Merge branch 'linux-next' of git://git.open-osd.org/linux-open-osd
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_RECEIVER_CAP_SIZE 0xf
40 #define DP_LINK_STATUS_SIZE 6
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 /**
44 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
45 * @intel_dp: DP struct
46 *
47 * If a CPU or PCH DP output is attached to an eDP panel, this function
48 * will return true, and false otherwise.
49 */
50 static bool is_edp(struct intel_dp *intel_dp)
51 {
52 return intel_dp->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 /**
56 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57 * @intel_dp: DP struct
58 *
59 * Returns true if the given DP struct corresponds to a PCH DP port attached
60 * to an eDP panel, false otherwise. Helpful for determining whether we
61 * may need FDI resources for a given DP output or not.
62 */
63 static bool is_pch_edp(struct intel_dp *intel_dp)
64 {
65 return intel_dp->is_pch_edp;
66 }
67
68 /**
69 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70 * @intel_dp: DP struct
71 *
72 * Returns true if the given DP struct corresponds to a CPU eDP port.
73 */
74 static bool is_cpu_edp(struct intel_dp *intel_dp)
75 {
76 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77 }
78
79 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
80 {
81 return container_of(encoder, struct intel_dp, base.base);
82 }
83
84 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
85 {
86 return container_of(intel_attached_encoder(connector),
87 struct intel_dp, base);
88 }
89
90 /**
91 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
92 * @encoder: DRM encoder
93 *
94 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
95 * by intel_display.c.
96 */
97 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
98 {
99 struct intel_dp *intel_dp;
100
101 if (!encoder)
102 return false;
103
104 intel_dp = enc_to_intel_dp(encoder);
105
106 return is_pch_edp(intel_dp);
107 }
108
109 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
110 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
111 static void intel_dp_link_down(struct intel_dp *intel_dp);
112
113 void
114 intel_edp_link_config(struct intel_encoder *intel_encoder,
115 int *lane_num, int *link_bw)
116 {
117 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
118
119 *lane_num = intel_dp->lane_count;
120 if (intel_dp->link_bw == DP_LINK_BW_1_62)
121 *link_bw = 162000;
122 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
123 *link_bw = 270000;
124 }
125
126 int
127 intel_edp_target_clock(struct intel_encoder *intel_encoder,
128 struct drm_display_mode *mode)
129 {
130 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
131
132 if (intel_dp->panel_fixed_mode)
133 return intel_dp->panel_fixed_mode->clock;
134 else
135 return mode->clock;
136 }
137
138 static int
139 intel_dp_max_lane_count(struct intel_dp *intel_dp)
140 {
141 int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
142 switch (max_lane_count) {
143 case 1: case 2: case 4:
144 break;
145 default:
146 max_lane_count = 4;
147 }
148 return max_lane_count;
149 }
150
151 static int
152 intel_dp_max_link_bw(struct intel_dp *intel_dp)
153 {
154 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
155
156 switch (max_link_bw) {
157 case DP_LINK_BW_1_62:
158 case DP_LINK_BW_2_7:
159 break;
160 default:
161 max_link_bw = DP_LINK_BW_1_62;
162 break;
163 }
164 return max_link_bw;
165 }
166
167 static int
168 intel_dp_link_clock(uint8_t link_bw)
169 {
170 if (link_bw == DP_LINK_BW_2_7)
171 return 270000;
172 else
173 return 162000;
174 }
175
176 /*
177 * The units on the numbers in the next two are... bizarre. Examples will
178 * make it clearer; this one parallels an example in the eDP spec.
179 *
180 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
181 *
182 * 270000 * 1 * 8 / 10 == 216000
183 *
184 * The actual data capacity of that configuration is 2.16Gbit/s, so the
185 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
186 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
187 * 119000. At 18bpp that's 2142000 kilobits per second.
188 *
189 * Thus the strange-looking division by 10 in intel_dp_link_required, to
190 * get the result in decakilobits instead of kilobits.
191 */
192
193 static int
194 intel_dp_link_required(int pixel_clock, int bpp)
195 {
196 return (pixel_clock * bpp + 9) / 10;
197 }
198
199 static int
200 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
201 {
202 return (max_link_clock * max_lanes * 8) / 10;
203 }
204
205 static bool
206 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
207 struct drm_display_mode *mode,
208 bool adjust_mode)
209 {
210 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
211 int max_lanes = intel_dp_max_lane_count(intel_dp);
212 int max_rate, mode_rate;
213
214 mode_rate = intel_dp_link_required(mode->clock, 24);
215 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
216
217 if (mode_rate > max_rate) {
218 mode_rate = intel_dp_link_required(mode->clock, 18);
219 if (mode_rate > max_rate)
220 return false;
221
222 if (adjust_mode)
223 mode->private_flags
224 |= INTEL_MODE_DP_FORCE_6BPC;
225
226 return true;
227 }
228
229 return true;
230 }
231
232 static int
233 intel_dp_mode_valid(struct drm_connector *connector,
234 struct drm_display_mode *mode)
235 {
236 struct intel_dp *intel_dp = intel_attached_dp(connector);
237
238 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
239 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
240 return MODE_PANEL;
241
242 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
243 return MODE_PANEL;
244 }
245
246 if (!intel_dp_adjust_dithering(intel_dp, mode, false))
247 return MODE_CLOCK_HIGH;
248
249 if (mode->clock < 10000)
250 return MODE_CLOCK_LOW;
251
252 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
253 return MODE_H_ILLEGAL;
254
255 return MODE_OK;
256 }
257
258 static uint32_t
259 pack_aux(uint8_t *src, int src_bytes)
260 {
261 int i;
262 uint32_t v = 0;
263
264 if (src_bytes > 4)
265 src_bytes = 4;
266 for (i = 0; i < src_bytes; i++)
267 v |= ((uint32_t) src[i]) << ((3-i) * 8);
268 return v;
269 }
270
271 static void
272 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
273 {
274 int i;
275 if (dst_bytes > 4)
276 dst_bytes = 4;
277 for (i = 0; i < dst_bytes; i++)
278 dst[i] = src >> ((3-i) * 8);
279 }
280
281 /* hrawclock is 1/4 the FSB frequency */
282 static int
283 intel_hrawclk(struct drm_device *dev)
284 {
285 struct drm_i915_private *dev_priv = dev->dev_private;
286 uint32_t clkcfg;
287
288 clkcfg = I915_READ(CLKCFG);
289 switch (clkcfg & CLKCFG_FSB_MASK) {
290 case CLKCFG_FSB_400:
291 return 100;
292 case CLKCFG_FSB_533:
293 return 133;
294 case CLKCFG_FSB_667:
295 return 166;
296 case CLKCFG_FSB_800:
297 return 200;
298 case CLKCFG_FSB_1067:
299 return 266;
300 case CLKCFG_FSB_1333:
301 return 333;
302 /* these two are just a guess; one of them might be right */
303 case CLKCFG_FSB_1600:
304 case CLKCFG_FSB_1600_ALT:
305 return 400;
306 default:
307 return 133;
308 }
309 }
310
311 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
312 {
313 struct drm_device *dev = intel_dp->base.base.dev;
314 struct drm_i915_private *dev_priv = dev->dev_private;
315
316 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
317 }
318
319 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
320 {
321 struct drm_device *dev = intel_dp->base.base.dev;
322 struct drm_i915_private *dev_priv = dev->dev_private;
323
324 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
325 }
326
327 static void
328 intel_dp_check_edp(struct intel_dp *intel_dp)
329 {
330 struct drm_device *dev = intel_dp->base.base.dev;
331 struct drm_i915_private *dev_priv = dev->dev_private;
332
333 if (!is_edp(intel_dp))
334 return;
335 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
336 WARN(1, "eDP powered off while attempting aux channel communication.\n");
337 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
338 I915_READ(PCH_PP_STATUS),
339 I915_READ(PCH_PP_CONTROL));
340 }
341 }
342
343 static int
344 intel_dp_aux_ch(struct intel_dp *intel_dp,
345 uint8_t *send, int send_bytes,
346 uint8_t *recv, int recv_size)
347 {
348 uint32_t output_reg = intel_dp->output_reg;
349 struct drm_device *dev = intel_dp->base.base.dev;
350 struct drm_i915_private *dev_priv = dev->dev_private;
351 uint32_t ch_ctl = output_reg + 0x10;
352 uint32_t ch_data = ch_ctl + 4;
353 int i;
354 int recv_bytes;
355 uint32_t status;
356 uint32_t aux_clock_divider;
357 int try, precharge;
358
359 intel_dp_check_edp(intel_dp);
360 /* The clock divider is based off the hrawclk,
361 * and would like to run at 2MHz. So, take the
362 * hrawclk value and divide by 2 and use that
363 *
364 * Note that PCH attached eDP panels should use a 125MHz input
365 * clock divider.
366 */
367 if (is_cpu_edp(intel_dp)) {
368 if (IS_GEN6(dev) || IS_GEN7(dev))
369 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
370 else
371 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
372 } else if (HAS_PCH_SPLIT(dev))
373 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
374 else
375 aux_clock_divider = intel_hrawclk(dev) / 2;
376
377 if (IS_GEN6(dev))
378 precharge = 3;
379 else
380 precharge = 5;
381
382 /* Try to wait for any previous AUX channel activity */
383 for (try = 0; try < 3; try++) {
384 status = I915_READ(ch_ctl);
385 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
386 break;
387 msleep(1);
388 }
389
390 if (try == 3) {
391 WARN(1, "dp_aux_ch not started status 0x%08x\n",
392 I915_READ(ch_ctl));
393 return -EBUSY;
394 }
395
396 /* Must try at least 3 times according to DP spec */
397 for (try = 0; try < 5; try++) {
398 /* Load the send data into the aux channel data registers */
399 for (i = 0; i < send_bytes; i += 4)
400 I915_WRITE(ch_data + i,
401 pack_aux(send + i, send_bytes - i));
402
403 /* Send the command and wait for it to complete */
404 I915_WRITE(ch_ctl,
405 DP_AUX_CH_CTL_SEND_BUSY |
406 DP_AUX_CH_CTL_TIME_OUT_400us |
407 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
408 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
409 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
410 DP_AUX_CH_CTL_DONE |
411 DP_AUX_CH_CTL_TIME_OUT_ERROR |
412 DP_AUX_CH_CTL_RECEIVE_ERROR);
413 for (;;) {
414 status = I915_READ(ch_ctl);
415 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
416 break;
417 udelay(100);
418 }
419
420 /* Clear done status and any errors */
421 I915_WRITE(ch_ctl,
422 status |
423 DP_AUX_CH_CTL_DONE |
424 DP_AUX_CH_CTL_TIME_OUT_ERROR |
425 DP_AUX_CH_CTL_RECEIVE_ERROR);
426
427 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
428 DP_AUX_CH_CTL_RECEIVE_ERROR))
429 continue;
430 if (status & DP_AUX_CH_CTL_DONE)
431 break;
432 }
433
434 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
435 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
436 return -EBUSY;
437 }
438
439 /* Check for timeout or receive error.
440 * Timeouts occur when the sink is not connected
441 */
442 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
443 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
444 return -EIO;
445 }
446
447 /* Timeouts occur when the device isn't connected, so they're
448 * "normal" -- don't fill the kernel log with these */
449 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
450 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
451 return -ETIMEDOUT;
452 }
453
454 /* Unload any bytes sent back from the other side */
455 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
456 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
457 if (recv_bytes > recv_size)
458 recv_bytes = recv_size;
459
460 for (i = 0; i < recv_bytes; i += 4)
461 unpack_aux(I915_READ(ch_data + i),
462 recv + i, recv_bytes - i);
463
464 return recv_bytes;
465 }
466
467 /* Write data to the aux channel in native mode */
468 static int
469 intel_dp_aux_native_write(struct intel_dp *intel_dp,
470 uint16_t address, uint8_t *send, int send_bytes)
471 {
472 int ret;
473 uint8_t msg[20];
474 int msg_bytes;
475 uint8_t ack;
476
477 intel_dp_check_edp(intel_dp);
478 if (send_bytes > 16)
479 return -1;
480 msg[0] = AUX_NATIVE_WRITE << 4;
481 msg[1] = address >> 8;
482 msg[2] = address & 0xff;
483 msg[3] = send_bytes - 1;
484 memcpy(&msg[4], send, send_bytes);
485 msg_bytes = send_bytes + 4;
486 for (;;) {
487 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
488 if (ret < 0)
489 return ret;
490 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
491 break;
492 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
493 udelay(100);
494 else
495 return -EIO;
496 }
497 return send_bytes;
498 }
499
500 /* Write a single byte to the aux channel in native mode */
501 static int
502 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
503 uint16_t address, uint8_t byte)
504 {
505 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
506 }
507
508 /* read bytes from a native aux channel */
509 static int
510 intel_dp_aux_native_read(struct intel_dp *intel_dp,
511 uint16_t address, uint8_t *recv, int recv_bytes)
512 {
513 uint8_t msg[4];
514 int msg_bytes;
515 uint8_t reply[20];
516 int reply_bytes;
517 uint8_t ack;
518 int ret;
519
520 intel_dp_check_edp(intel_dp);
521 msg[0] = AUX_NATIVE_READ << 4;
522 msg[1] = address >> 8;
523 msg[2] = address & 0xff;
524 msg[3] = recv_bytes - 1;
525
526 msg_bytes = 4;
527 reply_bytes = recv_bytes + 1;
528
529 for (;;) {
530 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
531 reply, reply_bytes);
532 if (ret == 0)
533 return -EPROTO;
534 if (ret < 0)
535 return ret;
536 ack = reply[0];
537 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
538 memcpy(recv, reply + 1, ret - 1);
539 return ret - 1;
540 }
541 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
542 udelay(100);
543 else
544 return -EIO;
545 }
546 }
547
548 static int
549 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
550 uint8_t write_byte, uint8_t *read_byte)
551 {
552 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
553 struct intel_dp *intel_dp = container_of(adapter,
554 struct intel_dp,
555 adapter);
556 uint16_t address = algo_data->address;
557 uint8_t msg[5];
558 uint8_t reply[2];
559 unsigned retry;
560 int msg_bytes;
561 int reply_bytes;
562 int ret;
563
564 intel_dp_check_edp(intel_dp);
565 /* Set up the command byte */
566 if (mode & MODE_I2C_READ)
567 msg[0] = AUX_I2C_READ << 4;
568 else
569 msg[0] = AUX_I2C_WRITE << 4;
570
571 if (!(mode & MODE_I2C_STOP))
572 msg[0] |= AUX_I2C_MOT << 4;
573
574 msg[1] = address >> 8;
575 msg[2] = address;
576
577 switch (mode) {
578 case MODE_I2C_WRITE:
579 msg[3] = 0;
580 msg[4] = write_byte;
581 msg_bytes = 5;
582 reply_bytes = 1;
583 break;
584 case MODE_I2C_READ:
585 msg[3] = 0;
586 msg_bytes = 4;
587 reply_bytes = 2;
588 break;
589 default:
590 msg_bytes = 3;
591 reply_bytes = 1;
592 break;
593 }
594
595 for (retry = 0; retry < 5; retry++) {
596 ret = intel_dp_aux_ch(intel_dp,
597 msg, msg_bytes,
598 reply, reply_bytes);
599 if (ret < 0) {
600 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
601 return ret;
602 }
603
604 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
605 case AUX_NATIVE_REPLY_ACK:
606 /* I2C-over-AUX Reply field is only valid
607 * when paired with AUX ACK.
608 */
609 break;
610 case AUX_NATIVE_REPLY_NACK:
611 DRM_DEBUG_KMS("aux_ch native nack\n");
612 return -EREMOTEIO;
613 case AUX_NATIVE_REPLY_DEFER:
614 udelay(100);
615 continue;
616 default:
617 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
618 reply[0]);
619 return -EREMOTEIO;
620 }
621
622 switch (reply[0] & AUX_I2C_REPLY_MASK) {
623 case AUX_I2C_REPLY_ACK:
624 if (mode == MODE_I2C_READ) {
625 *read_byte = reply[1];
626 }
627 return reply_bytes - 1;
628 case AUX_I2C_REPLY_NACK:
629 DRM_DEBUG_KMS("aux_i2c nack\n");
630 return -EREMOTEIO;
631 case AUX_I2C_REPLY_DEFER:
632 DRM_DEBUG_KMS("aux_i2c defer\n");
633 udelay(100);
634 break;
635 default:
636 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
637 return -EREMOTEIO;
638 }
639 }
640
641 DRM_ERROR("too many retries, giving up\n");
642 return -EREMOTEIO;
643 }
644
645 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
646 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
647
648 static int
649 intel_dp_i2c_init(struct intel_dp *intel_dp,
650 struct intel_connector *intel_connector, const char *name)
651 {
652 int ret;
653
654 DRM_DEBUG_KMS("i2c_init %s\n", name);
655 intel_dp->algo.running = false;
656 intel_dp->algo.address = 0;
657 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
658
659 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
660 intel_dp->adapter.owner = THIS_MODULE;
661 intel_dp->adapter.class = I2C_CLASS_DDC;
662 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
663 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
664 intel_dp->adapter.algo_data = &intel_dp->algo;
665 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
666
667 ironlake_edp_panel_vdd_on(intel_dp);
668 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
669 ironlake_edp_panel_vdd_off(intel_dp, false);
670 return ret;
671 }
672
673 static bool
674 intel_dp_mode_fixup(struct drm_encoder *encoder,
675 const struct drm_display_mode *mode,
676 struct drm_display_mode *adjusted_mode)
677 {
678 struct drm_device *dev = encoder->dev;
679 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
680 int lane_count, clock;
681 int max_lane_count = intel_dp_max_lane_count(intel_dp);
682 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
683 int bpp, mode_rate;
684 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
685
686 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
687 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
688 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
689 mode, adjusted_mode);
690 }
691
692 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
693 return false;
694
695 DRM_DEBUG_KMS("DP link computation with max lane count %i "
696 "max bw %02x pixel clock %iKHz\n",
697 max_lane_count, bws[max_clock], adjusted_mode->clock);
698
699 if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
700 return false;
701
702 bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
703 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
704
705 for (clock = 0; clock <= max_clock; clock++) {
706 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
707 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
708
709 if (mode_rate <= link_avail) {
710 intel_dp->link_bw = bws[clock];
711 intel_dp->lane_count = lane_count;
712 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
713 DRM_DEBUG_KMS("DP link bw %02x lane "
714 "count %d clock %d bpp %d\n",
715 intel_dp->link_bw, intel_dp->lane_count,
716 adjusted_mode->clock, bpp);
717 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
718 mode_rate, link_avail);
719 return true;
720 }
721 }
722 }
723
724 return false;
725 }
726
727 struct intel_dp_m_n {
728 uint32_t tu;
729 uint32_t gmch_m;
730 uint32_t gmch_n;
731 uint32_t link_m;
732 uint32_t link_n;
733 };
734
735 static void
736 intel_reduce_ratio(uint32_t *num, uint32_t *den)
737 {
738 while (*num > 0xffffff || *den > 0xffffff) {
739 *num >>= 1;
740 *den >>= 1;
741 }
742 }
743
744 static void
745 intel_dp_compute_m_n(int bpp,
746 int nlanes,
747 int pixel_clock,
748 int link_clock,
749 struct intel_dp_m_n *m_n)
750 {
751 m_n->tu = 64;
752 m_n->gmch_m = (pixel_clock * bpp) >> 3;
753 m_n->gmch_n = link_clock * nlanes;
754 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
755 m_n->link_m = pixel_clock;
756 m_n->link_n = link_clock;
757 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
758 }
759
760 void
761 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
762 struct drm_display_mode *adjusted_mode)
763 {
764 struct drm_device *dev = crtc->dev;
765 struct intel_encoder *encoder;
766 struct drm_i915_private *dev_priv = dev->dev_private;
767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
768 int lane_count = 4;
769 struct intel_dp_m_n m_n;
770 int pipe = intel_crtc->pipe;
771
772 /*
773 * Find the lane count in the intel_encoder private
774 */
775 for_each_encoder_on_crtc(dev, crtc, encoder) {
776 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
777
778 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
779 intel_dp->base.type == INTEL_OUTPUT_EDP)
780 {
781 lane_count = intel_dp->lane_count;
782 break;
783 }
784 }
785
786 /*
787 * Compute the GMCH and Link ratios. The '3' here is
788 * the number of bytes_per_pixel post-LUT, which we always
789 * set up for 8-bits of R/G/B, or 3 bytes total.
790 */
791 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
792 mode->clock, adjusted_mode->clock, &m_n);
793
794 if (HAS_PCH_SPLIT(dev)) {
795 I915_WRITE(TRANSDATA_M1(pipe),
796 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
797 m_n.gmch_m);
798 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
799 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
800 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
801 } else {
802 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
803 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
804 m_n.gmch_m);
805 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
806 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
807 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
808 }
809 }
810
811 static void
812 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
813 struct drm_display_mode *adjusted_mode)
814 {
815 struct drm_device *dev = encoder->dev;
816 struct drm_i915_private *dev_priv = dev->dev_private;
817 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
818 struct drm_crtc *crtc = intel_dp->base.base.crtc;
819 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
820
821 /*
822 * There are four kinds of DP registers:
823 *
824 * IBX PCH
825 * SNB CPU
826 * IVB CPU
827 * CPT PCH
828 *
829 * IBX PCH and CPU are the same for almost everything,
830 * except that the CPU DP PLL is configured in this
831 * register
832 *
833 * CPT PCH is quite different, having many bits moved
834 * to the TRANS_DP_CTL register instead. That
835 * configuration happens (oddly) in ironlake_pch_enable
836 */
837
838 /* Preserve the BIOS-computed detected bit. This is
839 * supposed to be read-only.
840 */
841 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
842
843 /* Handle DP bits in common between all three register formats */
844 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
845
846 switch (intel_dp->lane_count) {
847 case 1:
848 intel_dp->DP |= DP_PORT_WIDTH_1;
849 break;
850 case 2:
851 intel_dp->DP |= DP_PORT_WIDTH_2;
852 break;
853 case 4:
854 intel_dp->DP |= DP_PORT_WIDTH_4;
855 break;
856 }
857 if (intel_dp->has_audio) {
858 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
859 pipe_name(intel_crtc->pipe));
860 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
861 intel_write_eld(encoder, adjusted_mode);
862 }
863 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
864 intel_dp->link_configuration[0] = intel_dp->link_bw;
865 intel_dp->link_configuration[1] = intel_dp->lane_count;
866 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
867 /*
868 * Check for DPCD version > 1.1 and enhanced framing support
869 */
870 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
871 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
872 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
873 }
874
875 /* Split out the IBX/CPU vs CPT settings */
876
877 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
878 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
879 intel_dp->DP |= DP_SYNC_HS_HIGH;
880 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
881 intel_dp->DP |= DP_SYNC_VS_HIGH;
882 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
883
884 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
885 intel_dp->DP |= DP_ENHANCED_FRAMING;
886
887 intel_dp->DP |= intel_crtc->pipe << 29;
888
889 /* don't miss out required setting for eDP */
890 if (adjusted_mode->clock < 200000)
891 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
892 else
893 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
894 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
895 intel_dp->DP |= intel_dp->color_range;
896
897 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
898 intel_dp->DP |= DP_SYNC_HS_HIGH;
899 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
900 intel_dp->DP |= DP_SYNC_VS_HIGH;
901 intel_dp->DP |= DP_LINK_TRAIN_OFF;
902
903 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
904 intel_dp->DP |= DP_ENHANCED_FRAMING;
905
906 if (intel_crtc->pipe == 1)
907 intel_dp->DP |= DP_PIPEB_SELECT;
908
909 if (is_cpu_edp(intel_dp)) {
910 /* don't miss out required setting for eDP */
911 if (adjusted_mode->clock < 200000)
912 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
913 else
914 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
915 }
916 } else {
917 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
918 }
919 }
920
921 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
922 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
923
924 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
925 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
926
927 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
928 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
929
930 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
931 u32 mask,
932 u32 value)
933 {
934 struct drm_device *dev = intel_dp->base.base.dev;
935 struct drm_i915_private *dev_priv = dev->dev_private;
936
937 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
938 mask, value,
939 I915_READ(PCH_PP_STATUS),
940 I915_READ(PCH_PP_CONTROL));
941
942 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
943 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
944 I915_READ(PCH_PP_STATUS),
945 I915_READ(PCH_PP_CONTROL));
946 }
947 }
948
949 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
950 {
951 DRM_DEBUG_KMS("Wait for panel power on\n");
952 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
953 }
954
955 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
956 {
957 DRM_DEBUG_KMS("Wait for panel power off time\n");
958 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
959 }
960
961 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
962 {
963 DRM_DEBUG_KMS("Wait for panel power cycle\n");
964 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
965 }
966
967
968 /* Read the current pp_control value, unlocking the register if it
969 * is locked
970 */
971
972 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
973 {
974 u32 control = I915_READ(PCH_PP_CONTROL);
975
976 control &= ~PANEL_UNLOCK_MASK;
977 control |= PANEL_UNLOCK_REGS;
978 return control;
979 }
980
981 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
982 {
983 struct drm_device *dev = intel_dp->base.base.dev;
984 struct drm_i915_private *dev_priv = dev->dev_private;
985 u32 pp;
986
987 if (!is_edp(intel_dp))
988 return;
989 DRM_DEBUG_KMS("Turn eDP VDD on\n");
990
991 WARN(intel_dp->want_panel_vdd,
992 "eDP VDD already requested on\n");
993
994 intel_dp->want_panel_vdd = true;
995
996 if (ironlake_edp_have_panel_vdd(intel_dp)) {
997 DRM_DEBUG_KMS("eDP VDD already on\n");
998 return;
999 }
1000
1001 if (!ironlake_edp_have_panel_power(intel_dp))
1002 ironlake_wait_panel_power_cycle(intel_dp);
1003
1004 pp = ironlake_get_pp_control(dev_priv);
1005 pp |= EDP_FORCE_VDD;
1006 I915_WRITE(PCH_PP_CONTROL, pp);
1007 POSTING_READ(PCH_PP_CONTROL);
1008 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1009 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1010
1011 /*
1012 * If the panel wasn't on, delay before accessing aux channel
1013 */
1014 if (!ironlake_edp_have_panel_power(intel_dp)) {
1015 DRM_DEBUG_KMS("eDP was not running\n");
1016 msleep(intel_dp->panel_power_up_delay);
1017 }
1018 }
1019
1020 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1021 {
1022 struct drm_device *dev = intel_dp->base.base.dev;
1023 struct drm_i915_private *dev_priv = dev->dev_private;
1024 u32 pp;
1025
1026 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1027 pp = ironlake_get_pp_control(dev_priv);
1028 pp &= ~EDP_FORCE_VDD;
1029 I915_WRITE(PCH_PP_CONTROL, pp);
1030 POSTING_READ(PCH_PP_CONTROL);
1031
1032 /* Make sure sequencer is idle before allowing subsequent activity */
1033 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1034 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1035
1036 msleep(intel_dp->panel_power_down_delay);
1037 }
1038 }
1039
1040 static void ironlake_panel_vdd_work(struct work_struct *__work)
1041 {
1042 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1043 struct intel_dp, panel_vdd_work);
1044 struct drm_device *dev = intel_dp->base.base.dev;
1045
1046 mutex_lock(&dev->mode_config.mutex);
1047 ironlake_panel_vdd_off_sync(intel_dp);
1048 mutex_unlock(&dev->mode_config.mutex);
1049 }
1050
1051 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1052 {
1053 if (!is_edp(intel_dp))
1054 return;
1055
1056 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1057 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1058
1059 intel_dp->want_panel_vdd = false;
1060
1061 if (sync) {
1062 ironlake_panel_vdd_off_sync(intel_dp);
1063 } else {
1064 /*
1065 * Queue the timer to fire a long
1066 * time from now (relative to the power down delay)
1067 * to keep the panel power up across a sequence of operations
1068 */
1069 schedule_delayed_work(&intel_dp->panel_vdd_work,
1070 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1071 }
1072 }
1073
1074 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1075 {
1076 struct drm_device *dev = intel_dp->base.base.dev;
1077 struct drm_i915_private *dev_priv = dev->dev_private;
1078 u32 pp;
1079
1080 if (!is_edp(intel_dp))
1081 return;
1082
1083 DRM_DEBUG_KMS("Turn eDP power on\n");
1084
1085 if (ironlake_edp_have_panel_power(intel_dp)) {
1086 DRM_DEBUG_KMS("eDP power already on\n");
1087 return;
1088 }
1089
1090 ironlake_wait_panel_power_cycle(intel_dp);
1091
1092 pp = ironlake_get_pp_control(dev_priv);
1093 if (IS_GEN5(dev)) {
1094 /* ILK workaround: disable reset around power sequence */
1095 pp &= ~PANEL_POWER_RESET;
1096 I915_WRITE(PCH_PP_CONTROL, pp);
1097 POSTING_READ(PCH_PP_CONTROL);
1098 }
1099
1100 pp |= POWER_TARGET_ON;
1101 if (!IS_GEN5(dev))
1102 pp |= PANEL_POWER_RESET;
1103
1104 I915_WRITE(PCH_PP_CONTROL, pp);
1105 POSTING_READ(PCH_PP_CONTROL);
1106
1107 ironlake_wait_panel_on(intel_dp);
1108
1109 if (IS_GEN5(dev)) {
1110 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1111 I915_WRITE(PCH_PP_CONTROL, pp);
1112 POSTING_READ(PCH_PP_CONTROL);
1113 }
1114 }
1115
1116 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1117 {
1118 struct drm_device *dev = intel_dp->base.base.dev;
1119 struct drm_i915_private *dev_priv = dev->dev_private;
1120 u32 pp;
1121
1122 if (!is_edp(intel_dp))
1123 return;
1124
1125 DRM_DEBUG_KMS("Turn eDP power off\n");
1126
1127 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1128
1129 pp = ironlake_get_pp_control(dev_priv);
1130 /* We need to switch off panel power _and_ force vdd, for otherwise some
1131 * panels get very unhappy and cease to work. */
1132 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1133 I915_WRITE(PCH_PP_CONTROL, pp);
1134 POSTING_READ(PCH_PP_CONTROL);
1135
1136 intel_dp->want_panel_vdd = false;
1137
1138 ironlake_wait_panel_off(intel_dp);
1139 }
1140
1141 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1142 {
1143 struct drm_device *dev = intel_dp->base.base.dev;
1144 struct drm_i915_private *dev_priv = dev->dev_private;
1145 u32 pp;
1146
1147 if (!is_edp(intel_dp))
1148 return;
1149
1150 DRM_DEBUG_KMS("\n");
1151 /*
1152 * If we enable the backlight right away following a panel power
1153 * on, we may see slight flicker as the panel syncs with the eDP
1154 * link. So delay a bit to make sure the image is solid before
1155 * allowing it to appear.
1156 */
1157 msleep(intel_dp->backlight_on_delay);
1158 pp = ironlake_get_pp_control(dev_priv);
1159 pp |= EDP_BLC_ENABLE;
1160 I915_WRITE(PCH_PP_CONTROL, pp);
1161 POSTING_READ(PCH_PP_CONTROL);
1162 }
1163
1164 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1165 {
1166 struct drm_device *dev = intel_dp->base.base.dev;
1167 struct drm_i915_private *dev_priv = dev->dev_private;
1168 u32 pp;
1169
1170 if (!is_edp(intel_dp))
1171 return;
1172
1173 DRM_DEBUG_KMS("\n");
1174 pp = ironlake_get_pp_control(dev_priv);
1175 pp &= ~EDP_BLC_ENABLE;
1176 I915_WRITE(PCH_PP_CONTROL, pp);
1177 POSTING_READ(PCH_PP_CONTROL);
1178 msleep(intel_dp->backlight_off_delay);
1179 }
1180
1181 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1182 {
1183 struct drm_device *dev = intel_dp->base.base.dev;
1184 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1185 struct drm_i915_private *dev_priv = dev->dev_private;
1186 u32 dpa_ctl;
1187
1188 assert_pipe_disabled(dev_priv,
1189 to_intel_crtc(crtc)->pipe);
1190
1191 DRM_DEBUG_KMS("\n");
1192 dpa_ctl = I915_READ(DP_A);
1193 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1194 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1195
1196 /* We don't adjust intel_dp->DP while tearing down the link, to
1197 * facilitate link retraining (e.g. after hotplug). Hence clear all
1198 * enable bits here to ensure that we don't enable too much. */
1199 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1200 intel_dp->DP |= DP_PLL_ENABLE;
1201 I915_WRITE(DP_A, intel_dp->DP);
1202 POSTING_READ(DP_A);
1203 udelay(200);
1204 }
1205
1206 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1207 {
1208 struct drm_device *dev = intel_dp->base.base.dev;
1209 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1210 struct drm_i915_private *dev_priv = dev->dev_private;
1211 u32 dpa_ctl;
1212
1213 assert_pipe_disabled(dev_priv,
1214 to_intel_crtc(crtc)->pipe);
1215
1216 dpa_ctl = I915_READ(DP_A);
1217 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1218 "dp pll off, should be on\n");
1219 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1220
1221 /* We can't rely on the value tracked for the DP register in
1222 * intel_dp->DP because link_down must not change that (otherwise link
1223 * re-training will fail. */
1224 dpa_ctl &= ~DP_PLL_ENABLE;
1225 I915_WRITE(DP_A, dpa_ctl);
1226 POSTING_READ(DP_A);
1227 udelay(200);
1228 }
1229
1230 /* If the sink supports it, try to set the power state appropriately */
1231 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1232 {
1233 int ret, i;
1234
1235 /* Should have a valid DPCD by this point */
1236 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1237 return;
1238
1239 if (mode != DRM_MODE_DPMS_ON) {
1240 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1241 DP_SET_POWER_D3);
1242 if (ret != 1)
1243 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1244 } else {
1245 /*
1246 * When turning on, we need to retry for 1ms to give the sink
1247 * time to wake up.
1248 */
1249 for (i = 0; i < 3; i++) {
1250 ret = intel_dp_aux_native_write_1(intel_dp,
1251 DP_SET_POWER,
1252 DP_SET_POWER_D0);
1253 if (ret == 1)
1254 break;
1255 msleep(1);
1256 }
1257 }
1258 }
1259
1260 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1261 enum pipe *pipe)
1262 {
1263 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1264 struct drm_device *dev = encoder->base.dev;
1265 struct drm_i915_private *dev_priv = dev->dev_private;
1266 u32 tmp = I915_READ(intel_dp->output_reg);
1267
1268 if (!(tmp & DP_PORT_EN))
1269 return false;
1270
1271 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1272 *pipe = PORT_TO_PIPE_CPT(tmp);
1273 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1274 *pipe = PORT_TO_PIPE(tmp);
1275 } else {
1276 u32 trans_sel;
1277 u32 trans_dp;
1278 int i;
1279
1280 switch (intel_dp->output_reg) {
1281 case PCH_DP_B:
1282 trans_sel = TRANS_DP_PORT_SEL_B;
1283 break;
1284 case PCH_DP_C:
1285 trans_sel = TRANS_DP_PORT_SEL_C;
1286 break;
1287 case PCH_DP_D:
1288 trans_sel = TRANS_DP_PORT_SEL_D;
1289 break;
1290 default:
1291 return true;
1292 }
1293
1294 for_each_pipe(i) {
1295 trans_dp = I915_READ(TRANS_DP_CTL(i));
1296 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1297 *pipe = i;
1298 return true;
1299 }
1300 }
1301 }
1302
1303 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1304
1305 return true;
1306 }
1307
1308 static void intel_disable_dp(struct intel_encoder *encoder)
1309 {
1310 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1311
1312 /* Make sure the panel is off before trying to change the mode. But also
1313 * ensure that we have vdd while we switch off the panel. */
1314 ironlake_edp_panel_vdd_on(intel_dp);
1315 ironlake_edp_backlight_off(intel_dp);
1316 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1317 ironlake_edp_panel_off(intel_dp);
1318
1319 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1320 if (!is_cpu_edp(intel_dp))
1321 intel_dp_link_down(intel_dp);
1322 }
1323
1324 static void intel_post_disable_dp(struct intel_encoder *encoder)
1325 {
1326 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1327
1328 if (is_cpu_edp(intel_dp)) {
1329 intel_dp_link_down(intel_dp);
1330 ironlake_edp_pll_off(intel_dp);
1331 }
1332 }
1333
1334 static void intel_enable_dp(struct intel_encoder *encoder)
1335 {
1336 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1337 struct drm_device *dev = encoder->base.dev;
1338 struct drm_i915_private *dev_priv = dev->dev_private;
1339 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1340
1341 if (WARN_ON(dp_reg & DP_PORT_EN))
1342 return;
1343
1344 ironlake_edp_panel_vdd_on(intel_dp);
1345 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1346 intel_dp_start_link_train(intel_dp);
1347 ironlake_edp_panel_on(intel_dp);
1348 ironlake_edp_panel_vdd_off(intel_dp, true);
1349 intel_dp_complete_link_train(intel_dp);
1350 ironlake_edp_backlight_on(intel_dp);
1351 }
1352
1353 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1354 {
1355 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1356
1357 if (is_cpu_edp(intel_dp))
1358 ironlake_edp_pll_on(intel_dp);
1359 }
1360
1361 /*
1362 * Native read with retry for link status and receiver capability reads for
1363 * cases where the sink may still be asleep.
1364 */
1365 static bool
1366 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1367 uint8_t *recv, int recv_bytes)
1368 {
1369 int ret, i;
1370
1371 /*
1372 * Sinks are *supposed* to come up within 1ms from an off state,
1373 * but we're also supposed to retry 3 times per the spec.
1374 */
1375 for (i = 0; i < 3; i++) {
1376 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1377 recv_bytes);
1378 if (ret == recv_bytes)
1379 return true;
1380 msleep(1);
1381 }
1382
1383 return false;
1384 }
1385
1386 /*
1387 * Fetch AUX CH registers 0x202 - 0x207 which contain
1388 * link status information
1389 */
1390 static bool
1391 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1392 {
1393 return intel_dp_aux_native_read_retry(intel_dp,
1394 DP_LANE0_1_STATUS,
1395 link_status,
1396 DP_LINK_STATUS_SIZE);
1397 }
1398
1399 static uint8_t
1400 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1401 int r)
1402 {
1403 return link_status[r - DP_LANE0_1_STATUS];
1404 }
1405
1406 static uint8_t
1407 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1408 int lane)
1409 {
1410 int s = ((lane & 1) ?
1411 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1412 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1413 uint8_t l = adjust_request[lane>>1];
1414
1415 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1416 }
1417
1418 static uint8_t
1419 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1420 int lane)
1421 {
1422 int s = ((lane & 1) ?
1423 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1424 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1425 uint8_t l = adjust_request[lane>>1];
1426
1427 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1428 }
1429
1430
1431 #if 0
1432 static char *voltage_names[] = {
1433 "0.4V", "0.6V", "0.8V", "1.2V"
1434 };
1435 static char *pre_emph_names[] = {
1436 "0dB", "3.5dB", "6dB", "9.5dB"
1437 };
1438 static char *link_train_names[] = {
1439 "pattern 1", "pattern 2", "idle", "off"
1440 };
1441 #endif
1442
1443 /*
1444 * These are source-specific values; current Intel hardware supports
1445 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1446 */
1447
1448 static uint8_t
1449 intel_dp_voltage_max(struct intel_dp *intel_dp)
1450 {
1451 struct drm_device *dev = intel_dp->base.base.dev;
1452
1453 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1454 return DP_TRAIN_VOLTAGE_SWING_800;
1455 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1456 return DP_TRAIN_VOLTAGE_SWING_1200;
1457 else
1458 return DP_TRAIN_VOLTAGE_SWING_800;
1459 }
1460
1461 static uint8_t
1462 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1463 {
1464 struct drm_device *dev = intel_dp->base.base.dev;
1465
1466 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1467 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1468 case DP_TRAIN_VOLTAGE_SWING_400:
1469 return DP_TRAIN_PRE_EMPHASIS_6;
1470 case DP_TRAIN_VOLTAGE_SWING_600:
1471 case DP_TRAIN_VOLTAGE_SWING_800:
1472 return DP_TRAIN_PRE_EMPHASIS_3_5;
1473 default:
1474 return DP_TRAIN_PRE_EMPHASIS_0;
1475 }
1476 } else {
1477 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1478 case DP_TRAIN_VOLTAGE_SWING_400:
1479 return DP_TRAIN_PRE_EMPHASIS_6;
1480 case DP_TRAIN_VOLTAGE_SWING_600:
1481 return DP_TRAIN_PRE_EMPHASIS_6;
1482 case DP_TRAIN_VOLTAGE_SWING_800:
1483 return DP_TRAIN_PRE_EMPHASIS_3_5;
1484 case DP_TRAIN_VOLTAGE_SWING_1200:
1485 default:
1486 return DP_TRAIN_PRE_EMPHASIS_0;
1487 }
1488 }
1489 }
1490
1491 static void
1492 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1493 {
1494 uint8_t v = 0;
1495 uint8_t p = 0;
1496 int lane;
1497 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1498 uint8_t voltage_max;
1499 uint8_t preemph_max;
1500
1501 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1502 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1503 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1504
1505 if (this_v > v)
1506 v = this_v;
1507 if (this_p > p)
1508 p = this_p;
1509 }
1510
1511 voltage_max = intel_dp_voltage_max(intel_dp);
1512 if (v >= voltage_max)
1513 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1514
1515 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1516 if (p >= preemph_max)
1517 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1518
1519 for (lane = 0; lane < 4; lane++)
1520 intel_dp->train_set[lane] = v | p;
1521 }
1522
1523 static uint32_t
1524 intel_dp_signal_levels(uint8_t train_set)
1525 {
1526 uint32_t signal_levels = 0;
1527
1528 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1529 case DP_TRAIN_VOLTAGE_SWING_400:
1530 default:
1531 signal_levels |= DP_VOLTAGE_0_4;
1532 break;
1533 case DP_TRAIN_VOLTAGE_SWING_600:
1534 signal_levels |= DP_VOLTAGE_0_6;
1535 break;
1536 case DP_TRAIN_VOLTAGE_SWING_800:
1537 signal_levels |= DP_VOLTAGE_0_8;
1538 break;
1539 case DP_TRAIN_VOLTAGE_SWING_1200:
1540 signal_levels |= DP_VOLTAGE_1_2;
1541 break;
1542 }
1543 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1544 case DP_TRAIN_PRE_EMPHASIS_0:
1545 default:
1546 signal_levels |= DP_PRE_EMPHASIS_0;
1547 break;
1548 case DP_TRAIN_PRE_EMPHASIS_3_5:
1549 signal_levels |= DP_PRE_EMPHASIS_3_5;
1550 break;
1551 case DP_TRAIN_PRE_EMPHASIS_6:
1552 signal_levels |= DP_PRE_EMPHASIS_6;
1553 break;
1554 case DP_TRAIN_PRE_EMPHASIS_9_5:
1555 signal_levels |= DP_PRE_EMPHASIS_9_5;
1556 break;
1557 }
1558 return signal_levels;
1559 }
1560
1561 /* Gen6's DP voltage swing and pre-emphasis control */
1562 static uint32_t
1563 intel_gen6_edp_signal_levels(uint8_t train_set)
1564 {
1565 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1566 DP_TRAIN_PRE_EMPHASIS_MASK);
1567 switch (signal_levels) {
1568 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1569 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1570 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1571 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1572 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1573 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1574 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1575 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1576 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1577 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1578 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1579 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1580 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1581 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1582 default:
1583 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1584 "0x%x\n", signal_levels);
1585 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1586 }
1587 }
1588
1589 /* Gen7's DP voltage swing and pre-emphasis control */
1590 static uint32_t
1591 intel_gen7_edp_signal_levels(uint8_t train_set)
1592 {
1593 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1594 DP_TRAIN_PRE_EMPHASIS_MASK);
1595 switch (signal_levels) {
1596 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1597 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1598 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1599 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1600 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1601 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1602
1603 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1604 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1605 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1606 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1607
1608 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1609 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1610 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1611 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1612
1613 default:
1614 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1615 "0x%x\n", signal_levels);
1616 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1617 }
1618 }
1619
1620 static uint8_t
1621 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1622 int lane)
1623 {
1624 int s = (lane & 1) * 4;
1625 uint8_t l = link_status[lane>>1];
1626
1627 return (l >> s) & 0xf;
1628 }
1629
1630 /* Check for clock recovery is done on all channels */
1631 static bool
1632 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1633 {
1634 int lane;
1635 uint8_t lane_status;
1636
1637 for (lane = 0; lane < lane_count; lane++) {
1638 lane_status = intel_get_lane_status(link_status, lane);
1639 if ((lane_status & DP_LANE_CR_DONE) == 0)
1640 return false;
1641 }
1642 return true;
1643 }
1644
1645 /* Check to see if channel eq is done on all channels */
1646 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1647 DP_LANE_CHANNEL_EQ_DONE|\
1648 DP_LANE_SYMBOL_LOCKED)
1649 static bool
1650 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1651 {
1652 uint8_t lane_align;
1653 uint8_t lane_status;
1654 int lane;
1655
1656 lane_align = intel_dp_link_status(link_status,
1657 DP_LANE_ALIGN_STATUS_UPDATED);
1658 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1659 return false;
1660 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1661 lane_status = intel_get_lane_status(link_status, lane);
1662 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1663 return false;
1664 }
1665 return true;
1666 }
1667
1668 static bool
1669 intel_dp_set_link_train(struct intel_dp *intel_dp,
1670 uint32_t dp_reg_value,
1671 uint8_t dp_train_pat)
1672 {
1673 struct drm_device *dev = intel_dp->base.base.dev;
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675 int ret;
1676
1677 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1678 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1679
1680 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1681 case DP_TRAINING_PATTERN_DISABLE:
1682 dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1683 break;
1684 case DP_TRAINING_PATTERN_1:
1685 dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1686 break;
1687 case DP_TRAINING_PATTERN_2:
1688 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1689 break;
1690 case DP_TRAINING_PATTERN_3:
1691 DRM_ERROR("DP training pattern 3 not supported\n");
1692 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1693 break;
1694 }
1695
1696 } else {
1697 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1698
1699 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1700 case DP_TRAINING_PATTERN_DISABLE:
1701 dp_reg_value |= DP_LINK_TRAIN_OFF;
1702 break;
1703 case DP_TRAINING_PATTERN_1:
1704 dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1705 break;
1706 case DP_TRAINING_PATTERN_2:
1707 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1708 break;
1709 case DP_TRAINING_PATTERN_3:
1710 DRM_ERROR("DP training pattern 3 not supported\n");
1711 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1712 break;
1713 }
1714 }
1715
1716 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1717 POSTING_READ(intel_dp->output_reg);
1718
1719 intel_dp_aux_native_write_1(intel_dp,
1720 DP_TRAINING_PATTERN_SET,
1721 dp_train_pat);
1722
1723 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1724 DP_TRAINING_PATTERN_DISABLE) {
1725 ret = intel_dp_aux_native_write(intel_dp,
1726 DP_TRAINING_LANE0_SET,
1727 intel_dp->train_set,
1728 intel_dp->lane_count);
1729 if (ret != intel_dp->lane_count)
1730 return false;
1731 }
1732
1733 return true;
1734 }
1735
1736 /* Enable corresponding port and start training pattern 1 */
1737 static void
1738 intel_dp_start_link_train(struct intel_dp *intel_dp)
1739 {
1740 struct drm_device *dev = intel_dp->base.base.dev;
1741 int i;
1742 uint8_t voltage;
1743 bool clock_recovery = false;
1744 int voltage_tries, loop_tries;
1745 uint32_t DP = intel_dp->DP;
1746
1747 /* Write the link configuration data */
1748 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1749 intel_dp->link_configuration,
1750 DP_LINK_CONFIGURATION_SIZE);
1751
1752 DP |= DP_PORT_EN;
1753
1754 memset(intel_dp->train_set, 0, 4);
1755 voltage = 0xff;
1756 voltage_tries = 0;
1757 loop_tries = 0;
1758 clock_recovery = false;
1759 for (;;) {
1760 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1761 uint8_t link_status[DP_LINK_STATUS_SIZE];
1762 uint32_t signal_levels;
1763
1764
1765 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1766 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1767 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1768 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1769 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1770 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1771 } else {
1772 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1773 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1774 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1775 }
1776
1777 if (!intel_dp_set_link_train(intel_dp, DP,
1778 DP_TRAINING_PATTERN_1 |
1779 DP_LINK_SCRAMBLING_DISABLE))
1780 break;
1781 /* Set training pattern 1 */
1782
1783 udelay(100);
1784 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1785 DRM_ERROR("failed to get link status\n");
1786 break;
1787 }
1788
1789 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1790 DRM_DEBUG_KMS("clock recovery OK\n");
1791 clock_recovery = true;
1792 break;
1793 }
1794
1795 /* Check to see if we've tried the max voltage */
1796 for (i = 0; i < intel_dp->lane_count; i++)
1797 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1798 break;
1799 if (i == intel_dp->lane_count && voltage_tries == 5) {
1800 if (++loop_tries == 5) {
1801 DRM_DEBUG_KMS("too many full retries, give up\n");
1802 break;
1803 }
1804 memset(intel_dp->train_set, 0, 4);
1805 voltage_tries = 0;
1806 continue;
1807 }
1808
1809 /* Check to see if we've tried the same voltage 5 times */
1810 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) {
1811 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1812 voltage_tries = 0;
1813 } else
1814 ++voltage_tries;
1815
1816 /* Compute new intel_dp->train_set as requested by target */
1817 intel_get_adjust_train(intel_dp, link_status);
1818 }
1819
1820 intel_dp->DP = DP;
1821 }
1822
1823 static void
1824 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1825 {
1826 struct drm_device *dev = intel_dp->base.base.dev;
1827 bool channel_eq = false;
1828 int tries, cr_tries;
1829 uint32_t DP = intel_dp->DP;
1830
1831 /* channel equalization */
1832 tries = 0;
1833 cr_tries = 0;
1834 channel_eq = false;
1835 for (;;) {
1836 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1837 uint32_t signal_levels;
1838 uint8_t link_status[DP_LINK_STATUS_SIZE];
1839
1840 if (cr_tries > 5) {
1841 DRM_ERROR("failed to train DP, aborting\n");
1842 intel_dp_link_down(intel_dp);
1843 break;
1844 }
1845
1846 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1847 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1848 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1849 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1850 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1851 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1852 } else {
1853 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1854 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1855 }
1856
1857 /* channel eq pattern */
1858 if (!intel_dp_set_link_train(intel_dp, DP,
1859 DP_TRAINING_PATTERN_2 |
1860 DP_LINK_SCRAMBLING_DISABLE))
1861 break;
1862
1863 udelay(400);
1864 if (!intel_dp_get_link_status(intel_dp, link_status))
1865 break;
1866
1867 /* Make sure clock is still ok */
1868 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1869 intel_dp_start_link_train(intel_dp);
1870 cr_tries++;
1871 continue;
1872 }
1873
1874 if (intel_channel_eq_ok(intel_dp, link_status)) {
1875 channel_eq = true;
1876 break;
1877 }
1878
1879 /* Try 5 times, then try clock recovery if that fails */
1880 if (tries > 5) {
1881 intel_dp_link_down(intel_dp);
1882 intel_dp_start_link_train(intel_dp);
1883 tries = 0;
1884 cr_tries++;
1885 continue;
1886 }
1887
1888 /* Compute new intel_dp->train_set as requested by target */
1889 intel_get_adjust_train(intel_dp, link_status);
1890 ++tries;
1891 }
1892
1893 intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1894 }
1895
1896 static void
1897 intel_dp_link_down(struct intel_dp *intel_dp)
1898 {
1899 struct drm_device *dev = intel_dp->base.base.dev;
1900 struct drm_i915_private *dev_priv = dev->dev_private;
1901 uint32_t DP = intel_dp->DP;
1902
1903 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1904 return;
1905
1906 DRM_DEBUG_KMS("\n");
1907
1908 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1909 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1910 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1911 } else {
1912 DP &= ~DP_LINK_TRAIN_MASK;
1913 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1914 }
1915 POSTING_READ(intel_dp->output_reg);
1916
1917 msleep(17);
1918
1919 if (HAS_PCH_IBX(dev) &&
1920 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1921 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1922
1923 /* Hardware workaround: leaving our transcoder select
1924 * set to transcoder B while it's off will prevent the
1925 * corresponding HDMI output on transcoder A.
1926 *
1927 * Combine this with another hardware workaround:
1928 * transcoder select bit can only be cleared while the
1929 * port is enabled.
1930 */
1931 DP &= ~DP_PIPEB_SELECT;
1932 I915_WRITE(intel_dp->output_reg, DP);
1933
1934 /* Changes to enable or select take place the vblank
1935 * after being written.
1936 */
1937 if (crtc == NULL) {
1938 /* We can arrive here never having been attached
1939 * to a CRTC, for instance, due to inheriting
1940 * random state from the BIOS.
1941 *
1942 * If the pipe is not running, play safe and
1943 * wait for the clocks to stabilise before
1944 * continuing.
1945 */
1946 POSTING_READ(intel_dp->output_reg);
1947 msleep(50);
1948 } else
1949 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1950 }
1951
1952 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1953 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1954 POSTING_READ(intel_dp->output_reg);
1955 msleep(intel_dp->panel_power_down_delay);
1956 }
1957
1958 static bool
1959 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1960 {
1961 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1962 sizeof(intel_dp->dpcd)) == 0)
1963 return false; /* aux transfer failed */
1964
1965 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
1966 return false; /* DPCD not present */
1967
1968 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1969 DP_DWN_STRM_PORT_PRESENT))
1970 return true; /* native DP sink */
1971
1972 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
1973 return true; /* no per-port downstream info */
1974
1975 if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
1976 intel_dp->downstream_ports,
1977 DP_MAX_DOWNSTREAM_PORTS) == 0)
1978 return false; /* downstream port status fetch failed */
1979
1980 return true;
1981 }
1982
1983 static void
1984 intel_dp_probe_oui(struct intel_dp *intel_dp)
1985 {
1986 u8 buf[3];
1987
1988 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1989 return;
1990
1991 ironlake_edp_panel_vdd_on(intel_dp);
1992
1993 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1994 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
1995 buf[0], buf[1], buf[2]);
1996
1997 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1998 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
1999 buf[0], buf[1], buf[2]);
2000
2001 ironlake_edp_panel_vdd_off(intel_dp, false);
2002 }
2003
2004 static bool
2005 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2006 {
2007 int ret;
2008
2009 ret = intel_dp_aux_native_read_retry(intel_dp,
2010 DP_DEVICE_SERVICE_IRQ_VECTOR,
2011 sink_irq_vector, 1);
2012 if (!ret)
2013 return false;
2014
2015 return true;
2016 }
2017
2018 static void
2019 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2020 {
2021 /* NAK by default */
2022 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2023 }
2024
2025 /*
2026 * According to DP spec
2027 * 5.1.2:
2028 * 1. Read DPCD
2029 * 2. Configure link according to Receiver Capabilities
2030 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2031 * 4. Check link status on receipt of hot-plug interrupt
2032 */
2033
2034 static void
2035 intel_dp_check_link_status(struct intel_dp *intel_dp)
2036 {
2037 u8 sink_irq_vector;
2038 u8 link_status[DP_LINK_STATUS_SIZE];
2039
2040 if (!intel_dp->base.connectors_active)
2041 return;
2042
2043 if (WARN_ON(!intel_dp->base.base.crtc))
2044 return;
2045
2046 /* Try to read receiver status if the link appears to be up */
2047 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2048 intel_dp_link_down(intel_dp);
2049 return;
2050 }
2051
2052 /* Now read the DPCD to see if it's actually running */
2053 if (!intel_dp_get_dpcd(intel_dp)) {
2054 intel_dp_link_down(intel_dp);
2055 return;
2056 }
2057
2058 /* Try to read the source of the interrupt */
2059 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2060 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2061 /* Clear interrupt source */
2062 intel_dp_aux_native_write_1(intel_dp,
2063 DP_DEVICE_SERVICE_IRQ_VECTOR,
2064 sink_irq_vector);
2065
2066 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2067 intel_dp_handle_test_request(intel_dp);
2068 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2069 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2070 }
2071
2072 if (!intel_channel_eq_ok(intel_dp, link_status)) {
2073 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2074 drm_get_encoder_name(&intel_dp->base.base));
2075 intel_dp_start_link_train(intel_dp);
2076 intel_dp_complete_link_train(intel_dp);
2077 }
2078 }
2079
2080 /* XXX this is probably wrong for multiple downstream ports */
2081 static enum drm_connector_status
2082 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2083 {
2084 uint8_t *dpcd = intel_dp->dpcd;
2085 bool hpd;
2086 uint8_t type;
2087
2088 if (!intel_dp_get_dpcd(intel_dp))
2089 return connector_status_disconnected;
2090
2091 /* if there's no downstream port, we're done */
2092 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2093 return connector_status_connected;
2094
2095 /* If we're HPD-aware, SINK_COUNT changes dynamically */
2096 hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2097 if (hpd) {
2098 uint8_t reg;
2099 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2100 &reg, 1))
2101 return connector_status_unknown;
2102 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2103 : connector_status_disconnected;
2104 }
2105
2106 /* If no HPD, poke DDC gently */
2107 if (drm_probe_ddc(&intel_dp->adapter))
2108 return connector_status_connected;
2109
2110 /* Well we tried, say unknown for unreliable port types */
2111 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2112 if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2113 return connector_status_unknown;
2114
2115 /* Anything else is out of spec, warn and ignore */
2116 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2117 return connector_status_disconnected;
2118 }
2119
2120 static enum drm_connector_status
2121 ironlake_dp_detect(struct intel_dp *intel_dp)
2122 {
2123 enum drm_connector_status status;
2124
2125 /* Can't disconnect eDP, but you can close the lid... */
2126 if (is_edp(intel_dp)) {
2127 status = intel_panel_detect(intel_dp->base.base.dev);
2128 if (status == connector_status_unknown)
2129 status = connector_status_connected;
2130 return status;
2131 }
2132
2133 return intel_dp_detect_dpcd(intel_dp);
2134 }
2135
2136 static enum drm_connector_status
2137 g4x_dp_detect(struct intel_dp *intel_dp)
2138 {
2139 struct drm_device *dev = intel_dp->base.base.dev;
2140 struct drm_i915_private *dev_priv = dev->dev_private;
2141 uint32_t bit;
2142
2143 switch (intel_dp->output_reg) {
2144 case DP_B:
2145 bit = DPB_HOTPLUG_LIVE_STATUS;
2146 break;
2147 case DP_C:
2148 bit = DPC_HOTPLUG_LIVE_STATUS;
2149 break;
2150 case DP_D:
2151 bit = DPD_HOTPLUG_LIVE_STATUS;
2152 break;
2153 default:
2154 return connector_status_unknown;
2155 }
2156
2157 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2158 return connector_status_disconnected;
2159
2160 return intel_dp_detect_dpcd(intel_dp);
2161 }
2162
2163 static struct edid *
2164 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2165 {
2166 struct intel_dp *intel_dp = intel_attached_dp(connector);
2167 struct edid *edid;
2168 int size;
2169
2170 if (is_edp(intel_dp)) {
2171 if (!intel_dp->edid)
2172 return NULL;
2173
2174 size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2175 edid = kmalloc(size, GFP_KERNEL);
2176 if (!edid)
2177 return NULL;
2178
2179 memcpy(edid, intel_dp->edid, size);
2180 return edid;
2181 }
2182
2183 edid = drm_get_edid(connector, adapter);
2184 return edid;
2185 }
2186
2187 static int
2188 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2189 {
2190 struct intel_dp *intel_dp = intel_attached_dp(connector);
2191 int ret;
2192
2193 if (is_edp(intel_dp)) {
2194 drm_mode_connector_update_edid_property(connector,
2195 intel_dp->edid);
2196 ret = drm_add_edid_modes(connector, intel_dp->edid);
2197 drm_edid_to_eld(connector,
2198 intel_dp->edid);
2199 return intel_dp->edid_mode_count;
2200 }
2201
2202 ret = intel_ddc_get_modes(connector, adapter);
2203 return ret;
2204 }
2205
2206
2207 /**
2208 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2209 *
2210 * \return true if DP port is connected.
2211 * \return false if DP port is disconnected.
2212 */
2213 static enum drm_connector_status
2214 intel_dp_detect(struct drm_connector *connector, bool force)
2215 {
2216 struct intel_dp *intel_dp = intel_attached_dp(connector);
2217 struct drm_device *dev = intel_dp->base.base.dev;
2218 enum drm_connector_status status;
2219 struct edid *edid = NULL;
2220
2221 intel_dp->has_audio = false;
2222
2223 if (HAS_PCH_SPLIT(dev))
2224 status = ironlake_dp_detect(intel_dp);
2225 else
2226 status = g4x_dp_detect(intel_dp);
2227
2228 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2229 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2230 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2231 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2232
2233 if (status != connector_status_connected)
2234 return status;
2235
2236 intel_dp_probe_oui(intel_dp);
2237
2238 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2239 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2240 } else {
2241 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2242 if (edid) {
2243 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2244 kfree(edid);
2245 }
2246 }
2247
2248 return connector_status_connected;
2249 }
2250
2251 static int intel_dp_get_modes(struct drm_connector *connector)
2252 {
2253 struct intel_dp *intel_dp = intel_attached_dp(connector);
2254 struct drm_device *dev = intel_dp->base.base.dev;
2255 struct drm_i915_private *dev_priv = dev->dev_private;
2256 int ret;
2257
2258 /* We should parse the EDID data and find out if it has an audio sink
2259 */
2260
2261 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2262 if (ret) {
2263 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2264 struct drm_display_mode *newmode;
2265 list_for_each_entry(newmode, &connector->probed_modes,
2266 head) {
2267 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2268 intel_dp->panel_fixed_mode =
2269 drm_mode_duplicate(dev, newmode);
2270 break;
2271 }
2272 }
2273 }
2274 return ret;
2275 }
2276
2277 /* if eDP has no EDID, try to use fixed panel mode from VBT */
2278 if (is_edp(intel_dp)) {
2279 /* initialize panel mode from VBT if available for eDP */
2280 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2281 intel_dp->panel_fixed_mode =
2282 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2283 if (intel_dp->panel_fixed_mode) {
2284 intel_dp->panel_fixed_mode->type |=
2285 DRM_MODE_TYPE_PREFERRED;
2286 }
2287 }
2288 if (intel_dp->panel_fixed_mode) {
2289 struct drm_display_mode *mode;
2290 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2291 drm_mode_probed_add(connector, mode);
2292 return 1;
2293 }
2294 }
2295 return 0;
2296 }
2297
2298 static bool
2299 intel_dp_detect_audio(struct drm_connector *connector)
2300 {
2301 struct intel_dp *intel_dp = intel_attached_dp(connector);
2302 struct edid *edid;
2303 bool has_audio = false;
2304
2305 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2306 if (edid) {
2307 has_audio = drm_detect_monitor_audio(edid);
2308 kfree(edid);
2309 }
2310
2311 return has_audio;
2312 }
2313
2314 static int
2315 intel_dp_set_property(struct drm_connector *connector,
2316 struct drm_property *property,
2317 uint64_t val)
2318 {
2319 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2320 struct intel_dp *intel_dp = intel_attached_dp(connector);
2321 int ret;
2322
2323 ret = drm_connector_property_set_value(connector, property, val);
2324 if (ret)
2325 return ret;
2326
2327 if (property == dev_priv->force_audio_property) {
2328 int i = val;
2329 bool has_audio;
2330
2331 if (i == intel_dp->force_audio)
2332 return 0;
2333
2334 intel_dp->force_audio = i;
2335
2336 if (i == HDMI_AUDIO_AUTO)
2337 has_audio = intel_dp_detect_audio(connector);
2338 else
2339 has_audio = (i == HDMI_AUDIO_ON);
2340
2341 if (has_audio == intel_dp->has_audio)
2342 return 0;
2343
2344 intel_dp->has_audio = has_audio;
2345 goto done;
2346 }
2347
2348 if (property == dev_priv->broadcast_rgb_property) {
2349 if (val == !!intel_dp->color_range)
2350 return 0;
2351
2352 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2353 goto done;
2354 }
2355
2356 return -EINVAL;
2357
2358 done:
2359 if (intel_dp->base.base.crtc) {
2360 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2361 intel_set_mode(crtc, &crtc->mode,
2362 crtc->x, crtc->y, crtc->fb);
2363 }
2364
2365 return 0;
2366 }
2367
2368 static void
2369 intel_dp_destroy(struct drm_connector *connector)
2370 {
2371 struct drm_device *dev = connector->dev;
2372
2373 if (intel_dpd_is_edp(dev))
2374 intel_panel_destroy_backlight(dev);
2375
2376 drm_sysfs_connector_remove(connector);
2377 drm_connector_cleanup(connector);
2378 kfree(connector);
2379 }
2380
2381 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2382 {
2383 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2384
2385 i2c_del_adapter(&intel_dp->adapter);
2386 drm_encoder_cleanup(encoder);
2387 if (is_edp(intel_dp)) {
2388 kfree(intel_dp->edid);
2389 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2390 ironlake_panel_vdd_off_sync(intel_dp);
2391 }
2392 kfree(intel_dp);
2393 }
2394
2395 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2396 .mode_fixup = intel_dp_mode_fixup,
2397 .mode_set = intel_dp_mode_set,
2398 .disable = intel_encoder_noop,
2399 };
2400
2401 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2402 .dpms = intel_connector_dpms,
2403 .detect = intel_dp_detect,
2404 .fill_modes = drm_helper_probe_single_connector_modes,
2405 .set_property = intel_dp_set_property,
2406 .destroy = intel_dp_destroy,
2407 };
2408
2409 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2410 .get_modes = intel_dp_get_modes,
2411 .mode_valid = intel_dp_mode_valid,
2412 .best_encoder = intel_best_encoder,
2413 };
2414
2415 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2416 .destroy = intel_dp_encoder_destroy,
2417 };
2418
2419 static void
2420 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2421 {
2422 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2423
2424 intel_dp_check_link_status(intel_dp);
2425 }
2426
2427 /* Return which DP Port should be selected for Transcoder DP control */
2428 int
2429 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2430 {
2431 struct drm_device *dev = crtc->dev;
2432 struct intel_encoder *encoder;
2433
2434 for_each_encoder_on_crtc(dev, crtc, encoder) {
2435 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2436
2437 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2438 intel_dp->base.type == INTEL_OUTPUT_EDP)
2439 return intel_dp->output_reg;
2440 }
2441
2442 return -1;
2443 }
2444
2445 /* check the VBT to see whether the eDP is on DP-D port */
2446 bool intel_dpd_is_edp(struct drm_device *dev)
2447 {
2448 struct drm_i915_private *dev_priv = dev->dev_private;
2449 struct child_device_config *p_child;
2450 int i;
2451
2452 if (!dev_priv->child_dev_num)
2453 return false;
2454
2455 for (i = 0; i < dev_priv->child_dev_num; i++) {
2456 p_child = dev_priv->child_dev + i;
2457
2458 if (p_child->dvo_port == PORT_IDPD &&
2459 p_child->device_type == DEVICE_TYPE_eDP)
2460 return true;
2461 }
2462 return false;
2463 }
2464
2465 static void
2466 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2467 {
2468 intel_attach_force_audio_property(connector);
2469 intel_attach_broadcast_rgb_property(connector);
2470 }
2471
2472 void
2473 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2474 {
2475 struct drm_i915_private *dev_priv = dev->dev_private;
2476 struct drm_connector *connector;
2477 struct intel_dp *intel_dp;
2478 struct intel_encoder *intel_encoder;
2479 struct intel_connector *intel_connector;
2480 const char *name = NULL;
2481 int type;
2482
2483 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2484 if (!intel_dp)
2485 return;
2486
2487 intel_dp->output_reg = output_reg;
2488 intel_dp->port = port;
2489 /* Preserve the current hw state. */
2490 intel_dp->DP = I915_READ(intel_dp->output_reg);
2491
2492 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2493 if (!intel_connector) {
2494 kfree(intel_dp);
2495 return;
2496 }
2497 intel_encoder = &intel_dp->base;
2498
2499 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2500 if (intel_dpd_is_edp(dev))
2501 intel_dp->is_pch_edp = true;
2502
2503 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2504 type = DRM_MODE_CONNECTOR_eDP;
2505 intel_encoder->type = INTEL_OUTPUT_EDP;
2506 } else {
2507 type = DRM_MODE_CONNECTOR_DisplayPort;
2508 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2509 }
2510
2511 connector = &intel_connector->base;
2512 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2513 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2514
2515 connector->polled = DRM_CONNECTOR_POLL_HPD;
2516
2517 intel_encoder->cloneable = false;
2518
2519 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2520 ironlake_panel_vdd_work);
2521
2522 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2523
2524 connector->interlace_allowed = true;
2525 connector->doublescan_allowed = 0;
2526
2527 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2528 DRM_MODE_ENCODER_TMDS);
2529 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2530
2531 intel_connector_attach_encoder(intel_connector, intel_encoder);
2532 drm_sysfs_connector_add(connector);
2533
2534 intel_encoder->enable = intel_enable_dp;
2535 intel_encoder->pre_enable = intel_pre_enable_dp;
2536 intel_encoder->disable = intel_disable_dp;
2537 intel_encoder->post_disable = intel_post_disable_dp;
2538 intel_encoder->get_hw_state = intel_dp_get_hw_state;
2539 intel_connector->get_hw_state = intel_connector_get_hw_state;
2540
2541 /* Set up the DDC bus. */
2542 switch (port) {
2543 case PORT_A:
2544 name = "DPDDC-A";
2545 break;
2546 case PORT_B:
2547 dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2548 name = "DPDDC-B";
2549 break;
2550 case PORT_C:
2551 dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2552 name = "DPDDC-C";
2553 break;
2554 case PORT_D:
2555 dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2556 name = "DPDDC-D";
2557 break;
2558 default:
2559 WARN(1, "Invalid port %c\n", port_name(port));
2560 break;
2561 }
2562
2563 /* Cache some DPCD data in the eDP case */
2564 if (is_edp(intel_dp)) {
2565 struct edp_power_seq cur, vbt;
2566 u32 pp_on, pp_off, pp_div;
2567
2568 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2569 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2570 pp_div = I915_READ(PCH_PP_DIVISOR);
2571
2572 if (!pp_on || !pp_off || !pp_div) {
2573 DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2574 intel_dp_encoder_destroy(&intel_dp->base.base);
2575 intel_dp_destroy(&intel_connector->base);
2576 return;
2577 }
2578
2579 /* Pull timing values out of registers */
2580 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2581 PANEL_POWER_UP_DELAY_SHIFT;
2582
2583 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2584 PANEL_LIGHT_ON_DELAY_SHIFT;
2585
2586 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2587 PANEL_LIGHT_OFF_DELAY_SHIFT;
2588
2589 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2590 PANEL_POWER_DOWN_DELAY_SHIFT;
2591
2592 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2593 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2594
2595 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2596 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2597
2598 vbt = dev_priv->edp.pps;
2599
2600 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2601 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2602
2603 #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2604
2605 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2606 intel_dp->backlight_on_delay = get_delay(t8);
2607 intel_dp->backlight_off_delay = get_delay(t9);
2608 intel_dp->panel_power_down_delay = get_delay(t10);
2609 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2610
2611 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2612 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2613 intel_dp->panel_power_cycle_delay);
2614
2615 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2616 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2617 }
2618
2619 intel_dp_i2c_init(intel_dp, intel_connector, name);
2620
2621 if (is_edp(intel_dp)) {
2622 bool ret;
2623 struct edid *edid;
2624
2625 ironlake_edp_panel_vdd_on(intel_dp);
2626 ret = intel_dp_get_dpcd(intel_dp);
2627 ironlake_edp_panel_vdd_off(intel_dp, false);
2628
2629 if (ret) {
2630 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2631 dev_priv->no_aux_handshake =
2632 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2633 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2634 } else {
2635 /* if this fails, presume the device is a ghost */
2636 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2637 intel_dp_encoder_destroy(&intel_dp->base.base);
2638 intel_dp_destroy(&intel_connector->base);
2639 return;
2640 }
2641
2642 ironlake_edp_panel_vdd_on(intel_dp);
2643 edid = drm_get_edid(connector, &intel_dp->adapter);
2644 if (edid) {
2645 drm_mode_connector_update_edid_property(connector,
2646 edid);
2647 intel_dp->edid_mode_count =
2648 drm_add_edid_modes(connector, edid);
2649 drm_edid_to_eld(connector, edid);
2650 intel_dp->edid = edid;
2651 }
2652 ironlake_edp_panel_vdd_off(intel_dp, false);
2653 }
2654
2655 intel_encoder->hot_plug = intel_dp_hot_plug;
2656
2657 if (is_edp(intel_dp)) {
2658 dev_priv->int_edp_connector = connector;
2659 intel_panel_setup_backlight(dev);
2660 }
2661
2662 intel_dp_add_properties(intel_dp, connector);
2663
2664 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2665 * 0xd. Failure to do so will result in spurious interrupts being
2666 * generated on the port when a cable is not attached.
2667 */
2668 if (IS_G4X(dev) && !IS_GM45(dev)) {
2669 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2670 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2671 }
2672 }
This page took 0.117995 seconds and 6 git commands to generate.