drm/i915: s/dpio_lock/sb_lock/
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int link_bw;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { DP_LINK_BW_1_62,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { DP_LINK_BW_2_7,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int skl_rates[] = { 162000, 216000, 270000,
95 324000, 432000, 540000 };
96 static const int chv_rates[] = { 162000, 202500, 210000, 216000,
97 243000, 270000, 324000, 405000,
98 420000, 432000, 540000 };
99 static const int default_rates[] = { 162000, 270000, 540000 };
100
101 /**
102 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
103 * @intel_dp: DP struct
104 *
105 * If a CPU or PCH DP output is attached to an eDP panel, this function
106 * will return true, and false otherwise.
107 */
108 static bool is_edp(struct intel_dp *intel_dp)
109 {
110 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
111
112 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
113 }
114
115 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
116 {
117 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
118
119 return intel_dig_port->base.base.dev;
120 }
121
122 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
123 {
124 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
125 }
126
127 static void intel_dp_link_down(struct intel_dp *intel_dp);
128 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
129 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
130 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
131 static void vlv_steal_power_sequencer(struct drm_device *dev,
132 enum pipe pipe);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp *intel_dp)
136 {
137 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139 switch (max_link_bw) {
140 case DP_LINK_BW_1_62:
141 case DP_LINK_BW_2_7:
142 case DP_LINK_BW_5_4:
143 break;
144 default:
145 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146 max_link_bw);
147 max_link_bw = DP_LINK_BW_1_62;
148 break;
149 }
150 return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156 struct drm_device *dev = intel_dig_port->base.base.dev;
157 u8 source_max, sink_max;
158
159 source_max = 4;
160 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
161 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
162 source_max = 2;
163
164 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
165
166 return min(source_max, sink_max);
167 }
168
169 /*
170 * The units on the numbers in the next two are... bizarre. Examples will
171 * make it clearer; this one parallels an example in the eDP spec.
172 *
173 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
174 *
175 * 270000 * 1 * 8 / 10 == 216000
176 *
177 * The actual data capacity of that configuration is 2.16Gbit/s, so the
178 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
179 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
180 * 119000. At 18bpp that's 2142000 kilobits per second.
181 *
182 * Thus the strange-looking division by 10 in intel_dp_link_required, to
183 * get the result in decakilobits instead of kilobits.
184 */
185
186 static int
187 intel_dp_link_required(int pixel_clock, int bpp)
188 {
189 return (pixel_clock * bpp + 9) / 10;
190 }
191
192 static int
193 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194 {
195 return (max_link_clock * max_lanes * 8) / 10;
196 }
197
198 static enum drm_mode_status
199 intel_dp_mode_valid(struct drm_connector *connector,
200 struct drm_display_mode *mode)
201 {
202 struct intel_dp *intel_dp = intel_attached_dp(connector);
203 struct intel_connector *intel_connector = to_intel_connector(connector);
204 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
205 int target_clock = mode->clock;
206 int max_rate, mode_rate, max_lanes, max_link_clock;
207
208 if (is_edp(intel_dp) && fixed_mode) {
209 if (mode->hdisplay > fixed_mode->hdisplay)
210 return MODE_PANEL;
211
212 if (mode->vdisplay > fixed_mode->vdisplay)
213 return MODE_PANEL;
214
215 target_clock = fixed_mode->clock;
216 }
217
218 max_link_clock = intel_dp_max_link_rate(intel_dp);
219 max_lanes = intel_dp_max_lane_count(intel_dp);
220
221 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
222 mode_rate = intel_dp_link_required(target_clock, 18);
223
224 if (mode_rate > max_rate)
225 return MODE_CLOCK_HIGH;
226
227 if (mode->clock < 10000)
228 return MODE_CLOCK_LOW;
229
230 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231 return MODE_H_ILLEGAL;
232
233 return MODE_OK;
234 }
235
236 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
237 {
238 int i;
239 uint32_t v = 0;
240
241 if (src_bytes > 4)
242 src_bytes = 4;
243 for (i = 0; i < src_bytes; i++)
244 v |= ((uint32_t) src[i]) << ((3-i) * 8);
245 return v;
246 }
247
248 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
249 {
250 int i;
251 if (dst_bytes > 4)
252 dst_bytes = 4;
253 for (i = 0; i < dst_bytes; i++)
254 dst[i] = src >> ((3-i) * 8);
255 }
256
257 /* hrawclock is 1/4 the FSB frequency */
258 static int
259 intel_hrawclk(struct drm_device *dev)
260 {
261 struct drm_i915_private *dev_priv = dev->dev_private;
262 uint32_t clkcfg;
263
264 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
265 if (IS_VALLEYVIEW(dev))
266 return 200;
267
268 clkcfg = I915_READ(CLKCFG);
269 switch (clkcfg & CLKCFG_FSB_MASK) {
270 case CLKCFG_FSB_400:
271 return 100;
272 case CLKCFG_FSB_533:
273 return 133;
274 case CLKCFG_FSB_667:
275 return 166;
276 case CLKCFG_FSB_800:
277 return 200;
278 case CLKCFG_FSB_1067:
279 return 266;
280 case CLKCFG_FSB_1333:
281 return 333;
282 /* these two are just a guess; one of them might be right */
283 case CLKCFG_FSB_1600:
284 case CLKCFG_FSB_1600_ALT:
285 return 400;
286 default:
287 return 133;
288 }
289 }
290
291 static void
292 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
293 struct intel_dp *intel_dp);
294 static void
295 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
296 struct intel_dp *intel_dp);
297
298 static void pps_lock(struct intel_dp *intel_dp)
299 {
300 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
301 struct intel_encoder *encoder = &intel_dig_port->base;
302 struct drm_device *dev = encoder->base.dev;
303 struct drm_i915_private *dev_priv = dev->dev_private;
304 enum intel_display_power_domain power_domain;
305
306 /*
307 * See vlv_power_sequencer_reset() why we need
308 * a power domain reference here.
309 */
310 power_domain = intel_display_port_power_domain(encoder);
311 intel_display_power_get(dev_priv, power_domain);
312
313 mutex_lock(&dev_priv->pps_mutex);
314 }
315
316 static void pps_unlock(struct intel_dp *intel_dp)
317 {
318 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
319 struct intel_encoder *encoder = &intel_dig_port->base;
320 struct drm_device *dev = encoder->base.dev;
321 struct drm_i915_private *dev_priv = dev->dev_private;
322 enum intel_display_power_domain power_domain;
323
324 mutex_unlock(&dev_priv->pps_mutex);
325
326 power_domain = intel_display_port_power_domain(encoder);
327 intel_display_power_put(dev_priv, power_domain);
328 }
329
330 static void
331 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
332 {
333 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
334 struct drm_device *dev = intel_dig_port->base.base.dev;
335 struct drm_i915_private *dev_priv = dev->dev_private;
336 enum pipe pipe = intel_dp->pps_pipe;
337 bool pll_enabled;
338 uint32_t DP;
339
340 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
341 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
342 pipe_name(pipe), port_name(intel_dig_port->port)))
343 return;
344
345 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
346 pipe_name(pipe), port_name(intel_dig_port->port));
347
348 /* Preserve the BIOS-computed detected bit. This is
349 * supposed to be read-only.
350 */
351 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
352 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
353 DP |= DP_PORT_WIDTH(1);
354 DP |= DP_LINK_TRAIN_PAT_1;
355
356 if (IS_CHERRYVIEW(dev))
357 DP |= DP_PIPE_SELECT_CHV(pipe);
358 else if (pipe == PIPE_B)
359 DP |= DP_PIPEB_SELECT;
360
361 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
362
363 /*
364 * The DPLL for the pipe must be enabled for this to work.
365 * So enable temporarily it if it's not already enabled.
366 */
367 if (!pll_enabled)
368 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
369 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
370
371 /*
372 * Similar magic as in intel_dp_enable_port().
373 * We _must_ do this port enable + disable trick
374 * to make this power seqeuencer lock onto the port.
375 * Otherwise even VDD force bit won't work.
376 */
377 I915_WRITE(intel_dp->output_reg, DP);
378 POSTING_READ(intel_dp->output_reg);
379
380 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
381 POSTING_READ(intel_dp->output_reg);
382
383 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
384 POSTING_READ(intel_dp->output_reg);
385
386 if (!pll_enabled)
387 vlv_force_pll_off(dev, pipe);
388 }
389
390 static enum pipe
391 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
392 {
393 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
394 struct drm_device *dev = intel_dig_port->base.base.dev;
395 struct drm_i915_private *dev_priv = dev->dev_private;
396 struct intel_encoder *encoder;
397 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
398 enum pipe pipe;
399
400 lockdep_assert_held(&dev_priv->pps_mutex);
401
402 /* We should never land here with regular DP ports */
403 WARN_ON(!is_edp(intel_dp));
404
405 if (intel_dp->pps_pipe != INVALID_PIPE)
406 return intel_dp->pps_pipe;
407
408 /*
409 * We don't have power sequencer currently.
410 * Pick one that's not used by other ports.
411 */
412 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
413 base.head) {
414 struct intel_dp *tmp;
415
416 if (encoder->type != INTEL_OUTPUT_EDP)
417 continue;
418
419 tmp = enc_to_intel_dp(&encoder->base);
420
421 if (tmp->pps_pipe != INVALID_PIPE)
422 pipes &= ~(1 << tmp->pps_pipe);
423 }
424
425 /*
426 * Didn't find one. This should not happen since there
427 * are two power sequencers and up to two eDP ports.
428 */
429 if (WARN_ON(pipes == 0))
430 pipe = PIPE_A;
431 else
432 pipe = ffs(pipes) - 1;
433
434 vlv_steal_power_sequencer(dev, pipe);
435 intel_dp->pps_pipe = pipe;
436
437 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
438 pipe_name(intel_dp->pps_pipe),
439 port_name(intel_dig_port->port));
440
441 /* init power sequencer on this pipe and port */
442 intel_dp_init_panel_power_sequencer(dev, intel_dp);
443 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
444
445 /*
446 * Even vdd force doesn't work until we've made
447 * the power sequencer lock in on the port.
448 */
449 vlv_power_sequencer_kick(intel_dp);
450
451 return intel_dp->pps_pipe;
452 }
453
454 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
455 enum pipe pipe);
456
457 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
458 enum pipe pipe)
459 {
460 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
461 }
462
463 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
464 enum pipe pipe)
465 {
466 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
467 }
468
469 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
470 enum pipe pipe)
471 {
472 return true;
473 }
474
475 static enum pipe
476 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
477 enum port port,
478 vlv_pipe_check pipe_check)
479 {
480 enum pipe pipe;
481
482 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
483 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
484 PANEL_PORT_SELECT_MASK;
485
486 if (port_sel != PANEL_PORT_SELECT_VLV(port))
487 continue;
488
489 if (!pipe_check(dev_priv, pipe))
490 continue;
491
492 return pipe;
493 }
494
495 return INVALID_PIPE;
496 }
497
498 static void
499 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
500 {
501 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
502 struct drm_device *dev = intel_dig_port->base.base.dev;
503 struct drm_i915_private *dev_priv = dev->dev_private;
504 enum port port = intel_dig_port->port;
505
506 lockdep_assert_held(&dev_priv->pps_mutex);
507
508 /* try to find a pipe with this port selected */
509 /* first pick one where the panel is on */
510 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
511 vlv_pipe_has_pp_on);
512 /* didn't find one? pick one where vdd is on */
513 if (intel_dp->pps_pipe == INVALID_PIPE)
514 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
515 vlv_pipe_has_vdd_on);
516 /* didn't find one? pick one with just the correct port */
517 if (intel_dp->pps_pipe == INVALID_PIPE)
518 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
519 vlv_pipe_any);
520
521 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
522 if (intel_dp->pps_pipe == INVALID_PIPE) {
523 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
524 port_name(port));
525 return;
526 }
527
528 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
529 port_name(port), pipe_name(intel_dp->pps_pipe));
530
531 intel_dp_init_panel_power_sequencer(dev, intel_dp);
532 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
533 }
534
535 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
536 {
537 struct drm_device *dev = dev_priv->dev;
538 struct intel_encoder *encoder;
539
540 if (WARN_ON(!IS_VALLEYVIEW(dev)))
541 return;
542
543 /*
544 * We can't grab pps_mutex here due to deadlock with power_domain
545 * mutex when power_domain functions are called while holding pps_mutex.
546 * That also means that in order to use pps_pipe the code needs to
547 * hold both a power domain reference and pps_mutex, and the power domain
548 * reference get/put must be done while _not_ holding pps_mutex.
549 * pps_{lock,unlock}() do these steps in the correct order, so one
550 * should use them always.
551 */
552
553 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
554 struct intel_dp *intel_dp;
555
556 if (encoder->type != INTEL_OUTPUT_EDP)
557 continue;
558
559 intel_dp = enc_to_intel_dp(&encoder->base);
560 intel_dp->pps_pipe = INVALID_PIPE;
561 }
562 }
563
564 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
565 {
566 struct drm_device *dev = intel_dp_to_dev(intel_dp);
567
568 if (HAS_PCH_SPLIT(dev))
569 return PCH_PP_CONTROL;
570 else
571 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
572 }
573
574 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
575 {
576 struct drm_device *dev = intel_dp_to_dev(intel_dp);
577
578 if (HAS_PCH_SPLIT(dev))
579 return PCH_PP_STATUS;
580 else
581 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
582 }
583
584 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
585 This function only applicable when panel PM state is not to be tracked */
586 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
587 void *unused)
588 {
589 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
590 edp_notifier);
591 struct drm_device *dev = intel_dp_to_dev(intel_dp);
592 struct drm_i915_private *dev_priv = dev->dev_private;
593 u32 pp_div;
594 u32 pp_ctrl_reg, pp_div_reg;
595
596 if (!is_edp(intel_dp) || code != SYS_RESTART)
597 return 0;
598
599 pps_lock(intel_dp);
600
601 if (IS_VALLEYVIEW(dev)) {
602 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
603
604 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
605 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
606 pp_div = I915_READ(pp_div_reg);
607 pp_div &= PP_REFERENCE_DIVIDER_MASK;
608
609 /* 0x1F write to PP_DIV_REG sets max cycle delay */
610 I915_WRITE(pp_div_reg, pp_div | 0x1F);
611 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
612 msleep(intel_dp->panel_power_cycle_delay);
613 }
614
615 pps_unlock(intel_dp);
616
617 return 0;
618 }
619
620 static bool edp_have_panel_power(struct intel_dp *intel_dp)
621 {
622 struct drm_device *dev = intel_dp_to_dev(intel_dp);
623 struct drm_i915_private *dev_priv = dev->dev_private;
624
625 lockdep_assert_held(&dev_priv->pps_mutex);
626
627 if (IS_VALLEYVIEW(dev) &&
628 intel_dp->pps_pipe == INVALID_PIPE)
629 return false;
630
631 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
632 }
633
634 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
635 {
636 struct drm_device *dev = intel_dp_to_dev(intel_dp);
637 struct drm_i915_private *dev_priv = dev->dev_private;
638
639 lockdep_assert_held(&dev_priv->pps_mutex);
640
641 if (IS_VALLEYVIEW(dev) &&
642 intel_dp->pps_pipe == INVALID_PIPE)
643 return false;
644
645 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
646 }
647
648 static void
649 intel_dp_check_edp(struct intel_dp *intel_dp)
650 {
651 struct drm_device *dev = intel_dp_to_dev(intel_dp);
652 struct drm_i915_private *dev_priv = dev->dev_private;
653
654 if (!is_edp(intel_dp))
655 return;
656
657 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
658 WARN(1, "eDP powered off while attempting aux channel communication.\n");
659 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
660 I915_READ(_pp_stat_reg(intel_dp)),
661 I915_READ(_pp_ctrl_reg(intel_dp)));
662 }
663 }
664
665 static uint32_t
666 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
667 {
668 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
669 struct drm_device *dev = intel_dig_port->base.base.dev;
670 struct drm_i915_private *dev_priv = dev->dev_private;
671 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
672 uint32_t status;
673 bool done;
674
675 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
676 if (has_aux_irq)
677 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
678 msecs_to_jiffies_timeout(10));
679 else
680 done = wait_for_atomic(C, 10) == 0;
681 if (!done)
682 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
683 has_aux_irq);
684 #undef C
685
686 return status;
687 }
688
689 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
690 {
691 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
692 struct drm_device *dev = intel_dig_port->base.base.dev;
693
694 /*
695 * The clock divider is based off the hrawclk, and would like to run at
696 * 2MHz. So, take the hrawclk value and divide by 2 and use that
697 */
698 return index ? 0 : intel_hrawclk(dev) / 2;
699 }
700
701 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
702 {
703 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
704 struct drm_device *dev = intel_dig_port->base.base.dev;
705 struct drm_i915_private *dev_priv = dev->dev_private;
706
707 if (index)
708 return 0;
709
710 if (intel_dig_port->port == PORT_A) {
711 return DIV_ROUND_UP(dev_priv->display.get_display_clock_speed(dev), 2000);
712 } else {
713 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
714 }
715 }
716
717 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
718 {
719 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
720 struct drm_device *dev = intel_dig_port->base.base.dev;
721 struct drm_i915_private *dev_priv = dev->dev_private;
722
723 if (intel_dig_port->port == PORT_A) {
724 if (index)
725 return 0;
726 return DIV_ROUND_CLOSEST(dev_priv->display.get_display_clock_speed(dev), 2000);
727 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
728 /* Workaround for non-ULT HSW */
729 switch (index) {
730 case 0: return 63;
731 case 1: return 72;
732 default: return 0;
733 }
734 } else {
735 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
736 }
737 }
738
739 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
740 {
741 return index ? 0 : 100;
742 }
743
744 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
745 {
746 /*
747 * SKL doesn't need us to program the AUX clock divider (Hardware will
748 * derive the clock from CDCLK automatically). We still implement the
749 * get_aux_clock_divider vfunc to plug-in into the existing code.
750 */
751 return index ? 0 : 1;
752 }
753
754 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
755 bool has_aux_irq,
756 int send_bytes,
757 uint32_t aux_clock_divider)
758 {
759 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
760 struct drm_device *dev = intel_dig_port->base.base.dev;
761 uint32_t precharge, timeout;
762
763 if (IS_GEN6(dev))
764 precharge = 3;
765 else
766 precharge = 5;
767
768 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
769 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
770 else
771 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
772
773 return DP_AUX_CH_CTL_SEND_BUSY |
774 DP_AUX_CH_CTL_DONE |
775 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
776 DP_AUX_CH_CTL_TIME_OUT_ERROR |
777 timeout |
778 DP_AUX_CH_CTL_RECEIVE_ERROR |
779 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
780 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
781 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
782 }
783
784 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
785 bool has_aux_irq,
786 int send_bytes,
787 uint32_t unused)
788 {
789 return DP_AUX_CH_CTL_SEND_BUSY |
790 DP_AUX_CH_CTL_DONE |
791 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
792 DP_AUX_CH_CTL_TIME_OUT_ERROR |
793 DP_AUX_CH_CTL_TIME_OUT_1600us |
794 DP_AUX_CH_CTL_RECEIVE_ERROR |
795 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
796 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
797 }
798
799 static int
800 intel_dp_aux_ch(struct intel_dp *intel_dp,
801 const uint8_t *send, int send_bytes,
802 uint8_t *recv, int recv_size)
803 {
804 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
805 struct drm_device *dev = intel_dig_port->base.base.dev;
806 struct drm_i915_private *dev_priv = dev->dev_private;
807 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
808 uint32_t ch_data = ch_ctl + 4;
809 uint32_t aux_clock_divider;
810 int i, ret, recv_bytes;
811 uint32_t status;
812 int try, clock = 0;
813 bool has_aux_irq = HAS_AUX_IRQ(dev);
814 bool vdd;
815
816 pps_lock(intel_dp);
817
818 /*
819 * We will be called with VDD already enabled for dpcd/edid/oui reads.
820 * In such cases we want to leave VDD enabled and it's up to upper layers
821 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
822 * ourselves.
823 */
824 vdd = edp_panel_vdd_on(intel_dp);
825
826 /* dp aux is extremely sensitive to irq latency, hence request the
827 * lowest possible wakeup latency and so prevent the cpu from going into
828 * deep sleep states.
829 */
830 pm_qos_update_request(&dev_priv->pm_qos, 0);
831
832 intel_dp_check_edp(intel_dp);
833
834 intel_aux_display_runtime_get(dev_priv);
835
836 /* Try to wait for any previous AUX channel activity */
837 for (try = 0; try < 3; try++) {
838 status = I915_READ_NOTRACE(ch_ctl);
839 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
840 break;
841 msleep(1);
842 }
843
844 if (try == 3) {
845 WARN(1, "dp_aux_ch not started status 0x%08x\n",
846 I915_READ(ch_ctl));
847 ret = -EBUSY;
848 goto out;
849 }
850
851 /* Only 5 data registers! */
852 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
853 ret = -E2BIG;
854 goto out;
855 }
856
857 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
858 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
859 has_aux_irq,
860 send_bytes,
861 aux_clock_divider);
862
863 /* Must try at least 3 times according to DP spec */
864 for (try = 0; try < 5; try++) {
865 /* Load the send data into the aux channel data registers */
866 for (i = 0; i < send_bytes; i += 4)
867 I915_WRITE(ch_data + i,
868 intel_dp_pack_aux(send + i,
869 send_bytes - i));
870
871 /* Send the command and wait for it to complete */
872 I915_WRITE(ch_ctl, send_ctl);
873
874 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
875
876 /* Clear done status and any errors */
877 I915_WRITE(ch_ctl,
878 status |
879 DP_AUX_CH_CTL_DONE |
880 DP_AUX_CH_CTL_TIME_OUT_ERROR |
881 DP_AUX_CH_CTL_RECEIVE_ERROR);
882
883 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
884 continue;
885
886 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
887 * 400us delay required for errors and timeouts
888 * Timeout errors from the HW already meet this
889 * requirement so skip to next iteration
890 */
891 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
892 usleep_range(400, 500);
893 continue;
894 }
895 if (status & DP_AUX_CH_CTL_DONE)
896 break;
897 }
898 if (status & DP_AUX_CH_CTL_DONE)
899 break;
900 }
901
902 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
903 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
904 ret = -EBUSY;
905 goto out;
906 }
907
908 /* Check for timeout or receive error.
909 * Timeouts occur when the sink is not connected
910 */
911 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
912 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
913 ret = -EIO;
914 goto out;
915 }
916
917 /* Timeouts occur when the device isn't connected, so they're
918 * "normal" -- don't fill the kernel log with these */
919 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
920 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
921 ret = -ETIMEDOUT;
922 goto out;
923 }
924
925 /* Unload any bytes sent back from the other side */
926 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
927 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
928 if (recv_bytes > recv_size)
929 recv_bytes = recv_size;
930
931 for (i = 0; i < recv_bytes; i += 4)
932 intel_dp_unpack_aux(I915_READ(ch_data + i),
933 recv + i, recv_bytes - i);
934
935 ret = recv_bytes;
936 out:
937 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
938 intel_aux_display_runtime_put(dev_priv);
939
940 if (vdd)
941 edp_panel_vdd_off(intel_dp, false);
942
943 pps_unlock(intel_dp);
944
945 return ret;
946 }
947
948 #define BARE_ADDRESS_SIZE 3
949 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
950 static ssize_t
951 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
952 {
953 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
954 uint8_t txbuf[20], rxbuf[20];
955 size_t txsize, rxsize;
956 int ret;
957
958 txbuf[0] = (msg->request << 4) |
959 ((msg->address >> 16) & 0xf);
960 txbuf[1] = (msg->address >> 8) & 0xff;
961 txbuf[2] = msg->address & 0xff;
962 txbuf[3] = msg->size - 1;
963
964 switch (msg->request & ~DP_AUX_I2C_MOT) {
965 case DP_AUX_NATIVE_WRITE:
966 case DP_AUX_I2C_WRITE:
967 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
968 rxsize = 2; /* 0 or 1 data bytes */
969
970 if (WARN_ON(txsize > 20))
971 return -E2BIG;
972
973 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
974
975 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
976 if (ret > 0) {
977 msg->reply = rxbuf[0] >> 4;
978
979 if (ret > 1) {
980 /* Number of bytes written in a short write. */
981 ret = clamp_t(int, rxbuf[1], 0, msg->size);
982 } else {
983 /* Return payload size. */
984 ret = msg->size;
985 }
986 }
987 break;
988
989 case DP_AUX_NATIVE_READ:
990 case DP_AUX_I2C_READ:
991 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
992 rxsize = msg->size + 1;
993
994 if (WARN_ON(rxsize > 20))
995 return -E2BIG;
996
997 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
998 if (ret > 0) {
999 msg->reply = rxbuf[0] >> 4;
1000 /*
1001 * Assume happy day, and copy the data. The caller is
1002 * expected to check msg->reply before touching it.
1003 *
1004 * Return payload size.
1005 */
1006 ret--;
1007 memcpy(msg->buffer, rxbuf + 1, ret);
1008 }
1009 break;
1010
1011 default:
1012 ret = -EINVAL;
1013 break;
1014 }
1015
1016 return ret;
1017 }
1018
1019 static void
1020 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1021 {
1022 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1023 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1024 enum port port = intel_dig_port->port;
1025 const char *name = NULL;
1026 int ret;
1027
1028 switch (port) {
1029 case PORT_A:
1030 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1031 name = "DPDDC-A";
1032 break;
1033 case PORT_B:
1034 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1035 name = "DPDDC-B";
1036 break;
1037 case PORT_C:
1038 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1039 name = "DPDDC-C";
1040 break;
1041 case PORT_D:
1042 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1043 name = "DPDDC-D";
1044 break;
1045 default:
1046 BUG();
1047 }
1048
1049 /*
1050 * The AUX_CTL register is usually DP_CTL + 0x10.
1051 *
1052 * On Haswell and Broadwell though:
1053 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1054 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1055 *
1056 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1057 */
1058 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1059 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1060
1061 intel_dp->aux.name = name;
1062 intel_dp->aux.dev = dev->dev;
1063 intel_dp->aux.transfer = intel_dp_aux_transfer;
1064
1065 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1066 connector->base.kdev->kobj.name);
1067
1068 ret = drm_dp_aux_register(&intel_dp->aux);
1069 if (ret < 0) {
1070 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1071 name, ret);
1072 return;
1073 }
1074
1075 ret = sysfs_create_link(&connector->base.kdev->kobj,
1076 &intel_dp->aux.ddc.dev.kobj,
1077 intel_dp->aux.ddc.dev.kobj.name);
1078 if (ret < 0) {
1079 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1080 drm_dp_aux_unregister(&intel_dp->aux);
1081 }
1082 }
1083
1084 static void
1085 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1086 {
1087 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1088
1089 if (!intel_connector->mst_port)
1090 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1091 intel_dp->aux.ddc.dev.kobj.name);
1092 intel_connector_unregister(intel_connector);
1093 }
1094
1095 static void
1096 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config, int link_clock)
1097 {
1098 u32 ctrl1;
1099
1100 memset(&pipe_config->dpll_hw_state, 0,
1101 sizeof(pipe_config->dpll_hw_state));
1102
1103 pipe_config->ddi_pll_sel = SKL_DPLL0;
1104 pipe_config->dpll_hw_state.cfgcr1 = 0;
1105 pipe_config->dpll_hw_state.cfgcr2 = 0;
1106
1107 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1108 switch (link_clock / 2) {
1109 case 81000:
1110 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1111 SKL_DPLL0);
1112 break;
1113 case 135000:
1114 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1115 SKL_DPLL0);
1116 break;
1117 case 270000:
1118 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1119 SKL_DPLL0);
1120 break;
1121 case 162000:
1122 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1123 SKL_DPLL0);
1124 break;
1125 /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1126 results in CDCLK change. Need to handle the change of CDCLK by
1127 disabling pipes and re-enabling them */
1128 case 108000:
1129 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1130 SKL_DPLL0);
1131 break;
1132 case 216000:
1133 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1134 SKL_DPLL0);
1135 break;
1136
1137 }
1138 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1139 }
1140
1141 static void
1142 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config, int link_bw)
1143 {
1144 switch (link_bw) {
1145 case DP_LINK_BW_1_62:
1146 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1147 break;
1148 case DP_LINK_BW_2_7:
1149 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1150 break;
1151 case DP_LINK_BW_5_4:
1152 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1153 break;
1154 }
1155 }
1156
1157 static int
1158 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1159 {
1160 if (intel_dp->num_sink_rates) {
1161 *sink_rates = intel_dp->sink_rates;
1162 return intel_dp->num_sink_rates;
1163 }
1164
1165 *sink_rates = default_rates;
1166
1167 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1168 }
1169
1170 static int
1171 intel_dp_source_rates(struct drm_device *dev, const int **source_rates)
1172 {
1173 if (IS_SKYLAKE(dev)) {
1174 *source_rates = skl_rates;
1175 return ARRAY_SIZE(skl_rates);
1176 } else if (IS_CHERRYVIEW(dev)) {
1177 *source_rates = chv_rates;
1178 return ARRAY_SIZE(chv_rates);
1179 }
1180
1181 *source_rates = default_rates;
1182
1183 if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
1184 /* WaDisableHBR2:skl */
1185 return (DP_LINK_BW_2_7 >> 3) + 1;
1186 else if (INTEL_INFO(dev)->gen >= 8 ||
1187 (IS_HASWELL(dev) && !IS_HSW_ULX(dev)))
1188 return (DP_LINK_BW_5_4 >> 3) + 1;
1189 else
1190 return (DP_LINK_BW_2_7 >> 3) + 1;
1191 }
1192
1193 static void
1194 intel_dp_set_clock(struct intel_encoder *encoder,
1195 struct intel_crtc_state *pipe_config, int link_bw)
1196 {
1197 struct drm_device *dev = encoder->base.dev;
1198 const struct dp_link_dpll *divisor = NULL;
1199 int i, count = 0;
1200
1201 if (IS_G4X(dev)) {
1202 divisor = gen4_dpll;
1203 count = ARRAY_SIZE(gen4_dpll);
1204 } else if (HAS_PCH_SPLIT(dev)) {
1205 divisor = pch_dpll;
1206 count = ARRAY_SIZE(pch_dpll);
1207 } else if (IS_CHERRYVIEW(dev)) {
1208 divisor = chv_dpll;
1209 count = ARRAY_SIZE(chv_dpll);
1210 } else if (IS_VALLEYVIEW(dev)) {
1211 divisor = vlv_dpll;
1212 count = ARRAY_SIZE(vlv_dpll);
1213 }
1214
1215 if (divisor && count) {
1216 for (i = 0; i < count; i++) {
1217 if (link_bw == divisor[i].link_bw) {
1218 pipe_config->dpll = divisor[i].dpll;
1219 pipe_config->clock_set = true;
1220 break;
1221 }
1222 }
1223 }
1224 }
1225
1226 static int intersect_rates(const int *source_rates, int source_len,
1227 const int *sink_rates, int sink_len,
1228 int *common_rates)
1229 {
1230 int i = 0, j = 0, k = 0;
1231
1232 while (i < source_len && j < sink_len) {
1233 if (source_rates[i] == sink_rates[j]) {
1234 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1235 return k;
1236 common_rates[k] = source_rates[i];
1237 ++k;
1238 ++i;
1239 ++j;
1240 } else if (source_rates[i] < sink_rates[j]) {
1241 ++i;
1242 } else {
1243 ++j;
1244 }
1245 }
1246 return k;
1247 }
1248
1249 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1250 int *common_rates)
1251 {
1252 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1253 const int *source_rates, *sink_rates;
1254 int source_len, sink_len;
1255
1256 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1257 source_len = intel_dp_source_rates(dev, &source_rates);
1258
1259 return intersect_rates(source_rates, source_len,
1260 sink_rates, sink_len,
1261 common_rates);
1262 }
1263
1264 static void snprintf_int_array(char *str, size_t len,
1265 const int *array, int nelem)
1266 {
1267 int i;
1268
1269 str[0] = '\0';
1270
1271 for (i = 0; i < nelem; i++) {
1272 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1273 if (r >= len)
1274 return;
1275 str += r;
1276 len -= r;
1277 }
1278 }
1279
1280 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1281 {
1282 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1283 const int *source_rates, *sink_rates;
1284 int source_len, sink_len, common_len;
1285 int common_rates[DP_MAX_SUPPORTED_RATES];
1286 char str[128]; /* FIXME: too big for stack? */
1287
1288 if ((drm_debug & DRM_UT_KMS) == 0)
1289 return;
1290
1291 source_len = intel_dp_source_rates(dev, &source_rates);
1292 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1293 DRM_DEBUG_KMS("source rates: %s\n", str);
1294
1295 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1296 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1297 DRM_DEBUG_KMS("sink rates: %s\n", str);
1298
1299 common_len = intel_dp_common_rates(intel_dp, common_rates);
1300 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1301 DRM_DEBUG_KMS("common rates: %s\n", str);
1302 }
1303
1304 static int rate_to_index(int find, const int *rates)
1305 {
1306 int i = 0;
1307
1308 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1309 if (find == rates[i])
1310 break;
1311
1312 return i;
1313 }
1314
1315 int
1316 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1317 {
1318 int rates[DP_MAX_SUPPORTED_RATES] = {};
1319 int len;
1320
1321 len = intel_dp_common_rates(intel_dp, rates);
1322 if (WARN_ON(len <= 0))
1323 return 162000;
1324
1325 return rates[rate_to_index(0, rates) - 1];
1326 }
1327
1328 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1329 {
1330 return rate_to_index(rate, intel_dp->sink_rates);
1331 }
1332
1333 bool
1334 intel_dp_compute_config(struct intel_encoder *encoder,
1335 struct intel_crtc_state *pipe_config)
1336 {
1337 struct drm_device *dev = encoder->base.dev;
1338 struct drm_i915_private *dev_priv = dev->dev_private;
1339 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1340 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1341 enum port port = dp_to_dig_port(intel_dp)->port;
1342 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1343 struct intel_connector *intel_connector = intel_dp->attached_connector;
1344 int lane_count, clock;
1345 int min_lane_count = 1;
1346 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1347 /* Conveniently, the link BW constants become indices with a shift...*/
1348 int min_clock = 0;
1349 int max_clock;
1350 int bpp, mode_rate;
1351 int link_avail, link_clock;
1352 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1353 int common_len;
1354
1355 common_len = intel_dp_common_rates(intel_dp, common_rates);
1356
1357 /* No common link rates between source and sink */
1358 WARN_ON(common_len <= 0);
1359
1360 max_clock = common_len - 1;
1361
1362 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1363 pipe_config->has_pch_encoder = true;
1364
1365 pipe_config->has_dp_encoder = true;
1366 pipe_config->has_drrs = false;
1367 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1368
1369 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1370 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1371 adjusted_mode);
1372
1373 if (INTEL_INFO(dev)->gen >= 9) {
1374 int ret;
1375 ret = skl_update_scaler_users(intel_crtc, pipe_config, NULL, NULL, 0);
1376 if (ret)
1377 return ret;
1378 }
1379
1380 if (!HAS_PCH_SPLIT(dev))
1381 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1382 intel_connector->panel.fitting_mode);
1383 else
1384 intel_pch_panel_fitting(intel_crtc, pipe_config,
1385 intel_connector->panel.fitting_mode);
1386 }
1387
1388 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1389 return false;
1390
1391 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1392 "max bw %d pixel clock %iKHz\n",
1393 max_lane_count, common_rates[max_clock],
1394 adjusted_mode->crtc_clock);
1395
1396 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1397 * bpc in between. */
1398 bpp = pipe_config->pipe_bpp;
1399 if (is_edp(intel_dp)) {
1400 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1401 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1402 dev_priv->vbt.edp_bpp);
1403 bpp = dev_priv->vbt.edp_bpp;
1404 }
1405
1406 /*
1407 * Use the maximum clock and number of lanes the eDP panel
1408 * advertizes being capable of. The panels are generally
1409 * designed to support only a single clock and lane
1410 * configuration, and typically these values correspond to the
1411 * native resolution of the panel.
1412 */
1413 min_lane_count = max_lane_count;
1414 min_clock = max_clock;
1415 }
1416
1417 for (; bpp >= 6*3; bpp -= 2*3) {
1418 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1419 bpp);
1420
1421 for (clock = min_clock; clock <= max_clock; clock++) {
1422 for (lane_count = min_lane_count;
1423 lane_count <= max_lane_count;
1424 lane_count <<= 1) {
1425
1426 link_clock = common_rates[clock];
1427 link_avail = intel_dp_max_data_rate(link_clock,
1428 lane_count);
1429
1430 if (mode_rate <= link_avail) {
1431 goto found;
1432 }
1433 }
1434 }
1435 }
1436
1437 return false;
1438
1439 found:
1440 if (intel_dp->color_range_auto) {
1441 /*
1442 * See:
1443 * CEA-861-E - 5.1 Default Encoding Parameters
1444 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1445 */
1446 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1447 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1448 else
1449 intel_dp->color_range = 0;
1450 }
1451
1452 if (intel_dp->color_range)
1453 pipe_config->limited_color_range = true;
1454
1455 intel_dp->lane_count = lane_count;
1456
1457 if (intel_dp->num_sink_rates) {
1458 intel_dp->link_bw = 0;
1459 intel_dp->rate_select =
1460 intel_dp_rate_select(intel_dp, common_rates[clock]);
1461 } else {
1462 intel_dp->link_bw =
1463 drm_dp_link_rate_to_bw_code(common_rates[clock]);
1464 intel_dp->rate_select = 0;
1465 }
1466
1467 pipe_config->pipe_bpp = bpp;
1468 pipe_config->port_clock = common_rates[clock];
1469
1470 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1471 intel_dp->link_bw, intel_dp->lane_count,
1472 pipe_config->port_clock, bpp);
1473 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1474 mode_rate, link_avail);
1475
1476 intel_link_compute_m_n(bpp, lane_count,
1477 adjusted_mode->crtc_clock,
1478 pipe_config->port_clock,
1479 &pipe_config->dp_m_n);
1480
1481 if (intel_connector->panel.downclock_mode != NULL &&
1482 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1483 pipe_config->has_drrs = true;
1484 intel_link_compute_m_n(bpp, lane_count,
1485 intel_connector->panel.downclock_mode->clock,
1486 pipe_config->port_clock,
1487 &pipe_config->dp_m2_n2);
1488 }
1489
1490 if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1491 skl_edp_set_pll_config(pipe_config, common_rates[clock]);
1492 else if (IS_BROXTON(dev))
1493 /* handled in ddi */;
1494 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1495 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1496 else
1497 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1498
1499 return true;
1500 }
1501
1502 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1503 {
1504 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1505 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1506 struct drm_device *dev = crtc->base.dev;
1507 struct drm_i915_private *dev_priv = dev->dev_private;
1508 u32 dpa_ctl;
1509
1510 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1511 crtc->config->port_clock);
1512 dpa_ctl = I915_READ(DP_A);
1513 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1514
1515 if (crtc->config->port_clock == 162000) {
1516 /* For a long time we've carried around a ILK-DevA w/a for the
1517 * 160MHz clock. If we're really unlucky, it's still required.
1518 */
1519 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1520 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1521 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1522 } else {
1523 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1524 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1525 }
1526
1527 I915_WRITE(DP_A, dpa_ctl);
1528
1529 POSTING_READ(DP_A);
1530 udelay(500);
1531 }
1532
1533 static void intel_dp_prepare(struct intel_encoder *encoder)
1534 {
1535 struct drm_device *dev = encoder->base.dev;
1536 struct drm_i915_private *dev_priv = dev->dev_private;
1537 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1538 enum port port = dp_to_dig_port(intel_dp)->port;
1539 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1540 struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1541
1542 /*
1543 * There are four kinds of DP registers:
1544 *
1545 * IBX PCH
1546 * SNB CPU
1547 * IVB CPU
1548 * CPT PCH
1549 *
1550 * IBX PCH and CPU are the same for almost everything,
1551 * except that the CPU DP PLL is configured in this
1552 * register
1553 *
1554 * CPT PCH is quite different, having many bits moved
1555 * to the TRANS_DP_CTL register instead. That
1556 * configuration happens (oddly) in ironlake_pch_enable
1557 */
1558
1559 /* Preserve the BIOS-computed detected bit. This is
1560 * supposed to be read-only.
1561 */
1562 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1563
1564 /* Handle DP bits in common between all three register formats */
1565 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1566 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1567
1568 if (crtc->config->has_audio)
1569 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1570
1571 /* Split out the IBX/CPU vs CPT settings */
1572
1573 if (IS_GEN7(dev) && port == PORT_A) {
1574 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1575 intel_dp->DP |= DP_SYNC_HS_HIGH;
1576 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1577 intel_dp->DP |= DP_SYNC_VS_HIGH;
1578 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1579
1580 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1581 intel_dp->DP |= DP_ENHANCED_FRAMING;
1582
1583 intel_dp->DP |= crtc->pipe << 29;
1584 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1585 u32 trans_dp;
1586
1587 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1588
1589 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1590 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1591 trans_dp |= TRANS_DP_ENH_FRAMING;
1592 else
1593 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1594 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1595 } else {
1596 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1597 intel_dp->DP |= intel_dp->color_range;
1598
1599 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1600 intel_dp->DP |= DP_SYNC_HS_HIGH;
1601 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1602 intel_dp->DP |= DP_SYNC_VS_HIGH;
1603 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1604
1605 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1606 intel_dp->DP |= DP_ENHANCED_FRAMING;
1607
1608 if (IS_CHERRYVIEW(dev))
1609 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1610 else if (crtc->pipe == PIPE_B)
1611 intel_dp->DP |= DP_PIPEB_SELECT;
1612 }
1613 }
1614
1615 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1616 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1617
1618 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1619 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1620
1621 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1622 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1623
1624 static void wait_panel_status(struct intel_dp *intel_dp,
1625 u32 mask,
1626 u32 value)
1627 {
1628 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1629 struct drm_i915_private *dev_priv = dev->dev_private;
1630 u32 pp_stat_reg, pp_ctrl_reg;
1631
1632 lockdep_assert_held(&dev_priv->pps_mutex);
1633
1634 pp_stat_reg = _pp_stat_reg(intel_dp);
1635 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1636
1637 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1638 mask, value,
1639 I915_READ(pp_stat_reg),
1640 I915_READ(pp_ctrl_reg));
1641
1642 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1643 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1644 I915_READ(pp_stat_reg),
1645 I915_READ(pp_ctrl_reg));
1646 }
1647
1648 DRM_DEBUG_KMS("Wait complete\n");
1649 }
1650
1651 static void wait_panel_on(struct intel_dp *intel_dp)
1652 {
1653 DRM_DEBUG_KMS("Wait for panel power on\n");
1654 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1655 }
1656
1657 static void wait_panel_off(struct intel_dp *intel_dp)
1658 {
1659 DRM_DEBUG_KMS("Wait for panel power off time\n");
1660 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1661 }
1662
1663 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1664 {
1665 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1666
1667 /* When we disable the VDD override bit last we have to do the manual
1668 * wait. */
1669 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1670 intel_dp->panel_power_cycle_delay);
1671
1672 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1673 }
1674
1675 static void wait_backlight_on(struct intel_dp *intel_dp)
1676 {
1677 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1678 intel_dp->backlight_on_delay);
1679 }
1680
1681 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1682 {
1683 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1684 intel_dp->backlight_off_delay);
1685 }
1686
1687 /* Read the current pp_control value, unlocking the register if it
1688 * is locked
1689 */
1690
1691 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1692 {
1693 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1694 struct drm_i915_private *dev_priv = dev->dev_private;
1695 u32 control;
1696
1697 lockdep_assert_held(&dev_priv->pps_mutex);
1698
1699 control = I915_READ(_pp_ctrl_reg(intel_dp));
1700 control &= ~PANEL_UNLOCK_MASK;
1701 control |= PANEL_UNLOCK_REGS;
1702 return control;
1703 }
1704
1705 /*
1706 * Must be paired with edp_panel_vdd_off().
1707 * Must hold pps_mutex around the whole on/off sequence.
1708 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1709 */
1710 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1711 {
1712 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1713 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1714 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1715 struct drm_i915_private *dev_priv = dev->dev_private;
1716 enum intel_display_power_domain power_domain;
1717 u32 pp;
1718 u32 pp_stat_reg, pp_ctrl_reg;
1719 bool need_to_disable = !intel_dp->want_panel_vdd;
1720
1721 lockdep_assert_held(&dev_priv->pps_mutex);
1722
1723 if (!is_edp(intel_dp))
1724 return false;
1725
1726 cancel_delayed_work(&intel_dp->panel_vdd_work);
1727 intel_dp->want_panel_vdd = true;
1728
1729 if (edp_have_panel_vdd(intel_dp))
1730 return need_to_disable;
1731
1732 power_domain = intel_display_port_power_domain(intel_encoder);
1733 intel_display_power_get(dev_priv, power_domain);
1734
1735 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1736 port_name(intel_dig_port->port));
1737
1738 if (!edp_have_panel_power(intel_dp))
1739 wait_panel_power_cycle(intel_dp);
1740
1741 pp = ironlake_get_pp_control(intel_dp);
1742 pp |= EDP_FORCE_VDD;
1743
1744 pp_stat_reg = _pp_stat_reg(intel_dp);
1745 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1746
1747 I915_WRITE(pp_ctrl_reg, pp);
1748 POSTING_READ(pp_ctrl_reg);
1749 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1750 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1751 /*
1752 * If the panel wasn't on, delay before accessing aux channel
1753 */
1754 if (!edp_have_panel_power(intel_dp)) {
1755 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1756 port_name(intel_dig_port->port));
1757 msleep(intel_dp->panel_power_up_delay);
1758 }
1759
1760 return need_to_disable;
1761 }
1762
1763 /*
1764 * Must be paired with intel_edp_panel_vdd_off() or
1765 * intel_edp_panel_off().
1766 * Nested calls to these functions are not allowed since
1767 * we drop the lock. Caller must use some higher level
1768 * locking to prevent nested calls from other threads.
1769 */
1770 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1771 {
1772 bool vdd;
1773
1774 if (!is_edp(intel_dp))
1775 return;
1776
1777 pps_lock(intel_dp);
1778 vdd = edp_panel_vdd_on(intel_dp);
1779 pps_unlock(intel_dp);
1780
1781 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1782 port_name(dp_to_dig_port(intel_dp)->port));
1783 }
1784
1785 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1786 {
1787 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1788 struct drm_i915_private *dev_priv = dev->dev_private;
1789 struct intel_digital_port *intel_dig_port =
1790 dp_to_dig_port(intel_dp);
1791 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1792 enum intel_display_power_domain power_domain;
1793 u32 pp;
1794 u32 pp_stat_reg, pp_ctrl_reg;
1795
1796 lockdep_assert_held(&dev_priv->pps_mutex);
1797
1798 WARN_ON(intel_dp->want_panel_vdd);
1799
1800 if (!edp_have_panel_vdd(intel_dp))
1801 return;
1802
1803 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1804 port_name(intel_dig_port->port));
1805
1806 pp = ironlake_get_pp_control(intel_dp);
1807 pp &= ~EDP_FORCE_VDD;
1808
1809 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1810 pp_stat_reg = _pp_stat_reg(intel_dp);
1811
1812 I915_WRITE(pp_ctrl_reg, pp);
1813 POSTING_READ(pp_ctrl_reg);
1814
1815 /* Make sure sequencer is idle before allowing subsequent activity */
1816 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1817 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1818
1819 if ((pp & POWER_TARGET_ON) == 0)
1820 intel_dp->last_power_cycle = jiffies;
1821
1822 power_domain = intel_display_port_power_domain(intel_encoder);
1823 intel_display_power_put(dev_priv, power_domain);
1824 }
1825
1826 static void edp_panel_vdd_work(struct work_struct *__work)
1827 {
1828 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1829 struct intel_dp, panel_vdd_work);
1830
1831 pps_lock(intel_dp);
1832 if (!intel_dp->want_panel_vdd)
1833 edp_panel_vdd_off_sync(intel_dp);
1834 pps_unlock(intel_dp);
1835 }
1836
1837 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1838 {
1839 unsigned long delay;
1840
1841 /*
1842 * Queue the timer to fire a long time from now (relative to the power
1843 * down delay) to keep the panel power up across a sequence of
1844 * operations.
1845 */
1846 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1847 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1848 }
1849
1850 /*
1851 * Must be paired with edp_panel_vdd_on().
1852 * Must hold pps_mutex around the whole on/off sequence.
1853 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1854 */
1855 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1856 {
1857 struct drm_i915_private *dev_priv =
1858 intel_dp_to_dev(intel_dp)->dev_private;
1859
1860 lockdep_assert_held(&dev_priv->pps_mutex);
1861
1862 if (!is_edp(intel_dp))
1863 return;
1864
1865 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1866 port_name(dp_to_dig_port(intel_dp)->port));
1867
1868 intel_dp->want_panel_vdd = false;
1869
1870 if (sync)
1871 edp_panel_vdd_off_sync(intel_dp);
1872 else
1873 edp_panel_vdd_schedule_off(intel_dp);
1874 }
1875
1876 static void edp_panel_on(struct intel_dp *intel_dp)
1877 {
1878 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880 u32 pp;
1881 u32 pp_ctrl_reg;
1882
1883 lockdep_assert_held(&dev_priv->pps_mutex);
1884
1885 if (!is_edp(intel_dp))
1886 return;
1887
1888 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1889 port_name(dp_to_dig_port(intel_dp)->port));
1890
1891 if (WARN(edp_have_panel_power(intel_dp),
1892 "eDP port %c panel power already on\n",
1893 port_name(dp_to_dig_port(intel_dp)->port)))
1894 return;
1895
1896 wait_panel_power_cycle(intel_dp);
1897
1898 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1899 pp = ironlake_get_pp_control(intel_dp);
1900 if (IS_GEN5(dev)) {
1901 /* ILK workaround: disable reset around power sequence */
1902 pp &= ~PANEL_POWER_RESET;
1903 I915_WRITE(pp_ctrl_reg, pp);
1904 POSTING_READ(pp_ctrl_reg);
1905 }
1906
1907 pp |= POWER_TARGET_ON;
1908 if (!IS_GEN5(dev))
1909 pp |= PANEL_POWER_RESET;
1910
1911 I915_WRITE(pp_ctrl_reg, pp);
1912 POSTING_READ(pp_ctrl_reg);
1913
1914 wait_panel_on(intel_dp);
1915 intel_dp->last_power_on = jiffies;
1916
1917 if (IS_GEN5(dev)) {
1918 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1919 I915_WRITE(pp_ctrl_reg, pp);
1920 POSTING_READ(pp_ctrl_reg);
1921 }
1922 }
1923
1924 void intel_edp_panel_on(struct intel_dp *intel_dp)
1925 {
1926 if (!is_edp(intel_dp))
1927 return;
1928
1929 pps_lock(intel_dp);
1930 edp_panel_on(intel_dp);
1931 pps_unlock(intel_dp);
1932 }
1933
1934
1935 static void edp_panel_off(struct intel_dp *intel_dp)
1936 {
1937 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1938 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1939 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1940 struct drm_i915_private *dev_priv = dev->dev_private;
1941 enum intel_display_power_domain power_domain;
1942 u32 pp;
1943 u32 pp_ctrl_reg;
1944
1945 lockdep_assert_held(&dev_priv->pps_mutex);
1946
1947 if (!is_edp(intel_dp))
1948 return;
1949
1950 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1951 port_name(dp_to_dig_port(intel_dp)->port));
1952
1953 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
1954 port_name(dp_to_dig_port(intel_dp)->port));
1955
1956 pp = ironlake_get_pp_control(intel_dp);
1957 /* We need to switch off panel power _and_ force vdd, for otherwise some
1958 * panels get very unhappy and cease to work. */
1959 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1960 EDP_BLC_ENABLE);
1961
1962 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1963
1964 intel_dp->want_panel_vdd = false;
1965
1966 I915_WRITE(pp_ctrl_reg, pp);
1967 POSTING_READ(pp_ctrl_reg);
1968
1969 intel_dp->last_power_cycle = jiffies;
1970 wait_panel_off(intel_dp);
1971
1972 /* We got a reference when we enabled the VDD. */
1973 power_domain = intel_display_port_power_domain(intel_encoder);
1974 intel_display_power_put(dev_priv, power_domain);
1975 }
1976
1977 void intel_edp_panel_off(struct intel_dp *intel_dp)
1978 {
1979 if (!is_edp(intel_dp))
1980 return;
1981
1982 pps_lock(intel_dp);
1983 edp_panel_off(intel_dp);
1984 pps_unlock(intel_dp);
1985 }
1986
1987 /* Enable backlight in the panel power control. */
1988 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1989 {
1990 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1991 struct drm_device *dev = intel_dig_port->base.base.dev;
1992 struct drm_i915_private *dev_priv = dev->dev_private;
1993 u32 pp;
1994 u32 pp_ctrl_reg;
1995
1996 /*
1997 * If we enable the backlight right away following a panel power
1998 * on, we may see slight flicker as the panel syncs with the eDP
1999 * link. So delay a bit to make sure the image is solid before
2000 * allowing it to appear.
2001 */
2002 wait_backlight_on(intel_dp);
2003
2004 pps_lock(intel_dp);
2005
2006 pp = ironlake_get_pp_control(intel_dp);
2007 pp |= EDP_BLC_ENABLE;
2008
2009 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2010
2011 I915_WRITE(pp_ctrl_reg, pp);
2012 POSTING_READ(pp_ctrl_reg);
2013
2014 pps_unlock(intel_dp);
2015 }
2016
2017 /* Enable backlight PWM and backlight PP control. */
2018 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2019 {
2020 if (!is_edp(intel_dp))
2021 return;
2022
2023 DRM_DEBUG_KMS("\n");
2024
2025 intel_panel_enable_backlight(intel_dp->attached_connector);
2026 _intel_edp_backlight_on(intel_dp);
2027 }
2028
2029 /* Disable backlight in the panel power control. */
2030 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2031 {
2032 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2033 struct drm_i915_private *dev_priv = dev->dev_private;
2034 u32 pp;
2035 u32 pp_ctrl_reg;
2036
2037 if (!is_edp(intel_dp))
2038 return;
2039
2040 pps_lock(intel_dp);
2041
2042 pp = ironlake_get_pp_control(intel_dp);
2043 pp &= ~EDP_BLC_ENABLE;
2044
2045 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2046
2047 I915_WRITE(pp_ctrl_reg, pp);
2048 POSTING_READ(pp_ctrl_reg);
2049
2050 pps_unlock(intel_dp);
2051
2052 intel_dp->last_backlight_off = jiffies;
2053 edp_wait_backlight_off(intel_dp);
2054 }
2055
2056 /* Disable backlight PP control and backlight PWM. */
2057 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2058 {
2059 if (!is_edp(intel_dp))
2060 return;
2061
2062 DRM_DEBUG_KMS("\n");
2063
2064 _intel_edp_backlight_off(intel_dp);
2065 intel_panel_disable_backlight(intel_dp->attached_connector);
2066 }
2067
2068 /*
2069 * Hook for controlling the panel power control backlight through the bl_power
2070 * sysfs attribute. Take care to handle multiple calls.
2071 */
2072 static void intel_edp_backlight_power(struct intel_connector *connector,
2073 bool enable)
2074 {
2075 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2076 bool is_enabled;
2077
2078 pps_lock(intel_dp);
2079 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2080 pps_unlock(intel_dp);
2081
2082 if (is_enabled == enable)
2083 return;
2084
2085 DRM_DEBUG_KMS("panel power control backlight %s\n",
2086 enable ? "enable" : "disable");
2087
2088 if (enable)
2089 _intel_edp_backlight_on(intel_dp);
2090 else
2091 _intel_edp_backlight_off(intel_dp);
2092 }
2093
2094 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2095 {
2096 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2097 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2098 struct drm_device *dev = crtc->dev;
2099 struct drm_i915_private *dev_priv = dev->dev_private;
2100 u32 dpa_ctl;
2101
2102 assert_pipe_disabled(dev_priv,
2103 to_intel_crtc(crtc)->pipe);
2104
2105 DRM_DEBUG_KMS("\n");
2106 dpa_ctl = I915_READ(DP_A);
2107 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
2108 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2109
2110 /* We don't adjust intel_dp->DP while tearing down the link, to
2111 * facilitate link retraining (e.g. after hotplug). Hence clear all
2112 * enable bits here to ensure that we don't enable too much. */
2113 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
2114 intel_dp->DP |= DP_PLL_ENABLE;
2115 I915_WRITE(DP_A, intel_dp->DP);
2116 POSTING_READ(DP_A);
2117 udelay(200);
2118 }
2119
2120 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2121 {
2122 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2123 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2124 struct drm_device *dev = crtc->dev;
2125 struct drm_i915_private *dev_priv = dev->dev_private;
2126 u32 dpa_ctl;
2127
2128 assert_pipe_disabled(dev_priv,
2129 to_intel_crtc(crtc)->pipe);
2130
2131 dpa_ctl = I915_READ(DP_A);
2132 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
2133 "dp pll off, should be on\n");
2134 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2135
2136 /* We can't rely on the value tracked for the DP register in
2137 * intel_dp->DP because link_down must not change that (otherwise link
2138 * re-training will fail. */
2139 dpa_ctl &= ~DP_PLL_ENABLE;
2140 I915_WRITE(DP_A, dpa_ctl);
2141 POSTING_READ(DP_A);
2142 udelay(200);
2143 }
2144
2145 /* If the sink supports it, try to set the power state appropriately */
2146 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2147 {
2148 int ret, i;
2149
2150 /* Should have a valid DPCD by this point */
2151 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2152 return;
2153
2154 if (mode != DRM_MODE_DPMS_ON) {
2155 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2156 DP_SET_POWER_D3);
2157 } else {
2158 /*
2159 * When turning on, we need to retry for 1ms to give the sink
2160 * time to wake up.
2161 */
2162 for (i = 0; i < 3; i++) {
2163 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2164 DP_SET_POWER_D0);
2165 if (ret == 1)
2166 break;
2167 msleep(1);
2168 }
2169 }
2170
2171 if (ret != 1)
2172 DRM_DEBUG_KMS("failed to %s sink power state\n",
2173 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2174 }
2175
2176 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2177 enum pipe *pipe)
2178 {
2179 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2180 enum port port = dp_to_dig_port(intel_dp)->port;
2181 struct drm_device *dev = encoder->base.dev;
2182 struct drm_i915_private *dev_priv = dev->dev_private;
2183 enum intel_display_power_domain power_domain;
2184 u32 tmp;
2185
2186 power_domain = intel_display_port_power_domain(encoder);
2187 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2188 return false;
2189
2190 tmp = I915_READ(intel_dp->output_reg);
2191
2192 if (!(tmp & DP_PORT_EN))
2193 return false;
2194
2195 if (IS_GEN7(dev) && port == PORT_A) {
2196 *pipe = PORT_TO_PIPE_CPT(tmp);
2197 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2198 enum pipe p;
2199
2200 for_each_pipe(dev_priv, p) {
2201 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2202 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2203 *pipe = p;
2204 return true;
2205 }
2206 }
2207
2208 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2209 intel_dp->output_reg);
2210 } else if (IS_CHERRYVIEW(dev)) {
2211 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2212 } else {
2213 *pipe = PORT_TO_PIPE(tmp);
2214 }
2215
2216 return true;
2217 }
2218
2219 static void intel_dp_get_config(struct intel_encoder *encoder,
2220 struct intel_crtc_state *pipe_config)
2221 {
2222 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2223 u32 tmp, flags = 0;
2224 struct drm_device *dev = encoder->base.dev;
2225 struct drm_i915_private *dev_priv = dev->dev_private;
2226 enum port port = dp_to_dig_port(intel_dp)->port;
2227 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2228 int dotclock;
2229
2230 tmp = I915_READ(intel_dp->output_reg);
2231
2232 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2233
2234 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2235 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2236 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2237 flags |= DRM_MODE_FLAG_PHSYNC;
2238 else
2239 flags |= DRM_MODE_FLAG_NHSYNC;
2240
2241 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2242 flags |= DRM_MODE_FLAG_PVSYNC;
2243 else
2244 flags |= DRM_MODE_FLAG_NVSYNC;
2245 } else {
2246 if (tmp & DP_SYNC_HS_HIGH)
2247 flags |= DRM_MODE_FLAG_PHSYNC;
2248 else
2249 flags |= DRM_MODE_FLAG_NHSYNC;
2250
2251 if (tmp & DP_SYNC_VS_HIGH)
2252 flags |= DRM_MODE_FLAG_PVSYNC;
2253 else
2254 flags |= DRM_MODE_FLAG_NVSYNC;
2255 }
2256
2257 pipe_config->base.adjusted_mode.flags |= flags;
2258
2259 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2260 tmp & DP_COLOR_RANGE_16_235)
2261 pipe_config->limited_color_range = true;
2262
2263 pipe_config->has_dp_encoder = true;
2264
2265 intel_dp_get_m_n(crtc, pipe_config);
2266
2267 if (port == PORT_A) {
2268 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2269 pipe_config->port_clock = 162000;
2270 else
2271 pipe_config->port_clock = 270000;
2272 }
2273
2274 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2275 &pipe_config->dp_m_n);
2276
2277 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2278 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2279
2280 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2281
2282 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2283 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2284 /*
2285 * This is a big fat ugly hack.
2286 *
2287 * Some machines in UEFI boot mode provide us a VBT that has 18
2288 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2289 * unknown we fail to light up. Yet the same BIOS boots up with
2290 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2291 * max, not what it tells us to use.
2292 *
2293 * Note: This will still be broken if the eDP panel is not lit
2294 * up by the BIOS, and thus we can't get the mode at module
2295 * load.
2296 */
2297 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2298 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2299 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2300 }
2301 }
2302
2303 static void intel_disable_dp(struct intel_encoder *encoder)
2304 {
2305 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2306 struct drm_device *dev = encoder->base.dev;
2307 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2308
2309 if (crtc->config->has_audio)
2310 intel_audio_codec_disable(encoder);
2311
2312 if (HAS_PSR(dev) && !HAS_DDI(dev))
2313 intel_psr_disable(intel_dp);
2314
2315 /* Make sure the panel is off before trying to change the mode. But also
2316 * ensure that we have vdd while we switch off the panel. */
2317 intel_edp_panel_vdd_on(intel_dp);
2318 intel_edp_backlight_off(intel_dp);
2319 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2320 intel_edp_panel_off(intel_dp);
2321
2322 /* disable the port before the pipe on g4x */
2323 if (INTEL_INFO(dev)->gen < 5)
2324 intel_dp_link_down(intel_dp);
2325 }
2326
2327 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2328 {
2329 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2330 enum port port = dp_to_dig_port(intel_dp)->port;
2331
2332 intel_dp_link_down(intel_dp);
2333 if (port == PORT_A)
2334 ironlake_edp_pll_off(intel_dp);
2335 }
2336
2337 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2338 {
2339 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2340
2341 intel_dp_link_down(intel_dp);
2342 }
2343
2344 static void chv_post_disable_dp(struct intel_encoder *encoder)
2345 {
2346 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2347 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2348 struct drm_device *dev = encoder->base.dev;
2349 struct drm_i915_private *dev_priv = dev->dev_private;
2350 struct intel_crtc *intel_crtc =
2351 to_intel_crtc(encoder->base.crtc);
2352 enum dpio_channel ch = vlv_dport_to_channel(dport);
2353 enum pipe pipe = intel_crtc->pipe;
2354 u32 val;
2355
2356 intel_dp_link_down(intel_dp);
2357
2358 mutex_lock(&dev_priv->sb_lock);
2359
2360 /* Propagate soft reset to data lane reset */
2361 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2362 val |= CHV_PCS_REQ_SOFTRESET_EN;
2363 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2364
2365 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2366 val |= CHV_PCS_REQ_SOFTRESET_EN;
2367 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2368
2369 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2370 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2371 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2372
2373 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2374 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2375 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2376
2377 mutex_unlock(&dev_priv->sb_lock);
2378 }
2379
2380 static void
2381 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2382 uint32_t *DP,
2383 uint8_t dp_train_pat)
2384 {
2385 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2386 struct drm_device *dev = intel_dig_port->base.base.dev;
2387 struct drm_i915_private *dev_priv = dev->dev_private;
2388 enum port port = intel_dig_port->port;
2389
2390 if (HAS_DDI(dev)) {
2391 uint32_t temp = I915_READ(DP_TP_CTL(port));
2392
2393 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2394 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2395 else
2396 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2397
2398 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2399 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2400 case DP_TRAINING_PATTERN_DISABLE:
2401 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2402
2403 break;
2404 case DP_TRAINING_PATTERN_1:
2405 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2406 break;
2407 case DP_TRAINING_PATTERN_2:
2408 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2409 break;
2410 case DP_TRAINING_PATTERN_3:
2411 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2412 break;
2413 }
2414 I915_WRITE(DP_TP_CTL(port), temp);
2415
2416 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2417 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2418 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2419
2420 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2421 case DP_TRAINING_PATTERN_DISABLE:
2422 *DP |= DP_LINK_TRAIN_OFF_CPT;
2423 break;
2424 case DP_TRAINING_PATTERN_1:
2425 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2426 break;
2427 case DP_TRAINING_PATTERN_2:
2428 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2429 break;
2430 case DP_TRAINING_PATTERN_3:
2431 DRM_ERROR("DP training pattern 3 not supported\n");
2432 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2433 break;
2434 }
2435
2436 } else {
2437 if (IS_CHERRYVIEW(dev))
2438 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2439 else
2440 *DP &= ~DP_LINK_TRAIN_MASK;
2441
2442 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2443 case DP_TRAINING_PATTERN_DISABLE:
2444 *DP |= DP_LINK_TRAIN_OFF;
2445 break;
2446 case DP_TRAINING_PATTERN_1:
2447 *DP |= DP_LINK_TRAIN_PAT_1;
2448 break;
2449 case DP_TRAINING_PATTERN_2:
2450 *DP |= DP_LINK_TRAIN_PAT_2;
2451 break;
2452 case DP_TRAINING_PATTERN_3:
2453 if (IS_CHERRYVIEW(dev)) {
2454 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2455 } else {
2456 DRM_ERROR("DP training pattern 3 not supported\n");
2457 *DP |= DP_LINK_TRAIN_PAT_2;
2458 }
2459 break;
2460 }
2461 }
2462 }
2463
2464 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2465 {
2466 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2467 struct drm_i915_private *dev_priv = dev->dev_private;
2468
2469 /* enable with pattern 1 (as per spec) */
2470 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2471 DP_TRAINING_PATTERN_1);
2472
2473 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2474 POSTING_READ(intel_dp->output_reg);
2475
2476 /*
2477 * Magic for VLV/CHV. We _must_ first set up the register
2478 * without actually enabling the port, and then do another
2479 * write to enable the port. Otherwise link training will
2480 * fail when the power sequencer is freshly used for this port.
2481 */
2482 intel_dp->DP |= DP_PORT_EN;
2483
2484 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2485 POSTING_READ(intel_dp->output_reg);
2486 }
2487
2488 static void intel_enable_dp(struct intel_encoder *encoder)
2489 {
2490 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2491 struct drm_device *dev = encoder->base.dev;
2492 struct drm_i915_private *dev_priv = dev->dev_private;
2493 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2494 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2495 unsigned int lane_mask = 0x0;
2496
2497 if (WARN_ON(dp_reg & DP_PORT_EN))
2498 return;
2499
2500 pps_lock(intel_dp);
2501
2502 if (IS_VALLEYVIEW(dev))
2503 vlv_init_panel_power_sequencer(intel_dp);
2504
2505 intel_dp_enable_port(intel_dp);
2506
2507 edp_panel_vdd_on(intel_dp);
2508 edp_panel_on(intel_dp);
2509 edp_panel_vdd_off(intel_dp, true);
2510
2511 pps_unlock(intel_dp);
2512
2513 if (IS_VALLEYVIEW(dev))
2514 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2515 lane_mask);
2516
2517 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2518 intel_dp_start_link_train(intel_dp);
2519 intel_dp_complete_link_train(intel_dp);
2520 intel_dp_stop_link_train(intel_dp);
2521
2522 if (crtc->config->has_audio) {
2523 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2524 pipe_name(crtc->pipe));
2525 intel_audio_codec_enable(encoder);
2526 }
2527 }
2528
2529 static void g4x_enable_dp(struct intel_encoder *encoder)
2530 {
2531 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2532
2533 intel_enable_dp(encoder);
2534 intel_edp_backlight_on(intel_dp);
2535 }
2536
2537 static void vlv_enable_dp(struct intel_encoder *encoder)
2538 {
2539 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2540
2541 intel_edp_backlight_on(intel_dp);
2542 intel_psr_enable(intel_dp);
2543 }
2544
2545 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2546 {
2547 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2548 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2549
2550 intel_dp_prepare(encoder);
2551
2552 /* Only ilk+ has port A */
2553 if (dport->port == PORT_A) {
2554 ironlake_set_pll_cpu_edp(intel_dp);
2555 ironlake_edp_pll_on(intel_dp);
2556 }
2557 }
2558
2559 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2560 {
2561 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2562 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2563 enum pipe pipe = intel_dp->pps_pipe;
2564 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2565
2566 edp_panel_vdd_off_sync(intel_dp);
2567
2568 /*
2569 * VLV seems to get confused when multiple power seqeuencers
2570 * have the same port selected (even if only one has power/vdd
2571 * enabled). The failure manifests as vlv_wait_port_ready() failing
2572 * CHV on the other hand doesn't seem to mind having the same port
2573 * selected in multiple power seqeuencers, but let's clear the
2574 * port select always when logically disconnecting a power sequencer
2575 * from a port.
2576 */
2577 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2578 pipe_name(pipe), port_name(intel_dig_port->port));
2579 I915_WRITE(pp_on_reg, 0);
2580 POSTING_READ(pp_on_reg);
2581
2582 intel_dp->pps_pipe = INVALID_PIPE;
2583 }
2584
2585 static void vlv_steal_power_sequencer(struct drm_device *dev,
2586 enum pipe pipe)
2587 {
2588 struct drm_i915_private *dev_priv = dev->dev_private;
2589 struct intel_encoder *encoder;
2590
2591 lockdep_assert_held(&dev_priv->pps_mutex);
2592
2593 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2594 return;
2595
2596 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2597 base.head) {
2598 struct intel_dp *intel_dp;
2599 enum port port;
2600
2601 if (encoder->type != INTEL_OUTPUT_EDP)
2602 continue;
2603
2604 intel_dp = enc_to_intel_dp(&encoder->base);
2605 port = dp_to_dig_port(intel_dp)->port;
2606
2607 if (intel_dp->pps_pipe != pipe)
2608 continue;
2609
2610 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2611 pipe_name(pipe), port_name(port));
2612
2613 WARN(encoder->connectors_active,
2614 "stealing pipe %c power sequencer from active eDP port %c\n",
2615 pipe_name(pipe), port_name(port));
2616
2617 /* make sure vdd is off before we steal it */
2618 vlv_detach_power_sequencer(intel_dp);
2619 }
2620 }
2621
2622 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2623 {
2624 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2625 struct intel_encoder *encoder = &intel_dig_port->base;
2626 struct drm_device *dev = encoder->base.dev;
2627 struct drm_i915_private *dev_priv = dev->dev_private;
2628 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2629
2630 lockdep_assert_held(&dev_priv->pps_mutex);
2631
2632 if (!is_edp(intel_dp))
2633 return;
2634
2635 if (intel_dp->pps_pipe == crtc->pipe)
2636 return;
2637
2638 /*
2639 * If another power sequencer was being used on this
2640 * port previously make sure to turn off vdd there while
2641 * we still have control of it.
2642 */
2643 if (intel_dp->pps_pipe != INVALID_PIPE)
2644 vlv_detach_power_sequencer(intel_dp);
2645
2646 /*
2647 * We may be stealing the power
2648 * sequencer from another port.
2649 */
2650 vlv_steal_power_sequencer(dev, crtc->pipe);
2651
2652 /* now it's all ours */
2653 intel_dp->pps_pipe = crtc->pipe;
2654
2655 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2656 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2657
2658 /* init power sequencer on this pipe and port */
2659 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2660 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2661 }
2662
2663 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2664 {
2665 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2666 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2667 struct drm_device *dev = encoder->base.dev;
2668 struct drm_i915_private *dev_priv = dev->dev_private;
2669 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2670 enum dpio_channel port = vlv_dport_to_channel(dport);
2671 int pipe = intel_crtc->pipe;
2672 u32 val;
2673
2674 mutex_lock(&dev_priv->sb_lock);
2675
2676 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2677 val = 0;
2678 if (pipe)
2679 val |= (1<<21);
2680 else
2681 val &= ~(1<<21);
2682 val |= 0x001000c4;
2683 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2684 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2685 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2686
2687 mutex_unlock(&dev_priv->sb_lock);
2688
2689 intel_enable_dp(encoder);
2690 }
2691
2692 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2693 {
2694 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2695 struct drm_device *dev = encoder->base.dev;
2696 struct drm_i915_private *dev_priv = dev->dev_private;
2697 struct intel_crtc *intel_crtc =
2698 to_intel_crtc(encoder->base.crtc);
2699 enum dpio_channel port = vlv_dport_to_channel(dport);
2700 int pipe = intel_crtc->pipe;
2701
2702 intel_dp_prepare(encoder);
2703
2704 /* Program Tx lane resets to default */
2705 mutex_lock(&dev_priv->sb_lock);
2706 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2707 DPIO_PCS_TX_LANE2_RESET |
2708 DPIO_PCS_TX_LANE1_RESET);
2709 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2710 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2711 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2712 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2713 DPIO_PCS_CLK_SOFT_RESET);
2714
2715 /* Fix up inter-pair skew failure */
2716 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2717 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2718 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2719 mutex_unlock(&dev_priv->sb_lock);
2720 }
2721
2722 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2723 {
2724 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2725 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2726 struct drm_device *dev = encoder->base.dev;
2727 struct drm_i915_private *dev_priv = dev->dev_private;
2728 struct intel_crtc *intel_crtc =
2729 to_intel_crtc(encoder->base.crtc);
2730 enum dpio_channel ch = vlv_dport_to_channel(dport);
2731 int pipe = intel_crtc->pipe;
2732 int data, i, stagger;
2733 u32 val;
2734
2735 mutex_lock(&dev_priv->sb_lock);
2736
2737 /* allow hardware to manage TX FIFO reset source */
2738 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2739 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2740 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2741
2742 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2743 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2744 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2745
2746 /* Deassert soft data lane reset*/
2747 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2748 val |= CHV_PCS_REQ_SOFTRESET_EN;
2749 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2750
2751 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2752 val |= CHV_PCS_REQ_SOFTRESET_EN;
2753 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2754
2755 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2756 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2757 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2758
2759 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2760 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2761 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2762
2763 /* Program Tx lane latency optimal setting*/
2764 for (i = 0; i < 4; i++) {
2765 /* Set the upar bit */
2766 data = (i == 1) ? 0x0 : 0x1;
2767 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2768 data << DPIO_UPAR_SHIFT);
2769 }
2770
2771 /* Data lane stagger programming */
2772 if (intel_crtc->config->port_clock > 270000)
2773 stagger = 0x18;
2774 else if (intel_crtc->config->port_clock > 135000)
2775 stagger = 0xd;
2776 else if (intel_crtc->config->port_clock > 67500)
2777 stagger = 0x7;
2778 else if (intel_crtc->config->port_clock > 33750)
2779 stagger = 0x4;
2780 else
2781 stagger = 0x2;
2782
2783 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2784 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2785 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2786
2787 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2788 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2789 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2790
2791 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2792 DPIO_LANESTAGGER_STRAP(stagger) |
2793 DPIO_LANESTAGGER_STRAP_OVRD |
2794 DPIO_TX1_STAGGER_MASK(0x1f) |
2795 DPIO_TX1_STAGGER_MULT(6) |
2796 DPIO_TX2_STAGGER_MULT(0));
2797
2798 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2799 DPIO_LANESTAGGER_STRAP(stagger) |
2800 DPIO_LANESTAGGER_STRAP_OVRD |
2801 DPIO_TX1_STAGGER_MASK(0x1f) |
2802 DPIO_TX1_STAGGER_MULT(7) |
2803 DPIO_TX2_STAGGER_MULT(5));
2804
2805 mutex_unlock(&dev_priv->sb_lock);
2806
2807 intel_enable_dp(encoder);
2808 }
2809
2810 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2811 {
2812 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2813 struct drm_device *dev = encoder->base.dev;
2814 struct drm_i915_private *dev_priv = dev->dev_private;
2815 struct intel_crtc *intel_crtc =
2816 to_intel_crtc(encoder->base.crtc);
2817 enum dpio_channel ch = vlv_dport_to_channel(dport);
2818 enum pipe pipe = intel_crtc->pipe;
2819 u32 val;
2820
2821 intel_dp_prepare(encoder);
2822
2823 mutex_lock(&dev_priv->sb_lock);
2824
2825 /* program left/right clock distribution */
2826 if (pipe != PIPE_B) {
2827 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2828 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2829 if (ch == DPIO_CH0)
2830 val |= CHV_BUFLEFTENA1_FORCE;
2831 if (ch == DPIO_CH1)
2832 val |= CHV_BUFRIGHTENA1_FORCE;
2833 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2834 } else {
2835 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2836 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2837 if (ch == DPIO_CH0)
2838 val |= CHV_BUFLEFTENA2_FORCE;
2839 if (ch == DPIO_CH1)
2840 val |= CHV_BUFRIGHTENA2_FORCE;
2841 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2842 }
2843
2844 /* program clock channel usage */
2845 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2846 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2847 if (pipe != PIPE_B)
2848 val &= ~CHV_PCS_USEDCLKCHANNEL;
2849 else
2850 val |= CHV_PCS_USEDCLKCHANNEL;
2851 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2852
2853 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2854 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2855 if (pipe != PIPE_B)
2856 val &= ~CHV_PCS_USEDCLKCHANNEL;
2857 else
2858 val |= CHV_PCS_USEDCLKCHANNEL;
2859 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2860
2861 /*
2862 * This a a bit weird since generally CL
2863 * matches the pipe, but here we need to
2864 * pick the CL based on the port.
2865 */
2866 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2867 if (pipe != PIPE_B)
2868 val &= ~CHV_CMN_USEDCLKCHANNEL;
2869 else
2870 val |= CHV_CMN_USEDCLKCHANNEL;
2871 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2872
2873 mutex_unlock(&dev_priv->sb_lock);
2874 }
2875
2876 /*
2877 * Native read with retry for link status and receiver capability reads for
2878 * cases where the sink may still be asleep.
2879 *
2880 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2881 * supposed to retry 3 times per the spec.
2882 */
2883 static ssize_t
2884 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2885 void *buffer, size_t size)
2886 {
2887 ssize_t ret;
2888 int i;
2889
2890 /*
2891 * Sometime we just get the same incorrect byte repeated
2892 * over the entire buffer. Doing just one throw away read
2893 * initially seems to "solve" it.
2894 */
2895 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2896
2897 for (i = 0; i < 3; i++) {
2898 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2899 if (ret == size)
2900 return ret;
2901 msleep(1);
2902 }
2903
2904 return ret;
2905 }
2906
2907 /*
2908 * Fetch AUX CH registers 0x202 - 0x207 which contain
2909 * link status information
2910 */
2911 static bool
2912 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2913 {
2914 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2915 DP_LANE0_1_STATUS,
2916 link_status,
2917 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2918 }
2919
2920 /* These are source-specific values. */
2921 static uint8_t
2922 intel_dp_voltage_max(struct intel_dp *intel_dp)
2923 {
2924 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2925 struct drm_i915_private *dev_priv = dev->dev_private;
2926 enum port port = dp_to_dig_port(intel_dp)->port;
2927
2928 if (IS_BROXTON(dev))
2929 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2930 else if (INTEL_INFO(dev)->gen >= 9) {
2931 if (dev_priv->edp_low_vswing && port == PORT_A)
2932 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2933 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2934 } else if (IS_VALLEYVIEW(dev))
2935 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2936 else if (IS_GEN7(dev) && port == PORT_A)
2937 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2938 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2939 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2940 else
2941 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2942 }
2943
2944 static uint8_t
2945 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2946 {
2947 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2948 enum port port = dp_to_dig_port(intel_dp)->port;
2949
2950 if (INTEL_INFO(dev)->gen >= 9) {
2951 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2952 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2953 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2954 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2955 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2956 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2957 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2958 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2959 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2960 default:
2961 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2962 }
2963 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2964 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2965 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2966 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2967 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2968 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2969 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2970 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2971 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2972 default:
2973 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2974 }
2975 } else if (IS_VALLEYVIEW(dev)) {
2976 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2977 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2978 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2979 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2980 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2981 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2982 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2983 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2984 default:
2985 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2986 }
2987 } else if (IS_GEN7(dev) && port == PORT_A) {
2988 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2989 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2990 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2991 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2992 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2993 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2994 default:
2995 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2996 }
2997 } else {
2998 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2999 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3000 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3001 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3002 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3003 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3004 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3005 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3006 default:
3007 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3008 }
3009 }
3010 }
3011
3012 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3013 {
3014 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3015 struct drm_i915_private *dev_priv = dev->dev_private;
3016 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3017 struct intel_crtc *intel_crtc =
3018 to_intel_crtc(dport->base.base.crtc);
3019 unsigned long demph_reg_value, preemph_reg_value,
3020 uniqtranscale_reg_value;
3021 uint8_t train_set = intel_dp->train_set[0];
3022 enum dpio_channel port = vlv_dport_to_channel(dport);
3023 int pipe = intel_crtc->pipe;
3024
3025 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3026 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3027 preemph_reg_value = 0x0004000;
3028 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3029 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3030 demph_reg_value = 0x2B405555;
3031 uniqtranscale_reg_value = 0x552AB83A;
3032 break;
3033 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3034 demph_reg_value = 0x2B404040;
3035 uniqtranscale_reg_value = 0x5548B83A;
3036 break;
3037 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3038 demph_reg_value = 0x2B245555;
3039 uniqtranscale_reg_value = 0x5560B83A;
3040 break;
3041 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3042 demph_reg_value = 0x2B405555;
3043 uniqtranscale_reg_value = 0x5598DA3A;
3044 break;
3045 default:
3046 return 0;
3047 }
3048 break;
3049 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3050 preemph_reg_value = 0x0002000;
3051 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3052 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3053 demph_reg_value = 0x2B404040;
3054 uniqtranscale_reg_value = 0x5552B83A;
3055 break;
3056 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3057 demph_reg_value = 0x2B404848;
3058 uniqtranscale_reg_value = 0x5580B83A;
3059 break;
3060 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3061 demph_reg_value = 0x2B404040;
3062 uniqtranscale_reg_value = 0x55ADDA3A;
3063 break;
3064 default:
3065 return 0;
3066 }
3067 break;
3068 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3069 preemph_reg_value = 0x0000000;
3070 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3071 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3072 demph_reg_value = 0x2B305555;
3073 uniqtranscale_reg_value = 0x5570B83A;
3074 break;
3075 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3076 demph_reg_value = 0x2B2B4040;
3077 uniqtranscale_reg_value = 0x55ADDA3A;
3078 break;
3079 default:
3080 return 0;
3081 }
3082 break;
3083 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3084 preemph_reg_value = 0x0006000;
3085 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3086 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3087 demph_reg_value = 0x1B405555;
3088 uniqtranscale_reg_value = 0x55ADDA3A;
3089 break;
3090 default:
3091 return 0;
3092 }
3093 break;
3094 default:
3095 return 0;
3096 }
3097
3098 mutex_lock(&dev_priv->sb_lock);
3099 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3100 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3101 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3102 uniqtranscale_reg_value);
3103 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3104 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3105 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3106 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3107 mutex_unlock(&dev_priv->sb_lock);
3108
3109 return 0;
3110 }
3111
3112 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3113 {
3114 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3115 struct drm_i915_private *dev_priv = dev->dev_private;
3116 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3117 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3118 u32 deemph_reg_value, margin_reg_value, val;
3119 uint8_t train_set = intel_dp->train_set[0];
3120 enum dpio_channel ch = vlv_dport_to_channel(dport);
3121 enum pipe pipe = intel_crtc->pipe;
3122 int i;
3123
3124 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3125 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3126 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3127 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3128 deemph_reg_value = 128;
3129 margin_reg_value = 52;
3130 break;
3131 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3132 deemph_reg_value = 128;
3133 margin_reg_value = 77;
3134 break;
3135 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3136 deemph_reg_value = 128;
3137 margin_reg_value = 102;
3138 break;
3139 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3140 deemph_reg_value = 128;
3141 margin_reg_value = 154;
3142 /* FIXME extra to set for 1200 */
3143 break;
3144 default:
3145 return 0;
3146 }
3147 break;
3148 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3149 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3150 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3151 deemph_reg_value = 85;
3152 margin_reg_value = 78;
3153 break;
3154 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3155 deemph_reg_value = 85;
3156 margin_reg_value = 116;
3157 break;
3158 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3159 deemph_reg_value = 85;
3160 margin_reg_value = 154;
3161 break;
3162 default:
3163 return 0;
3164 }
3165 break;
3166 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3167 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3168 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3169 deemph_reg_value = 64;
3170 margin_reg_value = 104;
3171 break;
3172 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3173 deemph_reg_value = 64;
3174 margin_reg_value = 154;
3175 break;
3176 default:
3177 return 0;
3178 }
3179 break;
3180 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3181 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3182 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3183 deemph_reg_value = 43;
3184 margin_reg_value = 154;
3185 break;
3186 default:
3187 return 0;
3188 }
3189 break;
3190 default:
3191 return 0;
3192 }
3193
3194 mutex_lock(&dev_priv->sb_lock);
3195
3196 /* Clear calc init */
3197 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3198 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3199 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3200 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3201 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3202
3203 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3204 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3205 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3206 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3207 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3208
3209 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3210 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3211 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3212 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3213
3214 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3215 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3216 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3217 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3218
3219 /* Program swing deemph */
3220 for (i = 0; i < 4; i++) {
3221 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3222 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3223 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3224 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3225 }
3226
3227 /* Program swing margin */
3228 for (i = 0; i < 4; i++) {
3229 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3230 val &= ~DPIO_SWING_MARGIN000_MASK;
3231 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3232 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3233 }
3234
3235 /* Disable unique transition scale */
3236 for (i = 0; i < 4; i++) {
3237 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3238 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3239 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3240 }
3241
3242 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3243 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3244 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3245 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3246
3247 /*
3248 * The document said it needs to set bit 27 for ch0 and bit 26
3249 * for ch1. Might be a typo in the doc.
3250 * For now, for this unique transition scale selection, set bit
3251 * 27 for ch0 and ch1.
3252 */
3253 for (i = 0; i < 4; i++) {
3254 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3255 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3256 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3257 }
3258
3259 for (i = 0; i < 4; i++) {
3260 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3261 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3262 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3263 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3264 }
3265 }
3266
3267 /* Start swing calculation */
3268 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3269 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3270 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3271
3272 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3273 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3274 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3275
3276 /* LRC Bypass */
3277 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3278 val |= DPIO_LRC_BYPASS;
3279 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3280
3281 mutex_unlock(&dev_priv->sb_lock);
3282
3283 return 0;
3284 }
3285
3286 static void
3287 intel_get_adjust_train(struct intel_dp *intel_dp,
3288 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3289 {
3290 uint8_t v = 0;
3291 uint8_t p = 0;
3292 int lane;
3293 uint8_t voltage_max;
3294 uint8_t preemph_max;
3295
3296 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3297 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3298 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3299
3300 if (this_v > v)
3301 v = this_v;
3302 if (this_p > p)
3303 p = this_p;
3304 }
3305
3306 voltage_max = intel_dp_voltage_max(intel_dp);
3307 if (v >= voltage_max)
3308 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3309
3310 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3311 if (p >= preemph_max)
3312 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3313
3314 for (lane = 0; lane < 4; lane++)
3315 intel_dp->train_set[lane] = v | p;
3316 }
3317
3318 static uint32_t
3319 gen4_signal_levels(uint8_t train_set)
3320 {
3321 uint32_t signal_levels = 0;
3322
3323 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3324 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3325 default:
3326 signal_levels |= DP_VOLTAGE_0_4;
3327 break;
3328 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3329 signal_levels |= DP_VOLTAGE_0_6;
3330 break;
3331 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3332 signal_levels |= DP_VOLTAGE_0_8;
3333 break;
3334 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3335 signal_levels |= DP_VOLTAGE_1_2;
3336 break;
3337 }
3338 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3339 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3340 default:
3341 signal_levels |= DP_PRE_EMPHASIS_0;
3342 break;
3343 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3344 signal_levels |= DP_PRE_EMPHASIS_3_5;
3345 break;
3346 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3347 signal_levels |= DP_PRE_EMPHASIS_6;
3348 break;
3349 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3350 signal_levels |= DP_PRE_EMPHASIS_9_5;
3351 break;
3352 }
3353 return signal_levels;
3354 }
3355
3356 /* Gen6's DP voltage swing and pre-emphasis control */
3357 static uint32_t
3358 gen6_edp_signal_levels(uint8_t train_set)
3359 {
3360 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3361 DP_TRAIN_PRE_EMPHASIS_MASK);
3362 switch (signal_levels) {
3363 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3364 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3365 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3366 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3367 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3368 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3369 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3370 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3371 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3372 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3373 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3374 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3375 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3376 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3377 default:
3378 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3379 "0x%x\n", signal_levels);
3380 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3381 }
3382 }
3383
3384 /* Gen7's DP voltage swing and pre-emphasis control */
3385 static uint32_t
3386 gen7_edp_signal_levels(uint8_t train_set)
3387 {
3388 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3389 DP_TRAIN_PRE_EMPHASIS_MASK);
3390 switch (signal_levels) {
3391 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3392 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3393 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3394 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3395 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3396 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3397
3398 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3399 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3400 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3401 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3402
3403 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3404 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3405 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3406 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3407
3408 default:
3409 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3410 "0x%x\n", signal_levels);
3411 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3412 }
3413 }
3414
3415 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3416 static uint32_t
3417 hsw_signal_levels(uint8_t train_set)
3418 {
3419 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3420 DP_TRAIN_PRE_EMPHASIS_MASK);
3421 switch (signal_levels) {
3422 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3423 return DDI_BUF_TRANS_SELECT(0);
3424 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3425 return DDI_BUF_TRANS_SELECT(1);
3426 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3427 return DDI_BUF_TRANS_SELECT(2);
3428 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3429 return DDI_BUF_TRANS_SELECT(3);
3430
3431 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3432 return DDI_BUF_TRANS_SELECT(4);
3433 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3434 return DDI_BUF_TRANS_SELECT(5);
3435 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3436 return DDI_BUF_TRANS_SELECT(6);
3437
3438 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3439 return DDI_BUF_TRANS_SELECT(7);
3440 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3441 return DDI_BUF_TRANS_SELECT(8);
3442
3443 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3444 return DDI_BUF_TRANS_SELECT(9);
3445 default:
3446 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3447 "0x%x\n", signal_levels);
3448 return DDI_BUF_TRANS_SELECT(0);
3449 }
3450 }
3451
3452 static void bxt_signal_levels(struct intel_dp *intel_dp)
3453 {
3454 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3455 enum port port = dport->port;
3456 struct drm_device *dev = dport->base.base.dev;
3457 struct intel_encoder *encoder = &dport->base;
3458 uint8_t train_set = intel_dp->train_set[0];
3459 uint32_t level = 0;
3460
3461 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3462 DP_TRAIN_PRE_EMPHASIS_MASK);
3463 switch (signal_levels) {
3464 default:
3465 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emph level\n");
3466 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3467 level = 0;
3468 break;
3469 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3470 level = 1;
3471 break;
3472 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3473 level = 2;
3474 break;
3475 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3476 level = 3;
3477 break;
3478 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3479 level = 4;
3480 break;
3481 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3482 level = 5;
3483 break;
3484 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3485 level = 6;
3486 break;
3487 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3488 level = 7;
3489 break;
3490 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3491 level = 8;
3492 break;
3493 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3494 level = 9;
3495 break;
3496 }
3497
3498 bxt_ddi_vswing_sequence(dev, level, port, encoder->type);
3499 }
3500
3501 /* Properly updates "DP" with the correct signal levels. */
3502 static void
3503 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3504 {
3505 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3506 enum port port = intel_dig_port->port;
3507 struct drm_device *dev = intel_dig_port->base.base.dev;
3508 uint32_t signal_levels, mask;
3509 uint8_t train_set = intel_dp->train_set[0];
3510
3511 if (IS_BROXTON(dev)) {
3512 signal_levels = 0;
3513 bxt_signal_levels(intel_dp);
3514 mask = 0;
3515 } else if (HAS_DDI(dev)) {
3516 signal_levels = hsw_signal_levels(train_set);
3517 mask = DDI_BUF_EMP_MASK;
3518 } else if (IS_CHERRYVIEW(dev)) {
3519 signal_levels = chv_signal_levels(intel_dp);
3520 mask = 0;
3521 } else if (IS_VALLEYVIEW(dev)) {
3522 signal_levels = vlv_signal_levels(intel_dp);
3523 mask = 0;
3524 } else if (IS_GEN7(dev) && port == PORT_A) {
3525 signal_levels = gen7_edp_signal_levels(train_set);
3526 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3527 } else if (IS_GEN6(dev) && port == PORT_A) {
3528 signal_levels = gen6_edp_signal_levels(train_set);
3529 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3530 } else {
3531 signal_levels = gen4_signal_levels(train_set);
3532 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3533 }
3534
3535 if (mask)
3536 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3537
3538 DRM_DEBUG_KMS("Using vswing level %d\n",
3539 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3540 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3541 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3542 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3543
3544 *DP = (*DP & ~mask) | signal_levels;
3545 }
3546
3547 static bool
3548 intel_dp_set_link_train(struct intel_dp *intel_dp,
3549 uint32_t *DP,
3550 uint8_t dp_train_pat)
3551 {
3552 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3553 struct drm_device *dev = intel_dig_port->base.base.dev;
3554 struct drm_i915_private *dev_priv = dev->dev_private;
3555 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3556 int ret, len;
3557
3558 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3559
3560 I915_WRITE(intel_dp->output_reg, *DP);
3561 POSTING_READ(intel_dp->output_reg);
3562
3563 buf[0] = dp_train_pat;
3564 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3565 DP_TRAINING_PATTERN_DISABLE) {
3566 /* don't write DP_TRAINING_LANEx_SET on disable */
3567 len = 1;
3568 } else {
3569 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3570 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3571 len = intel_dp->lane_count + 1;
3572 }
3573
3574 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3575 buf, len);
3576
3577 return ret == len;
3578 }
3579
3580 static bool
3581 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3582 uint8_t dp_train_pat)
3583 {
3584 if (!intel_dp->train_set_valid)
3585 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3586 intel_dp_set_signal_levels(intel_dp, DP);
3587 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3588 }
3589
3590 static bool
3591 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3592 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3593 {
3594 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3595 struct drm_device *dev = intel_dig_port->base.base.dev;
3596 struct drm_i915_private *dev_priv = dev->dev_private;
3597 int ret;
3598
3599 intel_get_adjust_train(intel_dp, link_status);
3600 intel_dp_set_signal_levels(intel_dp, DP);
3601
3602 I915_WRITE(intel_dp->output_reg, *DP);
3603 POSTING_READ(intel_dp->output_reg);
3604
3605 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3606 intel_dp->train_set, intel_dp->lane_count);
3607
3608 return ret == intel_dp->lane_count;
3609 }
3610
3611 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3612 {
3613 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3614 struct drm_device *dev = intel_dig_port->base.base.dev;
3615 struct drm_i915_private *dev_priv = dev->dev_private;
3616 enum port port = intel_dig_port->port;
3617 uint32_t val;
3618
3619 if (!HAS_DDI(dev))
3620 return;
3621
3622 val = I915_READ(DP_TP_CTL(port));
3623 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3624 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3625 I915_WRITE(DP_TP_CTL(port), val);
3626
3627 /*
3628 * On PORT_A we can have only eDP in SST mode. There the only reason
3629 * we need to set idle transmission mode is to work around a HW issue
3630 * where we enable the pipe while not in idle link-training mode.
3631 * In this case there is requirement to wait for a minimum number of
3632 * idle patterns to be sent.
3633 */
3634 if (port == PORT_A)
3635 return;
3636
3637 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3638 1))
3639 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3640 }
3641
3642 /* Enable corresponding port and start training pattern 1 */
3643 void
3644 intel_dp_start_link_train(struct intel_dp *intel_dp)
3645 {
3646 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3647 struct drm_device *dev = encoder->dev;
3648 int i;
3649 uint8_t voltage;
3650 int voltage_tries, loop_tries;
3651 uint32_t DP = intel_dp->DP;
3652 uint8_t link_config[2];
3653
3654 if (HAS_DDI(dev))
3655 intel_ddi_prepare_link_retrain(encoder);
3656
3657 /* Write the link configuration data */
3658 link_config[0] = intel_dp->link_bw;
3659 link_config[1] = intel_dp->lane_count;
3660 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3661 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3662 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3663 if (intel_dp->num_sink_rates)
3664 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
3665 &intel_dp->rate_select, 1);
3666
3667 link_config[0] = 0;
3668 link_config[1] = DP_SET_ANSI_8B10B;
3669 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3670
3671 DP |= DP_PORT_EN;
3672
3673 /* clock recovery */
3674 if (!intel_dp_reset_link_train(intel_dp, &DP,
3675 DP_TRAINING_PATTERN_1 |
3676 DP_LINK_SCRAMBLING_DISABLE)) {
3677 DRM_ERROR("failed to enable link training\n");
3678 return;
3679 }
3680
3681 voltage = 0xff;
3682 voltage_tries = 0;
3683 loop_tries = 0;
3684 for (;;) {
3685 uint8_t link_status[DP_LINK_STATUS_SIZE];
3686
3687 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3688 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3689 DRM_ERROR("failed to get link status\n");
3690 break;
3691 }
3692
3693 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3694 DRM_DEBUG_KMS("clock recovery OK\n");
3695 break;
3696 }
3697
3698 /*
3699 * if we used previously trained voltage and pre-emphasis values
3700 * and we don't get clock recovery, reset link training values
3701 */
3702 if (intel_dp->train_set_valid) {
3703 DRM_DEBUG_KMS("clock recovery not ok, reset");
3704 /* clear the flag as we are not reusing train set */
3705 intel_dp->train_set_valid = false;
3706 if (!intel_dp_reset_link_train(intel_dp, &DP,
3707 DP_TRAINING_PATTERN_1 |
3708 DP_LINK_SCRAMBLING_DISABLE)) {
3709 DRM_ERROR("failed to enable link training\n");
3710 return;
3711 }
3712 continue;
3713 }
3714
3715 /* Check to see if we've tried the max voltage */
3716 for (i = 0; i < intel_dp->lane_count; i++)
3717 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3718 break;
3719 if (i == intel_dp->lane_count) {
3720 ++loop_tries;
3721 if (loop_tries == 5) {
3722 DRM_ERROR("too many full retries, give up\n");
3723 break;
3724 }
3725 intel_dp_reset_link_train(intel_dp, &DP,
3726 DP_TRAINING_PATTERN_1 |
3727 DP_LINK_SCRAMBLING_DISABLE);
3728 voltage_tries = 0;
3729 continue;
3730 }
3731
3732 /* Check to see if we've tried the same voltage 5 times */
3733 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3734 ++voltage_tries;
3735 if (voltage_tries == 5) {
3736 DRM_ERROR("too many voltage retries, give up\n");
3737 break;
3738 }
3739 } else
3740 voltage_tries = 0;
3741 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3742
3743 /* Update training set as requested by target */
3744 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3745 DRM_ERROR("failed to update link training\n");
3746 break;
3747 }
3748 }
3749
3750 intel_dp->DP = DP;
3751 }
3752
3753 void
3754 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3755 {
3756 bool channel_eq = false;
3757 int tries, cr_tries;
3758 uint32_t DP = intel_dp->DP;
3759 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3760
3761 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3762 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3763 training_pattern = DP_TRAINING_PATTERN_3;
3764
3765 /* channel equalization */
3766 if (!intel_dp_set_link_train(intel_dp, &DP,
3767 training_pattern |
3768 DP_LINK_SCRAMBLING_DISABLE)) {
3769 DRM_ERROR("failed to start channel equalization\n");
3770 return;
3771 }
3772
3773 tries = 0;
3774 cr_tries = 0;
3775 channel_eq = false;
3776 for (;;) {
3777 uint8_t link_status[DP_LINK_STATUS_SIZE];
3778
3779 if (cr_tries > 5) {
3780 DRM_ERROR("failed to train DP, aborting\n");
3781 break;
3782 }
3783
3784 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3785 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3786 DRM_ERROR("failed to get link status\n");
3787 break;
3788 }
3789
3790 /* Make sure clock is still ok */
3791 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3792 intel_dp->train_set_valid = false;
3793 intel_dp_start_link_train(intel_dp);
3794 intel_dp_set_link_train(intel_dp, &DP,
3795 training_pattern |
3796 DP_LINK_SCRAMBLING_DISABLE);
3797 cr_tries++;
3798 continue;
3799 }
3800
3801 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3802 channel_eq = true;
3803 break;
3804 }
3805
3806 /* Try 5 times, then try clock recovery if that fails */
3807 if (tries > 5) {
3808 intel_dp->train_set_valid = false;
3809 intel_dp_start_link_train(intel_dp);
3810 intel_dp_set_link_train(intel_dp, &DP,
3811 training_pattern |
3812 DP_LINK_SCRAMBLING_DISABLE);
3813 tries = 0;
3814 cr_tries++;
3815 continue;
3816 }
3817
3818 /* Update training set as requested by target */
3819 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3820 DRM_ERROR("failed to update link training\n");
3821 break;
3822 }
3823 ++tries;
3824 }
3825
3826 intel_dp_set_idle_link_train(intel_dp);
3827
3828 intel_dp->DP = DP;
3829
3830 if (channel_eq) {
3831 intel_dp->train_set_valid = true;
3832 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3833 }
3834 }
3835
3836 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3837 {
3838 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3839 DP_TRAINING_PATTERN_DISABLE);
3840 }
3841
3842 static void
3843 intel_dp_link_down(struct intel_dp *intel_dp)
3844 {
3845 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3846 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3847 enum port port = intel_dig_port->port;
3848 struct drm_device *dev = intel_dig_port->base.base.dev;
3849 struct drm_i915_private *dev_priv = dev->dev_private;
3850 uint32_t DP = intel_dp->DP;
3851
3852 if (WARN_ON(HAS_DDI(dev)))
3853 return;
3854
3855 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3856 return;
3857
3858 DRM_DEBUG_KMS("\n");
3859
3860 if ((IS_GEN7(dev) && port == PORT_A) ||
3861 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3862 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3863 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3864 } else {
3865 if (IS_CHERRYVIEW(dev))
3866 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3867 else
3868 DP &= ~DP_LINK_TRAIN_MASK;
3869 DP |= DP_LINK_TRAIN_PAT_IDLE;
3870 }
3871 I915_WRITE(intel_dp->output_reg, DP);
3872 POSTING_READ(intel_dp->output_reg);
3873
3874 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3875 I915_WRITE(intel_dp->output_reg, DP);
3876 POSTING_READ(intel_dp->output_reg);
3877
3878 /*
3879 * HW workaround for IBX, we need to move the port
3880 * to transcoder A after disabling it to allow the
3881 * matching HDMI port to be enabled on transcoder A.
3882 */
3883 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3884 /* always enable with pattern 1 (as per spec) */
3885 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3886 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3887 I915_WRITE(intel_dp->output_reg, DP);
3888 POSTING_READ(intel_dp->output_reg);
3889
3890 DP &= ~DP_PORT_EN;
3891 I915_WRITE(intel_dp->output_reg, DP);
3892 POSTING_READ(intel_dp->output_reg);
3893 }
3894
3895 msleep(intel_dp->panel_power_down_delay);
3896 }
3897
3898 static bool
3899 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3900 {
3901 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3902 struct drm_device *dev = dig_port->base.base.dev;
3903 struct drm_i915_private *dev_priv = dev->dev_private;
3904 uint8_t rev;
3905
3906 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3907 sizeof(intel_dp->dpcd)) < 0)
3908 return false; /* aux transfer failed */
3909
3910 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3911
3912 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3913 return false; /* DPCD not present */
3914
3915 /* Check if the panel supports PSR */
3916 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3917 if (is_edp(intel_dp)) {
3918 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3919 intel_dp->psr_dpcd,
3920 sizeof(intel_dp->psr_dpcd));
3921 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3922 dev_priv->psr.sink_support = true;
3923 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3924 }
3925
3926 if (INTEL_INFO(dev)->gen >= 9 &&
3927 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3928 uint8_t frame_sync_cap;
3929
3930 dev_priv->psr.sink_support = true;
3931 intel_dp_dpcd_read_wake(&intel_dp->aux,
3932 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3933 &frame_sync_cap, 1);
3934 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3935 /* PSR2 needs frame sync as well */
3936 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3937 DRM_DEBUG_KMS("PSR2 %s on sink",
3938 dev_priv->psr.psr2_support ? "supported" : "not supported");
3939 }
3940 }
3941
3942 /* Training Pattern 3 support, both source and sink */
3943 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3944 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3945 (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3946 intel_dp->use_tps3 = true;
3947 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3948 } else
3949 intel_dp->use_tps3 = false;
3950
3951 /* Intermediate frequency support */
3952 if (is_edp(intel_dp) &&
3953 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3954 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3955 (rev >= 0x03)) { /* eDp v1.4 or higher */
3956 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3957 int i;
3958
3959 intel_dp_dpcd_read_wake(&intel_dp->aux,
3960 DP_SUPPORTED_LINK_RATES,
3961 sink_rates,
3962 sizeof(sink_rates));
3963
3964 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3965 int val = le16_to_cpu(sink_rates[i]);
3966
3967 if (val == 0)
3968 break;
3969
3970 /* Value read is in kHz while drm clock is saved in deca-kHz */
3971 intel_dp->sink_rates[i] = (val * 200) / 10;
3972 }
3973 intel_dp->num_sink_rates = i;
3974 }
3975
3976 intel_dp_print_rates(intel_dp);
3977
3978 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3979 DP_DWN_STRM_PORT_PRESENT))
3980 return true; /* native DP sink */
3981
3982 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3983 return true; /* no per-port downstream info */
3984
3985 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3986 intel_dp->downstream_ports,
3987 DP_MAX_DOWNSTREAM_PORTS) < 0)
3988 return false; /* downstream port status fetch failed */
3989
3990 return true;
3991 }
3992
3993 static void
3994 intel_dp_probe_oui(struct intel_dp *intel_dp)
3995 {
3996 u8 buf[3];
3997
3998 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3999 return;
4000
4001 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
4002 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
4003 buf[0], buf[1], buf[2]);
4004
4005 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
4006 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
4007 buf[0], buf[1], buf[2]);
4008 }
4009
4010 static bool
4011 intel_dp_probe_mst(struct intel_dp *intel_dp)
4012 {
4013 u8 buf[1];
4014
4015 if (!intel_dp->can_mst)
4016 return false;
4017
4018 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4019 return false;
4020
4021 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
4022 if (buf[0] & DP_MST_CAP) {
4023 DRM_DEBUG_KMS("Sink is MST capable\n");
4024 intel_dp->is_mst = true;
4025 } else {
4026 DRM_DEBUG_KMS("Sink is not MST capable\n");
4027 intel_dp->is_mst = false;
4028 }
4029 }
4030
4031 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4032 return intel_dp->is_mst;
4033 }
4034
4035 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4036 {
4037 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4038 struct drm_device *dev = intel_dig_port->base.base.dev;
4039 struct intel_crtc *intel_crtc =
4040 to_intel_crtc(intel_dig_port->base.base.crtc);
4041 u8 buf;
4042 int test_crc_count;
4043 int attempts = 6;
4044
4045 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4046 return -EIO;
4047
4048 if (!(buf & DP_TEST_CRC_SUPPORTED))
4049 return -ENOTTY;
4050
4051 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4052 return -EIO;
4053
4054 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4055 buf | DP_TEST_SINK_START) < 0)
4056 return -EIO;
4057
4058 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4059 return -EIO;
4060 test_crc_count = buf & DP_TEST_COUNT_MASK;
4061
4062 do {
4063 if (drm_dp_dpcd_readb(&intel_dp->aux,
4064 DP_TEST_SINK_MISC, &buf) < 0)
4065 return -EIO;
4066 intel_wait_for_vblank(dev, intel_crtc->pipe);
4067 } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
4068
4069 if (attempts == 0) {
4070 DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n");
4071 return -ETIMEDOUT;
4072 }
4073
4074 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
4075 return -EIO;
4076
4077 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4078 return -EIO;
4079 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4080 buf & ~DP_TEST_SINK_START) < 0)
4081 return -EIO;
4082
4083 return 0;
4084 }
4085
4086 static bool
4087 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4088 {
4089 return intel_dp_dpcd_read_wake(&intel_dp->aux,
4090 DP_DEVICE_SERVICE_IRQ_VECTOR,
4091 sink_irq_vector, 1) == 1;
4092 }
4093
4094 static bool
4095 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4096 {
4097 int ret;
4098
4099 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4100 DP_SINK_COUNT_ESI,
4101 sink_irq_vector, 14);
4102 if (ret != 14)
4103 return false;
4104
4105 return true;
4106 }
4107
4108 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4109 {
4110 uint8_t test_result = DP_TEST_ACK;
4111 return test_result;
4112 }
4113
4114 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4115 {
4116 uint8_t test_result = DP_TEST_NAK;
4117 return test_result;
4118 }
4119
4120 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4121 {
4122 uint8_t test_result = DP_TEST_NAK;
4123 struct intel_connector *intel_connector = intel_dp->attached_connector;
4124 struct drm_connector *connector = &intel_connector->base;
4125
4126 if (intel_connector->detect_edid == NULL ||
4127 connector->edid_corrupt ||
4128 intel_dp->aux.i2c_defer_count > 6) {
4129 /* Check EDID read for NACKs, DEFERs and corruption
4130 * (DP CTS 1.2 Core r1.1)
4131 * 4.2.2.4 : Failed EDID read, I2C_NAK
4132 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4133 * 4.2.2.6 : EDID corruption detected
4134 * Use failsafe mode for all cases
4135 */
4136 if (intel_dp->aux.i2c_nack_count > 0 ||
4137 intel_dp->aux.i2c_defer_count > 0)
4138 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4139 intel_dp->aux.i2c_nack_count,
4140 intel_dp->aux.i2c_defer_count);
4141 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4142 } else {
4143 if (!drm_dp_dpcd_write(&intel_dp->aux,
4144 DP_TEST_EDID_CHECKSUM,
4145 &intel_connector->detect_edid->checksum,
4146 1))
4147 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4148
4149 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4150 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4151 }
4152
4153 /* Set test active flag here so userspace doesn't interrupt things */
4154 intel_dp->compliance_test_active = 1;
4155
4156 return test_result;
4157 }
4158
4159 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4160 {
4161 uint8_t test_result = DP_TEST_NAK;
4162 return test_result;
4163 }
4164
4165 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4166 {
4167 uint8_t response = DP_TEST_NAK;
4168 uint8_t rxdata = 0;
4169 int status = 0;
4170
4171 intel_dp->compliance_test_active = 0;
4172 intel_dp->compliance_test_type = 0;
4173 intel_dp->compliance_test_data = 0;
4174
4175 intel_dp->aux.i2c_nack_count = 0;
4176 intel_dp->aux.i2c_defer_count = 0;
4177
4178 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4179 if (status <= 0) {
4180 DRM_DEBUG_KMS("Could not read test request from sink\n");
4181 goto update_status;
4182 }
4183
4184 switch (rxdata) {
4185 case DP_TEST_LINK_TRAINING:
4186 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4187 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4188 response = intel_dp_autotest_link_training(intel_dp);
4189 break;
4190 case DP_TEST_LINK_VIDEO_PATTERN:
4191 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4192 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4193 response = intel_dp_autotest_video_pattern(intel_dp);
4194 break;
4195 case DP_TEST_LINK_EDID_READ:
4196 DRM_DEBUG_KMS("EDID test requested\n");
4197 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4198 response = intel_dp_autotest_edid(intel_dp);
4199 break;
4200 case DP_TEST_LINK_PHY_TEST_PATTERN:
4201 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4202 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4203 response = intel_dp_autotest_phy_pattern(intel_dp);
4204 break;
4205 default:
4206 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4207 break;
4208 }
4209
4210 update_status:
4211 status = drm_dp_dpcd_write(&intel_dp->aux,
4212 DP_TEST_RESPONSE,
4213 &response, 1);
4214 if (status <= 0)
4215 DRM_DEBUG_KMS("Could not write test response to sink\n");
4216 }
4217
4218 static int
4219 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4220 {
4221 bool bret;
4222
4223 if (intel_dp->is_mst) {
4224 u8 esi[16] = { 0 };
4225 int ret = 0;
4226 int retry;
4227 bool handled;
4228 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4229 go_again:
4230 if (bret == true) {
4231
4232 /* check link status - esi[10] = 0x200c */
4233 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4234 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4235 intel_dp_start_link_train(intel_dp);
4236 intel_dp_complete_link_train(intel_dp);
4237 intel_dp_stop_link_train(intel_dp);
4238 }
4239
4240 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4241 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4242
4243 if (handled) {
4244 for (retry = 0; retry < 3; retry++) {
4245 int wret;
4246 wret = drm_dp_dpcd_write(&intel_dp->aux,
4247 DP_SINK_COUNT_ESI+1,
4248 &esi[1], 3);
4249 if (wret == 3) {
4250 break;
4251 }
4252 }
4253
4254 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4255 if (bret == true) {
4256 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4257 goto go_again;
4258 }
4259 } else
4260 ret = 0;
4261
4262 return ret;
4263 } else {
4264 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4265 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4266 intel_dp->is_mst = false;
4267 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4268 /* send a hotplug event */
4269 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4270 }
4271 }
4272 return -EINVAL;
4273 }
4274
4275 /*
4276 * According to DP spec
4277 * 5.1.2:
4278 * 1. Read DPCD
4279 * 2. Configure link according to Receiver Capabilities
4280 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4281 * 4. Check link status on receipt of hot-plug interrupt
4282 */
4283 static void
4284 intel_dp_check_link_status(struct intel_dp *intel_dp)
4285 {
4286 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4287 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4288 u8 sink_irq_vector;
4289 u8 link_status[DP_LINK_STATUS_SIZE];
4290
4291 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4292
4293 if (!intel_encoder->connectors_active)
4294 return;
4295
4296 if (WARN_ON(!intel_encoder->base.crtc))
4297 return;
4298
4299 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4300 return;
4301
4302 /* Try to read receiver status if the link appears to be up */
4303 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4304 return;
4305 }
4306
4307 /* Now read the DPCD to see if it's actually running */
4308 if (!intel_dp_get_dpcd(intel_dp)) {
4309 return;
4310 }
4311
4312 /* Try to read the source of the interrupt */
4313 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4314 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4315 /* Clear interrupt source */
4316 drm_dp_dpcd_writeb(&intel_dp->aux,
4317 DP_DEVICE_SERVICE_IRQ_VECTOR,
4318 sink_irq_vector);
4319
4320 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4321 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4322 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4323 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4324 }
4325
4326 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4327 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4328 intel_encoder->base.name);
4329 intel_dp_start_link_train(intel_dp);
4330 intel_dp_complete_link_train(intel_dp);
4331 intel_dp_stop_link_train(intel_dp);
4332 }
4333 }
4334
4335 /* XXX this is probably wrong for multiple downstream ports */
4336 static enum drm_connector_status
4337 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4338 {
4339 uint8_t *dpcd = intel_dp->dpcd;
4340 uint8_t type;
4341
4342 if (!intel_dp_get_dpcd(intel_dp))
4343 return connector_status_disconnected;
4344
4345 /* if there's no downstream port, we're done */
4346 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4347 return connector_status_connected;
4348
4349 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4350 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4351 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4352 uint8_t reg;
4353
4354 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4355 &reg, 1) < 0)
4356 return connector_status_unknown;
4357
4358 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4359 : connector_status_disconnected;
4360 }
4361
4362 /* If no HPD, poke DDC gently */
4363 if (drm_probe_ddc(&intel_dp->aux.ddc))
4364 return connector_status_connected;
4365
4366 /* Well we tried, say unknown for unreliable port types */
4367 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4368 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4369 if (type == DP_DS_PORT_TYPE_VGA ||
4370 type == DP_DS_PORT_TYPE_NON_EDID)
4371 return connector_status_unknown;
4372 } else {
4373 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4374 DP_DWN_STRM_PORT_TYPE_MASK;
4375 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4376 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4377 return connector_status_unknown;
4378 }
4379
4380 /* Anything else is out of spec, warn and ignore */
4381 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4382 return connector_status_disconnected;
4383 }
4384
4385 static enum drm_connector_status
4386 edp_detect(struct intel_dp *intel_dp)
4387 {
4388 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4389 enum drm_connector_status status;
4390
4391 status = intel_panel_detect(dev);
4392 if (status == connector_status_unknown)
4393 status = connector_status_connected;
4394
4395 return status;
4396 }
4397
4398 static enum drm_connector_status
4399 ironlake_dp_detect(struct intel_dp *intel_dp)
4400 {
4401 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4402 struct drm_i915_private *dev_priv = dev->dev_private;
4403 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4404
4405 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4406 return connector_status_disconnected;
4407
4408 return intel_dp_detect_dpcd(intel_dp);
4409 }
4410
4411 static int g4x_digital_port_connected(struct drm_device *dev,
4412 struct intel_digital_port *intel_dig_port)
4413 {
4414 struct drm_i915_private *dev_priv = dev->dev_private;
4415 uint32_t bit;
4416
4417 if (IS_VALLEYVIEW(dev)) {
4418 switch (intel_dig_port->port) {
4419 case PORT_B:
4420 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4421 break;
4422 case PORT_C:
4423 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4424 break;
4425 case PORT_D:
4426 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4427 break;
4428 default:
4429 return -EINVAL;
4430 }
4431 } else {
4432 switch (intel_dig_port->port) {
4433 case PORT_B:
4434 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4435 break;
4436 case PORT_C:
4437 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4438 break;
4439 case PORT_D:
4440 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4441 break;
4442 default:
4443 return -EINVAL;
4444 }
4445 }
4446
4447 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4448 return 0;
4449 return 1;
4450 }
4451
4452 static enum drm_connector_status
4453 g4x_dp_detect(struct intel_dp *intel_dp)
4454 {
4455 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4456 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4457 int ret;
4458
4459 /* Can't disconnect eDP, but you can close the lid... */
4460 if (is_edp(intel_dp)) {
4461 enum drm_connector_status status;
4462
4463 status = intel_panel_detect(dev);
4464 if (status == connector_status_unknown)
4465 status = connector_status_connected;
4466 return status;
4467 }
4468
4469 ret = g4x_digital_port_connected(dev, intel_dig_port);
4470 if (ret == -EINVAL)
4471 return connector_status_unknown;
4472 else if (ret == 0)
4473 return connector_status_disconnected;
4474
4475 return intel_dp_detect_dpcd(intel_dp);
4476 }
4477
4478 static struct edid *
4479 intel_dp_get_edid(struct intel_dp *intel_dp)
4480 {
4481 struct intel_connector *intel_connector = intel_dp->attached_connector;
4482
4483 /* use cached edid if we have one */
4484 if (intel_connector->edid) {
4485 /* invalid edid */
4486 if (IS_ERR(intel_connector->edid))
4487 return NULL;
4488
4489 return drm_edid_duplicate(intel_connector->edid);
4490 } else
4491 return drm_get_edid(&intel_connector->base,
4492 &intel_dp->aux.ddc);
4493 }
4494
4495 static void
4496 intel_dp_set_edid(struct intel_dp *intel_dp)
4497 {
4498 struct intel_connector *intel_connector = intel_dp->attached_connector;
4499 struct edid *edid;
4500
4501 edid = intel_dp_get_edid(intel_dp);
4502 intel_connector->detect_edid = edid;
4503
4504 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4505 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4506 else
4507 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4508 }
4509
4510 static void
4511 intel_dp_unset_edid(struct intel_dp *intel_dp)
4512 {
4513 struct intel_connector *intel_connector = intel_dp->attached_connector;
4514
4515 kfree(intel_connector->detect_edid);
4516 intel_connector->detect_edid = NULL;
4517
4518 intel_dp->has_audio = false;
4519 }
4520
4521 static enum intel_display_power_domain
4522 intel_dp_power_get(struct intel_dp *dp)
4523 {
4524 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4525 enum intel_display_power_domain power_domain;
4526
4527 power_domain = intel_display_port_power_domain(encoder);
4528 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4529
4530 return power_domain;
4531 }
4532
4533 static void
4534 intel_dp_power_put(struct intel_dp *dp,
4535 enum intel_display_power_domain power_domain)
4536 {
4537 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4538 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4539 }
4540
4541 static enum drm_connector_status
4542 intel_dp_detect(struct drm_connector *connector, bool force)
4543 {
4544 struct intel_dp *intel_dp = intel_attached_dp(connector);
4545 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4546 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4547 struct drm_device *dev = connector->dev;
4548 enum drm_connector_status status;
4549 enum intel_display_power_domain power_domain;
4550 bool ret;
4551 u8 sink_irq_vector;
4552
4553 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4554 connector->base.id, connector->name);
4555 intel_dp_unset_edid(intel_dp);
4556
4557 if (intel_dp->is_mst) {
4558 /* MST devices are disconnected from a monitor POV */
4559 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4560 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4561 return connector_status_disconnected;
4562 }
4563
4564 power_domain = intel_dp_power_get(intel_dp);
4565
4566 /* Can't disconnect eDP, but you can close the lid... */
4567 if (is_edp(intel_dp))
4568 status = edp_detect(intel_dp);
4569 else if (HAS_PCH_SPLIT(dev))
4570 status = ironlake_dp_detect(intel_dp);
4571 else
4572 status = g4x_dp_detect(intel_dp);
4573 if (status != connector_status_connected)
4574 goto out;
4575
4576 intel_dp_probe_oui(intel_dp);
4577
4578 ret = intel_dp_probe_mst(intel_dp);
4579 if (ret) {
4580 /* if we are in MST mode then this connector
4581 won't appear connected or have anything with EDID on it */
4582 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4583 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4584 status = connector_status_disconnected;
4585 goto out;
4586 }
4587
4588 intel_dp_set_edid(intel_dp);
4589
4590 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4591 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4592 status = connector_status_connected;
4593
4594 /* Try to read the source of the interrupt */
4595 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4596 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4597 /* Clear interrupt source */
4598 drm_dp_dpcd_writeb(&intel_dp->aux,
4599 DP_DEVICE_SERVICE_IRQ_VECTOR,
4600 sink_irq_vector);
4601
4602 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4603 intel_dp_handle_test_request(intel_dp);
4604 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4605 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4606 }
4607
4608 out:
4609 intel_dp_power_put(intel_dp, power_domain);
4610 return status;
4611 }
4612
4613 static void
4614 intel_dp_force(struct drm_connector *connector)
4615 {
4616 struct intel_dp *intel_dp = intel_attached_dp(connector);
4617 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4618 enum intel_display_power_domain power_domain;
4619
4620 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4621 connector->base.id, connector->name);
4622 intel_dp_unset_edid(intel_dp);
4623
4624 if (connector->status != connector_status_connected)
4625 return;
4626
4627 power_domain = intel_dp_power_get(intel_dp);
4628
4629 intel_dp_set_edid(intel_dp);
4630
4631 intel_dp_power_put(intel_dp, power_domain);
4632
4633 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4634 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4635 }
4636
4637 static int intel_dp_get_modes(struct drm_connector *connector)
4638 {
4639 struct intel_connector *intel_connector = to_intel_connector(connector);
4640 struct edid *edid;
4641
4642 edid = intel_connector->detect_edid;
4643 if (edid) {
4644 int ret = intel_connector_update_modes(connector, edid);
4645 if (ret)
4646 return ret;
4647 }
4648
4649 /* if eDP has no EDID, fall back to fixed mode */
4650 if (is_edp(intel_attached_dp(connector)) &&
4651 intel_connector->panel.fixed_mode) {
4652 struct drm_display_mode *mode;
4653
4654 mode = drm_mode_duplicate(connector->dev,
4655 intel_connector->panel.fixed_mode);
4656 if (mode) {
4657 drm_mode_probed_add(connector, mode);
4658 return 1;
4659 }
4660 }
4661
4662 return 0;
4663 }
4664
4665 static bool
4666 intel_dp_detect_audio(struct drm_connector *connector)
4667 {
4668 bool has_audio = false;
4669 struct edid *edid;
4670
4671 edid = to_intel_connector(connector)->detect_edid;
4672 if (edid)
4673 has_audio = drm_detect_monitor_audio(edid);
4674
4675 return has_audio;
4676 }
4677
4678 static int
4679 intel_dp_set_property(struct drm_connector *connector,
4680 struct drm_property *property,
4681 uint64_t val)
4682 {
4683 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4684 struct intel_connector *intel_connector = to_intel_connector(connector);
4685 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4686 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4687 int ret;
4688
4689 ret = drm_object_property_set_value(&connector->base, property, val);
4690 if (ret)
4691 return ret;
4692
4693 if (property == dev_priv->force_audio_property) {
4694 int i = val;
4695 bool has_audio;
4696
4697 if (i == intel_dp->force_audio)
4698 return 0;
4699
4700 intel_dp->force_audio = i;
4701
4702 if (i == HDMI_AUDIO_AUTO)
4703 has_audio = intel_dp_detect_audio(connector);
4704 else
4705 has_audio = (i == HDMI_AUDIO_ON);
4706
4707 if (has_audio == intel_dp->has_audio)
4708 return 0;
4709
4710 intel_dp->has_audio = has_audio;
4711 goto done;
4712 }
4713
4714 if (property == dev_priv->broadcast_rgb_property) {
4715 bool old_auto = intel_dp->color_range_auto;
4716 uint32_t old_range = intel_dp->color_range;
4717
4718 switch (val) {
4719 case INTEL_BROADCAST_RGB_AUTO:
4720 intel_dp->color_range_auto = true;
4721 break;
4722 case INTEL_BROADCAST_RGB_FULL:
4723 intel_dp->color_range_auto = false;
4724 intel_dp->color_range = 0;
4725 break;
4726 case INTEL_BROADCAST_RGB_LIMITED:
4727 intel_dp->color_range_auto = false;
4728 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4729 break;
4730 default:
4731 return -EINVAL;
4732 }
4733
4734 if (old_auto == intel_dp->color_range_auto &&
4735 old_range == intel_dp->color_range)
4736 return 0;
4737
4738 goto done;
4739 }
4740
4741 if (is_edp(intel_dp) &&
4742 property == connector->dev->mode_config.scaling_mode_property) {
4743 if (val == DRM_MODE_SCALE_NONE) {
4744 DRM_DEBUG_KMS("no scaling not supported\n");
4745 return -EINVAL;
4746 }
4747
4748 if (intel_connector->panel.fitting_mode == val) {
4749 /* the eDP scaling property is not changed */
4750 return 0;
4751 }
4752 intel_connector->panel.fitting_mode = val;
4753
4754 goto done;
4755 }
4756
4757 return -EINVAL;
4758
4759 done:
4760 if (intel_encoder->base.crtc)
4761 intel_crtc_restore_mode(intel_encoder->base.crtc);
4762
4763 return 0;
4764 }
4765
4766 static void
4767 intel_dp_connector_destroy(struct drm_connector *connector)
4768 {
4769 struct intel_connector *intel_connector = to_intel_connector(connector);
4770
4771 kfree(intel_connector->detect_edid);
4772
4773 if (!IS_ERR_OR_NULL(intel_connector->edid))
4774 kfree(intel_connector->edid);
4775
4776 /* Can't call is_edp() since the encoder may have been destroyed
4777 * already. */
4778 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4779 intel_panel_fini(&intel_connector->panel);
4780
4781 drm_connector_cleanup(connector);
4782 kfree(connector);
4783 }
4784
4785 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4786 {
4787 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4788 struct intel_dp *intel_dp = &intel_dig_port->dp;
4789
4790 drm_dp_aux_unregister(&intel_dp->aux);
4791 intel_dp_mst_encoder_cleanup(intel_dig_port);
4792 if (is_edp(intel_dp)) {
4793 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4794 /*
4795 * vdd might still be enabled do to the delayed vdd off.
4796 * Make sure vdd is actually turned off here.
4797 */
4798 pps_lock(intel_dp);
4799 edp_panel_vdd_off_sync(intel_dp);
4800 pps_unlock(intel_dp);
4801
4802 if (intel_dp->edp_notifier.notifier_call) {
4803 unregister_reboot_notifier(&intel_dp->edp_notifier);
4804 intel_dp->edp_notifier.notifier_call = NULL;
4805 }
4806 }
4807 drm_encoder_cleanup(encoder);
4808 kfree(intel_dig_port);
4809 }
4810
4811 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4812 {
4813 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4814
4815 if (!is_edp(intel_dp))
4816 return;
4817
4818 /*
4819 * vdd might still be enabled do to the delayed vdd off.
4820 * Make sure vdd is actually turned off here.
4821 */
4822 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4823 pps_lock(intel_dp);
4824 edp_panel_vdd_off_sync(intel_dp);
4825 pps_unlock(intel_dp);
4826 }
4827
4828 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4829 {
4830 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4831 struct drm_device *dev = intel_dig_port->base.base.dev;
4832 struct drm_i915_private *dev_priv = dev->dev_private;
4833 enum intel_display_power_domain power_domain;
4834
4835 lockdep_assert_held(&dev_priv->pps_mutex);
4836
4837 if (!edp_have_panel_vdd(intel_dp))
4838 return;
4839
4840 /*
4841 * The VDD bit needs a power domain reference, so if the bit is
4842 * already enabled when we boot or resume, grab this reference and
4843 * schedule a vdd off, so we don't hold on to the reference
4844 * indefinitely.
4845 */
4846 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4847 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4848 intel_display_power_get(dev_priv, power_domain);
4849
4850 edp_panel_vdd_schedule_off(intel_dp);
4851 }
4852
4853 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4854 {
4855 struct intel_dp *intel_dp;
4856
4857 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4858 return;
4859
4860 intel_dp = enc_to_intel_dp(encoder);
4861
4862 pps_lock(intel_dp);
4863
4864 /*
4865 * Read out the current power sequencer assignment,
4866 * in case the BIOS did something with it.
4867 */
4868 if (IS_VALLEYVIEW(encoder->dev))
4869 vlv_initial_power_sequencer_setup(intel_dp);
4870
4871 intel_edp_panel_vdd_sanitize(intel_dp);
4872
4873 pps_unlock(intel_dp);
4874 }
4875
4876 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4877 .dpms = intel_connector_dpms,
4878 .detect = intel_dp_detect,
4879 .force = intel_dp_force,
4880 .fill_modes = drm_helper_probe_single_connector_modes,
4881 .set_property = intel_dp_set_property,
4882 .atomic_get_property = intel_connector_atomic_get_property,
4883 .destroy = intel_dp_connector_destroy,
4884 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4885 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4886 };
4887
4888 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4889 .get_modes = intel_dp_get_modes,
4890 .mode_valid = intel_dp_mode_valid,
4891 .best_encoder = intel_best_encoder,
4892 };
4893
4894 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4895 .reset = intel_dp_encoder_reset,
4896 .destroy = intel_dp_encoder_destroy,
4897 };
4898
4899 void
4900 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4901 {
4902 return;
4903 }
4904
4905 enum irqreturn
4906 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4907 {
4908 struct intel_dp *intel_dp = &intel_dig_port->dp;
4909 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4910 struct drm_device *dev = intel_dig_port->base.base.dev;
4911 struct drm_i915_private *dev_priv = dev->dev_private;
4912 enum intel_display_power_domain power_domain;
4913 enum irqreturn ret = IRQ_NONE;
4914
4915 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4916 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4917
4918 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4919 /*
4920 * vdd off can generate a long pulse on eDP which
4921 * would require vdd on to handle it, and thus we
4922 * would end up in an endless cycle of
4923 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4924 */
4925 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4926 port_name(intel_dig_port->port));
4927 return IRQ_HANDLED;
4928 }
4929
4930 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4931 port_name(intel_dig_port->port),
4932 long_hpd ? "long" : "short");
4933
4934 power_domain = intel_display_port_power_domain(intel_encoder);
4935 intel_display_power_get(dev_priv, power_domain);
4936
4937 if (long_hpd) {
4938 /* indicate that we need to restart link training */
4939 intel_dp->train_set_valid = false;
4940
4941 if (HAS_PCH_SPLIT(dev)) {
4942 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4943 goto mst_fail;
4944 } else {
4945 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4946 goto mst_fail;
4947 }
4948
4949 if (!intel_dp_get_dpcd(intel_dp)) {
4950 goto mst_fail;
4951 }
4952
4953 intel_dp_probe_oui(intel_dp);
4954
4955 if (!intel_dp_probe_mst(intel_dp))
4956 goto mst_fail;
4957
4958 } else {
4959 if (intel_dp->is_mst) {
4960 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4961 goto mst_fail;
4962 }
4963
4964 if (!intel_dp->is_mst) {
4965 /*
4966 * we'll check the link status via the normal hot plug path later -
4967 * but for short hpds we should check it now
4968 */
4969 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4970 intel_dp_check_link_status(intel_dp);
4971 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4972 }
4973 }
4974
4975 ret = IRQ_HANDLED;
4976
4977 goto put_power;
4978 mst_fail:
4979 /* if we were in MST mode, and device is not there get out of MST mode */
4980 if (intel_dp->is_mst) {
4981 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4982 intel_dp->is_mst = false;
4983 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4984 }
4985 put_power:
4986 intel_display_power_put(dev_priv, power_domain);
4987
4988 return ret;
4989 }
4990
4991 /* Return which DP Port should be selected for Transcoder DP control */
4992 int
4993 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4994 {
4995 struct drm_device *dev = crtc->dev;
4996 struct intel_encoder *intel_encoder;
4997 struct intel_dp *intel_dp;
4998
4999 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5000 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5001
5002 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
5003 intel_encoder->type == INTEL_OUTPUT_EDP)
5004 return intel_dp->output_reg;
5005 }
5006
5007 return -1;
5008 }
5009
5010 /* check the VBT to see whether the eDP is on DP-D port */
5011 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5012 {
5013 struct drm_i915_private *dev_priv = dev->dev_private;
5014 union child_device_config *p_child;
5015 int i;
5016 static const short port_mapping[] = {
5017 [PORT_B] = PORT_IDPB,
5018 [PORT_C] = PORT_IDPC,
5019 [PORT_D] = PORT_IDPD,
5020 };
5021
5022 if (port == PORT_A)
5023 return true;
5024
5025 if (!dev_priv->vbt.child_dev_num)
5026 return false;
5027
5028 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5029 p_child = dev_priv->vbt.child_dev + i;
5030
5031 if (p_child->common.dvo_port == port_mapping[port] &&
5032 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5033 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5034 return true;
5035 }
5036 return false;
5037 }
5038
5039 void
5040 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5041 {
5042 struct intel_connector *intel_connector = to_intel_connector(connector);
5043
5044 intel_attach_force_audio_property(connector);
5045 intel_attach_broadcast_rgb_property(connector);
5046 intel_dp->color_range_auto = true;
5047
5048 if (is_edp(intel_dp)) {
5049 drm_mode_create_scaling_mode_property(connector->dev);
5050 drm_object_attach_property(
5051 &connector->base,
5052 connector->dev->mode_config.scaling_mode_property,
5053 DRM_MODE_SCALE_ASPECT);
5054 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5055 }
5056 }
5057
5058 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5059 {
5060 intel_dp->last_power_cycle = jiffies;
5061 intel_dp->last_power_on = jiffies;
5062 intel_dp->last_backlight_off = jiffies;
5063 }
5064
5065 static void
5066 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5067 struct intel_dp *intel_dp)
5068 {
5069 struct drm_i915_private *dev_priv = dev->dev_private;
5070 struct edp_power_seq cur, vbt, spec,
5071 *final = &intel_dp->pps_delays;
5072 u32 pp_on, pp_off, pp_div, pp;
5073 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
5074
5075 lockdep_assert_held(&dev_priv->pps_mutex);
5076
5077 /* already initialized? */
5078 if (final->t11_t12 != 0)
5079 return;
5080
5081 if (HAS_PCH_SPLIT(dev)) {
5082 pp_ctrl_reg = PCH_PP_CONTROL;
5083 pp_on_reg = PCH_PP_ON_DELAYS;
5084 pp_off_reg = PCH_PP_OFF_DELAYS;
5085 pp_div_reg = PCH_PP_DIVISOR;
5086 } else {
5087 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5088
5089 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5090 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5091 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5092 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5093 }
5094
5095 /* Workaround: Need to write PP_CONTROL with the unlock key as
5096 * the very first thing. */
5097 pp = ironlake_get_pp_control(intel_dp);
5098 I915_WRITE(pp_ctrl_reg, pp);
5099
5100 pp_on = I915_READ(pp_on_reg);
5101 pp_off = I915_READ(pp_off_reg);
5102 pp_div = I915_READ(pp_div_reg);
5103
5104 /* Pull timing values out of registers */
5105 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5106 PANEL_POWER_UP_DELAY_SHIFT;
5107
5108 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5109 PANEL_LIGHT_ON_DELAY_SHIFT;
5110
5111 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5112 PANEL_LIGHT_OFF_DELAY_SHIFT;
5113
5114 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5115 PANEL_POWER_DOWN_DELAY_SHIFT;
5116
5117 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5118 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5119
5120 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5121 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5122
5123 vbt = dev_priv->vbt.edp_pps;
5124
5125 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5126 * our hw here, which are all in 100usec. */
5127 spec.t1_t3 = 210 * 10;
5128 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5129 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5130 spec.t10 = 500 * 10;
5131 /* This one is special and actually in units of 100ms, but zero
5132 * based in the hw (so we need to add 100 ms). But the sw vbt
5133 * table multiplies it with 1000 to make it in units of 100usec,
5134 * too. */
5135 spec.t11_t12 = (510 + 100) * 10;
5136
5137 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5138 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5139
5140 /* Use the max of the register settings and vbt. If both are
5141 * unset, fall back to the spec limits. */
5142 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5143 spec.field : \
5144 max(cur.field, vbt.field))
5145 assign_final(t1_t3);
5146 assign_final(t8);
5147 assign_final(t9);
5148 assign_final(t10);
5149 assign_final(t11_t12);
5150 #undef assign_final
5151
5152 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5153 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5154 intel_dp->backlight_on_delay = get_delay(t8);
5155 intel_dp->backlight_off_delay = get_delay(t9);
5156 intel_dp->panel_power_down_delay = get_delay(t10);
5157 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5158 #undef get_delay
5159
5160 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5161 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5162 intel_dp->panel_power_cycle_delay);
5163
5164 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5165 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5166 }
5167
5168 static void
5169 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5170 struct intel_dp *intel_dp)
5171 {
5172 struct drm_i915_private *dev_priv = dev->dev_private;
5173 u32 pp_on, pp_off, pp_div, port_sel = 0;
5174 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5175 int pp_on_reg, pp_off_reg, pp_div_reg;
5176 enum port port = dp_to_dig_port(intel_dp)->port;
5177 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5178
5179 lockdep_assert_held(&dev_priv->pps_mutex);
5180
5181 if (HAS_PCH_SPLIT(dev)) {
5182 pp_on_reg = PCH_PP_ON_DELAYS;
5183 pp_off_reg = PCH_PP_OFF_DELAYS;
5184 pp_div_reg = PCH_PP_DIVISOR;
5185 } else {
5186 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5187
5188 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5189 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5190 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5191 }
5192
5193 /*
5194 * And finally store the new values in the power sequencer. The
5195 * backlight delays are set to 1 because we do manual waits on them. For
5196 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5197 * we'll end up waiting for the backlight off delay twice: once when we
5198 * do the manual sleep, and once when we disable the panel and wait for
5199 * the PP_STATUS bit to become zero.
5200 */
5201 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5202 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5203 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5204 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5205 /* Compute the divisor for the pp clock, simply match the Bspec
5206 * formula. */
5207 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5208 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5209 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5210
5211 /* Haswell doesn't have any port selection bits for the panel
5212 * power sequencer any more. */
5213 if (IS_VALLEYVIEW(dev)) {
5214 port_sel = PANEL_PORT_SELECT_VLV(port);
5215 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5216 if (port == PORT_A)
5217 port_sel = PANEL_PORT_SELECT_DPA;
5218 else
5219 port_sel = PANEL_PORT_SELECT_DPD;
5220 }
5221
5222 pp_on |= port_sel;
5223
5224 I915_WRITE(pp_on_reg, pp_on);
5225 I915_WRITE(pp_off_reg, pp_off);
5226 I915_WRITE(pp_div_reg, pp_div);
5227
5228 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5229 I915_READ(pp_on_reg),
5230 I915_READ(pp_off_reg),
5231 I915_READ(pp_div_reg));
5232 }
5233
5234 /**
5235 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5236 * @dev: DRM device
5237 * @refresh_rate: RR to be programmed
5238 *
5239 * This function gets called when refresh rate (RR) has to be changed from
5240 * one frequency to another. Switches can be between high and low RR
5241 * supported by the panel or to any other RR based on media playback (in
5242 * this case, RR value needs to be passed from user space).
5243 *
5244 * The caller of this function needs to take a lock on dev_priv->drrs.
5245 */
5246 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5247 {
5248 struct drm_i915_private *dev_priv = dev->dev_private;
5249 struct intel_encoder *encoder;
5250 struct intel_digital_port *dig_port = NULL;
5251 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5252 struct intel_crtc_state *config = NULL;
5253 struct intel_crtc *intel_crtc = NULL;
5254 u32 reg, val;
5255 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5256
5257 if (refresh_rate <= 0) {
5258 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5259 return;
5260 }
5261
5262 if (intel_dp == NULL) {
5263 DRM_DEBUG_KMS("DRRS not supported.\n");
5264 return;
5265 }
5266
5267 /*
5268 * FIXME: This needs proper synchronization with psr state for some
5269 * platforms that cannot have PSR and DRRS enabled at the same time.
5270 */
5271
5272 dig_port = dp_to_dig_port(intel_dp);
5273 encoder = &dig_port->base;
5274 intel_crtc = to_intel_crtc(encoder->base.crtc);
5275
5276 if (!intel_crtc) {
5277 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5278 return;
5279 }
5280
5281 config = intel_crtc->config;
5282
5283 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5284 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5285 return;
5286 }
5287
5288 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5289 refresh_rate)
5290 index = DRRS_LOW_RR;
5291
5292 if (index == dev_priv->drrs.refresh_rate_type) {
5293 DRM_DEBUG_KMS(
5294 "DRRS requested for previously set RR...ignoring\n");
5295 return;
5296 }
5297
5298 if (!intel_crtc->active) {
5299 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5300 return;
5301 }
5302
5303 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5304 switch (index) {
5305 case DRRS_HIGH_RR:
5306 intel_dp_set_m_n(intel_crtc, M1_N1);
5307 break;
5308 case DRRS_LOW_RR:
5309 intel_dp_set_m_n(intel_crtc, M2_N2);
5310 break;
5311 case DRRS_MAX_RR:
5312 default:
5313 DRM_ERROR("Unsupported refreshrate type\n");
5314 }
5315 } else if (INTEL_INFO(dev)->gen > 6) {
5316 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5317 val = I915_READ(reg);
5318
5319 if (index > DRRS_HIGH_RR) {
5320 if (IS_VALLEYVIEW(dev))
5321 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5322 else
5323 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5324 } else {
5325 if (IS_VALLEYVIEW(dev))
5326 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5327 else
5328 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5329 }
5330 I915_WRITE(reg, val);
5331 }
5332
5333 dev_priv->drrs.refresh_rate_type = index;
5334
5335 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5336 }
5337
5338 /**
5339 * intel_edp_drrs_enable - init drrs struct if supported
5340 * @intel_dp: DP struct
5341 *
5342 * Initializes frontbuffer_bits and drrs.dp
5343 */
5344 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5345 {
5346 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5347 struct drm_i915_private *dev_priv = dev->dev_private;
5348 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5349 struct drm_crtc *crtc = dig_port->base.base.crtc;
5350 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5351
5352 if (!intel_crtc->config->has_drrs) {
5353 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5354 return;
5355 }
5356
5357 mutex_lock(&dev_priv->drrs.mutex);
5358 if (WARN_ON(dev_priv->drrs.dp)) {
5359 DRM_ERROR("DRRS already enabled\n");
5360 goto unlock;
5361 }
5362
5363 dev_priv->drrs.busy_frontbuffer_bits = 0;
5364
5365 dev_priv->drrs.dp = intel_dp;
5366
5367 unlock:
5368 mutex_unlock(&dev_priv->drrs.mutex);
5369 }
5370
5371 /**
5372 * intel_edp_drrs_disable - Disable DRRS
5373 * @intel_dp: DP struct
5374 *
5375 */
5376 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5377 {
5378 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5379 struct drm_i915_private *dev_priv = dev->dev_private;
5380 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5381 struct drm_crtc *crtc = dig_port->base.base.crtc;
5382 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5383
5384 if (!intel_crtc->config->has_drrs)
5385 return;
5386
5387 mutex_lock(&dev_priv->drrs.mutex);
5388 if (!dev_priv->drrs.dp) {
5389 mutex_unlock(&dev_priv->drrs.mutex);
5390 return;
5391 }
5392
5393 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5394 intel_dp_set_drrs_state(dev_priv->dev,
5395 intel_dp->attached_connector->panel.
5396 fixed_mode->vrefresh);
5397
5398 dev_priv->drrs.dp = NULL;
5399 mutex_unlock(&dev_priv->drrs.mutex);
5400
5401 cancel_delayed_work_sync(&dev_priv->drrs.work);
5402 }
5403
5404 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5405 {
5406 struct drm_i915_private *dev_priv =
5407 container_of(work, typeof(*dev_priv), drrs.work.work);
5408 struct intel_dp *intel_dp;
5409
5410 mutex_lock(&dev_priv->drrs.mutex);
5411
5412 intel_dp = dev_priv->drrs.dp;
5413
5414 if (!intel_dp)
5415 goto unlock;
5416
5417 /*
5418 * The delayed work can race with an invalidate hence we need to
5419 * recheck.
5420 */
5421
5422 if (dev_priv->drrs.busy_frontbuffer_bits)
5423 goto unlock;
5424
5425 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5426 intel_dp_set_drrs_state(dev_priv->dev,
5427 intel_dp->attached_connector->panel.
5428 downclock_mode->vrefresh);
5429
5430 unlock:
5431 mutex_unlock(&dev_priv->drrs.mutex);
5432 }
5433
5434 /**
5435 * intel_edp_drrs_invalidate - Invalidate DRRS
5436 * @dev: DRM device
5437 * @frontbuffer_bits: frontbuffer plane tracking bits
5438 *
5439 * When there is a disturbance on screen (due to cursor movement/time
5440 * update etc), DRRS needs to be invalidated, i.e. need to switch to
5441 * high RR.
5442 *
5443 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5444 */
5445 void intel_edp_drrs_invalidate(struct drm_device *dev,
5446 unsigned frontbuffer_bits)
5447 {
5448 struct drm_i915_private *dev_priv = dev->dev_private;
5449 struct drm_crtc *crtc;
5450 enum pipe pipe;
5451
5452 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5453 return;
5454
5455 cancel_delayed_work(&dev_priv->drrs.work);
5456
5457 mutex_lock(&dev_priv->drrs.mutex);
5458 if (!dev_priv->drrs.dp) {
5459 mutex_unlock(&dev_priv->drrs.mutex);
5460 return;
5461 }
5462
5463 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5464 pipe = to_intel_crtc(crtc)->pipe;
5465
5466 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
5467 intel_dp_set_drrs_state(dev_priv->dev,
5468 dev_priv->drrs.dp->attached_connector->panel.
5469 fixed_mode->vrefresh);
5470 }
5471
5472 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5473
5474 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5475 mutex_unlock(&dev_priv->drrs.mutex);
5476 }
5477
5478 /**
5479 * intel_edp_drrs_flush - Flush DRRS
5480 * @dev: DRM device
5481 * @frontbuffer_bits: frontbuffer plane tracking bits
5482 *
5483 * When there is no movement on screen, DRRS work can be scheduled.
5484 * This DRRS work is responsible for setting relevant registers after a
5485 * timeout of 1 second.
5486 *
5487 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5488 */
5489 void intel_edp_drrs_flush(struct drm_device *dev,
5490 unsigned frontbuffer_bits)
5491 {
5492 struct drm_i915_private *dev_priv = dev->dev_private;
5493 struct drm_crtc *crtc;
5494 enum pipe pipe;
5495
5496 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5497 return;
5498
5499 cancel_delayed_work(&dev_priv->drrs.work);
5500
5501 mutex_lock(&dev_priv->drrs.mutex);
5502 if (!dev_priv->drrs.dp) {
5503 mutex_unlock(&dev_priv->drrs.mutex);
5504 return;
5505 }
5506
5507 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5508 pipe = to_intel_crtc(crtc)->pipe;
5509 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5510
5511 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR &&
5512 !dev_priv->drrs.busy_frontbuffer_bits)
5513 schedule_delayed_work(&dev_priv->drrs.work,
5514 msecs_to_jiffies(1000));
5515 mutex_unlock(&dev_priv->drrs.mutex);
5516 }
5517
5518 /**
5519 * DOC: Display Refresh Rate Switching (DRRS)
5520 *
5521 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5522 * which enables swtching between low and high refresh rates,
5523 * dynamically, based on the usage scenario. This feature is applicable
5524 * for internal panels.
5525 *
5526 * Indication that the panel supports DRRS is given by the panel EDID, which
5527 * would list multiple refresh rates for one resolution.
5528 *
5529 * DRRS is of 2 types - static and seamless.
5530 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5531 * (may appear as a blink on screen) and is used in dock-undock scenario.
5532 * Seamless DRRS involves changing RR without any visual effect to the user
5533 * and can be used during normal system usage. This is done by programming
5534 * certain registers.
5535 *
5536 * Support for static/seamless DRRS may be indicated in the VBT based on
5537 * inputs from the panel spec.
5538 *
5539 * DRRS saves power by switching to low RR based on usage scenarios.
5540 *
5541 * eDP DRRS:-
5542 * The implementation is based on frontbuffer tracking implementation.
5543 * When there is a disturbance on the screen triggered by user activity or a
5544 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5545 * When there is no movement on screen, after a timeout of 1 second, a switch
5546 * to low RR is made.
5547 * For integration with frontbuffer tracking code,
5548 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5549 *
5550 * DRRS can be further extended to support other internal panels and also
5551 * the scenario of video playback wherein RR is set based on the rate
5552 * requested by userspace.
5553 */
5554
5555 /**
5556 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5557 * @intel_connector: eDP connector
5558 * @fixed_mode: preferred mode of panel
5559 *
5560 * This function is called only once at driver load to initialize basic
5561 * DRRS stuff.
5562 *
5563 * Returns:
5564 * Downclock mode if panel supports it, else return NULL.
5565 * DRRS support is determined by the presence of downclock mode (apart
5566 * from VBT setting).
5567 */
5568 static struct drm_display_mode *
5569 intel_dp_drrs_init(struct intel_connector *intel_connector,
5570 struct drm_display_mode *fixed_mode)
5571 {
5572 struct drm_connector *connector = &intel_connector->base;
5573 struct drm_device *dev = connector->dev;
5574 struct drm_i915_private *dev_priv = dev->dev_private;
5575 struct drm_display_mode *downclock_mode = NULL;
5576
5577 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5578 mutex_init(&dev_priv->drrs.mutex);
5579
5580 if (INTEL_INFO(dev)->gen <= 6) {
5581 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5582 return NULL;
5583 }
5584
5585 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5586 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5587 return NULL;
5588 }
5589
5590 downclock_mode = intel_find_panel_downclock
5591 (dev, fixed_mode, connector);
5592
5593 if (!downclock_mode) {
5594 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5595 return NULL;
5596 }
5597
5598 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5599
5600 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5601 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5602 return downclock_mode;
5603 }
5604
5605 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5606 struct intel_connector *intel_connector)
5607 {
5608 struct drm_connector *connector = &intel_connector->base;
5609 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5610 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5611 struct drm_device *dev = intel_encoder->base.dev;
5612 struct drm_i915_private *dev_priv = dev->dev_private;
5613 struct drm_display_mode *fixed_mode = NULL;
5614 struct drm_display_mode *downclock_mode = NULL;
5615 bool has_dpcd;
5616 struct drm_display_mode *scan;
5617 struct edid *edid;
5618 enum pipe pipe = INVALID_PIPE;
5619
5620 if (!is_edp(intel_dp))
5621 return true;
5622
5623 pps_lock(intel_dp);
5624 intel_edp_panel_vdd_sanitize(intel_dp);
5625 pps_unlock(intel_dp);
5626
5627 /* Cache DPCD and EDID for edp. */
5628 has_dpcd = intel_dp_get_dpcd(intel_dp);
5629
5630 if (has_dpcd) {
5631 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5632 dev_priv->no_aux_handshake =
5633 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5634 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5635 } else {
5636 /* if this fails, presume the device is a ghost */
5637 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5638 return false;
5639 }
5640
5641 /* We now know it's not a ghost, init power sequence regs. */
5642 pps_lock(intel_dp);
5643 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5644 pps_unlock(intel_dp);
5645
5646 mutex_lock(&dev->mode_config.mutex);
5647 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5648 if (edid) {
5649 if (drm_add_edid_modes(connector, edid)) {
5650 drm_mode_connector_update_edid_property(connector,
5651 edid);
5652 drm_edid_to_eld(connector, edid);
5653 } else {
5654 kfree(edid);
5655 edid = ERR_PTR(-EINVAL);
5656 }
5657 } else {
5658 edid = ERR_PTR(-ENOENT);
5659 }
5660 intel_connector->edid = edid;
5661
5662 /* prefer fixed mode from EDID if available */
5663 list_for_each_entry(scan, &connector->probed_modes, head) {
5664 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5665 fixed_mode = drm_mode_duplicate(dev, scan);
5666 downclock_mode = intel_dp_drrs_init(
5667 intel_connector, fixed_mode);
5668 break;
5669 }
5670 }
5671
5672 /* fallback to VBT if available for eDP */
5673 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5674 fixed_mode = drm_mode_duplicate(dev,
5675 dev_priv->vbt.lfp_lvds_vbt_mode);
5676 if (fixed_mode)
5677 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5678 }
5679 mutex_unlock(&dev->mode_config.mutex);
5680
5681 if (IS_VALLEYVIEW(dev)) {
5682 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5683 register_reboot_notifier(&intel_dp->edp_notifier);
5684
5685 /*
5686 * Figure out the current pipe for the initial backlight setup.
5687 * If the current pipe isn't valid, try the PPS pipe, and if that
5688 * fails just assume pipe A.
5689 */
5690 if (IS_CHERRYVIEW(dev))
5691 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5692 else
5693 pipe = PORT_TO_PIPE(intel_dp->DP);
5694
5695 if (pipe != PIPE_A && pipe != PIPE_B)
5696 pipe = intel_dp->pps_pipe;
5697
5698 if (pipe != PIPE_A && pipe != PIPE_B)
5699 pipe = PIPE_A;
5700
5701 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5702 pipe_name(pipe));
5703 }
5704
5705 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5706 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5707 intel_panel_setup_backlight(connector, pipe);
5708
5709 return true;
5710 }
5711
5712 bool
5713 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5714 struct intel_connector *intel_connector)
5715 {
5716 struct drm_connector *connector = &intel_connector->base;
5717 struct intel_dp *intel_dp = &intel_dig_port->dp;
5718 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5719 struct drm_device *dev = intel_encoder->base.dev;
5720 struct drm_i915_private *dev_priv = dev->dev_private;
5721 enum port port = intel_dig_port->port;
5722 int type;
5723
5724 intel_dp->pps_pipe = INVALID_PIPE;
5725
5726 /* intel_dp vfuncs */
5727 if (INTEL_INFO(dev)->gen >= 9)
5728 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5729 else if (IS_VALLEYVIEW(dev))
5730 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5731 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5732 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5733 else if (HAS_PCH_SPLIT(dev))
5734 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5735 else
5736 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5737
5738 if (INTEL_INFO(dev)->gen >= 9)
5739 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5740 else
5741 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5742
5743 /* Preserve the current hw state. */
5744 intel_dp->DP = I915_READ(intel_dp->output_reg);
5745 intel_dp->attached_connector = intel_connector;
5746
5747 if (intel_dp_is_edp(dev, port))
5748 type = DRM_MODE_CONNECTOR_eDP;
5749 else
5750 type = DRM_MODE_CONNECTOR_DisplayPort;
5751
5752 /*
5753 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5754 * for DP the encoder type can be set by the caller to
5755 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5756 */
5757 if (type == DRM_MODE_CONNECTOR_eDP)
5758 intel_encoder->type = INTEL_OUTPUT_EDP;
5759
5760 /* eDP only on port B and/or C on vlv/chv */
5761 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5762 port != PORT_B && port != PORT_C))
5763 return false;
5764
5765 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5766 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5767 port_name(port));
5768
5769 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5770 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5771
5772 connector->interlace_allowed = true;
5773 connector->doublescan_allowed = 0;
5774
5775 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5776 edp_panel_vdd_work);
5777
5778 intel_connector_attach_encoder(intel_connector, intel_encoder);
5779 drm_connector_register(connector);
5780
5781 if (HAS_DDI(dev))
5782 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5783 else
5784 intel_connector->get_hw_state = intel_connector_get_hw_state;
5785 intel_connector->unregister = intel_dp_connector_unregister;
5786
5787 /* Set up the hotplug pin. */
5788 switch (port) {
5789 case PORT_A:
5790 intel_encoder->hpd_pin = HPD_PORT_A;
5791 break;
5792 case PORT_B:
5793 intel_encoder->hpd_pin = HPD_PORT_B;
5794 break;
5795 case PORT_C:
5796 intel_encoder->hpd_pin = HPD_PORT_C;
5797 break;
5798 case PORT_D:
5799 intel_encoder->hpd_pin = HPD_PORT_D;
5800 break;
5801 default:
5802 BUG();
5803 }
5804
5805 if (is_edp(intel_dp)) {
5806 pps_lock(intel_dp);
5807 intel_dp_init_panel_power_timestamps(intel_dp);
5808 if (IS_VALLEYVIEW(dev))
5809 vlv_initial_power_sequencer_setup(intel_dp);
5810 else
5811 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5812 pps_unlock(intel_dp);
5813 }
5814
5815 intel_dp_aux_init(intel_dp, intel_connector);
5816
5817 /* init MST on ports that can support it */
5818 if (HAS_DP_MST(dev) &&
5819 (port == PORT_B || port == PORT_C || port == PORT_D))
5820 intel_dp_mst_encoder_init(intel_dig_port,
5821 intel_connector->base.base.id);
5822
5823 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5824 drm_dp_aux_unregister(&intel_dp->aux);
5825 if (is_edp(intel_dp)) {
5826 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5827 /*
5828 * vdd might still be enabled do to the delayed vdd off.
5829 * Make sure vdd is actually turned off here.
5830 */
5831 pps_lock(intel_dp);
5832 edp_panel_vdd_off_sync(intel_dp);
5833 pps_unlock(intel_dp);
5834 }
5835 drm_connector_unregister(connector);
5836 drm_connector_cleanup(connector);
5837 return false;
5838 }
5839
5840 intel_dp_add_properties(intel_dp, connector);
5841
5842 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5843 * 0xd. Failure to do so will result in spurious interrupts being
5844 * generated on the port when a cable is not attached.
5845 */
5846 if (IS_G4X(dev) && !IS_GM45(dev)) {
5847 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5848 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5849 }
5850
5851 i915_debugfs_connector_add(connector);
5852
5853 return true;
5854 }
5855
5856 void
5857 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5858 {
5859 struct drm_i915_private *dev_priv = dev->dev_private;
5860 struct intel_digital_port *intel_dig_port;
5861 struct intel_encoder *intel_encoder;
5862 struct drm_encoder *encoder;
5863 struct intel_connector *intel_connector;
5864
5865 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5866 if (!intel_dig_port)
5867 return;
5868
5869 intel_connector = intel_connector_alloc();
5870 if (!intel_connector) {
5871 kfree(intel_dig_port);
5872 return;
5873 }
5874
5875 intel_encoder = &intel_dig_port->base;
5876 encoder = &intel_encoder->base;
5877
5878 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5879 DRM_MODE_ENCODER_TMDS);
5880
5881 intel_encoder->compute_config = intel_dp_compute_config;
5882 intel_encoder->disable = intel_disable_dp;
5883 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5884 intel_encoder->get_config = intel_dp_get_config;
5885 intel_encoder->suspend = intel_dp_encoder_suspend;
5886 if (IS_CHERRYVIEW(dev)) {
5887 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5888 intel_encoder->pre_enable = chv_pre_enable_dp;
5889 intel_encoder->enable = vlv_enable_dp;
5890 intel_encoder->post_disable = chv_post_disable_dp;
5891 } else if (IS_VALLEYVIEW(dev)) {
5892 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5893 intel_encoder->pre_enable = vlv_pre_enable_dp;
5894 intel_encoder->enable = vlv_enable_dp;
5895 intel_encoder->post_disable = vlv_post_disable_dp;
5896 } else {
5897 intel_encoder->pre_enable = g4x_pre_enable_dp;
5898 intel_encoder->enable = g4x_enable_dp;
5899 if (INTEL_INFO(dev)->gen >= 5)
5900 intel_encoder->post_disable = ilk_post_disable_dp;
5901 }
5902
5903 intel_dig_port->port = port;
5904 intel_dig_port->dp.output_reg = output_reg;
5905
5906 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5907 if (IS_CHERRYVIEW(dev)) {
5908 if (port == PORT_D)
5909 intel_encoder->crtc_mask = 1 << 2;
5910 else
5911 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5912 } else {
5913 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5914 }
5915 intel_encoder->cloneable = 0;
5916 intel_encoder->hot_plug = intel_dp_hot_plug;
5917
5918 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5919 dev_priv->hpd_irq_port[port] = intel_dig_port;
5920
5921 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5922 drm_encoder_cleanup(encoder);
5923 kfree(intel_dig_port);
5924 kfree(intel_connector);
5925 }
5926 }
5927
5928 void intel_dp_mst_suspend(struct drm_device *dev)
5929 {
5930 struct drm_i915_private *dev_priv = dev->dev_private;
5931 int i;
5932
5933 /* disable MST */
5934 for (i = 0; i < I915_MAX_PORTS; i++) {
5935 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5936 if (!intel_dig_port)
5937 continue;
5938
5939 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5940 if (!intel_dig_port->dp.can_mst)
5941 continue;
5942 if (intel_dig_port->dp.is_mst)
5943 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5944 }
5945 }
5946 }
5947
5948 void intel_dp_mst_resume(struct drm_device *dev)
5949 {
5950 struct drm_i915_private *dev_priv = dev->dev_private;
5951 int i;
5952
5953 for (i = 0; i < I915_MAX_PORTS; i++) {
5954 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5955 if (!intel_dig_port)
5956 continue;
5957 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5958 int ret;
5959
5960 if (!intel_dig_port->dp.can_mst)
5961 continue;
5962
5963 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5964 if (ret != 0) {
5965 intel_dp_check_mst_status(&intel_dig_port->dp);
5966 }
5967 }
5968 }
5969 }
This page took 0.146159 seconds and 6 git commands to generate.