drm/i915: Kick the power sequencer before AUX transactions
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
117
118 int
119 intel_dp_max_link_bw(struct intel_dp *intel_dp)
120 {
121 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
122 struct drm_device *dev = intel_dp->attached_connector->base.dev;
123
124 switch (max_link_bw) {
125 case DP_LINK_BW_1_62:
126 case DP_LINK_BW_2_7:
127 break;
128 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
129 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
130 INTEL_INFO(dev)->gen >= 8) &&
131 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
132 max_link_bw = DP_LINK_BW_5_4;
133 else
134 max_link_bw = DP_LINK_BW_2_7;
135 break;
136 default:
137 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
138 max_link_bw);
139 max_link_bw = DP_LINK_BW_1_62;
140 break;
141 }
142 return max_link_bw;
143 }
144
145 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
146 {
147 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
148 struct drm_device *dev = intel_dig_port->base.base.dev;
149 u8 source_max, sink_max;
150
151 source_max = 4;
152 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
153 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
154 source_max = 2;
155
156 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
157
158 return min(source_max, sink_max);
159 }
160
161 /*
162 * The units on the numbers in the next two are... bizarre. Examples will
163 * make it clearer; this one parallels an example in the eDP spec.
164 *
165 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
166 *
167 * 270000 * 1 * 8 / 10 == 216000
168 *
169 * The actual data capacity of that configuration is 2.16Gbit/s, so the
170 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
171 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
172 * 119000. At 18bpp that's 2142000 kilobits per second.
173 *
174 * Thus the strange-looking division by 10 in intel_dp_link_required, to
175 * get the result in decakilobits instead of kilobits.
176 */
177
178 static int
179 intel_dp_link_required(int pixel_clock, int bpp)
180 {
181 return (pixel_clock * bpp + 9) / 10;
182 }
183
184 static int
185 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
186 {
187 return (max_link_clock * max_lanes * 8) / 10;
188 }
189
190 static enum drm_mode_status
191 intel_dp_mode_valid(struct drm_connector *connector,
192 struct drm_display_mode *mode)
193 {
194 struct intel_dp *intel_dp = intel_attached_dp(connector);
195 struct intel_connector *intel_connector = to_intel_connector(connector);
196 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
197 int target_clock = mode->clock;
198 int max_rate, mode_rate, max_lanes, max_link_clock;
199
200 if (is_edp(intel_dp) && fixed_mode) {
201 if (mode->hdisplay > fixed_mode->hdisplay)
202 return MODE_PANEL;
203
204 if (mode->vdisplay > fixed_mode->vdisplay)
205 return MODE_PANEL;
206
207 target_clock = fixed_mode->clock;
208 }
209
210 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
211 max_lanes = intel_dp_max_lane_count(intel_dp);
212
213 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
214 mode_rate = intel_dp_link_required(target_clock, 18);
215
216 if (mode_rate > max_rate)
217 return MODE_CLOCK_HIGH;
218
219 if (mode->clock < 10000)
220 return MODE_CLOCK_LOW;
221
222 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
223 return MODE_H_ILLEGAL;
224
225 return MODE_OK;
226 }
227
228 static uint32_t
229 pack_aux(const uint8_t *src, int src_bytes)
230 {
231 int i;
232 uint32_t v = 0;
233
234 if (src_bytes > 4)
235 src_bytes = 4;
236 for (i = 0; i < src_bytes; i++)
237 v |= ((uint32_t) src[i]) << ((3-i) * 8);
238 return v;
239 }
240
241 static void
242 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
243 {
244 int i;
245 if (dst_bytes > 4)
246 dst_bytes = 4;
247 for (i = 0; i < dst_bytes; i++)
248 dst[i] = src >> ((3-i) * 8);
249 }
250
251 /* hrawclock is 1/4 the FSB frequency */
252 static int
253 intel_hrawclk(struct drm_device *dev)
254 {
255 struct drm_i915_private *dev_priv = dev->dev_private;
256 uint32_t clkcfg;
257
258 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
259 if (IS_VALLEYVIEW(dev))
260 return 200;
261
262 clkcfg = I915_READ(CLKCFG);
263 switch (clkcfg & CLKCFG_FSB_MASK) {
264 case CLKCFG_FSB_400:
265 return 100;
266 case CLKCFG_FSB_533:
267 return 133;
268 case CLKCFG_FSB_667:
269 return 166;
270 case CLKCFG_FSB_800:
271 return 200;
272 case CLKCFG_FSB_1067:
273 return 266;
274 case CLKCFG_FSB_1333:
275 return 333;
276 /* these two are just a guess; one of them might be right */
277 case CLKCFG_FSB_1600:
278 case CLKCFG_FSB_1600_ALT:
279 return 400;
280 default:
281 return 133;
282 }
283 }
284
285 static void
286 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
287 struct intel_dp *intel_dp);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp);
291
292 static void pps_lock(struct intel_dp *intel_dp)
293 {
294 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
295 struct intel_encoder *encoder = &intel_dig_port->base;
296 struct drm_device *dev = encoder->base.dev;
297 struct drm_i915_private *dev_priv = dev->dev_private;
298 enum intel_display_power_domain power_domain;
299
300 /*
301 * See vlv_power_sequencer_reset() why we need
302 * a power domain reference here.
303 */
304 power_domain = intel_display_port_power_domain(encoder);
305 intel_display_power_get(dev_priv, power_domain);
306
307 mutex_lock(&dev_priv->pps_mutex);
308 }
309
310 static void pps_unlock(struct intel_dp *intel_dp)
311 {
312 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
313 struct intel_encoder *encoder = &intel_dig_port->base;
314 struct drm_device *dev = encoder->base.dev;
315 struct drm_i915_private *dev_priv = dev->dev_private;
316 enum intel_display_power_domain power_domain;
317
318 mutex_unlock(&dev_priv->pps_mutex);
319
320 power_domain = intel_display_port_power_domain(encoder);
321 intel_display_power_put(dev_priv, power_domain);
322 }
323
324 static void
325 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
326 {
327 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
328 struct drm_device *dev = intel_dig_port->base.base.dev;
329 struct drm_i915_private *dev_priv = dev->dev_private;
330 enum pipe pipe = intel_dp->pps_pipe;
331 uint32_t DP;
332
333 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
334 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
335 pipe_name(pipe), port_name(intel_dig_port->port)))
336 return;
337
338 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
339 pipe_name(pipe), port_name(intel_dig_port->port));
340
341 /* Preserve the BIOS-computed detected bit. This is
342 * supposed to be read-only.
343 */
344 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
345 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
346 DP |= DP_PORT_WIDTH(1);
347 DP |= DP_LINK_TRAIN_PAT_1;
348
349 if (IS_CHERRYVIEW(dev))
350 DP |= DP_PIPE_SELECT_CHV(pipe);
351 else if (pipe == PIPE_B)
352 DP |= DP_PIPEB_SELECT;
353
354 /*
355 * Similar magic as in intel_dp_enable_port().
356 * We _must_ do this port enable + disable trick
357 * to make this power seqeuencer lock onto the port.
358 * Otherwise even VDD force bit won't work.
359 */
360 I915_WRITE(intel_dp->output_reg, DP);
361 POSTING_READ(intel_dp->output_reg);
362
363 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
364 POSTING_READ(intel_dp->output_reg);
365
366 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
367 POSTING_READ(intel_dp->output_reg);
368 }
369
370 static enum pipe
371 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
372 {
373 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
374 struct drm_device *dev = intel_dig_port->base.base.dev;
375 struct drm_i915_private *dev_priv = dev->dev_private;
376 struct intel_encoder *encoder;
377 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
378
379 lockdep_assert_held(&dev_priv->pps_mutex);
380
381 if (intel_dp->pps_pipe != INVALID_PIPE)
382 return intel_dp->pps_pipe;
383
384 /*
385 * We don't have power sequencer currently.
386 * Pick one that's not used by other ports.
387 */
388 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
389 base.head) {
390 struct intel_dp *tmp;
391
392 if (encoder->type != INTEL_OUTPUT_EDP)
393 continue;
394
395 tmp = enc_to_intel_dp(&encoder->base);
396
397 if (tmp->pps_pipe != INVALID_PIPE)
398 pipes &= ~(1 << tmp->pps_pipe);
399 }
400
401 /*
402 * Didn't find one. This should not happen since there
403 * are two power sequencers and up to two eDP ports.
404 */
405 if (WARN_ON(pipes == 0))
406 return PIPE_A;
407
408 intel_dp->pps_pipe = ffs(pipes) - 1;
409
410 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
411 pipe_name(intel_dp->pps_pipe),
412 port_name(intel_dig_port->port));
413
414 /* init power sequencer on this pipe and port */
415 intel_dp_init_panel_power_sequencer(dev, intel_dp);
416 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
417
418 /*
419 * Even vdd force doesn't work until we've made
420 * the power sequencer lock in on the port.
421 */
422 vlv_power_sequencer_kick(intel_dp);
423
424 return intel_dp->pps_pipe;
425 }
426
427 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
428 enum pipe pipe);
429
430 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
431 enum pipe pipe)
432 {
433 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
434 }
435
436 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
437 enum pipe pipe)
438 {
439 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
440 }
441
442 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
443 enum pipe pipe)
444 {
445 return true;
446 }
447
448 static enum pipe
449 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
450 enum port port,
451 vlv_pipe_check pipe_check)
452 {
453 enum pipe pipe;
454
455 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
456 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
457 PANEL_PORT_SELECT_MASK;
458
459 if (port_sel != PANEL_PORT_SELECT_VLV(port))
460 continue;
461
462 if (!pipe_check(dev_priv, pipe))
463 continue;
464
465 return pipe;
466 }
467
468 return INVALID_PIPE;
469 }
470
471 static void
472 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
473 {
474 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
475 struct drm_device *dev = intel_dig_port->base.base.dev;
476 struct drm_i915_private *dev_priv = dev->dev_private;
477 enum port port = intel_dig_port->port;
478
479 lockdep_assert_held(&dev_priv->pps_mutex);
480
481 /* try to find a pipe with this port selected */
482 /* first pick one where the panel is on */
483 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
484 vlv_pipe_has_pp_on);
485 /* didn't find one? pick one where vdd is on */
486 if (intel_dp->pps_pipe == INVALID_PIPE)
487 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
488 vlv_pipe_has_vdd_on);
489 /* didn't find one? pick one with just the correct port */
490 if (intel_dp->pps_pipe == INVALID_PIPE)
491 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
492 vlv_pipe_any);
493
494 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
495 if (intel_dp->pps_pipe == INVALID_PIPE) {
496 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
497 port_name(port));
498 return;
499 }
500
501 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
502 port_name(port), pipe_name(intel_dp->pps_pipe));
503
504 intel_dp_init_panel_power_sequencer(dev, intel_dp);
505 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
506 }
507
508 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
509 {
510 struct drm_device *dev = dev_priv->dev;
511 struct intel_encoder *encoder;
512
513 if (WARN_ON(!IS_VALLEYVIEW(dev)))
514 return;
515
516 /*
517 * We can't grab pps_mutex here due to deadlock with power_domain
518 * mutex when power_domain functions are called while holding pps_mutex.
519 * That also means that in order to use pps_pipe the code needs to
520 * hold both a power domain reference and pps_mutex, and the power domain
521 * reference get/put must be done while _not_ holding pps_mutex.
522 * pps_{lock,unlock}() do these steps in the correct order, so one
523 * should use them always.
524 */
525
526 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
527 struct intel_dp *intel_dp;
528
529 if (encoder->type != INTEL_OUTPUT_EDP)
530 continue;
531
532 intel_dp = enc_to_intel_dp(&encoder->base);
533 intel_dp->pps_pipe = INVALID_PIPE;
534 }
535 }
536
537 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
538 {
539 struct drm_device *dev = intel_dp_to_dev(intel_dp);
540
541 if (HAS_PCH_SPLIT(dev))
542 return PCH_PP_CONTROL;
543 else
544 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
545 }
546
547 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
548 {
549 struct drm_device *dev = intel_dp_to_dev(intel_dp);
550
551 if (HAS_PCH_SPLIT(dev))
552 return PCH_PP_STATUS;
553 else
554 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
555 }
556
557 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
558 This function only applicable when panel PM state is not to be tracked */
559 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
560 void *unused)
561 {
562 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
563 edp_notifier);
564 struct drm_device *dev = intel_dp_to_dev(intel_dp);
565 struct drm_i915_private *dev_priv = dev->dev_private;
566 u32 pp_div;
567 u32 pp_ctrl_reg, pp_div_reg;
568
569 if (!is_edp(intel_dp) || code != SYS_RESTART)
570 return 0;
571
572 pps_lock(intel_dp);
573
574 if (IS_VALLEYVIEW(dev)) {
575 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
576
577 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
578 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
579 pp_div = I915_READ(pp_div_reg);
580 pp_div &= PP_REFERENCE_DIVIDER_MASK;
581
582 /* 0x1F write to PP_DIV_REG sets max cycle delay */
583 I915_WRITE(pp_div_reg, pp_div | 0x1F);
584 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
585 msleep(intel_dp->panel_power_cycle_delay);
586 }
587
588 pps_unlock(intel_dp);
589
590 return 0;
591 }
592
593 static bool edp_have_panel_power(struct intel_dp *intel_dp)
594 {
595 struct drm_device *dev = intel_dp_to_dev(intel_dp);
596 struct drm_i915_private *dev_priv = dev->dev_private;
597
598 lockdep_assert_held(&dev_priv->pps_mutex);
599
600 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
601 }
602
603 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
604 {
605 struct drm_device *dev = intel_dp_to_dev(intel_dp);
606 struct drm_i915_private *dev_priv = dev->dev_private;
607
608 lockdep_assert_held(&dev_priv->pps_mutex);
609
610 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
611 }
612
613 static void
614 intel_dp_check_edp(struct intel_dp *intel_dp)
615 {
616 struct drm_device *dev = intel_dp_to_dev(intel_dp);
617 struct drm_i915_private *dev_priv = dev->dev_private;
618
619 if (!is_edp(intel_dp))
620 return;
621
622 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
623 WARN(1, "eDP powered off while attempting aux channel communication.\n");
624 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
625 I915_READ(_pp_stat_reg(intel_dp)),
626 I915_READ(_pp_ctrl_reg(intel_dp)));
627 }
628 }
629
630 static uint32_t
631 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
632 {
633 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
634 struct drm_device *dev = intel_dig_port->base.base.dev;
635 struct drm_i915_private *dev_priv = dev->dev_private;
636 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
637 uint32_t status;
638 bool done;
639
640 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
641 if (has_aux_irq)
642 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
643 msecs_to_jiffies_timeout(10));
644 else
645 done = wait_for_atomic(C, 10) == 0;
646 if (!done)
647 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
648 has_aux_irq);
649 #undef C
650
651 return status;
652 }
653
654 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
655 {
656 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
657 struct drm_device *dev = intel_dig_port->base.base.dev;
658
659 /*
660 * The clock divider is based off the hrawclk, and would like to run at
661 * 2MHz. So, take the hrawclk value and divide by 2 and use that
662 */
663 return index ? 0 : intel_hrawclk(dev) / 2;
664 }
665
666 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
667 {
668 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
669 struct drm_device *dev = intel_dig_port->base.base.dev;
670
671 if (index)
672 return 0;
673
674 if (intel_dig_port->port == PORT_A) {
675 if (IS_GEN6(dev) || IS_GEN7(dev))
676 return 200; /* SNB & IVB eDP input clock at 400Mhz */
677 else
678 return 225; /* eDP input clock at 450Mhz */
679 } else {
680 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
681 }
682 }
683
684 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
685 {
686 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
687 struct drm_device *dev = intel_dig_port->base.base.dev;
688 struct drm_i915_private *dev_priv = dev->dev_private;
689
690 if (intel_dig_port->port == PORT_A) {
691 if (index)
692 return 0;
693 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
694 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
695 /* Workaround for non-ULT HSW */
696 switch (index) {
697 case 0: return 63;
698 case 1: return 72;
699 default: return 0;
700 }
701 } else {
702 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
703 }
704 }
705
706 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
707 {
708 return index ? 0 : 100;
709 }
710
711 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
712 {
713 /*
714 * SKL doesn't need us to program the AUX clock divider (Hardware will
715 * derive the clock from CDCLK automatically). We still implement the
716 * get_aux_clock_divider vfunc to plug-in into the existing code.
717 */
718 return index ? 0 : 1;
719 }
720
721 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
722 bool has_aux_irq,
723 int send_bytes,
724 uint32_t aux_clock_divider)
725 {
726 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
727 struct drm_device *dev = intel_dig_port->base.base.dev;
728 uint32_t precharge, timeout;
729
730 if (IS_GEN6(dev))
731 precharge = 3;
732 else
733 precharge = 5;
734
735 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
736 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
737 else
738 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
739
740 return DP_AUX_CH_CTL_SEND_BUSY |
741 DP_AUX_CH_CTL_DONE |
742 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
743 DP_AUX_CH_CTL_TIME_OUT_ERROR |
744 timeout |
745 DP_AUX_CH_CTL_RECEIVE_ERROR |
746 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
747 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
748 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
749 }
750
751 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
752 bool has_aux_irq,
753 int send_bytes,
754 uint32_t unused)
755 {
756 return DP_AUX_CH_CTL_SEND_BUSY |
757 DP_AUX_CH_CTL_DONE |
758 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
759 DP_AUX_CH_CTL_TIME_OUT_ERROR |
760 DP_AUX_CH_CTL_TIME_OUT_1600us |
761 DP_AUX_CH_CTL_RECEIVE_ERROR |
762 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
763 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
764 }
765
766 static int
767 intel_dp_aux_ch(struct intel_dp *intel_dp,
768 const uint8_t *send, int send_bytes,
769 uint8_t *recv, int recv_size)
770 {
771 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
772 struct drm_device *dev = intel_dig_port->base.base.dev;
773 struct drm_i915_private *dev_priv = dev->dev_private;
774 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
775 uint32_t ch_data = ch_ctl + 4;
776 uint32_t aux_clock_divider;
777 int i, ret, recv_bytes;
778 uint32_t status;
779 int try, clock = 0;
780 bool has_aux_irq = HAS_AUX_IRQ(dev);
781 bool vdd;
782
783 pps_lock(intel_dp);
784
785 /*
786 * We will be called with VDD already enabled for dpcd/edid/oui reads.
787 * In such cases we want to leave VDD enabled and it's up to upper layers
788 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
789 * ourselves.
790 */
791 vdd = edp_panel_vdd_on(intel_dp);
792
793 /* dp aux is extremely sensitive to irq latency, hence request the
794 * lowest possible wakeup latency and so prevent the cpu from going into
795 * deep sleep states.
796 */
797 pm_qos_update_request(&dev_priv->pm_qos, 0);
798
799 intel_dp_check_edp(intel_dp);
800
801 intel_aux_display_runtime_get(dev_priv);
802
803 /* Try to wait for any previous AUX channel activity */
804 for (try = 0; try < 3; try++) {
805 status = I915_READ_NOTRACE(ch_ctl);
806 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
807 break;
808 msleep(1);
809 }
810
811 if (try == 3) {
812 WARN(1, "dp_aux_ch not started status 0x%08x\n",
813 I915_READ(ch_ctl));
814 ret = -EBUSY;
815 goto out;
816 }
817
818 /* Only 5 data registers! */
819 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
820 ret = -E2BIG;
821 goto out;
822 }
823
824 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
825 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
826 has_aux_irq,
827 send_bytes,
828 aux_clock_divider);
829
830 /* Must try at least 3 times according to DP spec */
831 for (try = 0; try < 5; try++) {
832 /* Load the send data into the aux channel data registers */
833 for (i = 0; i < send_bytes; i += 4)
834 I915_WRITE(ch_data + i,
835 pack_aux(send + i, send_bytes - i));
836
837 /* Send the command and wait for it to complete */
838 I915_WRITE(ch_ctl, send_ctl);
839
840 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
841
842 /* Clear done status and any errors */
843 I915_WRITE(ch_ctl,
844 status |
845 DP_AUX_CH_CTL_DONE |
846 DP_AUX_CH_CTL_TIME_OUT_ERROR |
847 DP_AUX_CH_CTL_RECEIVE_ERROR);
848
849 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
850 DP_AUX_CH_CTL_RECEIVE_ERROR))
851 continue;
852 if (status & DP_AUX_CH_CTL_DONE)
853 break;
854 }
855 if (status & DP_AUX_CH_CTL_DONE)
856 break;
857 }
858
859 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
860 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
861 ret = -EBUSY;
862 goto out;
863 }
864
865 /* Check for timeout or receive error.
866 * Timeouts occur when the sink is not connected
867 */
868 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
869 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
870 ret = -EIO;
871 goto out;
872 }
873
874 /* Timeouts occur when the device isn't connected, so they're
875 * "normal" -- don't fill the kernel log with these */
876 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
877 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
878 ret = -ETIMEDOUT;
879 goto out;
880 }
881
882 /* Unload any bytes sent back from the other side */
883 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
884 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
885 if (recv_bytes > recv_size)
886 recv_bytes = recv_size;
887
888 for (i = 0; i < recv_bytes; i += 4)
889 unpack_aux(I915_READ(ch_data + i),
890 recv + i, recv_bytes - i);
891
892 ret = recv_bytes;
893 out:
894 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
895 intel_aux_display_runtime_put(dev_priv);
896
897 if (vdd)
898 edp_panel_vdd_off(intel_dp, false);
899
900 pps_unlock(intel_dp);
901
902 return ret;
903 }
904
905 #define BARE_ADDRESS_SIZE 3
906 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
907 static ssize_t
908 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
909 {
910 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
911 uint8_t txbuf[20], rxbuf[20];
912 size_t txsize, rxsize;
913 int ret;
914
915 txbuf[0] = msg->request << 4;
916 txbuf[1] = msg->address >> 8;
917 txbuf[2] = msg->address & 0xff;
918 txbuf[3] = msg->size - 1;
919
920 switch (msg->request & ~DP_AUX_I2C_MOT) {
921 case DP_AUX_NATIVE_WRITE:
922 case DP_AUX_I2C_WRITE:
923 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
924 rxsize = 1;
925
926 if (WARN_ON(txsize > 20))
927 return -E2BIG;
928
929 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
930
931 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
932 if (ret > 0) {
933 msg->reply = rxbuf[0] >> 4;
934
935 /* Return payload size. */
936 ret = msg->size;
937 }
938 break;
939
940 case DP_AUX_NATIVE_READ:
941 case DP_AUX_I2C_READ:
942 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
943 rxsize = msg->size + 1;
944
945 if (WARN_ON(rxsize > 20))
946 return -E2BIG;
947
948 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
949 if (ret > 0) {
950 msg->reply = rxbuf[0] >> 4;
951 /*
952 * Assume happy day, and copy the data. The caller is
953 * expected to check msg->reply before touching it.
954 *
955 * Return payload size.
956 */
957 ret--;
958 memcpy(msg->buffer, rxbuf + 1, ret);
959 }
960 break;
961
962 default:
963 ret = -EINVAL;
964 break;
965 }
966
967 return ret;
968 }
969
970 static void
971 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
972 {
973 struct drm_device *dev = intel_dp_to_dev(intel_dp);
974 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
975 enum port port = intel_dig_port->port;
976 const char *name = NULL;
977 int ret;
978
979 switch (port) {
980 case PORT_A:
981 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
982 name = "DPDDC-A";
983 break;
984 case PORT_B:
985 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
986 name = "DPDDC-B";
987 break;
988 case PORT_C:
989 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
990 name = "DPDDC-C";
991 break;
992 case PORT_D:
993 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
994 name = "DPDDC-D";
995 break;
996 default:
997 BUG();
998 }
999
1000 /*
1001 * The AUX_CTL register is usually DP_CTL + 0x10.
1002 *
1003 * On Haswell and Broadwell though:
1004 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1005 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1006 *
1007 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1008 */
1009 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1010 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1011
1012 intel_dp->aux.name = name;
1013 intel_dp->aux.dev = dev->dev;
1014 intel_dp->aux.transfer = intel_dp_aux_transfer;
1015
1016 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1017 connector->base.kdev->kobj.name);
1018
1019 ret = drm_dp_aux_register(&intel_dp->aux);
1020 if (ret < 0) {
1021 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1022 name, ret);
1023 return;
1024 }
1025
1026 ret = sysfs_create_link(&connector->base.kdev->kobj,
1027 &intel_dp->aux.ddc.dev.kobj,
1028 intel_dp->aux.ddc.dev.kobj.name);
1029 if (ret < 0) {
1030 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1031 drm_dp_aux_unregister(&intel_dp->aux);
1032 }
1033 }
1034
1035 static void
1036 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1037 {
1038 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1039
1040 if (!intel_connector->mst_port)
1041 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1042 intel_dp->aux.ddc.dev.kobj.name);
1043 intel_connector_unregister(intel_connector);
1044 }
1045
1046 static void
1047 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
1048 {
1049 switch (link_bw) {
1050 case DP_LINK_BW_1_62:
1051 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1052 break;
1053 case DP_LINK_BW_2_7:
1054 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1055 break;
1056 case DP_LINK_BW_5_4:
1057 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1058 break;
1059 }
1060 }
1061
1062 static void
1063 intel_dp_set_clock(struct intel_encoder *encoder,
1064 struct intel_crtc_config *pipe_config, int link_bw)
1065 {
1066 struct drm_device *dev = encoder->base.dev;
1067 const struct dp_link_dpll *divisor = NULL;
1068 int i, count = 0;
1069
1070 if (IS_G4X(dev)) {
1071 divisor = gen4_dpll;
1072 count = ARRAY_SIZE(gen4_dpll);
1073 } else if (HAS_PCH_SPLIT(dev)) {
1074 divisor = pch_dpll;
1075 count = ARRAY_SIZE(pch_dpll);
1076 } else if (IS_CHERRYVIEW(dev)) {
1077 divisor = chv_dpll;
1078 count = ARRAY_SIZE(chv_dpll);
1079 } else if (IS_VALLEYVIEW(dev)) {
1080 divisor = vlv_dpll;
1081 count = ARRAY_SIZE(vlv_dpll);
1082 }
1083
1084 if (divisor && count) {
1085 for (i = 0; i < count; i++) {
1086 if (link_bw == divisor[i].link_bw) {
1087 pipe_config->dpll = divisor[i].dpll;
1088 pipe_config->clock_set = true;
1089 break;
1090 }
1091 }
1092 }
1093 }
1094
1095 bool
1096 intel_dp_compute_config(struct intel_encoder *encoder,
1097 struct intel_crtc_config *pipe_config)
1098 {
1099 struct drm_device *dev = encoder->base.dev;
1100 struct drm_i915_private *dev_priv = dev->dev_private;
1101 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
1102 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1103 enum port port = dp_to_dig_port(intel_dp)->port;
1104 struct intel_crtc *intel_crtc = encoder->new_crtc;
1105 struct intel_connector *intel_connector = intel_dp->attached_connector;
1106 int lane_count, clock;
1107 int min_lane_count = 1;
1108 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1109 /* Conveniently, the link BW constants become indices with a shift...*/
1110 int min_clock = 0;
1111 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
1112 int bpp, mode_rate;
1113 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
1114 int link_avail, link_clock;
1115
1116 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1117 pipe_config->has_pch_encoder = true;
1118
1119 pipe_config->has_dp_encoder = true;
1120 pipe_config->has_drrs = false;
1121 pipe_config->has_audio = intel_dp->has_audio;
1122
1123 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1124 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1125 adjusted_mode);
1126 if (!HAS_PCH_SPLIT(dev))
1127 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1128 intel_connector->panel.fitting_mode);
1129 else
1130 intel_pch_panel_fitting(intel_crtc, pipe_config,
1131 intel_connector->panel.fitting_mode);
1132 }
1133
1134 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1135 return false;
1136
1137 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1138 "max bw %02x pixel clock %iKHz\n",
1139 max_lane_count, bws[max_clock],
1140 adjusted_mode->crtc_clock);
1141
1142 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1143 * bpc in between. */
1144 bpp = pipe_config->pipe_bpp;
1145 if (is_edp(intel_dp)) {
1146 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1147 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1148 dev_priv->vbt.edp_bpp);
1149 bpp = dev_priv->vbt.edp_bpp;
1150 }
1151
1152 /*
1153 * Use the maximum clock and number of lanes the eDP panel
1154 * advertizes being capable of. The panels are generally
1155 * designed to support only a single clock and lane
1156 * configuration, and typically these values correspond to the
1157 * native resolution of the panel.
1158 */
1159 min_lane_count = max_lane_count;
1160 min_clock = max_clock;
1161 }
1162
1163 for (; bpp >= 6*3; bpp -= 2*3) {
1164 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1165 bpp);
1166
1167 for (clock = min_clock; clock <= max_clock; clock++) {
1168 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1169 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1170 link_avail = intel_dp_max_data_rate(link_clock,
1171 lane_count);
1172
1173 if (mode_rate <= link_avail) {
1174 goto found;
1175 }
1176 }
1177 }
1178 }
1179
1180 return false;
1181
1182 found:
1183 if (intel_dp->color_range_auto) {
1184 /*
1185 * See:
1186 * CEA-861-E - 5.1 Default Encoding Parameters
1187 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1188 */
1189 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1190 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1191 else
1192 intel_dp->color_range = 0;
1193 }
1194
1195 if (intel_dp->color_range)
1196 pipe_config->limited_color_range = true;
1197
1198 intel_dp->link_bw = bws[clock];
1199 intel_dp->lane_count = lane_count;
1200 pipe_config->pipe_bpp = bpp;
1201 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1202
1203 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1204 intel_dp->link_bw, intel_dp->lane_count,
1205 pipe_config->port_clock, bpp);
1206 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1207 mode_rate, link_avail);
1208
1209 intel_link_compute_m_n(bpp, lane_count,
1210 adjusted_mode->crtc_clock,
1211 pipe_config->port_clock,
1212 &pipe_config->dp_m_n);
1213
1214 if (intel_connector->panel.downclock_mode != NULL &&
1215 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
1216 pipe_config->has_drrs = true;
1217 intel_link_compute_m_n(bpp, lane_count,
1218 intel_connector->panel.downclock_mode->clock,
1219 pipe_config->port_clock,
1220 &pipe_config->dp_m2_n2);
1221 }
1222
1223 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1224 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1225 else
1226 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1227
1228 return true;
1229 }
1230
1231 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1232 {
1233 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1234 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1235 struct drm_device *dev = crtc->base.dev;
1236 struct drm_i915_private *dev_priv = dev->dev_private;
1237 u32 dpa_ctl;
1238
1239 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
1240 dpa_ctl = I915_READ(DP_A);
1241 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1242
1243 if (crtc->config.port_clock == 162000) {
1244 /* For a long time we've carried around a ILK-DevA w/a for the
1245 * 160MHz clock. If we're really unlucky, it's still required.
1246 */
1247 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1248 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1249 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1250 } else {
1251 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1252 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1253 }
1254
1255 I915_WRITE(DP_A, dpa_ctl);
1256
1257 POSTING_READ(DP_A);
1258 udelay(500);
1259 }
1260
1261 static void intel_dp_prepare(struct intel_encoder *encoder)
1262 {
1263 struct drm_device *dev = encoder->base.dev;
1264 struct drm_i915_private *dev_priv = dev->dev_private;
1265 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1266 enum port port = dp_to_dig_port(intel_dp)->port;
1267 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1268 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1269
1270 /*
1271 * There are four kinds of DP registers:
1272 *
1273 * IBX PCH
1274 * SNB CPU
1275 * IVB CPU
1276 * CPT PCH
1277 *
1278 * IBX PCH and CPU are the same for almost everything,
1279 * except that the CPU DP PLL is configured in this
1280 * register
1281 *
1282 * CPT PCH is quite different, having many bits moved
1283 * to the TRANS_DP_CTL register instead. That
1284 * configuration happens (oddly) in ironlake_pch_enable
1285 */
1286
1287 /* Preserve the BIOS-computed detected bit. This is
1288 * supposed to be read-only.
1289 */
1290 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1291
1292 /* Handle DP bits in common between all three register formats */
1293 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1294 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1295
1296 if (crtc->config.has_audio) {
1297 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1298 pipe_name(crtc->pipe));
1299 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1300 intel_write_eld(encoder);
1301 }
1302
1303 /* Split out the IBX/CPU vs CPT settings */
1304
1305 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1306 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1307 intel_dp->DP |= DP_SYNC_HS_HIGH;
1308 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1309 intel_dp->DP |= DP_SYNC_VS_HIGH;
1310 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1311
1312 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1313 intel_dp->DP |= DP_ENHANCED_FRAMING;
1314
1315 intel_dp->DP |= crtc->pipe << 29;
1316 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1317 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1318 intel_dp->DP |= intel_dp->color_range;
1319
1320 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1321 intel_dp->DP |= DP_SYNC_HS_HIGH;
1322 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1323 intel_dp->DP |= DP_SYNC_VS_HIGH;
1324 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1325
1326 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1327 intel_dp->DP |= DP_ENHANCED_FRAMING;
1328
1329 if (!IS_CHERRYVIEW(dev)) {
1330 if (crtc->pipe == 1)
1331 intel_dp->DP |= DP_PIPEB_SELECT;
1332 } else {
1333 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1334 }
1335 } else {
1336 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1337 }
1338 }
1339
1340 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1341 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1342
1343 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1344 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1345
1346 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1347 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1348
1349 static void wait_panel_status(struct intel_dp *intel_dp,
1350 u32 mask,
1351 u32 value)
1352 {
1353 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1354 struct drm_i915_private *dev_priv = dev->dev_private;
1355 u32 pp_stat_reg, pp_ctrl_reg;
1356
1357 lockdep_assert_held(&dev_priv->pps_mutex);
1358
1359 pp_stat_reg = _pp_stat_reg(intel_dp);
1360 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1361
1362 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1363 mask, value,
1364 I915_READ(pp_stat_reg),
1365 I915_READ(pp_ctrl_reg));
1366
1367 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1368 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1369 I915_READ(pp_stat_reg),
1370 I915_READ(pp_ctrl_reg));
1371 }
1372
1373 DRM_DEBUG_KMS("Wait complete\n");
1374 }
1375
1376 static void wait_panel_on(struct intel_dp *intel_dp)
1377 {
1378 DRM_DEBUG_KMS("Wait for panel power on\n");
1379 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1380 }
1381
1382 static void wait_panel_off(struct intel_dp *intel_dp)
1383 {
1384 DRM_DEBUG_KMS("Wait for panel power off time\n");
1385 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1386 }
1387
1388 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1389 {
1390 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1391
1392 /* When we disable the VDD override bit last we have to do the manual
1393 * wait. */
1394 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1395 intel_dp->panel_power_cycle_delay);
1396
1397 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1398 }
1399
1400 static void wait_backlight_on(struct intel_dp *intel_dp)
1401 {
1402 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1403 intel_dp->backlight_on_delay);
1404 }
1405
1406 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1407 {
1408 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1409 intel_dp->backlight_off_delay);
1410 }
1411
1412 /* Read the current pp_control value, unlocking the register if it
1413 * is locked
1414 */
1415
1416 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1417 {
1418 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1419 struct drm_i915_private *dev_priv = dev->dev_private;
1420 u32 control;
1421
1422 lockdep_assert_held(&dev_priv->pps_mutex);
1423
1424 control = I915_READ(_pp_ctrl_reg(intel_dp));
1425 control &= ~PANEL_UNLOCK_MASK;
1426 control |= PANEL_UNLOCK_REGS;
1427 return control;
1428 }
1429
1430 /*
1431 * Must be paired with edp_panel_vdd_off().
1432 * Must hold pps_mutex around the whole on/off sequence.
1433 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1434 */
1435 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1436 {
1437 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1438 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1439 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1440 struct drm_i915_private *dev_priv = dev->dev_private;
1441 enum intel_display_power_domain power_domain;
1442 u32 pp;
1443 u32 pp_stat_reg, pp_ctrl_reg;
1444 bool need_to_disable = !intel_dp->want_panel_vdd;
1445
1446 lockdep_assert_held(&dev_priv->pps_mutex);
1447
1448 if (!is_edp(intel_dp))
1449 return false;
1450
1451 intel_dp->want_panel_vdd = true;
1452
1453 if (edp_have_panel_vdd(intel_dp))
1454 return need_to_disable;
1455
1456 power_domain = intel_display_port_power_domain(intel_encoder);
1457 intel_display_power_get(dev_priv, power_domain);
1458
1459 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1460
1461 if (!edp_have_panel_power(intel_dp))
1462 wait_panel_power_cycle(intel_dp);
1463
1464 pp = ironlake_get_pp_control(intel_dp);
1465 pp |= EDP_FORCE_VDD;
1466
1467 pp_stat_reg = _pp_stat_reg(intel_dp);
1468 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1469
1470 I915_WRITE(pp_ctrl_reg, pp);
1471 POSTING_READ(pp_ctrl_reg);
1472 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1473 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1474 /*
1475 * If the panel wasn't on, delay before accessing aux channel
1476 */
1477 if (!edp_have_panel_power(intel_dp)) {
1478 DRM_DEBUG_KMS("eDP was not running\n");
1479 msleep(intel_dp->panel_power_up_delay);
1480 }
1481
1482 return need_to_disable;
1483 }
1484
1485 /*
1486 * Must be paired with intel_edp_panel_vdd_off() or
1487 * intel_edp_panel_off().
1488 * Nested calls to these functions are not allowed since
1489 * we drop the lock. Caller must use some higher level
1490 * locking to prevent nested calls from other threads.
1491 */
1492 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1493 {
1494 bool vdd;
1495
1496 if (!is_edp(intel_dp))
1497 return;
1498
1499 pps_lock(intel_dp);
1500 vdd = edp_panel_vdd_on(intel_dp);
1501 pps_unlock(intel_dp);
1502
1503 WARN(!vdd, "eDP VDD already requested on\n");
1504 }
1505
1506 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1507 {
1508 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1509 struct drm_i915_private *dev_priv = dev->dev_private;
1510 struct intel_digital_port *intel_dig_port =
1511 dp_to_dig_port(intel_dp);
1512 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1513 enum intel_display_power_domain power_domain;
1514 u32 pp;
1515 u32 pp_stat_reg, pp_ctrl_reg;
1516
1517 lockdep_assert_held(&dev_priv->pps_mutex);
1518
1519 WARN_ON(intel_dp->want_panel_vdd);
1520
1521 if (!edp_have_panel_vdd(intel_dp))
1522 return;
1523
1524 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1525
1526 pp = ironlake_get_pp_control(intel_dp);
1527 pp &= ~EDP_FORCE_VDD;
1528
1529 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1530 pp_stat_reg = _pp_stat_reg(intel_dp);
1531
1532 I915_WRITE(pp_ctrl_reg, pp);
1533 POSTING_READ(pp_ctrl_reg);
1534
1535 /* Make sure sequencer is idle before allowing subsequent activity */
1536 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1537 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1538
1539 if ((pp & POWER_TARGET_ON) == 0)
1540 intel_dp->last_power_cycle = jiffies;
1541
1542 power_domain = intel_display_port_power_domain(intel_encoder);
1543 intel_display_power_put(dev_priv, power_domain);
1544 }
1545
1546 static void edp_panel_vdd_work(struct work_struct *__work)
1547 {
1548 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1549 struct intel_dp, panel_vdd_work);
1550
1551 pps_lock(intel_dp);
1552 if (!intel_dp->want_panel_vdd)
1553 edp_panel_vdd_off_sync(intel_dp);
1554 pps_unlock(intel_dp);
1555 }
1556
1557 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1558 {
1559 unsigned long delay;
1560
1561 /*
1562 * Queue the timer to fire a long time from now (relative to the power
1563 * down delay) to keep the panel power up across a sequence of
1564 * operations.
1565 */
1566 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1567 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1568 }
1569
1570 /*
1571 * Must be paired with edp_panel_vdd_on().
1572 * Must hold pps_mutex around the whole on/off sequence.
1573 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1574 */
1575 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1576 {
1577 struct drm_i915_private *dev_priv =
1578 intel_dp_to_dev(intel_dp)->dev_private;
1579
1580 lockdep_assert_held(&dev_priv->pps_mutex);
1581
1582 if (!is_edp(intel_dp))
1583 return;
1584
1585 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1586
1587 intel_dp->want_panel_vdd = false;
1588
1589 if (sync)
1590 edp_panel_vdd_off_sync(intel_dp);
1591 else
1592 edp_panel_vdd_schedule_off(intel_dp);
1593 }
1594
1595 static void edp_panel_on(struct intel_dp *intel_dp)
1596 {
1597 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1598 struct drm_i915_private *dev_priv = dev->dev_private;
1599 u32 pp;
1600 u32 pp_ctrl_reg;
1601
1602 lockdep_assert_held(&dev_priv->pps_mutex);
1603
1604 if (!is_edp(intel_dp))
1605 return;
1606
1607 DRM_DEBUG_KMS("Turn eDP power on\n");
1608
1609 if (edp_have_panel_power(intel_dp)) {
1610 DRM_DEBUG_KMS("eDP power already on\n");
1611 return;
1612 }
1613
1614 wait_panel_power_cycle(intel_dp);
1615
1616 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1617 pp = ironlake_get_pp_control(intel_dp);
1618 if (IS_GEN5(dev)) {
1619 /* ILK workaround: disable reset around power sequence */
1620 pp &= ~PANEL_POWER_RESET;
1621 I915_WRITE(pp_ctrl_reg, pp);
1622 POSTING_READ(pp_ctrl_reg);
1623 }
1624
1625 pp |= POWER_TARGET_ON;
1626 if (!IS_GEN5(dev))
1627 pp |= PANEL_POWER_RESET;
1628
1629 I915_WRITE(pp_ctrl_reg, pp);
1630 POSTING_READ(pp_ctrl_reg);
1631
1632 wait_panel_on(intel_dp);
1633 intel_dp->last_power_on = jiffies;
1634
1635 if (IS_GEN5(dev)) {
1636 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1637 I915_WRITE(pp_ctrl_reg, pp);
1638 POSTING_READ(pp_ctrl_reg);
1639 }
1640 }
1641
1642 void intel_edp_panel_on(struct intel_dp *intel_dp)
1643 {
1644 if (!is_edp(intel_dp))
1645 return;
1646
1647 pps_lock(intel_dp);
1648 edp_panel_on(intel_dp);
1649 pps_unlock(intel_dp);
1650 }
1651
1652
1653 static void edp_panel_off(struct intel_dp *intel_dp)
1654 {
1655 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1656 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1657 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1658 struct drm_i915_private *dev_priv = dev->dev_private;
1659 enum intel_display_power_domain power_domain;
1660 u32 pp;
1661 u32 pp_ctrl_reg;
1662
1663 lockdep_assert_held(&dev_priv->pps_mutex);
1664
1665 if (!is_edp(intel_dp))
1666 return;
1667
1668 DRM_DEBUG_KMS("Turn eDP power off\n");
1669
1670 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1671
1672 pp = ironlake_get_pp_control(intel_dp);
1673 /* We need to switch off panel power _and_ force vdd, for otherwise some
1674 * panels get very unhappy and cease to work. */
1675 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1676 EDP_BLC_ENABLE);
1677
1678 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1679
1680 intel_dp->want_panel_vdd = false;
1681
1682 I915_WRITE(pp_ctrl_reg, pp);
1683 POSTING_READ(pp_ctrl_reg);
1684
1685 intel_dp->last_power_cycle = jiffies;
1686 wait_panel_off(intel_dp);
1687
1688 /* We got a reference when we enabled the VDD. */
1689 power_domain = intel_display_port_power_domain(intel_encoder);
1690 intel_display_power_put(dev_priv, power_domain);
1691 }
1692
1693 void intel_edp_panel_off(struct intel_dp *intel_dp)
1694 {
1695 if (!is_edp(intel_dp))
1696 return;
1697
1698 pps_lock(intel_dp);
1699 edp_panel_off(intel_dp);
1700 pps_unlock(intel_dp);
1701 }
1702
1703 /* Enable backlight in the panel power control. */
1704 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1705 {
1706 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1707 struct drm_device *dev = intel_dig_port->base.base.dev;
1708 struct drm_i915_private *dev_priv = dev->dev_private;
1709 u32 pp;
1710 u32 pp_ctrl_reg;
1711
1712 /*
1713 * If we enable the backlight right away following a panel power
1714 * on, we may see slight flicker as the panel syncs with the eDP
1715 * link. So delay a bit to make sure the image is solid before
1716 * allowing it to appear.
1717 */
1718 wait_backlight_on(intel_dp);
1719
1720 pps_lock(intel_dp);
1721
1722 pp = ironlake_get_pp_control(intel_dp);
1723 pp |= EDP_BLC_ENABLE;
1724
1725 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1726
1727 I915_WRITE(pp_ctrl_reg, pp);
1728 POSTING_READ(pp_ctrl_reg);
1729
1730 pps_unlock(intel_dp);
1731 }
1732
1733 /* Enable backlight PWM and backlight PP control. */
1734 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1735 {
1736 if (!is_edp(intel_dp))
1737 return;
1738
1739 DRM_DEBUG_KMS("\n");
1740
1741 intel_panel_enable_backlight(intel_dp->attached_connector);
1742 _intel_edp_backlight_on(intel_dp);
1743 }
1744
1745 /* Disable backlight in the panel power control. */
1746 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1747 {
1748 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1749 struct drm_i915_private *dev_priv = dev->dev_private;
1750 u32 pp;
1751 u32 pp_ctrl_reg;
1752
1753 if (!is_edp(intel_dp))
1754 return;
1755
1756 pps_lock(intel_dp);
1757
1758 pp = ironlake_get_pp_control(intel_dp);
1759 pp &= ~EDP_BLC_ENABLE;
1760
1761 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1762
1763 I915_WRITE(pp_ctrl_reg, pp);
1764 POSTING_READ(pp_ctrl_reg);
1765
1766 pps_unlock(intel_dp);
1767
1768 intel_dp->last_backlight_off = jiffies;
1769 edp_wait_backlight_off(intel_dp);
1770 }
1771
1772 /* Disable backlight PP control and backlight PWM. */
1773 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1774 {
1775 if (!is_edp(intel_dp))
1776 return;
1777
1778 DRM_DEBUG_KMS("\n");
1779
1780 _intel_edp_backlight_off(intel_dp);
1781 intel_panel_disable_backlight(intel_dp->attached_connector);
1782 }
1783
1784 /*
1785 * Hook for controlling the panel power control backlight through the bl_power
1786 * sysfs attribute. Take care to handle multiple calls.
1787 */
1788 static void intel_edp_backlight_power(struct intel_connector *connector,
1789 bool enable)
1790 {
1791 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1792 bool is_enabled;
1793
1794 pps_lock(intel_dp);
1795 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1796 pps_unlock(intel_dp);
1797
1798 if (is_enabled == enable)
1799 return;
1800
1801 DRM_DEBUG_KMS("panel power control backlight %s\n",
1802 enable ? "enable" : "disable");
1803
1804 if (enable)
1805 _intel_edp_backlight_on(intel_dp);
1806 else
1807 _intel_edp_backlight_off(intel_dp);
1808 }
1809
1810 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1811 {
1812 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1813 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1814 struct drm_device *dev = crtc->dev;
1815 struct drm_i915_private *dev_priv = dev->dev_private;
1816 u32 dpa_ctl;
1817
1818 assert_pipe_disabled(dev_priv,
1819 to_intel_crtc(crtc)->pipe);
1820
1821 DRM_DEBUG_KMS("\n");
1822 dpa_ctl = I915_READ(DP_A);
1823 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1824 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1825
1826 /* We don't adjust intel_dp->DP while tearing down the link, to
1827 * facilitate link retraining (e.g. after hotplug). Hence clear all
1828 * enable bits here to ensure that we don't enable too much. */
1829 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1830 intel_dp->DP |= DP_PLL_ENABLE;
1831 I915_WRITE(DP_A, intel_dp->DP);
1832 POSTING_READ(DP_A);
1833 udelay(200);
1834 }
1835
1836 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1837 {
1838 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1839 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1840 struct drm_device *dev = crtc->dev;
1841 struct drm_i915_private *dev_priv = dev->dev_private;
1842 u32 dpa_ctl;
1843
1844 assert_pipe_disabled(dev_priv,
1845 to_intel_crtc(crtc)->pipe);
1846
1847 dpa_ctl = I915_READ(DP_A);
1848 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1849 "dp pll off, should be on\n");
1850 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1851
1852 /* We can't rely on the value tracked for the DP register in
1853 * intel_dp->DP because link_down must not change that (otherwise link
1854 * re-training will fail. */
1855 dpa_ctl &= ~DP_PLL_ENABLE;
1856 I915_WRITE(DP_A, dpa_ctl);
1857 POSTING_READ(DP_A);
1858 udelay(200);
1859 }
1860
1861 /* If the sink supports it, try to set the power state appropriately */
1862 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1863 {
1864 int ret, i;
1865
1866 /* Should have a valid DPCD by this point */
1867 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1868 return;
1869
1870 if (mode != DRM_MODE_DPMS_ON) {
1871 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1872 DP_SET_POWER_D3);
1873 } else {
1874 /*
1875 * When turning on, we need to retry for 1ms to give the sink
1876 * time to wake up.
1877 */
1878 for (i = 0; i < 3; i++) {
1879 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1880 DP_SET_POWER_D0);
1881 if (ret == 1)
1882 break;
1883 msleep(1);
1884 }
1885 }
1886
1887 if (ret != 1)
1888 DRM_DEBUG_KMS("failed to %s sink power state\n",
1889 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1890 }
1891
1892 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1893 enum pipe *pipe)
1894 {
1895 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1896 enum port port = dp_to_dig_port(intel_dp)->port;
1897 struct drm_device *dev = encoder->base.dev;
1898 struct drm_i915_private *dev_priv = dev->dev_private;
1899 enum intel_display_power_domain power_domain;
1900 u32 tmp;
1901
1902 power_domain = intel_display_port_power_domain(encoder);
1903 if (!intel_display_power_is_enabled(dev_priv, power_domain))
1904 return false;
1905
1906 tmp = I915_READ(intel_dp->output_reg);
1907
1908 if (!(tmp & DP_PORT_EN))
1909 return false;
1910
1911 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1912 *pipe = PORT_TO_PIPE_CPT(tmp);
1913 } else if (IS_CHERRYVIEW(dev)) {
1914 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1915 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1916 *pipe = PORT_TO_PIPE(tmp);
1917 } else {
1918 u32 trans_sel;
1919 u32 trans_dp;
1920 int i;
1921
1922 switch (intel_dp->output_reg) {
1923 case PCH_DP_B:
1924 trans_sel = TRANS_DP_PORT_SEL_B;
1925 break;
1926 case PCH_DP_C:
1927 trans_sel = TRANS_DP_PORT_SEL_C;
1928 break;
1929 case PCH_DP_D:
1930 trans_sel = TRANS_DP_PORT_SEL_D;
1931 break;
1932 default:
1933 return true;
1934 }
1935
1936 for_each_pipe(dev_priv, i) {
1937 trans_dp = I915_READ(TRANS_DP_CTL(i));
1938 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1939 *pipe = i;
1940 return true;
1941 }
1942 }
1943
1944 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1945 intel_dp->output_reg);
1946 }
1947
1948 return true;
1949 }
1950
1951 static void intel_dp_get_config(struct intel_encoder *encoder,
1952 struct intel_crtc_config *pipe_config)
1953 {
1954 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1955 u32 tmp, flags = 0;
1956 struct drm_device *dev = encoder->base.dev;
1957 struct drm_i915_private *dev_priv = dev->dev_private;
1958 enum port port = dp_to_dig_port(intel_dp)->port;
1959 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1960 int dotclock;
1961
1962 tmp = I915_READ(intel_dp->output_reg);
1963 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1964 pipe_config->has_audio = true;
1965
1966 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1967 if (tmp & DP_SYNC_HS_HIGH)
1968 flags |= DRM_MODE_FLAG_PHSYNC;
1969 else
1970 flags |= DRM_MODE_FLAG_NHSYNC;
1971
1972 if (tmp & DP_SYNC_VS_HIGH)
1973 flags |= DRM_MODE_FLAG_PVSYNC;
1974 else
1975 flags |= DRM_MODE_FLAG_NVSYNC;
1976 } else {
1977 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1978 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1979 flags |= DRM_MODE_FLAG_PHSYNC;
1980 else
1981 flags |= DRM_MODE_FLAG_NHSYNC;
1982
1983 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1984 flags |= DRM_MODE_FLAG_PVSYNC;
1985 else
1986 flags |= DRM_MODE_FLAG_NVSYNC;
1987 }
1988
1989 pipe_config->adjusted_mode.flags |= flags;
1990
1991 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1992 tmp & DP_COLOR_RANGE_16_235)
1993 pipe_config->limited_color_range = true;
1994
1995 pipe_config->has_dp_encoder = true;
1996
1997 intel_dp_get_m_n(crtc, pipe_config);
1998
1999 if (port == PORT_A) {
2000 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2001 pipe_config->port_clock = 162000;
2002 else
2003 pipe_config->port_clock = 270000;
2004 }
2005
2006 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2007 &pipe_config->dp_m_n);
2008
2009 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2010 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2011
2012 pipe_config->adjusted_mode.crtc_clock = dotclock;
2013
2014 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2015 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2016 /*
2017 * This is a big fat ugly hack.
2018 *
2019 * Some machines in UEFI boot mode provide us a VBT that has 18
2020 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2021 * unknown we fail to light up. Yet the same BIOS boots up with
2022 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2023 * max, not what it tells us to use.
2024 *
2025 * Note: This will still be broken if the eDP panel is not lit
2026 * up by the BIOS, and thus we can't get the mode at module
2027 * load.
2028 */
2029 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2030 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2031 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2032 }
2033 }
2034
2035 static bool is_edp_psr(struct intel_dp *intel_dp)
2036 {
2037 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
2038 }
2039
2040 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
2041 {
2042 struct drm_i915_private *dev_priv = dev->dev_private;
2043
2044 if (!HAS_PSR(dev))
2045 return false;
2046
2047 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2048 }
2049
2050 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
2051 struct edp_vsc_psr *vsc_psr)
2052 {
2053 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2054 struct drm_device *dev = dig_port->base.base.dev;
2055 struct drm_i915_private *dev_priv = dev->dev_private;
2056 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
2057 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
2058 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
2059 uint32_t *data = (uint32_t *) vsc_psr;
2060 unsigned int i;
2061
2062 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
2063 the video DIP being updated before program video DIP data buffer
2064 registers for DIP being updated. */
2065 I915_WRITE(ctl_reg, 0);
2066 POSTING_READ(ctl_reg);
2067
2068 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
2069 if (i < sizeof(struct edp_vsc_psr))
2070 I915_WRITE(data_reg + i, *data++);
2071 else
2072 I915_WRITE(data_reg + i, 0);
2073 }
2074
2075 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
2076 POSTING_READ(ctl_reg);
2077 }
2078
2079 static void intel_edp_psr_setup_vsc(struct intel_dp *intel_dp)
2080 {
2081 struct edp_vsc_psr psr_vsc;
2082
2083 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
2084 memset(&psr_vsc, 0, sizeof(psr_vsc));
2085 psr_vsc.sdp_header.HB0 = 0;
2086 psr_vsc.sdp_header.HB1 = 0x7;
2087 psr_vsc.sdp_header.HB2 = 0x2;
2088 psr_vsc.sdp_header.HB3 = 0x8;
2089 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
2090 }
2091
2092 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
2093 {
2094 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2095 struct drm_device *dev = dig_port->base.base.dev;
2096 struct drm_i915_private *dev_priv = dev->dev_private;
2097 uint32_t aux_clock_divider;
2098 int precharge = 0x3;
2099 bool only_standby = false;
2100 static const uint8_t aux_msg[] = {
2101 [0] = DP_AUX_NATIVE_WRITE << 4,
2102 [1] = DP_SET_POWER >> 8,
2103 [2] = DP_SET_POWER & 0xff,
2104 [3] = 1 - 1,
2105 [4] = DP_SET_POWER_D0,
2106 };
2107 int i;
2108
2109 BUILD_BUG_ON(sizeof(aux_msg) > 20);
2110
2111 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
2112
2113 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2114 only_standby = true;
2115
2116 /* Enable PSR in sink */
2117 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
2118 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2119 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
2120 else
2121 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2122 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
2123
2124 /* Setup AUX registers */
2125 for (i = 0; i < sizeof(aux_msg); i += 4)
2126 I915_WRITE(EDP_PSR_AUX_DATA1(dev) + i,
2127 pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
2128
2129 I915_WRITE(EDP_PSR_AUX_CTL(dev),
2130 DP_AUX_CH_CTL_TIME_OUT_400us |
2131 (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
2132 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
2133 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
2134 }
2135
2136 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
2137 {
2138 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2139 struct drm_device *dev = dig_port->base.base.dev;
2140 struct drm_i915_private *dev_priv = dev->dev_private;
2141 uint32_t max_sleep_time = 0x1f;
2142 uint32_t idle_frames = 1;
2143 uint32_t val = 0x0;
2144 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
2145 bool only_standby = false;
2146
2147 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2148 only_standby = true;
2149
2150 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
2151 val |= EDP_PSR_LINK_STANDBY;
2152 val |= EDP_PSR_TP2_TP3_TIME_0us;
2153 val |= EDP_PSR_TP1_TIME_0us;
2154 val |= EDP_PSR_SKIP_AUX_EXIT;
2155 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
2156 } else
2157 val |= EDP_PSR_LINK_DISABLE;
2158
2159 I915_WRITE(EDP_PSR_CTL(dev), val |
2160 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
2161 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
2162 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
2163 EDP_PSR_ENABLE);
2164 }
2165
2166 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
2167 {
2168 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2169 struct drm_device *dev = dig_port->base.base.dev;
2170 struct drm_i915_private *dev_priv = dev->dev_private;
2171 struct drm_crtc *crtc = dig_port->base.base.crtc;
2172 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2173
2174 lockdep_assert_held(&dev_priv->psr.lock);
2175 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
2176 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
2177
2178 dev_priv->psr.source_ok = false;
2179
2180 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
2181 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
2182 return false;
2183 }
2184
2185 if (!i915.enable_psr) {
2186 DRM_DEBUG_KMS("PSR disable by flag\n");
2187 return false;
2188 }
2189
2190 /* Below limitations aren't valid for Broadwell */
2191 if (IS_BROADWELL(dev))
2192 goto out;
2193
2194 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
2195 S3D_ENABLE) {
2196 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
2197 return false;
2198 }
2199
2200 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
2201 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
2202 return false;
2203 }
2204
2205 out:
2206 dev_priv->psr.source_ok = true;
2207 return true;
2208 }
2209
2210 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
2211 {
2212 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2213 struct drm_device *dev = intel_dig_port->base.base.dev;
2214 struct drm_i915_private *dev_priv = dev->dev_private;
2215
2216 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2217 WARN_ON(dev_priv->psr.active);
2218 lockdep_assert_held(&dev_priv->psr.lock);
2219
2220 /* Enable/Re-enable PSR on the host */
2221 intel_edp_psr_enable_source(intel_dp);
2222
2223 dev_priv->psr.active = true;
2224 }
2225
2226 void intel_edp_psr_enable(struct intel_dp *intel_dp)
2227 {
2228 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2229 struct drm_i915_private *dev_priv = dev->dev_private;
2230
2231 if (!HAS_PSR(dev)) {
2232 DRM_DEBUG_KMS("PSR not supported on this platform\n");
2233 return;
2234 }
2235
2236 if (!is_edp_psr(intel_dp)) {
2237 DRM_DEBUG_KMS("PSR not supported by this panel\n");
2238 return;
2239 }
2240
2241 mutex_lock(&dev_priv->psr.lock);
2242 if (dev_priv->psr.enabled) {
2243 DRM_DEBUG_KMS("PSR already in use\n");
2244 goto unlock;
2245 }
2246
2247 if (!intel_edp_psr_match_conditions(intel_dp))
2248 goto unlock;
2249
2250 dev_priv->psr.busy_frontbuffer_bits = 0;
2251
2252 intel_edp_psr_setup_vsc(intel_dp);
2253
2254 /* Avoid continuous PSR exit by masking memup and hpd */
2255 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
2256 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
2257
2258 /* Enable PSR on the panel */
2259 intel_edp_psr_enable_sink(intel_dp);
2260
2261 dev_priv->psr.enabled = intel_dp;
2262 unlock:
2263 mutex_unlock(&dev_priv->psr.lock);
2264 }
2265
2266 void intel_edp_psr_disable(struct intel_dp *intel_dp)
2267 {
2268 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2269 struct drm_i915_private *dev_priv = dev->dev_private;
2270
2271 mutex_lock(&dev_priv->psr.lock);
2272 if (!dev_priv->psr.enabled) {
2273 mutex_unlock(&dev_priv->psr.lock);
2274 return;
2275 }
2276
2277 if (dev_priv->psr.active) {
2278 I915_WRITE(EDP_PSR_CTL(dev),
2279 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
2280
2281 /* Wait till PSR is idle */
2282 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
2283 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
2284 DRM_ERROR("Timed out waiting for PSR Idle State\n");
2285
2286 dev_priv->psr.active = false;
2287 } else {
2288 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2289 }
2290
2291 dev_priv->psr.enabled = NULL;
2292 mutex_unlock(&dev_priv->psr.lock);
2293
2294 cancel_delayed_work_sync(&dev_priv->psr.work);
2295 }
2296
2297 static void intel_edp_psr_work(struct work_struct *work)
2298 {
2299 struct drm_i915_private *dev_priv =
2300 container_of(work, typeof(*dev_priv), psr.work.work);
2301 struct intel_dp *intel_dp = dev_priv->psr.enabled;
2302
2303 /* We have to make sure PSR is ready for re-enable
2304 * otherwise it keeps disabled until next full enable/disable cycle.
2305 * PSR might take some time to get fully disabled
2306 * and be ready for re-enable.
2307 */
2308 if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) &
2309 EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
2310 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
2311 return;
2312 }
2313
2314 mutex_lock(&dev_priv->psr.lock);
2315 intel_dp = dev_priv->psr.enabled;
2316
2317 if (!intel_dp)
2318 goto unlock;
2319
2320 /*
2321 * The delayed work can race with an invalidate hence we need to
2322 * recheck. Since psr_flush first clears this and then reschedules we
2323 * won't ever miss a flush when bailing out here.
2324 */
2325 if (dev_priv->psr.busy_frontbuffer_bits)
2326 goto unlock;
2327
2328 intel_edp_psr_do_enable(intel_dp);
2329 unlock:
2330 mutex_unlock(&dev_priv->psr.lock);
2331 }
2332
2333 static void intel_edp_psr_do_exit(struct drm_device *dev)
2334 {
2335 struct drm_i915_private *dev_priv = dev->dev_private;
2336
2337 if (dev_priv->psr.active) {
2338 u32 val = I915_READ(EDP_PSR_CTL(dev));
2339
2340 WARN_ON(!(val & EDP_PSR_ENABLE));
2341
2342 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
2343
2344 dev_priv->psr.active = false;
2345 }
2346
2347 }
2348
2349 void intel_edp_psr_invalidate(struct drm_device *dev,
2350 unsigned frontbuffer_bits)
2351 {
2352 struct drm_i915_private *dev_priv = dev->dev_private;
2353 struct drm_crtc *crtc;
2354 enum pipe pipe;
2355
2356 mutex_lock(&dev_priv->psr.lock);
2357 if (!dev_priv->psr.enabled) {
2358 mutex_unlock(&dev_priv->psr.lock);
2359 return;
2360 }
2361
2362 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2363 pipe = to_intel_crtc(crtc)->pipe;
2364
2365 intel_edp_psr_do_exit(dev);
2366
2367 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2368
2369 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2370 mutex_unlock(&dev_priv->psr.lock);
2371 }
2372
2373 void intel_edp_psr_flush(struct drm_device *dev,
2374 unsigned frontbuffer_bits)
2375 {
2376 struct drm_i915_private *dev_priv = dev->dev_private;
2377 struct drm_crtc *crtc;
2378 enum pipe pipe;
2379
2380 mutex_lock(&dev_priv->psr.lock);
2381 if (!dev_priv->psr.enabled) {
2382 mutex_unlock(&dev_priv->psr.lock);
2383 return;
2384 }
2385
2386 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2387 pipe = to_intel_crtc(crtc)->pipe;
2388 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2389
2390 /*
2391 * On Haswell sprite plane updates don't result in a psr invalidating
2392 * signal in the hardware. Which means we need to manually fake this in
2393 * software for all flushes, not just when we've seen a preceding
2394 * invalidation through frontbuffer rendering.
2395 */
2396 if (IS_HASWELL(dev) &&
2397 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2398 intel_edp_psr_do_exit(dev);
2399
2400 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2401 schedule_delayed_work(&dev_priv->psr.work,
2402 msecs_to_jiffies(100));
2403 mutex_unlock(&dev_priv->psr.lock);
2404 }
2405
2406 void intel_edp_psr_init(struct drm_device *dev)
2407 {
2408 struct drm_i915_private *dev_priv = dev->dev_private;
2409
2410 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2411 mutex_init(&dev_priv->psr.lock);
2412 }
2413
2414 static void intel_disable_dp(struct intel_encoder *encoder)
2415 {
2416 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2417 struct drm_device *dev = encoder->base.dev;
2418
2419 /* Make sure the panel is off before trying to change the mode. But also
2420 * ensure that we have vdd while we switch off the panel. */
2421 intel_edp_panel_vdd_on(intel_dp);
2422 intel_edp_backlight_off(intel_dp);
2423 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2424 intel_edp_panel_off(intel_dp);
2425
2426 /* disable the port before the pipe on g4x */
2427 if (INTEL_INFO(dev)->gen < 5)
2428 intel_dp_link_down(intel_dp);
2429 }
2430
2431 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2432 {
2433 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2434 enum port port = dp_to_dig_port(intel_dp)->port;
2435
2436 intel_dp_link_down(intel_dp);
2437 if (port == PORT_A)
2438 ironlake_edp_pll_off(intel_dp);
2439 }
2440
2441 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2442 {
2443 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2444
2445 intel_dp_link_down(intel_dp);
2446 }
2447
2448 static void chv_post_disable_dp(struct intel_encoder *encoder)
2449 {
2450 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2451 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2452 struct drm_device *dev = encoder->base.dev;
2453 struct drm_i915_private *dev_priv = dev->dev_private;
2454 struct intel_crtc *intel_crtc =
2455 to_intel_crtc(encoder->base.crtc);
2456 enum dpio_channel ch = vlv_dport_to_channel(dport);
2457 enum pipe pipe = intel_crtc->pipe;
2458 u32 val;
2459
2460 intel_dp_link_down(intel_dp);
2461
2462 mutex_lock(&dev_priv->dpio_lock);
2463
2464 /* Propagate soft reset to data lane reset */
2465 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2466 val |= CHV_PCS_REQ_SOFTRESET_EN;
2467 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2468
2469 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2470 val |= CHV_PCS_REQ_SOFTRESET_EN;
2471 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2472
2473 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2474 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2475 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2476
2477 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2478 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2479 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2480
2481 mutex_unlock(&dev_priv->dpio_lock);
2482 }
2483
2484 static void
2485 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2486 uint32_t *DP,
2487 uint8_t dp_train_pat)
2488 {
2489 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2490 struct drm_device *dev = intel_dig_port->base.base.dev;
2491 struct drm_i915_private *dev_priv = dev->dev_private;
2492 enum port port = intel_dig_port->port;
2493
2494 if (HAS_DDI(dev)) {
2495 uint32_t temp = I915_READ(DP_TP_CTL(port));
2496
2497 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2498 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2499 else
2500 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2501
2502 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2503 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2504 case DP_TRAINING_PATTERN_DISABLE:
2505 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2506
2507 break;
2508 case DP_TRAINING_PATTERN_1:
2509 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2510 break;
2511 case DP_TRAINING_PATTERN_2:
2512 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2513 break;
2514 case DP_TRAINING_PATTERN_3:
2515 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2516 break;
2517 }
2518 I915_WRITE(DP_TP_CTL(port), temp);
2519
2520 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2521 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2522
2523 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2524 case DP_TRAINING_PATTERN_DISABLE:
2525 *DP |= DP_LINK_TRAIN_OFF_CPT;
2526 break;
2527 case DP_TRAINING_PATTERN_1:
2528 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2529 break;
2530 case DP_TRAINING_PATTERN_2:
2531 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2532 break;
2533 case DP_TRAINING_PATTERN_3:
2534 DRM_ERROR("DP training pattern 3 not supported\n");
2535 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2536 break;
2537 }
2538
2539 } else {
2540 if (IS_CHERRYVIEW(dev))
2541 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2542 else
2543 *DP &= ~DP_LINK_TRAIN_MASK;
2544
2545 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2546 case DP_TRAINING_PATTERN_DISABLE:
2547 *DP |= DP_LINK_TRAIN_OFF;
2548 break;
2549 case DP_TRAINING_PATTERN_1:
2550 *DP |= DP_LINK_TRAIN_PAT_1;
2551 break;
2552 case DP_TRAINING_PATTERN_2:
2553 *DP |= DP_LINK_TRAIN_PAT_2;
2554 break;
2555 case DP_TRAINING_PATTERN_3:
2556 if (IS_CHERRYVIEW(dev)) {
2557 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2558 } else {
2559 DRM_ERROR("DP training pattern 3 not supported\n");
2560 *DP |= DP_LINK_TRAIN_PAT_2;
2561 }
2562 break;
2563 }
2564 }
2565 }
2566
2567 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2568 {
2569 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2570 struct drm_i915_private *dev_priv = dev->dev_private;
2571
2572 /* enable with pattern 1 (as per spec) */
2573 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2574 DP_TRAINING_PATTERN_1);
2575
2576 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2577 POSTING_READ(intel_dp->output_reg);
2578
2579 /*
2580 * Magic for VLV/CHV. We _must_ first set up the register
2581 * without actually enabling the port, and then do another
2582 * write to enable the port. Otherwise link training will
2583 * fail when the power sequencer is freshly used for this port.
2584 */
2585 intel_dp->DP |= DP_PORT_EN;
2586
2587 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2588 POSTING_READ(intel_dp->output_reg);
2589 }
2590
2591 static void intel_enable_dp(struct intel_encoder *encoder)
2592 {
2593 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2594 struct drm_device *dev = encoder->base.dev;
2595 struct drm_i915_private *dev_priv = dev->dev_private;
2596 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2597
2598 if (WARN_ON(dp_reg & DP_PORT_EN))
2599 return;
2600
2601 pps_lock(intel_dp);
2602
2603 if (IS_VALLEYVIEW(dev))
2604 vlv_init_panel_power_sequencer(intel_dp);
2605
2606 intel_dp_enable_port(intel_dp);
2607
2608 edp_panel_vdd_on(intel_dp);
2609 edp_panel_on(intel_dp);
2610 edp_panel_vdd_off(intel_dp, true);
2611
2612 pps_unlock(intel_dp);
2613
2614 if (IS_VALLEYVIEW(dev))
2615 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp));
2616
2617 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2618 intel_dp_start_link_train(intel_dp);
2619 intel_dp_complete_link_train(intel_dp);
2620 intel_dp_stop_link_train(intel_dp);
2621 }
2622
2623 static void g4x_enable_dp(struct intel_encoder *encoder)
2624 {
2625 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2626
2627 intel_enable_dp(encoder);
2628 intel_edp_backlight_on(intel_dp);
2629 }
2630
2631 static void vlv_enable_dp(struct intel_encoder *encoder)
2632 {
2633 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2634
2635 intel_edp_backlight_on(intel_dp);
2636 }
2637
2638 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2639 {
2640 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2641 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2642
2643 intel_dp_prepare(encoder);
2644
2645 /* Only ilk+ has port A */
2646 if (dport->port == PORT_A) {
2647 ironlake_set_pll_cpu_edp(intel_dp);
2648 ironlake_edp_pll_on(intel_dp);
2649 }
2650 }
2651
2652 static void vlv_steal_power_sequencer(struct drm_device *dev,
2653 enum pipe pipe)
2654 {
2655 struct drm_i915_private *dev_priv = dev->dev_private;
2656 struct intel_encoder *encoder;
2657
2658 lockdep_assert_held(&dev_priv->pps_mutex);
2659
2660 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2661 base.head) {
2662 struct intel_dp *intel_dp;
2663 enum port port;
2664
2665 if (encoder->type != INTEL_OUTPUT_EDP)
2666 continue;
2667
2668 intel_dp = enc_to_intel_dp(&encoder->base);
2669 port = dp_to_dig_port(intel_dp)->port;
2670
2671 if (intel_dp->pps_pipe != pipe)
2672 continue;
2673
2674 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2675 pipe_name(pipe), port_name(port));
2676
2677 /* make sure vdd is off before we steal it */
2678 edp_panel_vdd_off_sync(intel_dp);
2679
2680 intel_dp->pps_pipe = INVALID_PIPE;
2681 }
2682 }
2683
2684 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2685 {
2686 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2687 struct intel_encoder *encoder = &intel_dig_port->base;
2688 struct drm_device *dev = encoder->base.dev;
2689 struct drm_i915_private *dev_priv = dev->dev_private;
2690 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2691
2692 lockdep_assert_held(&dev_priv->pps_mutex);
2693
2694 if (!is_edp(intel_dp))
2695 return;
2696
2697 if (intel_dp->pps_pipe == crtc->pipe)
2698 return;
2699
2700 /*
2701 * If another power sequencer was being used on this
2702 * port previously make sure to turn off vdd there while
2703 * we still have control of it.
2704 */
2705 if (intel_dp->pps_pipe != INVALID_PIPE)
2706 edp_panel_vdd_off_sync(intel_dp);
2707
2708 /*
2709 * We may be stealing the power
2710 * sequencer from another port.
2711 */
2712 vlv_steal_power_sequencer(dev, crtc->pipe);
2713
2714 /* now it's all ours */
2715 intel_dp->pps_pipe = crtc->pipe;
2716
2717 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2718 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2719
2720 /* init power sequencer on this pipe and port */
2721 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2722 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2723 }
2724
2725 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2726 {
2727 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2728 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2729 struct drm_device *dev = encoder->base.dev;
2730 struct drm_i915_private *dev_priv = dev->dev_private;
2731 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2732 enum dpio_channel port = vlv_dport_to_channel(dport);
2733 int pipe = intel_crtc->pipe;
2734 u32 val;
2735
2736 mutex_lock(&dev_priv->dpio_lock);
2737
2738 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2739 val = 0;
2740 if (pipe)
2741 val |= (1<<21);
2742 else
2743 val &= ~(1<<21);
2744 val |= 0x001000c4;
2745 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2746 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2747 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2748
2749 mutex_unlock(&dev_priv->dpio_lock);
2750
2751 intel_enable_dp(encoder);
2752 }
2753
2754 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2755 {
2756 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2757 struct drm_device *dev = encoder->base.dev;
2758 struct drm_i915_private *dev_priv = dev->dev_private;
2759 struct intel_crtc *intel_crtc =
2760 to_intel_crtc(encoder->base.crtc);
2761 enum dpio_channel port = vlv_dport_to_channel(dport);
2762 int pipe = intel_crtc->pipe;
2763
2764 intel_dp_prepare(encoder);
2765
2766 /* Program Tx lane resets to default */
2767 mutex_lock(&dev_priv->dpio_lock);
2768 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2769 DPIO_PCS_TX_LANE2_RESET |
2770 DPIO_PCS_TX_LANE1_RESET);
2771 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2772 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2773 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2774 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2775 DPIO_PCS_CLK_SOFT_RESET);
2776
2777 /* Fix up inter-pair skew failure */
2778 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2779 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2780 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2781 mutex_unlock(&dev_priv->dpio_lock);
2782 }
2783
2784 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2785 {
2786 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2787 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2788 struct drm_device *dev = encoder->base.dev;
2789 struct drm_i915_private *dev_priv = dev->dev_private;
2790 struct intel_crtc *intel_crtc =
2791 to_intel_crtc(encoder->base.crtc);
2792 enum dpio_channel ch = vlv_dport_to_channel(dport);
2793 int pipe = intel_crtc->pipe;
2794 int data, i;
2795 u32 val;
2796
2797 mutex_lock(&dev_priv->dpio_lock);
2798
2799 /* allow hardware to manage TX FIFO reset source */
2800 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2801 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2802 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2803
2804 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2805 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2806 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2807
2808 /* Deassert soft data lane reset*/
2809 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2810 val |= CHV_PCS_REQ_SOFTRESET_EN;
2811 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2812
2813 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2814 val |= CHV_PCS_REQ_SOFTRESET_EN;
2815 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2816
2817 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2818 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2819 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2820
2821 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2822 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2823 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2824
2825 /* Program Tx lane latency optimal setting*/
2826 for (i = 0; i < 4; i++) {
2827 /* Set the latency optimal bit */
2828 data = (i == 1) ? 0x0 : 0x6;
2829 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2830 data << DPIO_FRC_LATENCY_SHFIT);
2831
2832 /* Set the upar bit */
2833 data = (i == 1) ? 0x0 : 0x1;
2834 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2835 data << DPIO_UPAR_SHIFT);
2836 }
2837
2838 /* Data lane stagger programming */
2839 /* FIXME: Fix up value only after power analysis */
2840
2841 mutex_unlock(&dev_priv->dpio_lock);
2842
2843 intel_enable_dp(encoder);
2844 }
2845
2846 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2847 {
2848 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2849 struct drm_device *dev = encoder->base.dev;
2850 struct drm_i915_private *dev_priv = dev->dev_private;
2851 struct intel_crtc *intel_crtc =
2852 to_intel_crtc(encoder->base.crtc);
2853 enum dpio_channel ch = vlv_dport_to_channel(dport);
2854 enum pipe pipe = intel_crtc->pipe;
2855 u32 val;
2856
2857 intel_dp_prepare(encoder);
2858
2859 mutex_lock(&dev_priv->dpio_lock);
2860
2861 /* program left/right clock distribution */
2862 if (pipe != PIPE_B) {
2863 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2864 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2865 if (ch == DPIO_CH0)
2866 val |= CHV_BUFLEFTENA1_FORCE;
2867 if (ch == DPIO_CH1)
2868 val |= CHV_BUFRIGHTENA1_FORCE;
2869 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2870 } else {
2871 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2872 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2873 if (ch == DPIO_CH0)
2874 val |= CHV_BUFLEFTENA2_FORCE;
2875 if (ch == DPIO_CH1)
2876 val |= CHV_BUFRIGHTENA2_FORCE;
2877 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2878 }
2879
2880 /* program clock channel usage */
2881 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2882 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2883 if (pipe != PIPE_B)
2884 val &= ~CHV_PCS_USEDCLKCHANNEL;
2885 else
2886 val |= CHV_PCS_USEDCLKCHANNEL;
2887 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2888
2889 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2890 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2891 if (pipe != PIPE_B)
2892 val &= ~CHV_PCS_USEDCLKCHANNEL;
2893 else
2894 val |= CHV_PCS_USEDCLKCHANNEL;
2895 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2896
2897 /*
2898 * This a a bit weird since generally CL
2899 * matches the pipe, but here we need to
2900 * pick the CL based on the port.
2901 */
2902 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2903 if (pipe != PIPE_B)
2904 val &= ~CHV_CMN_USEDCLKCHANNEL;
2905 else
2906 val |= CHV_CMN_USEDCLKCHANNEL;
2907 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2908
2909 mutex_unlock(&dev_priv->dpio_lock);
2910 }
2911
2912 /*
2913 * Native read with retry for link status and receiver capability reads for
2914 * cases where the sink may still be asleep.
2915 *
2916 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2917 * supposed to retry 3 times per the spec.
2918 */
2919 static ssize_t
2920 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2921 void *buffer, size_t size)
2922 {
2923 ssize_t ret;
2924 int i;
2925
2926 for (i = 0; i < 3; i++) {
2927 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2928 if (ret == size)
2929 return ret;
2930 msleep(1);
2931 }
2932
2933 return ret;
2934 }
2935
2936 /*
2937 * Fetch AUX CH registers 0x202 - 0x207 which contain
2938 * link status information
2939 */
2940 static bool
2941 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2942 {
2943 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2944 DP_LANE0_1_STATUS,
2945 link_status,
2946 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2947 }
2948
2949 /* These are source-specific values. */
2950 static uint8_t
2951 intel_dp_voltage_max(struct intel_dp *intel_dp)
2952 {
2953 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2954 enum port port = dp_to_dig_port(intel_dp)->port;
2955
2956 if (INTEL_INFO(dev)->gen >= 9)
2957 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2958 else if (IS_VALLEYVIEW(dev))
2959 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2960 else if (IS_GEN7(dev) && port == PORT_A)
2961 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2962 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2963 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2964 else
2965 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2966 }
2967
2968 static uint8_t
2969 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2970 {
2971 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2972 enum port port = dp_to_dig_port(intel_dp)->port;
2973
2974 if (INTEL_INFO(dev)->gen >= 9) {
2975 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2976 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2977 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2978 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2979 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2980 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2981 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2982 default:
2983 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2984 }
2985 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2986 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2987 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2988 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2989 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2990 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2991 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2992 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2993 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2994 default:
2995 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2996 }
2997 } else if (IS_VALLEYVIEW(dev)) {
2998 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2999 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3000 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3001 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3002 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3003 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3004 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3005 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3006 default:
3007 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3008 }
3009 } else if (IS_GEN7(dev) && port == PORT_A) {
3010 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3011 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3012 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3013 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3014 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3015 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3016 default:
3017 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3018 }
3019 } else {
3020 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3021 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3022 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3023 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3024 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3025 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3026 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3027 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3028 default:
3029 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3030 }
3031 }
3032 }
3033
3034 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
3035 {
3036 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3037 struct drm_i915_private *dev_priv = dev->dev_private;
3038 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3039 struct intel_crtc *intel_crtc =
3040 to_intel_crtc(dport->base.base.crtc);
3041 unsigned long demph_reg_value, preemph_reg_value,
3042 uniqtranscale_reg_value;
3043 uint8_t train_set = intel_dp->train_set[0];
3044 enum dpio_channel port = vlv_dport_to_channel(dport);
3045 int pipe = intel_crtc->pipe;
3046
3047 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3048 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3049 preemph_reg_value = 0x0004000;
3050 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3051 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3052 demph_reg_value = 0x2B405555;
3053 uniqtranscale_reg_value = 0x552AB83A;
3054 break;
3055 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3056 demph_reg_value = 0x2B404040;
3057 uniqtranscale_reg_value = 0x5548B83A;
3058 break;
3059 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3060 demph_reg_value = 0x2B245555;
3061 uniqtranscale_reg_value = 0x5560B83A;
3062 break;
3063 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3064 demph_reg_value = 0x2B405555;
3065 uniqtranscale_reg_value = 0x5598DA3A;
3066 break;
3067 default:
3068 return 0;
3069 }
3070 break;
3071 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3072 preemph_reg_value = 0x0002000;
3073 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3074 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3075 demph_reg_value = 0x2B404040;
3076 uniqtranscale_reg_value = 0x5552B83A;
3077 break;
3078 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3079 demph_reg_value = 0x2B404848;
3080 uniqtranscale_reg_value = 0x5580B83A;
3081 break;
3082 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3083 demph_reg_value = 0x2B404040;
3084 uniqtranscale_reg_value = 0x55ADDA3A;
3085 break;
3086 default:
3087 return 0;
3088 }
3089 break;
3090 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3091 preemph_reg_value = 0x0000000;
3092 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3093 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3094 demph_reg_value = 0x2B305555;
3095 uniqtranscale_reg_value = 0x5570B83A;
3096 break;
3097 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3098 demph_reg_value = 0x2B2B4040;
3099 uniqtranscale_reg_value = 0x55ADDA3A;
3100 break;
3101 default:
3102 return 0;
3103 }
3104 break;
3105 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3106 preemph_reg_value = 0x0006000;
3107 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3108 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3109 demph_reg_value = 0x1B405555;
3110 uniqtranscale_reg_value = 0x55ADDA3A;
3111 break;
3112 default:
3113 return 0;
3114 }
3115 break;
3116 default:
3117 return 0;
3118 }
3119
3120 mutex_lock(&dev_priv->dpio_lock);
3121 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3122 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3123 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3124 uniqtranscale_reg_value);
3125 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3126 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3127 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3128 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3129 mutex_unlock(&dev_priv->dpio_lock);
3130
3131 return 0;
3132 }
3133
3134 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
3135 {
3136 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3137 struct drm_i915_private *dev_priv = dev->dev_private;
3138 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3139 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3140 u32 deemph_reg_value, margin_reg_value, val;
3141 uint8_t train_set = intel_dp->train_set[0];
3142 enum dpio_channel ch = vlv_dport_to_channel(dport);
3143 enum pipe pipe = intel_crtc->pipe;
3144 int i;
3145
3146 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3147 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3148 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3149 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3150 deemph_reg_value = 128;
3151 margin_reg_value = 52;
3152 break;
3153 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3154 deemph_reg_value = 128;
3155 margin_reg_value = 77;
3156 break;
3157 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3158 deemph_reg_value = 128;
3159 margin_reg_value = 102;
3160 break;
3161 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3162 deemph_reg_value = 128;
3163 margin_reg_value = 154;
3164 /* FIXME extra to set for 1200 */
3165 break;
3166 default:
3167 return 0;
3168 }
3169 break;
3170 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3171 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3172 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3173 deemph_reg_value = 85;
3174 margin_reg_value = 78;
3175 break;
3176 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3177 deemph_reg_value = 85;
3178 margin_reg_value = 116;
3179 break;
3180 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3181 deemph_reg_value = 85;
3182 margin_reg_value = 154;
3183 break;
3184 default:
3185 return 0;
3186 }
3187 break;
3188 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3189 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3190 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3191 deemph_reg_value = 64;
3192 margin_reg_value = 104;
3193 break;
3194 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3195 deemph_reg_value = 64;
3196 margin_reg_value = 154;
3197 break;
3198 default:
3199 return 0;
3200 }
3201 break;
3202 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3203 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3204 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3205 deemph_reg_value = 43;
3206 margin_reg_value = 154;
3207 break;
3208 default:
3209 return 0;
3210 }
3211 break;
3212 default:
3213 return 0;
3214 }
3215
3216 mutex_lock(&dev_priv->dpio_lock);
3217
3218 /* Clear calc init */
3219 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3220 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3221 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3222 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3223 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3224
3225 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3226 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3227 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3228 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3229 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3230
3231 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3232 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3233 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3234 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3235
3236 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3237 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3238 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3239 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3240
3241 /* Program swing deemph */
3242 for (i = 0; i < 4; i++) {
3243 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3244 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3245 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3246 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3247 }
3248
3249 /* Program swing margin */
3250 for (i = 0; i < 4; i++) {
3251 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3252 val &= ~DPIO_SWING_MARGIN000_MASK;
3253 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3254 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3255 }
3256
3257 /* Disable unique transition scale */
3258 for (i = 0; i < 4; i++) {
3259 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3260 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3261 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3262 }
3263
3264 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3265 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3266 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3267 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3268
3269 /*
3270 * The document said it needs to set bit 27 for ch0 and bit 26
3271 * for ch1. Might be a typo in the doc.
3272 * For now, for this unique transition scale selection, set bit
3273 * 27 for ch0 and ch1.
3274 */
3275 for (i = 0; i < 4; i++) {
3276 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3277 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3278 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3279 }
3280
3281 for (i = 0; i < 4; i++) {
3282 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3283 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3284 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3285 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3286 }
3287 }
3288
3289 /* Start swing calculation */
3290 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3291 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3292 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3293
3294 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3295 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3296 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3297
3298 /* LRC Bypass */
3299 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3300 val |= DPIO_LRC_BYPASS;
3301 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3302
3303 mutex_unlock(&dev_priv->dpio_lock);
3304
3305 return 0;
3306 }
3307
3308 static void
3309 intel_get_adjust_train(struct intel_dp *intel_dp,
3310 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3311 {
3312 uint8_t v = 0;
3313 uint8_t p = 0;
3314 int lane;
3315 uint8_t voltage_max;
3316 uint8_t preemph_max;
3317
3318 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3319 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3320 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3321
3322 if (this_v > v)
3323 v = this_v;
3324 if (this_p > p)
3325 p = this_p;
3326 }
3327
3328 voltage_max = intel_dp_voltage_max(intel_dp);
3329 if (v >= voltage_max)
3330 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3331
3332 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3333 if (p >= preemph_max)
3334 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3335
3336 for (lane = 0; lane < 4; lane++)
3337 intel_dp->train_set[lane] = v | p;
3338 }
3339
3340 static uint32_t
3341 intel_gen4_signal_levels(uint8_t train_set)
3342 {
3343 uint32_t signal_levels = 0;
3344
3345 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3346 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3347 default:
3348 signal_levels |= DP_VOLTAGE_0_4;
3349 break;
3350 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3351 signal_levels |= DP_VOLTAGE_0_6;
3352 break;
3353 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3354 signal_levels |= DP_VOLTAGE_0_8;
3355 break;
3356 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3357 signal_levels |= DP_VOLTAGE_1_2;
3358 break;
3359 }
3360 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3361 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3362 default:
3363 signal_levels |= DP_PRE_EMPHASIS_0;
3364 break;
3365 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3366 signal_levels |= DP_PRE_EMPHASIS_3_5;
3367 break;
3368 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3369 signal_levels |= DP_PRE_EMPHASIS_6;
3370 break;
3371 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3372 signal_levels |= DP_PRE_EMPHASIS_9_5;
3373 break;
3374 }
3375 return signal_levels;
3376 }
3377
3378 /* Gen6's DP voltage swing and pre-emphasis control */
3379 static uint32_t
3380 intel_gen6_edp_signal_levels(uint8_t train_set)
3381 {
3382 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3383 DP_TRAIN_PRE_EMPHASIS_MASK);
3384 switch (signal_levels) {
3385 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3386 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3387 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3388 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3389 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3390 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3391 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3392 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3393 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3394 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3395 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3396 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3397 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3398 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3399 default:
3400 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3401 "0x%x\n", signal_levels);
3402 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3403 }
3404 }
3405
3406 /* Gen7's DP voltage swing and pre-emphasis control */
3407 static uint32_t
3408 intel_gen7_edp_signal_levels(uint8_t train_set)
3409 {
3410 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3411 DP_TRAIN_PRE_EMPHASIS_MASK);
3412 switch (signal_levels) {
3413 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3414 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3415 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3416 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3417 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3418 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3419
3420 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3421 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3422 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3423 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3424
3425 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3426 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3427 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3428 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3429
3430 default:
3431 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3432 "0x%x\n", signal_levels);
3433 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3434 }
3435 }
3436
3437 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3438 static uint32_t
3439 intel_hsw_signal_levels(uint8_t train_set)
3440 {
3441 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3442 DP_TRAIN_PRE_EMPHASIS_MASK);
3443 switch (signal_levels) {
3444 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3445 return DDI_BUF_TRANS_SELECT(0);
3446 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3447 return DDI_BUF_TRANS_SELECT(1);
3448 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3449 return DDI_BUF_TRANS_SELECT(2);
3450 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3451 return DDI_BUF_TRANS_SELECT(3);
3452
3453 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3454 return DDI_BUF_TRANS_SELECT(4);
3455 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3456 return DDI_BUF_TRANS_SELECT(5);
3457 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3458 return DDI_BUF_TRANS_SELECT(6);
3459
3460 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3461 return DDI_BUF_TRANS_SELECT(7);
3462 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3463 return DDI_BUF_TRANS_SELECT(8);
3464 default:
3465 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3466 "0x%x\n", signal_levels);
3467 return DDI_BUF_TRANS_SELECT(0);
3468 }
3469 }
3470
3471 /* Properly updates "DP" with the correct signal levels. */
3472 static void
3473 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3474 {
3475 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3476 enum port port = intel_dig_port->port;
3477 struct drm_device *dev = intel_dig_port->base.base.dev;
3478 uint32_t signal_levels, mask;
3479 uint8_t train_set = intel_dp->train_set[0];
3480
3481 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
3482 signal_levels = intel_hsw_signal_levels(train_set);
3483 mask = DDI_BUF_EMP_MASK;
3484 } else if (IS_CHERRYVIEW(dev)) {
3485 signal_levels = intel_chv_signal_levels(intel_dp);
3486 mask = 0;
3487 } else if (IS_VALLEYVIEW(dev)) {
3488 signal_levels = intel_vlv_signal_levels(intel_dp);
3489 mask = 0;
3490 } else if (IS_GEN7(dev) && port == PORT_A) {
3491 signal_levels = intel_gen7_edp_signal_levels(train_set);
3492 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3493 } else if (IS_GEN6(dev) && port == PORT_A) {
3494 signal_levels = intel_gen6_edp_signal_levels(train_set);
3495 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3496 } else {
3497 signal_levels = intel_gen4_signal_levels(train_set);
3498 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3499 }
3500
3501 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3502
3503 *DP = (*DP & ~mask) | signal_levels;
3504 }
3505
3506 static bool
3507 intel_dp_set_link_train(struct intel_dp *intel_dp,
3508 uint32_t *DP,
3509 uint8_t dp_train_pat)
3510 {
3511 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3512 struct drm_device *dev = intel_dig_port->base.base.dev;
3513 struct drm_i915_private *dev_priv = dev->dev_private;
3514 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3515 int ret, len;
3516
3517 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3518
3519 I915_WRITE(intel_dp->output_reg, *DP);
3520 POSTING_READ(intel_dp->output_reg);
3521
3522 buf[0] = dp_train_pat;
3523 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3524 DP_TRAINING_PATTERN_DISABLE) {
3525 /* don't write DP_TRAINING_LANEx_SET on disable */
3526 len = 1;
3527 } else {
3528 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3529 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3530 len = intel_dp->lane_count + 1;
3531 }
3532
3533 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3534 buf, len);
3535
3536 return ret == len;
3537 }
3538
3539 static bool
3540 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3541 uint8_t dp_train_pat)
3542 {
3543 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3544 intel_dp_set_signal_levels(intel_dp, DP);
3545 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3546 }
3547
3548 static bool
3549 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3550 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3551 {
3552 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3553 struct drm_device *dev = intel_dig_port->base.base.dev;
3554 struct drm_i915_private *dev_priv = dev->dev_private;
3555 int ret;
3556
3557 intel_get_adjust_train(intel_dp, link_status);
3558 intel_dp_set_signal_levels(intel_dp, DP);
3559
3560 I915_WRITE(intel_dp->output_reg, *DP);
3561 POSTING_READ(intel_dp->output_reg);
3562
3563 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3564 intel_dp->train_set, intel_dp->lane_count);
3565
3566 return ret == intel_dp->lane_count;
3567 }
3568
3569 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3570 {
3571 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3572 struct drm_device *dev = intel_dig_port->base.base.dev;
3573 struct drm_i915_private *dev_priv = dev->dev_private;
3574 enum port port = intel_dig_port->port;
3575 uint32_t val;
3576
3577 if (!HAS_DDI(dev))
3578 return;
3579
3580 val = I915_READ(DP_TP_CTL(port));
3581 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3582 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3583 I915_WRITE(DP_TP_CTL(port), val);
3584
3585 /*
3586 * On PORT_A we can have only eDP in SST mode. There the only reason
3587 * we need to set idle transmission mode is to work around a HW issue
3588 * where we enable the pipe while not in idle link-training mode.
3589 * In this case there is requirement to wait for a minimum number of
3590 * idle patterns to be sent.
3591 */
3592 if (port == PORT_A)
3593 return;
3594
3595 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3596 1))
3597 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3598 }
3599
3600 /* Enable corresponding port and start training pattern 1 */
3601 void
3602 intel_dp_start_link_train(struct intel_dp *intel_dp)
3603 {
3604 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3605 struct drm_device *dev = encoder->dev;
3606 int i;
3607 uint8_t voltage;
3608 int voltage_tries, loop_tries;
3609 uint32_t DP = intel_dp->DP;
3610 uint8_t link_config[2];
3611
3612 if (HAS_DDI(dev))
3613 intel_ddi_prepare_link_retrain(encoder);
3614
3615 /* Write the link configuration data */
3616 link_config[0] = intel_dp->link_bw;
3617 link_config[1] = intel_dp->lane_count;
3618 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3619 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3620 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3621
3622 link_config[0] = 0;
3623 link_config[1] = DP_SET_ANSI_8B10B;
3624 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3625
3626 DP |= DP_PORT_EN;
3627
3628 /* clock recovery */
3629 if (!intel_dp_reset_link_train(intel_dp, &DP,
3630 DP_TRAINING_PATTERN_1 |
3631 DP_LINK_SCRAMBLING_DISABLE)) {
3632 DRM_ERROR("failed to enable link training\n");
3633 return;
3634 }
3635
3636 voltage = 0xff;
3637 voltage_tries = 0;
3638 loop_tries = 0;
3639 for (;;) {
3640 uint8_t link_status[DP_LINK_STATUS_SIZE];
3641
3642 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3643 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3644 DRM_ERROR("failed to get link status\n");
3645 break;
3646 }
3647
3648 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3649 DRM_DEBUG_KMS("clock recovery OK\n");
3650 break;
3651 }
3652
3653 /* Check to see if we've tried the max voltage */
3654 for (i = 0; i < intel_dp->lane_count; i++)
3655 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3656 break;
3657 if (i == intel_dp->lane_count) {
3658 ++loop_tries;
3659 if (loop_tries == 5) {
3660 DRM_ERROR("too many full retries, give up\n");
3661 break;
3662 }
3663 intel_dp_reset_link_train(intel_dp, &DP,
3664 DP_TRAINING_PATTERN_1 |
3665 DP_LINK_SCRAMBLING_DISABLE);
3666 voltage_tries = 0;
3667 continue;
3668 }
3669
3670 /* Check to see if we've tried the same voltage 5 times */
3671 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3672 ++voltage_tries;
3673 if (voltage_tries == 5) {
3674 DRM_ERROR("too many voltage retries, give up\n");
3675 break;
3676 }
3677 } else
3678 voltage_tries = 0;
3679 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3680
3681 /* Update training set as requested by target */
3682 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3683 DRM_ERROR("failed to update link training\n");
3684 break;
3685 }
3686 }
3687
3688 intel_dp->DP = DP;
3689 }
3690
3691 void
3692 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3693 {
3694 bool channel_eq = false;
3695 int tries, cr_tries;
3696 uint32_t DP = intel_dp->DP;
3697 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3698
3699 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3700 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3701 training_pattern = DP_TRAINING_PATTERN_3;
3702
3703 /* channel equalization */
3704 if (!intel_dp_set_link_train(intel_dp, &DP,
3705 training_pattern |
3706 DP_LINK_SCRAMBLING_DISABLE)) {
3707 DRM_ERROR("failed to start channel equalization\n");
3708 return;
3709 }
3710
3711 tries = 0;
3712 cr_tries = 0;
3713 channel_eq = false;
3714 for (;;) {
3715 uint8_t link_status[DP_LINK_STATUS_SIZE];
3716
3717 if (cr_tries > 5) {
3718 DRM_ERROR("failed to train DP, aborting\n");
3719 break;
3720 }
3721
3722 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3723 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3724 DRM_ERROR("failed to get link status\n");
3725 break;
3726 }
3727
3728 /* Make sure clock is still ok */
3729 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3730 intel_dp_start_link_train(intel_dp);
3731 intel_dp_set_link_train(intel_dp, &DP,
3732 training_pattern |
3733 DP_LINK_SCRAMBLING_DISABLE);
3734 cr_tries++;
3735 continue;
3736 }
3737
3738 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3739 channel_eq = true;
3740 break;
3741 }
3742
3743 /* Try 5 times, then try clock recovery if that fails */
3744 if (tries > 5) {
3745 intel_dp_link_down(intel_dp);
3746 intel_dp_start_link_train(intel_dp);
3747 intel_dp_set_link_train(intel_dp, &DP,
3748 training_pattern |
3749 DP_LINK_SCRAMBLING_DISABLE);
3750 tries = 0;
3751 cr_tries++;
3752 continue;
3753 }
3754
3755 /* Update training set as requested by target */
3756 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3757 DRM_ERROR("failed to update link training\n");
3758 break;
3759 }
3760 ++tries;
3761 }
3762
3763 intel_dp_set_idle_link_train(intel_dp);
3764
3765 intel_dp->DP = DP;
3766
3767 if (channel_eq)
3768 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3769
3770 }
3771
3772 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3773 {
3774 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3775 DP_TRAINING_PATTERN_DISABLE);
3776 }
3777
3778 static void
3779 intel_dp_link_down(struct intel_dp *intel_dp)
3780 {
3781 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3782 enum port port = intel_dig_port->port;
3783 struct drm_device *dev = intel_dig_port->base.base.dev;
3784 struct drm_i915_private *dev_priv = dev->dev_private;
3785 struct intel_crtc *intel_crtc =
3786 to_intel_crtc(intel_dig_port->base.base.crtc);
3787 uint32_t DP = intel_dp->DP;
3788
3789 if (WARN_ON(HAS_DDI(dev)))
3790 return;
3791
3792 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3793 return;
3794
3795 DRM_DEBUG_KMS("\n");
3796
3797 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3798 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3799 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3800 } else {
3801 if (IS_CHERRYVIEW(dev))
3802 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3803 else
3804 DP &= ~DP_LINK_TRAIN_MASK;
3805 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3806 }
3807 POSTING_READ(intel_dp->output_reg);
3808
3809 if (HAS_PCH_IBX(dev) &&
3810 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3811 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3812
3813 /* Hardware workaround: leaving our transcoder select
3814 * set to transcoder B while it's off will prevent the
3815 * corresponding HDMI output on transcoder A.
3816 *
3817 * Combine this with another hardware workaround:
3818 * transcoder select bit can only be cleared while the
3819 * port is enabled.
3820 */
3821 DP &= ~DP_PIPEB_SELECT;
3822 I915_WRITE(intel_dp->output_reg, DP);
3823
3824 /* Changes to enable or select take place the vblank
3825 * after being written.
3826 */
3827 if (WARN_ON(crtc == NULL)) {
3828 /* We should never try to disable a port without a crtc
3829 * attached. For paranoia keep the code around for a
3830 * bit. */
3831 POSTING_READ(intel_dp->output_reg);
3832 msleep(50);
3833 } else
3834 intel_wait_for_vblank(dev, intel_crtc->pipe);
3835 }
3836
3837 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3838 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3839 POSTING_READ(intel_dp->output_reg);
3840 msleep(intel_dp->panel_power_down_delay);
3841 }
3842
3843 static bool
3844 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3845 {
3846 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3847 struct drm_device *dev = dig_port->base.base.dev;
3848 struct drm_i915_private *dev_priv = dev->dev_private;
3849
3850 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3851 sizeof(intel_dp->dpcd)) < 0)
3852 return false; /* aux transfer failed */
3853
3854 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3855
3856 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3857 return false; /* DPCD not present */
3858
3859 /* Check if the panel supports PSR */
3860 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3861 if (is_edp(intel_dp)) {
3862 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3863 intel_dp->psr_dpcd,
3864 sizeof(intel_dp->psr_dpcd));
3865 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3866 dev_priv->psr.sink_support = true;
3867 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3868 }
3869 }
3870
3871 /* Training Pattern 3 support */
3872 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3873 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3874 intel_dp->use_tps3 = true;
3875 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3876 } else
3877 intel_dp->use_tps3 = false;
3878
3879 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3880 DP_DWN_STRM_PORT_PRESENT))
3881 return true; /* native DP sink */
3882
3883 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3884 return true; /* no per-port downstream info */
3885
3886 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3887 intel_dp->downstream_ports,
3888 DP_MAX_DOWNSTREAM_PORTS) < 0)
3889 return false; /* downstream port status fetch failed */
3890
3891 return true;
3892 }
3893
3894 static void
3895 intel_dp_probe_oui(struct intel_dp *intel_dp)
3896 {
3897 u8 buf[3];
3898
3899 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3900 return;
3901
3902 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3903 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3904 buf[0], buf[1], buf[2]);
3905
3906 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3907 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3908 buf[0], buf[1], buf[2]);
3909 }
3910
3911 static bool
3912 intel_dp_probe_mst(struct intel_dp *intel_dp)
3913 {
3914 u8 buf[1];
3915
3916 if (!intel_dp->can_mst)
3917 return false;
3918
3919 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3920 return false;
3921
3922 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3923 if (buf[0] & DP_MST_CAP) {
3924 DRM_DEBUG_KMS("Sink is MST capable\n");
3925 intel_dp->is_mst = true;
3926 } else {
3927 DRM_DEBUG_KMS("Sink is not MST capable\n");
3928 intel_dp->is_mst = false;
3929 }
3930 }
3931
3932 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3933 return intel_dp->is_mst;
3934 }
3935
3936 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3937 {
3938 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3939 struct drm_device *dev = intel_dig_port->base.base.dev;
3940 struct intel_crtc *intel_crtc =
3941 to_intel_crtc(intel_dig_port->base.base.crtc);
3942 u8 buf;
3943 int test_crc_count;
3944 int attempts = 6;
3945
3946 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3947 return -EIO;
3948
3949 if (!(buf & DP_TEST_CRC_SUPPORTED))
3950 return -ENOTTY;
3951
3952 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3953 return -EIO;
3954
3955 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3956 buf | DP_TEST_SINK_START) < 0)
3957 return -EIO;
3958
3959 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3960 return -EIO;
3961 test_crc_count = buf & DP_TEST_COUNT_MASK;
3962
3963 do {
3964 if (drm_dp_dpcd_readb(&intel_dp->aux,
3965 DP_TEST_SINK_MISC, &buf) < 0)
3966 return -EIO;
3967 intel_wait_for_vblank(dev, intel_crtc->pipe);
3968 } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
3969
3970 if (attempts == 0) {
3971 DRM_ERROR("Panel is unable to calculate CRC after 6 vblanks\n");
3972 return -EIO;
3973 }
3974
3975 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3976 return -EIO;
3977
3978 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3979 return -EIO;
3980 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3981 buf & ~DP_TEST_SINK_START) < 0)
3982 return -EIO;
3983
3984 return 0;
3985 }
3986
3987 static bool
3988 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3989 {
3990 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3991 DP_DEVICE_SERVICE_IRQ_VECTOR,
3992 sink_irq_vector, 1) == 1;
3993 }
3994
3995 static bool
3996 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3997 {
3998 int ret;
3999
4000 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4001 DP_SINK_COUNT_ESI,
4002 sink_irq_vector, 14);
4003 if (ret != 14)
4004 return false;
4005
4006 return true;
4007 }
4008
4009 static void
4010 intel_dp_handle_test_request(struct intel_dp *intel_dp)
4011 {
4012 /* NAK by default */
4013 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
4014 }
4015
4016 static int
4017 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4018 {
4019 bool bret;
4020
4021 if (intel_dp->is_mst) {
4022 u8 esi[16] = { 0 };
4023 int ret = 0;
4024 int retry;
4025 bool handled;
4026 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4027 go_again:
4028 if (bret == true) {
4029
4030 /* check link status - esi[10] = 0x200c */
4031 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4032 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4033 intel_dp_start_link_train(intel_dp);
4034 intel_dp_complete_link_train(intel_dp);
4035 intel_dp_stop_link_train(intel_dp);
4036 }
4037
4038 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
4039 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4040
4041 if (handled) {
4042 for (retry = 0; retry < 3; retry++) {
4043 int wret;
4044 wret = drm_dp_dpcd_write(&intel_dp->aux,
4045 DP_SINK_COUNT_ESI+1,
4046 &esi[1], 3);
4047 if (wret == 3) {
4048 break;
4049 }
4050 }
4051
4052 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4053 if (bret == true) {
4054 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
4055 goto go_again;
4056 }
4057 } else
4058 ret = 0;
4059
4060 return ret;
4061 } else {
4062 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4063 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4064 intel_dp->is_mst = false;
4065 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4066 /* send a hotplug event */
4067 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4068 }
4069 }
4070 return -EINVAL;
4071 }
4072
4073 /*
4074 * According to DP spec
4075 * 5.1.2:
4076 * 1. Read DPCD
4077 * 2. Configure link according to Receiver Capabilities
4078 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4079 * 4. Check link status on receipt of hot-plug interrupt
4080 */
4081 void
4082 intel_dp_check_link_status(struct intel_dp *intel_dp)
4083 {
4084 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4085 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4086 u8 sink_irq_vector;
4087 u8 link_status[DP_LINK_STATUS_SIZE];
4088
4089 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4090
4091 if (!intel_encoder->connectors_active)
4092 return;
4093
4094 if (WARN_ON(!intel_encoder->base.crtc))
4095 return;
4096
4097 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4098 return;
4099
4100 /* Try to read receiver status if the link appears to be up */
4101 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4102 return;
4103 }
4104
4105 /* Now read the DPCD to see if it's actually running */
4106 if (!intel_dp_get_dpcd(intel_dp)) {
4107 return;
4108 }
4109
4110 /* Try to read the source of the interrupt */
4111 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4112 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4113 /* Clear interrupt source */
4114 drm_dp_dpcd_writeb(&intel_dp->aux,
4115 DP_DEVICE_SERVICE_IRQ_VECTOR,
4116 sink_irq_vector);
4117
4118 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4119 intel_dp_handle_test_request(intel_dp);
4120 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4121 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4122 }
4123
4124 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4125 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4126 intel_encoder->base.name);
4127 intel_dp_start_link_train(intel_dp);
4128 intel_dp_complete_link_train(intel_dp);
4129 intel_dp_stop_link_train(intel_dp);
4130 }
4131 }
4132
4133 /* XXX this is probably wrong for multiple downstream ports */
4134 static enum drm_connector_status
4135 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4136 {
4137 uint8_t *dpcd = intel_dp->dpcd;
4138 uint8_t type;
4139
4140 if (!intel_dp_get_dpcd(intel_dp))
4141 return connector_status_disconnected;
4142
4143 /* if there's no downstream port, we're done */
4144 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4145 return connector_status_connected;
4146
4147 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4148 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4149 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4150 uint8_t reg;
4151
4152 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4153 &reg, 1) < 0)
4154 return connector_status_unknown;
4155
4156 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4157 : connector_status_disconnected;
4158 }
4159
4160 /* If no HPD, poke DDC gently */
4161 if (drm_probe_ddc(&intel_dp->aux.ddc))
4162 return connector_status_connected;
4163
4164 /* Well we tried, say unknown for unreliable port types */
4165 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4166 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4167 if (type == DP_DS_PORT_TYPE_VGA ||
4168 type == DP_DS_PORT_TYPE_NON_EDID)
4169 return connector_status_unknown;
4170 } else {
4171 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4172 DP_DWN_STRM_PORT_TYPE_MASK;
4173 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4174 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4175 return connector_status_unknown;
4176 }
4177
4178 /* Anything else is out of spec, warn and ignore */
4179 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4180 return connector_status_disconnected;
4181 }
4182
4183 static enum drm_connector_status
4184 edp_detect(struct intel_dp *intel_dp)
4185 {
4186 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4187 enum drm_connector_status status;
4188
4189 status = intel_panel_detect(dev);
4190 if (status == connector_status_unknown)
4191 status = connector_status_connected;
4192
4193 return status;
4194 }
4195
4196 static enum drm_connector_status
4197 ironlake_dp_detect(struct intel_dp *intel_dp)
4198 {
4199 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4200 struct drm_i915_private *dev_priv = dev->dev_private;
4201 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4202
4203 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4204 return connector_status_disconnected;
4205
4206 return intel_dp_detect_dpcd(intel_dp);
4207 }
4208
4209 static int g4x_digital_port_connected(struct drm_device *dev,
4210 struct intel_digital_port *intel_dig_port)
4211 {
4212 struct drm_i915_private *dev_priv = dev->dev_private;
4213 uint32_t bit;
4214
4215 if (IS_VALLEYVIEW(dev)) {
4216 switch (intel_dig_port->port) {
4217 case PORT_B:
4218 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4219 break;
4220 case PORT_C:
4221 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4222 break;
4223 case PORT_D:
4224 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4225 break;
4226 default:
4227 return -EINVAL;
4228 }
4229 } else {
4230 switch (intel_dig_port->port) {
4231 case PORT_B:
4232 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4233 break;
4234 case PORT_C:
4235 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4236 break;
4237 case PORT_D:
4238 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4239 break;
4240 default:
4241 return -EINVAL;
4242 }
4243 }
4244
4245 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4246 return 0;
4247 return 1;
4248 }
4249
4250 static enum drm_connector_status
4251 g4x_dp_detect(struct intel_dp *intel_dp)
4252 {
4253 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4254 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4255 int ret;
4256
4257 /* Can't disconnect eDP, but you can close the lid... */
4258 if (is_edp(intel_dp)) {
4259 enum drm_connector_status status;
4260
4261 status = intel_panel_detect(dev);
4262 if (status == connector_status_unknown)
4263 status = connector_status_connected;
4264 return status;
4265 }
4266
4267 ret = g4x_digital_port_connected(dev, intel_dig_port);
4268 if (ret == -EINVAL)
4269 return connector_status_unknown;
4270 else if (ret == 0)
4271 return connector_status_disconnected;
4272
4273 return intel_dp_detect_dpcd(intel_dp);
4274 }
4275
4276 static struct edid *
4277 intel_dp_get_edid(struct intel_dp *intel_dp)
4278 {
4279 struct intel_connector *intel_connector = intel_dp->attached_connector;
4280
4281 /* use cached edid if we have one */
4282 if (intel_connector->edid) {
4283 /* invalid edid */
4284 if (IS_ERR(intel_connector->edid))
4285 return NULL;
4286
4287 return drm_edid_duplicate(intel_connector->edid);
4288 } else
4289 return drm_get_edid(&intel_connector->base,
4290 &intel_dp->aux.ddc);
4291 }
4292
4293 static void
4294 intel_dp_set_edid(struct intel_dp *intel_dp)
4295 {
4296 struct intel_connector *intel_connector = intel_dp->attached_connector;
4297 struct edid *edid;
4298
4299 edid = intel_dp_get_edid(intel_dp);
4300 intel_connector->detect_edid = edid;
4301
4302 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4303 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4304 else
4305 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4306 }
4307
4308 static void
4309 intel_dp_unset_edid(struct intel_dp *intel_dp)
4310 {
4311 struct intel_connector *intel_connector = intel_dp->attached_connector;
4312
4313 kfree(intel_connector->detect_edid);
4314 intel_connector->detect_edid = NULL;
4315
4316 intel_dp->has_audio = false;
4317 }
4318
4319 static enum intel_display_power_domain
4320 intel_dp_power_get(struct intel_dp *dp)
4321 {
4322 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4323 enum intel_display_power_domain power_domain;
4324
4325 power_domain = intel_display_port_power_domain(encoder);
4326 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4327
4328 return power_domain;
4329 }
4330
4331 static void
4332 intel_dp_power_put(struct intel_dp *dp,
4333 enum intel_display_power_domain power_domain)
4334 {
4335 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4336 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4337 }
4338
4339 static enum drm_connector_status
4340 intel_dp_detect(struct drm_connector *connector, bool force)
4341 {
4342 struct intel_dp *intel_dp = intel_attached_dp(connector);
4343 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4344 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4345 struct drm_device *dev = connector->dev;
4346 enum drm_connector_status status;
4347 enum intel_display_power_domain power_domain;
4348 bool ret;
4349
4350 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4351 connector->base.id, connector->name);
4352 intel_dp_unset_edid(intel_dp);
4353
4354 if (intel_dp->is_mst) {
4355 /* MST devices are disconnected from a monitor POV */
4356 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4357 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4358 return connector_status_disconnected;
4359 }
4360
4361 power_domain = intel_dp_power_get(intel_dp);
4362
4363 /* Can't disconnect eDP, but you can close the lid... */
4364 if (is_edp(intel_dp))
4365 status = edp_detect(intel_dp);
4366 else if (HAS_PCH_SPLIT(dev))
4367 status = ironlake_dp_detect(intel_dp);
4368 else
4369 status = g4x_dp_detect(intel_dp);
4370 if (status != connector_status_connected)
4371 goto out;
4372
4373 intel_dp_probe_oui(intel_dp);
4374
4375 ret = intel_dp_probe_mst(intel_dp);
4376 if (ret) {
4377 /* if we are in MST mode then this connector
4378 won't appear connected or have anything with EDID on it */
4379 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4380 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4381 status = connector_status_disconnected;
4382 goto out;
4383 }
4384
4385 intel_dp_set_edid(intel_dp);
4386
4387 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4388 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4389 status = connector_status_connected;
4390
4391 out:
4392 intel_dp_power_put(intel_dp, power_domain);
4393 return status;
4394 }
4395
4396 static void
4397 intel_dp_force(struct drm_connector *connector)
4398 {
4399 struct intel_dp *intel_dp = intel_attached_dp(connector);
4400 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4401 enum intel_display_power_domain power_domain;
4402
4403 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4404 connector->base.id, connector->name);
4405 intel_dp_unset_edid(intel_dp);
4406
4407 if (connector->status != connector_status_connected)
4408 return;
4409
4410 power_domain = intel_dp_power_get(intel_dp);
4411
4412 intel_dp_set_edid(intel_dp);
4413
4414 intel_dp_power_put(intel_dp, power_domain);
4415
4416 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4417 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4418 }
4419
4420 static int intel_dp_get_modes(struct drm_connector *connector)
4421 {
4422 struct intel_connector *intel_connector = to_intel_connector(connector);
4423 struct edid *edid;
4424
4425 edid = intel_connector->detect_edid;
4426 if (edid) {
4427 int ret = intel_connector_update_modes(connector, edid);
4428 if (ret)
4429 return ret;
4430 }
4431
4432 /* if eDP has no EDID, fall back to fixed mode */
4433 if (is_edp(intel_attached_dp(connector)) &&
4434 intel_connector->panel.fixed_mode) {
4435 struct drm_display_mode *mode;
4436
4437 mode = drm_mode_duplicate(connector->dev,
4438 intel_connector->panel.fixed_mode);
4439 if (mode) {
4440 drm_mode_probed_add(connector, mode);
4441 return 1;
4442 }
4443 }
4444
4445 return 0;
4446 }
4447
4448 static bool
4449 intel_dp_detect_audio(struct drm_connector *connector)
4450 {
4451 bool has_audio = false;
4452 struct edid *edid;
4453
4454 edid = to_intel_connector(connector)->detect_edid;
4455 if (edid)
4456 has_audio = drm_detect_monitor_audio(edid);
4457
4458 return has_audio;
4459 }
4460
4461 static int
4462 intel_dp_set_property(struct drm_connector *connector,
4463 struct drm_property *property,
4464 uint64_t val)
4465 {
4466 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4467 struct intel_connector *intel_connector = to_intel_connector(connector);
4468 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4469 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4470 int ret;
4471
4472 ret = drm_object_property_set_value(&connector->base, property, val);
4473 if (ret)
4474 return ret;
4475
4476 if (property == dev_priv->force_audio_property) {
4477 int i = val;
4478 bool has_audio;
4479
4480 if (i == intel_dp->force_audio)
4481 return 0;
4482
4483 intel_dp->force_audio = i;
4484
4485 if (i == HDMI_AUDIO_AUTO)
4486 has_audio = intel_dp_detect_audio(connector);
4487 else
4488 has_audio = (i == HDMI_AUDIO_ON);
4489
4490 if (has_audio == intel_dp->has_audio)
4491 return 0;
4492
4493 intel_dp->has_audio = has_audio;
4494 goto done;
4495 }
4496
4497 if (property == dev_priv->broadcast_rgb_property) {
4498 bool old_auto = intel_dp->color_range_auto;
4499 uint32_t old_range = intel_dp->color_range;
4500
4501 switch (val) {
4502 case INTEL_BROADCAST_RGB_AUTO:
4503 intel_dp->color_range_auto = true;
4504 break;
4505 case INTEL_BROADCAST_RGB_FULL:
4506 intel_dp->color_range_auto = false;
4507 intel_dp->color_range = 0;
4508 break;
4509 case INTEL_BROADCAST_RGB_LIMITED:
4510 intel_dp->color_range_auto = false;
4511 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4512 break;
4513 default:
4514 return -EINVAL;
4515 }
4516
4517 if (old_auto == intel_dp->color_range_auto &&
4518 old_range == intel_dp->color_range)
4519 return 0;
4520
4521 goto done;
4522 }
4523
4524 if (is_edp(intel_dp) &&
4525 property == connector->dev->mode_config.scaling_mode_property) {
4526 if (val == DRM_MODE_SCALE_NONE) {
4527 DRM_DEBUG_KMS("no scaling not supported\n");
4528 return -EINVAL;
4529 }
4530
4531 if (intel_connector->panel.fitting_mode == val) {
4532 /* the eDP scaling property is not changed */
4533 return 0;
4534 }
4535 intel_connector->panel.fitting_mode = val;
4536
4537 goto done;
4538 }
4539
4540 return -EINVAL;
4541
4542 done:
4543 if (intel_encoder->base.crtc)
4544 intel_crtc_restore_mode(intel_encoder->base.crtc);
4545
4546 return 0;
4547 }
4548
4549 static void
4550 intel_dp_connector_destroy(struct drm_connector *connector)
4551 {
4552 struct intel_connector *intel_connector = to_intel_connector(connector);
4553
4554 kfree(intel_connector->detect_edid);
4555
4556 if (!IS_ERR_OR_NULL(intel_connector->edid))
4557 kfree(intel_connector->edid);
4558
4559 /* Can't call is_edp() since the encoder may have been destroyed
4560 * already. */
4561 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4562 intel_panel_fini(&intel_connector->panel);
4563
4564 drm_connector_cleanup(connector);
4565 kfree(connector);
4566 }
4567
4568 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4569 {
4570 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4571 struct intel_dp *intel_dp = &intel_dig_port->dp;
4572
4573 drm_dp_aux_unregister(&intel_dp->aux);
4574 intel_dp_mst_encoder_cleanup(intel_dig_port);
4575 drm_encoder_cleanup(encoder);
4576 if (is_edp(intel_dp)) {
4577 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4578 /*
4579 * vdd might still be enabled do to the delayed vdd off.
4580 * Make sure vdd is actually turned off here.
4581 */
4582 pps_lock(intel_dp);
4583 edp_panel_vdd_off_sync(intel_dp);
4584 pps_unlock(intel_dp);
4585
4586 if (intel_dp->edp_notifier.notifier_call) {
4587 unregister_reboot_notifier(&intel_dp->edp_notifier);
4588 intel_dp->edp_notifier.notifier_call = NULL;
4589 }
4590 }
4591 kfree(intel_dig_port);
4592 }
4593
4594 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4595 {
4596 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4597
4598 if (!is_edp(intel_dp))
4599 return;
4600
4601 /*
4602 * vdd might still be enabled do to the delayed vdd off.
4603 * Make sure vdd is actually turned off here.
4604 */
4605 pps_lock(intel_dp);
4606 edp_panel_vdd_off_sync(intel_dp);
4607 pps_unlock(intel_dp);
4608 }
4609
4610 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4611 {
4612 intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4613 }
4614
4615 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4616 .dpms = intel_connector_dpms,
4617 .detect = intel_dp_detect,
4618 .force = intel_dp_force,
4619 .fill_modes = drm_helper_probe_single_connector_modes,
4620 .set_property = intel_dp_set_property,
4621 .destroy = intel_dp_connector_destroy,
4622 };
4623
4624 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4625 .get_modes = intel_dp_get_modes,
4626 .mode_valid = intel_dp_mode_valid,
4627 .best_encoder = intel_best_encoder,
4628 };
4629
4630 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4631 .reset = intel_dp_encoder_reset,
4632 .destroy = intel_dp_encoder_destroy,
4633 };
4634
4635 void
4636 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4637 {
4638 return;
4639 }
4640
4641 bool
4642 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4643 {
4644 struct intel_dp *intel_dp = &intel_dig_port->dp;
4645 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4646 struct drm_device *dev = intel_dig_port->base.base.dev;
4647 struct drm_i915_private *dev_priv = dev->dev_private;
4648 enum intel_display_power_domain power_domain;
4649 bool ret = true;
4650
4651 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4652 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4653
4654 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4655 port_name(intel_dig_port->port),
4656 long_hpd ? "long" : "short");
4657
4658 power_domain = intel_display_port_power_domain(intel_encoder);
4659 intel_display_power_get(dev_priv, power_domain);
4660
4661 if (long_hpd) {
4662
4663 if (HAS_PCH_SPLIT(dev)) {
4664 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4665 goto mst_fail;
4666 } else {
4667 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4668 goto mst_fail;
4669 }
4670
4671 if (!intel_dp_get_dpcd(intel_dp)) {
4672 goto mst_fail;
4673 }
4674
4675 intel_dp_probe_oui(intel_dp);
4676
4677 if (!intel_dp_probe_mst(intel_dp))
4678 goto mst_fail;
4679
4680 } else {
4681 if (intel_dp->is_mst) {
4682 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4683 goto mst_fail;
4684 }
4685
4686 if (!intel_dp->is_mst) {
4687 /*
4688 * we'll check the link status via the normal hot plug path later -
4689 * but for short hpds we should check it now
4690 */
4691 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4692 intel_dp_check_link_status(intel_dp);
4693 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4694 }
4695 }
4696 ret = false;
4697 goto put_power;
4698 mst_fail:
4699 /* if we were in MST mode, and device is not there get out of MST mode */
4700 if (intel_dp->is_mst) {
4701 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4702 intel_dp->is_mst = false;
4703 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4704 }
4705 put_power:
4706 intel_display_power_put(dev_priv, power_domain);
4707
4708 return ret;
4709 }
4710
4711 /* Return which DP Port should be selected for Transcoder DP control */
4712 int
4713 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4714 {
4715 struct drm_device *dev = crtc->dev;
4716 struct intel_encoder *intel_encoder;
4717 struct intel_dp *intel_dp;
4718
4719 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4720 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4721
4722 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4723 intel_encoder->type == INTEL_OUTPUT_EDP)
4724 return intel_dp->output_reg;
4725 }
4726
4727 return -1;
4728 }
4729
4730 /* check the VBT to see whether the eDP is on DP-D port */
4731 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4732 {
4733 struct drm_i915_private *dev_priv = dev->dev_private;
4734 union child_device_config *p_child;
4735 int i;
4736 static const short port_mapping[] = {
4737 [PORT_B] = PORT_IDPB,
4738 [PORT_C] = PORT_IDPC,
4739 [PORT_D] = PORT_IDPD,
4740 };
4741
4742 if (port == PORT_A)
4743 return true;
4744
4745 if (!dev_priv->vbt.child_dev_num)
4746 return false;
4747
4748 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4749 p_child = dev_priv->vbt.child_dev + i;
4750
4751 if (p_child->common.dvo_port == port_mapping[port] &&
4752 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4753 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4754 return true;
4755 }
4756 return false;
4757 }
4758
4759 void
4760 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4761 {
4762 struct intel_connector *intel_connector = to_intel_connector(connector);
4763
4764 intel_attach_force_audio_property(connector);
4765 intel_attach_broadcast_rgb_property(connector);
4766 intel_dp->color_range_auto = true;
4767
4768 if (is_edp(intel_dp)) {
4769 drm_mode_create_scaling_mode_property(connector->dev);
4770 drm_object_attach_property(
4771 &connector->base,
4772 connector->dev->mode_config.scaling_mode_property,
4773 DRM_MODE_SCALE_ASPECT);
4774 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4775 }
4776 }
4777
4778 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4779 {
4780 intel_dp->last_power_cycle = jiffies;
4781 intel_dp->last_power_on = jiffies;
4782 intel_dp->last_backlight_off = jiffies;
4783 }
4784
4785 static void
4786 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4787 struct intel_dp *intel_dp)
4788 {
4789 struct drm_i915_private *dev_priv = dev->dev_private;
4790 struct edp_power_seq cur, vbt, spec,
4791 *final = &intel_dp->pps_delays;
4792 u32 pp_on, pp_off, pp_div, pp;
4793 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4794
4795 lockdep_assert_held(&dev_priv->pps_mutex);
4796
4797 /* already initialized? */
4798 if (final->t11_t12 != 0)
4799 return;
4800
4801 if (HAS_PCH_SPLIT(dev)) {
4802 pp_ctrl_reg = PCH_PP_CONTROL;
4803 pp_on_reg = PCH_PP_ON_DELAYS;
4804 pp_off_reg = PCH_PP_OFF_DELAYS;
4805 pp_div_reg = PCH_PP_DIVISOR;
4806 } else {
4807 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4808
4809 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4810 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4811 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4812 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4813 }
4814
4815 /* Workaround: Need to write PP_CONTROL with the unlock key as
4816 * the very first thing. */
4817 pp = ironlake_get_pp_control(intel_dp);
4818 I915_WRITE(pp_ctrl_reg, pp);
4819
4820 pp_on = I915_READ(pp_on_reg);
4821 pp_off = I915_READ(pp_off_reg);
4822 pp_div = I915_READ(pp_div_reg);
4823
4824 /* Pull timing values out of registers */
4825 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4826 PANEL_POWER_UP_DELAY_SHIFT;
4827
4828 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4829 PANEL_LIGHT_ON_DELAY_SHIFT;
4830
4831 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4832 PANEL_LIGHT_OFF_DELAY_SHIFT;
4833
4834 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4835 PANEL_POWER_DOWN_DELAY_SHIFT;
4836
4837 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4838 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4839
4840 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4841 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4842
4843 vbt = dev_priv->vbt.edp_pps;
4844
4845 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4846 * our hw here, which are all in 100usec. */
4847 spec.t1_t3 = 210 * 10;
4848 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4849 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4850 spec.t10 = 500 * 10;
4851 /* This one is special and actually in units of 100ms, but zero
4852 * based in the hw (so we need to add 100 ms). But the sw vbt
4853 * table multiplies it with 1000 to make it in units of 100usec,
4854 * too. */
4855 spec.t11_t12 = (510 + 100) * 10;
4856
4857 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4858 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4859
4860 /* Use the max of the register settings and vbt. If both are
4861 * unset, fall back to the spec limits. */
4862 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
4863 spec.field : \
4864 max(cur.field, vbt.field))
4865 assign_final(t1_t3);
4866 assign_final(t8);
4867 assign_final(t9);
4868 assign_final(t10);
4869 assign_final(t11_t12);
4870 #undef assign_final
4871
4872 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
4873 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4874 intel_dp->backlight_on_delay = get_delay(t8);
4875 intel_dp->backlight_off_delay = get_delay(t9);
4876 intel_dp->panel_power_down_delay = get_delay(t10);
4877 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4878 #undef get_delay
4879
4880 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4881 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4882 intel_dp->panel_power_cycle_delay);
4883
4884 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4885 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4886 }
4887
4888 static void
4889 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4890 struct intel_dp *intel_dp)
4891 {
4892 struct drm_i915_private *dev_priv = dev->dev_private;
4893 u32 pp_on, pp_off, pp_div, port_sel = 0;
4894 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4895 int pp_on_reg, pp_off_reg, pp_div_reg;
4896 enum port port = dp_to_dig_port(intel_dp)->port;
4897 const struct edp_power_seq *seq = &intel_dp->pps_delays;
4898
4899 lockdep_assert_held(&dev_priv->pps_mutex);
4900
4901 if (HAS_PCH_SPLIT(dev)) {
4902 pp_on_reg = PCH_PP_ON_DELAYS;
4903 pp_off_reg = PCH_PP_OFF_DELAYS;
4904 pp_div_reg = PCH_PP_DIVISOR;
4905 } else {
4906 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4907
4908 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4909 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4910 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4911 }
4912
4913 /*
4914 * And finally store the new values in the power sequencer. The
4915 * backlight delays are set to 1 because we do manual waits on them. For
4916 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4917 * we'll end up waiting for the backlight off delay twice: once when we
4918 * do the manual sleep, and once when we disable the panel and wait for
4919 * the PP_STATUS bit to become zero.
4920 */
4921 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4922 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4923 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4924 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4925 /* Compute the divisor for the pp clock, simply match the Bspec
4926 * formula. */
4927 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4928 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4929 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4930
4931 /* Haswell doesn't have any port selection bits for the panel
4932 * power sequencer any more. */
4933 if (IS_VALLEYVIEW(dev)) {
4934 port_sel = PANEL_PORT_SELECT_VLV(port);
4935 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4936 if (port == PORT_A)
4937 port_sel = PANEL_PORT_SELECT_DPA;
4938 else
4939 port_sel = PANEL_PORT_SELECT_DPD;
4940 }
4941
4942 pp_on |= port_sel;
4943
4944 I915_WRITE(pp_on_reg, pp_on);
4945 I915_WRITE(pp_off_reg, pp_off);
4946 I915_WRITE(pp_div_reg, pp_div);
4947
4948 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4949 I915_READ(pp_on_reg),
4950 I915_READ(pp_off_reg),
4951 I915_READ(pp_div_reg));
4952 }
4953
4954 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4955 {
4956 struct drm_i915_private *dev_priv = dev->dev_private;
4957 struct intel_encoder *encoder;
4958 struct intel_dp *intel_dp = NULL;
4959 struct intel_crtc_config *config = NULL;
4960 struct intel_crtc *intel_crtc = NULL;
4961 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4962 u32 reg, val;
4963 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4964
4965 if (refresh_rate <= 0) {
4966 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4967 return;
4968 }
4969
4970 if (intel_connector == NULL) {
4971 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4972 return;
4973 }
4974
4975 /*
4976 * FIXME: This needs proper synchronization with psr state. But really
4977 * hard to tell without seeing the user of this function of this code.
4978 * Check locking and ordering once that lands.
4979 */
4980 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4981 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4982 return;
4983 }
4984
4985 encoder = intel_attached_encoder(&intel_connector->base);
4986 intel_dp = enc_to_intel_dp(&encoder->base);
4987 intel_crtc = encoder->new_crtc;
4988
4989 if (!intel_crtc) {
4990 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4991 return;
4992 }
4993
4994 config = &intel_crtc->config;
4995
4996 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4997 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4998 return;
4999 }
5000
5001 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
5002 index = DRRS_LOW_RR;
5003
5004 if (index == intel_dp->drrs_state.refresh_rate_type) {
5005 DRM_DEBUG_KMS(
5006 "DRRS requested for previously set RR...ignoring\n");
5007 return;
5008 }
5009
5010 if (!intel_crtc->active) {
5011 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5012 return;
5013 }
5014
5015 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
5016 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
5017 val = I915_READ(reg);
5018 if (index > DRRS_HIGH_RR) {
5019 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5020 intel_dp_set_m_n(intel_crtc);
5021 } else {
5022 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5023 }
5024 I915_WRITE(reg, val);
5025 }
5026
5027 /*
5028 * mutex taken to ensure that there is no race between differnt
5029 * drrs calls trying to update refresh rate. This scenario may occur
5030 * in future when idleness detection based DRRS in kernel and
5031 * possible calls from user space to set differnt RR are made.
5032 */
5033
5034 mutex_lock(&intel_dp->drrs_state.mutex);
5035
5036 intel_dp->drrs_state.refresh_rate_type = index;
5037
5038 mutex_unlock(&intel_dp->drrs_state.mutex);
5039
5040 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5041 }
5042
5043 static struct drm_display_mode *
5044 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
5045 struct intel_connector *intel_connector,
5046 struct drm_display_mode *fixed_mode)
5047 {
5048 struct drm_connector *connector = &intel_connector->base;
5049 struct intel_dp *intel_dp = &intel_dig_port->dp;
5050 struct drm_device *dev = intel_dig_port->base.base.dev;
5051 struct drm_i915_private *dev_priv = dev->dev_private;
5052 struct drm_display_mode *downclock_mode = NULL;
5053
5054 if (INTEL_INFO(dev)->gen <= 6) {
5055 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5056 return NULL;
5057 }
5058
5059 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5060 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5061 return NULL;
5062 }
5063
5064 downclock_mode = intel_find_panel_downclock
5065 (dev, fixed_mode, connector);
5066
5067 if (!downclock_mode) {
5068 DRM_DEBUG_KMS("DRRS not supported\n");
5069 return NULL;
5070 }
5071
5072 dev_priv->drrs.connector = intel_connector;
5073
5074 mutex_init(&intel_dp->drrs_state.mutex);
5075
5076 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
5077
5078 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
5079 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5080 return downclock_mode;
5081 }
5082
5083 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
5084 {
5085 struct drm_device *dev = intel_encoder->base.dev;
5086 struct drm_i915_private *dev_priv = dev->dev_private;
5087 struct intel_dp *intel_dp;
5088 enum intel_display_power_domain power_domain;
5089
5090 if (intel_encoder->type != INTEL_OUTPUT_EDP)
5091 return;
5092
5093 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5094
5095 pps_lock(intel_dp);
5096
5097 if (!edp_have_panel_vdd(intel_dp))
5098 goto out;
5099 /*
5100 * The VDD bit needs a power domain reference, so if the bit is
5101 * already enabled when we boot or resume, grab this reference and
5102 * schedule a vdd off, so we don't hold on to the reference
5103 * indefinitely.
5104 */
5105 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5106 power_domain = intel_display_port_power_domain(intel_encoder);
5107 intel_display_power_get(dev_priv, power_domain);
5108
5109 edp_panel_vdd_schedule_off(intel_dp);
5110 out:
5111 pps_unlock(intel_dp);
5112 }
5113
5114 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5115 struct intel_connector *intel_connector)
5116 {
5117 struct drm_connector *connector = &intel_connector->base;
5118 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5119 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5120 struct drm_device *dev = intel_encoder->base.dev;
5121 struct drm_i915_private *dev_priv = dev->dev_private;
5122 struct drm_display_mode *fixed_mode = NULL;
5123 struct drm_display_mode *downclock_mode = NULL;
5124 bool has_dpcd;
5125 struct drm_display_mode *scan;
5126 struct edid *edid;
5127
5128 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
5129
5130 if (!is_edp(intel_dp))
5131 return true;
5132
5133 intel_edp_panel_vdd_sanitize(intel_encoder);
5134
5135 /* Cache DPCD and EDID for edp. */
5136 has_dpcd = intel_dp_get_dpcd(intel_dp);
5137
5138 if (has_dpcd) {
5139 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5140 dev_priv->no_aux_handshake =
5141 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5142 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5143 } else {
5144 /* if this fails, presume the device is a ghost */
5145 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5146 return false;
5147 }
5148
5149 /* We now know it's not a ghost, init power sequence regs. */
5150 pps_lock(intel_dp);
5151 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5152 pps_unlock(intel_dp);
5153
5154 mutex_lock(&dev->mode_config.mutex);
5155 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5156 if (edid) {
5157 if (drm_add_edid_modes(connector, edid)) {
5158 drm_mode_connector_update_edid_property(connector,
5159 edid);
5160 drm_edid_to_eld(connector, edid);
5161 } else {
5162 kfree(edid);
5163 edid = ERR_PTR(-EINVAL);
5164 }
5165 } else {
5166 edid = ERR_PTR(-ENOENT);
5167 }
5168 intel_connector->edid = edid;
5169
5170 /* prefer fixed mode from EDID if available */
5171 list_for_each_entry(scan, &connector->probed_modes, head) {
5172 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5173 fixed_mode = drm_mode_duplicate(dev, scan);
5174 downclock_mode = intel_dp_drrs_init(
5175 intel_dig_port,
5176 intel_connector, fixed_mode);
5177 break;
5178 }
5179 }
5180
5181 /* fallback to VBT if available for eDP */
5182 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5183 fixed_mode = drm_mode_duplicate(dev,
5184 dev_priv->vbt.lfp_lvds_vbt_mode);
5185 if (fixed_mode)
5186 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5187 }
5188 mutex_unlock(&dev->mode_config.mutex);
5189
5190 if (IS_VALLEYVIEW(dev)) {
5191 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5192 register_reboot_notifier(&intel_dp->edp_notifier);
5193 }
5194
5195 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5196 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5197 intel_panel_setup_backlight(connector);
5198
5199 return true;
5200 }
5201
5202 bool
5203 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5204 struct intel_connector *intel_connector)
5205 {
5206 struct drm_connector *connector = &intel_connector->base;
5207 struct intel_dp *intel_dp = &intel_dig_port->dp;
5208 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5209 struct drm_device *dev = intel_encoder->base.dev;
5210 struct drm_i915_private *dev_priv = dev->dev_private;
5211 enum port port = intel_dig_port->port;
5212 int type;
5213
5214 intel_dp->pps_pipe = INVALID_PIPE;
5215
5216 /* intel_dp vfuncs */
5217 if (INTEL_INFO(dev)->gen >= 9)
5218 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5219 else if (IS_VALLEYVIEW(dev))
5220 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5221 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5222 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5223 else if (HAS_PCH_SPLIT(dev))
5224 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5225 else
5226 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5227
5228 if (INTEL_INFO(dev)->gen >= 9)
5229 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5230 else
5231 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5232
5233 /* Preserve the current hw state. */
5234 intel_dp->DP = I915_READ(intel_dp->output_reg);
5235 intel_dp->attached_connector = intel_connector;
5236
5237 if (intel_dp_is_edp(dev, port))
5238 type = DRM_MODE_CONNECTOR_eDP;
5239 else
5240 type = DRM_MODE_CONNECTOR_DisplayPort;
5241
5242 /*
5243 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5244 * for DP the encoder type can be set by the caller to
5245 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5246 */
5247 if (type == DRM_MODE_CONNECTOR_eDP)
5248 intel_encoder->type = INTEL_OUTPUT_EDP;
5249
5250 /* eDP only on port B and/or C on vlv/chv */
5251 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5252 port != PORT_B && port != PORT_C))
5253 return false;
5254
5255 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5256 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5257 port_name(port));
5258
5259 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5260 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5261
5262 connector->interlace_allowed = true;
5263 connector->doublescan_allowed = 0;
5264
5265 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5266 edp_panel_vdd_work);
5267
5268 intel_connector_attach_encoder(intel_connector, intel_encoder);
5269 drm_connector_register(connector);
5270
5271 if (HAS_DDI(dev))
5272 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5273 else
5274 intel_connector->get_hw_state = intel_connector_get_hw_state;
5275 intel_connector->unregister = intel_dp_connector_unregister;
5276
5277 /* Set up the hotplug pin. */
5278 switch (port) {
5279 case PORT_A:
5280 intel_encoder->hpd_pin = HPD_PORT_A;
5281 break;
5282 case PORT_B:
5283 intel_encoder->hpd_pin = HPD_PORT_B;
5284 break;
5285 case PORT_C:
5286 intel_encoder->hpd_pin = HPD_PORT_C;
5287 break;
5288 case PORT_D:
5289 intel_encoder->hpd_pin = HPD_PORT_D;
5290 break;
5291 default:
5292 BUG();
5293 }
5294
5295 if (is_edp(intel_dp)) {
5296 pps_lock(intel_dp);
5297 if (IS_VALLEYVIEW(dev)) {
5298 vlv_initial_power_sequencer_setup(intel_dp);
5299 } else {
5300 intel_dp_init_panel_power_timestamps(intel_dp);
5301 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5302 }
5303 pps_unlock(intel_dp);
5304 }
5305
5306 intel_dp_aux_init(intel_dp, intel_connector);
5307
5308 /* init MST on ports that can support it */
5309 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5310 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5311 intel_dp_mst_encoder_init(intel_dig_port,
5312 intel_connector->base.base.id);
5313 }
5314 }
5315
5316 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5317 drm_dp_aux_unregister(&intel_dp->aux);
5318 if (is_edp(intel_dp)) {
5319 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5320 /*
5321 * vdd might still be enabled do to the delayed vdd off.
5322 * Make sure vdd is actually turned off here.
5323 */
5324 pps_lock(intel_dp);
5325 edp_panel_vdd_off_sync(intel_dp);
5326 pps_unlock(intel_dp);
5327 }
5328 drm_connector_unregister(connector);
5329 drm_connector_cleanup(connector);
5330 return false;
5331 }
5332
5333 intel_dp_add_properties(intel_dp, connector);
5334
5335 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5336 * 0xd. Failure to do so will result in spurious interrupts being
5337 * generated on the port when a cable is not attached.
5338 */
5339 if (IS_G4X(dev) && !IS_GM45(dev)) {
5340 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5341 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5342 }
5343
5344 return true;
5345 }
5346
5347 void
5348 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5349 {
5350 struct drm_i915_private *dev_priv = dev->dev_private;
5351 struct intel_digital_port *intel_dig_port;
5352 struct intel_encoder *intel_encoder;
5353 struct drm_encoder *encoder;
5354 struct intel_connector *intel_connector;
5355
5356 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5357 if (!intel_dig_port)
5358 return;
5359
5360 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5361 if (!intel_connector) {
5362 kfree(intel_dig_port);
5363 return;
5364 }
5365
5366 intel_encoder = &intel_dig_port->base;
5367 encoder = &intel_encoder->base;
5368
5369 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5370 DRM_MODE_ENCODER_TMDS);
5371
5372 intel_encoder->compute_config = intel_dp_compute_config;
5373 intel_encoder->disable = intel_disable_dp;
5374 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5375 intel_encoder->get_config = intel_dp_get_config;
5376 intel_encoder->suspend = intel_dp_encoder_suspend;
5377 if (IS_CHERRYVIEW(dev)) {
5378 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5379 intel_encoder->pre_enable = chv_pre_enable_dp;
5380 intel_encoder->enable = vlv_enable_dp;
5381 intel_encoder->post_disable = chv_post_disable_dp;
5382 } else if (IS_VALLEYVIEW(dev)) {
5383 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5384 intel_encoder->pre_enable = vlv_pre_enable_dp;
5385 intel_encoder->enable = vlv_enable_dp;
5386 intel_encoder->post_disable = vlv_post_disable_dp;
5387 } else {
5388 intel_encoder->pre_enable = g4x_pre_enable_dp;
5389 intel_encoder->enable = g4x_enable_dp;
5390 if (INTEL_INFO(dev)->gen >= 5)
5391 intel_encoder->post_disable = ilk_post_disable_dp;
5392 }
5393
5394 intel_dig_port->port = port;
5395 intel_dig_port->dp.output_reg = output_reg;
5396
5397 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5398 if (IS_CHERRYVIEW(dev)) {
5399 if (port == PORT_D)
5400 intel_encoder->crtc_mask = 1 << 2;
5401 else
5402 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5403 } else {
5404 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5405 }
5406 intel_encoder->cloneable = 0;
5407 intel_encoder->hot_plug = intel_dp_hot_plug;
5408
5409 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5410 dev_priv->hpd_irq_port[port] = intel_dig_port;
5411
5412 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5413 drm_encoder_cleanup(encoder);
5414 kfree(intel_dig_port);
5415 kfree(intel_connector);
5416 }
5417 }
5418
5419 void intel_dp_mst_suspend(struct drm_device *dev)
5420 {
5421 struct drm_i915_private *dev_priv = dev->dev_private;
5422 int i;
5423
5424 /* disable MST */
5425 for (i = 0; i < I915_MAX_PORTS; i++) {
5426 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5427 if (!intel_dig_port)
5428 continue;
5429
5430 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5431 if (!intel_dig_port->dp.can_mst)
5432 continue;
5433 if (intel_dig_port->dp.is_mst)
5434 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5435 }
5436 }
5437 }
5438
5439 void intel_dp_mst_resume(struct drm_device *dev)
5440 {
5441 struct drm_i915_private *dev_priv = dev->dev_private;
5442 int i;
5443
5444 for (i = 0; i < I915_MAX_PORTS; i++) {
5445 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5446 if (!intel_dig_port)
5447 continue;
5448 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5449 int ret;
5450
5451 if (!intel_dig_port->dp.can_mst)
5452 continue;
5453
5454 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5455 if (ret != 0) {
5456 intel_dp_check_mst_status(&intel_dig_port->dp);
5457 }
5458 }
5459 }
5460 }
This page took 0.175866 seconds and 6 git commands to generate.