 intel_dp_mode_valid(struct drm_connector *connector,
202 struct drm_display_mode *mode)
203 {
204 struct intel_dp *intel_dp = intel_attached_dp(connector);
205 struct intel_connector *intel_connector = to_intel_connector(connector);
206 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
207 int target_clock = mode->clock;
208 int max_rate, mode_rate, max_lanes, max_link_clock;
209
210 if (is_edp(intel_dp) && fixed_mode) {
211 if (mode->hdisplay > fixed_mode->hdisplay)
212 return MODE_PANEL;
213
214 if (mode->vdisplay > fixed_mode->vdisplay)
215 return MODE_PANEL;
216
217 target_clock = fixed_mode->clock;
218 }
219
220 max_link_clock = intel_dp_max_link_rate(intel_dp);
221 max_lanes = intel_dp_max_lane_count(intel_dp);
222
223 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
224 mode_rate = intel_dp_link_required(target_clock, 18);
225
226 if (mode_rate > max_rate)
227 return MODE_CLOCK_HIGH;
228
229 if (mode->clock < 10000)
230 return MODE_CLOCK_LOW;
231
232 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
233 return MODE_H_ILLEGAL;
234
235 return MODE_OK;
236 }
237
238 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
239 {
240 int i;
241 uint32_t v = 0;
242
243 if (src_bytes > 4)
244 src_bytes = 4;
245 for (i = 0; i < src_bytes; i++)
246 v |= ((uint32_t) src[i]) << ((3-i) * 8);
247 return v;
248 }
249
250 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251 {
252 int i;
253 if (dst_bytes > 4)
254 dst_bytes = 4;
255 for (i = 0; i < dst_bytes; i++)
256 dst[i] = src >> ((3-i) * 8);
257 }
258
259 /* hrawclock is 1/4 the FSB frequency */
260 static int
261 intel_hrawclk(struct drm_device *dev)
262 {
263 struct drm_i915_private *dev_priv = dev->dev_private;
264 uint32_t clkcfg;
265
266 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267 if (IS_VALLEYVIEW(dev))
268 return 200;
269
270 clkcfg = I915_READ(CLKCFG);
271 switch (clkcfg & CLKCFG_FSB_MASK) {
272 case CLKCFG_FSB_400:
273 return 100;
274 case CLKCFG_FSB_533:
275 return 133;
276 case CLKCFG_FSB_667:
277 return 166;
278 case CLKCFG_FSB_800:
279 return 200;
280 case CLKCFG_FSB_1067:
281 return 266;
282 case CLKCFG_FSB_1333:
283 return 333;
284 /* these two are just a guess; one of them might be right */
285 case CLKCFG_FSB_1600:
286 case CLKCFG_FSB_1600_ALT:
287 return 400;
288 default:
289 return 133;
290 }
291 }
292
293 static void
294 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
295 struct intel_dp *intel_dp);
296 static void
297 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
298 struct intel_dp *intel_dp);
299
300 static void pps_lock(struct intel_dp *intel_dp)
301 {
302 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
303 struct intel_encoder *encoder = &intel_dig_port->base;
304 struct drm_device *dev = encoder->base.dev;
305 struct drm_i915_private *dev_priv = dev->dev_private;
306 enum intel_display_power_domain power_domain;
307
308 /*
309 * See vlv_power_sequencer_reset() why we need
310 * a power domain reference here.
311 */
312 power_domain = intel_display_port_power_domain(encoder);
313 intel_display_power_get(dev_priv, power_domain);
314
315 mutex_lock(&dev_priv->pps_mutex);
316 }
317
318 static void pps_unlock(struct intel_dp *intel_dp)
319 {
320 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
321 struct intel_encoder *encoder = &intel_dig_port->base;
322 struct drm_device *dev = encoder->base.dev;
323 struct drm_i915_private *dev_priv = dev->dev_private;
324 enum intel_display_power_domain power_domain;
325
326 mutex_unlock(&dev_priv->pps_mutex);
327
328 power_domain = intel_display_port_power_domain(encoder);
329 intel_display_power_put(dev_priv, power_domain);
330 }
331
332 static void
333 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
334 {
335 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
336 struct drm_device *dev = intel_dig_port->base.base.dev;
337 struct drm_i915_private *dev_priv = dev->dev_private;
338 enum pipe pipe = intel_dp->pps_pipe;
339 bool pll_enabled;
340 uint32_t DP;
341
342 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
343 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
344 pipe_name(pipe), port_name(intel_dig_port->port)))
345 return;
346
347 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
348 pipe_name(pipe), port_name(intel_dig_port->port));
349
350 /* Preserve the BIOS-computed detected bit. This is
351 * supposed to be read-only.
352 */
353 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
354 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
355 DP |= DP_PORT_WIDTH(1);
356 DP |= DP_LINK_TRAIN_PAT_1;
357
358 if (IS_CHERRYVIEW(dev))
359 DP |= DP_PIPE_SELECT_CHV(pipe);
360 else if (pipe == PIPE_B)
361 DP |= DP_PIPEB_SELECT;
362
363 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
364
365 /*
366 * The DPLL for the pipe must be enabled for this to work.
367 * So enable temporarily it if it's not already enabled.
368 */
369 if (!pll_enabled)
370 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
371 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
372
373 /*
374 * Similar magic as in intel_dp_enable_port().
375 * We _must_ do this port enable + disable trick
376 * to make this power seqeuencer lock onto the port.
377 * Otherwise even VDD force bit won't work.
378 */
379 I915_WRITE(intel_dp->output_reg, DP);
380 POSTING_READ(intel_dp->output_reg);
381
382 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
383 POSTING_READ(intel_dp->output_reg);
384
385 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
386 POSTING_READ(intel_dp->output_reg);
387
388 if (!pll_enabled)
389 vlv_force_pll_off(dev, pipe);
390 }
391
392 static enum pipe
393 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
394 {
395 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
396 struct drm_device *dev = intel_dig_port->base.base.dev;
397 struct drm_i915_private *dev_priv = dev->dev_private;
398 struct intel_encoder *encoder;
399 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
400 enum pipe pipe;
401
402 lockdep_assert_held(&dev_priv->pps_mutex);
403
404 /* We should never land here with regular DP ports */
405 WARN_ON(!is_edp(intel_dp));
406
407 if (intel_dp->pps_pipe != INVALID_PIPE)
408 return intel_dp->pps_pipe;
409
410 /*
411 * We don't have power sequencer currently.
412 * Pick one that's not used by other ports.
413 */
414 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
415 base.head) {
416 struct intel_dp *tmp;
417
418 if (encoder->type != INTEL_OUTPUT_EDP)
419 continue;
420
421 tmp = enc_to_intel_dp(&encoder->base);
422
423 if (tmp->pps_pipe != INVALID_PIPE)
424 pipes &= ~(1 << tmp->pps_pipe);
425 }
426
427 /*
428 * Didn't find one. This should not happen since there
429 * are two power sequencers and up to two eDP ports.
430 */
431 if (WARN_ON(pipes == 0))
432 pipe = PIPE_A;
433 else
434 pipe = ffs(pipes) - 1;
435
436 vlv_steal_power_sequencer(dev, pipe);
437 intel_dp->pps_pipe = pipe;
438
439 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
440 pipe_name(intel_dp->pps_pipe),
441 port_name(intel_dig_port->port));
442
443 /* init power sequencer on this pipe and port */
444 intel_dp_init_panel_power_sequencer(dev, intel_dp);
445 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
446
447 /*
448 * Even vdd force doesn't work until we've made
449 * the power sequencer lock in on the port.
450 */
451 vlv_power_sequencer_kick(intel_dp);
452
453 return intel_dp->pps_pipe;
454 }
455
456 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
457 enum pipe pipe);
458
459 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
460 enum pipe pipe)
461 {
462 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
463 }
464
465 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
466 enum pipe pipe)
467 {
468 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
469 }
470
471 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
472 enum pipe pipe)
473 {
474 return true;
475 }
476
477 static enum pipe
478 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
479 enum port port,
480 vlv_pipe_check pipe_check)
481 {
482 enum pipe pipe;
483
484 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
485 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
486 PANEL_PORT_SELECT_MASK;
487
488 if (port_sel != PANEL_PORT_SELECT_VLV(port))
489 continue;
490
491 if (!pipe_check(dev_priv, pipe))
492 continue;
493
494 return pipe;
495 }
496
497 return INVALID_PIPE;
498 }
499
500 static void
501 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
502 {
503 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
504 struct drm_device *dev = intel_dig_port->base.base.dev;
505 struct drm_i915_private *dev_priv = dev->dev_private;
506 enum port port = intel_dig_port->port;
507
508 lockdep_assert_held(&dev_priv->pps_mutex);
509
510 /* try to find a pipe with this port selected */
511 /* first pick one where the panel is on */
512 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
513 vlv_pipe_has_pp_on);
514 /* didn't find one? pick one where vdd is on */
515 if (intel_dp->pps_pipe == INVALID_PIPE)
516 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
517 vlv_pipe_has_vdd_on);
518 /* didn't find one? pick one with just the correct port */
519 if (intel_dp->pps_pipe == INVALID_PIPE)
520 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
521 vlv_pipe_any);
522
523 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
524 if (intel_dp->pps_pipe == INVALID_PIPE) {
525 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
526 port_name(port));
527 return;
528 }
529
530 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
531 port_name(port), pipe_name(intel_dp->pps_pipe));
532
533 intel_dp_init_panel_power_sequencer(dev, intel_dp);
534 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
535 }
536
537 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
538 {
539 struct drm_device *dev = dev_priv->dev;
540 struct intel_encoder *encoder;
541
542 if (WARN_ON(!IS_VALLEYVIEW(dev)))
543 return;
544
545 /*
546 * We can't grab pps_mutex here due to deadlock with power_domain
547 * mutex when power_domain functions are called while holding pps_mutex.
548 * That also means that in order to use pps_pipe the code needs to
549 * hold both a power domain reference and pps_mutex, and the power domain
550 * reference get/put must be done while _not_ holding pps_mutex.
551 * pps_{lock,unlock}() do these steps in the correct order, so one
552 * should use them always.
553 */
554
555 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
556 struct intel_dp *intel_dp;
557
558 if (encoder->type != INTEL_OUTPUT_EDP)
559 continue;
560
561 intel_dp = enc_to_intel_dp(&encoder->base);
562 intel_dp->pps_pipe = INVALID_PIPE;
563 }
564 }
565
566 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
567 {
568 struct drm_device *dev = intel_dp_to_dev(intel_dp);
569
570 if (HAS_PCH_SPLIT(dev))
571 return PCH_PP_CONTROL;
572 else
573 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
574 }
575
576 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
577 {
578 struct drm_device *dev = intel_dp_to_dev(intel_dp);
579
580 if (HAS_PCH_SPLIT(dev))
581 return PCH_PP_STATUS;
582 else
583 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
584 }
585
586 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
587 This function only applicable when panel PM state is not to be tracked */
588 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
589 void *unused)
590 {
591 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
592 edp_notifier);
593 struct drm_device *dev = intel_dp_to_dev(intel_dp);
594 struct drm_i915_private *dev_priv = dev->dev_private;
595 u32 pp_div;
596 u32 pp_ctrl_reg, pp_div_reg;
597
598 if (!is_edp(intel_dp) || code != SYS_RESTART)
599 return 0;
600
601 pps_lock(intel_dp);
602
603 if (IS_VALLEYVIEW(dev)) {
604 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
605
606 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
607 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
608 pp_div = I915_READ(pp_div_reg);
609 pp_div &= PP_REFERENCE_DIVIDER_MASK;
610
611 /* 0x1F write to PP_DIV_REG sets max cycle delay */
612 I915_WRITE(pp_div_reg, pp_div | 0x1F);
613 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
614 msleep(intel_dp->panel_power_cycle_delay);
615 }
616
617 pps_unlock(intel_dp);
618
619 return 0;
620 }
621
622 static bool edp_have_panel_power(struct intel_dp *intel_dp)
623 {
624 struct drm_device *dev = intel_dp_to_dev(intel_dp);
625 struct drm_i915_private *dev_priv = dev->dev_private;
626
627 lockdep_assert_held(&dev_priv->pps_mutex);
628
629 if (IS_VALLEYVIEW(dev) &&
630 intel_dp->pps_pipe == INVALID_PIPE)
631 return false;
632
633 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
634 }
635
636 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
637 {
638 struct drm_device *dev = intel_dp_to_dev(intel_dp);
639 struct drm_i915_private *dev_priv = dev->dev_private;
640
641 lockdep_assert_held(&dev_priv->pps_mutex);
642
643 if (IS_VALLEYVIEW(dev) &&
644 intel_dp->pps_pipe == INVALID_PIPE)
645 return false;
646
647 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
648 }
649
650 static void
651 intel_dp_check_edp(struct intel_dp *intel_dp)
652 {
653 struct drm_device *dev = intel_dp_to_dev(intel_dp);
654 struct drm_i915_private *dev_priv = dev->dev_private;
655
656 if (!is_edp(intel_dp))
657 return;
658
659 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
660 WARN(1, "eDP powered off while attempting aux channel communication.\n");
661 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
662 I915_READ(_pp_stat_reg(intel_dp)),
663 I915_READ(_pp_ctrl_reg(intel_dp)));
664 }
665 }
666
667 static uint32_t
668 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
669 {
670 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
671 struct drm_device *dev = intel_dig_port->base.base.dev;
672 struct drm_i915_private *dev_priv = dev->dev_private;
673 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
674 uint32_t status;
675 bool done;
676
677 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
678 if (has_aux_irq)
679 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
680 msecs_to_jiffies_timeout(10));
681 else
682 done = wait_for_atomic(C, 10) == 0;
683 if (!done)
684 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
685 has_aux_irq);
686 #undef C
687
688 return status;
689 }
690
691 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
692 {
693 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
694 struct drm_device *dev = intel_dig_port->base.base.dev;
695
696 /*
697 * The clock divider is based off the hrawclk, and would like to run at
698 * 2MHz. So, take the hrawclk value and divide by 2 and use that
699 */
700 return index ? 0 : intel_hrawclk(dev) / 2;
701 }
702
703 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
704 {
705 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
706 struct drm_device *dev = intel_dig_port->base.base.dev;
707 struct drm_i915_private *dev_priv = dev->dev_private;
708
709 if (index)
710 return 0;
711
712 if (intel_dig_port->port == PORT_A) {
713 return DIV_ROUND_UP(dev_priv->cdclk_freq, 2000);
714
715 } else {
716 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
717 }
718 }
719
720 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
721 {
722 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
723 struct drm_device *dev = intel_dig_port->base.base.dev;
724 struct drm_i915_private *dev_priv = dev->dev_private;
725
726 if (intel_dig_port->port == PORT_A) {
727 if (index)
728 return 0;
729 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
730 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
731 /* Workaround for non-ULT HSW */
732 switch (index) {
733 case 0: return 63;
734 case 1: return 72;
735 default: return 0;
736 }
737 } else {
738 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
739 }
740 }
741
742 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
743 {
744 return index ? 0 : 100;
745 }
746
747 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
748 {
749 /*
750 * SKL doesn't need us to program the AUX clock divider (Hardware will
751 * derive the clock from CDCLK automatically). We still implement the
752 * get_aux_clock_divider vfunc to plug-in into the existing code.
753 */
754 return index ? 0 : 1;
755 }
756
757 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
758 bool has_aux_irq,
759 int send_bytes,
760 uint32_t aux_clock_divider)
761 {
762 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
763 struct drm_device *dev = intel_dig_port->base.base.dev;
764 uint32_t precharge, timeout;
765
766 if (IS_GEN6(dev))
767 precharge = 3;
768 else
769 precharge = 5;
770
771 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
772 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
773 else
774 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
775
776 return DP_AUX_CH_CTL_SEND_BUSY |
777 DP_AUX_CH_CTL_DONE |
778 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
779 DP_AUX_CH_CTL_TIME_OUT_ERROR |
780 timeout |
781 DP_AUX_CH_CTL_RECEIVE_ERROR |
782 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
783 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
784 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
785 }
786
787 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
788 bool has_aux_irq,
789 int send_bytes,
790 uint32_t unused)
791 {
792 return DP_AUX_CH_CTL_SEND_BUSY |
793 DP_AUX_CH_CTL_DONE |
794 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
795 DP_AUX_CH_CTL_TIME_OUT_ERROR |
796 DP_AUX_CH_CTL_TIME_OUT_1600us |
797 DP_AUX_CH_CTL_RECEIVE_ERROR |
798 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
799 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
800 }
801
802 static int
803 intel_dp_aux_ch(struct intel_dp *intel_dp,
804 const uint8_t *send, int send_bytes,
805 uint8_t *recv, int recv_size)
806 {
807 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
808 struct drm_device *dev = intel_dig_port->base.base.dev;
809 struct drm_i915_private *dev_priv = dev->dev_private;
810 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
811 uint32_t ch_data = ch_ctl + 4;
812 uint32_t aux_clock_divider;
813 int i, ret, recv_bytes;
814 uint32_t status;
815 int try, clock = 0;
816 bool has_aux_irq = HAS_AUX_IRQ(dev);
817 bool vdd;
818
819 pps_lock(intel_dp);
820
821 /*
822 * We will be called with VDD already enabled for dpcd/edid/oui reads.
823 * In such cases we want to leave VDD enabled and it's up to upper layers
824 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
825 * ourselves.
826 */
827 vdd = edp_panel_vdd_on(intel_dp);
828
829 /* dp aux is extremely sensitive to irq latency, hence request the
830 * lowest possible wakeup latency and so prevent the cpu from going into
831 * deep sleep states.
832 */
833 pm_qos_update_request(&dev_priv->pm_qos, 0);
834
835 intel_dp_check_edp(intel_dp);
836
837 intel_aux_display_runtime_get(dev_priv);
838
839 /* Try to wait for any previous AUX channel activity */
840 for (try = 0; try < 3; try++) {
841 status = I915_READ_NOTRACE(ch_ctl);
842 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
843 break;
844 msleep(1);
845 }
846
847 if (try == 3) {
848 WARN(1, "dp_aux_ch not started status 0x%08x\n",
849 I915_READ(ch_ctl));
850 ret = -EBUSY;
851 goto out;
852 }
853
854 /* Only 5 data registers! */
855 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
856 ret = -E2BIG;
857 goto out;
858 }
859
860 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
861 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
862 has_aux_irq,
863 send_bytes,
864 aux_clock_divider);
865
866 /* Must try at least 3 times according to DP spec */
867 for (try = 0; try < 5; try++) {
868 /* Load the send data into the aux channel data registers */
869 for (i = 0; i < send_bytes; i += 4)
870 I915_WRITE(ch_data + i,
871 intel_dp_pack_aux(send + i,
872 send_bytes - i));
873
874 /* Send the command and wait for it to complete */
875 I915_WRITE(ch_ctl, send_ctl);
876
877 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
878
879 /* Clear done status and any errors */
880 I915_WRITE(ch_ctl,
881 status |
882 DP_AUX_CH_CTL_DONE |
883 DP_AUX_CH_CTL_TIME_OUT_ERROR |
884 DP_AUX_CH_CTL_RECEIVE_ERROR);
885
886 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
887 continue;
888
889 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
890 * 400us delay required for errors and timeouts
891 * Timeout errors from the HW already meet this
892 * requirement so skip to next iteration
893 */
894 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
895 usleep_range(400, 500);
896 continue;
897 }
898 if (status & DP_AUX_CH_CTL_DONE)
899 break;
900 }
901 if (status & DP_AUX_CH_CTL_DONE)
902 break;
903 }
904
905 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
906 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
907 ret = -EBUSY;
908 goto out;
909 }
910
911 /* Check for timeout or receive error.
912 * Timeouts occur when the sink is not connected
913 */
914 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
915 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
916 ret = -EIO;
917 goto out;
918 }
919
920 /* Timeouts occur when the device isn't connected, so they're
921 * "normal" -- don't fill the kernel log with these */
922 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
923 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
924 ret = -ETIMEDOUT;
925 goto out;
926 }
927
928 /* Unload any bytes sent back from the other side */
929 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
930 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
931 if (recv_bytes > recv_size)
932 recv_bytes = recv_size;
933
934 for (i = 0; i < recv_bytes; i += 4)
935 intel_dp_unpack_aux(I915_READ(ch_data + i),
936 recv + i, recv_bytes - i);
937
938 ret = recv_bytes;
939 out:
940 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
941 intel_aux_display_runtime_put(dev_priv);
942
943 if (vdd)
944 edp_panel_vdd_off(intel_dp, false);
945
946 pps_unlock(intel_dp);
947
948 return ret;
949 }
950
951 #define BARE_ADDRESS_SIZE 3
952 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
953 static ssize_t
954 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
955 {
956 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
957 uint8_t txbuf[20], rxbuf[20];
958 size_t txsize, rxsize;
959 int ret;
960
961 txbuf[0] = (msg->request << 4) |
962 ((msg->address >> 16) & 0xf);
963 txbuf[1] = (msg->address >> 8) & 0xff;
964 txbuf[2] = msg->address & 0xff;
965 txbuf[3] = msg->size - 1;
966
967 switch (msg->request & ~DP_AUX_I2C_MOT) {
968 case DP_AUX_NATIVE_WRITE:
969 case DP_AUX_I2C_WRITE:
970 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
971 rxsize = 2; /* 0 or 1 data bytes */
972
973 if (WARN_ON(txsize > 20))
974 return -E2BIG;
975
976 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
977
978 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
979 if (ret > 0) {
980 msg->reply = rxbuf[0] >> 4;
981
982 if (ret > 1) {
983 /* Number of bytes written in a short write. */
984 ret = clamp_t(int, rxbuf[1], 0, msg->size);
985 } else {
986 /* Return payload size. */
987 ret = msg->size;
988 }
989 }
990 break;
991
992 case DP_AUX_NATIVE_READ:
993 case DP_AUX_I2C_READ:
994 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
995 rxsize = msg->size + 1;
996
997 if (WARN_ON(rxsize > 20))
998 return -E2BIG;
999
1000 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1001 if (ret > 0) {
1002 msg->reply = rxbuf[0] >> 4;
1003 /*
1004 * Assume happy day, and copy the data. The caller is
1005 * expected to check msg->reply before touching it.
1006 *
1007 * Return payload size.
1008 */
1009 ret--;
1010 memcpy(msg->buffer, rxbuf + 1, ret);
1011 }
1012 break;
1013
1014 default:
1015 ret = -EINVAL;
1016 break;
1017 }
1018
1019 return ret;
1020 }
1021
1022 static void
1023 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1024 {
1025 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1026 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1027 enum port port = intel_dig_port->port;
1028 const char *name = NULL;
1029 int ret;
1030
1031 switch (port) {
1032 case PORT_A:
1033 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1034 name = "DPDDC-A";
1035 break;
1036 case PORT_B:
1037 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1038 name = "DPDDC-B";
1039 break;
1040 case PORT_C:
1041 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1042 name = "DPDDC-C";
1043 break;
1044 case PORT_D:
1045 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1046 name = "DPDDC-D";
1047 break;
1048 default:
1049 BUG();
1050 }
1051
1052 /*
1053 * The AUX_CTL register is usually DP_CTL + 0x10.
1054 *
1055 * On Haswell and Broadwell though:
1056 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1057 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1058 *
1059 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1060 */
1061 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1062 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1063
1064 intel_dp->aux.name = name;
1065 intel_dp->aux.dev = dev->dev;
1066 intel_dp->aux.transfer = intel_dp_aux_transfer;
1067
1068 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1069 connector->base.kdev->kobj.name);
1070
1071 ret = drm_dp_aux_register(&intel_dp->aux);
1072 if (ret < 0) {
1073 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1074 name, ret);
1075 return;
1076 }
1077
1078 ret = sysfs_create_link(&connector->base.kdev->kobj,
1079 &intel_dp->aux.ddc.dev.kobj,
1080 intel_dp->aux.ddc.dev.kobj.name);
1081 if (ret < 0) {
1082 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1083 drm_dp_aux_unregister(&intel_dp->aux);
1084 }
1085 }
1086
1087 static void
1088 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1089 {
1090 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1091
1092 if (!intel_connector->mst_port)
1093 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1094 intel_dp->aux.ddc.dev.kobj.name);
1095 intel_connector_unregister(intel_connector);
1096 }
1097
1098 static void
1099 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config, int link_clock)
1100 {
1101 u32 ctrl1;
1102
1103 memset(&pipe_config->dpll_hw_state, 0,
1104 sizeof(pipe_config->dpll_hw_state));
1105
1106 pipe_config->ddi_pll_sel = SKL_DPLL0;
1107 pipe_config->dpll_hw_state.cfgcr1 = 0;
1108 pipe_config->dpll_hw_state.cfgcr2 = 0;
1109
1110 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1111 switch (link_clock / 2) {
1112 case 81000:
1113 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1114 SKL_DPLL0);
1115 break;
1116 case 135000:
1117 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1118 SKL_DPLL0);
1119 break;
1120 case 270000:
1121 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1122 SKL_DPLL0);
1123 break;
1124 case 162000:
1125 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1126 SKL_DPLL0);
1127 break;
1128 /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1129 results in CDCLK change. Need to handle the change of CDCLK by
1130 disabling pipes and re-enabling them */
1131 case 108000:
1132 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1133 SKL_DPLL0);
1134 break;
1135 case 216000:
1136 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1137 SKL_DPLL0);
1138 break;
1139
1140 }
1141 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1142 }
1143
1144 static void
1145 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config, int link_bw)
1146 {
1147 switch (link_bw) {
1148 case DP_LINK_BW_1_62:
1149 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1150 break;
1151 case DP_LINK_BW_2_7:
1152 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1153 break;
1154 case DP_LINK_BW_5_4:
1155 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1156 break;
1157 }
1158 }
1159
1160 static int
1161 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1162 {
1163 if (intel_dp->num_sink_rates) {
1164 *sink_rates = intel_dp->sink_rates;
1165 return intel_dp->num_sink_rates;
1166 }
1167
1168 *sink_rates = default_rates;
1169
1170 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1171 }
1172
1173 static int
1174 intel_dp_source_rates(struct drm_device *dev, const int **source_rates)
1175 {
1176 if (IS_BROXTON(dev)) {
1177 *source_rates = bxt_rates;
1178 return ARRAY_SIZE(bxt_rates);
1179 } else if (IS_SKYLAKE(dev)) {
1180 *source_rates = skl_rates;
1181 return ARRAY_SIZE(skl_rates);
1182 } else if (IS_CHERRYVIEW(dev)) {
1183 *source_rates = chv_rates;
1184 return ARRAY_SIZE(chv_rates);
1185 }
1186
1187 *source_rates = default_rates;
1188
1189 if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
1190 /* WaDisableHBR2:skl */
1191 return (DP_LINK_BW_2_7 >> 3) + 1;
1192 else if (INTEL_INFO(dev)->gen >= 8 ||
1193 (IS_HASWELL(dev) && !IS_HSW_ULX(dev)))
1194 return (DP_LINK_BW_5_4 >> 3) + 1;
1195 else
1196 return (DP_LINK_BW_2_7 >> 3) + 1;
1197 }
1198
1199 static void
1200 intel_dp_set_clock(struct intel_encoder *encoder,
1201 struct intel_crtc_state *pipe_config, int link_bw)
1202 {
1203 struct drm_device *dev = encoder->base.dev;
1204 const struct dp_link_dpll *divisor = NULL;
1205 int i, count = 0;
1206
1207 if (IS_G4X(dev)) {
1208 divisor = gen4_dpll;
1209 count = ARRAY_SIZE(gen4_dpll);
1210 } else if (HAS_PCH_SPLIT(dev)) {
1211 divisor = pch_dpll;
1212 count = ARRAY_SIZE(pch_dpll);
1213 } else if (IS_CHERRYVIEW(dev)) {
1214 divisor = chv_dpll;
1215 count = ARRAY_SIZE(chv_dpll);
1216 } else if (IS_VALLEYVIEW(dev)) {
1217 divisor = vlv_dpll;
1218 count = ARRAY_SIZE(vlv_dpll);
1219 }
1220
1221 if (divisor && count) {
1222 for (i = 0; i < count; i++) {
1223 if (link_bw == divisor[i].link_bw) {
1224 pipe_config->dpll = divisor[i].dpll;
1225 pipe_config->clock_set = true;
1226 break;
1227 }
1228 }
1229 }
1230 }
1231
1232 static int intersect_rates(const int *source_rates, int source_len,
1233 const int *sink_rates, int sink_len,
1234 int *common_rates)
1235 {
1236 int i = 0, j = 0, k = 0;
1237
1238 while (i < source_len && j < sink_len) {
1239 if (source_rates[i] == sink_rates[j]) {
1240 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1241 return k;
1242 common_rates[k] = source_rates[i];
1243 ++k;
1244 ++i;
1245 ++j;
1246 } else if (source_rates[i] < sink_rates[j]) {
1247 ++i;
1248 } else {
1249 ++j;
1250 }
1251 }
1252 return k;
1253 }
1254
1255 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1256 int *common_rates)
1257 {
1258 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1259 const int *source_rates, *sink_rates;
1260 int source_len, sink_len;
1261
1262 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1263 source_len = intel_dp_source_rates(dev, &source_rates);
1264
1265 return intersect_rates(source_rates, source_len,
1266 sink_rates, sink_len,
1267 common_rates);
1268 }
1269
1270 static void snprintf_int_array(char *str, size_t len,
1271 const int *array, int nelem)
1272 {
1273 int i;
1274
1275 str[0] = '\0';
1276
1277 for (i = 0; i < nelem; i++) {
1278 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1279 if (r >= len)
1280 return;
1281 str += r;
1282 len -= r;
1283 }
1284 }
1285
1286 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1287 {
1288 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1289 const int *source_rates, *sink_rates;
1290 int source_len, sink_len, common_len;
1291 int common_rates[DP_MAX_SUPPORTED_RATES];
1292 char str[128]; /* FIXME: too big for stack? */
1293
1294 if ((drm_debug & DRM_UT_KMS) == 0)
1295 return;
1296
1297 source_len = intel_dp_source_rates(dev, &source_rates);
1298 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1299 DRM_DEBUG_KMS("source rates: %s\n", str);
1300
1301 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1302 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1303 DRM_DEBUG_KMS("sink rates: %s\n", str);
1304
1305 common_len = intel_dp_common_rates(intel_dp, common_rates);
1306 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1307 DRM_DEBUG_KMS("common rates: %s\n", str);
1308 }
1309
1310 static int rate_to_index(int find, const int *rates)
1311 {
1312 int i = 0;
1313
1314 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1315 if (find == rates[i])
1316 break;
1317
1318 return i;
1319 }
1320
1321 int
1322 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1323 {
1324 int rates[DP_MAX_SUPPORTED_RATES] = {};
1325 int len;
1326
1327 len = intel_dp_common_rates(intel_dp, rates);
1328 if (WARN_ON(len <= 0))
1329 return 162000;
1330
1331 return rates[rate_to_index(0, rates) - 1];
1332 }
1333
1334 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1335 {
1336 return rate_to_index(rate, intel_dp->sink_rates);
1337 }
1338
1339 bool
1340 intel_dp_compute_config(struct intel_encoder *encoder,
1341 struct intel_crtc_state *pipe_config)
1342 {
1343 struct drm_device *dev = encoder->base.dev;
1344 struct drm_i915_private *dev_priv = dev->dev_private;
1345 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1346 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1347 enum port port = dp_to_dig_port(intel_dp)->port;
1348 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1349 struct intel_connector *intel_connector = intel_dp->attached_connector;
1350 int lane_count, clock;
1351 int min_lane_count = 1;
1352 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1353 /* Conveniently, the link BW constants become indices with a shift...*/
1354 int min_clock = 0;
1355 int max_clock;
1356 int bpp, mode_rate;
1357 int link_avail, link_clock;
1358 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1359 int common_len;
1360
1361 common_len = intel_dp_common_rates(intel_dp, common_rates);
1362
1363 /* No common link rates between source and sink */
1364 WARN_ON(common_len <= 0);
1365
1366 max_clock = common_len - 1;
1367
1368 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1369 pipe_config->has_pch_encoder = true;
1370
1371 pipe_config->has_dp_encoder = true;
1372 pipe_config->has_drrs = false;
1373 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1374
1375 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1376 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1377 adjusted_mode);
1378
1379 if (INTEL_INFO(dev)->gen >= 9) {
1380 int ret;
1381 ret = skl_update_scaler_users(intel_crtc, pipe_config, NULL, NULL, 0);
1382 if (ret)
1383 return ret;
1384 }
1385
1386 if (!HAS_PCH_SPLIT(dev))
1387 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1388 intel_connector->panel.fitting_mode);
1389 else
1390 intel_pch_panel_fitting(intel_crtc, pipe_config,
1391 intel_connector->panel.fitting_mode);
1392 }
1393
1394 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1395 return false;
1396
1397 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1398 "max bw %d pixel clock %iKHz\n",
1399 max_lane_count, common_rates[max_clock],
1400 adjusted_mode->crtc_clock);
1401
1402 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1403 * bpc in between. */
1404 bpp = pipe_config->pipe_bpp;
1405 if (is_edp(intel_dp)) {
1406 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1407 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1408 dev_priv->vbt.edp_bpp);
1409 bpp = dev_priv->vbt.edp_bpp;
1410 }
1411
1412 /*
1413 * Use the maximum clock and number of lanes the eDP panel
1414 * advertizes being capable of. The panels are generally
1415 * designed to support only a single clock and lane
1416 * configuration, and typically these values correspond to the
1417 * native resolution of the panel.
1418 */
1419 min_lane_count = max_lane_count;
1420 min_clock = max_clock;
1421 }
1422
1423 for (; bpp >= 6*3; bpp -= 2*3) {
1424 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1425 bpp);
1426
1427 for (clock = min_clock; clock <= max_clock; clock++) {
1428 for (lane_count = min_lane_count;
1429 lane_count <= max_lane_count;
1430 lane_count <<= 1) {
1431
1432 link_clock = common_rates[clock];
1433 link_avail = intel_dp_max_data_rate(link_clock,
1434 lane_count);
1435
1436 if (mode_rate <= link_avail) {
1437 goto found;
1438 }
1439 }
1440 }
1441 }
1442
1443 return false;
1444
1445 found:
1446 if (intel_dp->color_range_auto) {
1447 /*
1448 * See:
1449 * CEA-861-E - 5.1 Default Encoding Parameters
1450 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1451 */
1452 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1453 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1454 else
1455 intel_dp->color_range = 0;
1456 }
1457
1458 if (intel_dp->color_range)
1459 pipe_config->limited_color_range = true;
1460
1461 intel_dp->lane_count = lane_count;
1462
1463 if (intel_dp->num_sink_rates) {
1464 intel_dp->link_bw = 0;
1465 intel_dp->rate_select =
1466 intel_dp_rate_select(intel_dp, common_rates[clock]);
1467 } else {
1468 intel_dp->link_bw =
1469 drm_dp_link_rate_to_bw_code(common_rates[clock]);
1470 intel_dp->rate_select = 0;
1471 }
1472
1473 pipe_config->pipe_bpp = bpp;
1474 pipe_config->port_clock = common_rates[clock];
1475
1476 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1477 intel_dp->link_bw, intel_dp->lane_count,
1478 pipe_config->port_clock, bpp);
1479 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1480 mode_rate, link_avail);
1481
1482 intel_link_compute_m_n(bpp, lane_count,
1483 adjusted_mode->crtc_clock,
1484 pipe_config->port_clock,
1485 &pipe_config->dp_m_n);
1486
1487 if (intel_connector->panel.downclock_mode != NULL &&
1488 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1489 pipe_config->has_drrs = true;
1490 intel_link_compute_m_n(bpp, lane_count,
1491 intel_connector->panel.downclock_mode->clock,
1492 pipe_config->port_clock,
1493 &pipe_config->dp_m2_n2);
1494 }
1495
1496 if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1497 skl_edp_set_pll_config(pipe_config, common_rates[clock]);
1498 else if (IS_BROXTON(dev))
1499 /* handled in ddi */;
1500 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1501 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1502 else
1503 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1504
1505 return true;
1506 }
1507
1508 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1509 {
1510 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1511 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1512 struct drm_device *dev = crtc->base.dev;
1513 struct drm_i915_private *dev_priv = dev->dev_private;
1514 u32 dpa_ctl;
1515
1516 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1517 crtc->config->port_clock);
1518 dpa_ctl = I915_READ(DP_A);
1519 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1520
1521 if (crtc->config->port_clock == 162000) {
1522 /* For a long time we've carried around a ILK-DevA w/a for the
1523 * 160MHz clock. If we're really unlucky, it's still required.
1524 */
1525 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1526 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1527 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1528 } else {
1529 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1530 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1531 }
1532
1533 I915_WRITE(DP_A, dpa_ctl);
1534
1535 POSTING_READ(DP_A);
1536 udelay(500);
1537 }
1538
1539 static void intel_dp_prepare(struct intel_encoder *encoder)
1540 {
1541 struct drm_device *dev = encoder->base.dev;
1542 struct drm_i915_private *dev_priv = dev->dev_private;
1543 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1544 enum port port = dp_to_dig_port(intel_dp)->port;
1545 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1546 struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1547
1548 /*
1549 * There are four kinds of DP registers:
1550 *
1551 * IBX PCH
1552 * SNB CPU
1553 * IVB CPU
1554 * CPT PCH
1555 *
1556 * IBX PCH and CPU are the same for almost everything,
1557 * except that the CPU DP PLL is configured in this
1558 * register
1559 *
1560 * CPT PCH is quite different, having many bits moved
1561 * to the TRANS_DP_CTL register instead. That
1562 * configuration happens (oddly) in ironlake_pch_enable
1563 */
1564
1565 /* Preserve the BIOS-computed detected bit. This is
1566 * supposed to be read-only.
1567 */
1568 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1569
1570 /* Handle DP bits in common between all three register formats */
1571 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1572 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1573
1574 if (crtc->config->has_audio)
1575 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1576
1577 /* Split out the IBX/CPU vs CPT settings */
1578
1579 if (IS_GEN7(dev) && port == PORT_A) {
1580 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1581 intel_dp->DP |= DP_SYNC_HS_HIGH;
1582 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1583 intel_dp->DP |= DP_SYNC_VS_HIGH;
1584 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1585
1586 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1587 intel_dp->DP |= DP_ENHANCED_FRAMING;
1588
1589 intel_dp->DP |= crtc->pipe << 29;
1590 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1591 u32 trans_dp;
1592
1593 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1594
1595 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1596 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1597 trans_dp |= TRANS_DP_ENH_FRAMING;
1598 else
1599 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1600 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1601 } else {
1602 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1603 intel_dp->DP |= intel_dp->color_range;
1604
1605 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1606 intel_dp->DP |= DP_SYNC_HS_HIGH;
1607 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1608 intel_dp->DP |= DP_SYNC_VS_HIGH;
1609 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1610
1611 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1612 intel_dp->DP |= DP_ENHANCED_FRAMING;
1613
1614 if (IS_CHERRYVIEW(dev))
1615 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1616 else if (crtc->pipe == PIPE_B)
1617 intel_dp->DP |= DP_PIPEB_SELECT;
1618 }
1619 }
1620
1621 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1622 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1623
1624 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1625 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1626
1627 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1628 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1629
1630 static void wait_panel_status(struct intel_dp *intel_dp,
1631 u32 mask,
1632 u32 value)
1633 {
1634 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1635 struct drm_i915_private *dev_priv = dev->dev_private;
1636 u32 pp_stat_reg, pp_ctrl_reg;
1637
1638 lockdep_assert_held(&dev_priv->pps_mutex);
1639
1640 pp_stat_reg = _pp_stat_reg(intel_dp);
1641 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1642
1643 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1644 mask, value,
1645 I915_READ(pp_stat_reg),
1646 I915_READ(pp_ctrl_reg));
1647
1648 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1649 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1650 I915_READ(pp_stat_reg),
1651 I915_READ(pp_ctrl_reg));
1652 }
1653
1654 DRM_DEBUG_KMS("Wait complete\n");
1655 }
1656
1657 static void wait_panel_on(struct intel_dp *intel_dp)
1658 {
1659 DRM_DEBUG_KMS("Wait for panel power on\n");
1660 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1661 }
1662
1663 static void wait_panel_off(struct intel_dp *intel_dp)
1664 {
1665 DRM_DEBUG_KMS("Wait for panel power off time\n");
1666 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1667 }
1668
1669 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1670 {
1671 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1672
1673 /* When we disable the VDD override bit last we have to do the manual
1674 * wait. */
1675 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1676 intel_dp->panel_power_cycle_delay);
1677
1678 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1679 }
1680
1681 static void wait_backlight_on(struct intel_dp *intel_dp)
1682 {
1683 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1684 intel_dp->backlight_on_delay);
1685 }
1686
1687 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1688 {
1689 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1690 intel_dp->backlight_off_delay);
1691 }
1692
1693 /* Read the current pp_control value, unlocking the register if it
1694 * is locked
1695 */
1696
1697 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1698 {
1699 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1700 struct drm_i915_private *dev_priv = dev->dev_private;
1701 u32 control;
1702
1703 lockdep_assert_held(&dev_priv->pps_mutex);
1704
1705 control = I915_READ(_pp_ctrl_reg(intel_dp));
1706 control &= ~PANEL_UNLOCK_MASK;
1707 control |= PANEL_UNLOCK_REGS;
1708 return control;
1709 }
1710
1711 /*
1712 * Must be paired with edp_panel_vdd_off().
1713 * Must hold pps_mutex around the whole on/off sequence.
1714 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1715 */
1716 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1717 {
1718 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1719 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1720 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1721 struct drm_i915_private *dev_priv = dev->dev_private;
1722 enum intel_display_power_domain power_domain;
1723 u32 pp;
1724 u32 pp_stat_reg, pp_ctrl_reg;
1725 bool need_to_disable = !intel_dp->want_panel_vdd;
1726
1727 lockdep_assert_held(&dev_priv->pps_mutex);
1728
1729 if (!is_edp(intel_dp))
1730 return false;
1731
1732 cancel_delayed_work(&intel_dp->panel_vdd_work);
1733 intel_dp->want_panel_vdd = true;
1734
1735 if (edp_have_panel_vdd(intel_dp))
1736 return need_to_disable;
1737
1738 power_domain = intel_display_port_power_domain(intel_encoder);
1739 intel_display_power_get(dev_priv, power_domain);
1740
1741 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1742 port_name(intel_dig_port->port));
1743
1744 if (!edp_have_panel_power(intel_dp))
1745 wait_panel_power_cycle(intel_dp);
1746
1747 pp = ironlake_get_pp_control(intel_dp);
1748 pp |= EDP_FORCE_VDD;
1749
1750 pp_stat_reg = _pp_stat_reg(intel_dp);
1751 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1752
1753 I915_WRITE(pp_ctrl_reg, pp);
1754 POSTING_READ(pp_ctrl_reg);
1755 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1756 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1757 /*
1758 * If the panel wasn't on, delay before accessing aux channel
1759 */
1760 if (!edp_have_panel_power(intel_dp)) {
1761 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1762 port_name(intel_dig_port->port));
1763 msleep(intel_dp->panel_power_up_delay);
1764 }
1765
1766 return need_to_disable;
1767 }
1768
1769 /*
1770 * Must be paired with intel_edp_panel_vdd_off() or
1771 * intel_edp_panel_off().
1772 * Nested calls to these functions are not allowed since
1773 * we drop the lock. Caller must use some higher level
1774 * locking to prevent nested calls from other threads.
1775 */
1776 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1777 {
1778 bool vdd;
1779
1780 if (!is_edp(intel_dp))
1781 return;
1782
1783 pps_lock(intel_dp);
1784 vdd = edp_panel_vdd_on(intel_dp);
1785 pps_unlock(intel_dp);
1786
1787 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1788 port_name(dp_to_dig_port(intel_dp)->port));
1789 }
1790
1791 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1792 {
1793 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1794 struct drm_i915_private *dev_priv = dev->dev_private;
1795 struct intel_digital_port *intel_dig_port =
1796 dp_to_dig_port(intel_dp);
1797 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1798 enum intel_display_power_domain power_domain;
1799 u32 pp;
1800 u32 pp_stat_reg, pp_ctrl_reg;
1801
1802 lockdep_assert_held(&dev_priv->pps_mutex);
1803
1804 WARN_ON(intel_dp->want_panel_vdd);
1805
1806 if (!edp_have_panel_vdd(intel_dp))
1807 return;
1808
1809 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1810 port_name(intel_dig_port->port));
1811
1812 pp = ironlake_get_pp_control(intel_dp);
1813 pp &= ~EDP_FORCE_VDD;
1814
1815 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1816 pp_stat_reg = _pp_stat_reg(intel_dp);
1817
1818 I915_WRITE(pp_ctrl_reg, pp);
1819 POSTING_READ(pp_ctrl_reg);
1820
1821 /* Make sure sequencer is idle before allowing subsequent activity */
1822 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1823 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1824
1825 if ((pp & POWER_TARGET_ON) == 0)
1826 intel_dp->last_power_cycle = jiffies;
1827
1828 power_domain = intel_display_port_power_domain(intel_encoder);
1829 intel_display_power_put(dev_priv, power_domain);
1830 }
1831
1832 static void edp_panel_vdd_work(struct work_struct *__work)
1833 {
1834 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1835 struct intel_dp, panel_vdd_work);
1836
1837 pps_lock(intel_dp);
1838 if (!intel_dp->want_panel_vdd)
1839 edp_panel_vdd_off_sync(intel_dp);
1840 pps_unlock(intel_dp);
1841 }
1842
1843 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1844 {
1845 unsigned long delay;
1846
1847 /*
1848 * Queue the timer to fire a long time from now (relative to the power
1849 * down delay) to keep the panel power up across a sequence of
1850 * operations.
1851 */
1852 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1853 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1854 }
1855
1856 /*
1857 * Must be paired with edp_panel_vdd_on().
1858 * Must hold pps_mutex around the whole on/off sequence.
1859 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1860 */
1861 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1862 {
1863 struct drm_i915_private *dev_priv =
1864 intel_dp_to_dev(intel_dp)->dev_private;
1865
1866 lockdep_assert_held(&dev_priv->pps_mutex);
1867
1868 if (!is_edp(intel_dp))
1869 return;
1870
1871 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1872 port_name(dp_to_dig_port(intel_dp)->port));
1873
1874 intel_dp->want_panel_vdd = false;
1875
1876 if (sync)
1877 edp_panel_vdd_off_sync(intel_dp);
1878 else
1879 edp_panel_vdd_schedule_off(intel_dp);
1880 }
1881
1882 static void edp_panel_on(struct intel_dp *intel_dp)
1883 {
1884 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1885 struct drm_i915_private *dev_priv = dev->dev_private;
1886 u32 pp;
1887 u32 pp_ctrl_reg;
1888
1889 lockdep_assert_held(&dev_priv->pps_mutex);
1890
1891 if (!is_edp(intel_dp))
1892 return;
1893
1894 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1895 port_name(dp_to_dig_port(intel_dp)->port));
1896
1897 if (WARN(edp_have_panel_power(intel_dp),
1898 "eDP port %c panel power already on\n",
1899 port_name(dp_to_dig_port(intel_dp)->port)))
1900 return;
1901
1902 wait_panel_power_cycle(intel_dp);
1903
1904 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1905 pp = ironlake_get_pp_control(intel_dp);
1906 if (IS_GEN5(dev)) {
1907 /* ILK workaround: disable reset around power sequence */
1908 pp &= ~PANEL_POWER_RESET;
1909 I915_WRITE(pp_ctrl_reg, pp);
1910 POSTING_READ(pp_ctrl_reg);
1911 }
1912
1913 pp |= POWER_TARGET_ON;
1914 if (!IS_GEN5(dev))
1915 pp |= PANEL_POWER_RESET;
1916
1917 I915_WRITE(pp_ctrl_reg, pp);
1918 POSTING_READ(pp_ctrl_reg);
1919
1920 wait_panel_on(intel_dp);
1921 intel_dp->last_power_on = jiffies;
1922
1923 if (IS_GEN5(dev)) {
1924 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1925 I915_WRITE(pp_ctrl_reg, pp);
1926 POSTING_READ(pp_ctrl_reg);
1927 }
1928 }
1929
1930 void intel_edp_panel_on(struct intel_dp *intel_dp)
1931 {
1932 if (!is_edp(intel_dp))
1933 return;
1934
1935 pps_lock(intel_dp);
1936 edp_panel_on(intel_dp);
1937 pps_unlock(intel_dp);
1938 }
1939
1940
1941 static void edp_panel_off(struct intel_dp *intel_dp)
1942 {
1943 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1944 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1945 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1946 struct drm_i915_private *dev_priv = dev->dev_private;
1947 enum intel_display_power_domain power_domain;
1948 u32 pp;
1949 u32 pp_ctrl_reg;
1950
1951 lockdep_assert_held(&dev_priv->pps_mutex);
1952
1953 if (!is_edp(intel_dp))
1954 return;
1955
1956 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1957 port_name(dp_to_dig_port(intel_dp)->port));
1958
1959 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
1960 port_name(dp_to_dig_port(intel_dp)->port));
1961
1962 pp = ironlake_get_pp_control(intel_dp);
1963 /* We need to switch off panel power _and_ force vdd, for otherwise some
1964 * panels get very unhappy and cease to work. */
1965 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1966 EDP_BLC_ENABLE);
1967
1968 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1969
1970 intel_dp->want_panel_vdd = false;
1971
1972 I915_WRITE(pp_ctrl_reg, pp);
1973 POSTING_READ(pp_ctrl_reg);
1974
1975 intel_dp->last_power_cycle = jiffies;
1976 wait_panel_off(intel_dp);
1977
1978 /* We got a reference when we enabled the VDD. */
1979 power_domain = intel_display_port_power_domain(intel_encoder);
1980 intel_display_power_put(dev_priv, power_domain);
1981 }
1982
1983 void intel_edp_panel_off(struct intel_dp *intel_dp)
1984 {
1985 if (!is_edp(intel_dp))
1986 return;
1987
1988 pps_lock(intel_dp);
1989 edp_panel_off(intel_dp);
1990 pps_unlock(intel_dp);
1991 }
1992
1993 /* Enable backlight in the panel power control. */
1994 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1995 {
1996 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1997 struct drm_device *dev = intel_dig_port->base.base.dev;
1998 struct drm_i915_private *dev_priv = dev->dev_private;
1999 u32 pp;
2000 u32 pp_ctrl_reg;
2001
2002 /*
2003 * If we enable the backlight right away following a panel power
2004 * on, we may see slight flicker as the panel syncs with the eDP
2005 * link. So delay a bit to make sure the image is solid before
2006 * allowing it to appear.
2007 */
2008 wait_backlight_on(intel_dp);
2009
2010 pps_lock(intel_dp);
2011
2012 pp = ironlake_get_pp_control(intel_dp);
2013 pp |= EDP_BLC_ENABLE;
2014
2015 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2016
2017 I915_WRITE(pp_ctrl_reg, pp);
2018 POSTING_READ(pp_ctrl_reg);
2019
2020 pps_unlock(intel_dp);
2021 }
2022
2023 /* Enable backlight PWM and backlight PP control. */
2024 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2025 {
2026 if (!is_edp(intel_dp))
2027 return;
2028
2029 DRM_DEBUG_KMS("\n");
2030
2031 intel_panel_enable_backlight(intel_dp->attached_connector);
2032 _intel_edp_backlight_on(intel_dp);
2033 }
2034
2035 /* Disable backlight in the panel power control. */
2036 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2037 {
2038 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2039 struct drm_i915_private *dev_priv = dev->dev_private;
2040 u32 pp;
2041 u32 pp_ctrl_reg;
2042
2043 if (!is_edp(intel_dp))
2044 return;
2045
2046 pps_lock(intel_dp);
2047
2048 pp = ironlake_get_pp_control(intel_dp);
2049 pp &= ~EDP_BLC_ENABLE;
2050
2051 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2052
2053 I915_WRITE(pp_ctrl_reg, pp);
2054 POSTING_READ(pp_ctrl_reg);
2055
2056 pps_unlock(intel_dp);
2057
2058 intel_dp->last_backlight_off = jiffies;
2059 edp_wait_backlight_off(intel_dp);
2060 }
2061
2062 /* Disable backlight PP control and backlight PWM. */
2063 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2064 {
2065 if (!is_edp(intel_dp))
2066 return;
2067
2068 DRM_DEBUG_KMS("\n");
2069
2070 _intel_edp_backlight_off(intel_dp);
2071 intel_panel_disable_backlight(intel_dp->attached_connector);
2072 }
2073
2074 /*
2075 * Hook for controlling the panel power control backlight through the bl_power
2076 * sysfs attribute. Take care to handle multiple calls.
2077 */
2078 static void intel_edp_backlight_power(struct intel_connector *connector,
2079 bool enable)
2080 {
2081 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2082 bool is_enabled;
2083
2084 pps_lock(intel_dp);
2085 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2086 pps_unlock(intel_dp);
2087
2088 if (is_enabled == enable)
2089 return;
2090
2091 DRM_DEBUG_KMS("panel power control backlight %s\n",
2092 enable ? "enable" : "disable");
2093
2094 if (enable)
2095 _intel_edp_backlight_on(intel_dp);
2096 else
2097 _intel_edp_backlight_off(intel_dp);
2098 }
2099
2100 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2101 {
2102 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2103 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2104 struct drm_device *dev = crtc->dev;
2105 struct drm_i915_private *dev_priv = dev->dev_private;
2106 u32 dpa_ctl;
2107
2108 assert_pipe_disabled(dev_priv,
2109 to_intel_crtc(crtc)->pipe);
2110
2111 DRM_DEBUG_KMS("\n");
2112 dpa_ctl = I915_READ(DP_A);
2113 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
2114 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2115
2116 /* We don't adjust intel_dp->DP while tearing down the link, to
2117 * facilitate link retraining (e.g. after hotplug). Hence clear all
2118 * enable bits here to ensure that we don't enable too much. */
2119 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
2120 intel_dp->DP |= DP_PLL_ENABLE;
2121 I915_WRITE(DP_A, intel_dp->DP);
2122 POSTING_READ(DP_A);
2123 udelay(200);
2124 }
2125
2126 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2127 {
2128 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2129 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2130 struct drm_device *dev = crtc->dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 u32 dpa_ctl;
2133
2134 assert_pipe_disabled(dev_priv,
2135 to_intel_crtc(crtc)->pipe);
2136
2137 dpa_ctl = I915_READ(DP_A);
2138 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
2139 "dp pll off, should be on\n");
2140 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2141
2142 /* We can't rely on the value tracked for the DP register in
2143 * intel_dp->DP because link_down must not change that (otherwise link
2144 * re-training will fail. */
2145 dpa_ctl &= ~DP_PLL_ENABLE;
2146 I915_WRITE(DP_A, dpa_ctl);
2147 POSTING_READ(DP_A);
2148 udelay(200);
2149 }
2150
2151 /* If the sink supports it, try to set the power state appropriately */
2152 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2153 {
2154 int ret, i;
2155
2156 /* Should have a valid DPCD by this point */
2157 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2158 return;
2159
2160 if (mode != DRM_MODE_DPMS_ON) {
2161 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2162 DP_SET_POWER_D3);
2163 } else {
2164 /*
2165 * When turning on, we need to retry for 1ms to give the sink
2166 * time to wake up.
2167 */
2168 for (i = 0; i < 3; i++) {
2169 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2170 DP_SET_POWER_D0);
2171 if (ret == 1)
2172 break;
2173 msleep(1);
2174 }
2175 }
2176
2177 if (ret != 1)
2178 DRM_DEBUG_KMS("failed to %s sink power state\n",
2179 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2180 }
2181
2182 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2183 enum pipe *pipe)
2184 {
2185 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2186 enum port port = dp_to_dig_port(intel_dp)->port;
2187 struct drm_device *dev = encoder->base.dev;
2188 struct drm_i915_private *dev_priv = dev->dev_private;
2189 enum intel_display_power_domain power_domain;
2190 u32 tmp;
2191
2192 power_domain = intel_display_port_power_domain(encoder);
2193 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2194 return false;
2195
2196 tmp = I915_READ(intel_dp->output_reg);
2197
2198 if (!(tmp & DP_PORT_EN))
2199 return false;
2200
2201 if (IS_GEN7(dev) && port == PORT_A) {
2202 *pipe = PORT_TO_PIPE_CPT(tmp);
2203 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2204 enum pipe p;
2205
2206 for_each_pipe(dev_priv, p) {
2207 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2208 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2209 *pipe = p;
2210 return true;
2211 }
2212 }
2213
2214 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2215 intel_dp->output_reg);
2216 } else if (IS_CHERRYVIEW(dev)) {
2217 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2218 } else {
2219 *pipe = PORT_TO_PIPE(tmp);
2220 }
2221
2222 return true;
2223 }
2224
2225 static void intel_dp_get_config(struct intel_encoder *encoder,
2226 struct intel_crtc_state *pipe_config)
2227 {
2228 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2229 u32 tmp, flags = 0;
2230 struct drm_device *dev = encoder->base.dev;
2231 struct drm_i915_private *dev_priv = dev->dev_private;
2232 enum port port = dp_to_dig_port(intel_dp)->port;
2233 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2234 int dotclock;
2235
2236 tmp = I915_READ(intel_dp->output_reg);
2237
2238 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2239
2240 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2241 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2242 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2243 flags |= DRM_MODE_FLAG_PHSYNC;
2244 else
2245 flags |= DRM_MODE_FLAG_NHSYNC;
2246
2247 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2248 flags |= DRM_MODE_FLAG_PVSYNC;
2249 else
2250 flags |= DRM_MODE_FLAG_NVSYNC;
2251 } else {
2252 if (tmp & DP_SYNC_HS_HIGH)
2253 flags |= DRM_MODE_FLAG_PHSYNC;
2254 else
2255 flags |= DRM_MODE_FLAG_NHSYNC;
2256
2257 if (tmp & DP_SYNC_VS_HIGH)
2258 flags |= DRM_MODE_FLAG_PVSYNC;
2259 else
2260 flags |= DRM_MODE_FLAG_NVSYNC;
2261 }
2262
2263 pipe_config->base.adjusted_mode.flags |= flags;
2264
2265 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2266 tmp & DP_COLOR_RANGE_16_235)
2267 pipe_config->limited_color_range = true;
2268
2269 pipe_config->has_dp_encoder = true;
2270
2271 intel_dp_get_m_n(crtc, pipe_config);
2272
2273 if (port == PORT_A) {
2274 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2275 pipe_config->port_clock = 162000;
2276 else
2277 pipe_config->port_clock = 270000;
2278 }
2279
2280 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2281 &pipe_config->dp_m_n);
2282
2283 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2284 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2285
2286 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2287
2288 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2289 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2290 /*
2291 * This is a big fat ugly hack.
2292 *
2293 * Some machines in UEFI boot mode provide us a VBT that has 18
2294 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2295 * unknown we fail to light up. Yet the same BIOS boots up with
2296 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2297 * max, not what it tells us to use.
2298 *
2299 * Note: This will still be broken if the eDP panel is not lit
2300 * up by the BIOS, and thus we can't get the mode at module
2301 * load.
2302 */
2303 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2304 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2305 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2306 }
2307 }
2308
2309 static void intel_disable_dp(struct intel_encoder *encoder)
2310 {
2311 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2312 struct drm_device *dev = encoder->base.dev;
2313 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2314
2315 if (crtc->config->has_audio)
2316 intel_audio_codec_disable(encoder);
2317
2318 if (HAS_PSR(dev) && !HAS_DDI(dev))
2319 intel_psr_disable(intel_dp);
2320
2321 /* Make sure the panel is off before trying to change the mode. But also
2322 * ensure that we have vdd while we switch off the panel. */
2323 intel_edp_panel_vdd_on(intel_dp);
2324 intel_edp_backlight_off(intel_dp);
2325 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2326 intel_edp_panel_off(intel_dp);
2327
2328 /* disable the port before the pipe on g4x */
2329 if (INTEL_INFO(dev)->gen < 5)
2330 intel_dp_link_down(intel_dp);
2331 }
2332
2333 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2334 {
2335 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2336 enum port port = dp_to_dig_port(intel_dp)->port;
2337
2338 intel_dp_link_down(intel_dp);
2339 if (port == PORT_A)
2340 ironlake_edp_pll_off(intel_dp);
2341 }
2342
2343 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2344 {
2345 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2346
2347 intel_dp_link_down(intel_dp);
2348 }
2349
2350 static void chv_post_disable_dp(struct intel_encoder *encoder)
2351 {
2352 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2353 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2354 struct drm_device *dev = encoder->base.dev;
2355 struct drm_i915_private *dev_priv = dev->dev_private;
2356 struct intel_crtc *intel_crtc =
2357 to_intel_crtc(encoder->base.crtc);
2358 enum dpio_channel ch = vlv_dport_to_channel(dport);
2359 enum pipe pipe = intel_crtc->pipe;
2360 u32 val;
2361
2362 intel_dp_link_down(intel_dp);
2363
2364 mutex_lock(&dev_priv->sb_lock);
2365
2366 /* Propagate soft reset to data lane reset */
2367 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2368 val |= CHV_PCS_REQ_SOFTRESET_EN;
2369 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2370
2371 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2372 val |= CHV_PCS_REQ_SOFTRESET_EN;
2373 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2374
2375 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2376 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2377 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2378
2379 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2380 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2381 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2382
2383 mutex_unlock(&dev_priv->sb_lock);
2384 }
2385
2386 static void
2387 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2388 uint32_t *DP,
2389 uint8_t dp_train_pat)
2390 {
2391 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2392 struct drm_device *dev = intel_dig_port->base.base.dev;
2393 struct drm_i915_private *dev_priv = dev->dev_private;
2394 enum port port = intel_dig_port->port;
2395
2396 if (HAS_DDI(dev)) {
2397 uint32_t temp = I915_READ(DP_TP_CTL(port));
2398
2399 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2400 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2401 else
2402 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2403
2404 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2405 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2406 case DP_TRAINING_PATTERN_DISABLE:
2407 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2408
2409 break;
2410 case DP_TRAINING_PATTERN_1:
2411 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2412 break;
2413 case DP_TRAINING_PATTERN_2:
2414 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2415 break;
2416 case DP_TRAINING_PATTERN_3:
2417 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2418 break;
2419 }
2420 I915_WRITE(DP_TP_CTL(port), temp);
2421
2422 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2423 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2424 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2425
2426 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2427 case DP_TRAINING_PATTERN_DISABLE:
2428 *DP |= DP_LINK_TRAIN_OFF_CPT;
2429 break;
2430 case DP_TRAINING_PATTERN_1:
2431 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2432 break;
2433 case DP_TRAINING_PATTERN_2:
2434 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2435 break;
2436 case DP_TRAINING_PATTERN_3:
2437 DRM_ERROR("DP training pattern 3 not supported\n");
2438 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2439 break;
2440 }
2441
2442 } else {
2443 if (IS_CHERRYVIEW(dev))
2444 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2445 else
2446 *DP &= ~DP_LINK_TRAIN_MASK;
2447
2448 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2449 case DP_TRAINING_PATTERN_DISABLE:
2450 *DP |= DP_LINK_TRAIN_OFF;
2451 break;
2452 case DP_TRAINING_PATTERN_1:
2453 *DP |= DP_LINK_TRAIN_PAT_1;
2454 break;
2455 case DP_TRAINING_PATTERN_2:
2456 *DP |= DP_LINK_TRAIN_PAT_2;
2457 break;
2458 case DP_TRAINING_PATTERN_3:
2459 if (IS_CHERRYVIEW(dev)) {
2460 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2461 } else {
2462 DRM_ERROR("DP training pattern 3 not supported\n");
2463 *DP |= DP_LINK_TRAIN_PAT_2;
2464 }
2465 break;
2466 }
2467 }
2468 }
2469
2470 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2471 {
2472 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2473 struct drm_i915_private *dev_priv = dev->dev_private;
2474
2475 /* enable with pattern 1 (as per spec) */
2476 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2477 DP_TRAINING_PATTERN_1);
2478
2479 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2480 POSTING_READ(intel_dp->output_reg);
2481
2482 /*
2483 * Magic for VLV/CHV. We _must_ first set up the register
2484 * without actually enabling the port, and then do another
2485 * write to enable the port. Otherwise link training will
2486 * fail when the power sequencer is freshly used for this port.
2487 */
2488 intel_dp->DP |= DP_PORT_EN;
2489
2490 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2491 POSTING_READ(intel_dp->output_reg);
2492 }
2493
2494 static void intel_enable_dp(struct intel_encoder *encoder)
2495 {
2496 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2497 struct drm_device *dev = encoder->base.dev;
2498 struct drm_i915_private *dev_priv = dev->dev_private;
2499 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2500 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2501 unsigned int lane_mask = 0x0;
2502
2503 if (WARN_ON(dp_reg & DP_PORT_EN))
2504 return;
2505
2506 pps_lock(intel_dp);
2507
2508 if (IS_VALLEYVIEW(dev))
2509 vlv_init_panel_power_sequencer(intel_dp);
2510
2511 intel_dp_enable_port(intel_dp);
2512
2513 edp_panel_vdd_on(intel_dp);
2514 edp_panel_on(intel_dp);
2515 edp_panel_vdd_off(intel_dp, true);
2516
2517 pps_unlock(intel_dp);
2518
2519 if (IS_VALLEYVIEW(dev))
2520 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2521 lane_mask);
2522
2523 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2524 intel_dp_start_link_train(intel_dp);
2525 intel_dp_complete_link_train(intel_dp);
2526 intel_dp_stop_link_train(intel_dp);
2527
2528 if (crtc->config->has_audio) {
2529 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2530 pipe_name(crtc->pipe));
2531 intel_audio_codec_enable(encoder);
2532 }
2533 }
2534
2535 static void g4x_enable_dp(struct intel_encoder *encoder)
2536 {
2537 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2538
2539 intel_enable_dp(encoder);
2540 intel_edp_backlight_on(intel_dp);
2541 }
2542
2543 static void vlv_enable_dp(struct intel_encoder *encoder)
2544 {
2545 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2546
2547 intel_edp_backlight_on(intel_dp);
2548 intel_psr_enable(intel_dp);
2549 }
2550
2551 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2552 {
2553 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2554 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2555
2556 intel_dp_prepare(encoder);
2557
2558 /* Only ilk+ has port A */
2559 if (dport->port == PORT_A) {
2560 ironlake_set_pll_cpu_edp(intel_dp);
2561 ironlake_edp_pll_on(intel_dp);
2562 }
2563 }
2564
2565 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2566 {
2567 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2568 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2569 enum pipe pipe = intel_dp->pps_pipe;
2570 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2571
2572 edp_panel_vdd_off_sync(intel_dp);
2573
2574 /*
2575 * VLV seems to get confused when multiple power seqeuencers
2576 * have the same port selected (even if only one has power/vdd
2577 * enabled). The failure manifests as vlv_wait_port_ready() failing
2578 * CHV on the other hand doesn't seem to mind having the same port
2579 * selected in multiple power seqeuencers, but let's clear the
2580 * port select always when logically disconnecting a power sequencer
2581 * from a port.
2582 */
2583 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2584 pipe_name(pipe), port_name(intel_dig_port->port));
2585 I915_WRITE(pp_on_reg, 0);
2586 POSTING_READ(pp_on_reg);
2587
2588 intel_dp->pps_pipe = INVALID_PIPE;
2589 }
2590
2591 static void vlv_steal_power_sequencer(struct drm_device *dev,
2592 enum pipe pipe)
2593 {
2594 struct drm_i915_private *dev_priv = dev->dev_private;
2595 struct intel_encoder *encoder;
2596
2597 lockdep_assert_held(&dev_priv->pps_mutex);
2598
2599 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2600 return;
2601
2602 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2603 base.head) {
2604 struct intel_dp *intel_dp;
2605 enum port port;
2606
2607 if (encoder->type != INTEL_OUTPUT_EDP)
2608 continue;
2609
2610 intel_dp = enc_to_intel_dp(&encoder->base);
2611 port = dp_to_dig_port(intel_dp)->port;
2612
2613 if (intel_dp->pps_pipe != pipe)
2614 continue;
2615
2616 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2617 pipe_name(pipe), port_name(port));
2618
2619 WARN(encoder->connectors_active,
2620 "stealing pipe %c power sequencer from active eDP port %c\n",
2621 pipe_name(pipe), port_name(port));
2622
2623 /* make sure vdd is off before we steal it */
2624 vlv_detach_power_sequencer(intel_dp);
2625 }
2626 }
2627
2628 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2629 {
2630 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2631 struct intel_encoder *encoder = &intel_dig_port->base;
2632 struct drm_device *dev = encoder->base.dev;
2633 struct drm_i915_private *dev_priv = dev->dev_private;
2634 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2635
2636 lockdep_assert_held(&dev_priv->pps_mutex);
2637
2638 if (!is_edp(intel_dp))
2639 return;
2640
2641 if (intel_dp->pps_pipe == crtc->pipe)
2642 return;
2643
2644 /*
2645 * If another power sequencer was being used on this
2646 * port previously make sure to turn off vdd there while
2647 * we still have control of it.
2648 */
2649 if (intel_dp->pps_pipe != INVALID_PIPE)
2650 vlv_detach_power_sequencer(intel_dp);
2651
2652 /*
2653 * We may be stealing the power
2654 * sequencer from another port.
2655 */
2656 vlv_steal_power_sequencer(dev, crtc->pipe);
2657
2658 /* now it's all ours */
2659 intel_dp->pps_pipe = crtc->pipe;
2660
2661 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2662 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2663
2664 /* init power sequencer on this pipe and port */
2665 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2666 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2667 }
2668
2669 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2670 {
2671 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2672 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2673 struct drm_device *dev = encoder->base.dev;
2674 struct drm_i915_private *dev_priv = dev->dev_private;
2675 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2676 enum dpio_channel port = vlv_dport_to_channel(dport);
2677 int pipe = intel_crtc->pipe;
2678 u32 val;
2679
2680 mutex_lock(&dev_priv->sb_lock);
2681
2682 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2683 val = 0;
2684 if (pipe)
2685 val |= (1<<21);
2686 else
2687 val &= ~(1<<21);
2688 val |= 0x001000c4;
2689 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2690 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2691 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2692
2693 mutex_unlock(&dev_priv->sb_lock);
2694
2695 intel_enable_dp(encoder);
2696 }
2697
2698 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2699 {
2700 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2701 struct drm_device *dev = encoder->base.dev;
2702 struct drm_i915_private *dev_priv = dev->dev_private;
2703 struct intel_crtc *intel_crtc =
2704 to_intel_crtc(encoder->base.crtc);
2705 enum dpio_channel port = vlv_dport_to_channel(dport);
2706 int pipe = intel_crtc->pipe;
2707
2708 intel_dp_prepare(encoder);
2709
2710 /* Program Tx lane resets to default */
2711 mutex_lock(&dev_priv->sb_lock);
2712 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2713 DPIO_PCS_TX_LANE2_RESET |
2714 DPIO_PCS_TX_LANE1_RESET);
2715 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2716 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2717 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2718 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2719 DPIO_PCS_CLK_SOFT_RESET);
2720
2721 /* Fix up inter-pair skew failure */
2722 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2723 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2724 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2725 mutex_unlock(&dev_priv->sb_lock);
2726 }
2727
2728 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2729 {
2730 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2731 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2732 struct drm_device *dev = encoder->base.dev;
2733 struct drm_i915_private *dev_priv = dev->dev_private;
2734 struct intel_crtc *intel_crtc =
2735 to_intel_crtc(encoder->base.crtc);
2736 enum dpio_channel ch = vlv_dport_to_channel(dport);
2737 int pipe = intel_crtc->pipe;
2738 int data, i, stagger;
2739 u32 val;
2740
2741 mutex_lock(&dev_priv->sb_lock);
2742
2743 /* allow hardware to manage TX FIFO reset source */
2744 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2745 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2746 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2747
2748 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2749 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2750 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2751
2752 /* Deassert soft data lane reset*/
2753 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2754 val |= CHV_PCS_REQ_SOFTRESET_EN;
2755 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2756
2757 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2758 val |= CHV_PCS_REQ_SOFTRESET_EN;
2759 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2760
2761 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2762 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2763 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2764
2765 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2766 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2767 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2768
2769 /* Program Tx lane latency optimal setting*/
2770 for (i = 0; i < 4; i++) {
2771 /* Set the upar bit */
2772 data = (i == 1) ? 0x0 : 0x1;
2773 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2774 data << DPIO_UPAR_SHIFT);
2775 }
2776
2777 /* Data lane stagger programming */
2778 if (intel_crtc->config->port_clock > 270000)
2779 stagger = 0x18;
2780 else if (intel_crtc->config->port_clock > 135000)
2781 stagger = 0xd;
2782 else if (intel_crtc->config->port_clock > 67500)
2783 stagger = 0x7;
2784 else if (intel_crtc->config->port_clock > 33750)
2785 stagger = 0x4;
2786 else
2787 stagger = 0x2;
2788
2789 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2790 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2791 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2792
2793 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2794 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2795 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2796
2797 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2798 DPIO_LANESTAGGER_STRAP(stagger) |
2799 DPIO_LANESTAGGER_STRAP_OVRD |
2800 DPIO_TX1_STAGGER_MASK(0x1f) |
2801 DPIO_TX1_STAGGER_MULT(6) |
2802 DPIO_TX2_STAGGER_MULT(0));
2803
2804 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2805 DPIO_LANESTAGGER_STRAP(stagger) |
2806 DPIO_LANESTAGGER_STRAP_OVRD |
2807 DPIO_TX1_STAGGER_MASK(0x1f) |
2808 DPIO_TX1_STAGGER_MULT(7) |
2809 DPIO_TX2_STAGGER_MULT(5));
2810
2811 mutex_unlock(&dev_priv->sb_lock);
2812
2813 intel_enable_dp(encoder);
2814 }
2815
2816 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2817 {
2818 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2819 struct drm_device *dev = encoder->base.dev;
2820 struct drm_i915_private *dev_priv = dev->dev_private;
2821 struct intel_crtc *intel_crtc =
2822 to_intel_crtc(encoder->base.crtc);
2823 enum dpio_channel ch = vlv_dport_to_channel(dport);
2824 enum pipe pipe = intel_crtc->pipe;
2825 u32 val;
2826
2827 intel_dp_prepare(encoder);
2828
2829 mutex_lock(&dev_priv->sb_lock);
2830
2831 /* program left/right clock distribution */
2832 if (pipe != PIPE_B) {
2833 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2834 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2835 if (ch == DPIO_CH0)
2836 val |= CHV_BUFLEFTENA1_FORCE;
2837 if (ch == DPIO_CH1)
2838 val |= CHV_BUFRIGHTENA1_FORCE;
2839 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2840 } else {
2841 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2842 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2843 if (ch == DPIO_CH0)
2844 val |= CHV_BUFLEFTENA2_FORCE;
2845 if (ch == DPIO_CH1)
2846 val |= CHV_BUFRIGHTENA2_FORCE;
2847 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2848 }
2849
2850 /* program clock channel usage */
2851 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2852 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2853 if (pipe != PIPE_B)
2854 val &= ~CHV_PCS_USEDCLKCHANNEL;
2855 else
2856 val |= CHV_PCS_USEDCLKCHANNEL;
2857 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2858
2859 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2860 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2861 if (pipe != PIPE_B)
2862 val &= ~CHV_PCS_USEDCLKCHANNEL;
2863 else
2864 val |= CHV_PCS_USEDCLKCHANNEL;
2865 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2866
2867 /*
2868 * This a a bit weird since generally CL
2869 * matches the pipe, but here we need to
2870 * pick the CL based on the port.
2871 */
2872 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2873 if (pipe != PIPE_B)
2874 val &= ~CHV_CMN_USEDCLKCHANNEL;
2875 else
2876 val |= CHV_CMN_USEDCLKCHANNEL;
2877 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2878
2879 mutex_unlock(&dev_priv->sb_lock);
2880 }
2881
2882 /*
2883 * Native read with retry for link status and receiver capability reads for
2884 * cases where the sink may still be asleep.
2885 *
2886 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2887 * supposed to retry 3 times per the spec.
2888 */
2889 static ssize_t
2890 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2891 void *buffer, size_t size)
2892 {
2893 ssize_t ret;
2894 int i;
2895
2896 /*
2897 * Sometime we just get the same incorrect byte repeated
2898 * over the entire buffer. Doing just one throw away read
2899 * initially seems to "solve" it.
2900 */
2901 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2902
2903 for (i = 0; i < 3; i++) {
2904 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2905 if (ret == size)
2906 return ret;
2907 msleep(1);
2908 }
2909
2910 return ret;
2911 }
2912
2913 /*
2914 * Fetch AUX CH registers 0x202 - 0x207 which contain
2915 * link status information
2916 */
2917 static bool
2918 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2919 {
2920 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2921 DP_LANE0_1_STATUS,
2922 link_status,
2923 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2924 }
2925
2926 /* These are source-specific values. */
2927 static uint8_t
2928 intel_dp_voltage_max(struct intel_dp *intel_dp)
2929 {
2930 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2931 struct drm_i915_private *dev_priv = dev->dev_private;
2932 enum port port = dp_to_dig_port(intel_dp)->port;
2933
2934 if (IS_BROXTON(dev))
2935 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2936 else if (INTEL_INFO(dev)->gen >= 9) {
2937 if (dev_priv->edp_low_vswing && port == PORT_A)
2938 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2939 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2940 } else if (IS_VALLEYVIEW(dev))
2941 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2942 else if (IS_GEN7(dev) && port == PORT_A)
2943 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2944 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2945 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2946 else
2947 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2948 }
2949
2950 static uint8_t
2951 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2952 {
2953 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2954 enum port port = dp_to_dig_port(intel_dp)->port;
2955
2956 if (INTEL_INFO(dev)->gen >= 9) {
2957 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2958 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2959 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2960 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2961 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2962 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2963 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2964 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2965 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2966 default:
2967 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2968 }
2969 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2970 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2971 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2972 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2973 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2974 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2975 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2976 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2977 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2978 default:
2979 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2980 }
2981 } else if (IS_VALLEYVIEW(dev)) {
2982 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2983 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2984 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2985 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2986 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2987 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2988 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2989 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2990 default:
2991 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2992 }
2993 } else if (IS_GEN7(dev) && port == PORT_A) {
2994 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2995 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2996 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2997 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2998 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2999 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3000 default:
3001 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3002 }
3003 } else {
3004 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3005 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3006 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3007 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3008 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3009 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3010 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3011 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3012 default:
3013 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3014 }
3015 }
3016 }
3017
3018 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3019 {
3020 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3021 struct drm_i915_private *dev_priv = dev->dev_private;
3022 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3023 struct intel_crtc *intel_crtc =
3024 to_intel_crtc(dport->base.base.crtc);
3025 unsigned long demph_reg_value, preemph_reg_value,
3026 uniqtranscale_reg_value;
3027 uint8_t train_set = intel_dp->train_set[0];
3028 enum dpio_channel port = vlv_dport_to_channel(dport);
3029 int pipe = intel_crtc->pipe;
3030
3031 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3032 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3033 preemph_reg_value = 0x0004000;
3034 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3035 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3036 demph_reg_value = 0x2B405555;
3037 uniqtranscale_reg_value = 0x552AB83A;
3038 break;
3039 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3040 demph_reg_value = 0x2B404040;
3041 uniqtranscale_reg_value = 0x5548B83A;
3042 break;
3043 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3044 demph_reg_value = 0x2B245555;
3045 uniqtranscale_reg_value = 0x5560B83A;
3046 break;
3047 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3048 demph_reg_value = 0x2B405555;
3049 uniqtranscale_reg_value = 0x5598DA3A;
3050 break;
3051 default:
3052 return 0;
3053 }
3054 break;
3055 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3056 preemph_reg_value = 0x0002000;
3057 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3058 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3059 demph_reg_value = 0x2B404040;
3060 uniqtranscale_reg_value = 0x5552B83A;
3061 break;
3062 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3063 demph_reg_value = 0x2B404848;
3064 uniqtranscale_reg_value = 0x5580B83A;
3065 break;
3066 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3067 demph_reg_value = 0x2B404040;
3068 uniqtranscale_reg_value = 0x55ADDA3A;
3069 break;
3070 default:
3071 return 0;
3072 }
3073 break;
3074 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3075 preemph_reg_value = 0x0000000;
3076 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3077 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3078 demph_reg_value = 0x2B305555;
3079 uniqtranscale_reg_value = 0x5570B83A;
3080 break;
3081 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3082 demph_reg_value = 0x2B2B4040;
3083 uniqtranscale_reg_value = 0x55ADDA3A;
3084 break;
3085 default:
3086 return 0;
3087 }
3088 break;
3089 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3090 preemph_reg_value = 0x0006000;
3091 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3092 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3093 demph_reg_value = 0x1B405555;
3094 uniqtranscale_reg_value = 0x55ADDA3A;
3095 break;
3096 default:
3097 return 0;
3098 }
3099 break;
3100 default:
3101 return 0;
3102 }
3103
3104 mutex_lock(&dev_priv->sb_lock);
3105 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3106 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3107 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3108 uniqtranscale_reg_value);
3109 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3110 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3111 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3112 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3113 mutex_unlock(&dev_priv->sb_lock);
3114
3115 return 0;
3116 }
3117
3118 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3119 {
3120 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3121 struct drm_i915_private *dev_priv = dev->dev_private;
3122 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3123 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3124 u32 deemph_reg_value, margin_reg_value, val;
3125 uint8_t train_set = intel_dp->train_set[0];
3126 enum dpio_channel ch = vlv_dport_to_channel(dport);
3127 enum pipe pipe = intel_crtc->pipe;
3128 int i;
3129
3130 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3131 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3132 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3133 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3134 deemph_reg_value = 128;
3135 margin_reg_value = 52;
3136 break;
3137 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3138 deemph_reg_value = 128;
3139 margin_reg_value = 77;
3140 break;
3141 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3142 deemph_reg_value = 128;
3143 margin_reg_value = 102;
3144 break;
3145 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3146 deemph_reg_value = 128;
3147 margin_reg_value = 154;
3148 /* FIXME extra to set for 1200 */
3149 break;
3150 default:
3151 return 0;
3152 }
3153 break;
3154 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3155 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3156 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3157 deemph_reg_value = 85;
3158 margin_reg_value = 78;
3159 break;
3160 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3161 deemph_reg_value = 85;
3162 margin_reg_value = 116;
3163 break;
3164 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3165 deemph_reg_value = 85;
3166 margin_reg_value = 154;
3167 break;
3168 default:
3169 return 0;
3170 }
3171 break;
3172 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3173 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3174 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3175 deemph_reg_value = 64;
3176 margin_reg_value = 104;
3177 break;
3178 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3179 deemph_reg_value = 64;
3180 margin_reg_value = 154;
3181 break;
3182 default:
3183 return 0;
3184 }
3185 break;
3186 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3187 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3188 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3189 deemph_reg_value = 43;
3190 margin_reg_value = 154;
3191 break;
3192 default:
3193 return 0;
3194 }
3195 break;
3196 default:
3197 return 0;
3198 }
3199
3200 mutex_lock(&dev_priv->sb_lock);
3201
3202 /* Clear calc init */
3203 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3204 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3205 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3206 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3207 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3208
3209 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3210 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3211 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3212 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3213 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3214
3215 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3216 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3217 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3218 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3219
3220 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3221 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3222 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3223 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3224
3225 /* Program swing deemph */
3226 for (i = 0; i < 4; i++) {
3227 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3228 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3229 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3230 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3231 }
3232
3233 /* Program swing margin */
3234 for (i = 0; i < 4; i++) {
3235 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3236 val &= ~DPIO_SWING_MARGIN000_MASK;
3237 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3238 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3239 }
3240
3241 /* Disable unique transition scale */
3242 for (i = 0; i < 4; i++) {
3243 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3244 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3245 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3246 }
3247
3248 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3249 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3250 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3251 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3252
3253 /*
3254 * The document said it needs to set bit 27 for ch0 and bit 26
3255 * for ch1. Might be a typo in the doc.
3256 * For now, for this unique transition scale selection, set bit
3257 * 27 for ch0 and ch1.
3258 */
3259 for (i = 0; i < 4; i++) {
3260 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3261 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3262 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3263 }
3264
3265 for (i = 0; i < 4; i++) {
3266 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3267 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3268 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3269 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3270 }
3271 }
3272
3273 /* Start swing calculation */
3274 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3275 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3276 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3277
3278 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3279 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3280 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3281
3282 /* LRC Bypass */
3283 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3284 val |= DPIO_LRC_BYPASS;
3285 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3286
3287 mutex_unlock(&dev_priv->sb_lock);
3288
3289 return 0;
3290 }
3291
3292 static void
3293 intel_get_adjust_train(struct intel_dp *intel_dp,
3294 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3295 {
3296 uint8_t v = 0;
3297 uint8_t p = 0;
3298 int lane;
3299 uint8_t voltage_max;
3300 uint8_t preemph_max;
3301
3302 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3303 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3304 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3305
3306 if (this_v > v)
3307 v = this_v;
3308 if (this_p > p)
3309 p = this_p;
3310 }
3311
3312 voltage_max = intel_dp_voltage_max(intel_dp);
3313 if (v >= voltage_max)
3314 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3315
3316 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3317 if (p >= preemph_max)
3318 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3319
3320 for (lane = 0; lane < 4; lane++)
3321 intel_dp->train_set[lane] = v | p;
3322 }
3323
3324 static uint32_t
3325 gen4_signal_levels(uint8_t train_set)
3326 {
3327 uint32_t signal_levels = 0;
3328
3329 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3330 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3331 default:
3332 signal_levels |= DP_VOLTAGE_0_4;
3333 break;
3334 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3335 signal_levels |= DP_VOLTAGE_0_6;
3336 break;
3337 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3338 signal_levels |= DP_VOLTAGE_0_8;
3339 break;
3340 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3341 signal_levels |= DP_VOLTAGE_1_2;
3342 break;
3343 }
3344 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3345 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3346 default:
3347 signal_levels |= DP_PRE_EMPHASIS_0;
3348 break;
3349 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3350 signal_levels |= DP_PRE_EMPHASIS_3_5;
3351 break;
3352 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3353 signal_levels |= DP_PRE_EMPHASIS_6;
3354 break;
3355 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3356 signal_levels |= DP_PRE_EMPHASIS_9_5;
3357 break;
3358 }
3359 return signal_levels;
3360 }
3361
3362 /* Gen6's DP voltage swing and pre-emphasis control */
3363 static uint32_t
3364 gen6_edp_signal_levels(uint8_t train_set)
3365 {
3366 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3367 DP_TRAIN_PRE_EMPHASIS_MASK);
3368 switch (signal_levels) {
3369 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3370 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3371 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3372 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3373 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3374 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3375 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3376 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3377 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3378 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3379 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3380 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3381 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3382 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3383 default:
3384 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3385 "0x%x\n", signal_levels);
3386 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3387 }
3388 }
3389
3390 /* Gen7's DP voltage swing and pre-emphasis control */
3391 static uint32_t
3392 gen7_edp_signal_levels(uint8_t train_set)
3393 {
3394 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3395 DP_TRAIN_PRE_EMPHASIS_MASK);
3396 switch (signal_levels) {
3397 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3398 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3399 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3400 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3401 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3402 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3403
3404 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3405 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3406 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3407 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3408
3409 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3410 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3411 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3412 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3413
3414 default:
3415 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3416 "0x%x\n", signal_levels);
3417 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3418 }
3419 }
3420
3421 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3422 static uint32_t
3423 hsw_signal_levels(uint8_t train_set)
3424 {
3425 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3426 DP_TRAIN_PRE_EMPHASIS_MASK);
3427 switch (signal_levels) {
3428 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3429 return DDI_BUF_TRANS_SELECT(0);
3430 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3431 return DDI_BUF_TRANS_SELECT(1);
3432 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3433 return DDI_BUF_TRANS_SELECT(2);
3434 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3435 return DDI_BUF_TRANS_SELECT(3);
3436
3437 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3438 return DDI_BUF_TRANS_SELECT(4);
3439 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3440 return DDI_BUF_TRANS_SELECT(5);
3441 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3442 return DDI_BUF_TRANS_SELECT(6);
3443
3444 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3445 return DDI_BUF_TRANS_SELECT(7);
3446 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3447 return DDI_BUF_TRANS_SELECT(8);
3448
3449 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3450 return DDI_BUF_TRANS_SELECT(9);
3451 default:
3452 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3453 "0x%x\n", signal_levels);
3454 return DDI_BUF_TRANS_SELECT(0);
3455 }
3456 }
3457
3458 static void bxt_signal_levels(struct intel_dp *intel_dp)
3459 {
3460 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3461 enum port port = dport->port;
3462 struct drm_device *dev = dport->base.base.dev;
3463 struct intel_encoder *encoder = &dport->base;
3464 uint8_t train_set = intel_dp->train_set[0];
3465 uint32_t level = 0;
3466
3467 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3468 DP_TRAIN_PRE_EMPHASIS_MASK);
3469 switch (signal_levels) {
3470 default:
3471 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emph level\n");
3472 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3473 level = 0;
3474 break;
3475 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3476 level = 1;
3477 break;
3478 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3479 level = 2;
3480 break;
3481 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3482 level = 3;
3483 break;
3484 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3485 level = 4;
3486 break;
3487 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3488 level = 5;
3489 break;
3490 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3491 level = 6;
3492 break;
3493 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3494 level = 7;
3495 break;
3496 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3497 level = 8;
3498 break;
3499 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3500 level = 9;
3501 break;
3502 }
3503
3504 bxt_ddi_vswing_sequence(dev, level, port, encoder->type);
3505 }
3506
3507 /* Properly updates "DP" with the correct signal levels. */
3508 static void
3509 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3510 {
3511 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3512 enum port port = intel_dig_port->port;
3513 struct drm_device *dev = intel_dig_port->base.base.dev;
3514 uint32_t signal_levels, mask;
3515 uint8_t train_set = intel_dp->train_set[0];
3516
3517 if (IS_BROXTON(dev)) {
3518 signal_levels = 0;
3519 bxt_signal_levels(intel_dp);
3520 mask = 0;
3521 } else if (HAS_DDI(dev)) {
3522 signal_levels = hsw_signal_levels(train_set);
3523 mask = DDI_BUF_EMP_MASK;
3524 } else if (IS_CHERRYVIEW(dev)) {
3525 signal_levels = chv_signal_levels(intel_dp);
3526 mask = 0;
3527 } else if (IS_VALLEYVIEW(dev)) {
3528 signal_levels = vlv_signal_levels(intel_dp);
3529 mask = 0;
3530 } else if (IS_GEN7(dev) && port == PORT_A) {
3531 signal_levels = gen7_edp_signal_levels(train_set);
3532 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3533 } else if (IS_GEN6(dev) && port == PORT_A) {
3534 signal_levels = gen6_edp_signal_levels(train_set);
3535 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3536 } else {
3537 signal_levels = gen4_signal_levels(train_set);
3538 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3539 }
3540
3541 if (mask)
3542 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3543
3544 DRM_DEBUG_KMS("Using vswing level %d\n",
3545 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3546 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3547 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3548 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3549
3550 *DP = (*DP & ~mask) | signal_levels;
3551 }
3552
3553 static bool
3554 intel_dp_set_link_train(struct intel_dp *intel_dp,
3555 uint32_t *DP,
3556 uint8_t dp_train_pat)
3557 {
3558 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3559 struct drm_device *dev = intel_dig_port->base.base.dev;
3560 struct drm_i915_private *dev_priv = dev->dev_private;
3561 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3562 int ret, len;
3563
3564 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3565
3566 I915_WRITE(intel_dp->output_reg, *DP);
3567 POSTING_READ(intel_dp->output_reg);
3568
3569 buf[0] = dp_train_pat;
3570 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3571 DP_TRAINING_PATTERN_DISABLE) {
3572 /* don't write DP_TRAINING_LANEx_SET on disable */
3573 len = 1;
3574 } else {
3575 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3576 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3577 len = intel_dp->lane_count + 1;
3578 }
3579
3580 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3581 buf, len);
3582
3583 return ret == len;
3584 }
3585
3586 static bool
3587 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3588 uint8_t dp_train_pat)
3589 {
3590 if (!intel_dp->train_set_valid)
3591 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3592 intel_dp_set_signal_levels(intel_dp, DP);
3593 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3594 }
3595
3596 static bool
3597 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3598 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3599 {
3600 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3601 struct drm_device *dev = intel_dig_port->base.base.dev;
3602 struct drm_i915_private *dev_priv = dev->dev_private;
3603 int ret;
3604
3605 intel_get_adjust_train(intel_dp, link_status);
3606 intel_dp_set_signal_levels(intel_dp, DP);
3607
3608 I915_WRITE(intel_dp->output_reg, *DP);
3609 POSTING_READ(intel_dp->output_reg);
3610
3611 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3612 intel_dp->train_set, intel_dp->lane_count);
3613
3614 return ret == intel_dp->lane_count;
3615 }
3616
3617 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3618 {
3619 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3620 struct drm_device *dev = intel_dig_port->base.base.dev;
3621 struct drm_i915_private *dev_priv = dev->dev_private;
3622 enum port port = intel_dig_port->port;
3623 uint32_t val;
3624
3625 if (!HAS_DDI(dev))
3626 return;
3627
3628 val = I915_READ(DP_TP_CTL(port));
3629 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3630 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3631 I915_WRITE(DP_TP_CTL(port), val);
3632
3633 /*
3634 * On PORT_A we can have only eDP in SST mode. There the only reason
3635 * we need to set idle transmission mode is to work around a HW issue
3636 * where we enable the pipe while not in idle link-training mode.
3637 * In this case there is requirement to wait for a minimum number of
3638 * idle patterns to be sent.
3639 */
3640 if (port == PORT_A)
3641 return;
3642
3643 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3644 1))
3645 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3646 }
3647
3648 /* Enable corresponding port and start training pattern 1 */
3649 void
3650 intel_dp_start_link_train(struct intel_dp *intel_dp)
3651 {
3652 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3653 struct drm_device *dev = encoder->dev;
3654 int i;
3655 uint8_t voltage;
3656 int voltage_tries, loop_tries;
3657 uint32_t DP = intel_dp->DP;
3658 uint8_t link_config[2];
3659
3660 if (HAS_DDI(dev))
3661 intel_ddi_prepare_link_retrain(encoder);
3662
3663 /* Write the link configuration data */
3664 link_config[0] = intel_dp->link_bw;
3665 link_config[1] = intel_dp->lane_count;
3666 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3667 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3668 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3669 if (intel_dp->num_sink_rates)
3670 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
3671 &intel_dp->rate_select, 1);
3672
3673 link_config[0] = 0;
3674 link_config[1] = DP_SET_ANSI_8B10B;
3675 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3676
3677 DP |= DP_PORT_EN;
3678
3679 /* clock recovery */
3680 if (!intel_dp_reset_link_train(intel_dp, &DP,
3681 DP_TRAINING_PATTERN_1 |
3682 DP_LINK_SCRAMBLING_DISABLE)) {
3683 DRM_ERROR("failed to enable link training\n");
3684 return;
3685 }
3686
3687 voltage = 0xff;
3688 voltage_tries = 0;
3689 loop_tries = 0;
3690 for (;;) {
3691 uint8_t link_status[DP_LINK_STATUS_SIZE];
3692
3693 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3694 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3695 DRM_ERROR("failed to get link status\n");
3696 break;
3697 }
3698
3699 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3700 DRM_DEBUG_KMS("clock recovery OK\n");
3701 break;
3702 }
3703
3704 /*
3705 * if we used previously trained voltage and pre-emphasis values
3706 * and we don't get clock recovery, reset link training values
3707 */
3708 if (intel_dp->train_set_valid) {
3709 DRM_DEBUG_KMS("clock recovery not ok, reset");
3710 /* clear the flag as we are not reusing train set */
3711 intel_dp->train_set_valid = false;
3712 if (!intel_dp_reset_link_train(intel_dp, &DP,
3713 DP_TRAINING_PATTERN_1 |
3714 DP_LINK_SCRAMBLING_DISABLE)) {
3715 DRM_ERROR("failed to enable link training\n");
3716 return;
3717 }
3718 continue;
3719 }
3720
3721 /* Check to see if we've tried the max voltage */
3722 for (i = 0; i < intel_dp->lane_count; i++)
3723 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3724 break;
3725 if (i == intel_dp->lane_count) {
3726 ++loop_tries;
3727 if (loop_tries == 5) {
3728 DRM_ERROR("too many full retries, give up\n");
3729 break;
3730 }
3731 intel_dp_reset_link_train(intel_dp, &DP,
3732 DP_TRAINING_PATTERN_1 |
3733 DP_LINK_SCRAMBLING_DISABLE);
3734 voltage_tries = 0;
3735 continue;
3736 }
3737
3738 /* Check to see if we've tried the same voltage 5 times */
3739 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3740 ++voltage_tries;
3741 if (voltage_tries == 5) {
3742 DRM_ERROR("too many voltage retries, give up\n");
3743 break;
3744 }
3745 } else
3746 voltage_tries = 0;
3747 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3748
3749 /* Update training set as requested by target */
3750 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3751 DRM_ERROR("failed to update link training\n");
3752 break;
3753 }
3754 }
3755
3756 intel_dp->DP = DP;
3757 }
3758
3759 void
3760 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3761 {
3762 bool channel_eq = false;
3763 int tries, cr_tries;
3764 uint32_t DP = intel_dp->DP;
3765 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3766
3767 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3768 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3769 training_pattern = DP_TRAINING_PATTERN_3;
3770
3771 /* channel equalization */
3772 if (!intel_dp_set_link_train(intel_dp, &DP,
3773 training_pattern |
3774 DP_LINK_SCRAMBLING_DISABLE)) {
3775 DRM_ERROR("failed to start channel equalization\n");
3776 return;
3777 }
3778
3779 tries = 0;
3780 cr_tries = 0;
3781 channel_eq = false;
3782 for (;;) {
3783 uint8_t link_status[DP_LINK_STATUS_SIZE];
3784
3785 if (cr_tries > 5) {
3786 DRM_ERROR("failed to train DP, aborting\n");
3787 break;
3788 }
3789
3790 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3791 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3792 DRM_ERROR("failed to get link status\n");
3793 break;
3794 }
3795
3796 /* Make sure clock is still ok */
3797 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3798 intel_dp->train_set_valid = false;
3799 intel_dp_start_link_train(intel_dp);
3800 intel_dp_set_link_train(intel_dp, &DP,
3801 training_pattern |
3802 DP_LINK_SCRAMBLING_DISABLE);
3803 cr_tries++;
3804 continue;
3805 }
3806
3807 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3808 channel_eq = true;
3809 break;
3810 }
3811
3812 /* Try 5 times, then try clock recovery if that fails */
3813 if (tries > 5) {
3814 intel_dp->train_set_valid = false;
3815 intel_dp_start_link_train(intel_dp);
3816 intel_dp_set_link_train(intel_dp, &DP,
3817 training_pattern |
3818 DP_LINK_SCRAMBLING_DISABLE);
3819 tries = 0;
3820 cr_tries++;
3821 continue;
3822 }
3823
3824 /* Update training set as requested by target */
3825 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3826 DRM_ERROR("failed to update link training\n");
3827 break;
3828 }
3829 ++tries;
3830 }
3831
3832 intel_dp_set_idle_link_train(intel_dp);
3833
3834 intel_dp->DP = DP;
3835
3836 if (channel_eq) {
3837 intel_dp->train_set_valid = true;
3838 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3839 }
3840 }
3841
3842 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3843 {
3844 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3845 DP_TRAINING_PATTERN_DISABLE);
3846 }
3847
3848 static void
3849 intel_dp_link_down(struct intel_dp *intel_dp)
3850 {
3851 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3852 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3853 enum port port = intel_dig_port->port;
3854 struct drm_device *dev = intel_dig_port->base.base.dev;
3855 struct drm_i915_private *dev_priv = dev->dev_private;
3856 uint32_t DP = intel_dp->DP;
3857
3858 if (WARN_ON(HAS_DDI(dev)))
3859 return;
3860
3861 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3862 return;
3863
3864 DRM_DEBUG_KMS("\n");
3865
3866 if ((IS_GEN7(dev) && port == PORT_A) ||
3867 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3868 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3869 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3870 } else {
3871 if (IS_CHERRYVIEW(dev))
3872 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3873 else
3874 DP &= ~DP_LINK_TRAIN_MASK;
3875 DP |= DP_LINK_TRAIN_PAT_IDLE;
3876 }
3877 I915_WRITE(intel_dp->output_reg, DP);
3878 POSTING_READ(intel_dp->output_reg);
3879
3880 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3881 I915_WRITE(intel_dp->output_reg, DP);
3882 POSTING_READ(intel_dp->output_reg);
3883
3884 /*
3885 * HW workaround for IBX, we need to move the port
3886 * to transcoder A after disabling it to allow the
3887 * matching HDMI port to be enabled on transcoder A.
3888 */
3889 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3890 /* always enable with pattern 1 (as per spec) */
3891 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3892 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3893 I915_WRITE(intel_dp->output_reg, DP);
3894 POSTING_READ(intel_dp->output_reg);
3895
3896 DP &= ~DP_PORT_EN;
3897 I915_WRITE(intel_dp->output_reg, DP);
3898 POSTING_READ(intel_dp->output_reg);
3899 }
3900
3901 msleep(intel_dp->panel_power_down_delay);
3902 }
3903
3904 static bool
3905 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3906 {
3907 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3908 struct drm_device *dev = dig_port->base.base.dev;
3909 struct drm_i915_private *dev_priv = dev->dev_private;
3910 uint8_t rev;
3911
3912 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3913 sizeof(intel_dp->dpcd)) < 0)
3914 return false; /* aux transfer failed */
3915
3916 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3917
3918 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3919 return false; /* DPCD not present */
3920
3921 /* Check if the panel supports PSR */
3922 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3923 if (is_edp(intel_dp)) {
3924 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3925 intel_dp->psr_dpcd,
3926 sizeof(intel_dp->psr_dpcd));
3927 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3928 dev_priv->psr.sink_support = true;
3929 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3930 }
3931
3932 if (INTEL_INFO(dev)->gen >= 9 &&
3933 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3934 uint8_t frame_sync_cap;
3935
3936 dev_priv->psr.sink_support = true;
3937 intel_dp_dpcd_read_wake(&intel_dp->aux,
3938 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3939 &frame_sync_cap, 1);
3940 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3941 /* PSR2 needs frame sync as well */
3942 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3943 DRM_DEBUG_KMS("PSR2 %s on sink",
3944 dev_priv->psr.psr2_support ? "supported" : "not supported");
3945 }
3946 }
3947
3948 /* Training Pattern 3 support, both source and sink */
3949 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3950 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3951 (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3952 intel_dp->use_tps3 = true;
3953 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3954 } else
3955 intel_dp->use_tps3 = false;
3956
3957 /* Intermediate frequency support */
3958 if (is_edp(intel_dp) &&
3959 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3960 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3961 (rev >= 0x03)) { /* eDp v1.4 or higher */
3962 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3963 int i;
3964
3965 intel_dp_dpcd_read_wake(&intel_dp->aux,
3966 DP_SUPPORTED_LINK_RATES,
3967 sink_rates,
3968 sizeof(sink_rates));
3969
3970 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3971 int val = le16_to_cpu(sink_rates[i]);
3972
3973 if (val == 0)
3974 break;
3975
3976 /* Value read is in kHz while drm clock is saved in deca-kHz */
3977 intel_dp->sink_rates[i] = (val * 200) / 10;
3978 }
3979 intel_dp->num_sink_rates = i;
3980 }
3981
3982 intel_dp_print_rates(intel_dp);
3983
3984 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3985 DP_DWN_STRM_PORT_PRESENT))
3986 return true; /* native DP sink */
3987
3988 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3989 return true; /* no per-port downstream info */
3990
3991 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3992 intel_dp->downstream_ports,
3993 DP_MAX_DOWNSTREAM_PORTS) < 0)
3994 return false; /* downstream port status fetch failed */
3995
3996 return true;
3997 }
3998
3999 static void
4000 intel_dp_probe_oui(struct intel_dp *intel_dp)
4001 {
4002 u8 buf[3];
4003
4004 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
4005 return;
4006
4007 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
4008 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
4009 buf[0], buf[1], buf[2]);
4010
4011 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
4012 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
4013 buf[0], buf[1], buf[2]);
4014 }
4015
4016 static bool
4017 intel_dp_probe_mst(struct intel_dp *intel_dp)
4018 {
4019 u8 buf[1];
4020
4021 if (!intel_dp->can_mst)
4022 return false;
4023
4024 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4025 return false;
4026
4027 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
4028 if (buf[0] & DP_MST_CAP) {
4029 DRM_DEBUG_KMS("Sink is MST capable\n");
4030 intel_dp->is_mst = true;
4031 } else {
4032 DRM_DEBUG_KMS("Sink is not MST capable\n");
4033 intel_dp->is_mst = false;
4034 }
4035 }
4036
4037 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4038 return intel_dp->is_mst;
4039 }
4040
4041 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4042 {
4043 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4044 struct drm_device *dev = intel_dig_port->base.base.dev;
4045 struct intel_crtc *intel_crtc =
4046 to_intel_crtc(intel_dig_port->base.base.crtc);
4047 u8 buf;
4048 int test_crc_count;
4049 int attempts = 6;
4050 int ret = 0;
4051
4052 hsw_disable_ips(intel_crtc);
4053
4054 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0) {
4055 ret = -EIO;
4056 goto out;
4057 }
4058
4059 if (!(buf & DP_TEST_CRC_SUPPORTED)) {
4060 ret = -ENOTTY;
4061 goto out;
4062 }
4063
4064 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
4065 ret = -EIO;
4066 goto out;
4067 }
4068
4069 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4070 buf | DP_TEST_SINK_START) < 0) {
4071 ret = -EIO;
4072 goto out;
4073 }
4074
4075 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0) {
4076 ret = -EIO;
4077 goto out;
4078 }
4079
4080 test_crc_count = buf & DP_TEST_COUNT_MASK;
4081
4082 do {
4083 if (drm_dp_dpcd_readb(&intel_dp->aux,
4084 DP_TEST_SINK_MISC, &buf) < 0) {
4085 ret = -EIO;
4086 goto out;
4087 }
4088 intel_wait_for_vblank(dev, intel_crtc->pipe);
4089 } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
4090
4091 if (attempts == 0) {
4092 DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n");
4093 ret = -ETIMEDOUT;
4094 goto out;
4095 }
4096
4097 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4098 ret = -EIO;
4099 goto out;
4100 }
4101
4102 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
4103 ret = -EIO;
4104 goto out;
4105 }
4106 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4107 buf & ~DP_TEST_SINK_START) < 0) {
4108 ret = -EIO;
4109 goto out;
4110 }
4111 out:
4112 hsw_enable_ips(intel_crtc);
4113 return ret;
4114 }
4115
4116 static bool
4117 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4118 {
4119 return intel_dp_dpcd_read_wake(&intel_dp->aux,
4120 DP_DEVICE_SERVICE_IRQ_VECTOR,
4121 sink_irq_vector, 1) == 1;
4122 }
4123
4124 static bool
4125 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4126 {
4127 int ret;
4128
4129 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4130 DP_SINK_COUNT_ESI,
4131 sink_irq_vector, 14);
4132 if (ret != 14)
4133 return false;
4134
4135 return true;
4136 }
4137
4138 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4139 {
4140 uint8_t test_result = DP_TEST_ACK;
4141 return test_result;
4142 }
4143
4144 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4145 {
4146 uint8_t test_result = DP_TEST_NAK;
4147 return test_result;
4148 }
4149
4150 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4151 {
4152 uint8_t test_result = DP_TEST_NAK;
4153 struct intel_connector *intel_connector = intel_dp->attached_connector;
4154 struct drm_connector *connector = &intel_connector->base;
4155
4156 if (intel_connector->detect_edid == NULL ||
4157 connector->edid_corrupt ||
4158 intel_dp->aux.i2c_defer_count > 6) {
4159 /* Check EDID read for NACKs, DEFERs and corruption
4160 * (DP CTS 1.2 Core r1.1)
4161 * 4.2.2.4 : Failed EDID read, I2C_NAK
4162 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4163 * 4.2.2.6 : EDID corruption detected
4164 * Use failsafe mode for all cases
4165 */
4166 if (intel_dp->aux.i2c_nack_count > 0 ||
4167 intel_dp->aux.i2c_defer_count > 0)
4168 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4169 intel_dp->aux.i2c_nack_count,
4170 intel_dp->aux.i2c_defer_count);
4171 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4172 } else {
4173 if (!drm_dp_dpcd_write(&intel_dp->aux,
4174 DP_TEST_EDID_CHECKSUM,
4175 &intel_connector->detect_edid->checksum,
4176 1))
4177 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4178
4179 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4180 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4181 }
4182
4183 /* Set test active flag here so userspace doesn't interrupt things */
4184 intel_dp->compliance_test_active = 1;
4185
4186 return test_result;
4187 }
4188
4189 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4190 {
4191 uint8_t test_result = DP_TEST_NAK;
4192 return test_result;
4193 }
4194
4195 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4196 {
4197 uint8_t response = DP_TEST_NAK;
4198 uint8_t rxdata = 0;
4199 int status = 0;
4200
4201 intel_dp->compliance_test_active = 0;
4202 intel_dp->compliance_test_type = 0;
4203 intel_dp->compliance_test_data = 0;
4204
4205 intel_dp->aux.i2c_nack_count = 0;
4206 intel_dp->aux.i2c_defer_count = 0;
4207
4208 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4209 if (status <= 0) {
4210 DRM_DEBUG_KMS("Could not read test request from sink\n");
4211 goto update_status;
4212 }
4213
4214 switch (rxdata) {
4215 case DP_TEST_LINK_TRAINING:
4216 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4217 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4218 response = intel_dp_autotest_link_training(intel_dp);
4219 break;
4220 case DP_TEST_LINK_VIDEO_PATTERN:
4221 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4222 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4223 response = intel_dp_autotest_video_pattern(intel_dp);
4224 break;
4225 case DP_TEST_LINK_EDID_READ:
4226 DRM_DEBUG_KMS("EDID test requested\n");
4227 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4228 response = intel_dp_autotest_edid(intel_dp);
4229 break;
4230 case DP_TEST_LINK_PHY_TEST_PATTERN:
4231 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4232 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4233 response = intel_dp_autotest_phy_pattern(intel_dp);
4234 break;
4235 default:
4236 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4237 break;
4238 }
4239
4240 update_status:
4241 status = drm_dp_dpcd_write(&intel_dp->aux,
4242 DP_TEST_RESPONSE,
4243 &response, 1);
4244 if (status <= 0)
4245 DRM_DEBUG_KMS("Could not write test response to sink\n");
4246 }
4247
4248 static int
4249 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4250 {
4251 bool bret;
4252
4253 if (intel_dp->is_mst) {
4254 u8 esi[16] = { 0 };
4255 int ret = 0;
4256 int retry;
4257 bool handled;
4258 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4259 go_again:
4260 if (bret == true) {
4261
4262 /* check link status - esi[10] = 0x200c */
4263 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4264 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4265 intel_dp_start_link_train(intel_dp);
4266 intel_dp_complete_link_train(intel_dp);
4267 intel_dp_stop_link_train(intel_dp);
4268 }
4269
4270 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4271 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4272
4273 if (handled) {
4274 for (retry = 0; retry < 3; retry++) {
4275 int wret;
4276 wret = drm_dp_dpcd_write(&intel_dp->aux,
4277 DP_SINK_COUNT_ESI+1,
4278 &esi[1], 3);
4279 if (wret == 3) {
4280 break;
4281 }
4282 }
4283
4284 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4285 if (bret == true) {
4286 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4287 goto go_again;
4288 }
4289 } else
4290 ret = 0;
4291
4292 return ret;
4293 } else {
4294 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4295 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4296 intel_dp->is_mst = false;
4297 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4298 /* send a hotplug event */
4299 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4300 }
4301 }
4302 return -EINVAL;
4303 }
4304
4305 /*
4306 * According to DP spec
4307 * 5.1.2:
4308 * 1. Read DPCD
4309 * 2. Configure link according to Receiver Capabilities
4310 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4311 * 4. Check link status on receipt of hot-plug interrupt
4312 */
4313 static void
4314 intel_dp_check_link_status(struct intel_dp *intel_dp)
4315 {
4316 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4317 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4318 u8 sink_irq_vector;
4319 u8 link_status[DP_LINK_STATUS_SIZE];
4320
4321 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4322
4323 if (!intel_encoder->connectors_active)
4324 return;
4325
4326 if (WARN_ON(!intel_encoder->base.crtc))
4327 return;
4328
4329 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4330 return;
4331
4332 /* Try to read receiver status if the link appears to be up */
4333 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4334 return;
4335 }
4336
4337 /* Now read the DPCD to see if it's actually running */
4338 if (!intel_dp_get_dpcd(intel_dp)) {
4339 return;
4340 }
4341
4342 /* Try to read the source of the interrupt */
4343 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4344 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4345 /* Clear interrupt source */
4346 drm_dp_dpcd_writeb(&intel_dp->aux,
4347 DP_DEVICE_SERVICE_IRQ_VECTOR,
4348 sink_irq_vector);
4349
4350 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4351 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4352 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4353 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4354 }
4355
4356 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4357 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4358 intel_encoder->base.name);
4359 intel_dp_start_link_train(intel_dp);
4360 intel_dp_complete_link_train(intel_dp);
4361 intel_dp_stop_link_train(intel_dp);
4362 }
4363 }
4364
4365 /* XXX this is probably wrong for multiple downstream ports */
4366 static enum drm_connector_status
4367 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4368 {
4369 uint8_t *dpcd = intel_dp->dpcd;
4370 uint8_t type;
4371
4372 if (!intel_dp_get_dpcd(intel_dp))
4373 return connector_status_disconnected;
4374
4375 /* if there's no downstream port, we're done */
4376 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4377 return connector_status_connected;
4378
4379 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4380 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4381 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4382 uint8_t reg;
4383
4384 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4385 &reg, 1) < 0)
4386 return connector_status_unknown;
4387
4388 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4389 : connector_status_disconnected;
4390 }
4391
4392 /* If no HPD, poke DDC gently */
4393 if (drm_probe_ddc(&intel_dp->aux.ddc))
4394 return connector_status_connected;
4395
4396 /* Well we tried, say unknown for unreliable port types */
4397 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4398 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4399 if (type == DP_DS_PORT_TYPE_VGA ||
4400 type == DP_DS_PORT_TYPE_NON_EDID)
4401 return connector_status_unknown;
4402 } else {
4403 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4404 DP_DWN_STRM_PORT_TYPE_MASK;
4405 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4406 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4407 return connector_status_unknown;
4408 }
4409
4410 /* Anything else is out of spec, warn and ignore */
4411 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4412 return connector_status_disconnected;
4413 }
4414
4415 static enum drm_connector_status
4416 edp_detect(struct intel_dp *intel_dp)
4417 {
4418 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4419 enum drm_connector_status status;
4420
4421 status = intel_panel_detect(dev);
4422 if (status == connector_status_unknown)
4423 status = connector_status_connected;
4424
4425 return status;
4426 }
4427
4428 static enum drm_connector_status
4429 ironlake_dp_detect(struct intel_dp *intel_dp)
4430 {
4431 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4432 struct drm_i915_private *dev_priv = dev->dev_private;
4433 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4434
4435 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4436 return connector_status_disconnected;
4437
4438 return intel_dp_detect_dpcd(intel_dp);
4439 }
4440
4441 static int g4x_digital_port_connected(struct drm_device *dev,
4442 struct intel_digital_port *intel_dig_port)
4443 {
4444 struct drm_i915_private *dev_priv = dev->dev_private;
4445 uint32_t bit;
4446
4447 if (IS_VALLEYVIEW(dev)) {
4448 switch (intel_dig_port->port) {
4449 case PORT_B:
4450 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4451 break;
4452 case PORT_C:
4453 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4454 break;
4455 case PORT_D:
4456 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4457 break;
4458 default:
4459 return -EINVAL;
4460 }
4461 } else {
4462 switch (intel_dig_port->port) {
4463 case PORT_B:
4464 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4465 break;
4466 case PORT_C:
4467 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4468 break;
4469 case PORT_D:
4470 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4471 break;
4472 default:
4473 return -EINVAL;
4474 }
4475 }
4476
4477 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4478 return 0;
4479 return 1;
4480 }
4481
4482 static enum drm_connector_status
4483 g4x_dp_detect(struct intel_dp *intel_dp)
4484 {
4485 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4486 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4487 int ret;
4488
4489 /* Can't disconnect eDP, but you can close the lid... */
4490 if (is_edp(intel_dp)) {
4491 enum drm_connector_status status;
4492
4493 status = intel_panel_detect(dev);
4494 if (status == connector_status_unknown)
4495 status = connector_status_connected;
4496 return status;
4497 }
4498
4499 ret = g4x_digital_port_connected(dev, intel_dig_port);
4500 if (ret == -EINVAL)
4501 return connector_status_unknown;
4502 else if (ret == 0)
4503 return connector_status_disconnected;
4504
4505 return intel_dp_detect_dpcd(intel_dp);
4506 }
4507
4508 static struct edid *
4509 intel_dp_get_edid(struct intel_dp *intel_dp)
4510 {
4511 struct intel_connector *intel_connector = intel_dp->attached_connector;
4512
4513 /* use cached edid if we have one */
4514 if (intel_connector->edid) {
4515 /* invalid edid */
4516 if (IS_ERR(intel_connector->edid))
4517 return NULL;
4518
4519 return drm_edid_duplicate(intel_connector->edid);
4520 } else
4521 return drm_get_edid(&intel_connector->base,
4522 &intel_dp->aux.ddc);
4523 }
4524
4525 static void
4526 intel_dp_set_edid(struct intel_dp *intel_dp)
4527 {
4528 struct intel_connector *intel_connector = intel_dp->attached_connector;
4529 struct edid *edid;
4530
4531 edid = intel_dp_get_edid(intel_dp);
4532 intel_connector->detect_edid = edid;
4533
4534 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4535 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4536 else
4537 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4538 }
4539
4540 static void
4541 intel_dp_unset_edid(struct intel_dp *intel_dp)
4542 {
4543 struct intel_connector *intel_connector = intel_dp->attached_connector;
4544
4545 kfree(intel_connector->detect_edid);
4546 intel_connector->detect_edid = NULL;
4547
4548 intel_dp->has_audio = false;
4549 }
4550
4551 static enum intel_display_power_domain
4552 intel_dp_power_get(struct intel_dp *dp)
4553 {
4554 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4555 enum intel_display_power_domain power_domain;
4556
4557 power_domain = intel_display_port_power_domain(encoder);
4558 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4559
4560 return power_domain;
4561 }
4562
4563 static void
4564 intel_dp_power_put(struct intel_dp *dp,
4565 enum intel_display_power_domain power_domain)
4566 {
4567 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4568 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4569 }
4570
4571 static enum drm_connector_status
4572 intel_dp_detect(struct drm_connector *connector, bool force)
4573 {
4574 struct intel_dp *intel_dp = intel_attached_dp(connector);
4575 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4576 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4577 struct drm_device *dev = connector->dev;
4578 enum drm_connector_status status;
4579 enum intel_display_power_domain power_domain;
4580 bool ret;
4581 u8 sink_irq_vector;
4582
4583 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4584 connector->base.id, connector->name);
4585 intel_dp_unset_edid(intel_dp);
4586
4587 if (intel_dp->is_mst) {
4588 /* MST devices are disconnected from a monitor POV */
4589 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4590 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4591 return connector_status_disconnected;
4592 }
4593
4594 power_domain = intel_dp_power_get(intel_dp);
4595
4596 /* Can't disconnect eDP, but you can close the lid... */
4597 if (is_edp(intel_dp))
4598 status = edp_detect(intel_dp);
4599 else if (HAS_PCH_SPLIT(dev))
4600 status = ironlake_dp_detect(intel_dp);
4601 else
4602 status = g4x_dp_detect(intel_dp);
4603 if (status != connector_status_connected)
4604 goto out;
4605
4606 intel_dp_probe_oui(intel_dp);
4607
4608 ret = intel_dp_probe_mst(intel_dp);
4609 if (ret) {
4610 /* if we are in MST mode then this connector
4611 won't appear connected or have anything with EDID on it */
4612 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4613 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4614 status = connector_status_disconnected;
4615 goto out;
4616 }
4617
4618 intel_dp_set_edid(intel_dp);
4619
4620 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4621 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4622 status = connector_status_connected;
4623
4624 /* Try to read the source of the interrupt */
4625 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4626 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4627 /* Clear interrupt source */
4628 drm_dp_dpcd_writeb(&intel_dp->aux,
4629 DP_DEVICE_SERVICE_IRQ_VECTOR,
4630 sink_irq_vector);
4631
4632 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4633 intel_dp_handle_test_request(intel_dp);
4634 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4635 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4636 }
4637
4638 out:
4639 intel_dp_power_put(intel_dp, power_domain);
4640 return status;
4641 }
4642
4643 static void
4644 intel_dp_force(struct drm_connector *connector)
4645 {
4646 struct intel_dp *intel_dp = intel_attached_dp(connector);
4647 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4648 enum intel_display_power_domain power_domain;
4649
4650 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4651 connector->base.id, connector->name);
4652 intel_dp_unset_edid(intel_dp);
4653
4654 if (connector->status != connector_status_connected)
4655 return;
4656
4657 power_domain = intel_dp_power_get(intel_dp);
4658
4659 intel_dp_set_edid(intel_dp);
4660
4661 intel_dp_power_put(intel_dp, power_domain);
4662
4663 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4664 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4665 }
4666
4667 static int intel_dp_get_modes(struct drm_connector *connector)
4668 {
4669 struct intel_connector *intel_connector = to_intel_connector(connector);
4670 struct edid *edid;
4671
4672 edid = intel_connector->detect_edid;
4673 if (edid) {
4674 int ret = intel_connector_update_modes(connector, edid);
4675 if (ret)
4676 return ret;
4677 }
4678
4679 /* if eDP has no EDID, fall back to fixed mode */
4680 if (is_edp(intel_attached_dp(connector)) &&
4681 intel_connector->panel.fixed_mode) {
4682 struct drm_display_mode *mode;
4683
4684 mode = drm_mode_duplicate(connector->dev,
4685 intel_connector->panel.fixed_mode);
4686 if (mode) {
4687 drm_mode_probed_add(connector, mode);
4688 return 1;
4689 }
4690 }
4691
4692 return 0;
4693 }
4694
4695 static bool
4696 intel_dp_detect_audio(struct drm_connector *connector)
4697 {
4698 bool has_audio = false;
4699 struct edid *edid;
4700
4701 edid = to_intel_connector(connector)->detect_edid;
4702 if (edid)
4703 has_audio = drm_detect_monitor_audio(edid);
4704
4705 return has_audio;
4706 }
4707
4708 static int
4709 intel_dp_set_property(struct drm_connector *connector,
4710 struct drm_property *property,
4711 uint64_t val)
4712 {
4713 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4714 struct intel_connector *intel_connector = to_intel_connector(connector);
4715 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4716 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4717 int ret;
4718
4719 ret = drm_object_property_set_value(&connector->base, property, val);
4720 if (ret)
4721 return ret;
4722
4723 if (property == dev_priv->force_audio_property) {
4724 int i = val;
4725 bool has_audio;
4726
4727 if (i == intel_dp->force_audio)
4728 return 0;
4729
4730 intel_dp->force_audio = i;
4731
4732 if (i == HDMI_AUDIO_AUTO)
4733 has_audio = intel_dp_detect_audio(connector);
4734 else
4735 has_audio = (i == HDMI_AUDIO_ON);
4736
4737 if (has_audio == intel_dp->has_audio)
4738 return 0;
4739
4740 intel_dp->has_audio = has_audio;
4741 goto done;
4742 }
4743
4744 if (property == dev_priv->broadcast_rgb_property) {
4745 bool old_auto = intel_dp->color_range_auto;
4746 uint32_t old_range = intel_dp->color_range;
4747
4748 switch (val) {
4749 case INTEL_BROADCAST_RGB_AUTO:
4750 intel_dp->color_range_auto = true;
4751 break;
4752 case INTEL_BROADCAST_RGB_FULL:
4753 intel_dp->color_range_auto = false;
4754 intel_dp->color_range = 0;
4755 break;
4756 case INTEL_BROADCAST_RGB_LIMITED:
4757 intel_dp->color_range_auto = false;
4758 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4759 break;
4760 default:
4761 return -EINVAL;
4762 }
4763
4764 if (old_auto == intel_dp->color_range_auto &&
4765 old_range == intel_dp->color_range)
4766 return 0;
4767
4768 goto done;
4769 }
4770
4771 if (is_edp(intel_dp) &&
4772 property == connector->dev->mode_config.scaling_mode_property) {
4773 if (val == DRM_MODE_SCALE_NONE) {
4774 DRM_DEBUG_KMS("no scaling not supported\n");
4775 return -EINVAL;
4776 }
4777
4778 if (intel_connector->panel.fitting_mode == val) {
4779 /* the eDP scaling property is not changed */
4780 return 0;
4781 }
4782 intel_connector->panel.fitting_mode = val;
4783
4784 goto done;
4785 }
4786
4787 return -EINVAL;
4788
4789 done:
4790 if (intel_encoder->base.crtc)
4791 intel_crtc_restore_mode(intel_encoder->base.crtc);
4792
4793 return 0;
4794 }
4795
4796 static void
4797 intel_dp_connector_destroy(struct drm_connector *connector)
4798 {
4799 struct intel_connector *intel_connector = to_intel_connector(connector);
4800
4801 kfree(intel_connector->detect_edid);
4802
4803 if (!IS_ERR_OR_NULL(intel_connector->edid))
4804 kfree(intel_connector->edid);
4805
4806 /* Can't call is_edp() since the encoder may have been destroyed
4807 * already. */
4808 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4809 intel_panel_fini(&intel_connector->panel);
4810
4811 drm_connector_cleanup(connector);
4812 kfree(connector);
4813 }
4814
4815 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4816 {
4817 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4818 struct intel_dp *intel_dp = &intel_dig_port->dp;
4819
4820 drm_dp_aux_unregister(&intel_dp->aux);
4821 intel_dp_mst_encoder_cleanup(intel_dig_port);
4822 if (is_edp(intel_dp)) {
4823 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4824 /*
4825 * vdd might still be enabled do to the delayed vdd off.
4826 * Make sure vdd is actually turned off here.
4827 */
4828 pps_lock(intel_dp);
4829 edp_panel_vdd_off_sync(intel_dp);
4830 pps_unlock(intel_dp);
4831
4832 if (intel_dp->edp_notifier.notifier_call) {
4833 unregister_reboot_notifier(&intel_dp->edp_notifier);
4834 intel_dp->edp_notifier.notifier_call = NULL;
4835 }
4836 }
4837 drm_encoder_cleanup(encoder);
4838 kfree(intel_dig_port);
4839 }
4840
4841 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4842 {
4843 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4844
4845 if (!is_edp(intel_dp))
4846 return;
4847
4848 /*
4849 * vdd might still be enabled do to the delayed vdd off.
4850 * Make sure vdd is actually turned off here.
4851 */
4852 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4853 pps_lock(intel_dp);
4854 edp_panel_vdd_off_sync(intel_dp);
4855 pps_unlock(intel_dp);
4856 }
4857
4858 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4859 {
4860 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4861 struct drm_device *dev = intel_dig_port->base.base.dev;
4862 struct drm_i915_private *dev_priv = dev->dev_private;
4863 enum intel_display_power_domain power_domain;
4864
4865 lockdep_assert_held(&dev_priv->pps_mutex);
4866
4867 if (!edp_have_panel_vdd(intel_dp))
4868 return;
4869
4870 /*
4871 * The VDD bit needs a power domain reference, so if the bit is
4872 * already enabled when we boot or resume, grab this reference and
4873 * schedule a vdd off, so we don't hold on to the reference
4874 * indefinitely.
4875 */
4876 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4877 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4878 intel_display_power_get(dev_priv, power_domain);
4879
4880 edp_panel_vdd_schedule_off(intel_dp);
4881 }
4882
4883 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4884 {
4885 struct intel_dp *intel_dp;
4886
4887 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4888 return;
4889
4890 intel_dp = enc_to_intel_dp(encoder);
4891
4892 pps_lock(intel_dp);
4893
4894 /*
4895 * Read out the current power sequencer assignment,
4896 * in case the BIOS did something with it.
4897 */
4898 if (IS_VALLEYVIEW(encoder->dev))
4899 vlv_initial_power_sequencer_setup(intel_dp);
4900
4901 intel_edp_panel_vdd_sanitize(intel_dp);
4902
4903 pps_unlock(intel_dp);
4904 }
4905
4906 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4907 .dpms = intel_connector_dpms,
4908 .detect = intel_dp_detect,
4909 .force = intel_dp_force,
4910 .fill_modes = drm_helper_probe_single_connector_modes,
4911 .set_property = intel_dp_set_property,
4912 .atomic_get_property = intel_connector_atomic_get_property,
4913 .destroy = intel_dp_connector_destroy,
4914 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4915 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4916 };
4917
4918 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4919 .get_modes = intel_dp_get_modes,
4920 .mode_valid = intel_dp_mode_valid,
4921 .best_encoder = intel_best_encoder,
4922 };
4923
4924 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4925 .reset = intel_dp_encoder_reset,
4926 .destroy = intel_dp_encoder_destroy,
4927 };
4928
4929 enum irqreturn
4930 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4931 {
4932 struct intel_dp *intel_dp = &intel_dig_port->dp;
4933 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4934 struct drm_device *dev = intel_dig_port->base.base.dev;
4935 struct drm_i915_private *dev_priv = dev->dev_private;
4936 enum intel_display_power_domain power_domain;
4937 enum irqreturn ret = IRQ_NONE;
4938
4939 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4940 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4941
4942 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4943 /*
4944 * vdd off can generate a long pulse on eDP which
4945 * would require vdd on to handle it, and thus we
4946 * would end up in an endless cycle of
4947 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4948 */
4949 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4950 port_name(intel_dig_port->port));
4951 return IRQ_HANDLED;
4952 }
4953
4954 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4955 port_name(intel_dig_port->port),
4956 long_hpd ? "long" : "short");
4957
4958 power_domain = intel_display_port_power_domain(intel_encoder);
4959 intel_display_power_get(dev_priv, power_domain);
4960
4961 if (long_hpd) {
4962 /* indicate that we need to restart link training */
4963 intel_dp->train_set_valid = false;
4964
4965 if (HAS_PCH_SPLIT(dev)) {
4966 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4967 goto mst_fail;
4968 } else {
4969 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4970 goto mst_fail;
4971 }
4972
4973 if (!intel_dp_get_dpcd(intel_dp)) {
4974 goto mst_fail;
4975 }
4976
4977 intel_dp_probe_oui(intel_dp);
4978
4979 if (!intel_dp_probe_mst(intel_dp))
4980 goto mst_fail;
4981
4982 } else {
4983 if (intel_dp->is_mst) {
4984 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4985 goto mst_fail;
4986 }
4987
4988 if (!intel_dp->is_mst) {
4989 /*
4990 * we'll check the link status via the normal hot plug path later -
4991 * but for short hpds we should check it now
4992 */
4993 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4994 intel_dp_check_link_status(intel_dp);
4995 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4996 }
4997 }
4998
4999 ret = IRQ_HANDLED;
5000
5001 goto put_power;
5002 mst_fail:
5003 /* if we were in MST mode, and device is not there get out of MST mode */
5004 if (intel_dp->is_mst) {
5005 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5006 intel_dp->is_mst = false;
5007 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
5008 }
5009 put_power:
5010 intel_display_power_put(dev_priv, power_domain);
5011
5012 return ret;
5013 }
5014
5015 /* Return which DP Port should be selected for Transcoder DP control */
5016 int
5017 intel_trans_dp_port_sel(struct drm_crtc *crtc)
5018 {
5019 struct drm_device *dev = crtc->dev;
5020 struct intel_encoder *intel_encoder;
5021 struct intel_dp *intel_dp;
5022
5023 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5024 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5025
5026 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
5027 intel_encoder->type == INTEL_OUTPUT_EDP)
5028 return intel_dp->output_reg;
5029 }
5030
5031 return -1;
5032 }
5033
5034 /* check the VBT to see whether the eDP is on DP-D port */
5035 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5036 {
5037 struct drm_i915_private *dev_priv = dev->dev_private;
5038 union child_device_config *p_child;
5039 int i;
5040 static const short port_mapping[] = {
5041 [PORT_B] = PORT_IDPB,
5042 [PORT_C] = PORT_IDPC,
5043 [PORT_D] = PORT_IDPD,
5044 };
5045
5046 if (port == PORT_A)
5047 return true;
5048
5049 if (!dev_priv->vbt.child_dev_num)
5050 return false;
5051
5052 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5053 p_child = dev_priv->vbt.child_dev + i;
5054
5055 if (p_child->common.dvo_port == port_mapping[port] &&
5056 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5057 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5058 return true;
5059 }
5060 return false;
5061 }
5062
5063 void
5064 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5065 {
5066 struct intel_connector *intel_connector = to_intel_connector(connector);
5067
5068 intel_attach_force_audio_property(connector);
5069 intel_attach_broadcast_rgb_property(connector);
5070 intel_dp->color_range_auto = true;
5071
5072 if (is_edp(intel_dp)) {
5073 drm_mode_create_scaling_mode_property(connector->dev);
5074 drm_object_attach_property(
5075 &connector->base,
5076 connector->dev->mode_config.scaling_mode_property,
5077 DRM_MODE_SCALE_ASPECT);
5078 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5079 }
5080 }
5081
5082 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5083 {
5084 intel_dp->last_power_cycle = jiffies;
5085 intel_dp->last_power_on = jiffies;
5086 intel_dp->last_backlight_off = jiffies;
5087 }
5088
5089 static void
5090 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5091 struct intel_dp *intel_dp)
5092 {
5093 struct drm_i915_private *dev_priv = dev->dev_private;
5094 struct edp_power_seq cur, vbt, spec,
5095 *final = &intel_dp->pps_delays;
5096 u32 pp_on, pp_off, pp_div, pp;
5097 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
5098
5099 lockdep_assert_held(&dev_priv->pps_mutex);
5100
5101 /* already initialized? */
5102 if (final->t11_t12 != 0)
5103 return;
5104
5105 if (HAS_PCH_SPLIT(dev)) {
5106 pp_ctrl_reg = PCH_PP_CONTROL;
5107 pp_on_reg = PCH_PP_ON_DELAYS;
5108 pp_off_reg = PCH_PP_OFF_DELAYS;
5109 pp_div_reg = PCH_PP_DIVISOR;
5110 } else {
5111 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5112
5113 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5114 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5115 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5116 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5117 }
5118
5119 /* Workaround: Need to write PP_CONTROL with the unlock key as
5120 * the very first thing. */
5121 pp = ironlake_get_pp_control(intel_dp);
5122 I915_WRITE(pp_ctrl_reg, pp);
5123
5124 pp_on = I915_READ(pp_on_reg);
5125 pp_off = I915_READ(pp_off_reg);
5126 pp_div = I915_READ(pp_div_reg);
5127
5128 /* Pull timing values out of registers */
5129 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5130 PANEL_POWER_UP_DELAY_SHIFT;
5131
5132 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5133 PANEL_LIGHT_ON_DELAY_SHIFT;
5134
5135 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5136 PANEL_LIGHT_OFF_DELAY_SHIFT;
5137
5138 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5139 PANEL_POWER_DOWN_DELAY_SHIFT;
5140
5141 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5142 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5143
5144 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5145 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5146
5147 vbt = dev_priv->vbt.edp_pps;
5148
5149 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5150 * our hw here, which are all in 100usec. */
5151 spec.t1_t3 = 210 * 10;
5152 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5153 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5154 spec.t10 = 500 * 10;
5155 /* This one is special and actually in units of 100ms, but zero
5156 * based in the hw (so we need to add 100 ms). But the sw vbt
5157 * table multiplies it with 1000 to make it in units of 100usec,
5158 * too. */
5159 spec.t11_t12 = (510 + 100) * 10;
5160
5161 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5162 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5163
5164 /* Use the max of the register settings and vbt. If both are
5165 * unset, fall back to the spec limits. */
5166 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5167 spec.field : \
5168 max(cur.field, vbt.field))
5169 assign_final(t1_t3);
5170 assign_final(t8);
5171 assign_final(t9);
5172 assign_final(t10);
5173 assign_final(t11_t12);
5174 #undef assign_final
5175
5176 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5177 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5178 intel_dp->backlight_on_delay = get_delay(t8);
5179 intel_dp->backlight_off_delay = get_delay(t9);
5180 intel_dp->panel_power_down_delay = get_delay(t10);
5181 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5182 #undef get_delay
5183
5184 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5185 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5186 intel_dp->panel_power_cycle_delay);
5187
5188 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5189 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5190 }
5191
5192 static void
5193 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5194 struct intel_dp *intel_dp)
5195 {
5196 struct drm_i915_private *dev_priv = dev->dev_private;
5197 u32 pp_on, pp_off, pp_div, port_sel = 0;
5198 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5199 int pp_on_reg, pp_off_reg, pp_div_reg;
5200 enum port port = dp_to_dig_port(intel_dp)->port;
5201 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5202
5203 lockdep_assert_held(&dev_priv->pps_mutex);
5204
5205 if (HAS_PCH_SPLIT(dev)) {
5206 pp_on_reg = PCH_PP_ON_DELAYS;
5207 pp_off_reg = PCH_PP_OFF_DELAYS;
5208 pp_div_reg = PCH_PP_DIVISOR;
5209 } else {
5210 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5211
5212 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5213 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5214 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5215 }
5216
5217 /*
5218 * And finally store the new values in the power sequencer. The
5219 * backlight delays are set to 1 because we do manual waits on them. For
5220 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5221 * we'll end up waiting for the backlight off delay twice: once when we
5222 * do the manual sleep, and once when we disable the panel and wait for
5223 * the PP_STATUS bit to become zero.
5224 */
5225 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5226 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5227 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5228 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5229 /* Compute the divisor for the pp clock, simply match the Bspec
5230 * formula. */
5231 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5232 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5233 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5234
5235 /* Haswell doesn't have any port selection bits for the panel
5236 * power sequencer any more. */
5237 if (IS_VALLEYVIEW(dev)) {
5238 port_sel = PANEL_PORT_SELECT_VLV(port);
5239 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5240 if (port == PORT_A)
5241 port_sel = PANEL_PORT_SELECT_DPA;
5242 else
5243 port_sel = PANEL_PORT_SELECT_DPD;
5244 }
5245
5246 pp_on |= port_sel;
5247
5248 I915_WRITE(pp_on_reg, pp_on);
5249 I915_WRITE(pp_off_reg, pp_off);
5250 I915_WRITE(pp_div_reg, pp_div);
5251
5252 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5253 I915_READ(pp_on_reg),
5254 I915_READ(pp_off_reg),
5255 I915_READ(pp_div_reg));
5256 }
5257
5258 /**
5259 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5260 * @dev: DRM device
5261 * @refresh_rate: RR to be programmed
5262 *
5263 * This function gets called when refresh rate (RR) has to be changed from
5264 * one frequency to another. Switches can be between high and low RR
5265 * supported by the panel or to any other RR based on media playback (in
5266 * this case, RR value needs to be passed from user space).
5267 *
5268 * The caller of this function needs to take a lock on dev_priv->drrs.
5269 */
5270 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5271 {
5272 struct drm_i915_private *dev_priv = dev->dev_private;
5273 struct intel_encoder *encoder;
5274 struct intel_digital_port *dig_port = NULL;
5275 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5276 struct intel_crtc_state *config = NULL;
5277 struct intel_crtc *intel_crtc = NULL;
5278 u32 reg, val;
5279 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5280
5281 if (refresh_rate <= 0) {
5282 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5283 return;
5284 }
5285
5286 if (intel_dp == NULL) {
5287 DRM_DEBUG_KMS("DRRS not supported.\n");
5288 return;
5289 }
5290
5291 /*
5292 * FIXME: This needs proper synchronization with psr state for some
5293 * platforms that cannot have PSR and DRRS enabled at the same time.
5294 */
5295
5296 dig_port = dp_to_dig_port(intel_dp);
5297 encoder = &dig_port->base;
5298 intel_crtc = to_intel_crtc(encoder->base.crtc);
5299
5300 if (!intel_crtc) {
5301 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5302 return;
5303 }
5304
5305 config = intel_crtc->config;
5306
5307 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5308 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5309 return;
5310 }
5311
5312 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5313 refresh_rate)
5314 index = DRRS_LOW_RR;
5315
5316 if (index == dev_priv->drrs.refresh_rate_type) {
5317 DRM_DEBUG_KMS(
5318 "DRRS requested for previously set RR...ignoring\n");
5319 return;
5320 }
5321
5322 if (!intel_crtc->active) {
5323 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5324 return;
5325 }
5326
5327 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5328 switch (index) {
5329 case DRRS_HIGH_RR:
5330 intel_dp_set_m_n(intel_crtc, M1_N1);
5331 break;
5332 case DRRS_LOW_RR:
5333 intel_dp_set_m_n(intel_crtc, M2_N2);
5334 break;
5335 case DRRS_MAX_RR:
5336 default:
5337 DRM_ERROR("Unsupported refreshrate type\n");
5338 }
5339 } else if (INTEL_INFO(dev)->gen > 6) {
5340 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5341 val = I915_READ(reg);
5342
5343 if (index > DRRS_HIGH_RR) {
5344 if (IS_VALLEYVIEW(dev))
5345 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5346 else
5347 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5348 } else {
5349 if (IS_VALLEYVIEW(dev))
5350 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5351 else
5352 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5353 }
5354 I915_WRITE(reg, val);
5355 }
5356
5357 dev_priv->drrs.refresh_rate_type = index;
5358
5359 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5360 }
5361
5362 /**
5363 * intel_edp_drrs_enable - init drrs struct if supported
5364 * @intel_dp: DP struct
5365 *
5366 * Initializes frontbuffer_bits and drrs.dp
5367 */
5368 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5369 {
5370 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5371 struct drm_i915_private *dev_priv = dev->dev_private;
5372 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5373 struct drm_crtc *crtc = dig_port->base.base.crtc;
5374 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5375
5376 if (!intel_crtc->config->has_drrs) {
5377 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5378 return;
5379 }
5380
5381 mutex_lock(&dev_priv->drrs.mutex);
5382 if (WARN_ON(dev_priv->drrs.dp)) {
5383 DRM_ERROR("DRRS already enabled\n");
5384 goto unlock;
5385 }
5386
5387 dev_priv->drrs.busy_frontbuffer_bits = 0;
5388
5389 dev_priv->drrs.dp = intel_dp;
5390
5391 unlock:
5392 mutex_unlock(&dev_priv->drrs.mutex);
5393 }
5394
5395 /**
5396 * intel_edp_drrs_disable - Disable DRRS
5397 * @intel_dp: DP struct
5398 *
5399 */
5400 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5401 {
5402 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5403 struct drm_i915_private *dev_priv = dev->dev_private;
5404 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5405 struct drm_crtc *crtc = dig_port->base.base.crtc;
5406 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5407
5408 if (!intel_crtc->config->has_drrs)
5409 return;
5410
5411 mutex_lock(&dev_priv->drrs.mutex);
5412 if (!dev_priv->drrs.dp) {
5413 mutex_unlock(&dev_priv->drrs.mutex);
5414 return;
5415 }
5416
5417 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5418 intel_dp_set_drrs_state(dev_priv->dev,
5419 intel_dp->attached_connector->panel.
5420 fixed_mode->vrefresh);
5421
5422 dev_priv->drrs.dp = NULL;
5423 mutex_unlock(&dev_priv->drrs.mutex);
5424
5425 cancel_delayed_work_sync(&dev_priv->drrs.work);
5426 }
5427
5428 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5429 {
5430 struct drm_i915_private *dev_priv =
5431 container_of(work, typeof(*dev_priv), drrs.work.work);
5432 struct intel_dp *intel_dp;
5433
5434 mutex_lock(&dev_priv->drrs.mutex);
5435
5436 intel_dp = dev_priv->drrs.dp;
5437
5438 if (!intel_dp)
5439 goto unlock;
5440
5441 /*
5442 * The delayed work can race with an invalidate hence we need to
5443 * recheck.
5444 */
5445
5446 if (dev_priv->drrs.busy_frontbuffer_bits)
5447 goto unlock;
5448
5449 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5450 intel_dp_set_drrs_state(dev_priv->dev,
5451 intel_dp->attached_connector->panel.
5452 downclock_mode->vrefresh);
5453
5454 unlock:
5455 mutex_unlock(&dev_priv->drrs.mutex);
5456 }
5457
5458 /**
5459 * intel_edp_drrs_invalidate - Invalidate DRRS
5460 * @dev: DRM device
5461 * @frontbuffer_bits: frontbuffer plane tracking bits
5462 *
5463 * When there is a disturbance on screen (due to cursor movement/time
5464 * update etc), DRRS needs to be invalidated, i.e. need to switch to
5465 * high RR.
5466 *
5467 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5468 */
5469 void intel_edp_drrs_invalidate(struct drm_device *dev,
5470 unsigned frontbuffer_bits)
5471 {
5472 struct drm_i915_private *dev_priv = dev->dev_private;
5473 struct drm_crtc *crtc;
5474 enum pipe pipe;
5475
5476 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5477 return;
5478
5479 cancel_delayed_work(&dev_priv->drrs.work);
5480
5481 mutex_lock(&dev_priv->drrs.mutex);
5482 if (!dev_priv->drrs.dp) {
5483 mutex_unlock(&dev_priv->drrs.mutex);
5484 return;
5485 }
5486
5487 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5488 pipe = to_intel_crtc(crtc)->pipe;
5489
5490 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
5491 intel_dp_set_drrs_state(dev_priv->dev,
5492 dev_priv->drrs.dp->attached_connector->panel.
5493 fixed_mode->vrefresh);
5494 }
5495
5496 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5497
5498 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5499 mutex_unlock(&dev_priv->drrs.mutex);
5500 }
5501
5502 /**
5503 * intel_edp_drrs_flush - Flush DRRS
5504 * @dev: DRM device
5505 * @frontbuffer_bits: frontbuffer plane tracking bits
5506 *
5507 * When there is no movement on screen, DRRS work can be scheduled.
5508 * This DRRS work is responsible for setting relevant registers after a
5509 * timeout of 1 second.
5510 *
5511 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5512 */
5513 void intel_edp_drrs_flush(struct drm_device *dev,
5514 unsigned frontbuffer_bits)
5515 {
5516 struct drm_i915_private *dev_priv = dev->dev_private;
5517 struct drm_crtc *crtc;
5518 enum pipe pipe;
5519
5520 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5521 return;
5522
5523 cancel_delayed_work(&dev_priv->drrs.work);
5524
5525 mutex_lock(&dev_priv->drrs.mutex);
5526 if (!dev_priv->drrs.dp) {
5527 mutex_unlock(&dev_priv->drrs.mutex);
5528 return;
5529 }
5530
5531 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5532 pipe = to_intel_crtc(crtc)->pipe;
5533 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5534
5535 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR &&
5536 !dev_priv->drrs.busy_frontbuffer_bits)
5537 schedule_delayed_work(&dev_priv->drrs.work,
5538 msecs_to_jiffies(1000));
5539 mutex_unlock(&dev_priv->drrs.mutex);
5540 }
5541
5542 /**
5543 * DOC: Display Refresh Rate Switching (DRRS)
5544 *
5545 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5546 * which enables swtching between low and high refresh rates,
5547 * dynamically, based on the usage scenario. This feature is applicable
5548 * for internal panels.
5549 *
5550 * Indication that the panel supports DRRS is given by the panel EDID, which
5551 * would list multiple refresh rates for one resolution.
5552 *
5553 * DRRS is of 2 types - static and seamless.
5554 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5555 * (may appear as a blink on screen) and is used in dock-undock scenario.
5556 * Seamless DRRS involves changing RR without any visual effect to the user
5557 * and can be used during normal system usage. This is done by programming
5558 * certain registers.
5559 *
5560 * Support for static/seamless DRRS may be indicated in the VBT based on
5561 * inputs from the panel spec.
5562 *
5563 * DRRS saves power by switching to low RR based on usage scenarios.
5564 *
5565 * eDP DRRS:-
5566 * The implementation is based on frontbuffer tracking implementation.
5567 * When there is a disturbance on the screen triggered by user activity or a
5568 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5569 * When there is no movement on screen, after a timeout of 1 second, a switch
5570 * to low RR is made.
5571 * For integration with frontbuffer tracking code,
5572 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5573 *
5574 * DRRS can be further extended to support other internal panels and also
5575 * the scenario of video playback wherein RR is set based on the rate
5576 * requested by userspace.
5577 */
5578
5579 /**
5580 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5581 * @intel_connector: eDP connector
5582 * @fixed_mode: preferred mode of panel
5583 *
5584 * This function is called only once at driver load to initialize basic
5585 * DRRS stuff.
5586 *
5587 * Returns:
5588 * Downclock mode if panel supports it, else return NULL.
5589 * DRRS support is determined by the presence of downclock mode (apart
5590 * from VBT setting).
5591 */
5592 static struct drm_display_mode *
5593 intel_dp_drrs_init(struct intel_connector *intel_connector,
5594 struct drm_display_mode *fixed_mode)
5595 {
5596 struct drm_connector *connector = &intel_connector->base;
5597 struct drm_device *dev = connector->dev;
5598 struct drm_i915_private *dev_priv = dev->dev_private;
5599 struct drm_display_mode *downclock_mode = NULL;
5600
5601 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5602 mutex_init(&dev_priv->drrs.mutex);
5603
5604 if (INTEL_INFO(dev)->gen <= 6) {
5605 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5606 return NULL;
5607 }
5608
5609 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5610 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5611 return NULL;
5612 }
5613
5614 downclock_mode = intel_find_panel_downclock
5615 (dev, fixed_mode, connector);
5616
5617 if (!downclock_mode) {
5618 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5619 return NULL;
5620 }
5621
5622 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5623
5624 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5625 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5626 return downclock_mode;
5627 }
5628
5629 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5630 struct intel_connector *intel_connector)
5631 {
5632 struct drm_connector *connector = &intel_connector->base;
5633 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5634 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5635 struct drm_device *dev = intel_encoder->base.dev;
5636 struct drm_i915_private *dev_priv = dev->dev_private;
5637 struct drm_display_mode *fixed_mode = NULL;
5638 struct drm_display_mode *downclock_mode = NULL;
5639 bool has_dpcd;
5640 struct drm_display_mode *scan;
5641 struct edid *edid;
5642 enum pipe pipe = INVALID_PIPE;
5643
5644 if (!is_edp(intel_dp))
5645 return true;
5646
5647 pps_lock(intel_dp);
5648 intel_edp_panel_vdd_sanitize(intel_dp);
5649 pps_unlock(intel_dp);
5650
5651 /* Cache DPCD and EDID for edp. */
5652 has_dpcd = intel_dp_get_dpcd(intel_dp);
5653
5654 if (has_dpcd) {
5655 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5656 dev_priv->no_aux_handshake =
5657 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5658 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5659 } else {
5660 /* if this fails, presume the device is a ghost */
5661 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5662 return false;
5663 }
5664
5665 /* We now know it's not a ghost, init power sequence regs. */
5666 pps_lock(intel_dp);
5667 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5668 pps_unlock(intel_dp);
5669
5670 mutex_lock(&dev->mode_config.mutex);
5671 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5672 if (edid) {
5673 if (drm_add_edid_modes(connector, edid)) {
5674 drm_mode_connector_update_edid_property(connector,
5675 edid);
5676 drm_edid_to_eld(connector, edid);
5677 } else {
5678 kfree(edid);
5679 edid = ERR_PTR(-EINVAL);
5680 }
5681 } else {
5682 edid = ERR_PTR(-ENOENT);
5683 }
5684 intel_connector->edid = edid;
5685
5686 /* prefer fixed mode from EDID if available */
5687 list_for_each_entry(scan, &connector->probed_modes, head) {
5688 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5689 fixed_mode = drm_mode_duplicate(dev, scan);
5690 downclock_mode = intel_dp_drrs_init(
5691 intel_connector, fixed_mode);
5692 break;
5693 }
5694 }
5695
5696 /* fallback to VBT if available for eDP */
5697 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5698 fixed_mode = drm_mode_duplicate(dev,
5699 dev_priv->vbt.lfp_lvds_vbt_mode);
5700 if (fixed_mode)
5701 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5702 }
5703 mutex_unlock(&dev->mode_config.mutex);
5704
5705 if (IS_VALLEYVIEW(dev)) {
5706 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5707 register_reboot_notifier(&intel_dp->edp_notifier);
5708
5709 /*
5710 * Figure out the current pipe for the initial backlight setup.
5711 * If the current pipe isn't valid, try the PPS pipe, and if that
5712 * fails just assume pipe A.
5713 */
5714 if (IS_CHERRYVIEW(dev))
5715 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5716 else
5717 pipe = PORT_TO_PIPE(intel_dp->DP);
5718
5719 if (pipe != PIPE_A && pipe != PIPE_B)
5720 pipe = intel_dp->pps_pipe;
5721
5722 if (pipe != PIPE_A && pipe != PIPE_B)
5723 pipe = PIPE_A;
5724
5725 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5726 pipe_name(pipe));
5727 }
5728
5729 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5730 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5731 intel_panel_setup_backlight(connector, pipe);
5732
5733 return true;
5734 }
5735
5736 bool
5737 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5738 struct intel_connector *intel_connector)
5739 {
5740 struct drm_connector *connector = &intel_connector->base;
5741 struct intel_dp *intel_dp = &intel_dig_port->dp;
5742 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5743 struct drm_device *dev = intel_encoder->base.dev;
5744 struct drm_i915_private *dev_priv = dev->dev_private;
5745 enum port port = intel_dig_port->port;
5746 int type;
5747
5748 intel_dp->pps_pipe = INVALID_PIPE;
5749
5750 /* intel_dp vfuncs */
5751 if (INTEL_INFO(dev)->gen >= 9)
5752 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5753 else if (IS_VALLEYVIEW(dev))
5754 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5755 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5756 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5757 else if (HAS_PCH_SPLIT(dev))
5758 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5759 else
5760 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5761
5762 if (INTEL_INFO(dev)->gen >= 9)
5763 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5764 else
5765 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5766
5767 /* Preserve the current hw state. */
5768 intel_dp->DP = I915_READ(intel_dp->output_reg);
5769 intel_dp->attached_connector = intel_connector;
5770
5771 if (intel_dp_is_edp(dev, port))
5772 type = DRM_MODE_CONNECTOR_eDP;
5773 else
5774 type = DRM_MODE_CONNECTOR_DisplayPort;
5775
5776 /*
5777 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5778 * for DP the encoder type can be set by the caller to
5779 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5780 */
5781 if (type == DRM_MODE_CONNECTOR_eDP)
5782 intel_encoder->type = INTEL_OUTPUT_EDP;
5783
5784 /* eDP only on port B and/or C on vlv/chv */
5785 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5786 port != PORT_B && port != PORT_C))
5787 return false;
5788
5789 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5790 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5791 port_name(port));
5792
5793 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5794 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5795
5796 connector->interlace_allowed = true;
5797 connector->doublescan_allowed = 0;
5798
5799 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5800 edp_panel_vdd_work);
5801
5802 intel_connector_attach_encoder(intel_connector, intel_encoder);
5803 drm_connector_register(connector);
5804
5805 if (HAS_DDI(dev))
5806 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5807 else
5808 intel_connector->get_hw_state = intel_connector_get_hw_state;
5809 intel_connector->unregister = intel_dp_connector_unregister;
5810
5811 /* Set up the hotplug pin. */
5812 switch (port) {
5813 case PORT_A:
5814 intel_encoder->hpd_pin = HPD_PORT_A;
5815 break;
5816 case PORT_B:
5817 intel_encoder->hpd_pin = HPD_PORT_B;
5818 break;
5819 case PORT_C:
5820 intel_encoder->hpd_pin = HPD_PORT_C;
5821 break;
5822 case PORT_D:
5823 intel_encoder->hpd_pin = HPD_PORT_D;
5824 break;
5825 default:
5826 BUG();
5827 }
5828
5829 if (is_edp(intel_dp)) {
5830 pps_lock(intel_dp);
5831 intel_dp_init_panel_power_timestamps(intel_dp);
5832 if (IS_VALLEYVIEW(dev))
5833 vlv_initial_power_sequencer_setup(intel_dp);
5834 else
5835 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5836 pps_unlock(intel_dp);
5837 }
5838
5839 intel_dp_aux_init(intel_dp, intel_connector);
5840
5841 /* init MST on ports that can support it */
5842 if (HAS_DP_MST(dev) &&
5843 (port == PORT_B || port == PORT_C || port == PORT_D))
5844 intel_dp_mst_encoder_init(intel_dig_port,
5845 intel_connector->base.base.id);
5846
5847 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5848 drm_dp_aux_unregister(&intel_dp->aux);
5849 if (is_edp(intel_dp)) {
5850 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5851 /*
5852 * vdd might still be enabled do to the delayed vdd off.
5853 * Make sure vdd is actually turned off here.
5854 */
5855 pps_lock(intel_dp);
5856 edp_panel_vdd_off_sync(intel_dp);
5857 pps_unlock(intel_dp);
5858 }
5859 drm_connector_unregister(connector);
5860 drm_connector_cleanup(connector);
5861 return false;
5862 }
5863
5864 intel_dp_add_properties(intel_dp, connector);
5865
5866 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5867 * 0xd. Failure to do so will result in spurious interrupts being
5868 * generated on the port when a cable is not attached.
5869 */
5870 if (IS_G4X(dev) && !IS_GM45(dev)) {
5871 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5872 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5873 }
5874
5875 i915_debugfs_connector_add(connector);
5876
5877 return true;
5878 }
5879
5880 void
5881 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5882 {
5883 struct drm_i915_private *dev_priv = dev->dev_private;
5884 struct intel_digital_port *intel_dig_port;
5885 struct intel_encoder *intel_encoder;
5886 struct drm_encoder *encoder;
5887 struct intel_connector *intel_connector;
5888
5889 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5890 if (!intel_dig_port)
5891 return;
5892
5893 intel_connector = intel_connector_alloc();
5894 if (!intel_connector) {
5895 kfree(intel_dig_port);
5896 return;
5897 }
5898
5899 intel_encoder = &intel_dig_port->base;
5900 encoder = &intel_encoder->base;
5901
5902 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5903 DRM_MODE_ENCODER_TMDS);
5904
5905 intel_encoder->compute_config = intel_dp_compute_config;
5906 intel_encoder->disable = intel_disable_dp;
5907 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5908 intel_encoder->get_config = intel_dp_get_config;
5909 intel_encoder->suspend = intel_dp_encoder_suspend;
5910 if (IS_CHERRYVIEW(dev)) {
5911 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5912 intel_encoder->pre_enable = chv_pre_enable_dp;
5913 intel_encoder->enable = vlv_enable_dp;
5914 intel_encoder->post_disable = chv_post_disable_dp;
5915 } else if (IS_VALLEYVIEW(dev)) {
5916 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5917 intel_encoder->pre_enable = vlv_pre_enable_dp;
5918 intel_encoder->enable = vlv_enable_dp;
5919 intel_encoder->post_disable = vlv_post_disable_dp;
5920 } else {
5921 intel_encoder->pre_enable = g4x_pre_enable_dp;
5922 intel_encoder->enable = g4x_enable_dp;
5923 if (INTEL_INFO(dev)->gen >= 5)
5924 intel_encoder->post_disable = ilk_post_disable_dp;
5925 }
5926
5927 intel_dig_port->port = port;
5928 intel_dig_port->dp.output_reg = output_reg;
5929
5930 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5931 if (IS_CHERRYVIEW(dev)) {
5932 if (port == PORT_D)
5933 intel_encoder->crtc_mask = 1 << 2;
5934 else
5935 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5936 } else {
5937 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5938 }
5939 intel_encoder->cloneable = 0;
5940
5941 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5942 dev_priv->hotplug.irq_port[port] = intel_dig_port;
5943
5944 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5945 drm_encoder_cleanup(encoder);
5946 kfree(intel_dig_port);
5947 kfree(intel_connector);
5948 }
5949 }
5950
5951 void intel_dp_mst_suspend(struct drm_device *dev)
5952 {
5953 struct drm_i915_private *dev_priv = dev->dev_private;
5954 int i;
5955
5956 /* disable MST */
5957 for (i = 0; i < I915_MAX_PORTS; i++) {
5958 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5959 if (!intel_dig_port)
5960 continue;
5961
5962 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5963 if (!intel_dig_port->dp.can_mst)
5964 continue;
5965 if (intel_dig_port->dp.is_mst)
5966 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5967 }
5968 }
5969 }
5970
5971 void intel_dp_mst_resume(struct drm_device *dev)
5972 {
5973 struct drm_i915_private *dev_priv = dev->dev_private;
5974 int i;
5975
5976 for (i = 0; i < I915_MAX_PORTS; i++) {
5977 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5978 if (!intel_dig_port)
5979 continue;
5980 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5981 int ret;
5982
5983 if (!intel_dig_port->dp.can_mst)
5984 continue;
5985
5986 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5987 if (ret != 0) {
5988 intel_dp_check_mst_status(&intel_dig_port->dp);
5989 }
5990 }
5991 }
5992 }
This page took 0.227923 seconds and 6 git commands to generate.