drm/i915: Let panel power sequencing hardware do its job
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39 #define DP_RECEIVER_CAP_SIZE 0xf
40 #define DP_LINK_STATUS_SIZE 6
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE 9
44
45 struct intel_dp {
46 struct intel_encoder base;
47 uint32_t output_reg;
48 uint32_t DP;
49 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
50 bool has_audio;
51 int force_audio;
52 uint32_t color_range;
53 int dpms_mode;
54 uint8_t link_bw;
55 uint8_t lane_count;
56 uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
57 struct i2c_adapter adapter;
58 struct i2c_algo_dp_aux_data algo;
59 bool is_pch_edp;
60 uint8_t train_set[4];
61 int panel_power_up_delay;
62 int panel_power_down_delay;
63 int panel_power_cycle_delay;
64 int backlight_on_delay;
65 int backlight_off_delay;
66 struct drm_display_mode *panel_fixed_mode; /* for eDP */
67 struct delayed_work panel_vdd_work;
68 bool want_panel_vdd;
69 };
70
71 /**
72 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
73 * @intel_dp: DP struct
74 *
75 * If a CPU or PCH DP output is attached to an eDP panel, this function
76 * will return true, and false otherwise.
77 */
78 static bool is_edp(struct intel_dp *intel_dp)
79 {
80 return intel_dp->base.type == INTEL_OUTPUT_EDP;
81 }
82
83 /**
84 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
85 * @intel_dp: DP struct
86 *
87 * Returns true if the given DP struct corresponds to a PCH DP port attached
88 * to an eDP panel, false otherwise. Helpful for determining whether we
89 * may need FDI resources for a given DP output or not.
90 */
91 static bool is_pch_edp(struct intel_dp *intel_dp)
92 {
93 return intel_dp->is_pch_edp;
94 }
95
96 /**
97 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
98 * @intel_dp: DP struct
99 *
100 * Returns true if the given DP struct corresponds to a CPU eDP port.
101 */
102 static bool is_cpu_edp(struct intel_dp *intel_dp)
103 {
104 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
105 }
106
107 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
108 {
109 return container_of(encoder, struct intel_dp, base.base);
110 }
111
112 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
113 {
114 return container_of(intel_attached_encoder(connector),
115 struct intel_dp, base);
116 }
117
118 /**
119 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
120 * @encoder: DRM encoder
121 *
122 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
123 * by intel_display.c.
124 */
125 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
126 {
127 struct intel_dp *intel_dp;
128
129 if (!encoder)
130 return false;
131
132 intel_dp = enc_to_intel_dp(encoder);
133
134 return is_pch_edp(intel_dp);
135 }
136
137 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
138 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_link_down(struct intel_dp *intel_dp);
140
141 void
142 intel_edp_link_config(struct intel_encoder *intel_encoder,
143 int *lane_num, int *link_bw)
144 {
145 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
146
147 *lane_num = intel_dp->lane_count;
148 if (intel_dp->link_bw == DP_LINK_BW_1_62)
149 *link_bw = 162000;
150 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
151 *link_bw = 270000;
152 }
153
154 static int
155 intel_dp_max_lane_count(struct intel_dp *intel_dp)
156 {
157 int max_lane_count = 4;
158
159 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
160 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
161 switch (max_lane_count) {
162 case 1: case 2: case 4:
163 break;
164 default:
165 max_lane_count = 4;
166 }
167 }
168 return max_lane_count;
169 }
170
171 static int
172 intel_dp_max_link_bw(struct intel_dp *intel_dp)
173 {
174 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
175
176 switch (max_link_bw) {
177 case DP_LINK_BW_1_62:
178 case DP_LINK_BW_2_7:
179 break;
180 default:
181 max_link_bw = DP_LINK_BW_1_62;
182 break;
183 }
184 return max_link_bw;
185 }
186
187 static int
188 intel_dp_link_clock(uint8_t link_bw)
189 {
190 if (link_bw == DP_LINK_BW_2_7)
191 return 270000;
192 else
193 return 162000;
194 }
195
196 /*
197 * The units on the numbers in the next two are... bizarre. Examples will
198 * make it clearer; this one parallels an example in the eDP spec.
199 *
200 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
201 *
202 * 270000 * 1 * 8 / 10 == 216000
203 *
204 * The actual data capacity of that configuration is 2.16Gbit/s, so the
205 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
206 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
207 * 119000. At 18bpp that's 2142000 kilobits per second.
208 *
209 * Thus the strange-looking division by 10 in intel_dp_link_required, to
210 * get the result in decakilobits instead of kilobits.
211 */
212
213 static int
214 intel_dp_link_required(struct intel_dp *intel_dp, int pixel_clock)
215 {
216 struct drm_crtc *crtc = intel_dp->base.base.crtc;
217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
218 int bpp = 24;
219
220 if (intel_crtc)
221 bpp = intel_crtc->bpp;
222
223 return (pixel_clock * bpp + 9) / 10;
224 }
225
226 static int
227 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
228 {
229 return (max_link_clock * max_lanes * 8) / 10;
230 }
231
232 static int
233 intel_dp_mode_valid(struct drm_connector *connector,
234 struct drm_display_mode *mode)
235 {
236 struct intel_dp *intel_dp = intel_attached_dp(connector);
237 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
238 int max_lanes = intel_dp_max_lane_count(intel_dp);
239
240 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
241 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
242 return MODE_PANEL;
243
244 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
245 return MODE_PANEL;
246 }
247
248 if (intel_dp_link_required(intel_dp, mode->clock)
249 > intel_dp_max_data_rate(max_link_clock, max_lanes))
250 return MODE_CLOCK_HIGH;
251
252 if (mode->clock < 10000)
253 return MODE_CLOCK_LOW;
254
255 return MODE_OK;
256 }
257
258 static uint32_t
259 pack_aux(uint8_t *src, int src_bytes)
260 {
261 int i;
262 uint32_t v = 0;
263
264 if (src_bytes > 4)
265 src_bytes = 4;
266 for (i = 0; i < src_bytes; i++)
267 v |= ((uint32_t) src[i]) << ((3-i) * 8);
268 return v;
269 }
270
271 static void
272 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
273 {
274 int i;
275 if (dst_bytes > 4)
276 dst_bytes = 4;
277 for (i = 0; i < dst_bytes; i++)
278 dst[i] = src >> ((3-i) * 8);
279 }
280
281 /* hrawclock is 1/4 the FSB frequency */
282 static int
283 intel_hrawclk(struct drm_device *dev)
284 {
285 struct drm_i915_private *dev_priv = dev->dev_private;
286 uint32_t clkcfg;
287
288 clkcfg = I915_READ(CLKCFG);
289 switch (clkcfg & CLKCFG_FSB_MASK) {
290 case CLKCFG_FSB_400:
291 return 100;
292 case CLKCFG_FSB_533:
293 return 133;
294 case CLKCFG_FSB_667:
295 return 166;
296 case CLKCFG_FSB_800:
297 return 200;
298 case CLKCFG_FSB_1067:
299 return 266;
300 case CLKCFG_FSB_1333:
301 return 333;
302 /* these two are just a guess; one of them might be right */
303 case CLKCFG_FSB_1600:
304 case CLKCFG_FSB_1600_ALT:
305 return 400;
306 default:
307 return 133;
308 }
309 }
310
311 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
312 {
313 struct drm_device *dev = intel_dp->base.base.dev;
314 struct drm_i915_private *dev_priv = dev->dev_private;
315
316 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
317 }
318
319 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
320 {
321 struct drm_device *dev = intel_dp->base.base.dev;
322 struct drm_i915_private *dev_priv = dev->dev_private;
323
324 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
325 }
326
327 static void
328 intel_dp_check_edp(struct intel_dp *intel_dp)
329 {
330 struct drm_device *dev = intel_dp->base.base.dev;
331 struct drm_i915_private *dev_priv = dev->dev_private;
332
333 if (!is_edp(intel_dp))
334 return;
335 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
336 WARN(1, "eDP powered off while attempting aux channel communication.\n");
337 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
338 I915_READ(PCH_PP_STATUS),
339 I915_READ(PCH_PP_CONTROL));
340 }
341 }
342
343 static int
344 intel_dp_aux_ch(struct intel_dp *intel_dp,
345 uint8_t *send, int send_bytes,
346 uint8_t *recv, int recv_size)
347 {
348 uint32_t output_reg = intel_dp->output_reg;
349 struct drm_device *dev = intel_dp->base.base.dev;
350 struct drm_i915_private *dev_priv = dev->dev_private;
351 uint32_t ch_ctl = output_reg + 0x10;
352 uint32_t ch_data = ch_ctl + 4;
353 int i;
354 int recv_bytes;
355 uint32_t status;
356 uint32_t aux_clock_divider;
357 int try, precharge;
358
359 intel_dp_check_edp(intel_dp);
360 /* The clock divider is based off the hrawclk,
361 * and would like to run at 2MHz. So, take the
362 * hrawclk value and divide by 2 and use that
363 *
364 * Note that PCH attached eDP panels should use a 125MHz input
365 * clock divider.
366 */
367 if (is_cpu_edp(intel_dp)) {
368 if (IS_GEN6(dev))
369 aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
370 else
371 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
372 } else if (HAS_PCH_SPLIT(dev))
373 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
374 else
375 aux_clock_divider = intel_hrawclk(dev) / 2;
376
377 if (IS_GEN6(dev))
378 precharge = 3;
379 else
380 precharge = 5;
381
382 /* Try to wait for any previous AUX channel activity */
383 for (try = 0; try < 3; try++) {
384 status = I915_READ(ch_ctl);
385 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
386 break;
387 msleep(1);
388 }
389
390 if (try == 3) {
391 WARN(1, "dp_aux_ch not started status 0x%08x\n",
392 I915_READ(ch_ctl));
393 return -EBUSY;
394 }
395
396 /* Must try at least 3 times according to DP spec */
397 for (try = 0; try < 5; try++) {
398 /* Load the send data into the aux channel data registers */
399 for (i = 0; i < send_bytes; i += 4)
400 I915_WRITE(ch_data + i,
401 pack_aux(send + i, send_bytes - i));
402
403 /* Send the command and wait for it to complete */
404 I915_WRITE(ch_ctl,
405 DP_AUX_CH_CTL_SEND_BUSY |
406 DP_AUX_CH_CTL_TIME_OUT_400us |
407 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
408 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
409 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
410 DP_AUX_CH_CTL_DONE |
411 DP_AUX_CH_CTL_TIME_OUT_ERROR |
412 DP_AUX_CH_CTL_RECEIVE_ERROR);
413 for (;;) {
414 status = I915_READ(ch_ctl);
415 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
416 break;
417 udelay(100);
418 }
419
420 /* Clear done status and any errors */
421 I915_WRITE(ch_ctl,
422 status |
423 DP_AUX_CH_CTL_DONE |
424 DP_AUX_CH_CTL_TIME_OUT_ERROR |
425 DP_AUX_CH_CTL_RECEIVE_ERROR);
426 if (status & DP_AUX_CH_CTL_DONE)
427 break;
428 }
429
430 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
431 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
432 return -EBUSY;
433 }
434
435 /* Check for timeout or receive error.
436 * Timeouts occur when the sink is not connected
437 */
438 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
439 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
440 return -EIO;
441 }
442
443 /* Timeouts occur when the device isn't connected, so they're
444 * "normal" -- don't fill the kernel log with these */
445 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
446 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
447 return -ETIMEDOUT;
448 }
449
450 /* Unload any bytes sent back from the other side */
451 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
452 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
453 if (recv_bytes > recv_size)
454 recv_bytes = recv_size;
455
456 for (i = 0; i < recv_bytes; i += 4)
457 unpack_aux(I915_READ(ch_data + i),
458 recv + i, recv_bytes - i);
459
460 return recv_bytes;
461 }
462
463 /* Write data to the aux channel in native mode */
464 static int
465 intel_dp_aux_native_write(struct intel_dp *intel_dp,
466 uint16_t address, uint8_t *send, int send_bytes)
467 {
468 int ret;
469 uint8_t msg[20];
470 int msg_bytes;
471 uint8_t ack;
472
473 intel_dp_check_edp(intel_dp);
474 if (send_bytes > 16)
475 return -1;
476 msg[0] = AUX_NATIVE_WRITE << 4;
477 msg[1] = address >> 8;
478 msg[2] = address & 0xff;
479 msg[3] = send_bytes - 1;
480 memcpy(&msg[4], send, send_bytes);
481 msg_bytes = send_bytes + 4;
482 for (;;) {
483 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
484 if (ret < 0)
485 return ret;
486 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
487 break;
488 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
489 udelay(100);
490 else
491 return -EIO;
492 }
493 return send_bytes;
494 }
495
496 /* Write a single byte to the aux channel in native mode */
497 static int
498 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
499 uint16_t address, uint8_t byte)
500 {
501 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
502 }
503
504 /* read bytes from a native aux channel */
505 static int
506 intel_dp_aux_native_read(struct intel_dp *intel_dp,
507 uint16_t address, uint8_t *recv, int recv_bytes)
508 {
509 uint8_t msg[4];
510 int msg_bytes;
511 uint8_t reply[20];
512 int reply_bytes;
513 uint8_t ack;
514 int ret;
515
516 intel_dp_check_edp(intel_dp);
517 msg[0] = AUX_NATIVE_READ << 4;
518 msg[1] = address >> 8;
519 msg[2] = address & 0xff;
520 msg[3] = recv_bytes - 1;
521
522 msg_bytes = 4;
523 reply_bytes = recv_bytes + 1;
524
525 for (;;) {
526 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
527 reply, reply_bytes);
528 if (ret == 0)
529 return -EPROTO;
530 if (ret < 0)
531 return ret;
532 ack = reply[0];
533 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
534 memcpy(recv, reply + 1, ret - 1);
535 return ret - 1;
536 }
537 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
538 udelay(100);
539 else
540 return -EIO;
541 }
542 }
543
544 static int
545 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
546 uint8_t write_byte, uint8_t *read_byte)
547 {
548 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
549 struct intel_dp *intel_dp = container_of(adapter,
550 struct intel_dp,
551 adapter);
552 uint16_t address = algo_data->address;
553 uint8_t msg[5];
554 uint8_t reply[2];
555 unsigned retry;
556 int msg_bytes;
557 int reply_bytes;
558 int ret;
559
560 intel_dp_check_edp(intel_dp);
561 /* Set up the command byte */
562 if (mode & MODE_I2C_READ)
563 msg[0] = AUX_I2C_READ << 4;
564 else
565 msg[0] = AUX_I2C_WRITE << 4;
566
567 if (!(mode & MODE_I2C_STOP))
568 msg[0] |= AUX_I2C_MOT << 4;
569
570 msg[1] = address >> 8;
571 msg[2] = address;
572
573 switch (mode) {
574 case MODE_I2C_WRITE:
575 msg[3] = 0;
576 msg[4] = write_byte;
577 msg_bytes = 5;
578 reply_bytes = 1;
579 break;
580 case MODE_I2C_READ:
581 msg[3] = 0;
582 msg_bytes = 4;
583 reply_bytes = 2;
584 break;
585 default:
586 msg_bytes = 3;
587 reply_bytes = 1;
588 break;
589 }
590
591 for (retry = 0; retry < 5; retry++) {
592 ret = intel_dp_aux_ch(intel_dp,
593 msg, msg_bytes,
594 reply, reply_bytes);
595 if (ret < 0) {
596 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
597 return ret;
598 }
599
600 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
601 case AUX_NATIVE_REPLY_ACK:
602 /* I2C-over-AUX Reply field is only valid
603 * when paired with AUX ACK.
604 */
605 break;
606 case AUX_NATIVE_REPLY_NACK:
607 DRM_DEBUG_KMS("aux_ch native nack\n");
608 return -EREMOTEIO;
609 case AUX_NATIVE_REPLY_DEFER:
610 udelay(100);
611 continue;
612 default:
613 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
614 reply[0]);
615 return -EREMOTEIO;
616 }
617
618 switch (reply[0] & AUX_I2C_REPLY_MASK) {
619 case AUX_I2C_REPLY_ACK:
620 if (mode == MODE_I2C_READ) {
621 *read_byte = reply[1];
622 }
623 return reply_bytes - 1;
624 case AUX_I2C_REPLY_NACK:
625 DRM_DEBUG_KMS("aux_i2c nack\n");
626 return -EREMOTEIO;
627 case AUX_I2C_REPLY_DEFER:
628 DRM_DEBUG_KMS("aux_i2c defer\n");
629 udelay(100);
630 break;
631 default:
632 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
633 return -EREMOTEIO;
634 }
635 }
636
637 DRM_ERROR("too many retries, giving up\n");
638 return -EREMOTEIO;
639 }
640
641 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
642 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
643
644 static int
645 intel_dp_i2c_init(struct intel_dp *intel_dp,
646 struct intel_connector *intel_connector, const char *name)
647 {
648 int ret;
649
650 DRM_DEBUG_KMS("i2c_init %s\n", name);
651 intel_dp->algo.running = false;
652 intel_dp->algo.address = 0;
653 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
654
655 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
656 intel_dp->adapter.owner = THIS_MODULE;
657 intel_dp->adapter.class = I2C_CLASS_DDC;
658 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
659 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
660 intel_dp->adapter.algo_data = &intel_dp->algo;
661 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
662
663 ironlake_edp_panel_vdd_on(intel_dp);
664 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
665 ironlake_edp_panel_vdd_off(intel_dp, false);
666 return ret;
667 }
668
669 static bool
670 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
671 struct drm_display_mode *adjusted_mode)
672 {
673 struct drm_device *dev = encoder->dev;
674 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
675 int lane_count, clock;
676 int max_lane_count = intel_dp_max_lane_count(intel_dp);
677 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
678 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
679
680 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
681 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
682 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
683 mode, adjusted_mode);
684 /*
685 * the mode->clock is used to calculate the Data&Link M/N
686 * of the pipe. For the eDP the fixed clock should be used.
687 */
688 mode->clock = intel_dp->panel_fixed_mode->clock;
689 }
690
691 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
692 for (clock = 0; clock <= max_clock; clock++) {
693 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
694
695 if (intel_dp_link_required(intel_dp, mode->clock)
696 <= link_avail) {
697 intel_dp->link_bw = bws[clock];
698 intel_dp->lane_count = lane_count;
699 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
700 DRM_DEBUG_KMS("Display port link bw %02x lane "
701 "count %d clock %d\n",
702 intel_dp->link_bw, intel_dp->lane_count,
703 adjusted_mode->clock);
704 return true;
705 }
706 }
707 }
708
709 return false;
710 }
711
712 struct intel_dp_m_n {
713 uint32_t tu;
714 uint32_t gmch_m;
715 uint32_t gmch_n;
716 uint32_t link_m;
717 uint32_t link_n;
718 };
719
720 static void
721 intel_reduce_ratio(uint32_t *num, uint32_t *den)
722 {
723 while (*num > 0xffffff || *den > 0xffffff) {
724 *num >>= 1;
725 *den >>= 1;
726 }
727 }
728
729 static void
730 intel_dp_compute_m_n(int bpp,
731 int nlanes,
732 int pixel_clock,
733 int link_clock,
734 struct intel_dp_m_n *m_n)
735 {
736 m_n->tu = 64;
737 m_n->gmch_m = (pixel_clock * bpp) >> 3;
738 m_n->gmch_n = link_clock * nlanes;
739 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
740 m_n->link_m = pixel_clock;
741 m_n->link_n = link_clock;
742 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
743 }
744
745 void
746 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
747 struct drm_display_mode *adjusted_mode)
748 {
749 struct drm_device *dev = crtc->dev;
750 struct drm_mode_config *mode_config = &dev->mode_config;
751 struct drm_encoder *encoder;
752 struct drm_i915_private *dev_priv = dev->dev_private;
753 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
754 int lane_count = 4;
755 struct intel_dp_m_n m_n;
756 int pipe = intel_crtc->pipe;
757
758 /*
759 * Find the lane count in the intel_encoder private
760 */
761 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
762 struct intel_dp *intel_dp;
763
764 if (encoder->crtc != crtc)
765 continue;
766
767 intel_dp = enc_to_intel_dp(encoder);
768 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT || is_pch_edp(intel_dp)) {
769 lane_count = intel_dp->lane_count;
770 break;
771 } else if (is_cpu_edp(intel_dp)) {
772 lane_count = dev_priv->edp.lanes;
773 break;
774 }
775 }
776
777 /*
778 * Compute the GMCH and Link ratios. The '3' here is
779 * the number of bytes_per_pixel post-LUT, which we always
780 * set up for 8-bits of R/G/B, or 3 bytes total.
781 */
782 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
783 mode->clock, adjusted_mode->clock, &m_n);
784
785 if (HAS_PCH_SPLIT(dev)) {
786 I915_WRITE(TRANSDATA_M1(pipe),
787 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
788 m_n.gmch_m);
789 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
790 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
791 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
792 } else {
793 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
794 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
795 m_n.gmch_m);
796 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
797 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
798 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
799 }
800 }
801
802 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
803 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
804
805 static void
806 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
807 struct drm_display_mode *adjusted_mode)
808 {
809 struct drm_device *dev = encoder->dev;
810 struct drm_i915_private *dev_priv = dev->dev_private;
811 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
812 struct drm_crtc *crtc = intel_dp->base.base.crtc;
813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
814
815 /* Turn on the eDP PLL if needed */
816 if (is_edp(intel_dp)) {
817 if (!is_pch_edp(intel_dp))
818 ironlake_edp_pll_on(encoder);
819 else
820 ironlake_edp_pll_off(encoder);
821 }
822
823 /*
824 * There are three kinds of DP registers:
825 *
826 * IBX PCH
827 * CPU
828 * CPT PCH
829 *
830 * IBX PCH and CPU are the same for almost everything,
831 * except that the CPU DP PLL is configured in this
832 * register
833 *
834 * CPT PCH is quite different, having many bits moved
835 * to the TRANS_DP_CTL register instead. That
836 * configuration happens (oddly) in ironlake_pch_enable
837 */
838
839 /* Preserve the BIOS-computed detected bit. This is
840 * supposed to be read-only.
841 */
842 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
843 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
844
845 /* Handle DP bits in common between all three register formats */
846
847 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
848
849 switch (intel_dp->lane_count) {
850 case 1:
851 intel_dp->DP |= DP_PORT_WIDTH_1;
852 break;
853 case 2:
854 intel_dp->DP |= DP_PORT_WIDTH_2;
855 break;
856 case 4:
857 intel_dp->DP |= DP_PORT_WIDTH_4;
858 break;
859 }
860 if (intel_dp->has_audio) {
861 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
862 pipe_name(intel_crtc->pipe));
863 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
864 intel_write_eld(encoder, adjusted_mode);
865 }
866 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
867 intel_dp->link_configuration[0] = intel_dp->link_bw;
868 intel_dp->link_configuration[1] = intel_dp->lane_count;
869 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
870 /*
871 * Check for DPCD version > 1.1 and enhanced framing support
872 */
873 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
874 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
875 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
876 }
877
878 /* Split out the IBX/CPU vs CPT settings */
879
880 if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
881 intel_dp->DP |= intel_dp->color_range;
882
883 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
884 intel_dp->DP |= DP_SYNC_HS_HIGH;
885 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
886 intel_dp->DP |= DP_SYNC_VS_HIGH;
887 intel_dp->DP |= DP_LINK_TRAIN_OFF;
888
889 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
890 intel_dp->DP |= DP_ENHANCED_FRAMING;
891
892 if (intel_crtc->pipe == 1)
893 intel_dp->DP |= DP_PIPEB_SELECT;
894
895 if (is_cpu_edp(intel_dp)) {
896 /* don't miss out required setting for eDP */
897 intel_dp->DP |= DP_PLL_ENABLE;
898 if (adjusted_mode->clock < 200000)
899 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
900 else
901 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
902 }
903 } else {
904 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
905 }
906 }
907
908 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
909 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
910
911 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
912 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
913
914 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
915 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
916
917 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
918 u32 mask,
919 u32 value)
920 {
921 struct drm_device *dev = intel_dp->base.base.dev;
922 struct drm_i915_private *dev_priv = dev->dev_private;
923
924 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
925 mask, value,
926 I915_READ(PCH_PP_STATUS),
927 I915_READ(PCH_PP_CONTROL));
928
929 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
930 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
931 I915_READ(PCH_PP_STATUS),
932 I915_READ(PCH_PP_CONTROL));
933 }
934 }
935
936 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
937 {
938 DRM_DEBUG_KMS("Wait for panel power on\n");
939 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
940 }
941
942 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
943 {
944 DRM_DEBUG_KMS("Wait for panel power off time\n");
945 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
946 }
947
948 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
949 {
950 DRM_DEBUG_KMS("Wait for panel power cycle\n");
951 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
952 }
953
954
955 /* Read the current pp_control value, unlocking the register if it
956 * is locked
957 */
958
959 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
960 {
961 u32 control = I915_READ(PCH_PP_CONTROL);
962
963 control &= ~PANEL_UNLOCK_MASK;
964 control |= PANEL_UNLOCK_REGS;
965 return control;
966 }
967
968 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
969 {
970 struct drm_device *dev = intel_dp->base.base.dev;
971 struct drm_i915_private *dev_priv = dev->dev_private;
972 u32 pp;
973
974 if (!is_edp(intel_dp))
975 return;
976 DRM_DEBUG_KMS("Turn eDP VDD on\n");
977
978 WARN(intel_dp->want_panel_vdd,
979 "eDP VDD already requested on\n");
980
981 intel_dp->want_panel_vdd = true;
982
983 if (ironlake_edp_have_panel_vdd(intel_dp)) {
984 DRM_DEBUG_KMS("eDP VDD already on\n");
985 return;
986 }
987
988 if (!ironlake_edp_have_panel_power(intel_dp))
989 ironlake_wait_panel_power_cycle(intel_dp);
990
991 pp = ironlake_get_pp_control(dev_priv);
992 pp |= EDP_FORCE_VDD;
993 I915_WRITE(PCH_PP_CONTROL, pp);
994 POSTING_READ(PCH_PP_CONTROL);
995 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
996 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
997
998 /*
999 * If the panel wasn't on, delay before accessing aux channel
1000 */
1001 if (!ironlake_edp_have_panel_power(intel_dp)) {
1002 DRM_DEBUG_KMS("eDP was not running\n");
1003 msleep(intel_dp->panel_power_up_delay);
1004 }
1005 }
1006
1007 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1008 {
1009 struct drm_device *dev = intel_dp->base.base.dev;
1010 struct drm_i915_private *dev_priv = dev->dev_private;
1011 u32 pp;
1012
1013 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1014 pp = ironlake_get_pp_control(dev_priv);
1015 pp &= ~EDP_FORCE_VDD;
1016 I915_WRITE(PCH_PP_CONTROL, pp);
1017 POSTING_READ(PCH_PP_CONTROL);
1018
1019 /* Make sure sequencer is idle before allowing subsequent activity */
1020 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1021 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1022
1023 msleep(intel_dp->panel_power_down_delay);
1024 }
1025 }
1026
1027 static void ironlake_panel_vdd_work(struct work_struct *__work)
1028 {
1029 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1030 struct intel_dp, panel_vdd_work);
1031 struct drm_device *dev = intel_dp->base.base.dev;
1032
1033 mutex_lock(&dev->mode_config.mutex);
1034 ironlake_panel_vdd_off_sync(intel_dp);
1035 mutex_unlock(&dev->mode_config.mutex);
1036 }
1037
1038 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1039 {
1040 if (!is_edp(intel_dp))
1041 return;
1042
1043 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1044 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1045
1046 intel_dp->want_panel_vdd = false;
1047
1048 if (sync) {
1049 ironlake_panel_vdd_off_sync(intel_dp);
1050 } else {
1051 /*
1052 * Queue the timer to fire a long
1053 * time from now (relative to the power down delay)
1054 * to keep the panel power up across a sequence of operations
1055 */
1056 schedule_delayed_work(&intel_dp->panel_vdd_work,
1057 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1058 }
1059 }
1060
1061 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1062 {
1063 struct drm_device *dev = intel_dp->base.base.dev;
1064 struct drm_i915_private *dev_priv = dev->dev_private;
1065 u32 pp;
1066
1067 if (!is_edp(intel_dp))
1068 return;
1069
1070 DRM_DEBUG_KMS("Turn eDP power on\n");
1071
1072 if (ironlake_edp_have_panel_power(intel_dp)) {
1073 DRM_DEBUG_KMS("eDP power already on\n");
1074 return;
1075 }
1076
1077 ironlake_wait_panel_power_cycle(intel_dp);
1078
1079 pp = ironlake_get_pp_control(dev_priv);
1080 if (IS_GEN5(dev)) {
1081 /* ILK workaround: disable reset around power sequence */
1082 pp &= ~PANEL_POWER_RESET;
1083 I915_WRITE(PCH_PP_CONTROL, pp);
1084 POSTING_READ(PCH_PP_CONTROL);
1085 }
1086
1087 pp |= POWER_TARGET_ON;
1088 if (!IS_GEN5(dev))
1089 pp |= PANEL_POWER_RESET;
1090
1091 I915_WRITE(PCH_PP_CONTROL, pp);
1092 POSTING_READ(PCH_PP_CONTROL);
1093
1094 ironlake_wait_panel_on(intel_dp);
1095
1096 if (IS_GEN5(dev)) {
1097 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1098 I915_WRITE(PCH_PP_CONTROL, pp);
1099 POSTING_READ(PCH_PP_CONTROL);
1100 }
1101 }
1102
1103 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1104 {
1105 struct drm_device *dev = intel_dp->base.base.dev;
1106 struct drm_i915_private *dev_priv = dev->dev_private;
1107 u32 pp;
1108
1109 if (!is_edp(intel_dp))
1110 return;
1111
1112 DRM_DEBUG_KMS("Turn eDP power off\n");
1113
1114 WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
1115
1116 pp = ironlake_get_pp_control(dev_priv);
1117 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1118 I915_WRITE(PCH_PP_CONTROL, pp);
1119 POSTING_READ(PCH_PP_CONTROL);
1120
1121 ironlake_wait_panel_off(intel_dp);
1122 }
1123
1124 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1125 {
1126 struct drm_device *dev = intel_dp->base.base.dev;
1127 struct drm_i915_private *dev_priv = dev->dev_private;
1128 u32 pp;
1129
1130 if (!is_edp(intel_dp))
1131 return;
1132
1133 DRM_DEBUG_KMS("\n");
1134 /*
1135 * If we enable the backlight right away following a panel power
1136 * on, we may see slight flicker as the panel syncs with the eDP
1137 * link. So delay a bit to make sure the image is solid before
1138 * allowing it to appear.
1139 */
1140 msleep(intel_dp->backlight_on_delay);
1141 pp = ironlake_get_pp_control(dev_priv);
1142 pp |= EDP_BLC_ENABLE;
1143 I915_WRITE(PCH_PP_CONTROL, pp);
1144 POSTING_READ(PCH_PP_CONTROL);
1145 }
1146
1147 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1148 {
1149 struct drm_device *dev = intel_dp->base.base.dev;
1150 struct drm_i915_private *dev_priv = dev->dev_private;
1151 u32 pp;
1152
1153 if (!is_edp(intel_dp))
1154 return;
1155
1156 DRM_DEBUG_KMS("\n");
1157 pp = ironlake_get_pp_control(dev_priv);
1158 pp &= ~EDP_BLC_ENABLE;
1159 I915_WRITE(PCH_PP_CONTROL, pp);
1160 POSTING_READ(PCH_PP_CONTROL);
1161 msleep(intel_dp->backlight_off_delay);
1162 }
1163
1164 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1165 {
1166 struct drm_device *dev = encoder->dev;
1167 struct drm_i915_private *dev_priv = dev->dev_private;
1168 u32 dpa_ctl;
1169
1170 DRM_DEBUG_KMS("\n");
1171 dpa_ctl = I915_READ(DP_A);
1172 dpa_ctl |= DP_PLL_ENABLE;
1173 I915_WRITE(DP_A, dpa_ctl);
1174 POSTING_READ(DP_A);
1175 udelay(200);
1176 }
1177
1178 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1179 {
1180 struct drm_device *dev = encoder->dev;
1181 struct drm_i915_private *dev_priv = dev->dev_private;
1182 u32 dpa_ctl;
1183
1184 dpa_ctl = I915_READ(DP_A);
1185 dpa_ctl &= ~DP_PLL_ENABLE;
1186 I915_WRITE(DP_A, dpa_ctl);
1187 POSTING_READ(DP_A);
1188 udelay(200);
1189 }
1190
1191 /* If the sink supports it, try to set the power state appropriately */
1192 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1193 {
1194 int ret, i;
1195
1196 /* Should have a valid DPCD by this point */
1197 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1198 return;
1199
1200 if (mode != DRM_MODE_DPMS_ON) {
1201 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1202 DP_SET_POWER_D3);
1203 if (ret != 1)
1204 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1205 } else {
1206 /*
1207 * When turning on, we need to retry for 1ms to give the sink
1208 * time to wake up.
1209 */
1210 for (i = 0; i < 3; i++) {
1211 ret = intel_dp_aux_native_write_1(intel_dp,
1212 DP_SET_POWER,
1213 DP_SET_POWER_D0);
1214 if (ret == 1)
1215 break;
1216 msleep(1);
1217 }
1218 }
1219 }
1220
1221 static void intel_dp_prepare(struct drm_encoder *encoder)
1222 {
1223 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1224
1225 /* Wake up the sink first */
1226 ironlake_edp_panel_vdd_on(intel_dp);
1227 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1228 ironlake_edp_panel_vdd_off(intel_dp, false);
1229
1230 /* Make sure the panel is off before trying to
1231 * change the mode
1232 */
1233 ironlake_edp_backlight_off(intel_dp);
1234 intel_dp_link_down(intel_dp);
1235 ironlake_edp_panel_off(intel_dp);
1236 }
1237
1238 static void intel_dp_commit(struct drm_encoder *encoder)
1239 {
1240 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1241 struct drm_device *dev = encoder->dev;
1242 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1243
1244 ironlake_edp_panel_vdd_on(intel_dp);
1245 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1246 intel_dp_start_link_train(intel_dp);
1247 ironlake_edp_panel_on(intel_dp);
1248 ironlake_edp_panel_vdd_off(intel_dp, true);
1249 intel_dp_complete_link_train(intel_dp);
1250 ironlake_edp_backlight_on(intel_dp);
1251
1252 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1253
1254 if (HAS_PCH_CPT(dev))
1255 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1256 }
1257
1258 static void
1259 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1260 {
1261 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1262 struct drm_device *dev = encoder->dev;
1263 struct drm_i915_private *dev_priv = dev->dev_private;
1264 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1265
1266 if (mode != DRM_MODE_DPMS_ON) {
1267 ironlake_edp_panel_vdd_on(intel_dp);
1268 if (is_edp(intel_dp))
1269 ironlake_edp_backlight_off(intel_dp);
1270 intel_dp_sink_dpms(intel_dp, mode);
1271 intel_dp_link_down(intel_dp);
1272 ironlake_edp_panel_off(intel_dp);
1273 if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
1274 ironlake_edp_pll_off(encoder);
1275 ironlake_edp_panel_vdd_off(intel_dp, false);
1276 } else {
1277 ironlake_edp_panel_vdd_on(intel_dp);
1278 intel_dp_sink_dpms(intel_dp, mode);
1279 if (!(dp_reg & DP_PORT_EN)) {
1280 intel_dp_start_link_train(intel_dp);
1281 ironlake_edp_panel_on(intel_dp);
1282 ironlake_edp_panel_vdd_off(intel_dp, true);
1283 intel_dp_complete_link_train(intel_dp);
1284 ironlake_edp_backlight_on(intel_dp);
1285 } else
1286 ironlake_edp_panel_vdd_off(intel_dp, false);
1287 ironlake_edp_backlight_on(intel_dp);
1288 }
1289 intel_dp->dpms_mode = mode;
1290 }
1291
1292 /*
1293 * Native read with retry for link status and receiver capability reads for
1294 * cases where the sink may still be asleep.
1295 */
1296 static bool
1297 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1298 uint8_t *recv, int recv_bytes)
1299 {
1300 int ret, i;
1301
1302 /*
1303 * Sinks are *supposed* to come up within 1ms from an off state,
1304 * but we're also supposed to retry 3 times per the spec.
1305 */
1306 for (i = 0; i < 3; i++) {
1307 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1308 recv_bytes);
1309 if (ret == recv_bytes)
1310 return true;
1311 msleep(1);
1312 }
1313
1314 return false;
1315 }
1316
1317 /*
1318 * Fetch AUX CH registers 0x202 - 0x207 which contain
1319 * link status information
1320 */
1321 static bool
1322 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1323 {
1324 return intel_dp_aux_native_read_retry(intel_dp,
1325 DP_LANE0_1_STATUS,
1326 link_status,
1327 DP_LINK_STATUS_SIZE);
1328 }
1329
1330 static uint8_t
1331 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1332 int r)
1333 {
1334 return link_status[r - DP_LANE0_1_STATUS];
1335 }
1336
1337 static uint8_t
1338 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1339 int lane)
1340 {
1341 int s = ((lane & 1) ?
1342 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1343 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1344 uint8_t l = adjust_request[lane>>1];
1345
1346 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1347 }
1348
1349 static uint8_t
1350 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1351 int lane)
1352 {
1353 int s = ((lane & 1) ?
1354 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1355 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1356 uint8_t l = adjust_request[lane>>1];
1357
1358 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1359 }
1360
1361
1362 #if 0
1363 static char *voltage_names[] = {
1364 "0.4V", "0.6V", "0.8V", "1.2V"
1365 };
1366 static char *pre_emph_names[] = {
1367 "0dB", "3.5dB", "6dB", "9.5dB"
1368 };
1369 static char *link_train_names[] = {
1370 "pattern 1", "pattern 2", "idle", "off"
1371 };
1372 #endif
1373
1374 /*
1375 * These are source-specific values; current Intel hardware supports
1376 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1377 */
1378 #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
1379 #define I830_DP_VOLTAGE_MAX_CPT DP_TRAIN_VOLTAGE_SWING_1200
1380
1381 static uint8_t
1382 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1383 {
1384 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1385 case DP_TRAIN_VOLTAGE_SWING_400:
1386 return DP_TRAIN_PRE_EMPHASIS_6;
1387 case DP_TRAIN_VOLTAGE_SWING_600:
1388 return DP_TRAIN_PRE_EMPHASIS_6;
1389 case DP_TRAIN_VOLTAGE_SWING_800:
1390 return DP_TRAIN_PRE_EMPHASIS_3_5;
1391 case DP_TRAIN_VOLTAGE_SWING_1200:
1392 default:
1393 return DP_TRAIN_PRE_EMPHASIS_0;
1394 }
1395 }
1396
1397 static void
1398 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1399 {
1400 struct drm_device *dev = intel_dp->base.base.dev;
1401 uint8_t v = 0;
1402 uint8_t p = 0;
1403 int lane;
1404 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1405 int voltage_max;
1406
1407 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1408 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1409 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1410
1411 if (this_v > v)
1412 v = this_v;
1413 if (this_p > p)
1414 p = this_p;
1415 }
1416
1417 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1418 voltage_max = I830_DP_VOLTAGE_MAX_CPT;
1419 else
1420 voltage_max = I830_DP_VOLTAGE_MAX;
1421 if (v >= voltage_max)
1422 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1423
1424 if (p >= intel_dp_pre_emphasis_max(v))
1425 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1426
1427 for (lane = 0; lane < 4; lane++)
1428 intel_dp->train_set[lane] = v | p;
1429 }
1430
1431 static uint32_t
1432 intel_dp_signal_levels(uint8_t train_set)
1433 {
1434 uint32_t signal_levels = 0;
1435
1436 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1437 case DP_TRAIN_VOLTAGE_SWING_400:
1438 default:
1439 signal_levels |= DP_VOLTAGE_0_4;
1440 break;
1441 case DP_TRAIN_VOLTAGE_SWING_600:
1442 signal_levels |= DP_VOLTAGE_0_6;
1443 break;
1444 case DP_TRAIN_VOLTAGE_SWING_800:
1445 signal_levels |= DP_VOLTAGE_0_8;
1446 break;
1447 case DP_TRAIN_VOLTAGE_SWING_1200:
1448 signal_levels |= DP_VOLTAGE_1_2;
1449 break;
1450 }
1451 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1452 case DP_TRAIN_PRE_EMPHASIS_0:
1453 default:
1454 signal_levels |= DP_PRE_EMPHASIS_0;
1455 break;
1456 case DP_TRAIN_PRE_EMPHASIS_3_5:
1457 signal_levels |= DP_PRE_EMPHASIS_3_5;
1458 break;
1459 case DP_TRAIN_PRE_EMPHASIS_6:
1460 signal_levels |= DP_PRE_EMPHASIS_6;
1461 break;
1462 case DP_TRAIN_PRE_EMPHASIS_9_5:
1463 signal_levels |= DP_PRE_EMPHASIS_9_5;
1464 break;
1465 }
1466 return signal_levels;
1467 }
1468
1469 /* Gen6's DP voltage swing and pre-emphasis control */
1470 static uint32_t
1471 intel_gen6_edp_signal_levels(uint8_t train_set)
1472 {
1473 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1474 DP_TRAIN_PRE_EMPHASIS_MASK);
1475 switch (signal_levels) {
1476 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1477 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1478 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1479 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1480 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1481 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1482 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1483 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1484 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1485 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1486 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1487 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1488 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1489 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1490 default:
1491 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1492 "0x%x\n", signal_levels);
1493 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1494 }
1495 }
1496
1497 static uint8_t
1498 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1499 int lane)
1500 {
1501 int s = (lane & 1) * 4;
1502 uint8_t l = link_status[lane>>1];
1503
1504 return (l >> s) & 0xf;
1505 }
1506
1507 /* Check for clock recovery is done on all channels */
1508 static bool
1509 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1510 {
1511 int lane;
1512 uint8_t lane_status;
1513
1514 for (lane = 0; lane < lane_count; lane++) {
1515 lane_status = intel_get_lane_status(link_status, lane);
1516 if ((lane_status & DP_LANE_CR_DONE) == 0)
1517 return false;
1518 }
1519 return true;
1520 }
1521
1522 /* Check to see if channel eq is done on all channels */
1523 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1524 DP_LANE_CHANNEL_EQ_DONE|\
1525 DP_LANE_SYMBOL_LOCKED)
1526 static bool
1527 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1528 {
1529 uint8_t lane_align;
1530 uint8_t lane_status;
1531 int lane;
1532
1533 lane_align = intel_dp_link_status(link_status,
1534 DP_LANE_ALIGN_STATUS_UPDATED);
1535 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1536 return false;
1537 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1538 lane_status = intel_get_lane_status(link_status, lane);
1539 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1540 return false;
1541 }
1542 return true;
1543 }
1544
1545 static bool
1546 intel_dp_set_link_train(struct intel_dp *intel_dp,
1547 uint32_t dp_reg_value,
1548 uint8_t dp_train_pat)
1549 {
1550 struct drm_device *dev = intel_dp->base.base.dev;
1551 struct drm_i915_private *dev_priv = dev->dev_private;
1552 int ret;
1553
1554 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1555 POSTING_READ(intel_dp->output_reg);
1556
1557 intel_dp_aux_native_write_1(intel_dp,
1558 DP_TRAINING_PATTERN_SET,
1559 dp_train_pat);
1560
1561 ret = intel_dp_aux_native_write(intel_dp,
1562 DP_TRAINING_LANE0_SET,
1563 intel_dp->train_set, 4);
1564 if (ret != 4)
1565 return false;
1566
1567 return true;
1568 }
1569
1570 /* Enable corresponding port and start training pattern 1 */
1571 static void
1572 intel_dp_start_link_train(struct intel_dp *intel_dp)
1573 {
1574 struct drm_device *dev = intel_dp->base.base.dev;
1575 struct drm_i915_private *dev_priv = dev->dev_private;
1576 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1577 int i;
1578 uint8_t voltage;
1579 bool clock_recovery = false;
1580 int tries;
1581 u32 reg;
1582 uint32_t DP = intel_dp->DP;
1583
1584 /*
1585 * On CPT we have to enable the port in training pattern 1, which
1586 * will happen below in intel_dp_set_link_train. Otherwise, enable
1587 * the port and wait for it to become active.
1588 */
1589 if (!HAS_PCH_CPT(dev)) {
1590 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1591 POSTING_READ(intel_dp->output_reg);
1592 intel_wait_for_vblank(dev, intel_crtc->pipe);
1593 }
1594
1595 /* Write the link configuration data */
1596 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1597 intel_dp->link_configuration,
1598 DP_LINK_CONFIGURATION_SIZE);
1599
1600 DP |= DP_PORT_EN;
1601 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1602 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1603 else
1604 DP &= ~DP_LINK_TRAIN_MASK;
1605 memset(intel_dp->train_set, 0, 4);
1606 voltage = 0xff;
1607 tries = 0;
1608 clock_recovery = false;
1609 for (;;) {
1610 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1611 uint8_t link_status[DP_LINK_STATUS_SIZE];
1612 uint32_t signal_levels;
1613
1614 if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1615 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1616 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1617 } else {
1618 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1619 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1620 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1621 }
1622
1623 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1624 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1625 else
1626 reg = DP | DP_LINK_TRAIN_PAT_1;
1627
1628 if (!intel_dp_set_link_train(intel_dp, reg,
1629 DP_TRAINING_PATTERN_1 |
1630 DP_LINK_SCRAMBLING_DISABLE))
1631 break;
1632 /* Set training pattern 1 */
1633
1634 udelay(100);
1635 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1636 DRM_ERROR("failed to get link status\n");
1637 break;
1638 }
1639
1640 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1641 DRM_DEBUG_KMS("clock recovery OK\n");
1642 clock_recovery = true;
1643 break;
1644 }
1645
1646 /* Check to see if we've tried the max voltage */
1647 for (i = 0; i < intel_dp->lane_count; i++)
1648 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1649 break;
1650 if (i == intel_dp->lane_count)
1651 break;
1652
1653 /* Check to see if we've tried the same voltage 5 times */
1654 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1655 ++tries;
1656 if (tries == 5)
1657 break;
1658 } else
1659 tries = 0;
1660 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1661
1662 /* Compute new intel_dp->train_set as requested by target */
1663 intel_get_adjust_train(intel_dp, link_status);
1664 }
1665
1666 intel_dp->DP = DP;
1667 }
1668
1669 static void
1670 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1671 {
1672 struct drm_device *dev = intel_dp->base.base.dev;
1673 struct drm_i915_private *dev_priv = dev->dev_private;
1674 bool channel_eq = false;
1675 int tries, cr_tries;
1676 u32 reg;
1677 uint32_t DP = intel_dp->DP;
1678
1679 /* channel equalization */
1680 tries = 0;
1681 cr_tries = 0;
1682 channel_eq = false;
1683 for (;;) {
1684 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1685 uint32_t signal_levels;
1686 uint8_t link_status[DP_LINK_STATUS_SIZE];
1687
1688 if (cr_tries > 5) {
1689 DRM_ERROR("failed to train DP, aborting\n");
1690 intel_dp_link_down(intel_dp);
1691 break;
1692 }
1693
1694 if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1695 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1696 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1697 } else {
1698 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1699 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1700 }
1701
1702 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1703 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1704 else
1705 reg = DP | DP_LINK_TRAIN_PAT_2;
1706
1707 /* channel eq pattern */
1708 if (!intel_dp_set_link_train(intel_dp, reg,
1709 DP_TRAINING_PATTERN_2 |
1710 DP_LINK_SCRAMBLING_DISABLE))
1711 break;
1712
1713 udelay(400);
1714 if (!intel_dp_get_link_status(intel_dp, link_status))
1715 break;
1716
1717 /* Make sure clock is still ok */
1718 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1719 intel_dp_start_link_train(intel_dp);
1720 cr_tries++;
1721 continue;
1722 }
1723
1724 if (intel_channel_eq_ok(intel_dp, link_status)) {
1725 channel_eq = true;
1726 break;
1727 }
1728
1729 /* Try 5 times, then try clock recovery if that fails */
1730 if (tries > 5) {
1731 intel_dp_link_down(intel_dp);
1732 intel_dp_start_link_train(intel_dp);
1733 tries = 0;
1734 cr_tries++;
1735 continue;
1736 }
1737
1738 /* Compute new intel_dp->train_set as requested by target */
1739 intel_get_adjust_train(intel_dp, link_status);
1740 ++tries;
1741 }
1742
1743 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1744 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1745 else
1746 reg = DP | DP_LINK_TRAIN_OFF;
1747
1748 I915_WRITE(intel_dp->output_reg, reg);
1749 POSTING_READ(intel_dp->output_reg);
1750 intel_dp_aux_native_write_1(intel_dp,
1751 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1752 }
1753
1754 static void
1755 intel_dp_link_down(struct intel_dp *intel_dp)
1756 {
1757 struct drm_device *dev = intel_dp->base.base.dev;
1758 struct drm_i915_private *dev_priv = dev->dev_private;
1759 uint32_t DP = intel_dp->DP;
1760
1761 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1762 return;
1763
1764 DRM_DEBUG_KMS("\n");
1765
1766 if (is_edp(intel_dp)) {
1767 DP &= ~DP_PLL_ENABLE;
1768 I915_WRITE(intel_dp->output_reg, DP);
1769 POSTING_READ(intel_dp->output_reg);
1770 udelay(100);
1771 }
1772
1773 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp)) {
1774 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1775 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1776 } else {
1777 DP &= ~DP_LINK_TRAIN_MASK;
1778 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1779 }
1780 POSTING_READ(intel_dp->output_reg);
1781
1782 msleep(17);
1783
1784 if (is_edp(intel_dp)) {
1785 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1786 DP |= DP_LINK_TRAIN_OFF_CPT;
1787 else
1788 DP |= DP_LINK_TRAIN_OFF;
1789 }
1790
1791 if (!HAS_PCH_CPT(dev) &&
1792 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1793 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1794
1795 /* Hardware workaround: leaving our transcoder select
1796 * set to transcoder B while it's off will prevent the
1797 * corresponding HDMI output on transcoder A.
1798 *
1799 * Combine this with another hardware workaround:
1800 * transcoder select bit can only be cleared while the
1801 * port is enabled.
1802 */
1803 DP &= ~DP_PIPEB_SELECT;
1804 I915_WRITE(intel_dp->output_reg, DP);
1805
1806 /* Changes to enable or select take place the vblank
1807 * after being written.
1808 */
1809 if (crtc == NULL) {
1810 /* We can arrive here never having been attached
1811 * to a CRTC, for instance, due to inheriting
1812 * random state from the BIOS.
1813 *
1814 * If the pipe is not running, play safe and
1815 * wait for the clocks to stabilise before
1816 * continuing.
1817 */
1818 POSTING_READ(intel_dp->output_reg);
1819 msleep(50);
1820 } else
1821 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1822 }
1823
1824 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1825 POSTING_READ(intel_dp->output_reg);
1826 msleep(intel_dp->panel_power_down_delay);
1827 }
1828
1829 static bool
1830 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1831 {
1832 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1833 sizeof(intel_dp->dpcd)) &&
1834 (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1835 return true;
1836 }
1837
1838 return false;
1839 }
1840
1841 static bool
1842 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1843 {
1844 int ret;
1845
1846 ret = intel_dp_aux_native_read_retry(intel_dp,
1847 DP_DEVICE_SERVICE_IRQ_VECTOR,
1848 sink_irq_vector, 1);
1849 if (!ret)
1850 return false;
1851
1852 return true;
1853 }
1854
1855 static void
1856 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1857 {
1858 /* NAK by default */
1859 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1860 }
1861
1862 /*
1863 * According to DP spec
1864 * 5.1.2:
1865 * 1. Read DPCD
1866 * 2. Configure link according to Receiver Capabilities
1867 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1868 * 4. Check link status on receipt of hot-plug interrupt
1869 */
1870
1871 static void
1872 intel_dp_check_link_status(struct intel_dp *intel_dp)
1873 {
1874 u8 sink_irq_vector;
1875 u8 link_status[DP_LINK_STATUS_SIZE];
1876
1877 if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1878 return;
1879
1880 if (!intel_dp->base.base.crtc)
1881 return;
1882
1883 /* Try to read receiver status if the link appears to be up */
1884 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1885 intel_dp_link_down(intel_dp);
1886 return;
1887 }
1888
1889 /* Now read the DPCD to see if it's actually running */
1890 if (!intel_dp_get_dpcd(intel_dp)) {
1891 intel_dp_link_down(intel_dp);
1892 return;
1893 }
1894
1895 /* Try to read the source of the interrupt */
1896 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1897 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1898 /* Clear interrupt source */
1899 intel_dp_aux_native_write_1(intel_dp,
1900 DP_DEVICE_SERVICE_IRQ_VECTOR,
1901 sink_irq_vector);
1902
1903 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
1904 intel_dp_handle_test_request(intel_dp);
1905 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
1906 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
1907 }
1908
1909 if (!intel_channel_eq_ok(intel_dp, link_status)) {
1910 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1911 drm_get_encoder_name(&intel_dp->base.base));
1912 intel_dp_start_link_train(intel_dp);
1913 intel_dp_complete_link_train(intel_dp);
1914 }
1915 }
1916
1917 static enum drm_connector_status
1918 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1919 {
1920 if (intel_dp_get_dpcd(intel_dp))
1921 return connector_status_connected;
1922 return connector_status_disconnected;
1923 }
1924
1925 static enum drm_connector_status
1926 ironlake_dp_detect(struct intel_dp *intel_dp)
1927 {
1928 enum drm_connector_status status;
1929
1930 /* Can't disconnect eDP, but you can close the lid... */
1931 if (is_edp(intel_dp)) {
1932 status = intel_panel_detect(intel_dp->base.base.dev);
1933 if (status == connector_status_unknown)
1934 status = connector_status_connected;
1935 return status;
1936 }
1937
1938 return intel_dp_detect_dpcd(intel_dp);
1939 }
1940
1941 static enum drm_connector_status
1942 g4x_dp_detect(struct intel_dp *intel_dp)
1943 {
1944 struct drm_device *dev = intel_dp->base.base.dev;
1945 struct drm_i915_private *dev_priv = dev->dev_private;
1946 uint32_t temp, bit;
1947
1948 switch (intel_dp->output_reg) {
1949 case DP_B:
1950 bit = DPB_HOTPLUG_INT_STATUS;
1951 break;
1952 case DP_C:
1953 bit = DPC_HOTPLUG_INT_STATUS;
1954 break;
1955 case DP_D:
1956 bit = DPD_HOTPLUG_INT_STATUS;
1957 break;
1958 default:
1959 return connector_status_unknown;
1960 }
1961
1962 temp = I915_READ(PORT_HOTPLUG_STAT);
1963
1964 if ((temp & bit) == 0)
1965 return connector_status_disconnected;
1966
1967 return intel_dp_detect_dpcd(intel_dp);
1968 }
1969
1970 static struct edid *
1971 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1972 {
1973 struct intel_dp *intel_dp = intel_attached_dp(connector);
1974 struct edid *edid;
1975
1976 ironlake_edp_panel_vdd_on(intel_dp);
1977 edid = drm_get_edid(connector, adapter);
1978 ironlake_edp_panel_vdd_off(intel_dp, false);
1979 return edid;
1980 }
1981
1982 static int
1983 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
1984 {
1985 struct intel_dp *intel_dp = intel_attached_dp(connector);
1986 int ret;
1987
1988 ironlake_edp_panel_vdd_on(intel_dp);
1989 ret = intel_ddc_get_modes(connector, adapter);
1990 ironlake_edp_panel_vdd_off(intel_dp, false);
1991 return ret;
1992 }
1993
1994
1995 /**
1996 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1997 *
1998 * \return true if DP port is connected.
1999 * \return false if DP port is disconnected.
2000 */
2001 static enum drm_connector_status
2002 intel_dp_detect(struct drm_connector *connector, bool force)
2003 {
2004 struct intel_dp *intel_dp = intel_attached_dp(connector);
2005 struct drm_device *dev = intel_dp->base.base.dev;
2006 enum drm_connector_status status;
2007 struct edid *edid = NULL;
2008
2009 intel_dp->has_audio = false;
2010
2011 if (HAS_PCH_SPLIT(dev))
2012 status = ironlake_dp_detect(intel_dp);
2013 else
2014 status = g4x_dp_detect(intel_dp);
2015
2016 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2017 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2018 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2019 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2020
2021 if (status != connector_status_connected)
2022 return status;
2023
2024 if (intel_dp->force_audio) {
2025 intel_dp->has_audio = intel_dp->force_audio > 0;
2026 } else {
2027 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2028 if (edid) {
2029 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2030 connector->display_info.raw_edid = NULL;
2031 kfree(edid);
2032 }
2033 }
2034
2035 return connector_status_connected;
2036 }
2037
2038 static int intel_dp_get_modes(struct drm_connector *connector)
2039 {
2040 struct intel_dp *intel_dp = intel_attached_dp(connector);
2041 struct drm_device *dev = intel_dp->base.base.dev;
2042 struct drm_i915_private *dev_priv = dev->dev_private;
2043 int ret;
2044
2045 /* We should parse the EDID data and find out if it has an audio sink
2046 */
2047
2048 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2049 if (ret) {
2050 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2051 struct drm_display_mode *newmode;
2052 list_for_each_entry(newmode, &connector->probed_modes,
2053 head) {
2054 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2055 intel_dp->panel_fixed_mode =
2056 drm_mode_duplicate(dev, newmode);
2057 break;
2058 }
2059 }
2060 }
2061 return ret;
2062 }
2063
2064 /* if eDP has no EDID, try to use fixed panel mode from VBT */
2065 if (is_edp(intel_dp)) {
2066 /* initialize panel mode from VBT if available for eDP */
2067 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2068 intel_dp->panel_fixed_mode =
2069 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2070 if (intel_dp->panel_fixed_mode) {
2071 intel_dp->panel_fixed_mode->type |=
2072 DRM_MODE_TYPE_PREFERRED;
2073 }
2074 }
2075 if (intel_dp->panel_fixed_mode) {
2076 struct drm_display_mode *mode;
2077 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2078 drm_mode_probed_add(connector, mode);
2079 return 1;
2080 }
2081 }
2082 return 0;
2083 }
2084
2085 static bool
2086 intel_dp_detect_audio(struct drm_connector *connector)
2087 {
2088 struct intel_dp *intel_dp = intel_attached_dp(connector);
2089 struct edid *edid;
2090 bool has_audio = false;
2091
2092 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2093 if (edid) {
2094 has_audio = drm_detect_monitor_audio(edid);
2095
2096 connector->display_info.raw_edid = NULL;
2097 kfree(edid);
2098 }
2099
2100 return has_audio;
2101 }
2102
2103 static int
2104 intel_dp_set_property(struct drm_connector *connector,
2105 struct drm_property *property,
2106 uint64_t val)
2107 {
2108 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2109 struct intel_dp *intel_dp = intel_attached_dp(connector);
2110 int ret;
2111
2112 ret = drm_connector_property_set_value(connector, property, val);
2113 if (ret)
2114 return ret;
2115
2116 if (property == dev_priv->force_audio_property) {
2117 int i = val;
2118 bool has_audio;
2119
2120 if (i == intel_dp->force_audio)
2121 return 0;
2122
2123 intel_dp->force_audio = i;
2124
2125 if (i == 0)
2126 has_audio = intel_dp_detect_audio(connector);
2127 else
2128 has_audio = i > 0;
2129
2130 if (has_audio == intel_dp->has_audio)
2131 return 0;
2132
2133 intel_dp->has_audio = has_audio;
2134 goto done;
2135 }
2136
2137 if (property == dev_priv->broadcast_rgb_property) {
2138 if (val == !!intel_dp->color_range)
2139 return 0;
2140
2141 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2142 goto done;
2143 }
2144
2145 return -EINVAL;
2146
2147 done:
2148 if (intel_dp->base.base.crtc) {
2149 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2150 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2151 crtc->x, crtc->y,
2152 crtc->fb);
2153 }
2154
2155 return 0;
2156 }
2157
2158 static void
2159 intel_dp_destroy(struct drm_connector *connector)
2160 {
2161 struct drm_device *dev = connector->dev;
2162
2163 if (intel_dpd_is_edp(dev))
2164 intel_panel_destroy_backlight(dev);
2165
2166 drm_sysfs_connector_remove(connector);
2167 drm_connector_cleanup(connector);
2168 kfree(connector);
2169 }
2170
2171 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2172 {
2173 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2174
2175 i2c_del_adapter(&intel_dp->adapter);
2176 drm_encoder_cleanup(encoder);
2177 if (is_edp(intel_dp)) {
2178 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2179 ironlake_panel_vdd_off_sync(intel_dp);
2180 }
2181 kfree(intel_dp);
2182 }
2183
2184 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2185 .dpms = intel_dp_dpms,
2186 .mode_fixup = intel_dp_mode_fixup,
2187 .prepare = intel_dp_prepare,
2188 .mode_set = intel_dp_mode_set,
2189 .commit = intel_dp_commit,
2190 };
2191
2192 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2193 .dpms = drm_helper_connector_dpms,
2194 .detect = intel_dp_detect,
2195 .fill_modes = drm_helper_probe_single_connector_modes,
2196 .set_property = intel_dp_set_property,
2197 .destroy = intel_dp_destroy,
2198 };
2199
2200 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2201 .get_modes = intel_dp_get_modes,
2202 .mode_valid = intel_dp_mode_valid,
2203 .best_encoder = intel_best_encoder,
2204 };
2205
2206 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2207 .destroy = intel_dp_encoder_destroy,
2208 };
2209
2210 static void
2211 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2212 {
2213 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2214
2215 intel_dp_check_link_status(intel_dp);
2216 }
2217
2218 /* Return which DP Port should be selected for Transcoder DP control */
2219 int
2220 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2221 {
2222 struct drm_device *dev = crtc->dev;
2223 struct drm_mode_config *mode_config = &dev->mode_config;
2224 struct drm_encoder *encoder;
2225
2226 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2227 struct intel_dp *intel_dp;
2228
2229 if (encoder->crtc != crtc)
2230 continue;
2231
2232 intel_dp = enc_to_intel_dp(encoder);
2233 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2234 intel_dp->base.type == INTEL_OUTPUT_EDP)
2235 return intel_dp->output_reg;
2236 }
2237
2238 return -1;
2239 }
2240
2241 /* check the VBT to see whether the eDP is on DP-D port */
2242 bool intel_dpd_is_edp(struct drm_device *dev)
2243 {
2244 struct drm_i915_private *dev_priv = dev->dev_private;
2245 struct child_device_config *p_child;
2246 int i;
2247
2248 if (!dev_priv->child_dev_num)
2249 return false;
2250
2251 for (i = 0; i < dev_priv->child_dev_num; i++) {
2252 p_child = dev_priv->child_dev + i;
2253
2254 if (p_child->dvo_port == PORT_IDPD &&
2255 p_child->device_type == DEVICE_TYPE_eDP)
2256 return true;
2257 }
2258 return false;
2259 }
2260
2261 static void
2262 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2263 {
2264 intel_attach_force_audio_property(connector);
2265 intel_attach_broadcast_rgb_property(connector);
2266 }
2267
2268 void
2269 intel_dp_init(struct drm_device *dev, int output_reg)
2270 {
2271 struct drm_i915_private *dev_priv = dev->dev_private;
2272 struct drm_connector *connector;
2273 struct intel_dp *intel_dp;
2274 struct intel_encoder *intel_encoder;
2275 struct intel_connector *intel_connector;
2276 const char *name = NULL;
2277 int type;
2278
2279 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2280 if (!intel_dp)
2281 return;
2282
2283 intel_dp->output_reg = output_reg;
2284 intel_dp->dpms_mode = -1;
2285
2286 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2287 if (!intel_connector) {
2288 kfree(intel_dp);
2289 return;
2290 }
2291 intel_encoder = &intel_dp->base;
2292
2293 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2294 if (intel_dpd_is_edp(dev))
2295 intel_dp->is_pch_edp = true;
2296
2297 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2298 type = DRM_MODE_CONNECTOR_eDP;
2299 intel_encoder->type = INTEL_OUTPUT_EDP;
2300 } else {
2301 type = DRM_MODE_CONNECTOR_DisplayPort;
2302 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2303 }
2304
2305 connector = &intel_connector->base;
2306 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2307 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2308
2309 connector->polled = DRM_CONNECTOR_POLL_HPD;
2310
2311 if (output_reg == DP_B || output_reg == PCH_DP_B)
2312 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2313 else if (output_reg == DP_C || output_reg == PCH_DP_C)
2314 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2315 else if (output_reg == DP_D || output_reg == PCH_DP_D)
2316 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2317
2318 if (is_edp(intel_dp)) {
2319 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2320 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2321 ironlake_panel_vdd_work);
2322 }
2323
2324 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2325 connector->interlace_allowed = true;
2326 connector->doublescan_allowed = 0;
2327
2328 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2329 DRM_MODE_ENCODER_TMDS);
2330 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2331
2332 intel_connector_attach_encoder(intel_connector, intel_encoder);
2333 drm_sysfs_connector_add(connector);
2334
2335 /* Set up the DDC bus. */
2336 switch (output_reg) {
2337 case DP_A:
2338 name = "DPDDC-A";
2339 break;
2340 case DP_B:
2341 case PCH_DP_B:
2342 dev_priv->hotplug_supported_mask |=
2343 HDMIB_HOTPLUG_INT_STATUS;
2344 name = "DPDDC-B";
2345 break;
2346 case DP_C:
2347 case PCH_DP_C:
2348 dev_priv->hotplug_supported_mask |=
2349 HDMIC_HOTPLUG_INT_STATUS;
2350 name = "DPDDC-C";
2351 break;
2352 case DP_D:
2353 case PCH_DP_D:
2354 dev_priv->hotplug_supported_mask |=
2355 HDMID_HOTPLUG_INT_STATUS;
2356 name = "DPDDC-D";
2357 break;
2358 }
2359
2360 /* Cache some DPCD data in the eDP case */
2361 if (is_edp(intel_dp)) {
2362 bool ret;
2363 struct edp_power_seq cur, vbt;
2364 u32 pp_on, pp_off, pp_div;
2365
2366 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2367 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2368 pp_div = I915_READ(PCH_PP_DIVISOR);
2369
2370 /* Pull timing values out of registers */
2371 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2372 PANEL_POWER_UP_DELAY_SHIFT;
2373
2374 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2375 PANEL_LIGHT_ON_DELAY_SHIFT;
2376
2377 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2378 PANEL_LIGHT_OFF_DELAY_SHIFT;
2379
2380 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2381 PANEL_POWER_DOWN_DELAY_SHIFT;
2382
2383 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2384 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2385
2386 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2387 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2388
2389 vbt = dev_priv->edp.pps;
2390
2391 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2392 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2393
2394 #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2395
2396 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2397 intel_dp->backlight_on_delay = get_delay(t8);
2398 intel_dp->backlight_off_delay = get_delay(t9);
2399 intel_dp->panel_power_down_delay = get_delay(t10);
2400 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2401
2402 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2403 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2404 intel_dp->panel_power_cycle_delay);
2405
2406 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2407 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2408
2409 ironlake_edp_panel_vdd_on(intel_dp);
2410 ret = intel_dp_get_dpcd(intel_dp);
2411 ironlake_edp_panel_vdd_off(intel_dp, false);
2412
2413 if (ret) {
2414 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2415 dev_priv->no_aux_handshake =
2416 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2417 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2418 } else {
2419 /* if this fails, presume the device is a ghost */
2420 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2421 intel_dp_encoder_destroy(&intel_dp->base.base);
2422 intel_dp_destroy(&intel_connector->base);
2423 return;
2424 }
2425 }
2426
2427 intel_dp_i2c_init(intel_dp, intel_connector, name);
2428
2429 intel_encoder->hot_plug = intel_dp_hot_plug;
2430
2431 if (is_edp(intel_dp)) {
2432 dev_priv->int_edp_connector = connector;
2433 intel_panel_setup_backlight(dev);
2434 }
2435
2436 intel_dp_add_properties(intel_dp, connector);
2437
2438 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2439 * 0xd. Failure to do so will result in spurious interrupts being
2440 * generated on the port when a cable is not attached.
2441 */
2442 if (IS_G4X(dev) && !IS_GM45(dev)) {
2443 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2444 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2445 }
2446 }
This page took 0.105253 seconds and 6 git commands to generate.