Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121 struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123 switch (max_link_bw) {
124 case DP_LINK_BW_1_62:
125 case DP_LINK_BW_2_7:
126 break;
127 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129 INTEL_INFO(dev)->gen >= 8) &&
130 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131 max_link_bw = DP_LINK_BW_5_4;
132 else
133 max_link_bw = DP_LINK_BW_2_7;
134 break;
135 default:
136 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137 max_link_bw);
138 max_link_bw = DP_LINK_BW_1_62;
139 break;
140 }
141 return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147 struct drm_device *dev = intel_dig_port->base.base.dev;
148 u8 source_max, sink_max;
149
150 source_max = 4;
151 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153 source_max = 2;
154
155 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157 return min(source_max, sink_max);
158 }
159
160 /*
161 * The units on the numbers in the next two are... bizarre. Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 * 270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000. At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186 return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191 struct drm_display_mode *mode)
192 {
193 struct intel_dp *intel_dp = intel_attached_dp(connector);
194 struct intel_connector *intel_connector = to_intel_connector(connector);
195 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196 int target_clock = mode->clock;
197 int max_rate, mode_rate, max_lanes, max_link_clock;
198
199 if (is_edp(intel_dp) && fixed_mode) {
200 if (mode->hdisplay > fixed_mode->hdisplay)
201 return MODE_PANEL;
202
203 if (mode->vdisplay > fixed_mode->vdisplay)
204 return MODE_PANEL;
205
206 target_clock = fixed_mode->clock;
207 }
208
209 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210 max_lanes = intel_dp_max_lane_count(intel_dp);
211
212 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213 mode_rate = intel_dp_link_required(target_clock, 18);
214
215 if (mode_rate > max_rate)
216 return MODE_CLOCK_HIGH;
217
218 if (mode->clock < 10000)
219 return MODE_CLOCK_LOW;
220
221 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222 return MODE_H_ILLEGAL;
223
224 return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(uint8_t *src, int src_bytes)
229 {
230 int i;
231 uint32_t v = 0;
232
233 if (src_bytes > 4)
234 src_bytes = 4;
235 for (i = 0; i < src_bytes; i++)
236 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237 return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243 int i;
244 if (dst_bytes > 4)
245 dst_bytes = 4;
246 for (i = 0; i < dst_bytes; i++)
247 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 uint32_t clkcfg;
256
257 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258 if (IS_VALLEYVIEW(dev))
259 return 200;
260
261 clkcfg = I915_READ(CLKCFG);
262 switch (clkcfg & CLKCFG_FSB_MASK) {
263 case CLKCFG_FSB_400:
264 return 100;
265 case CLKCFG_FSB_533:
266 return 133;
267 case CLKCFG_FSB_667:
268 return 166;
269 case CLKCFG_FSB_800:
270 return 200;
271 case CLKCFG_FSB_1067:
272 return 266;
273 case CLKCFG_FSB_1333:
274 return 333;
275 /* these two are just a guess; one of them might be right */
276 case CLKCFG_FSB_1600:
277 case CLKCFG_FSB_1600_ALT:
278 return 400;
279 default:
280 return 133;
281 }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286 struct intel_dp *intel_dp,
287 struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp,
291 struct edp_power_seq *out);
292
293 static enum pipe
294 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
295 {
296 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
298 struct drm_device *dev = intel_dig_port->base.base.dev;
299 struct drm_i915_private *dev_priv = dev->dev_private;
300 enum port port = intel_dig_port->port;
301 enum pipe pipe;
302
303 /* modeset should have pipe */
304 if (crtc)
305 return to_intel_crtc(crtc)->pipe;
306
307 /* init time, try to find a pipe with this port selected */
308 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
309 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
310 PANEL_PORT_SELECT_MASK;
311 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
312 return pipe;
313 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
314 return pipe;
315 }
316
317 /* shrug */
318 return PIPE_A;
319 }
320
321 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
322 {
323 struct drm_device *dev = intel_dp_to_dev(intel_dp);
324
325 if (HAS_PCH_SPLIT(dev))
326 return PCH_PP_CONTROL;
327 else
328 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
329 }
330
331 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
332 {
333 struct drm_device *dev = intel_dp_to_dev(intel_dp);
334
335 if (HAS_PCH_SPLIT(dev))
336 return PCH_PP_STATUS;
337 else
338 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
339 }
340
341 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
342 This function only applicable when panel PM state is not to be tracked */
343 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
344 void *unused)
345 {
346 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
347 edp_notifier);
348 struct drm_device *dev = intel_dp_to_dev(intel_dp);
349 struct drm_i915_private *dev_priv = dev->dev_private;
350 u32 pp_div;
351 u32 pp_ctrl_reg, pp_div_reg;
352 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
353
354 if (!is_edp(intel_dp) || code != SYS_RESTART)
355 return 0;
356
357 if (IS_VALLEYVIEW(dev)) {
358 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
359 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
360 pp_div = I915_READ(pp_div_reg);
361 pp_div &= PP_REFERENCE_DIVIDER_MASK;
362
363 /* 0x1F write to PP_DIV_REG sets max cycle delay */
364 I915_WRITE(pp_div_reg, pp_div | 0x1F);
365 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
366 msleep(intel_dp->panel_power_cycle_delay);
367 }
368
369 return 0;
370 }
371
372 static bool edp_have_panel_power(struct intel_dp *intel_dp)
373 {
374 struct drm_device *dev = intel_dp_to_dev(intel_dp);
375 struct drm_i915_private *dev_priv = dev->dev_private;
376
377 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
378 }
379
380 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
381 {
382 struct drm_device *dev = intel_dp_to_dev(intel_dp);
383 struct drm_i915_private *dev_priv = dev->dev_private;
384 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
385 struct intel_encoder *intel_encoder = &intel_dig_port->base;
386 enum intel_display_power_domain power_domain;
387
388 power_domain = intel_display_port_power_domain(intel_encoder);
389 return intel_display_power_enabled(dev_priv, power_domain) &&
390 (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
391 }
392
393 static void
394 intel_dp_check_edp(struct intel_dp *intel_dp)
395 {
396 struct drm_device *dev = intel_dp_to_dev(intel_dp);
397 struct drm_i915_private *dev_priv = dev->dev_private;
398
399 if (!is_edp(intel_dp))
400 return;
401
402 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
403 WARN(1, "eDP powered off while attempting aux channel communication.\n");
404 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
405 I915_READ(_pp_stat_reg(intel_dp)),
406 I915_READ(_pp_ctrl_reg(intel_dp)));
407 }
408 }
409
410 static uint32_t
411 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
412 {
413 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
414 struct drm_device *dev = intel_dig_port->base.base.dev;
415 struct drm_i915_private *dev_priv = dev->dev_private;
416 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
417 uint32_t status;
418 bool done;
419
420 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
421 if (has_aux_irq)
422 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
423 msecs_to_jiffies_timeout(10));
424 else
425 done = wait_for_atomic(C, 10) == 0;
426 if (!done)
427 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
428 has_aux_irq);
429 #undef C
430
431 return status;
432 }
433
434 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
435 {
436 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
437 struct drm_device *dev = intel_dig_port->base.base.dev;
438
439 /*
440 * The clock divider is based off the hrawclk, and would like to run at
441 * 2MHz. So, take the hrawclk value and divide by 2 and use that
442 */
443 return index ? 0 : intel_hrawclk(dev) / 2;
444 }
445
446 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
447 {
448 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
449 struct drm_device *dev = intel_dig_port->base.base.dev;
450
451 if (index)
452 return 0;
453
454 if (intel_dig_port->port == PORT_A) {
455 if (IS_GEN6(dev) || IS_GEN7(dev))
456 return 200; /* SNB & IVB eDP input clock at 400Mhz */
457 else
458 return 225; /* eDP input clock at 450Mhz */
459 } else {
460 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
461 }
462 }
463
464 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
465 {
466 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
467 struct drm_device *dev = intel_dig_port->base.base.dev;
468 struct drm_i915_private *dev_priv = dev->dev_private;
469
470 if (intel_dig_port->port == PORT_A) {
471 if (index)
472 return 0;
473 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
474 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
475 /* Workaround for non-ULT HSW */
476 switch (index) {
477 case 0: return 63;
478 case 1: return 72;
479 default: return 0;
480 }
481 } else {
482 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
483 }
484 }
485
486 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
487 {
488 return index ? 0 : 100;
489 }
490
491 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
492 bool has_aux_irq,
493 int send_bytes,
494 uint32_t aux_clock_divider)
495 {
496 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
497 struct drm_device *dev = intel_dig_port->base.base.dev;
498 uint32_t precharge, timeout;
499
500 if (IS_GEN6(dev))
501 precharge = 3;
502 else
503 precharge = 5;
504
505 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
506 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
507 else
508 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
509
510 return DP_AUX_CH_CTL_SEND_BUSY |
511 DP_AUX_CH_CTL_DONE |
512 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
513 DP_AUX_CH_CTL_TIME_OUT_ERROR |
514 timeout |
515 DP_AUX_CH_CTL_RECEIVE_ERROR |
516 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
517 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
518 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
519 }
520
521 static int
522 intel_dp_aux_ch(struct intel_dp *intel_dp,
523 uint8_t *send, int send_bytes,
524 uint8_t *recv, int recv_size)
525 {
526 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
527 struct drm_device *dev = intel_dig_port->base.base.dev;
528 struct drm_i915_private *dev_priv = dev->dev_private;
529 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
530 uint32_t ch_data = ch_ctl + 4;
531 uint32_t aux_clock_divider;
532 int i, ret, recv_bytes;
533 uint32_t status;
534 int try, clock = 0;
535 bool has_aux_irq = HAS_AUX_IRQ(dev);
536 bool vdd;
537
538 vdd = _edp_panel_vdd_on(intel_dp);
539
540 /* dp aux is extremely sensitive to irq latency, hence request the
541 * lowest possible wakeup latency and so prevent the cpu from going into
542 * deep sleep states.
543 */
544 pm_qos_update_request(&dev_priv->pm_qos, 0);
545
546 intel_dp_check_edp(intel_dp);
547
548 intel_aux_display_runtime_get(dev_priv);
549
550 /* Try to wait for any previous AUX channel activity */
551 for (try = 0; try < 3; try++) {
552 status = I915_READ_NOTRACE(ch_ctl);
553 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
554 break;
555 msleep(1);
556 }
557
558 if (try == 3) {
559 WARN(1, "dp_aux_ch not started status 0x%08x\n",
560 I915_READ(ch_ctl));
561 ret = -EBUSY;
562 goto out;
563 }
564
565 /* Only 5 data registers! */
566 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
567 ret = -E2BIG;
568 goto out;
569 }
570
571 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
572 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
573 has_aux_irq,
574 send_bytes,
575 aux_clock_divider);
576
577 /* Must try at least 3 times according to DP spec */
578 for (try = 0; try < 5; try++) {
579 /* Load the send data into the aux channel data registers */
580 for (i = 0; i < send_bytes; i += 4)
581 I915_WRITE(ch_data + i,
582 pack_aux(send + i, send_bytes - i));
583
584 /* Send the command and wait for it to complete */
585 I915_WRITE(ch_ctl, send_ctl);
586
587 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
588
589 /* Clear done status and any errors */
590 I915_WRITE(ch_ctl,
591 status |
592 DP_AUX_CH_CTL_DONE |
593 DP_AUX_CH_CTL_TIME_OUT_ERROR |
594 DP_AUX_CH_CTL_RECEIVE_ERROR);
595
596 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
597 DP_AUX_CH_CTL_RECEIVE_ERROR))
598 continue;
599 if (status & DP_AUX_CH_CTL_DONE)
600 break;
601 }
602 if (status & DP_AUX_CH_CTL_DONE)
603 break;
604 }
605
606 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
607 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
608 ret = -EBUSY;
609 goto out;
610 }
611
612 /* Check for timeout or receive error.
613 * Timeouts occur when the sink is not connected
614 */
615 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
616 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
617 ret = -EIO;
618 goto out;
619 }
620
621 /* Timeouts occur when the device isn't connected, so they're
622 * "normal" -- don't fill the kernel log with these */
623 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
624 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
625 ret = -ETIMEDOUT;
626 goto out;
627 }
628
629 /* Unload any bytes sent back from the other side */
630 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
631 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
632 if (recv_bytes > recv_size)
633 recv_bytes = recv_size;
634
635 for (i = 0; i < recv_bytes; i += 4)
636 unpack_aux(I915_READ(ch_data + i),
637 recv + i, recv_bytes - i);
638
639 ret = recv_bytes;
640 out:
641 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
642 intel_aux_display_runtime_put(dev_priv);
643
644 if (vdd)
645 edp_panel_vdd_off(intel_dp, false);
646
647 return ret;
648 }
649
650 #define BARE_ADDRESS_SIZE 3
651 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
652 static ssize_t
653 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
654 {
655 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
656 uint8_t txbuf[20], rxbuf[20];
657 size_t txsize, rxsize;
658 int ret;
659
660 txbuf[0] = msg->request << 4;
661 txbuf[1] = msg->address >> 8;
662 txbuf[2] = msg->address & 0xff;
663 txbuf[3] = msg->size - 1;
664
665 switch (msg->request & ~DP_AUX_I2C_MOT) {
666 case DP_AUX_NATIVE_WRITE:
667 case DP_AUX_I2C_WRITE:
668 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
669 rxsize = 1;
670
671 if (WARN_ON(txsize > 20))
672 return -E2BIG;
673
674 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
675
676 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
677 if (ret > 0) {
678 msg->reply = rxbuf[0] >> 4;
679
680 /* Return payload size. */
681 ret = msg->size;
682 }
683 break;
684
685 case DP_AUX_NATIVE_READ:
686 case DP_AUX_I2C_READ:
687 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
688 rxsize = msg->size + 1;
689
690 if (WARN_ON(rxsize > 20))
691 return -E2BIG;
692
693 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
694 if (ret > 0) {
695 msg->reply = rxbuf[0] >> 4;
696 /*
697 * Assume happy day, and copy the data. The caller is
698 * expected to check msg->reply before touching it.
699 *
700 * Return payload size.
701 */
702 ret--;
703 memcpy(msg->buffer, rxbuf + 1, ret);
704 }
705 break;
706
707 default:
708 ret = -EINVAL;
709 break;
710 }
711
712 return ret;
713 }
714
715 static void
716 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
717 {
718 struct drm_device *dev = intel_dp_to_dev(intel_dp);
719 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
720 enum port port = intel_dig_port->port;
721 const char *name = NULL;
722 int ret;
723
724 switch (port) {
725 case PORT_A:
726 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
727 name = "DPDDC-A";
728 break;
729 case PORT_B:
730 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
731 name = "DPDDC-B";
732 break;
733 case PORT_C:
734 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
735 name = "DPDDC-C";
736 break;
737 case PORT_D:
738 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
739 name = "DPDDC-D";
740 break;
741 default:
742 BUG();
743 }
744
745 if (!HAS_DDI(dev))
746 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
747
748 intel_dp->aux.name = name;
749 intel_dp->aux.dev = dev->dev;
750 intel_dp->aux.transfer = intel_dp_aux_transfer;
751
752 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
753 connector->base.kdev->kobj.name);
754
755 ret = drm_dp_aux_register(&intel_dp->aux);
756 if (ret < 0) {
757 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
758 name, ret);
759 return;
760 }
761
762 ret = sysfs_create_link(&connector->base.kdev->kobj,
763 &intel_dp->aux.ddc.dev.kobj,
764 intel_dp->aux.ddc.dev.kobj.name);
765 if (ret < 0) {
766 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
767 drm_dp_aux_unregister(&intel_dp->aux);
768 }
769 }
770
771 static void
772 intel_dp_connector_unregister(struct intel_connector *intel_connector)
773 {
774 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
775
776 if (!intel_connector->mst_port)
777 sysfs_remove_link(&intel_connector->base.kdev->kobj,
778 intel_dp->aux.ddc.dev.kobj.name);
779 intel_connector_unregister(intel_connector);
780 }
781
782 static void
783 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
784 {
785 switch (link_bw) {
786 case DP_LINK_BW_1_62:
787 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
788 break;
789 case DP_LINK_BW_2_7:
790 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
791 break;
792 case DP_LINK_BW_5_4:
793 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
794 break;
795 }
796 }
797
798 static void
799 intel_dp_set_clock(struct intel_encoder *encoder,
800 struct intel_crtc_config *pipe_config, int link_bw)
801 {
802 struct drm_device *dev = encoder->base.dev;
803 const struct dp_link_dpll *divisor = NULL;
804 int i, count = 0;
805
806 if (IS_G4X(dev)) {
807 divisor = gen4_dpll;
808 count = ARRAY_SIZE(gen4_dpll);
809 } else if (HAS_PCH_SPLIT(dev)) {
810 divisor = pch_dpll;
811 count = ARRAY_SIZE(pch_dpll);
812 } else if (IS_CHERRYVIEW(dev)) {
813 divisor = chv_dpll;
814 count = ARRAY_SIZE(chv_dpll);
815 } else if (IS_VALLEYVIEW(dev)) {
816 divisor = vlv_dpll;
817 count = ARRAY_SIZE(vlv_dpll);
818 }
819
820 if (divisor && count) {
821 for (i = 0; i < count; i++) {
822 if (link_bw == divisor[i].link_bw) {
823 pipe_config->dpll = divisor[i].dpll;
824 pipe_config->clock_set = true;
825 break;
826 }
827 }
828 }
829 }
830
831 static void
832 intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
833 {
834 struct drm_device *dev = crtc->base.dev;
835 struct drm_i915_private *dev_priv = dev->dev_private;
836 enum transcoder transcoder = crtc->config.cpu_transcoder;
837
838 I915_WRITE(PIPE_DATA_M2(transcoder),
839 TU_SIZE(m_n->tu) | m_n->gmch_m);
840 I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
841 I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
842 I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
843 }
844
845 bool
846 intel_dp_compute_config(struct intel_encoder *encoder,
847 struct intel_crtc_config *pipe_config)
848 {
849 struct drm_device *dev = encoder->base.dev;
850 struct drm_i915_private *dev_priv = dev->dev_private;
851 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
852 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
853 enum port port = dp_to_dig_port(intel_dp)->port;
854 struct intel_crtc *intel_crtc = encoder->new_crtc;
855 struct intel_connector *intel_connector = intel_dp->attached_connector;
856 int lane_count, clock;
857 int min_lane_count = 1;
858 int max_lane_count = intel_dp_max_lane_count(intel_dp);
859 /* Conveniently, the link BW constants become indices with a shift...*/
860 int min_clock = 0;
861 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
862 int bpp, mode_rate;
863 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
864 int link_avail, link_clock;
865
866 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
867 pipe_config->has_pch_encoder = true;
868
869 pipe_config->has_dp_encoder = true;
870 pipe_config->has_audio = intel_dp->has_audio;
871
872 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
873 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
874 adjusted_mode);
875 if (!HAS_PCH_SPLIT(dev))
876 intel_gmch_panel_fitting(intel_crtc, pipe_config,
877 intel_connector->panel.fitting_mode);
878 else
879 intel_pch_panel_fitting(intel_crtc, pipe_config,
880 intel_connector->panel.fitting_mode);
881 }
882
883 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
884 return false;
885
886 DRM_DEBUG_KMS("DP link computation with max lane count %i "
887 "max bw %02x pixel clock %iKHz\n",
888 max_lane_count, bws[max_clock],
889 adjusted_mode->crtc_clock);
890
891 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
892 * bpc in between. */
893 bpp = pipe_config->pipe_bpp;
894 if (is_edp(intel_dp)) {
895 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
896 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
897 dev_priv->vbt.edp_bpp);
898 bpp = dev_priv->vbt.edp_bpp;
899 }
900
901 if (IS_BROADWELL(dev)) {
902 /* Yes, it's an ugly hack. */
903 min_lane_count = max_lane_count;
904 DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
905 min_lane_count);
906 } else if (dev_priv->vbt.edp_lanes) {
907 min_lane_count = min(dev_priv->vbt.edp_lanes,
908 max_lane_count);
909 DRM_DEBUG_KMS("using min %u lanes per VBT\n",
910 min_lane_count);
911 }
912
913 if (dev_priv->vbt.edp_rate) {
914 min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
915 DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
916 bws[min_clock]);
917 }
918 }
919
920 for (; bpp >= 6*3; bpp -= 2*3) {
921 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
922 bpp);
923
924 for (clock = min_clock; clock <= max_clock; clock++) {
925 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
926 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
927 link_avail = intel_dp_max_data_rate(link_clock,
928 lane_count);
929
930 if (mode_rate <= link_avail) {
931 goto found;
932 }
933 }
934 }
935 }
936
937 return false;
938
939 found:
940 if (intel_dp->color_range_auto) {
941 /*
942 * See:
943 * CEA-861-E - 5.1 Default Encoding Parameters
944 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
945 */
946 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
947 intel_dp->color_range = DP_COLOR_RANGE_16_235;
948 else
949 intel_dp->color_range = 0;
950 }
951
952 if (intel_dp->color_range)
953 pipe_config->limited_color_range = true;
954
955 intel_dp->link_bw = bws[clock];
956 intel_dp->lane_count = lane_count;
957 pipe_config->pipe_bpp = bpp;
958 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
959
960 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
961 intel_dp->link_bw, intel_dp->lane_count,
962 pipe_config->port_clock, bpp);
963 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
964 mode_rate, link_avail);
965
966 intel_link_compute_m_n(bpp, lane_count,
967 adjusted_mode->crtc_clock,
968 pipe_config->port_clock,
969 &pipe_config->dp_m_n);
970
971 if (intel_connector->panel.downclock_mode != NULL &&
972 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
973 intel_link_compute_m_n(bpp, lane_count,
974 intel_connector->panel.downclock_mode->clock,
975 pipe_config->port_clock,
976 &pipe_config->dp_m2_n2);
977 }
978
979 if (HAS_DDI(dev))
980 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
981 else
982 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
983
984 return true;
985 }
986
987 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
988 {
989 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
990 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
991 struct drm_device *dev = crtc->base.dev;
992 struct drm_i915_private *dev_priv = dev->dev_private;
993 u32 dpa_ctl;
994
995 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
996 dpa_ctl = I915_READ(DP_A);
997 dpa_ctl &= ~DP_PLL_FREQ_MASK;
998
999 if (crtc->config.port_clock == 162000) {
1000 /* For a long time we've carried around a ILK-DevA w/a for the
1001 * 160MHz clock. If we're really unlucky, it's still required.
1002 */
1003 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1004 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1005 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1006 } else {
1007 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1008 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1009 }
1010
1011 I915_WRITE(DP_A, dpa_ctl);
1012
1013 POSTING_READ(DP_A);
1014 udelay(500);
1015 }
1016
1017 static void intel_dp_prepare(struct intel_encoder *encoder)
1018 {
1019 struct drm_device *dev = encoder->base.dev;
1020 struct drm_i915_private *dev_priv = dev->dev_private;
1021 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1022 enum port port = dp_to_dig_port(intel_dp)->port;
1023 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1024 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1025
1026 /*
1027 * There are four kinds of DP registers:
1028 *
1029 * IBX PCH
1030 * SNB CPU
1031 * IVB CPU
1032 * CPT PCH
1033 *
1034 * IBX PCH and CPU are the same for almost everything,
1035 * except that the CPU DP PLL is configured in this
1036 * register
1037 *
1038 * CPT PCH is quite different, having many bits moved
1039 * to the TRANS_DP_CTL register instead. That
1040 * configuration happens (oddly) in ironlake_pch_enable
1041 */
1042
1043 /* Preserve the BIOS-computed detected bit. This is
1044 * supposed to be read-only.
1045 */
1046 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1047
1048 /* Handle DP bits in common between all three register formats */
1049 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1050 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1051
1052 if (crtc->config.has_audio) {
1053 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1054 pipe_name(crtc->pipe));
1055 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1056 intel_write_eld(&encoder->base, adjusted_mode);
1057 }
1058
1059 /* Split out the IBX/CPU vs CPT settings */
1060
1061 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1062 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1063 intel_dp->DP |= DP_SYNC_HS_HIGH;
1064 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1065 intel_dp->DP |= DP_SYNC_VS_HIGH;
1066 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1067
1068 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1069 intel_dp->DP |= DP_ENHANCED_FRAMING;
1070
1071 intel_dp->DP |= crtc->pipe << 29;
1072 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1073 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1074 intel_dp->DP |= intel_dp->color_range;
1075
1076 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1077 intel_dp->DP |= DP_SYNC_HS_HIGH;
1078 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1079 intel_dp->DP |= DP_SYNC_VS_HIGH;
1080 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1081
1082 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1083 intel_dp->DP |= DP_ENHANCED_FRAMING;
1084
1085 if (!IS_CHERRYVIEW(dev)) {
1086 if (crtc->pipe == 1)
1087 intel_dp->DP |= DP_PIPEB_SELECT;
1088 } else {
1089 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1090 }
1091 } else {
1092 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1093 }
1094 }
1095
1096 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1097 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1098
1099 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1100 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1101
1102 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1103 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1104
1105 static void wait_panel_status(struct intel_dp *intel_dp,
1106 u32 mask,
1107 u32 value)
1108 {
1109 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1110 struct drm_i915_private *dev_priv = dev->dev_private;
1111 u32 pp_stat_reg, pp_ctrl_reg;
1112
1113 pp_stat_reg = _pp_stat_reg(intel_dp);
1114 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1115
1116 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1117 mask, value,
1118 I915_READ(pp_stat_reg),
1119 I915_READ(pp_ctrl_reg));
1120
1121 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1122 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1123 I915_READ(pp_stat_reg),
1124 I915_READ(pp_ctrl_reg));
1125 }
1126
1127 DRM_DEBUG_KMS("Wait complete\n");
1128 }
1129
1130 static void wait_panel_on(struct intel_dp *intel_dp)
1131 {
1132 DRM_DEBUG_KMS("Wait for panel power on\n");
1133 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1134 }
1135
1136 static void wait_panel_off(struct intel_dp *intel_dp)
1137 {
1138 DRM_DEBUG_KMS("Wait for panel power off time\n");
1139 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1140 }
1141
1142 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1143 {
1144 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1145
1146 /* When we disable the VDD override bit last we have to do the manual
1147 * wait. */
1148 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1149 intel_dp->panel_power_cycle_delay);
1150
1151 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1152 }
1153
1154 static void wait_backlight_on(struct intel_dp *intel_dp)
1155 {
1156 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1157 intel_dp->backlight_on_delay);
1158 }
1159
1160 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1161 {
1162 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1163 intel_dp->backlight_off_delay);
1164 }
1165
1166 /* Read the current pp_control value, unlocking the register if it
1167 * is locked
1168 */
1169
1170 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1171 {
1172 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1173 struct drm_i915_private *dev_priv = dev->dev_private;
1174 u32 control;
1175
1176 control = I915_READ(_pp_ctrl_reg(intel_dp));
1177 control &= ~PANEL_UNLOCK_MASK;
1178 control |= PANEL_UNLOCK_REGS;
1179 return control;
1180 }
1181
1182 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1183 {
1184 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1185 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1186 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1187 struct drm_i915_private *dev_priv = dev->dev_private;
1188 enum intel_display_power_domain power_domain;
1189 u32 pp;
1190 u32 pp_stat_reg, pp_ctrl_reg;
1191 bool need_to_disable = !intel_dp->want_panel_vdd;
1192
1193 if (!is_edp(intel_dp))
1194 return false;
1195
1196 intel_dp->want_panel_vdd = true;
1197
1198 if (edp_have_panel_vdd(intel_dp))
1199 return need_to_disable;
1200
1201 power_domain = intel_display_port_power_domain(intel_encoder);
1202 intel_display_power_get(dev_priv, power_domain);
1203
1204 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1205
1206 if (!edp_have_panel_power(intel_dp))
1207 wait_panel_power_cycle(intel_dp);
1208
1209 pp = ironlake_get_pp_control(intel_dp);
1210 pp |= EDP_FORCE_VDD;
1211
1212 pp_stat_reg = _pp_stat_reg(intel_dp);
1213 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1214
1215 I915_WRITE(pp_ctrl_reg, pp);
1216 POSTING_READ(pp_ctrl_reg);
1217 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1218 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1219 /*
1220 * If the panel wasn't on, delay before accessing aux channel
1221 */
1222 if (!edp_have_panel_power(intel_dp)) {
1223 DRM_DEBUG_KMS("eDP was not running\n");
1224 msleep(intel_dp->panel_power_up_delay);
1225 }
1226
1227 return need_to_disable;
1228 }
1229
1230 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1231 {
1232 if (is_edp(intel_dp)) {
1233 bool vdd = _edp_panel_vdd_on(intel_dp);
1234
1235 WARN(!vdd, "eDP VDD already requested on\n");
1236 }
1237 }
1238
1239 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1240 {
1241 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1242 struct drm_i915_private *dev_priv = dev->dev_private;
1243 u32 pp;
1244 u32 pp_stat_reg, pp_ctrl_reg;
1245
1246 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1247
1248 if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1249 struct intel_digital_port *intel_dig_port =
1250 dp_to_dig_port(intel_dp);
1251 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1252 enum intel_display_power_domain power_domain;
1253
1254 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1255
1256 pp = ironlake_get_pp_control(intel_dp);
1257 pp &= ~EDP_FORCE_VDD;
1258
1259 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1260 pp_stat_reg = _pp_stat_reg(intel_dp);
1261
1262 I915_WRITE(pp_ctrl_reg, pp);
1263 POSTING_READ(pp_ctrl_reg);
1264
1265 /* Make sure sequencer is idle before allowing subsequent activity */
1266 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1267 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1268
1269 if ((pp & POWER_TARGET_ON) == 0)
1270 intel_dp->last_power_cycle = jiffies;
1271
1272 power_domain = intel_display_port_power_domain(intel_encoder);
1273 intel_display_power_put(dev_priv, power_domain);
1274 }
1275 }
1276
1277 static void edp_panel_vdd_work(struct work_struct *__work)
1278 {
1279 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1280 struct intel_dp, panel_vdd_work);
1281 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1282
1283 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1284 edp_panel_vdd_off_sync(intel_dp);
1285 drm_modeset_unlock(&dev->mode_config.connection_mutex);
1286 }
1287
1288 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1289 {
1290 unsigned long delay;
1291
1292 /*
1293 * Queue the timer to fire a long time from now (relative to the power
1294 * down delay) to keep the panel power up across a sequence of
1295 * operations.
1296 */
1297 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1298 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1299 }
1300
1301 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1302 {
1303 if (!is_edp(intel_dp))
1304 return;
1305
1306 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1307
1308 intel_dp->want_panel_vdd = false;
1309
1310 if (sync)
1311 edp_panel_vdd_off_sync(intel_dp);
1312 else
1313 edp_panel_vdd_schedule_off(intel_dp);
1314 }
1315
1316 void intel_edp_panel_on(struct intel_dp *intel_dp)
1317 {
1318 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1319 struct drm_i915_private *dev_priv = dev->dev_private;
1320 u32 pp;
1321 u32 pp_ctrl_reg;
1322
1323 if (!is_edp(intel_dp))
1324 return;
1325
1326 DRM_DEBUG_KMS("Turn eDP power on\n");
1327
1328 if (edp_have_panel_power(intel_dp)) {
1329 DRM_DEBUG_KMS("eDP power already on\n");
1330 return;
1331 }
1332
1333 wait_panel_power_cycle(intel_dp);
1334
1335 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1336 pp = ironlake_get_pp_control(intel_dp);
1337 if (IS_GEN5(dev)) {
1338 /* ILK workaround: disable reset around power sequence */
1339 pp &= ~PANEL_POWER_RESET;
1340 I915_WRITE(pp_ctrl_reg, pp);
1341 POSTING_READ(pp_ctrl_reg);
1342 }
1343
1344 pp |= POWER_TARGET_ON;
1345 if (!IS_GEN5(dev))
1346 pp |= PANEL_POWER_RESET;
1347
1348 I915_WRITE(pp_ctrl_reg, pp);
1349 POSTING_READ(pp_ctrl_reg);
1350
1351 wait_panel_on(intel_dp);
1352 intel_dp->last_power_on = jiffies;
1353
1354 if (IS_GEN5(dev)) {
1355 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1356 I915_WRITE(pp_ctrl_reg, pp);
1357 POSTING_READ(pp_ctrl_reg);
1358 }
1359 }
1360
1361 void intel_edp_panel_off(struct intel_dp *intel_dp)
1362 {
1363 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1364 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1365 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1366 struct drm_i915_private *dev_priv = dev->dev_private;
1367 enum intel_display_power_domain power_domain;
1368 u32 pp;
1369 u32 pp_ctrl_reg;
1370
1371 if (!is_edp(intel_dp))
1372 return;
1373
1374 DRM_DEBUG_KMS("Turn eDP power off\n");
1375
1376 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1377
1378 pp = ironlake_get_pp_control(intel_dp);
1379 /* We need to switch off panel power _and_ force vdd, for otherwise some
1380 * panels get very unhappy and cease to work. */
1381 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1382 EDP_BLC_ENABLE);
1383
1384 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1385
1386 intel_dp->want_panel_vdd = false;
1387
1388 I915_WRITE(pp_ctrl_reg, pp);
1389 POSTING_READ(pp_ctrl_reg);
1390
1391 intel_dp->last_power_cycle = jiffies;
1392 wait_panel_off(intel_dp);
1393
1394 /* We got a reference when we enabled the VDD. */
1395 power_domain = intel_display_port_power_domain(intel_encoder);
1396 intel_display_power_put(dev_priv, power_domain);
1397 }
1398
1399 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1400 {
1401 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1402 struct drm_device *dev = intel_dig_port->base.base.dev;
1403 struct drm_i915_private *dev_priv = dev->dev_private;
1404 u32 pp;
1405 u32 pp_ctrl_reg;
1406
1407 if (!is_edp(intel_dp))
1408 return;
1409
1410 DRM_DEBUG_KMS("\n");
1411
1412 intel_panel_enable_backlight(intel_dp->attached_connector);
1413
1414 /*
1415 * If we enable the backlight right away following a panel power
1416 * on, we may see slight flicker as the panel syncs with the eDP
1417 * link. So delay a bit to make sure the image is solid before
1418 * allowing it to appear.
1419 */
1420 wait_backlight_on(intel_dp);
1421 pp = ironlake_get_pp_control(intel_dp);
1422 pp |= EDP_BLC_ENABLE;
1423
1424 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1425
1426 I915_WRITE(pp_ctrl_reg, pp);
1427 POSTING_READ(pp_ctrl_reg);
1428 }
1429
1430 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1431 {
1432 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1433 struct drm_i915_private *dev_priv = dev->dev_private;
1434 u32 pp;
1435 u32 pp_ctrl_reg;
1436
1437 if (!is_edp(intel_dp))
1438 return;
1439
1440 DRM_DEBUG_KMS("\n");
1441 pp = ironlake_get_pp_control(intel_dp);
1442 pp &= ~EDP_BLC_ENABLE;
1443
1444 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1445
1446 I915_WRITE(pp_ctrl_reg, pp);
1447 POSTING_READ(pp_ctrl_reg);
1448 intel_dp->last_backlight_off = jiffies;
1449
1450 edp_wait_backlight_off(intel_dp);
1451
1452 intel_panel_disable_backlight(intel_dp->attached_connector);
1453 }
1454
1455 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1456 {
1457 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1458 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1459 struct drm_device *dev = crtc->dev;
1460 struct drm_i915_private *dev_priv = dev->dev_private;
1461 u32 dpa_ctl;
1462
1463 assert_pipe_disabled(dev_priv,
1464 to_intel_crtc(crtc)->pipe);
1465
1466 DRM_DEBUG_KMS("\n");
1467 dpa_ctl = I915_READ(DP_A);
1468 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1469 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1470
1471 /* We don't adjust intel_dp->DP while tearing down the link, to
1472 * facilitate link retraining (e.g. after hotplug). Hence clear all
1473 * enable bits here to ensure that we don't enable too much. */
1474 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1475 intel_dp->DP |= DP_PLL_ENABLE;
1476 I915_WRITE(DP_A, intel_dp->DP);
1477 POSTING_READ(DP_A);
1478 udelay(200);
1479 }
1480
1481 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1482 {
1483 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1484 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1485 struct drm_device *dev = crtc->dev;
1486 struct drm_i915_private *dev_priv = dev->dev_private;
1487 u32 dpa_ctl;
1488
1489 assert_pipe_disabled(dev_priv,
1490 to_intel_crtc(crtc)->pipe);
1491
1492 dpa_ctl = I915_READ(DP_A);
1493 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1494 "dp pll off, should be on\n");
1495 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1496
1497 /* We can't rely on the value tracked for the DP register in
1498 * intel_dp->DP because link_down must not change that (otherwise link
1499 * re-training will fail. */
1500 dpa_ctl &= ~DP_PLL_ENABLE;
1501 I915_WRITE(DP_A, dpa_ctl);
1502 POSTING_READ(DP_A);
1503 udelay(200);
1504 }
1505
1506 /* If the sink supports it, try to set the power state appropriately */
1507 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1508 {
1509 int ret, i;
1510
1511 /* Should have a valid DPCD by this point */
1512 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1513 return;
1514
1515 if (mode != DRM_MODE_DPMS_ON) {
1516 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1517 DP_SET_POWER_D3);
1518 if (ret != 1)
1519 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1520 } else {
1521 /*
1522 * When turning on, we need to retry for 1ms to give the sink
1523 * time to wake up.
1524 */
1525 for (i = 0; i < 3; i++) {
1526 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1527 DP_SET_POWER_D0);
1528 if (ret == 1)
1529 break;
1530 msleep(1);
1531 }
1532 }
1533 }
1534
1535 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1536 enum pipe *pipe)
1537 {
1538 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1539 enum port port = dp_to_dig_port(intel_dp)->port;
1540 struct drm_device *dev = encoder->base.dev;
1541 struct drm_i915_private *dev_priv = dev->dev_private;
1542 enum intel_display_power_domain power_domain;
1543 u32 tmp;
1544
1545 power_domain = intel_display_port_power_domain(encoder);
1546 if (!intel_display_power_enabled(dev_priv, power_domain))
1547 return false;
1548
1549 tmp = I915_READ(intel_dp->output_reg);
1550
1551 if (!(tmp & DP_PORT_EN))
1552 return false;
1553
1554 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1555 *pipe = PORT_TO_PIPE_CPT(tmp);
1556 } else if (IS_CHERRYVIEW(dev)) {
1557 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1558 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1559 *pipe = PORT_TO_PIPE(tmp);
1560 } else {
1561 u32 trans_sel;
1562 u32 trans_dp;
1563 int i;
1564
1565 switch (intel_dp->output_reg) {
1566 case PCH_DP_B:
1567 trans_sel = TRANS_DP_PORT_SEL_B;
1568 break;
1569 case PCH_DP_C:
1570 trans_sel = TRANS_DP_PORT_SEL_C;
1571 break;
1572 case PCH_DP_D:
1573 trans_sel = TRANS_DP_PORT_SEL_D;
1574 break;
1575 default:
1576 return true;
1577 }
1578
1579 for_each_pipe(i) {
1580 trans_dp = I915_READ(TRANS_DP_CTL(i));
1581 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1582 *pipe = i;
1583 return true;
1584 }
1585 }
1586
1587 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1588 intel_dp->output_reg);
1589 }
1590
1591 return true;
1592 }
1593
1594 static void intel_dp_get_config(struct intel_encoder *encoder,
1595 struct intel_crtc_config *pipe_config)
1596 {
1597 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1598 u32 tmp, flags = 0;
1599 struct drm_device *dev = encoder->base.dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 enum port port = dp_to_dig_port(intel_dp)->port;
1602 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1603 int dotclock;
1604
1605 tmp = I915_READ(intel_dp->output_reg);
1606 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1607 pipe_config->has_audio = true;
1608
1609 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1610 if (tmp & DP_SYNC_HS_HIGH)
1611 flags |= DRM_MODE_FLAG_PHSYNC;
1612 else
1613 flags |= DRM_MODE_FLAG_NHSYNC;
1614
1615 if (tmp & DP_SYNC_VS_HIGH)
1616 flags |= DRM_MODE_FLAG_PVSYNC;
1617 else
1618 flags |= DRM_MODE_FLAG_NVSYNC;
1619 } else {
1620 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1621 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1622 flags |= DRM_MODE_FLAG_PHSYNC;
1623 else
1624 flags |= DRM_MODE_FLAG_NHSYNC;
1625
1626 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1627 flags |= DRM_MODE_FLAG_PVSYNC;
1628 else
1629 flags |= DRM_MODE_FLAG_NVSYNC;
1630 }
1631
1632 pipe_config->adjusted_mode.flags |= flags;
1633
1634 pipe_config->has_dp_encoder = true;
1635
1636 intel_dp_get_m_n(crtc, pipe_config);
1637
1638 if (port == PORT_A) {
1639 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1640 pipe_config->port_clock = 162000;
1641 else
1642 pipe_config->port_clock = 270000;
1643 }
1644
1645 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1646 &pipe_config->dp_m_n);
1647
1648 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1649 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1650
1651 pipe_config->adjusted_mode.crtc_clock = dotclock;
1652
1653 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1654 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1655 /*
1656 * This is a big fat ugly hack.
1657 *
1658 * Some machines in UEFI boot mode provide us a VBT that has 18
1659 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1660 * unknown we fail to light up. Yet the same BIOS boots up with
1661 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1662 * max, not what it tells us to use.
1663 *
1664 * Note: This will still be broken if the eDP panel is not lit
1665 * up by the BIOS, and thus we can't get the mode at module
1666 * load.
1667 */
1668 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1669 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1670 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1671 }
1672 }
1673
1674 static bool is_edp_psr(struct intel_dp *intel_dp)
1675 {
1676 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1677 }
1678
1679 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1680 {
1681 struct drm_i915_private *dev_priv = dev->dev_private;
1682
1683 if (!HAS_PSR(dev))
1684 return false;
1685
1686 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1687 }
1688
1689 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1690 struct edp_vsc_psr *vsc_psr)
1691 {
1692 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1693 struct drm_device *dev = dig_port->base.base.dev;
1694 struct drm_i915_private *dev_priv = dev->dev_private;
1695 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1696 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1697 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1698 uint32_t *data = (uint32_t *) vsc_psr;
1699 unsigned int i;
1700
1701 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1702 the video DIP being updated before program video DIP data buffer
1703 registers for DIP being updated. */
1704 I915_WRITE(ctl_reg, 0);
1705 POSTING_READ(ctl_reg);
1706
1707 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1708 if (i < sizeof(struct edp_vsc_psr))
1709 I915_WRITE(data_reg + i, *data++);
1710 else
1711 I915_WRITE(data_reg + i, 0);
1712 }
1713
1714 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1715 POSTING_READ(ctl_reg);
1716 }
1717
1718 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1719 {
1720 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1721 struct drm_i915_private *dev_priv = dev->dev_private;
1722 struct edp_vsc_psr psr_vsc;
1723
1724 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1725 memset(&psr_vsc, 0, sizeof(psr_vsc));
1726 psr_vsc.sdp_header.HB0 = 0;
1727 psr_vsc.sdp_header.HB1 = 0x7;
1728 psr_vsc.sdp_header.HB2 = 0x2;
1729 psr_vsc.sdp_header.HB3 = 0x8;
1730 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1731
1732 /* Avoid continuous PSR exit by masking memup and hpd */
1733 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1734 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1735 }
1736
1737 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1738 {
1739 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1740 struct drm_device *dev = dig_port->base.base.dev;
1741 struct drm_i915_private *dev_priv = dev->dev_private;
1742 uint32_t aux_clock_divider;
1743 int precharge = 0x3;
1744 int msg_size = 5; /* Header(4) + Message(1) */
1745 bool only_standby = false;
1746
1747 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1748
1749 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1750 only_standby = true;
1751
1752 /* Enable PSR in sink */
1753 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1754 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1755 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1756 else
1757 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1758 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1759
1760 /* Setup AUX registers */
1761 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1762 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1763 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1764 DP_AUX_CH_CTL_TIME_OUT_400us |
1765 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1766 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1767 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1768 }
1769
1770 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1771 {
1772 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1773 struct drm_device *dev = dig_port->base.base.dev;
1774 struct drm_i915_private *dev_priv = dev->dev_private;
1775 uint32_t max_sleep_time = 0x1f;
1776 uint32_t idle_frames = 1;
1777 uint32_t val = 0x0;
1778 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1779 bool only_standby = false;
1780
1781 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1782 only_standby = true;
1783
1784 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
1785 val |= EDP_PSR_LINK_STANDBY;
1786 val |= EDP_PSR_TP2_TP3_TIME_0us;
1787 val |= EDP_PSR_TP1_TIME_0us;
1788 val |= EDP_PSR_SKIP_AUX_EXIT;
1789 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
1790 } else
1791 val |= EDP_PSR_LINK_DISABLE;
1792
1793 I915_WRITE(EDP_PSR_CTL(dev), val |
1794 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1795 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1796 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1797 EDP_PSR_ENABLE);
1798 }
1799
1800 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1801 {
1802 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1803 struct drm_device *dev = dig_port->base.base.dev;
1804 struct drm_i915_private *dev_priv = dev->dev_private;
1805 struct drm_crtc *crtc = dig_port->base.base.crtc;
1806 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1807
1808 lockdep_assert_held(&dev_priv->psr.lock);
1809 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1810 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
1811
1812 dev_priv->psr.source_ok = false;
1813
1814 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
1815 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1816 return false;
1817 }
1818
1819 if (!i915.enable_psr) {
1820 DRM_DEBUG_KMS("PSR disable by flag\n");
1821 return false;
1822 }
1823
1824 /* Below limitations aren't valid for Broadwell */
1825 if (IS_BROADWELL(dev))
1826 goto out;
1827
1828 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1829 S3D_ENABLE) {
1830 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1831 return false;
1832 }
1833
1834 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1835 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1836 return false;
1837 }
1838
1839 out:
1840 dev_priv->psr.source_ok = true;
1841 return true;
1842 }
1843
1844 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1845 {
1846 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1847 struct drm_device *dev = intel_dig_port->base.base.dev;
1848 struct drm_i915_private *dev_priv = dev->dev_private;
1849
1850 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1851 WARN_ON(dev_priv->psr.active);
1852 lockdep_assert_held(&dev_priv->psr.lock);
1853
1854 /* Enable PSR on the panel */
1855 intel_edp_psr_enable_sink(intel_dp);
1856
1857 /* Enable PSR on the host */
1858 intel_edp_psr_enable_source(intel_dp);
1859
1860 dev_priv->psr.active = true;
1861 }
1862
1863 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1864 {
1865 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1866 struct drm_i915_private *dev_priv = dev->dev_private;
1867
1868 if (!HAS_PSR(dev)) {
1869 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1870 return;
1871 }
1872
1873 if (!is_edp_psr(intel_dp)) {
1874 DRM_DEBUG_KMS("PSR not supported by this panel\n");
1875 return;
1876 }
1877
1878 mutex_lock(&dev_priv->psr.lock);
1879 if (dev_priv->psr.enabled) {
1880 DRM_DEBUG_KMS("PSR already in use\n");
1881 mutex_unlock(&dev_priv->psr.lock);
1882 return;
1883 }
1884
1885 dev_priv->psr.busy_frontbuffer_bits = 0;
1886
1887 /* Setup PSR once */
1888 intel_edp_psr_setup(intel_dp);
1889
1890 if (intel_edp_psr_match_conditions(intel_dp))
1891 dev_priv->psr.enabled = intel_dp;
1892 mutex_unlock(&dev_priv->psr.lock);
1893 }
1894
1895 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1896 {
1897 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1898 struct drm_i915_private *dev_priv = dev->dev_private;
1899
1900 mutex_lock(&dev_priv->psr.lock);
1901 if (!dev_priv->psr.enabled) {
1902 mutex_unlock(&dev_priv->psr.lock);
1903 return;
1904 }
1905
1906 if (dev_priv->psr.active) {
1907 I915_WRITE(EDP_PSR_CTL(dev),
1908 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1909
1910 /* Wait till PSR is idle */
1911 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1912 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1913 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1914
1915 dev_priv->psr.active = false;
1916 } else {
1917 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1918 }
1919
1920 dev_priv->psr.enabled = NULL;
1921 mutex_unlock(&dev_priv->psr.lock);
1922
1923 cancel_delayed_work_sync(&dev_priv->psr.work);
1924 }
1925
1926 static void intel_edp_psr_work(struct work_struct *work)
1927 {
1928 struct drm_i915_private *dev_priv =
1929 container_of(work, typeof(*dev_priv), psr.work.work);
1930 struct intel_dp *intel_dp = dev_priv->psr.enabled;
1931
1932 mutex_lock(&dev_priv->psr.lock);
1933 intel_dp = dev_priv->psr.enabled;
1934
1935 if (!intel_dp)
1936 goto unlock;
1937
1938 /*
1939 * The delayed work can race with an invalidate hence we need to
1940 * recheck. Since psr_flush first clears this and then reschedules we
1941 * won't ever miss a flush when bailing out here.
1942 */
1943 if (dev_priv->psr.busy_frontbuffer_bits)
1944 goto unlock;
1945
1946 intel_edp_psr_do_enable(intel_dp);
1947 unlock:
1948 mutex_unlock(&dev_priv->psr.lock);
1949 }
1950
1951 static void intel_edp_psr_do_exit(struct drm_device *dev)
1952 {
1953 struct drm_i915_private *dev_priv = dev->dev_private;
1954
1955 if (dev_priv->psr.active) {
1956 u32 val = I915_READ(EDP_PSR_CTL(dev));
1957
1958 WARN_ON(!(val & EDP_PSR_ENABLE));
1959
1960 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
1961
1962 dev_priv->psr.active = false;
1963 }
1964
1965 }
1966
1967 void intel_edp_psr_invalidate(struct drm_device *dev,
1968 unsigned frontbuffer_bits)
1969 {
1970 struct drm_i915_private *dev_priv = dev->dev_private;
1971 struct drm_crtc *crtc;
1972 enum pipe pipe;
1973
1974 mutex_lock(&dev_priv->psr.lock);
1975 if (!dev_priv->psr.enabled) {
1976 mutex_unlock(&dev_priv->psr.lock);
1977 return;
1978 }
1979
1980 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
1981 pipe = to_intel_crtc(crtc)->pipe;
1982
1983 intel_edp_psr_do_exit(dev);
1984
1985 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
1986
1987 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1988 mutex_unlock(&dev_priv->psr.lock);
1989 }
1990
1991 void intel_edp_psr_flush(struct drm_device *dev,
1992 unsigned frontbuffer_bits)
1993 {
1994 struct drm_i915_private *dev_priv = dev->dev_private;
1995 struct drm_crtc *crtc;
1996 enum pipe pipe;
1997
1998 mutex_lock(&dev_priv->psr.lock);
1999 if (!dev_priv->psr.enabled) {
2000 mutex_unlock(&dev_priv->psr.lock);
2001 return;
2002 }
2003
2004 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2005 pipe = to_intel_crtc(crtc)->pipe;
2006 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2007
2008 /*
2009 * On Haswell sprite plane updates don't result in a psr invalidating
2010 * signal in the hardware. Which means we need to manually fake this in
2011 * software for all flushes, not just when we've seen a preceding
2012 * invalidation through frontbuffer rendering.
2013 */
2014 if (IS_HASWELL(dev) &&
2015 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2016 intel_edp_psr_do_exit(dev);
2017
2018 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2019 schedule_delayed_work(&dev_priv->psr.work,
2020 msecs_to_jiffies(100));
2021 mutex_unlock(&dev_priv->psr.lock);
2022 }
2023
2024 void intel_edp_psr_init(struct drm_device *dev)
2025 {
2026 struct drm_i915_private *dev_priv = dev->dev_private;
2027
2028 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2029 mutex_init(&dev_priv->psr.lock);
2030 }
2031
2032 static void intel_disable_dp(struct intel_encoder *encoder)
2033 {
2034 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2035 enum port port = dp_to_dig_port(intel_dp)->port;
2036 struct drm_device *dev = encoder->base.dev;
2037
2038 /* Make sure the panel is off before trying to change the mode. But also
2039 * ensure that we have vdd while we switch off the panel. */
2040 intel_edp_panel_vdd_on(intel_dp);
2041 intel_edp_backlight_off(intel_dp);
2042 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2043 intel_edp_panel_off(intel_dp);
2044
2045 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
2046 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
2047 intel_dp_link_down(intel_dp);
2048 }
2049
2050 static void g4x_post_disable_dp(struct intel_encoder *encoder)
2051 {
2052 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2053 enum port port = dp_to_dig_port(intel_dp)->port;
2054
2055 if (port != PORT_A)
2056 return;
2057
2058 intel_dp_link_down(intel_dp);
2059 ironlake_edp_pll_off(intel_dp);
2060 }
2061
2062 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2063 {
2064 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2065
2066 intel_dp_link_down(intel_dp);
2067 }
2068
2069 static void chv_post_disable_dp(struct intel_encoder *encoder)
2070 {
2071 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2072 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2073 struct drm_device *dev = encoder->base.dev;
2074 struct drm_i915_private *dev_priv = dev->dev_private;
2075 struct intel_crtc *intel_crtc =
2076 to_intel_crtc(encoder->base.crtc);
2077 enum dpio_channel ch = vlv_dport_to_channel(dport);
2078 enum pipe pipe = intel_crtc->pipe;
2079 u32 val;
2080
2081 intel_dp_link_down(intel_dp);
2082
2083 mutex_lock(&dev_priv->dpio_lock);
2084
2085 /* Propagate soft reset to data lane reset */
2086 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2087 val |= CHV_PCS_REQ_SOFTRESET_EN;
2088 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2089
2090 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2091 val |= CHV_PCS_REQ_SOFTRESET_EN;
2092 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2093
2094 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2095 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2096 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2097
2098 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2099 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2100 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2101
2102 mutex_unlock(&dev_priv->dpio_lock);
2103 }
2104
2105 static void intel_enable_dp(struct intel_encoder *encoder)
2106 {
2107 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2108 struct drm_device *dev = encoder->base.dev;
2109 struct drm_i915_private *dev_priv = dev->dev_private;
2110 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2111
2112 if (WARN_ON(dp_reg & DP_PORT_EN))
2113 return;
2114
2115 intel_edp_panel_vdd_on(intel_dp);
2116 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2117 intel_dp_start_link_train(intel_dp);
2118 intel_edp_panel_on(intel_dp);
2119 edp_panel_vdd_off(intel_dp, true);
2120 intel_dp_complete_link_train(intel_dp);
2121 intel_dp_stop_link_train(intel_dp);
2122 }
2123
2124 static void g4x_enable_dp(struct intel_encoder *encoder)
2125 {
2126 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2127
2128 intel_enable_dp(encoder);
2129 intel_edp_backlight_on(intel_dp);
2130 }
2131
2132 static void vlv_enable_dp(struct intel_encoder *encoder)
2133 {
2134 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2135
2136 intel_edp_backlight_on(intel_dp);
2137 }
2138
2139 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2140 {
2141 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2142 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2143
2144 intel_dp_prepare(encoder);
2145
2146 /* Only ilk+ has port A */
2147 if (dport->port == PORT_A) {
2148 ironlake_set_pll_cpu_edp(intel_dp);
2149 ironlake_edp_pll_on(intel_dp);
2150 }
2151 }
2152
2153 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2154 {
2155 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2156 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2157 struct drm_device *dev = encoder->base.dev;
2158 struct drm_i915_private *dev_priv = dev->dev_private;
2159 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2160 enum dpio_channel port = vlv_dport_to_channel(dport);
2161 int pipe = intel_crtc->pipe;
2162 struct edp_power_seq power_seq;
2163 u32 val;
2164
2165 mutex_lock(&dev_priv->dpio_lock);
2166
2167 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2168 val = 0;
2169 if (pipe)
2170 val |= (1<<21);
2171 else
2172 val &= ~(1<<21);
2173 val |= 0x001000c4;
2174 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2175 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2176 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2177
2178 mutex_unlock(&dev_priv->dpio_lock);
2179
2180 if (is_edp(intel_dp)) {
2181 /* init power sequencer on this pipe and port */
2182 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2183 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2184 &power_seq);
2185 }
2186
2187 intel_enable_dp(encoder);
2188
2189 vlv_wait_port_ready(dev_priv, dport);
2190 }
2191
2192 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2193 {
2194 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2195 struct drm_device *dev = encoder->base.dev;
2196 struct drm_i915_private *dev_priv = dev->dev_private;
2197 struct intel_crtc *intel_crtc =
2198 to_intel_crtc(encoder->base.crtc);
2199 enum dpio_channel port = vlv_dport_to_channel(dport);
2200 int pipe = intel_crtc->pipe;
2201
2202 intel_dp_prepare(encoder);
2203
2204 /* Program Tx lane resets to default */
2205 mutex_lock(&dev_priv->dpio_lock);
2206 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2207 DPIO_PCS_TX_LANE2_RESET |
2208 DPIO_PCS_TX_LANE1_RESET);
2209 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2210 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2211 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2212 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2213 DPIO_PCS_CLK_SOFT_RESET);
2214
2215 /* Fix up inter-pair skew failure */
2216 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2217 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2218 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2219 mutex_unlock(&dev_priv->dpio_lock);
2220 }
2221
2222 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2223 {
2224 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2225 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2226 struct drm_device *dev = encoder->base.dev;
2227 struct drm_i915_private *dev_priv = dev->dev_private;
2228 struct edp_power_seq power_seq;
2229 struct intel_crtc *intel_crtc =
2230 to_intel_crtc(encoder->base.crtc);
2231 enum dpio_channel ch = vlv_dport_to_channel(dport);
2232 int pipe = intel_crtc->pipe;
2233 int data, i;
2234 u32 val;
2235
2236 mutex_lock(&dev_priv->dpio_lock);
2237
2238 /* Deassert soft data lane reset*/
2239 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2240 val |= CHV_PCS_REQ_SOFTRESET_EN;
2241 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2242
2243 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2244 val |= CHV_PCS_REQ_SOFTRESET_EN;
2245 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2246
2247 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2248 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2249 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2250
2251 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2252 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2253 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2254
2255 /* Program Tx lane latency optimal setting*/
2256 for (i = 0; i < 4; i++) {
2257 /* Set the latency optimal bit */
2258 data = (i == 1) ? 0x0 : 0x6;
2259 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2260 data << DPIO_FRC_LATENCY_SHFIT);
2261
2262 /* Set the upar bit */
2263 data = (i == 1) ? 0x0 : 0x1;
2264 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2265 data << DPIO_UPAR_SHIFT);
2266 }
2267
2268 /* Data lane stagger programming */
2269 /* FIXME: Fix up value only after power analysis */
2270
2271 mutex_unlock(&dev_priv->dpio_lock);
2272
2273 if (is_edp(intel_dp)) {
2274 /* init power sequencer on this pipe and port */
2275 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2276 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2277 &power_seq);
2278 }
2279
2280 intel_enable_dp(encoder);
2281
2282 vlv_wait_port_ready(dev_priv, dport);
2283 }
2284
2285 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2286 {
2287 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2288 struct drm_device *dev = encoder->base.dev;
2289 struct drm_i915_private *dev_priv = dev->dev_private;
2290 struct intel_crtc *intel_crtc =
2291 to_intel_crtc(encoder->base.crtc);
2292 enum dpio_channel ch = vlv_dport_to_channel(dport);
2293 enum pipe pipe = intel_crtc->pipe;
2294 u32 val;
2295
2296 mutex_lock(&dev_priv->dpio_lock);
2297
2298 /* program left/right clock distribution */
2299 if (pipe != PIPE_B) {
2300 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2301 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2302 if (ch == DPIO_CH0)
2303 val |= CHV_BUFLEFTENA1_FORCE;
2304 if (ch == DPIO_CH1)
2305 val |= CHV_BUFRIGHTENA1_FORCE;
2306 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2307 } else {
2308 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2309 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2310 if (ch == DPIO_CH0)
2311 val |= CHV_BUFLEFTENA2_FORCE;
2312 if (ch == DPIO_CH1)
2313 val |= CHV_BUFRIGHTENA2_FORCE;
2314 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2315 }
2316
2317 /* program clock channel usage */
2318 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2319 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2320 if (pipe != PIPE_B)
2321 val &= ~CHV_PCS_USEDCLKCHANNEL;
2322 else
2323 val |= CHV_PCS_USEDCLKCHANNEL;
2324 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2325
2326 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2327 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2328 if (pipe != PIPE_B)
2329 val &= ~CHV_PCS_USEDCLKCHANNEL;
2330 else
2331 val |= CHV_PCS_USEDCLKCHANNEL;
2332 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2333
2334 /*
2335 * This a a bit weird since generally CL
2336 * matches the pipe, but here we need to
2337 * pick the CL based on the port.
2338 */
2339 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2340 if (pipe != PIPE_B)
2341 val &= ~CHV_CMN_USEDCLKCHANNEL;
2342 else
2343 val |= CHV_CMN_USEDCLKCHANNEL;
2344 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2345
2346 mutex_unlock(&dev_priv->dpio_lock);
2347 }
2348
2349 /*
2350 * Native read with retry for link status and receiver capability reads for
2351 * cases where the sink may still be asleep.
2352 *
2353 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2354 * supposed to retry 3 times per the spec.
2355 */
2356 static ssize_t
2357 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2358 void *buffer, size_t size)
2359 {
2360 ssize_t ret;
2361 int i;
2362
2363 for (i = 0; i < 3; i++) {
2364 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2365 if (ret == size)
2366 return ret;
2367 msleep(1);
2368 }
2369
2370 return ret;
2371 }
2372
2373 /*
2374 * Fetch AUX CH registers 0x202 - 0x207 which contain
2375 * link status information
2376 */
2377 static bool
2378 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2379 {
2380 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2381 DP_LANE0_1_STATUS,
2382 link_status,
2383 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2384 }
2385
2386 /* These are source-specific values. */
2387 static uint8_t
2388 intel_dp_voltage_max(struct intel_dp *intel_dp)
2389 {
2390 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2391 enum port port = dp_to_dig_port(intel_dp)->port;
2392
2393 if (IS_VALLEYVIEW(dev))
2394 return DP_TRAIN_VOLTAGE_SWING_1200;
2395 else if (IS_GEN7(dev) && port == PORT_A)
2396 return DP_TRAIN_VOLTAGE_SWING_800;
2397 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2398 return DP_TRAIN_VOLTAGE_SWING_1200;
2399 else
2400 return DP_TRAIN_VOLTAGE_SWING_800;
2401 }
2402
2403 static uint8_t
2404 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2405 {
2406 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2407 enum port port = dp_to_dig_port(intel_dp)->port;
2408
2409 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2410 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2411 case DP_TRAIN_VOLTAGE_SWING_400:
2412 return DP_TRAIN_PRE_EMPHASIS_9_5;
2413 case DP_TRAIN_VOLTAGE_SWING_600:
2414 return DP_TRAIN_PRE_EMPHASIS_6;
2415 case DP_TRAIN_VOLTAGE_SWING_800:
2416 return DP_TRAIN_PRE_EMPHASIS_3_5;
2417 case DP_TRAIN_VOLTAGE_SWING_1200:
2418 default:
2419 return DP_TRAIN_PRE_EMPHASIS_0;
2420 }
2421 } else if (IS_VALLEYVIEW(dev)) {
2422 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2423 case DP_TRAIN_VOLTAGE_SWING_400:
2424 return DP_TRAIN_PRE_EMPHASIS_9_5;
2425 case DP_TRAIN_VOLTAGE_SWING_600:
2426 return DP_TRAIN_PRE_EMPHASIS_6;
2427 case DP_TRAIN_VOLTAGE_SWING_800:
2428 return DP_TRAIN_PRE_EMPHASIS_3_5;
2429 case DP_TRAIN_VOLTAGE_SWING_1200:
2430 default:
2431 return DP_TRAIN_PRE_EMPHASIS_0;
2432 }
2433 } else if (IS_GEN7(dev) && port == PORT_A) {
2434 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2435 case DP_TRAIN_VOLTAGE_SWING_400:
2436 return DP_TRAIN_PRE_EMPHASIS_6;
2437 case DP_TRAIN_VOLTAGE_SWING_600:
2438 case DP_TRAIN_VOLTAGE_SWING_800:
2439 return DP_TRAIN_PRE_EMPHASIS_3_5;
2440 default:
2441 return DP_TRAIN_PRE_EMPHASIS_0;
2442 }
2443 } else {
2444 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2445 case DP_TRAIN_VOLTAGE_SWING_400:
2446 return DP_TRAIN_PRE_EMPHASIS_6;
2447 case DP_TRAIN_VOLTAGE_SWING_600:
2448 return DP_TRAIN_PRE_EMPHASIS_6;
2449 case DP_TRAIN_VOLTAGE_SWING_800:
2450 return DP_TRAIN_PRE_EMPHASIS_3_5;
2451 case DP_TRAIN_VOLTAGE_SWING_1200:
2452 default:
2453 return DP_TRAIN_PRE_EMPHASIS_0;
2454 }
2455 }
2456 }
2457
2458 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2459 {
2460 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2461 struct drm_i915_private *dev_priv = dev->dev_private;
2462 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2463 struct intel_crtc *intel_crtc =
2464 to_intel_crtc(dport->base.base.crtc);
2465 unsigned long demph_reg_value, preemph_reg_value,
2466 uniqtranscale_reg_value;
2467 uint8_t train_set = intel_dp->train_set[0];
2468 enum dpio_channel port = vlv_dport_to_channel(dport);
2469 int pipe = intel_crtc->pipe;
2470
2471 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2472 case DP_TRAIN_PRE_EMPHASIS_0:
2473 preemph_reg_value = 0x0004000;
2474 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2475 case DP_TRAIN_VOLTAGE_SWING_400:
2476 demph_reg_value = 0x2B405555;
2477 uniqtranscale_reg_value = 0x552AB83A;
2478 break;
2479 case DP_TRAIN_VOLTAGE_SWING_600:
2480 demph_reg_value = 0x2B404040;
2481 uniqtranscale_reg_value = 0x5548B83A;
2482 break;
2483 case DP_TRAIN_VOLTAGE_SWING_800:
2484 demph_reg_value = 0x2B245555;
2485 uniqtranscale_reg_value = 0x5560B83A;
2486 break;
2487 case DP_TRAIN_VOLTAGE_SWING_1200:
2488 demph_reg_value = 0x2B405555;
2489 uniqtranscale_reg_value = 0x5598DA3A;
2490 break;
2491 default:
2492 return 0;
2493 }
2494 break;
2495 case DP_TRAIN_PRE_EMPHASIS_3_5:
2496 preemph_reg_value = 0x0002000;
2497 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2498 case DP_TRAIN_VOLTAGE_SWING_400:
2499 demph_reg_value = 0x2B404040;
2500 uniqtranscale_reg_value = 0x5552B83A;
2501 break;
2502 case DP_TRAIN_VOLTAGE_SWING_600:
2503 demph_reg_value = 0x2B404848;
2504 uniqtranscale_reg_value = 0x5580B83A;
2505 break;
2506 case DP_TRAIN_VOLTAGE_SWING_800:
2507 demph_reg_value = 0x2B404040;
2508 uniqtranscale_reg_value = 0x55ADDA3A;
2509 break;
2510 default:
2511 return 0;
2512 }
2513 break;
2514 case DP_TRAIN_PRE_EMPHASIS_6:
2515 preemph_reg_value = 0x0000000;
2516 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2517 case DP_TRAIN_VOLTAGE_SWING_400:
2518 demph_reg_value = 0x2B305555;
2519 uniqtranscale_reg_value = 0x5570B83A;
2520 break;
2521 case DP_TRAIN_VOLTAGE_SWING_600:
2522 demph_reg_value = 0x2B2B4040;
2523 uniqtranscale_reg_value = 0x55ADDA3A;
2524 break;
2525 default:
2526 return 0;
2527 }
2528 break;
2529 case DP_TRAIN_PRE_EMPHASIS_9_5:
2530 preemph_reg_value = 0x0006000;
2531 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2532 case DP_TRAIN_VOLTAGE_SWING_400:
2533 demph_reg_value = 0x1B405555;
2534 uniqtranscale_reg_value = 0x55ADDA3A;
2535 break;
2536 default:
2537 return 0;
2538 }
2539 break;
2540 default:
2541 return 0;
2542 }
2543
2544 mutex_lock(&dev_priv->dpio_lock);
2545 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2546 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2547 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2548 uniqtranscale_reg_value);
2549 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2550 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2551 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2552 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2553 mutex_unlock(&dev_priv->dpio_lock);
2554
2555 return 0;
2556 }
2557
2558 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2559 {
2560 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2561 struct drm_i915_private *dev_priv = dev->dev_private;
2562 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2563 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2564 u32 deemph_reg_value, margin_reg_value, val;
2565 uint8_t train_set = intel_dp->train_set[0];
2566 enum dpio_channel ch = vlv_dport_to_channel(dport);
2567 enum pipe pipe = intel_crtc->pipe;
2568 int i;
2569
2570 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2571 case DP_TRAIN_PRE_EMPHASIS_0:
2572 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2573 case DP_TRAIN_VOLTAGE_SWING_400:
2574 deemph_reg_value = 128;
2575 margin_reg_value = 52;
2576 break;
2577 case DP_TRAIN_VOLTAGE_SWING_600:
2578 deemph_reg_value = 128;
2579 margin_reg_value = 77;
2580 break;
2581 case DP_TRAIN_VOLTAGE_SWING_800:
2582 deemph_reg_value = 128;
2583 margin_reg_value = 102;
2584 break;
2585 case DP_TRAIN_VOLTAGE_SWING_1200:
2586 deemph_reg_value = 128;
2587 margin_reg_value = 154;
2588 /* FIXME extra to set for 1200 */
2589 break;
2590 default:
2591 return 0;
2592 }
2593 break;
2594 case DP_TRAIN_PRE_EMPHASIS_3_5:
2595 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2596 case DP_TRAIN_VOLTAGE_SWING_400:
2597 deemph_reg_value = 85;
2598 margin_reg_value = 78;
2599 break;
2600 case DP_TRAIN_VOLTAGE_SWING_600:
2601 deemph_reg_value = 85;
2602 margin_reg_value = 116;
2603 break;
2604 case DP_TRAIN_VOLTAGE_SWING_800:
2605 deemph_reg_value = 85;
2606 margin_reg_value = 154;
2607 break;
2608 default:
2609 return 0;
2610 }
2611 break;
2612 case DP_TRAIN_PRE_EMPHASIS_6:
2613 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2614 case DP_TRAIN_VOLTAGE_SWING_400:
2615 deemph_reg_value = 64;
2616 margin_reg_value = 104;
2617 break;
2618 case DP_TRAIN_VOLTAGE_SWING_600:
2619 deemph_reg_value = 64;
2620 margin_reg_value = 154;
2621 break;
2622 default:
2623 return 0;
2624 }
2625 break;
2626 case DP_TRAIN_PRE_EMPHASIS_9_5:
2627 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2628 case DP_TRAIN_VOLTAGE_SWING_400:
2629 deemph_reg_value = 43;
2630 margin_reg_value = 154;
2631 break;
2632 default:
2633 return 0;
2634 }
2635 break;
2636 default:
2637 return 0;
2638 }
2639
2640 mutex_lock(&dev_priv->dpio_lock);
2641
2642 /* Clear calc init */
2643 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2644 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2645 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2646
2647 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2648 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2649 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2650
2651 /* Program swing deemph */
2652 for (i = 0; i < 4; i++) {
2653 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2654 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2655 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2656 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2657 }
2658
2659 /* Program swing margin */
2660 for (i = 0; i < 4; i++) {
2661 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2662 val &= ~DPIO_SWING_MARGIN_MASK;
2663 val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2664 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2665 }
2666
2667 /* Disable unique transition scale */
2668 for (i = 0; i < 4; i++) {
2669 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2670 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2671 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2672 }
2673
2674 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2675 == DP_TRAIN_PRE_EMPHASIS_0) &&
2676 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2677 == DP_TRAIN_VOLTAGE_SWING_1200)) {
2678
2679 /*
2680 * The document said it needs to set bit 27 for ch0 and bit 26
2681 * for ch1. Might be a typo in the doc.
2682 * For now, for this unique transition scale selection, set bit
2683 * 27 for ch0 and ch1.
2684 */
2685 for (i = 0; i < 4; i++) {
2686 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2687 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2688 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2689 }
2690
2691 for (i = 0; i < 4; i++) {
2692 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2693 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2694 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2695 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2696 }
2697 }
2698
2699 /* Start swing calculation */
2700 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2701 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2702 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2703
2704 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2705 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2706 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2707
2708 /* LRC Bypass */
2709 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2710 val |= DPIO_LRC_BYPASS;
2711 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2712
2713 mutex_unlock(&dev_priv->dpio_lock);
2714
2715 return 0;
2716 }
2717
2718 static void
2719 intel_get_adjust_train(struct intel_dp *intel_dp,
2720 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2721 {
2722 uint8_t v = 0;
2723 uint8_t p = 0;
2724 int lane;
2725 uint8_t voltage_max;
2726 uint8_t preemph_max;
2727
2728 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2729 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2730 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2731
2732 if (this_v > v)
2733 v = this_v;
2734 if (this_p > p)
2735 p = this_p;
2736 }
2737
2738 voltage_max = intel_dp_voltage_max(intel_dp);
2739 if (v >= voltage_max)
2740 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2741
2742 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2743 if (p >= preemph_max)
2744 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2745
2746 for (lane = 0; lane < 4; lane++)
2747 intel_dp->train_set[lane] = v | p;
2748 }
2749
2750 static uint32_t
2751 intel_gen4_signal_levels(uint8_t train_set)
2752 {
2753 uint32_t signal_levels = 0;
2754
2755 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2756 case DP_TRAIN_VOLTAGE_SWING_400:
2757 default:
2758 signal_levels |= DP_VOLTAGE_0_4;
2759 break;
2760 case DP_TRAIN_VOLTAGE_SWING_600:
2761 signal_levels |= DP_VOLTAGE_0_6;
2762 break;
2763 case DP_TRAIN_VOLTAGE_SWING_800:
2764 signal_levels |= DP_VOLTAGE_0_8;
2765 break;
2766 case DP_TRAIN_VOLTAGE_SWING_1200:
2767 signal_levels |= DP_VOLTAGE_1_2;
2768 break;
2769 }
2770 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2771 case DP_TRAIN_PRE_EMPHASIS_0:
2772 default:
2773 signal_levels |= DP_PRE_EMPHASIS_0;
2774 break;
2775 case DP_TRAIN_PRE_EMPHASIS_3_5:
2776 signal_levels |= DP_PRE_EMPHASIS_3_5;
2777 break;
2778 case DP_TRAIN_PRE_EMPHASIS_6:
2779 signal_levels |= DP_PRE_EMPHASIS_6;
2780 break;
2781 case DP_TRAIN_PRE_EMPHASIS_9_5:
2782 signal_levels |= DP_PRE_EMPHASIS_9_5;
2783 break;
2784 }
2785 return signal_levels;
2786 }
2787
2788 /* Gen6's DP voltage swing and pre-emphasis control */
2789 static uint32_t
2790 intel_gen6_edp_signal_levels(uint8_t train_set)
2791 {
2792 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2793 DP_TRAIN_PRE_EMPHASIS_MASK);
2794 switch (signal_levels) {
2795 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2796 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2797 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2798 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2799 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2800 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2801 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2802 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2803 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2804 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2805 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2806 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2807 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2808 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2809 default:
2810 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2811 "0x%x\n", signal_levels);
2812 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2813 }
2814 }
2815
2816 /* Gen7's DP voltage swing and pre-emphasis control */
2817 static uint32_t
2818 intel_gen7_edp_signal_levels(uint8_t train_set)
2819 {
2820 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2821 DP_TRAIN_PRE_EMPHASIS_MASK);
2822 switch (signal_levels) {
2823 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2824 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2825 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2826 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2827 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2828 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2829
2830 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2831 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2832 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2833 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2834
2835 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2836 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2837 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2838 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2839
2840 default:
2841 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2842 "0x%x\n", signal_levels);
2843 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2844 }
2845 }
2846
2847 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2848 static uint32_t
2849 intel_hsw_signal_levels(uint8_t train_set)
2850 {
2851 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2852 DP_TRAIN_PRE_EMPHASIS_MASK);
2853 switch (signal_levels) {
2854 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2855 return DDI_BUF_EMP_400MV_0DB_HSW;
2856 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2857 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2858 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2859 return DDI_BUF_EMP_400MV_6DB_HSW;
2860 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2861 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2862
2863 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2864 return DDI_BUF_EMP_600MV_0DB_HSW;
2865 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2866 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2867 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2868 return DDI_BUF_EMP_600MV_6DB_HSW;
2869
2870 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2871 return DDI_BUF_EMP_800MV_0DB_HSW;
2872 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2873 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2874 default:
2875 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2876 "0x%x\n", signal_levels);
2877 return DDI_BUF_EMP_400MV_0DB_HSW;
2878 }
2879 }
2880
2881 /* Properly updates "DP" with the correct signal levels. */
2882 static void
2883 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2884 {
2885 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2886 enum port port = intel_dig_port->port;
2887 struct drm_device *dev = intel_dig_port->base.base.dev;
2888 uint32_t signal_levels, mask;
2889 uint8_t train_set = intel_dp->train_set[0];
2890
2891 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2892 signal_levels = intel_hsw_signal_levels(train_set);
2893 mask = DDI_BUF_EMP_MASK;
2894 } else if (IS_CHERRYVIEW(dev)) {
2895 signal_levels = intel_chv_signal_levels(intel_dp);
2896 mask = 0;
2897 } else if (IS_VALLEYVIEW(dev)) {
2898 signal_levels = intel_vlv_signal_levels(intel_dp);
2899 mask = 0;
2900 } else if (IS_GEN7(dev) && port == PORT_A) {
2901 signal_levels = intel_gen7_edp_signal_levels(train_set);
2902 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2903 } else if (IS_GEN6(dev) && port == PORT_A) {
2904 signal_levels = intel_gen6_edp_signal_levels(train_set);
2905 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2906 } else {
2907 signal_levels = intel_gen4_signal_levels(train_set);
2908 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2909 }
2910
2911 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2912
2913 *DP = (*DP & ~mask) | signal_levels;
2914 }
2915
2916 static bool
2917 intel_dp_set_link_train(struct intel_dp *intel_dp,
2918 uint32_t *DP,
2919 uint8_t dp_train_pat)
2920 {
2921 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2922 struct drm_device *dev = intel_dig_port->base.base.dev;
2923 struct drm_i915_private *dev_priv = dev->dev_private;
2924 enum port port = intel_dig_port->port;
2925 uint8_t buf[sizeof(intel_dp->train_set) + 1];
2926 int ret, len;
2927
2928 if (HAS_DDI(dev)) {
2929 uint32_t temp = I915_READ(DP_TP_CTL(port));
2930
2931 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2932 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2933 else
2934 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2935
2936 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2937 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2938 case DP_TRAINING_PATTERN_DISABLE:
2939 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2940
2941 break;
2942 case DP_TRAINING_PATTERN_1:
2943 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2944 break;
2945 case DP_TRAINING_PATTERN_2:
2946 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2947 break;
2948 case DP_TRAINING_PATTERN_3:
2949 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2950 break;
2951 }
2952 I915_WRITE(DP_TP_CTL(port), temp);
2953
2954 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2955 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2956
2957 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2958 case DP_TRAINING_PATTERN_DISABLE:
2959 *DP |= DP_LINK_TRAIN_OFF_CPT;
2960 break;
2961 case DP_TRAINING_PATTERN_1:
2962 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2963 break;
2964 case DP_TRAINING_PATTERN_2:
2965 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2966 break;
2967 case DP_TRAINING_PATTERN_3:
2968 DRM_ERROR("DP training pattern 3 not supported\n");
2969 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2970 break;
2971 }
2972
2973 } else {
2974 *DP &= ~DP_LINK_TRAIN_MASK;
2975
2976 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2977 case DP_TRAINING_PATTERN_DISABLE:
2978 *DP |= DP_LINK_TRAIN_OFF;
2979 break;
2980 case DP_TRAINING_PATTERN_1:
2981 *DP |= DP_LINK_TRAIN_PAT_1;
2982 break;
2983 case DP_TRAINING_PATTERN_2:
2984 *DP |= DP_LINK_TRAIN_PAT_2;
2985 break;
2986 case DP_TRAINING_PATTERN_3:
2987 DRM_ERROR("DP training pattern 3 not supported\n");
2988 *DP |= DP_LINK_TRAIN_PAT_2;
2989 break;
2990 }
2991 }
2992
2993 I915_WRITE(intel_dp->output_reg, *DP);
2994 POSTING_READ(intel_dp->output_reg);
2995
2996 buf[0] = dp_train_pat;
2997 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2998 DP_TRAINING_PATTERN_DISABLE) {
2999 /* don't write DP_TRAINING_LANEx_SET on disable */
3000 len = 1;
3001 } else {
3002 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3003 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3004 len = intel_dp->lane_count + 1;
3005 }
3006
3007 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3008 buf, len);
3009
3010 return ret == len;
3011 }
3012
3013 static bool
3014 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3015 uint8_t dp_train_pat)
3016 {
3017 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3018 intel_dp_set_signal_levels(intel_dp, DP);
3019 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3020 }
3021
3022 static bool
3023 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3024 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3025 {
3026 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3027 struct drm_device *dev = intel_dig_port->base.base.dev;
3028 struct drm_i915_private *dev_priv = dev->dev_private;
3029 int ret;
3030
3031 intel_get_adjust_train(intel_dp, link_status);
3032 intel_dp_set_signal_levels(intel_dp, DP);
3033
3034 I915_WRITE(intel_dp->output_reg, *DP);
3035 POSTING_READ(intel_dp->output_reg);
3036
3037 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3038 intel_dp->train_set, intel_dp->lane_count);
3039
3040 return ret == intel_dp->lane_count;
3041 }
3042
3043 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3044 {
3045 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3046 struct drm_device *dev = intel_dig_port->base.base.dev;
3047 struct drm_i915_private *dev_priv = dev->dev_private;
3048 enum port port = intel_dig_port->port;
3049 uint32_t val;
3050
3051 if (!HAS_DDI(dev))
3052 return;
3053
3054 val = I915_READ(DP_TP_CTL(port));
3055 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3056 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3057 I915_WRITE(DP_TP_CTL(port), val);
3058
3059 /*
3060 * On PORT_A we can have only eDP in SST mode. There the only reason
3061 * we need to set idle transmission mode is to work around a HW issue
3062 * where we enable the pipe while not in idle link-training mode.
3063 * In this case there is requirement to wait for a minimum number of
3064 * idle patterns to be sent.
3065 */
3066 if (port == PORT_A)
3067 return;
3068
3069 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3070 1))
3071 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3072 }
3073
3074 /* Enable corresponding port and start training pattern 1 */
3075 void
3076 intel_dp_start_link_train(struct intel_dp *intel_dp)
3077 {
3078 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3079 struct drm_device *dev = encoder->dev;
3080 int i;
3081 uint8_t voltage;
3082 int voltage_tries, loop_tries;
3083 uint32_t DP = intel_dp->DP;
3084 uint8_t link_config[2];
3085
3086 if (HAS_DDI(dev))
3087 intel_ddi_prepare_link_retrain(encoder);
3088
3089 /* Write the link configuration data */
3090 link_config[0] = intel_dp->link_bw;
3091 link_config[1] = intel_dp->lane_count;
3092 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3093 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3094 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3095
3096 link_config[0] = 0;
3097 link_config[1] = DP_SET_ANSI_8B10B;
3098 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3099
3100 DP |= DP_PORT_EN;
3101
3102 /* clock recovery */
3103 if (!intel_dp_reset_link_train(intel_dp, &DP,
3104 DP_TRAINING_PATTERN_1 |
3105 DP_LINK_SCRAMBLING_DISABLE)) {
3106 DRM_ERROR("failed to enable link training\n");
3107 return;
3108 }
3109
3110 voltage = 0xff;
3111 voltage_tries = 0;
3112 loop_tries = 0;
3113 for (;;) {
3114 uint8_t link_status[DP_LINK_STATUS_SIZE];
3115
3116 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3117 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3118 DRM_ERROR("failed to get link status\n");
3119 break;
3120 }
3121
3122 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3123 DRM_DEBUG_KMS("clock recovery OK\n");
3124 break;
3125 }
3126
3127 /* Check to see if we've tried the max voltage */
3128 for (i = 0; i < intel_dp->lane_count; i++)
3129 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3130 break;
3131 if (i == intel_dp->lane_count) {
3132 ++loop_tries;
3133 if (loop_tries == 5) {
3134 DRM_ERROR("too many full retries, give up\n");
3135 break;
3136 }
3137 intel_dp_reset_link_train(intel_dp, &DP,
3138 DP_TRAINING_PATTERN_1 |
3139 DP_LINK_SCRAMBLING_DISABLE);
3140 voltage_tries = 0;
3141 continue;
3142 }
3143
3144 /* Check to see if we've tried the same voltage 5 times */
3145 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3146 ++voltage_tries;
3147 if (voltage_tries == 5) {
3148 DRM_ERROR("too many voltage retries, give up\n");
3149 break;
3150 }
3151 } else
3152 voltage_tries = 0;
3153 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3154
3155 /* Update training set as requested by target */
3156 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3157 DRM_ERROR("failed to update link training\n");
3158 break;
3159 }
3160 }
3161
3162 intel_dp->DP = DP;
3163 }
3164
3165 void
3166 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3167 {
3168 bool channel_eq = false;
3169 int tries, cr_tries;
3170 uint32_t DP = intel_dp->DP;
3171 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3172
3173 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3174 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3175 training_pattern = DP_TRAINING_PATTERN_3;
3176
3177 /* channel equalization */
3178 if (!intel_dp_set_link_train(intel_dp, &DP,
3179 training_pattern |
3180 DP_LINK_SCRAMBLING_DISABLE)) {
3181 DRM_ERROR("failed to start channel equalization\n");
3182 return;
3183 }
3184
3185 tries = 0;
3186 cr_tries = 0;
3187 channel_eq = false;
3188 for (;;) {
3189 uint8_t link_status[DP_LINK_STATUS_SIZE];
3190
3191 if (cr_tries > 5) {
3192 DRM_ERROR("failed to train DP, aborting\n");
3193 break;
3194 }
3195
3196 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3197 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3198 DRM_ERROR("failed to get link status\n");
3199 break;
3200 }
3201
3202 /* Make sure clock is still ok */
3203 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3204 intel_dp_start_link_train(intel_dp);
3205 intel_dp_set_link_train(intel_dp, &DP,
3206 training_pattern |
3207 DP_LINK_SCRAMBLING_DISABLE);
3208 cr_tries++;
3209 continue;
3210 }
3211
3212 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3213 channel_eq = true;
3214 break;
3215 }
3216
3217 /* Try 5 times, then try clock recovery if that fails */
3218 if (tries > 5) {
3219 intel_dp_link_down(intel_dp);
3220 intel_dp_start_link_train(intel_dp);
3221 intel_dp_set_link_train(intel_dp, &DP,
3222 training_pattern |
3223 DP_LINK_SCRAMBLING_DISABLE);
3224 tries = 0;
3225 cr_tries++;
3226 continue;
3227 }
3228
3229 /* Update training set as requested by target */
3230 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3231 DRM_ERROR("failed to update link training\n");
3232 break;
3233 }
3234 ++tries;
3235 }
3236
3237 intel_dp_set_idle_link_train(intel_dp);
3238
3239 intel_dp->DP = DP;
3240
3241 if (channel_eq)
3242 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3243
3244 }
3245
3246 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3247 {
3248 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3249 DP_TRAINING_PATTERN_DISABLE);
3250 }
3251
3252 static void
3253 intel_dp_link_down(struct intel_dp *intel_dp)
3254 {
3255 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3256 enum port port = intel_dig_port->port;
3257 struct drm_device *dev = intel_dig_port->base.base.dev;
3258 struct drm_i915_private *dev_priv = dev->dev_private;
3259 struct intel_crtc *intel_crtc =
3260 to_intel_crtc(intel_dig_port->base.base.crtc);
3261 uint32_t DP = intel_dp->DP;
3262
3263 if (WARN_ON(HAS_DDI(dev)))
3264 return;
3265
3266 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3267 return;
3268
3269 DRM_DEBUG_KMS("\n");
3270
3271 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3272 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3273 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3274 } else {
3275 DP &= ~DP_LINK_TRAIN_MASK;
3276 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3277 }
3278 POSTING_READ(intel_dp->output_reg);
3279
3280 if (HAS_PCH_IBX(dev) &&
3281 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3282 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3283
3284 /* Hardware workaround: leaving our transcoder select
3285 * set to transcoder B while it's off will prevent the
3286 * corresponding HDMI output on transcoder A.
3287 *
3288 * Combine this with another hardware workaround:
3289 * transcoder select bit can only be cleared while the
3290 * port is enabled.
3291 */
3292 DP &= ~DP_PIPEB_SELECT;
3293 I915_WRITE(intel_dp->output_reg, DP);
3294
3295 /* Changes to enable or select take place the vblank
3296 * after being written.
3297 */
3298 if (WARN_ON(crtc == NULL)) {
3299 /* We should never try to disable a port without a crtc
3300 * attached. For paranoia keep the code around for a
3301 * bit. */
3302 POSTING_READ(intel_dp->output_reg);
3303 msleep(50);
3304 } else
3305 intel_wait_for_vblank(dev, intel_crtc->pipe);
3306 }
3307
3308 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3309 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3310 POSTING_READ(intel_dp->output_reg);
3311 msleep(intel_dp->panel_power_down_delay);
3312 }
3313
3314 static bool
3315 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3316 {
3317 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3318 struct drm_device *dev = dig_port->base.base.dev;
3319 struct drm_i915_private *dev_priv = dev->dev_private;
3320
3321 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3322
3323 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3324 sizeof(intel_dp->dpcd)) < 0)
3325 return false; /* aux transfer failed */
3326
3327 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3328 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3329 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3330
3331 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3332 return false; /* DPCD not present */
3333
3334 /* Check if the panel supports PSR */
3335 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3336 if (is_edp(intel_dp)) {
3337 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3338 intel_dp->psr_dpcd,
3339 sizeof(intel_dp->psr_dpcd));
3340 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3341 dev_priv->psr.sink_support = true;
3342 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3343 }
3344 }
3345
3346 /* Training Pattern 3 support */
3347 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3348 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3349 intel_dp->use_tps3 = true;
3350 DRM_DEBUG_KMS("Displayport TPS3 supported");
3351 } else
3352 intel_dp->use_tps3 = false;
3353
3354 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3355 DP_DWN_STRM_PORT_PRESENT))
3356 return true; /* native DP sink */
3357
3358 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3359 return true; /* no per-port downstream info */
3360
3361 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3362 intel_dp->downstream_ports,
3363 DP_MAX_DOWNSTREAM_PORTS) < 0)
3364 return false; /* downstream port status fetch failed */
3365
3366 return true;
3367 }
3368
3369 static void
3370 intel_dp_probe_oui(struct intel_dp *intel_dp)
3371 {
3372 u8 buf[3];
3373
3374 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3375 return;
3376
3377 intel_edp_panel_vdd_on(intel_dp);
3378
3379 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3380 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3381 buf[0], buf[1], buf[2]);
3382
3383 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3384 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3385 buf[0], buf[1], buf[2]);
3386
3387 edp_panel_vdd_off(intel_dp, false);
3388 }
3389
3390 static bool
3391 intel_dp_probe_mst(struct intel_dp *intel_dp)
3392 {
3393 u8 buf[1];
3394
3395 if (!intel_dp->can_mst)
3396 return false;
3397
3398 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3399 return false;
3400
3401 _edp_panel_vdd_on(intel_dp);
3402 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3403 if (buf[0] & DP_MST_CAP) {
3404 DRM_DEBUG_KMS("Sink is MST capable\n");
3405 intel_dp->is_mst = true;
3406 } else {
3407 DRM_DEBUG_KMS("Sink is not MST capable\n");
3408 intel_dp->is_mst = false;
3409 }
3410 }
3411 edp_panel_vdd_off(intel_dp, false);
3412
3413 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3414 return intel_dp->is_mst;
3415 }
3416
3417 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3418 {
3419 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3420 struct drm_device *dev = intel_dig_port->base.base.dev;
3421 struct intel_crtc *intel_crtc =
3422 to_intel_crtc(intel_dig_port->base.base.crtc);
3423 u8 buf[1];
3424
3425 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3426 return -EAGAIN;
3427
3428 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3429 return -ENOTTY;
3430
3431 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3432 DP_TEST_SINK_START) < 0)
3433 return -EAGAIN;
3434
3435 /* Wait 2 vblanks to be sure we will have the correct CRC value */
3436 intel_wait_for_vblank(dev, intel_crtc->pipe);
3437 intel_wait_for_vblank(dev, intel_crtc->pipe);
3438
3439 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3440 return -EAGAIN;
3441
3442 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3443 return 0;
3444 }
3445
3446 static bool
3447 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3448 {
3449 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3450 DP_DEVICE_SERVICE_IRQ_VECTOR,
3451 sink_irq_vector, 1) == 1;
3452 }
3453
3454 static bool
3455 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3456 {
3457 int ret;
3458
3459 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3460 DP_SINK_COUNT_ESI,
3461 sink_irq_vector, 14);
3462 if (ret != 14)
3463 return false;
3464
3465 return true;
3466 }
3467
3468 static void
3469 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3470 {
3471 /* NAK by default */
3472 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3473 }
3474
3475 static int
3476 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3477 {
3478 bool bret;
3479
3480 if (intel_dp->is_mst) {
3481 u8 esi[16] = { 0 };
3482 int ret = 0;
3483 int retry;
3484 bool handled;
3485 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3486 go_again:
3487 if (bret == true) {
3488
3489 /* check link status - esi[10] = 0x200c */
3490 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3491 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3492 intel_dp_start_link_train(intel_dp);
3493 intel_dp_complete_link_train(intel_dp);
3494 intel_dp_stop_link_train(intel_dp);
3495 }
3496
3497 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3498 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3499
3500 if (handled) {
3501 for (retry = 0; retry < 3; retry++) {
3502 int wret;
3503 wret = drm_dp_dpcd_write(&intel_dp->aux,
3504 DP_SINK_COUNT_ESI+1,
3505 &esi[1], 3);
3506 if (wret == 3) {
3507 break;
3508 }
3509 }
3510
3511 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3512 if (bret == true) {
3513 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3514 goto go_again;
3515 }
3516 } else
3517 ret = 0;
3518
3519 return ret;
3520 } else {
3521 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3522 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3523 intel_dp->is_mst = false;
3524 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3525 /* send a hotplug event */
3526 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3527 }
3528 }
3529 return -EINVAL;
3530 }
3531
3532 /*
3533 * According to DP spec
3534 * 5.1.2:
3535 * 1. Read DPCD
3536 * 2. Configure link according to Receiver Capabilities
3537 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3538 * 4. Check link status on receipt of hot-plug interrupt
3539 */
3540 void
3541 intel_dp_check_link_status(struct intel_dp *intel_dp)
3542 {
3543 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3544 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3545 u8 sink_irq_vector;
3546 u8 link_status[DP_LINK_STATUS_SIZE];
3547
3548 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3549
3550 if (!intel_encoder->connectors_active)
3551 return;
3552
3553 if (WARN_ON(!intel_encoder->base.crtc))
3554 return;
3555
3556 /* Try to read receiver status if the link appears to be up */
3557 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3558 return;
3559 }
3560
3561 /* Now read the DPCD to see if it's actually running */
3562 if (!intel_dp_get_dpcd(intel_dp)) {
3563 return;
3564 }
3565
3566 /* Try to read the source of the interrupt */
3567 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3568 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3569 /* Clear interrupt source */
3570 drm_dp_dpcd_writeb(&intel_dp->aux,
3571 DP_DEVICE_SERVICE_IRQ_VECTOR,
3572 sink_irq_vector);
3573
3574 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3575 intel_dp_handle_test_request(intel_dp);
3576 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3577 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3578 }
3579
3580 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3581 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3582 intel_encoder->base.name);
3583 intel_dp_start_link_train(intel_dp);
3584 intel_dp_complete_link_train(intel_dp);
3585 intel_dp_stop_link_train(intel_dp);
3586 }
3587 }
3588
3589 /* XXX this is probably wrong for multiple downstream ports */
3590 static enum drm_connector_status
3591 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3592 {
3593 uint8_t *dpcd = intel_dp->dpcd;
3594 uint8_t type;
3595
3596 if (!intel_dp_get_dpcd(intel_dp))
3597 return connector_status_disconnected;
3598
3599 /* if there's no downstream port, we're done */
3600 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3601 return connector_status_connected;
3602
3603 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3604 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3605 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3606 uint8_t reg;
3607
3608 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3609 &reg, 1) < 0)
3610 return connector_status_unknown;
3611
3612 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3613 : connector_status_disconnected;
3614 }
3615
3616 /* If no HPD, poke DDC gently */
3617 if (drm_probe_ddc(&intel_dp->aux.ddc))
3618 return connector_status_connected;
3619
3620 /* Well we tried, say unknown for unreliable port types */
3621 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3622 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3623 if (type == DP_DS_PORT_TYPE_VGA ||
3624 type == DP_DS_PORT_TYPE_NON_EDID)
3625 return connector_status_unknown;
3626 } else {
3627 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3628 DP_DWN_STRM_PORT_TYPE_MASK;
3629 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3630 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3631 return connector_status_unknown;
3632 }
3633
3634 /* Anything else is out of spec, warn and ignore */
3635 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3636 return connector_status_disconnected;
3637 }
3638
3639 static enum drm_connector_status
3640 ironlake_dp_detect(struct intel_dp *intel_dp)
3641 {
3642 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3643 struct drm_i915_private *dev_priv = dev->dev_private;
3644 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3645 enum drm_connector_status status;
3646
3647 /* Can't disconnect eDP, but you can close the lid... */
3648 if (is_edp(intel_dp)) {
3649 status = intel_panel_detect(dev);
3650 if (status == connector_status_unknown)
3651 status = connector_status_connected;
3652 return status;
3653 }
3654
3655 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3656 return connector_status_disconnected;
3657
3658 return intel_dp_detect_dpcd(intel_dp);
3659 }
3660
3661 static enum drm_connector_status
3662 g4x_dp_detect(struct intel_dp *intel_dp)
3663 {
3664 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3665 struct drm_i915_private *dev_priv = dev->dev_private;
3666 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3667 uint32_t bit;
3668
3669 /* Can't disconnect eDP, but you can close the lid... */
3670 if (is_edp(intel_dp)) {
3671 enum drm_connector_status status;
3672
3673 status = intel_panel_detect(dev);
3674 if (status == connector_status_unknown)
3675 status = connector_status_connected;
3676 return status;
3677 }
3678
3679 if (IS_VALLEYVIEW(dev)) {
3680 switch (intel_dig_port->port) {
3681 case PORT_B:
3682 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3683 break;
3684 case PORT_C:
3685 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3686 break;
3687 case PORT_D:
3688 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3689 break;
3690 default:
3691 return connector_status_unknown;
3692 }
3693 } else {
3694 switch (intel_dig_port->port) {
3695 case PORT_B:
3696 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3697 break;
3698 case PORT_C:
3699 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3700 break;
3701 case PORT_D:
3702 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3703 break;
3704 default:
3705 return connector_status_unknown;
3706 }
3707 }
3708
3709 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3710 return connector_status_disconnected;
3711
3712 return intel_dp_detect_dpcd(intel_dp);
3713 }
3714
3715 static struct edid *
3716 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3717 {
3718 struct intel_connector *intel_connector = to_intel_connector(connector);
3719
3720 /* use cached edid if we have one */
3721 if (intel_connector->edid) {
3722 /* invalid edid */
3723 if (IS_ERR(intel_connector->edid))
3724 return NULL;
3725
3726 return drm_edid_duplicate(intel_connector->edid);
3727 }
3728
3729 return drm_get_edid(connector, adapter);
3730 }
3731
3732 static int
3733 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3734 {
3735 struct intel_connector *intel_connector = to_intel_connector(connector);
3736
3737 /* use cached edid if we have one */
3738 if (intel_connector->edid) {
3739 /* invalid edid */
3740 if (IS_ERR(intel_connector->edid))
3741 return 0;
3742
3743 return intel_connector_update_modes(connector,
3744 intel_connector->edid);
3745 }
3746
3747 return intel_ddc_get_modes(connector, adapter);
3748 }
3749
3750 static enum drm_connector_status
3751 intel_dp_detect(struct drm_connector *connector, bool force)
3752 {
3753 struct intel_dp *intel_dp = intel_attached_dp(connector);
3754 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3755 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3756 struct drm_device *dev = connector->dev;
3757 struct drm_i915_private *dev_priv = dev->dev_private;
3758 enum drm_connector_status status;
3759 enum intel_display_power_domain power_domain;
3760 struct edid *edid = NULL;
3761 bool ret;
3762
3763 power_domain = intel_display_port_power_domain(intel_encoder);
3764 intel_display_power_get(dev_priv, power_domain);
3765
3766 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3767 connector->base.id, connector->name);
3768
3769 if (intel_dp->is_mst) {
3770 /* MST devices are disconnected from a monitor POV */
3771 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3772 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3773 status = connector_status_disconnected;
3774 goto out;
3775 }
3776
3777 intel_dp->has_audio = false;
3778
3779 if (HAS_PCH_SPLIT(dev))
3780 status = ironlake_dp_detect(intel_dp);
3781 else
3782 status = g4x_dp_detect(intel_dp);
3783
3784 if (status != connector_status_connected)
3785 goto out;
3786
3787 intel_dp_probe_oui(intel_dp);
3788
3789 ret = intel_dp_probe_mst(intel_dp);
3790 if (ret) {
3791 /* if we are in MST mode then this connector
3792 won't appear connected or have anything with EDID on it */
3793 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3794 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3795 status = connector_status_disconnected;
3796 goto out;
3797 }
3798
3799 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3800 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3801 } else {
3802 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3803 if (edid) {
3804 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3805 kfree(edid);
3806 }
3807 }
3808
3809 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3810 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3811 status = connector_status_connected;
3812
3813 out:
3814 intel_display_power_put(dev_priv, power_domain);
3815 return status;
3816 }
3817
3818 static int intel_dp_get_modes(struct drm_connector *connector)
3819 {
3820 struct intel_dp *intel_dp = intel_attached_dp(connector);
3821 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3822 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3823 struct intel_connector *intel_connector = to_intel_connector(connector);
3824 struct drm_device *dev = connector->dev;
3825 struct drm_i915_private *dev_priv = dev->dev_private;
3826 enum intel_display_power_domain power_domain;
3827 int ret;
3828
3829 /* We should parse the EDID data and find out if it has an audio sink
3830 */
3831
3832 power_domain = intel_display_port_power_domain(intel_encoder);
3833 intel_display_power_get(dev_priv, power_domain);
3834
3835 ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3836 intel_display_power_put(dev_priv, power_domain);
3837 if (ret)
3838 return ret;
3839
3840 /* if eDP has no EDID, fall back to fixed mode */
3841 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3842 struct drm_display_mode *mode;
3843 mode = drm_mode_duplicate(dev,
3844 intel_connector->panel.fixed_mode);
3845 if (mode) {
3846 drm_mode_probed_add(connector, mode);
3847 return 1;
3848 }
3849 }
3850 return 0;
3851 }
3852
3853 static bool
3854 intel_dp_detect_audio(struct drm_connector *connector)
3855 {
3856 struct intel_dp *intel_dp = intel_attached_dp(connector);
3857 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3858 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3859 struct drm_device *dev = connector->dev;
3860 struct drm_i915_private *dev_priv = dev->dev_private;
3861 enum intel_display_power_domain power_domain;
3862 struct edid *edid;
3863 bool has_audio = false;
3864
3865 power_domain = intel_display_port_power_domain(intel_encoder);
3866 intel_display_power_get(dev_priv, power_domain);
3867
3868 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3869 if (edid) {
3870 has_audio = drm_detect_monitor_audio(edid);
3871 kfree(edid);
3872 }
3873
3874 intel_display_power_put(dev_priv, power_domain);
3875
3876 return has_audio;
3877 }
3878
3879 static int
3880 intel_dp_set_property(struct drm_connector *connector,
3881 struct drm_property *property,
3882 uint64_t val)
3883 {
3884 struct drm_i915_private *dev_priv = connector->dev->dev_private;
3885 struct intel_connector *intel_connector = to_intel_connector(connector);
3886 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3887 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3888 int ret;
3889
3890 ret = drm_object_property_set_value(&connector->base, property, val);
3891 if (ret)
3892 return ret;
3893
3894 if (property == dev_priv->force_audio_property) {
3895 int i = val;
3896 bool has_audio;
3897
3898 if (i == intel_dp->force_audio)
3899 return 0;
3900
3901 intel_dp->force_audio = i;
3902
3903 if (i == HDMI_AUDIO_AUTO)
3904 has_audio = intel_dp_detect_audio(connector);
3905 else
3906 has_audio = (i == HDMI_AUDIO_ON);
3907
3908 if (has_audio == intel_dp->has_audio)
3909 return 0;
3910
3911 intel_dp->has_audio = has_audio;
3912 goto done;
3913 }
3914
3915 if (property == dev_priv->broadcast_rgb_property) {
3916 bool old_auto = intel_dp->color_range_auto;
3917 uint32_t old_range = intel_dp->color_range;
3918
3919 switch (val) {
3920 case INTEL_BROADCAST_RGB_AUTO:
3921 intel_dp->color_range_auto = true;
3922 break;
3923 case INTEL_BROADCAST_RGB_FULL:
3924 intel_dp->color_range_auto = false;
3925 intel_dp->color_range = 0;
3926 break;
3927 case INTEL_BROADCAST_RGB_LIMITED:
3928 intel_dp->color_range_auto = false;
3929 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3930 break;
3931 default:
3932 return -EINVAL;
3933 }
3934
3935 if (old_auto == intel_dp->color_range_auto &&
3936 old_range == intel_dp->color_range)
3937 return 0;
3938
3939 goto done;
3940 }
3941
3942 if (is_edp(intel_dp) &&
3943 property == connector->dev->mode_config.scaling_mode_property) {
3944 if (val == DRM_MODE_SCALE_NONE) {
3945 DRM_DEBUG_KMS("no scaling not supported\n");
3946 return -EINVAL;
3947 }
3948
3949 if (intel_connector->panel.fitting_mode == val) {
3950 /* the eDP scaling property is not changed */
3951 return 0;
3952 }
3953 intel_connector->panel.fitting_mode = val;
3954
3955 goto done;
3956 }
3957
3958 return -EINVAL;
3959
3960 done:
3961 if (intel_encoder->base.crtc)
3962 intel_crtc_restore_mode(intel_encoder->base.crtc);
3963
3964 return 0;
3965 }
3966
3967 static void
3968 intel_dp_connector_destroy(struct drm_connector *connector)
3969 {
3970 struct intel_connector *intel_connector = to_intel_connector(connector);
3971
3972 if (!IS_ERR_OR_NULL(intel_connector->edid))
3973 kfree(intel_connector->edid);
3974
3975 /* Can't call is_edp() since the encoder may have been destroyed
3976 * already. */
3977 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3978 intel_panel_fini(&intel_connector->panel);
3979
3980 drm_connector_cleanup(connector);
3981 kfree(connector);
3982 }
3983
3984 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3985 {
3986 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3987 struct intel_dp *intel_dp = &intel_dig_port->dp;
3988 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3989
3990 drm_dp_aux_unregister(&intel_dp->aux);
3991 intel_dp_mst_encoder_cleanup(intel_dig_port);
3992 drm_encoder_cleanup(encoder);
3993 if (is_edp(intel_dp)) {
3994 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3995 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3996 edp_panel_vdd_off_sync(intel_dp);
3997 drm_modeset_unlock(&dev->mode_config.connection_mutex);
3998 if (intel_dp->edp_notifier.notifier_call) {
3999 unregister_reboot_notifier(&intel_dp->edp_notifier);
4000 intel_dp->edp_notifier.notifier_call = NULL;
4001 }
4002 }
4003 kfree(intel_dig_port);
4004 }
4005
4006 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4007 {
4008 intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4009 }
4010
4011 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4012 .dpms = intel_connector_dpms,
4013 .detect = intel_dp_detect,
4014 .fill_modes = drm_helper_probe_single_connector_modes,
4015 .set_property = intel_dp_set_property,
4016 .destroy = intel_dp_connector_destroy,
4017 };
4018
4019 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4020 .get_modes = intel_dp_get_modes,
4021 .mode_valid = intel_dp_mode_valid,
4022 .best_encoder = intel_best_encoder,
4023 };
4024
4025 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4026 .reset = intel_dp_encoder_reset,
4027 .destroy = intel_dp_encoder_destroy,
4028 };
4029
4030 void
4031 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4032 {
4033 return;
4034 }
4035
4036 bool
4037 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4038 {
4039 struct intel_dp *intel_dp = &intel_dig_port->dp;
4040 struct drm_device *dev = intel_dig_port->base.base.dev;
4041 struct drm_i915_private *dev_priv = dev->dev_private;
4042 int ret;
4043 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4044 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4045
4046 DRM_DEBUG_KMS("got hpd irq on port %d - %s\n", intel_dig_port->port,
4047 long_hpd ? "long" : "short");
4048
4049 if (long_hpd) {
4050 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4051 goto mst_fail;
4052
4053 if (!intel_dp_get_dpcd(intel_dp)) {
4054 goto mst_fail;
4055 }
4056
4057 intel_dp_probe_oui(intel_dp);
4058
4059 if (!intel_dp_probe_mst(intel_dp))
4060 goto mst_fail;
4061
4062 } else {
4063 if (intel_dp->is_mst) {
4064 ret = intel_dp_check_mst_status(intel_dp);
4065 if (ret == -EINVAL)
4066 goto mst_fail;
4067 }
4068
4069 if (!intel_dp->is_mst) {
4070 /*
4071 * we'll check the link status via the normal hot plug path later -
4072 * but for short hpds we should check it now
4073 */
4074 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4075 intel_dp_check_link_status(intel_dp);
4076 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4077 }
4078 }
4079 return false;
4080 mst_fail:
4081 /* if we were in MST mode, and device is not there get out of MST mode */
4082 if (intel_dp->is_mst) {
4083 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4084 intel_dp->is_mst = false;
4085 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4086 }
4087 return true;
4088 }
4089
4090 /* Return which DP Port should be selected for Transcoder DP control */
4091 int
4092 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4093 {
4094 struct drm_device *dev = crtc->dev;
4095 struct intel_encoder *intel_encoder;
4096 struct intel_dp *intel_dp;
4097
4098 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4099 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4100
4101 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4102 intel_encoder->type == INTEL_OUTPUT_EDP)
4103 return intel_dp->output_reg;
4104 }
4105
4106 return -1;
4107 }
4108
4109 /* check the VBT to see whether the eDP is on DP-D port */
4110 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4111 {
4112 struct drm_i915_private *dev_priv = dev->dev_private;
4113 union child_device_config *p_child;
4114 int i;
4115 static const short port_mapping[] = {
4116 [PORT_B] = PORT_IDPB,
4117 [PORT_C] = PORT_IDPC,
4118 [PORT_D] = PORT_IDPD,
4119 };
4120
4121 if (port == PORT_A)
4122 return true;
4123
4124 if (!dev_priv->vbt.child_dev_num)
4125 return false;
4126
4127 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4128 p_child = dev_priv->vbt.child_dev + i;
4129
4130 if (p_child->common.dvo_port == port_mapping[port] &&
4131 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4132 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4133 return true;
4134 }
4135 return false;
4136 }
4137
4138 void
4139 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4140 {
4141 struct intel_connector *intel_connector = to_intel_connector(connector);
4142
4143 intel_attach_force_audio_property(connector);
4144 intel_attach_broadcast_rgb_property(connector);
4145 intel_dp->color_range_auto = true;
4146
4147 if (is_edp(intel_dp)) {
4148 drm_mode_create_scaling_mode_property(connector->dev);
4149 drm_object_attach_property(
4150 &connector->base,
4151 connector->dev->mode_config.scaling_mode_property,
4152 DRM_MODE_SCALE_ASPECT);
4153 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4154 }
4155 }
4156
4157 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4158 {
4159 intel_dp->last_power_cycle = jiffies;
4160 intel_dp->last_power_on = jiffies;
4161 intel_dp->last_backlight_off = jiffies;
4162 }
4163
4164 static void
4165 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4166 struct intel_dp *intel_dp,
4167 struct edp_power_seq *out)
4168 {
4169 struct drm_i915_private *dev_priv = dev->dev_private;
4170 struct edp_power_seq cur, vbt, spec, final;
4171 u32 pp_on, pp_off, pp_div, pp;
4172 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4173
4174 if (HAS_PCH_SPLIT(dev)) {
4175 pp_ctrl_reg = PCH_PP_CONTROL;
4176 pp_on_reg = PCH_PP_ON_DELAYS;
4177 pp_off_reg = PCH_PP_OFF_DELAYS;
4178 pp_div_reg = PCH_PP_DIVISOR;
4179 } else {
4180 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4181
4182 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4183 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4184 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4185 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4186 }
4187
4188 /* Workaround: Need to write PP_CONTROL with the unlock key as
4189 * the very first thing. */
4190 pp = ironlake_get_pp_control(intel_dp);
4191 I915_WRITE(pp_ctrl_reg, pp);
4192
4193 pp_on = I915_READ(pp_on_reg);
4194 pp_off = I915_READ(pp_off_reg);
4195 pp_div = I915_READ(pp_div_reg);
4196
4197 /* Pull timing values out of registers */
4198 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4199 PANEL_POWER_UP_DELAY_SHIFT;
4200
4201 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4202 PANEL_LIGHT_ON_DELAY_SHIFT;
4203
4204 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4205 PANEL_LIGHT_OFF_DELAY_SHIFT;
4206
4207 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4208 PANEL_POWER_DOWN_DELAY_SHIFT;
4209
4210 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4211 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4212
4213 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4214 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4215
4216 vbt = dev_priv->vbt.edp_pps;
4217
4218 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4219 * our hw here, which are all in 100usec. */
4220 spec.t1_t3 = 210 * 10;
4221 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4222 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4223 spec.t10 = 500 * 10;
4224 /* This one is special and actually in units of 100ms, but zero
4225 * based in the hw (so we need to add 100 ms). But the sw vbt
4226 * table multiplies it with 1000 to make it in units of 100usec,
4227 * too. */
4228 spec.t11_t12 = (510 + 100) * 10;
4229
4230 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4231 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4232
4233 /* Use the max of the register settings and vbt. If both are
4234 * unset, fall back to the spec limits. */
4235 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
4236 spec.field : \
4237 max(cur.field, vbt.field))
4238 assign_final(t1_t3);
4239 assign_final(t8);
4240 assign_final(t9);
4241 assign_final(t10);
4242 assign_final(t11_t12);
4243 #undef assign_final
4244
4245 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
4246 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4247 intel_dp->backlight_on_delay = get_delay(t8);
4248 intel_dp->backlight_off_delay = get_delay(t9);
4249 intel_dp->panel_power_down_delay = get_delay(t10);
4250 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4251 #undef get_delay
4252
4253 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4254 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4255 intel_dp->panel_power_cycle_delay);
4256
4257 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4258 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4259
4260 if (out)
4261 *out = final;
4262 }
4263
4264 static void
4265 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4266 struct intel_dp *intel_dp,
4267 struct edp_power_seq *seq)
4268 {
4269 struct drm_i915_private *dev_priv = dev->dev_private;
4270 u32 pp_on, pp_off, pp_div, port_sel = 0;
4271 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4272 int pp_on_reg, pp_off_reg, pp_div_reg;
4273
4274 if (HAS_PCH_SPLIT(dev)) {
4275 pp_on_reg = PCH_PP_ON_DELAYS;
4276 pp_off_reg = PCH_PP_OFF_DELAYS;
4277 pp_div_reg = PCH_PP_DIVISOR;
4278 } else {
4279 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4280
4281 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4282 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4283 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4284 }
4285
4286 /*
4287 * And finally store the new values in the power sequencer. The
4288 * backlight delays are set to 1 because we do manual waits on them. For
4289 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4290 * we'll end up waiting for the backlight off delay twice: once when we
4291 * do the manual sleep, and once when we disable the panel and wait for
4292 * the PP_STATUS bit to become zero.
4293 */
4294 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4295 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4296 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4297 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4298 /* Compute the divisor for the pp clock, simply match the Bspec
4299 * formula. */
4300 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4301 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4302 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4303
4304 /* Haswell doesn't have any port selection bits for the panel
4305 * power sequencer any more. */
4306 if (IS_VALLEYVIEW(dev)) {
4307 if (dp_to_dig_port(intel_dp)->port == PORT_B)
4308 port_sel = PANEL_PORT_SELECT_DPB_VLV;
4309 else
4310 port_sel = PANEL_PORT_SELECT_DPC_VLV;
4311 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4312 if (dp_to_dig_port(intel_dp)->port == PORT_A)
4313 port_sel = PANEL_PORT_SELECT_DPA;
4314 else
4315 port_sel = PANEL_PORT_SELECT_DPD;
4316 }
4317
4318 pp_on |= port_sel;
4319
4320 I915_WRITE(pp_on_reg, pp_on);
4321 I915_WRITE(pp_off_reg, pp_off);
4322 I915_WRITE(pp_div_reg, pp_div);
4323
4324 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4325 I915_READ(pp_on_reg),
4326 I915_READ(pp_off_reg),
4327 I915_READ(pp_div_reg));
4328 }
4329
4330 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4331 {
4332 struct drm_i915_private *dev_priv = dev->dev_private;
4333 struct intel_encoder *encoder;
4334 struct intel_dp *intel_dp = NULL;
4335 struct intel_crtc_config *config = NULL;
4336 struct intel_crtc *intel_crtc = NULL;
4337 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4338 u32 reg, val;
4339 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4340
4341 if (refresh_rate <= 0) {
4342 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4343 return;
4344 }
4345
4346 if (intel_connector == NULL) {
4347 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4348 return;
4349 }
4350
4351 /*
4352 * FIXME: This needs proper synchronization with psr state. But really
4353 * hard to tell without seeing the user of this function of this code.
4354 * Check locking and ordering once that lands.
4355 */
4356 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4357 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4358 return;
4359 }
4360
4361 encoder = intel_attached_encoder(&intel_connector->base);
4362 intel_dp = enc_to_intel_dp(&encoder->base);
4363 intel_crtc = encoder->new_crtc;
4364
4365 if (!intel_crtc) {
4366 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4367 return;
4368 }
4369
4370 config = &intel_crtc->config;
4371
4372 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4373 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4374 return;
4375 }
4376
4377 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4378 index = DRRS_LOW_RR;
4379
4380 if (index == intel_dp->drrs_state.refresh_rate_type) {
4381 DRM_DEBUG_KMS(
4382 "DRRS requested for previously set RR...ignoring\n");
4383 return;
4384 }
4385
4386 if (!intel_crtc->active) {
4387 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4388 return;
4389 }
4390
4391 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4392 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4393 val = I915_READ(reg);
4394 if (index > DRRS_HIGH_RR) {
4395 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4396 intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
4397 } else {
4398 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4399 }
4400 I915_WRITE(reg, val);
4401 }
4402
4403 /*
4404 * mutex taken to ensure that there is no race between differnt
4405 * drrs calls trying to update refresh rate. This scenario may occur
4406 * in future when idleness detection based DRRS in kernel and
4407 * possible calls from user space to set differnt RR are made.
4408 */
4409
4410 mutex_lock(&intel_dp->drrs_state.mutex);
4411
4412 intel_dp->drrs_state.refresh_rate_type = index;
4413
4414 mutex_unlock(&intel_dp->drrs_state.mutex);
4415
4416 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4417 }
4418
4419 static struct drm_display_mode *
4420 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4421 struct intel_connector *intel_connector,
4422 struct drm_display_mode *fixed_mode)
4423 {
4424 struct drm_connector *connector = &intel_connector->base;
4425 struct intel_dp *intel_dp = &intel_dig_port->dp;
4426 struct drm_device *dev = intel_dig_port->base.base.dev;
4427 struct drm_i915_private *dev_priv = dev->dev_private;
4428 struct drm_display_mode *downclock_mode = NULL;
4429
4430 if (INTEL_INFO(dev)->gen <= 6) {
4431 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4432 return NULL;
4433 }
4434
4435 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4436 DRM_INFO("VBT doesn't support DRRS\n");
4437 return NULL;
4438 }
4439
4440 downclock_mode = intel_find_panel_downclock
4441 (dev, fixed_mode, connector);
4442
4443 if (!downclock_mode) {
4444 DRM_INFO("DRRS not supported\n");
4445 return NULL;
4446 }
4447
4448 dev_priv->drrs.connector = intel_connector;
4449
4450 mutex_init(&intel_dp->drrs_state.mutex);
4451
4452 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4453
4454 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4455 DRM_INFO("seamless DRRS supported for eDP panel.\n");
4456 return downclock_mode;
4457 }
4458
4459 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4460 {
4461 struct drm_device *dev = intel_encoder->base.dev;
4462 struct drm_i915_private *dev_priv = dev->dev_private;
4463 struct intel_dp *intel_dp;
4464 enum intel_display_power_domain power_domain;
4465
4466 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4467 return;
4468
4469 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4470 if (!edp_have_panel_vdd(intel_dp))
4471 return;
4472 /*
4473 * The VDD bit needs a power domain reference, so if the bit is
4474 * already enabled when we boot or resume, grab this reference and
4475 * schedule a vdd off, so we don't hold on to the reference
4476 * indefinitely.
4477 */
4478 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4479 power_domain = intel_display_port_power_domain(intel_encoder);
4480 intel_display_power_get(dev_priv, power_domain);
4481
4482 edp_panel_vdd_schedule_off(intel_dp);
4483 }
4484
4485 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4486 struct intel_connector *intel_connector,
4487 struct edp_power_seq *power_seq)
4488 {
4489 struct drm_connector *connector = &intel_connector->base;
4490 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4491 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4492 struct drm_device *dev = intel_encoder->base.dev;
4493 struct drm_i915_private *dev_priv = dev->dev_private;
4494 struct drm_display_mode *fixed_mode = NULL;
4495 struct drm_display_mode *downclock_mode = NULL;
4496 bool has_dpcd;
4497 struct drm_display_mode *scan;
4498 struct edid *edid;
4499
4500 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4501
4502 if (!is_edp(intel_dp))
4503 return true;
4504
4505 intel_edp_panel_vdd_sanitize(intel_encoder);
4506
4507 /* Cache DPCD and EDID for edp. */
4508 intel_edp_panel_vdd_on(intel_dp);
4509 has_dpcd = intel_dp_get_dpcd(intel_dp);
4510 edp_panel_vdd_off(intel_dp, false);
4511
4512 if (has_dpcd) {
4513 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4514 dev_priv->no_aux_handshake =
4515 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4516 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4517 } else {
4518 /* if this fails, presume the device is a ghost */
4519 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4520 return false;
4521 }
4522
4523 /* We now know it's not a ghost, init power sequence regs. */
4524 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4525
4526 mutex_lock(&dev->mode_config.mutex);
4527 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4528 if (edid) {
4529 if (drm_add_edid_modes(connector, edid)) {
4530 drm_mode_connector_update_edid_property(connector,
4531 edid);
4532 drm_edid_to_eld(connector, edid);
4533 } else {
4534 kfree(edid);
4535 edid = ERR_PTR(-EINVAL);
4536 }
4537 } else {
4538 edid = ERR_PTR(-ENOENT);
4539 }
4540 intel_connector->edid = edid;
4541
4542 /* prefer fixed mode from EDID if available */
4543 list_for_each_entry(scan, &connector->probed_modes, head) {
4544 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4545 fixed_mode = drm_mode_duplicate(dev, scan);
4546 downclock_mode = intel_dp_drrs_init(
4547 intel_dig_port,
4548 intel_connector, fixed_mode);
4549 break;
4550 }
4551 }
4552
4553 /* fallback to VBT if available for eDP */
4554 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4555 fixed_mode = drm_mode_duplicate(dev,
4556 dev_priv->vbt.lfp_lvds_vbt_mode);
4557 if (fixed_mode)
4558 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4559 }
4560 mutex_unlock(&dev->mode_config.mutex);
4561
4562 if (IS_VALLEYVIEW(dev)) {
4563 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4564 register_reboot_notifier(&intel_dp->edp_notifier);
4565 }
4566
4567 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4568 intel_panel_setup_backlight(connector);
4569
4570 return true;
4571 }
4572
4573 bool
4574 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4575 struct intel_connector *intel_connector)
4576 {
4577 struct drm_connector *connector = &intel_connector->base;
4578 struct intel_dp *intel_dp = &intel_dig_port->dp;
4579 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4580 struct drm_device *dev = intel_encoder->base.dev;
4581 struct drm_i915_private *dev_priv = dev->dev_private;
4582 enum port port = intel_dig_port->port;
4583 struct edp_power_seq power_seq = { 0 };
4584 int type;
4585
4586 /* intel_dp vfuncs */
4587 if (IS_VALLEYVIEW(dev))
4588 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4589 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4590 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4591 else if (HAS_PCH_SPLIT(dev))
4592 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4593 else
4594 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4595
4596 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4597
4598 /* Preserve the current hw state. */
4599 intel_dp->DP = I915_READ(intel_dp->output_reg);
4600 intel_dp->attached_connector = intel_connector;
4601
4602 if (intel_dp_is_edp(dev, port))
4603 type = DRM_MODE_CONNECTOR_eDP;
4604 else
4605 type = DRM_MODE_CONNECTOR_DisplayPort;
4606
4607 /*
4608 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4609 * for DP the encoder type can be set by the caller to
4610 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4611 */
4612 if (type == DRM_MODE_CONNECTOR_eDP)
4613 intel_encoder->type = INTEL_OUTPUT_EDP;
4614
4615 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4616 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4617 port_name(port));
4618
4619 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4620 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4621
4622 connector->interlace_allowed = true;
4623 connector->doublescan_allowed = 0;
4624
4625 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4626 edp_panel_vdd_work);
4627
4628 intel_connector_attach_encoder(intel_connector, intel_encoder);
4629 drm_connector_register(connector);
4630
4631 if (HAS_DDI(dev))
4632 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4633 else
4634 intel_connector->get_hw_state = intel_connector_get_hw_state;
4635 intel_connector->unregister = intel_dp_connector_unregister;
4636
4637 /* Set up the hotplug pin. */
4638 switch (port) {
4639 case PORT_A:
4640 intel_encoder->hpd_pin = HPD_PORT_A;
4641 break;
4642 case PORT_B:
4643 intel_encoder->hpd_pin = HPD_PORT_B;
4644 break;
4645 case PORT_C:
4646 intel_encoder->hpd_pin = HPD_PORT_C;
4647 break;
4648 case PORT_D:
4649 intel_encoder->hpd_pin = HPD_PORT_D;
4650 break;
4651 default:
4652 BUG();
4653 }
4654
4655 if (is_edp(intel_dp)) {
4656 intel_dp_init_panel_power_timestamps(intel_dp);
4657 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4658 }
4659
4660 intel_dp_aux_init(intel_dp, intel_connector);
4661
4662 /* init MST on ports that can support it */
4663 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4664 if (port == PORT_B || port == PORT_C || port == PORT_D) {
4665 intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id);
4666 }
4667 }
4668
4669 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4670 drm_dp_aux_unregister(&intel_dp->aux);
4671 if (is_edp(intel_dp)) {
4672 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4673 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4674 edp_panel_vdd_off_sync(intel_dp);
4675 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4676 }
4677 drm_connector_unregister(connector);
4678 drm_connector_cleanup(connector);
4679 return false;
4680 }
4681
4682 intel_dp_add_properties(intel_dp, connector);
4683
4684 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4685 * 0xd. Failure to do so will result in spurious interrupts being
4686 * generated on the port when a cable is not attached.
4687 */
4688 if (IS_G4X(dev) && !IS_GM45(dev)) {
4689 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4690 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4691 }
4692
4693 return true;
4694 }
4695
4696 void
4697 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4698 {
4699 struct drm_i915_private *dev_priv = dev->dev_private;
4700 struct intel_digital_port *intel_dig_port;
4701 struct intel_encoder *intel_encoder;
4702 struct drm_encoder *encoder;
4703 struct intel_connector *intel_connector;
4704
4705 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4706 if (!intel_dig_port)
4707 return;
4708
4709 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4710 if (!intel_connector) {
4711 kfree(intel_dig_port);
4712 return;
4713 }
4714
4715 intel_encoder = &intel_dig_port->base;
4716 encoder = &intel_encoder->base;
4717
4718 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4719 DRM_MODE_ENCODER_TMDS);
4720
4721 intel_encoder->compute_config = intel_dp_compute_config;
4722 intel_encoder->disable = intel_disable_dp;
4723 intel_encoder->get_hw_state = intel_dp_get_hw_state;
4724 intel_encoder->get_config = intel_dp_get_config;
4725 if (IS_CHERRYVIEW(dev)) {
4726 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4727 intel_encoder->pre_enable = chv_pre_enable_dp;
4728 intel_encoder->enable = vlv_enable_dp;
4729 intel_encoder->post_disable = chv_post_disable_dp;
4730 } else if (IS_VALLEYVIEW(dev)) {
4731 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4732 intel_encoder->pre_enable = vlv_pre_enable_dp;
4733 intel_encoder->enable = vlv_enable_dp;
4734 intel_encoder->post_disable = vlv_post_disable_dp;
4735 } else {
4736 intel_encoder->pre_enable = g4x_pre_enable_dp;
4737 intel_encoder->enable = g4x_enable_dp;
4738 intel_encoder->post_disable = g4x_post_disable_dp;
4739 }
4740
4741 intel_dig_port->port = port;
4742 intel_dig_port->dp.output_reg = output_reg;
4743
4744 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4745 if (IS_CHERRYVIEW(dev)) {
4746 if (port == PORT_D)
4747 intel_encoder->crtc_mask = 1 << 2;
4748 else
4749 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4750 } else {
4751 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4752 }
4753 intel_encoder->cloneable = 0;
4754 intel_encoder->hot_plug = intel_dp_hot_plug;
4755
4756 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4757 dev_priv->hpd_irq_port[port] = intel_dig_port;
4758
4759 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4760 drm_encoder_cleanup(encoder);
4761 kfree(intel_dig_port);
4762 kfree(intel_connector);
4763 }
4764 }
4765
4766 void intel_dp_mst_suspend(struct drm_device *dev)
4767 {
4768 struct drm_i915_private *dev_priv = dev->dev_private;
4769 int i;
4770
4771 /* disable MST */
4772 for (i = 0; i < I915_MAX_PORTS; i++) {
4773 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4774 if (!intel_dig_port)
4775 continue;
4776
4777 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4778 if (!intel_dig_port->dp.can_mst)
4779 continue;
4780 if (intel_dig_port->dp.is_mst)
4781 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
4782 }
4783 }
4784 }
4785
4786 void intel_dp_mst_resume(struct drm_device *dev)
4787 {
4788 struct drm_i915_private *dev_priv = dev->dev_private;
4789 int i;
4790
4791 for (i = 0; i < I915_MAX_PORTS; i++) {
4792 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4793 if (!intel_dig_port)
4794 continue;
4795 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4796 int ret;
4797
4798 if (!intel_dig_port->dp.can_mst)
4799 continue;
4800
4801 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
4802 if (ret != 0) {
4803 intel_dp_check_mst_status(&intel_dig_port->dp);
4804 }
4805 }
4806 }
4807 }
This page took 0.141112 seconds and 6 git commands to generate.