drm/i915/bxt: eDP Panel Power sequencing
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int link_bw;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { DP_LINK_BW_1_62,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { DP_LINK_BW_2_7,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int chv_rates[] = { 162000, 202500, 210000, 216000,
99 243000, 270000, 324000, 405000,
100 420000, 432000, 540000 };
101 static const int default_rates[] = { 162000, 270000, 540000 };
102
103 /**
104 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
105 * @intel_dp: DP struct
106 *
107 * If a CPU or PCH DP output is attached to an eDP panel, this function
108 * will return true, and false otherwise.
109 */
110 static bool is_edp(struct intel_dp *intel_dp)
111 {
112 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
113
114 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
115 }
116
117 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
118 {
119 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
120
121 return intel_dig_port->base.base.dev;
122 }
123
124 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
125 {
126 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
127 }
128
129 static void intel_dp_link_down(struct intel_dp *intel_dp);
130 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
131 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
132 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
133 static void vlv_steal_power_sequencer(struct drm_device *dev,
134 enum pipe pipe);
135
136 static int
137 intel_dp_max_link_bw(struct intel_dp *intel_dp)
138 {
139 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
140
141 switch (max_link_bw) {
142 case DP_LINK_BW_1_62:
143 case DP_LINK_BW_2_7:
144 case DP_LINK_BW_5_4:
145 break;
146 default:
147 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
148 max_link_bw);
149 max_link_bw = DP_LINK_BW_1_62;
150 break;
151 }
152 return max_link_bw;
153 }
154
155 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
156 {
157 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
158 struct drm_device *dev = intel_dig_port->base.base.dev;
159 u8 source_max, sink_max;
160
161 source_max = 4;
162 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
163 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
164 source_max = 2;
165
166 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
167
168 return min(source_max, sink_max);
169 }
170
171 /*
172 * The units on the numbers in the next two are... bizarre. Examples will
173 * make it clearer; this one parallels an example in the eDP spec.
174 *
175 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
176 *
177 * 270000 * 1 * 8 / 10 == 216000
178 *
179 * The actual data capacity of that configuration is 2.16Gbit/s, so the
180 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
181 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
182 * 119000. At 18bpp that's 2142000 kilobits per second.
183 *
184 * Thus the strange-looking division by 10 in intel_dp_link_required, to
185 * get the result in decakilobits instead of kilobits.
186 */
187
188 static int
189 intel_dp_link_required(int pixel_clock, int bpp)
190 {
191 return (pixel_clock * bpp + 9) / 10;
192 }
193
194 static int
195 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
196 {
197 return (max_link_clock * max_lanes * 8) / 10;
198 }
199
200 static enum drm_mode_status
201 intel_dp_mode_valid(struct drm_connector *connector,
202 struct drm_display_mode *mode)
203 {
204 struct intel_dp *intel_dp = intel_attached_dp(connector);
205 struct intel_connector *intel_connector = to_intel_connector(connector);
206 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
207 int target_clock = mode->clock;
208 int max_rate, mode_rate, max_lanes, max_link_clock;
209
210 if (is_edp(intel_dp) && fixed_mode) {
211 if (mode->hdisplay > fixed_mode->hdisplay)
212 return MODE_PANEL;
213
214 if (mode->vdisplay > fixed_mode->vdisplay)
215 return MODE_PANEL;
216
217 target_clock = fixed_mode->clock;
218 }
219
220 max_link_clock = intel_dp_max_link_rate(intel_dp);
221 max_lanes = intel_dp_max_lane_count(intel_dp);
222
223 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
224 mode_rate = intel_dp_link_required(target_clock, 18);
225
226 if (mode_rate > max_rate)
227 return MODE_CLOCK_HIGH;
228
229 if (mode->clock < 10000)
230 return MODE_CLOCK_LOW;
231
232 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
233 return MODE_H_ILLEGAL;
234
235 return MODE_OK;
236 }
237
238 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
239 {
240 int i;
241 uint32_t v = 0;
242
243 if (src_bytes > 4)
244 src_bytes = 4;
245 for (i = 0; i < src_bytes; i++)
246 v |= ((uint32_t) src[i]) << ((3-i) * 8);
247 return v;
248 }
249
250 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251 {
252 int i;
253 if (dst_bytes > 4)
254 dst_bytes = 4;
255 for (i = 0; i < dst_bytes; i++)
256 dst[i] = src >> ((3-i) * 8);
257 }
258
259 /* hrawclock is 1/4 the FSB frequency */
260 static int
261 intel_hrawclk(struct drm_device *dev)
262 {
263 struct drm_i915_private *dev_priv = dev->dev_private;
264 uint32_t clkcfg;
265
266 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267 if (IS_VALLEYVIEW(dev))
268 return 200;
269
270 clkcfg = I915_READ(CLKCFG);
271 switch (clkcfg & CLKCFG_FSB_MASK) {
272 case CLKCFG_FSB_400:
273 return 100;
274 case CLKCFG_FSB_533:
275 return 133;
276 case CLKCFG_FSB_667:
277 return 166;
278 case CLKCFG_FSB_800:
279 return 200;
280 case CLKCFG_FSB_1067:
281 return 266;
282 case CLKCFG_FSB_1333:
283 return 333;
284 /* these two are just a guess; one of them might be right */
285 case CLKCFG_FSB_1600:
286 case CLKCFG_FSB_1600_ALT:
287 return 400;
288 default:
289 return 133;
290 }
291 }
292
293 static void
294 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
295 struct intel_dp *intel_dp);
296 static void
297 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
298 struct intel_dp *intel_dp);
299
300 static void pps_lock(struct intel_dp *intel_dp)
301 {
302 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
303 struct intel_encoder *encoder = &intel_dig_port->base;
304 struct drm_device *dev = encoder->base.dev;
305 struct drm_i915_private *dev_priv = dev->dev_private;
306 enum intel_display_power_domain power_domain;
307
308 /*
309 * See vlv_power_sequencer_reset() why we need
310 * a power domain reference here.
311 */
312 power_domain = intel_display_port_power_domain(encoder);
313 intel_display_power_get(dev_priv, power_domain);
314
315 mutex_lock(&dev_priv->pps_mutex);
316 }
317
318 static void pps_unlock(struct intel_dp *intel_dp)
319 {
320 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
321 struct intel_encoder *encoder = &intel_dig_port->base;
322 struct drm_device *dev = encoder->base.dev;
323 struct drm_i915_private *dev_priv = dev->dev_private;
324 enum intel_display_power_domain power_domain;
325
326 mutex_unlock(&dev_priv->pps_mutex);
327
328 power_domain = intel_display_port_power_domain(encoder);
329 intel_display_power_put(dev_priv, power_domain);
330 }
331
332 static void
333 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
334 {
335 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
336 struct drm_device *dev = intel_dig_port->base.base.dev;
337 struct drm_i915_private *dev_priv = dev->dev_private;
338 enum pipe pipe = intel_dp->pps_pipe;
339 bool pll_enabled;
340 uint32_t DP;
341
342 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
343 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
344 pipe_name(pipe), port_name(intel_dig_port->port)))
345 return;
346
347 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
348 pipe_name(pipe), port_name(intel_dig_port->port));
349
350 /* Preserve the BIOS-computed detected bit. This is
351 * supposed to be read-only.
352 */
353 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
354 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
355 DP |= DP_PORT_WIDTH(1);
356 DP |= DP_LINK_TRAIN_PAT_1;
357
358 if (IS_CHERRYVIEW(dev))
359 DP |= DP_PIPE_SELECT_CHV(pipe);
360 else if (pipe == PIPE_B)
361 DP |= DP_PIPEB_SELECT;
362
363 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
364
365 /*
366 * The DPLL for the pipe must be enabled for this to work.
367 * So enable temporarily it if it's not already enabled.
368 */
369 if (!pll_enabled)
370 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
371 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
372
373 /*
374 * Similar magic as in intel_dp_enable_port().
375 * We _must_ do this port enable + disable trick
376 * to make this power seqeuencer lock onto the port.
377 * Otherwise even VDD force bit won't work.
378 */
379 I915_WRITE(intel_dp->output_reg, DP);
380 POSTING_READ(intel_dp->output_reg);
381
382 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
383 POSTING_READ(intel_dp->output_reg);
384
385 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
386 POSTING_READ(intel_dp->output_reg);
387
388 if (!pll_enabled)
389 vlv_force_pll_off(dev, pipe);
390 }
391
392 static enum pipe
393 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
394 {
395 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
396 struct drm_device *dev = intel_dig_port->base.base.dev;
397 struct drm_i915_private *dev_priv = dev->dev_private;
398 struct intel_encoder *encoder;
399 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
400 enum pipe pipe;
401
402 lockdep_assert_held(&dev_priv->pps_mutex);
403
404 /* We should never land here with regular DP ports */
405 WARN_ON(!is_edp(intel_dp));
406
407 if (intel_dp->pps_pipe != INVALID_PIPE)
408 return intel_dp->pps_pipe;
409
410 /*
411 * We don't have power sequencer currently.
412 * Pick one that's not used by other ports.
413 */
414 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
415 base.head) {
416 struct intel_dp *tmp;
417
418 if (encoder->type != INTEL_OUTPUT_EDP)
419 continue;
420
421 tmp = enc_to_intel_dp(&encoder->base);
422
423 if (tmp->pps_pipe != INVALID_PIPE)
424 pipes &= ~(1 << tmp->pps_pipe);
425 }
426
427 /*
428 * Didn't find one. This should not happen since there
429 * are two power sequencers and up to two eDP ports.
430 */
431 if (WARN_ON(pipes == 0))
432 pipe = PIPE_A;
433 else
434 pipe = ffs(pipes) - 1;
435
436 vlv_steal_power_sequencer(dev, pipe);
437 intel_dp->pps_pipe = pipe;
438
439 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
440 pipe_name(intel_dp->pps_pipe),
441 port_name(intel_dig_port->port));
442
443 /* init power sequencer on this pipe and port */
444 intel_dp_init_panel_power_sequencer(dev, intel_dp);
445 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
446
447 /*
448 * Even vdd force doesn't work until we've made
449 * the power sequencer lock in on the port.
450 */
451 vlv_power_sequencer_kick(intel_dp);
452
453 return intel_dp->pps_pipe;
454 }
455
456 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
457 enum pipe pipe);
458
459 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
460 enum pipe pipe)
461 {
462 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
463 }
464
465 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
466 enum pipe pipe)
467 {
468 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
469 }
470
471 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
472 enum pipe pipe)
473 {
474 return true;
475 }
476
477 static enum pipe
478 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
479 enum port port,
480 vlv_pipe_check pipe_check)
481 {
482 enum pipe pipe;
483
484 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
485 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
486 PANEL_PORT_SELECT_MASK;
487
488 if (port_sel != PANEL_PORT_SELECT_VLV(port))
489 continue;
490
491 if (!pipe_check(dev_priv, pipe))
492 continue;
493
494 return pipe;
495 }
496
497 return INVALID_PIPE;
498 }
499
500 static void
501 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
502 {
503 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
504 struct drm_device *dev = intel_dig_port->base.base.dev;
505 struct drm_i915_private *dev_priv = dev->dev_private;
506 enum port port = intel_dig_port->port;
507
508 lockdep_assert_held(&dev_priv->pps_mutex);
509
510 /* try to find a pipe with this port selected */
511 /* first pick one where the panel is on */
512 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
513 vlv_pipe_has_pp_on);
514 /* didn't find one? pick one where vdd is on */
515 if (intel_dp->pps_pipe == INVALID_PIPE)
516 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
517 vlv_pipe_has_vdd_on);
518 /* didn't find one? pick one with just the correct port */
519 if (intel_dp->pps_pipe == INVALID_PIPE)
520 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
521 vlv_pipe_any);
522
523 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
524 if (intel_dp->pps_pipe == INVALID_PIPE) {
525 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
526 port_name(port));
527 return;
528 }
529
530 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
531 port_name(port), pipe_name(intel_dp->pps_pipe));
532
533 intel_dp_init_panel_power_sequencer(dev, intel_dp);
534 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
535 }
536
537 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
538 {
539 struct drm_device *dev = dev_priv->dev;
540 struct intel_encoder *encoder;
541
542 if (WARN_ON(!IS_VALLEYVIEW(dev)))
543 return;
544
545 /*
546 * We can't grab pps_mutex here due to deadlock with power_domain
547 * mutex when power_domain functions are called while holding pps_mutex.
548 * That also means that in order to use pps_pipe the code needs to
549 * hold both a power domain reference and pps_mutex, and the power domain
550 * reference get/put must be done while _not_ holding pps_mutex.
551 * pps_{lock,unlock}() do these steps in the correct order, so one
552 * should use them always.
553 */
554
555 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
556 struct intel_dp *intel_dp;
557
558 if (encoder->type != INTEL_OUTPUT_EDP)
559 continue;
560
561 intel_dp = enc_to_intel_dp(&encoder->base);
562 intel_dp->pps_pipe = INVALID_PIPE;
563 }
564 }
565
566 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
567 {
568 struct drm_device *dev = intel_dp_to_dev(intel_dp);
569
570 if (IS_BROXTON(dev))
571 return BXT_PP_CONTROL(0);
572 else if (HAS_PCH_SPLIT(dev))
573 return PCH_PP_CONTROL;
574 else
575 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
576 }
577
578 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
579 {
580 struct drm_device *dev = intel_dp_to_dev(intel_dp);
581
582 if (IS_BROXTON(dev))
583 return BXT_PP_STATUS(0);
584 else if (HAS_PCH_SPLIT(dev))
585 return PCH_PP_STATUS;
586 else
587 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
588 }
589
590 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
591 This function only applicable when panel PM state is not to be tracked */
592 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
593 void *unused)
594 {
595 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
596 edp_notifier);
597 struct drm_device *dev = intel_dp_to_dev(intel_dp);
598 struct drm_i915_private *dev_priv = dev->dev_private;
599 u32 pp_div;
600 u32 pp_ctrl_reg, pp_div_reg;
601
602 if (!is_edp(intel_dp) || code != SYS_RESTART)
603 return 0;
604
605 pps_lock(intel_dp);
606
607 if (IS_VALLEYVIEW(dev)) {
608 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
609
610 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
611 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
612 pp_div = I915_READ(pp_div_reg);
613 pp_div &= PP_REFERENCE_DIVIDER_MASK;
614
615 /* 0x1F write to PP_DIV_REG sets max cycle delay */
616 I915_WRITE(pp_div_reg, pp_div | 0x1F);
617 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
618 msleep(intel_dp->panel_power_cycle_delay);
619 }
620
621 pps_unlock(intel_dp);
622
623 return 0;
624 }
625
626 static bool edp_have_panel_power(struct intel_dp *intel_dp)
627 {
628 struct drm_device *dev = intel_dp_to_dev(intel_dp);
629 struct drm_i915_private *dev_priv = dev->dev_private;
630
631 lockdep_assert_held(&dev_priv->pps_mutex);
632
633 if (IS_VALLEYVIEW(dev) &&
634 intel_dp->pps_pipe == INVALID_PIPE)
635 return false;
636
637 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
638 }
639
640 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
641 {
642 struct drm_device *dev = intel_dp_to_dev(intel_dp);
643 struct drm_i915_private *dev_priv = dev->dev_private;
644
645 lockdep_assert_held(&dev_priv->pps_mutex);
646
647 if (IS_VALLEYVIEW(dev) &&
648 intel_dp->pps_pipe == INVALID_PIPE)
649 return false;
650
651 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
652 }
653
654 static void
655 intel_dp_check_edp(struct intel_dp *intel_dp)
656 {
657 struct drm_device *dev = intel_dp_to_dev(intel_dp);
658 struct drm_i915_private *dev_priv = dev->dev_private;
659
660 if (!is_edp(intel_dp))
661 return;
662
663 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
664 WARN(1, "eDP powered off while attempting aux channel communication.\n");
665 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
666 I915_READ(_pp_stat_reg(intel_dp)),
667 I915_READ(_pp_ctrl_reg(intel_dp)));
668 }
669 }
670
671 static uint32_t
672 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
673 {
674 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
675 struct drm_device *dev = intel_dig_port->base.base.dev;
676 struct drm_i915_private *dev_priv = dev->dev_private;
677 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
678 uint32_t status;
679 bool done;
680
681 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
682 if (has_aux_irq)
683 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
684 msecs_to_jiffies_timeout(10));
685 else
686 done = wait_for_atomic(C, 10) == 0;
687 if (!done)
688 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
689 has_aux_irq);
690 #undef C
691
692 return status;
693 }
694
695 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
696 {
697 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
698 struct drm_device *dev = intel_dig_port->base.base.dev;
699
700 /*
701 * The clock divider is based off the hrawclk, and would like to run at
702 * 2MHz. So, take the hrawclk value and divide by 2 and use that
703 */
704 return index ? 0 : intel_hrawclk(dev) / 2;
705 }
706
707 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
708 {
709 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
710 struct drm_device *dev = intel_dig_port->base.base.dev;
711 struct drm_i915_private *dev_priv = dev->dev_private;
712
713 if (index)
714 return 0;
715
716 if (intel_dig_port->port == PORT_A) {
717 return DIV_ROUND_UP(dev_priv->cdclk_freq, 2000);
718
719 } else {
720 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
721 }
722 }
723
724 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
725 {
726 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
727 struct drm_device *dev = intel_dig_port->base.base.dev;
728 struct drm_i915_private *dev_priv = dev->dev_private;
729
730 if (intel_dig_port->port == PORT_A) {
731 if (index)
732 return 0;
733 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
734 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
735 /* Workaround for non-ULT HSW */
736 switch (index) {
737 case 0: return 63;
738 case 1: return 72;
739 default: return 0;
740 }
741 } else {
742 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
743 }
744 }
745
746 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
747 {
748 return index ? 0 : 100;
749 }
750
751 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
752 {
753 /*
754 * SKL doesn't need us to program the AUX clock divider (Hardware will
755 * derive the clock from CDCLK automatically). We still implement the
756 * get_aux_clock_divider vfunc to plug-in into the existing code.
757 */
758 return index ? 0 : 1;
759 }
760
761 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
762 bool has_aux_irq,
763 int send_bytes,
764 uint32_t aux_clock_divider)
765 {
766 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
767 struct drm_device *dev = intel_dig_port->base.base.dev;
768 uint32_t precharge, timeout;
769
770 if (IS_GEN6(dev))
771 precharge = 3;
772 else
773 precharge = 5;
774
775 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
776 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
777 else
778 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
779
780 return DP_AUX_CH_CTL_SEND_BUSY |
781 DP_AUX_CH_CTL_DONE |
782 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
783 DP_AUX_CH_CTL_TIME_OUT_ERROR |
784 timeout |
785 DP_AUX_CH_CTL_RECEIVE_ERROR |
786 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
787 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
788 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
789 }
790
791 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
792 bool has_aux_irq,
793 int send_bytes,
794 uint32_t unused)
795 {
796 return DP_AUX_CH_CTL_SEND_BUSY |
797 DP_AUX_CH_CTL_DONE |
798 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
799 DP_AUX_CH_CTL_TIME_OUT_ERROR |
800 DP_AUX_CH_CTL_TIME_OUT_1600us |
801 DP_AUX_CH_CTL_RECEIVE_ERROR |
802 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
803 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
804 }
805
806 static int
807 intel_dp_aux_ch(struct intel_dp *intel_dp,
808 const uint8_t *send, int send_bytes,
809 uint8_t *recv, int recv_size)
810 {
811 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
812 struct drm_device *dev = intel_dig_port->base.base.dev;
813 struct drm_i915_private *dev_priv = dev->dev_private;
814 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
815 uint32_t ch_data = ch_ctl + 4;
816 uint32_t aux_clock_divider;
817 int i, ret, recv_bytes;
818 uint32_t status;
819 int try, clock = 0;
820 bool has_aux_irq = HAS_AUX_IRQ(dev);
821 bool vdd;
822
823 pps_lock(intel_dp);
824
825 /*
826 * We will be called with VDD already enabled for dpcd/edid/oui reads.
827 * In such cases we want to leave VDD enabled and it's up to upper layers
828 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
829 * ourselves.
830 */
831 vdd = edp_panel_vdd_on(intel_dp);
832
833 /* dp aux is extremely sensitive to irq latency, hence request the
834 * lowest possible wakeup latency and so prevent the cpu from going into
835 * deep sleep states.
836 */
837 pm_qos_update_request(&dev_priv->pm_qos, 0);
838
839 intel_dp_check_edp(intel_dp);
840
841 intel_aux_display_runtime_get(dev_priv);
842
843 /* Try to wait for any previous AUX channel activity */
844 for (try = 0; try < 3; try++) {
845 status = I915_READ_NOTRACE(ch_ctl);
846 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
847 break;
848 msleep(1);
849 }
850
851 if (try == 3) {
852 WARN(1, "dp_aux_ch not started status 0x%08x\n",
853 I915_READ(ch_ctl));
854 ret = -EBUSY;
855 goto out;
856 }
857
858 /* Only 5 data registers! */
859 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
860 ret = -E2BIG;
861 goto out;
862 }
863
864 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
865 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
866 has_aux_irq,
867 send_bytes,
868 aux_clock_divider);
869
870 /* Must try at least 3 times according to DP spec */
871 for (try = 0; try < 5; try++) {
872 /* Load the send data into the aux channel data registers */
873 for (i = 0; i < send_bytes; i += 4)
874 I915_WRITE(ch_data + i,
875 intel_dp_pack_aux(send + i,
876 send_bytes - i));
877
878 /* Send the command and wait for it to complete */
879 I915_WRITE(ch_ctl, send_ctl);
880
881 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
882
883 /* Clear done status and any errors */
884 I915_WRITE(ch_ctl,
885 status |
886 DP_AUX_CH_CTL_DONE |
887 DP_AUX_CH_CTL_TIME_OUT_ERROR |
888 DP_AUX_CH_CTL_RECEIVE_ERROR);
889
890 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
891 continue;
892
893 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
894 * 400us delay required for errors and timeouts
895 * Timeout errors from the HW already meet this
896 * requirement so skip to next iteration
897 */
898 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
899 usleep_range(400, 500);
900 continue;
901 }
902 if (status & DP_AUX_CH_CTL_DONE)
903 break;
904 }
905 if (status & DP_AUX_CH_CTL_DONE)
906 break;
907 }
908
909 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
910 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
911 ret = -EBUSY;
912 goto out;
913 }
914
915 /* Check for timeout or receive error.
916 * Timeouts occur when the sink is not connected
917 */
918 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
919 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
920 ret = -EIO;
921 goto out;
922 }
923
924 /* Timeouts occur when the device isn't connected, so they're
925 * "normal" -- don't fill the kernel log with these */
926 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
927 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
928 ret = -ETIMEDOUT;
929 goto out;
930 }
931
932 /* Unload any bytes sent back from the other side */
933 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
934 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
935 if (recv_bytes > recv_size)
936 recv_bytes = recv_size;
937
938 for (i = 0; i < recv_bytes; i += 4)
939 intel_dp_unpack_aux(I915_READ(ch_data + i),
940 recv + i, recv_bytes - i);
941
942 ret = recv_bytes;
943 out:
944 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
945 intel_aux_display_runtime_put(dev_priv);
946
947 if (vdd)
948 edp_panel_vdd_off(intel_dp, false);
949
950 pps_unlock(intel_dp);
951
952 return ret;
953 }
954
955 #define BARE_ADDRESS_SIZE 3
956 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
957 static ssize_t
958 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
959 {
960 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
961 uint8_t txbuf[20], rxbuf[20];
962 size_t txsize, rxsize;
963 int ret;
964
965 txbuf[0] = (msg->request << 4) |
966 ((msg->address >> 16) & 0xf);
967 txbuf[1] = (msg->address >> 8) & 0xff;
968 txbuf[2] = msg->address & 0xff;
969 txbuf[3] = msg->size - 1;
970
971 switch (msg->request & ~DP_AUX_I2C_MOT) {
972 case DP_AUX_NATIVE_WRITE:
973 case DP_AUX_I2C_WRITE:
974 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
975 rxsize = 2; /* 0 or 1 data bytes */
976
977 if (WARN_ON(txsize > 20))
978 return -E2BIG;
979
980 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
981
982 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
983 if (ret > 0) {
984 msg->reply = rxbuf[0] >> 4;
985
986 if (ret > 1) {
987 /* Number of bytes written in a short write. */
988 ret = clamp_t(int, rxbuf[1], 0, msg->size);
989 } else {
990 /* Return payload size. */
991 ret = msg->size;
992 }
993 }
994 break;
995
996 case DP_AUX_NATIVE_READ:
997 case DP_AUX_I2C_READ:
998 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
999 rxsize = msg->size + 1;
1000
1001 if (WARN_ON(rxsize > 20))
1002 return -E2BIG;
1003
1004 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1005 if (ret > 0) {
1006 msg->reply = rxbuf[0] >> 4;
1007 /*
1008 * Assume happy day, and copy the data. The caller is
1009 * expected to check msg->reply before touching it.
1010 *
1011 * Return payload size.
1012 */
1013 ret--;
1014 memcpy(msg->buffer, rxbuf + 1, ret);
1015 }
1016 break;
1017
1018 default:
1019 ret = -EINVAL;
1020 break;
1021 }
1022
1023 return ret;
1024 }
1025
1026 static void
1027 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1028 {
1029 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1030 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1031 enum port port = intel_dig_port->port;
1032 const char *name = NULL;
1033 int ret;
1034
1035 switch (port) {
1036 case PORT_A:
1037 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1038 name = "DPDDC-A";
1039 break;
1040 case PORT_B:
1041 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1042 name = "DPDDC-B";
1043 break;
1044 case PORT_C:
1045 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1046 name = "DPDDC-C";
1047 break;
1048 case PORT_D:
1049 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1050 name = "DPDDC-D";
1051 break;
1052 default:
1053 BUG();
1054 }
1055
1056 /*
1057 * The AUX_CTL register is usually DP_CTL + 0x10.
1058 *
1059 * On Haswell and Broadwell though:
1060 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1061 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1062 *
1063 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1064 */
1065 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1066 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1067
1068 intel_dp->aux.name = name;
1069 intel_dp->aux.dev = dev->dev;
1070 intel_dp->aux.transfer = intel_dp_aux_transfer;
1071
1072 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1073 connector->base.kdev->kobj.name);
1074
1075 ret = drm_dp_aux_register(&intel_dp->aux);
1076 if (ret < 0) {
1077 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1078 name, ret);
1079 return;
1080 }
1081
1082 ret = sysfs_create_link(&connector->base.kdev->kobj,
1083 &intel_dp->aux.ddc.dev.kobj,
1084 intel_dp->aux.ddc.dev.kobj.name);
1085 if (ret < 0) {
1086 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1087 drm_dp_aux_unregister(&intel_dp->aux);
1088 }
1089 }
1090
1091 static void
1092 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1093 {
1094 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1095
1096 if (!intel_connector->mst_port)
1097 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1098 intel_dp->aux.ddc.dev.kobj.name);
1099 intel_connector_unregister(intel_connector);
1100 }
1101
1102 static void
1103 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config, int link_clock)
1104 {
1105 u32 ctrl1;
1106
1107 memset(&pipe_config->dpll_hw_state, 0,
1108 sizeof(pipe_config->dpll_hw_state));
1109
1110 pipe_config->ddi_pll_sel = SKL_DPLL0;
1111 pipe_config->dpll_hw_state.cfgcr1 = 0;
1112 pipe_config->dpll_hw_state.cfgcr2 = 0;
1113
1114 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1115 switch (link_clock / 2) {
1116 case 81000:
1117 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1118 SKL_DPLL0);
1119 break;
1120 case 135000:
1121 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1122 SKL_DPLL0);
1123 break;
1124 case 270000:
1125 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1126 SKL_DPLL0);
1127 break;
1128 case 162000:
1129 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1130 SKL_DPLL0);
1131 break;
1132 /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1133 results in CDCLK change. Need to handle the change of CDCLK by
1134 disabling pipes and re-enabling them */
1135 case 108000:
1136 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1137 SKL_DPLL0);
1138 break;
1139 case 216000:
1140 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1141 SKL_DPLL0);
1142 break;
1143
1144 }
1145 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1146 }
1147
1148 static void
1149 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config, int link_bw)
1150 {
1151 switch (link_bw) {
1152 case DP_LINK_BW_1_62:
1153 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1154 break;
1155 case DP_LINK_BW_2_7:
1156 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1157 break;
1158 case DP_LINK_BW_5_4:
1159 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1160 break;
1161 }
1162 }
1163
1164 static int
1165 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1166 {
1167 if (intel_dp->num_sink_rates) {
1168 *sink_rates = intel_dp->sink_rates;
1169 return intel_dp->num_sink_rates;
1170 }
1171
1172 *sink_rates = default_rates;
1173
1174 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1175 }
1176
1177 static int
1178 intel_dp_source_rates(struct drm_device *dev, const int **source_rates)
1179 {
1180 if (IS_BROXTON(dev)) {
1181 *source_rates = bxt_rates;
1182 return ARRAY_SIZE(bxt_rates);
1183 } else if (IS_SKYLAKE(dev)) {
1184 *source_rates = skl_rates;
1185 return ARRAY_SIZE(skl_rates);
1186 } else if (IS_CHERRYVIEW(dev)) {
1187 *source_rates = chv_rates;
1188 return ARRAY_SIZE(chv_rates);
1189 }
1190
1191 *source_rates = default_rates;
1192
1193 if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
1194 /* WaDisableHBR2:skl */
1195 return (DP_LINK_BW_2_7 >> 3) + 1;
1196 else if (INTEL_INFO(dev)->gen >= 8 ||
1197 (IS_HASWELL(dev) && !IS_HSW_ULX(dev)))
1198 return (DP_LINK_BW_5_4 >> 3) + 1;
1199 else
1200 return (DP_LINK_BW_2_7 >> 3) + 1;
1201 }
1202
1203 static void
1204 intel_dp_set_clock(struct intel_encoder *encoder,
1205 struct intel_crtc_state *pipe_config, int link_bw)
1206 {
1207 struct drm_device *dev = encoder->base.dev;
1208 const struct dp_link_dpll *divisor = NULL;
1209 int i, count = 0;
1210
1211 if (IS_G4X(dev)) {
1212 divisor = gen4_dpll;
1213 count = ARRAY_SIZE(gen4_dpll);
1214 } else if (HAS_PCH_SPLIT(dev)) {
1215 divisor = pch_dpll;
1216 count = ARRAY_SIZE(pch_dpll);
1217 } else if (IS_CHERRYVIEW(dev)) {
1218 divisor = chv_dpll;
1219 count = ARRAY_SIZE(chv_dpll);
1220 } else if (IS_VALLEYVIEW(dev)) {
1221 divisor = vlv_dpll;
1222 count = ARRAY_SIZE(vlv_dpll);
1223 }
1224
1225 if (divisor && count) {
1226 for (i = 0; i < count; i++) {
1227 if (link_bw == divisor[i].link_bw) {
1228 pipe_config->dpll = divisor[i].dpll;
1229 pipe_config->clock_set = true;
1230 break;
1231 }
1232 }
1233 }
1234 }
1235
1236 static int intersect_rates(const int *source_rates, int source_len,
1237 const int *sink_rates, int sink_len,
1238 int *common_rates)
1239 {
1240 int i = 0, j = 0, k = 0;
1241
1242 while (i < source_len && j < sink_len) {
1243 if (source_rates[i] == sink_rates[j]) {
1244 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1245 return k;
1246 common_rates[k] = source_rates[i];
1247 ++k;
1248 ++i;
1249 ++j;
1250 } else if (source_rates[i] < sink_rates[j]) {
1251 ++i;
1252 } else {
1253 ++j;
1254 }
1255 }
1256 return k;
1257 }
1258
1259 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1260 int *common_rates)
1261 {
1262 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1263 const int *source_rates, *sink_rates;
1264 int source_len, sink_len;
1265
1266 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1267 source_len = intel_dp_source_rates(dev, &source_rates);
1268
1269 return intersect_rates(source_rates, source_len,
1270 sink_rates, sink_len,
1271 common_rates);
1272 }
1273
1274 static void snprintf_int_array(char *str, size_t len,
1275 const int *array, int nelem)
1276 {
1277 int i;
1278
1279 str[0] = '\0';
1280
1281 for (i = 0; i < nelem; i++) {
1282 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1283 if (r >= len)
1284 return;
1285 str += r;
1286 len -= r;
1287 }
1288 }
1289
1290 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1291 {
1292 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1293 const int *source_rates, *sink_rates;
1294 int source_len, sink_len, common_len;
1295 int common_rates[DP_MAX_SUPPORTED_RATES];
1296 char str[128]; /* FIXME: too big for stack? */
1297
1298 if ((drm_debug & DRM_UT_KMS) == 0)
1299 return;
1300
1301 source_len = intel_dp_source_rates(dev, &source_rates);
1302 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1303 DRM_DEBUG_KMS("source rates: %s\n", str);
1304
1305 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1306 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1307 DRM_DEBUG_KMS("sink rates: %s\n", str);
1308
1309 common_len = intel_dp_common_rates(intel_dp, common_rates);
1310 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1311 DRM_DEBUG_KMS("common rates: %s\n", str);
1312 }
1313
1314 static int rate_to_index(int find, const int *rates)
1315 {
1316 int i = 0;
1317
1318 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1319 if (find == rates[i])
1320 break;
1321
1322 return i;
1323 }
1324
1325 int
1326 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1327 {
1328 int rates[DP_MAX_SUPPORTED_RATES] = {};
1329 int len;
1330
1331 len = intel_dp_common_rates(intel_dp, rates);
1332 if (WARN_ON(len <= 0))
1333 return 162000;
1334
1335 return rates[rate_to_index(0, rates) - 1];
1336 }
1337
1338 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1339 {
1340 return rate_to_index(rate, intel_dp->sink_rates);
1341 }
1342
1343 bool
1344 intel_dp_compute_config(struct intel_encoder *encoder,
1345 struct intel_crtc_state *pipe_config)
1346 {
1347 struct drm_device *dev = encoder->base.dev;
1348 struct drm_i915_private *dev_priv = dev->dev_private;
1349 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1350 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1351 enum port port = dp_to_dig_port(intel_dp)->port;
1352 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1353 struct intel_connector *intel_connector = intel_dp->attached_connector;
1354 int lane_count, clock;
1355 int min_lane_count = 1;
1356 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1357 /* Conveniently, the link BW constants become indices with a shift...*/
1358 int min_clock = 0;
1359 int max_clock;
1360 int bpp, mode_rate;
1361 int link_avail, link_clock;
1362 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1363 int common_len;
1364
1365 common_len = intel_dp_common_rates(intel_dp, common_rates);
1366
1367 /* No common link rates between source and sink */
1368 WARN_ON(common_len <= 0);
1369
1370 max_clock = common_len - 1;
1371
1372 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1373 pipe_config->has_pch_encoder = true;
1374
1375 pipe_config->has_dp_encoder = true;
1376 pipe_config->has_drrs = false;
1377 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1378
1379 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1380 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1381 adjusted_mode);
1382
1383 if (INTEL_INFO(dev)->gen >= 9) {
1384 int ret;
1385 ret = skl_update_scaler_users(intel_crtc, pipe_config, NULL, NULL, 0);
1386 if (ret)
1387 return ret;
1388 }
1389
1390 if (!HAS_PCH_SPLIT(dev))
1391 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1392 intel_connector->panel.fitting_mode);
1393 else
1394 intel_pch_panel_fitting(intel_crtc, pipe_config,
1395 intel_connector->panel.fitting_mode);
1396 }
1397
1398 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1399 return false;
1400
1401 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1402 "max bw %d pixel clock %iKHz\n",
1403 max_lane_count, common_rates[max_clock],
1404 adjusted_mode->crtc_clock);
1405
1406 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1407 * bpc in between. */
1408 bpp = pipe_config->pipe_bpp;
1409 if (is_edp(intel_dp)) {
1410 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1411 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1412 dev_priv->vbt.edp_bpp);
1413 bpp = dev_priv->vbt.edp_bpp;
1414 }
1415
1416 /*
1417 * Use the maximum clock and number of lanes the eDP panel
1418 * advertizes being capable of. The panels are generally
1419 * designed to support only a single clock and lane
1420 * configuration, and typically these values correspond to the
1421 * native resolution of the panel.
1422 */
1423 min_lane_count = max_lane_count;
1424 min_clock = max_clock;
1425 }
1426
1427 for (; bpp >= 6*3; bpp -= 2*3) {
1428 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1429 bpp);
1430
1431 for (clock = min_clock; clock <= max_clock; clock++) {
1432 for (lane_count = min_lane_count;
1433 lane_count <= max_lane_count;
1434 lane_count <<= 1) {
1435
1436 link_clock = common_rates[clock];
1437 link_avail = intel_dp_max_data_rate(link_clock,
1438 lane_count);
1439
1440 if (mode_rate <= link_avail) {
1441 goto found;
1442 }
1443 }
1444 }
1445 }
1446
1447 return false;
1448
1449 found:
1450 if (intel_dp->color_range_auto) {
1451 /*
1452 * See:
1453 * CEA-861-E - 5.1 Default Encoding Parameters
1454 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1455 */
1456 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1457 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1458 else
1459 intel_dp->color_range = 0;
1460 }
1461
1462 if (intel_dp->color_range)
1463 pipe_config->limited_color_range = true;
1464
1465 intel_dp->lane_count = lane_count;
1466
1467 if (intel_dp->num_sink_rates) {
1468 intel_dp->link_bw = 0;
1469 intel_dp->rate_select =
1470 intel_dp_rate_select(intel_dp, common_rates[clock]);
1471 } else {
1472 intel_dp->link_bw =
1473 drm_dp_link_rate_to_bw_code(common_rates[clock]);
1474 intel_dp->rate_select = 0;
1475 }
1476
1477 pipe_config->pipe_bpp = bpp;
1478 pipe_config->port_clock = common_rates[clock];
1479
1480 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1481 intel_dp->link_bw, intel_dp->lane_count,
1482 pipe_config->port_clock, bpp);
1483 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1484 mode_rate, link_avail);
1485
1486 intel_link_compute_m_n(bpp, lane_count,
1487 adjusted_mode->crtc_clock,
1488 pipe_config->port_clock,
1489 &pipe_config->dp_m_n);
1490
1491 if (intel_connector->panel.downclock_mode != NULL &&
1492 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1493 pipe_config->has_drrs = true;
1494 intel_link_compute_m_n(bpp, lane_count,
1495 intel_connector->panel.downclock_mode->clock,
1496 pipe_config->port_clock,
1497 &pipe_config->dp_m2_n2);
1498 }
1499
1500 if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1501 skl_edp_set_pll_config(pipe_config, common_rates[clock]);
1502 else if (IS_BROXTON(dev))
1503 /* handled in ddi */;
1504 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1505 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1506 else
1507 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1508
1509 return true;
1510 }
1511
1512 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1513 {
1514 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1515 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1516 struct drm_device *dev = crtc->base.dev;
1517 struct drm_i915_private *dev_priv = dev->dev_private;
1518 u32 dpa_ctl;
1519
1520 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1521 crtc->config->port_clock);
1522 dpa_ctl = I915_READ(DP_A);
1523 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1524
1525 if (crtc->config->port_clock == 162000) {
1526 /* For a long time we've carried around a ILK-DevA w/a for the
1527 * 160MHz clock. If we're really unlucky, it's still required.
1528 */
1529 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1530 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1531 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1532 } else {
1533 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1534 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1535 }
1536
1537 I915_WRITE(DP_A, dpa_ctl);
1538
1539 POSTING_READ(DP_A);
1540 udelay(500);
1541 }
1542
1543 static void intel_dp_prepare(struct intel_encoder *encoder)
1544 {
1545 struct drm_device *dev = encoder->base.dev;
1546 struct drm_i915_private *dev_priv = dev->dev_private;
1547 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1548 enum port port = dp_to_dig_port(intel_dp)->port;
1549 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1550 struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1551
1552 /*
1553 * There are four kinds of DP registers:
1554 *
1555 * IBX PCH
1556 * SNB CPU
1557 * IVB CPU
1558 * CPT PCH
1559 *
1560 * IBX PCH and CPU are the same for almost everything,
1561 * except that the CPU DP PLL is configured in this
1562 * register
1563 *
1564 * CPT PCH is quite different, having many bits moved
1565 * to the TRANS_DP_CTL register instead. That
1566 * configuration happens (oddly) in ironlake_pch_enable
1567 */
1568
1569 /* Preserve the BIOS-computed detected bit. This is
1570 * supposed to be read-only.
1571 */
1572 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1573
1574 /* Handle DP bits in common between all three register formats */
1575 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1576 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1577
1578 if (crtc->config->has_audio)
1579 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1580
1581 /* Split out the IBX/CPU vs CPT settings */
1582
1583 if (IS_GEN7(dev) && port == PORT_A) {
1584 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1585 intel_dp->DP |= DP_SYNC_HS_HIGH;
1586 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1587 intel_dp->DP |= DP_SYNC_VS_HIGH;
1588 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1589
1590 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1591 intel_dp->DP |= DP_ENHANCED_FRAMING;
1592
1593 intel_dp->DP |= crtc->pipe << 29;
1594 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1595 u32 trans_dp;
1596
1597 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1598
1599 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1600 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1601 trans_dp |= TRANS_DP_ENH_FRAMING;
1602 else
1603 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1604 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1605 } else {
1606 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1607 intel_dp->DP |= intel_dp->color_range;
1608
1609 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1610 intel_dp->DP |= DP_SYNC_HS_HIGH;
1611 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1612 intel_dp->DP |= DP_SYNC_VS_HIGH;
1613 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1614
1615 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1616 intel_dp->DP |= DP_ENHANCED_FRAMING;
1617
1618 if (IS_CHERRYVIEW(dev))
1619 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1620 else if (crtc->pipe == PIPE_B)
1621 intel_dp->DP |= DP_PIPEB_SELECT;
1622 }
1623 }
1624
1625 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1626 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1627
1628 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1629 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1630
1631 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1632 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1633
1634 static void wait_panel_status(struct intel_dp *intel_dp,
1635 u32 mask,
1636 u32 value)
1637 {
1638 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1639 struct drm_i915_private *dev_priv = dev->dev_private;
1640 u32 pp_stat_reg, pp_ctrl_reg;
1641
1642 lockdep_assert_held(&dev_priv->pps_mutex);
1643
1644 pp_stat_reg = _pp_stat_reg(intel_dp);
1645 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1646
1647 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1648 mask, value,
1649 I915_READ(pp_stat_reg),
1650 I915_READ(pp_ctrl_reg));
1651
1652 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1653 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1654 I915_READ(pp_stat_reg),
1655 I915_READ(pp_ctrl_reg));
1656 }
1657
1658 DRM_DEBUG_KMS("Wait complete\n");
1659 }
1660
1661 static void wait_panel_on(struct intel_dp *intel_dp)
1662 {
1663 DRM_DEBUG_KMS("Wait for panel power on\n");
1664 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1665 }
1666
1667 static void wait_panel_off(struct intel_dp *intel_dp)
1668 {
1669 DRM_DEBUG_KMS("Wait for panel power off time\n");
1670 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1671 }
1672
1673 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1674 {
1675 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1676
1677 /* When we disable the VDD override bit last we have to do the manual
1678 * wait. */
1679 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1680 intel_dp->panel_power_cycle_delay);
1681
1682 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1683 }
1684
1685 static void wait_backlight_on(struct intel_dp *intel_dp)
1686 {
1687 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1688 intel_dp->backlight_on_delay);
1689 }
1690
1691 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1692 {
1693 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1694 intel_dp->backlight_off_delay);
1695 }
1696
1697 /* Read the current pp_control value, unlocking the register if it
1698 * is locked
1699 */
1700
1701 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1702 {
1703 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1704 struct drm_i915_private *dev_priv = dev->dev_private;
1705 u32 control;
1706
1707 lockdep_assert_held(&dev_priv->pps_mutex);
1708
1709 control = I915_READ(_pp_ctrl_reg(intel_dp));
1710 if (!IS_BROXTON(dev)) {
1711 control &= ~PANEL_UNLOCK_MASK;
1712 control |= PANEL_UNLOCK_REGS;
1713 }
1714 return control;
1715 }
1716
1717 /*
1718 * Must be paired with edp_panel_vdd_off().
1719 * Must hold pps_mutex around the whole on/off sequence.
1720 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1721 */
1722 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1723 {
1724 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1725 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1726 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1727 struct drm_i915_private *dev_priv = dev->dev_private;
1728 enum intel_display_power_domain power_domain;
1729 u32 pp;
1730 u32 pp_stat_reg, pp_ctrl_reg;
1731 bool need_to_disable = !intel_dp->want_panel_vdd;
1732
1733 lockdep_assert_held(&dev_priv->pps_mutex);
1734
1735 if (!is_edp(intel_dp))
1736 return false;
1737
1738 cancel_delayed_work(&intel_dp->panel_vdd_work);
1739 intel_dp->want_panel_vdd = true;
1740
1741 if (edp_have_panel_vdd(intel_dp))
1742 return need_to_disable;
1743
1744 power_domain = intel_display_port_power_domain(intel_encoder);
1745 intel_display_power_get(dev_priv, power_domain);
1746
1747 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1748 port_name(intel_dig_port->port));
1749
1750 if (!edp_have_panel_power(intel_dp))
1751 wait_panel_power_cycle(intel_dp);
1752
1753 pp = ironlake_get_pp_control(intel_dp);
1754 pp |= EDP_FORCE_VDD;
1755
1756 pp_stat_reg = _pp_stat_reg(intel_dp);
1757 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1758
1759 I915_WRITE(pp_ctrl_reg, pp);
1760 POSTING_READ(pp_ctrl_reg);
1761 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1762 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1763 /*
1764 * If the panel wasn't on, delay before accessing aux channel
1765 */
1766 if (!edp_have_panel_power(intel_dp)) {
1767 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1768 port_name(intel_dig_port->port));
1769 msleep(intel_dp->panel_power_up_delay);
1770 }
1771
1772 return need_to_disable;
1773 }
1774
1775 /*
1776 * Must be paired with intel_edp_panel_vdd_off() or
1777 * intel_edp_panel_off().
1778 * Nested calls to these functions are not allowed since
1779 * we drop the lock. Caller must use some higher level
1780 * locking to prevent nested calls from other threads.
1781 */
1782 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1783 {
1784 bool vdd;
1785
1786 if (!is_edp(intel_dp))
1787 return;
1788
1789 pps_lock(intel_dp);
1790 vdd = edp_panel_vdd_on(intel_dp);
1791 pps_unlock(intel_dp);
1792
1793 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1794 port_name(dp_to_dig_port(intel_dp)->port));
1795 }
1796
1797 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1798 {
1799 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1800 struct drm_i915_private *dev_priv = dev->dev_private;
1801 struct intel_digital_port *intel_dig_port =
1802 dp_to_dig_port(intel_dp);
1803 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1804 enum intel_display_power_domain power_domain;
1805 u32 pp;
1806 u32 pp_stat_reg, pp_ctrl_reg;
1807
1808 lockdep_assert_held(&dev_priv->pps_mutex);
1809
1810 WARN_ON(intel_dp->want_panel_vdd);
1811
1812 if (!edp_have_panel_vdd(intel_dp))
1813 return;
1814
1815 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1816 port_name(intel_dig_port->port));
1817
1818 pp = ironlake_get_pp_control(intel_dp);
1819 pp &= ~EDP_FORCE_VDD;
1820
1821 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1822 pp_stat_reg = _pp_stat_reg(intel_dp);
1823
1824 I915_WRITE(pp_ctrl_reg, pp);
1825 POSTING_READ(pp_ctrl_reg);
1826
1827 /* Make sure sequencer is idle before allowing subsequent activity */
1828 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1829 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1830
1831 if ((pp & POWER_TARGET_ON) == 0)
1832 intel_dp->last_power_cycle = jiffies;
1833
1834 power_domain = intel_display_port_power_domain(intel_encoder);
1835 intel_display_power_put(dev_priv, power_domain);
1836 }
1837
1838 static void edp_panel_vdd_work(struct work_struct *__work)
1839 {
1840 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1841 struct intel_dp, panel_vdd_work);
1842
1843 pps_lock(intel_dp);
1844 if (!intel_dp->want_panel_vdd)
1845 edp_panel_vdd_off_sync(intel_dp);
1846 pps_unlock(intel_dp);
1847 }
1848
1849 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1850 {
1851 unsigned long delay;
1852
1853 /*
1854 * Queue the timer to fire a long time from now (relative to the power
1855 * down delay) to keep the panel power up across a sequence of
1856 * operations.
1857 */
1858 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1859 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1860 }
1861
1862 /*
1863 * Must be paired with edp_panel_vdd_on().
1864 * Must hold pps_mutex around the whole on/off sequence.
1865 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1866 */
1867 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1868 {
1869 struct drm_i915_private *dev_priv =
1870 intel_dp_to_dev(intel_dp)->dev_private;
1871
1872 lockdep_assert_held(&dev_priv->pps_mutex);
1873
1874 if (!is_edp(intel_dp))
1875 return;
1876
1877 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1878 port_name(dp_to_dig_port(intel_dp)->port));
1879
1880 intel_dp->want_panel_vdd = false;
1881
1882 if (sync)
1883 edp_panel_vdd_off_sync(intel_dp);
1884 else
1885 edp_panel_vdd_schedule_off(intel_dp);
1886 }
1887
1888 static void edp_panel_on(struct intel_dp *intel_dp)
1889 {
1890 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1891 struct drm_i915_private *dev_priv = dev->dev_private;
1892 u32 pp;
1893 u32 pp_ctrl_reg;
1894
1895 lockdep_assert_held(&dev_priv->pps_mutex);
1896
1897 if (!is_edp(intel_dp))
1898 return;
1899
1900 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1901 port_name(dp_to_dig_port(intel_dp)->port));
1902
1903 if (WARN(edp_have_panel_power(intel_dp),
1904 "eDP port %c panel power already on\n",
1905 port_name(dp_to_dig_port(intel_dp)->port)))
1906 return;
1907
1908 wait_panel_power_cycle(intel_dp);
1909
1910 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1911 pp = ironlake_get_pp_control(intel_dp);
1912 if (IS_GEN5(dev)) {
1913 /* ILK workaround: disable reset around power sequence */
1914 pp &= ~PANEL_POWER_RESET;
1915 I915_WRITE(pp_ctrl_reg, pp);
1916 POSTING_READ(pp_ctrl_reg);
1917 }
1918
1919 pp |= POWER_TARGET_ON;
1920 if (!IS_GEN5(dev))
1921 pp |= PANEL_POWER_RESET;
1922
1923 I915_WRITE(pp_ctrl_reg, pp);
1924 POSTING_READ(pp_ctrl_reg);
1925
1926 wait_panel_on(intel_dp);
1927 intel_dp->last_power_on = jiffies;
1928
1929 if (IS_GEN5(dev)) {
1930 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1931 I915_WRITE(pp_ctrl_reg, pp);
1932 POSTING_READ(pp_ctrl_reg);
1933 }
1934 }
1935
1936 void intel_edp_panel_on(struct intel_dp *intel_dp)
1937 {
1938 if (!is_edp(intel_dp))
1939 return;
1940
1941 pps_lock(intel_dp);
1942 edp_panel_on(intel_dp);
1943 pps_unlock(intel_dp);
1944 }
1945
1946
1947 static void edp_panel_off(struct intel_dp *intel_dp)
1948 {
1949 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1950 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1951 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1952 struct drm_i915_private *dev_priv = dev->dev_private;
1953 enum intel_display_power_domain power_domain;
1954 u32 pp;
1955 u32 pp_ctrl_reg;
1956
1957 lockdep_assert_held(&dev_priv->pps_mutex);
1958
1959 if (!is_edp(intel_dp))
1960 return;
1961
1962 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1963 port_name(dp_to_dig_port(intel_dp)->port));
1964
1965 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
1966 port_name(dp_to_dig_port(intel_dp)->port));
1967
1968 pp = ironlake_get_pp_control(intel_dp);
1969 /* We need to switch off panel power _and_ force vdd, for otherwise some
1970 * panels get very unhappy and cease to work. */
1971 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1972 EDP_BLC_ENABLE);
1973
1974 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1975
1976 intel_dp->want_panel_vdd = false;
1977
1978 I915_WRITE(pp_ctrl_reg, pp);
1979 POSTING_READ(pp_ctrl_reg);
1980
1981 intel_dp->last_power_cycle = jiffies;
1982 wait_panel_off(intel_dp);
1983
1984 /* We got a reference when we enabled the VDD. */
1985 power_domain = intel_display_port_power_domain(intel_encoder);
1986 intel_display_power_put(dev_priv, power_domain);
1987 }
1988
1989 void intel_edp_panel_off(struct intel_dp *intel_dp)
1990 {
1991 if (!is_edp(intel_dp))
1992 return;
1993
1994 pps_lock(intel_dp);
1995 edp_panel_off(intel_dp);
1996 pps_unlock(intel_dp);
1997 }
1998
1999 /* Enable backlight in the panel power control. */
2000 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2001 {
2002 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2003 struct drm_device *dev = intel_dig_port->base.base.dev;
2004 struct drm_i915_private *dev_priv = dev->dev_private;
2005 u32 pp;
2006 u32 pp_ctrl_reg;
2007
2008 /*
2009 * If we enable the backlight right away following a panel power
2010 * on, we may see slight flicker as the panel syncs with the eDP
2011 * link. So delay a bit to make sure the image is solid before
2012 * allowing it to appear.
2013 */
2014 wait_backlight_on(intel_dp);
2015
2016 pps_lock(intel_dp);
2017
2018 pp = ironlake_get_pp_control(intel_dp);
2019 pp |= EDP_BLC_ENABLE;
2020
2021 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2022
2023 I915_WRITE(pp_ctrl_reg, pp);
2024 POSTING_READ(pp_ctrl_reg);
2025
2026 pps_unlock(intel_dp);
2027 }
2028
2029 /* Enable backlight PWM and backlight PP control. */
2030 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2031 {
2032 if (!is_edp(intel_dp))
2033 return;
2034
2035 DRM_DEBUG_KMS("\n");
2036
2037 intel_panel_enable_backlight(intel_dp->attached_connector);
2038 _intel_edp_backlight_on(intel_dp);
2039 }
2040
2041 /* Disable backlight in the panel power control. */
2042 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2043 {
2044 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2045 struct drm_i915_private *dev_priv = dev->dev_private;
2046 u32 pp;
2047 u32 pp_ctrl_reg;
2048
2049 if (!is_edp(intel_dp))
2050 return;
2051
2052 pps_lock(intel_dp);
2053
2054 pp = ironlake_get_pp_control(intel_dp);
2055 pp &= ~EDP_BLC_ENABLE;
2056
2057 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2058
2059 I915_WRITE(pp_ctrl_reg, pp);
2060 POSTING_READ(pp_ctrl_reg);
2061
2062 pps_unlock(intel_dp);
2063
2064 intel_dp->last_backlight_off = jiffies;
2065 edp_wait_backlight_off(intel_dp);
2066 }
2067
2068 /* Disable backlight PP control and backlight PWM. */
2069 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2070 {
2071 if (!is_edp(intel_dp))
2072 return;
2073
2074 DRM_DEBUG_KMS("\n");
2075
2076 _intel_edp_backlight_off(intel_dp);
2077 intel_panel_disable_backlight(intel_dp->attached_connector);
2078 }
2079
2080 /*
2081 * Hook for controlling the panel power control backlight through the bl_power
2082 * sysfs attribute. Take care to handle multiple calls.
2083 */
2084 static void intel_edp_backlight_power(struct intel_connector *connector,
2085 bool enable)
2086 {
2087 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2088 bool is_enabled;
2089
2090 pps_lock(intel_dp);
2091 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2092 pps_unlock(intel_dp);
2093
2094 if (is_enabled == enable)
2095 return;
2096
2097 DRM_DEBUG_KMS("panel power control backlight %s\n",
2098 enable ? "enable" : "disable");
2099
2100 if (enable)
2101 _intel_edp_backlight_on(intel_dp);
2102 else
2103 _intel_edp_backlight_off(intel_dp);
2104 }
2105
2106 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2107 {
2108 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2109 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2110 struct drm_device *dev = crtc->dev;
2111 struct drm_i915_private *dev_priv = dev->dev_private;
2112 u32 dpa_ctl;
2113
2114 assert_pipe_disabled(dev_priv,
2115 to_intel_crtc(crtc)->pipe);
2116
2117 DRM_DEBUG_KMS("\n");
2118 dpa_ctl = I915_READ(DP_A);
2119 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
2120 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2121
2122 /* We don't adjust intel_dp->DP while tearing down the link, to
2123 * facilitate link retraining (e.g. after hotplug). Hence clear all
2124 * enable bits here to ensure that we don't enable too much. */
2125 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
2126 intel_dp->DP |= DP_PLL_ENABLE;
2127 I915_WRITE(DP_A, intel_dp->DP);
2128 POSTING_READ(DP_A);
2129 udelay(200);
2130 }
2131
2132 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2133 {
2134 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2135 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2136 struct drm_device *dev = crtc->dev;
2137 struct drm_i915_private *dev_priv = dev->dev_private;
2138 u32 dpa_ctl;
2139
2140 assert_pipe_disabled(dev_priv,
2141 to_intel_crtc(crtc)->pipe);
2142
2143 dpa_ctl = I915_READ(DP_A);
2144 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
2145 "dp pll off, should be on\n");
2146 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2147
2148 /* We can't rely on the value tracked for the DP register in
2149 * intel_dp->DP because link_down must not change that (otherwise link
2150 * re-training will fail. */
2151 dpa_ctl &= ~DP_PLL_ENABLE;
2152 I915_WRITE(DP_A, dpa_ctl);
2153 POSTING_READ(DP_A);
2154 udelay(200);
2155 }
2156
2157 /* If the sink supports it, try to set the power state appropriately */
2158 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2159 {
2160 int ret, i;
2161
2162 /* Should have a valid DPCD by this point */
2163 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2164 return;
2165
2166 if (mode != DRM_MODE_DPMS_ON) {
2167 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2168 DP_SET_POWER_D3);
2169 } else {
2170 /*
2171 * When turning on, we need to retry for 1ms to give the sink
2172 * time to wake up.
2173 */
2174 for (i = 0; i < 3; i++) {
2175 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2176 DP_SET_POWER_D0);
2177 if (ret == 1)
2178 break;
2179 msleep(1);
2180 }
2181 }
2182
2183 if (ret != 1)
2184 DRM_DEBUG_KMS("failed to %s sink power state\n",
2185 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2186 }
2187
2188 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2189 enum pipe *pipe)
2190 {
2191 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2192 enum port port = dp_to_dig_port(intel_dp)->port;
2193 struct drm_device *dev = encoder->base.dev;
2194 struct drm_i915_private *dev_priv = dev->dev_private;
2195 enum intel_display_power_domain power_domain;
2196 u32 tmp;
2197
2198 power_domain = intel_display_port_power_domain(encoder);
2199 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2200 return false;
2201
2202 tmp = I915_READ(intel_dp->output_reg);
2203
2204 if (!(tmp & DP_PORT_EN))
2205 return false;
2206
2207 if (IS_GEN7(dev) && port == PORT_A) {
2208 *pipe = PORT_TO_PIPE_CPT(tmp);
2209 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2210 enum pipe p;
2211
2212 for_each_pipe(dev_priv, p) {
2213 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2214 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2215 *pipe = p;
2216 return true;
2217 }
2218 }
2219
2220 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2221 intel_dp->output_reg);
2222 } else if (IS_CHERRYVIEW(dev)) {
2223 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2224 } else {
2225 *pipe = PORT_TO_PIPE(tmp);
2226 }
2227
2228 return true;
2229 }
2230
2231 static void intel_dp_get_config(struct intel_encoder *encoder,
2232 struct intel_crtc_state *pipe_config)
2233 {
2234 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2235 u32 tmp, flags = 0;
2236 struct drm_device *dev = encoder->base.dev;
2237 struct drm_i915_private *dev_priv = dev->dev_private;
2238 enum port port = dp_to_dig_port(intel_dp)->port;
2239 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2240 int dotclock;
2241
2242 tmp = I915_READ(intel_dp->output_reg);
2243
2244 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2245
2246 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2247 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2248 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2249 flags |= DRM_MODE_FLAG_PHSYNC;
2250 else
2251 flags |= DRM_MODE_FLAG_NHSYNC;
2252
2253 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2254 flags |= DRM_MODE_FLAG_PVSYNC;
2255 else
2256 flags |= DRM_MODE_FLAG_NVSYNC;
2257 } else {
2258 if (tmp & DP_SYNC_HS_HIGH)
2259 flags |= DRM_MODE_FLAG_PHSYNC;
2260 else
2261 flags |= DRM_MODE_FLAG_NHSYNC;
2262
2263 if (tmp & DP_SYNC_VS_HIGH)
2264 flags |= DRM_MODE_FLAG_PVSYNC;
2265 else
2266 flags |= DRM_MODE_FLAG_NVSYNC;
2267 }
2268
2269 pipe_config->base.adjusted_mode.flags |= flags;
2270
2271 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2272 tmp & DP_COLOR_RANGE_16_235)
2273 pipe_config->limited_color_range = true;
2274
2275 pipe_config->has_dp_encoder = true;
2276
2277 intel_dp_get_m_n(crtc, pipe_config);
2278
2279 if (port == PORT_A) {
2280 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2281 pipe_config->port_clock = 162000;
2282 else
2283 pipe_config->port_clock = 270000;
2284 }
2285
2286 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2287 &pipe_config->dp_m_n);
2288
2289 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2290 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2291
2292 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2293
2294 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2295 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2296 /*
2297 * This is a big fat ugly hack.
2298 *
2299 * Some machines in UEFI boot mode provide us a VBT that has 18
2300 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2301 * unknown we fail to light up. Yet the same BIOS boots up with
2302 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2303 * max, not what it tells us to use.
2304 *
2305 * Note: This will still be broken if the eDP panel is not lit
2306 * up by the BIOS, and thus we can't get the mode at module
2307 * load.
2308 */
2309 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2310 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2311 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2312 }
2313 }
2314
2315 static void intel_disable_dp(struct intel_encoder *encoder)
2316 {
2317 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2318 struct drm_device *dev = encoder->base.dev;
2319 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2320
2321 if (crtc->config->has_audio)
2322 intel_audio_codec_disable(encoder);
2323
2324 if (HAS_PSR(dev) && !HAS_DDI(dev))
2325 intel_psr_disable(intel_dp);
2326
2327 /* Make sure the panel is off before trying to change the mode. But also
2328 * ensure that we have vdd while we switch off the panel. */
2329 intel_edp_panel_vdd_on(intel_dp);
2330 intel_edp_backlight_off(intel_dp);
2331 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2332 intel_edp_panel_off(intel_dp);
2333
2334 /* disable the port before the pipe on g4x */
2335 if (INTEL_INFO(dev)->gen < 5)
2336 intel_dp_link_down(intel_dp);
2337 }
2338
2339 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2340 {
2341 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2342 enum port port = dp_to_dig_port(intel_dp)->port;
2343
2344 intel_dp_link_down(intel_dp);
2345 if (port == PORT_A)
2346 ironlake_edp_pll_off(intel_dp);
2347 }
2348
2349 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2350 {
2351 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2352
2353 intel_dp_link_down(intel_dp);
2354 }
2355
2356 static void chv_post_disable_dp(struct intel_encoder *encoder)
2357 {
2358 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2359 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2360 struct drm_device *dev = encoder->base.dev;
2361 struct drm_i915_private *dev_priv = dev->dev_private;
2362 struct intel_crtc *intel_crtc =
2363 to_intel_crtc(encoder->base.crtc);
2364 enum dpio_channel ch = vlv_dport_to_channel(dport);
2365 enum pipe pipe = intel_crtc->pipe;
2366 u32 val;
2367
2368 intel_dp_link_down(intel_dp);
2369
2370 mutex_lock(&dev_priv->sb_lock);
2371
2372 /* Propagate soft reset to data lane reset */
2373 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2374 val |= CHV_PCS_REQ_SOFTRESET_EN;
2375 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2376
2377 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2378 val |= CHV_PCS_REQ_SOFTRESET_EN;
2379 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2380
2381 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2382 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2383 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2384
2385 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2386 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2387 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2388
2389 mutex_unlock(&dev_priv->sb_lock);
2390 }
2391
2392 static void
2393 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2394 uint32_t *DP,
2395 uint8_t dp_train_pat)
2396 {
2397 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2398 struct drm_device *dev = intel_dig_port->base.base.dev;
2399 struct drm_i915_private *dev_priv = dev->dev_private;
2400 enum port port = intel_dig_port->port;
2401
2402 if (HAS_DDI(dev)) {
2403 uint32_t temp = I915_READ(DP_TP_CTL(port));
2404
2405 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2406 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2407 else
2408 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2409
2410 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2411 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2412 case DP_TRAINING_PATTERN_DISABLE:
2413 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2414
2415 break;
2416 case DP_TRAINING_PATTERN_1:
2417 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2418 break;
2419 case DP_TRAINING_PATTERN_2:
2420 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2421 break;
2422 case DP_TRAINING_PATTERN_3:
2423 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2424 break;
2425 }
2426 I915_WRITE(DP_TP_CTL(port), temp);
2427
2428 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2429 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2430 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2431
2432 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2433 case DP_TRAINING_PATTERN_DISABLE:
2434 *DP |= DP_LINK_TRAIN_OFF_CPT;
2435 break;
2436 case DP_TRAINING_PATTERN_1:
2437 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2438 break;
2439 case DP_TRAINING_PATTERN_2:
2440 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2441 break;
2442 case DP_TRAINING_PATTERN_3:
2443 DRM_ERROR("DP training pattern 3 not supported\n");
2444 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2445 break;
2446 }
2447
2448 } else {
2449 if (IS_CHERRYVIEW(dev))
2450 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2451 else
2452 *DP &= ~DP_LINK_TRAIN_MASK;
2453
2454 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2455 case DP_TRAINING_PATTERN_DISABLE:
2456 *DP |= DP_LINK_TRAIN_OFF;
2457 break;
2458 case DP_TRAINING_PATTERN_1:
2459 *DP |= DP_LINK_TRAIN_PAT_1;
2460 break;
2461 case DP_TRAINING_PATTERN_2:
2462 *DP |= DP_LINK_TRAIN_PAT_2;
2463 break;
2464 case DP_TRAINING_PATTERN_3:
2465 if (IS_CHERRYVIEW(dev)) {
2466 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2467 } else {
2468 DRM_ERROR("DP training pattern 3 not supported\n");
2469 *DP |= DP_LINK_TRAIN_PAT_2;
2470 }
2471 break;
2472 }
2473 }
2474 }
2475
2476 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2477 {
2478 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2479 struct drm_i915_private *dev_priv = dev->dev_private;
2480
2481 /* enable with pattern 1 (as per spec) */
2482 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2483 DP_TRAINING_PATTERN_1);
2484
2485 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2486 POSTING_READ(intel_dp->output_reg);
2487
2488 /*
2489 * Magic for VLV/CHV. We _must_ first set up the register
2490 * without actually enabling the port, and then do another
2491 * write to enable the port. Otherwise link training will
2492 * fail when the power sequencer is freshly used for this port.
2493 */
2494 intel_dp->DP |= DP_PORT_EN;
2495
2496 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2497 POSTING_READ(intel_dp->output_reg);
2498 }
2499
2500 static void intel_enable_dp(struct intel_encoder *encoder)
2501 {
2502 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2503 struct drm_device *dev = encoder->base.dev;
2504 struct drm_i915_private *dev_priv = dev->dev_private;
2505 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2506 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2507 unsigned int lane_mask = 0x0;
2508
2509 if (WARN_ON(dp_reg & DP_PORT_EN))
2510 return;
2511
2512 pps_lock(intel_dp);
2513
2514 if (IS_VALLEYVIEW(dev))
2515 vlv_init_panel_power_sequencer(intel_dp);
2516
2517 intel_dp_enable_port(intel_dp);
2518
2519 edp_panel_vdd_on(intel_dp);
2520 edp_panel_on(intel_dp);
2521 edp_panel_vdd_off(intel_dp, true);
2522
2523 pps_unlock(intel_dp);
2524
2525 if (IS_VALLEYVIEW(dev))
2526 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2527 lane_mask);
2528
2529 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2530 intel_dp_start_link_train(intel_dp);
2531 intel_dp_complete_link_train(intel_dp);
2532 intel_dp_stop_link_train(intel_dp);
2533
2534 if (crtc->config->has_audio) {
2535 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2536 pipe_name(crtc->pipe));
2537 intel_audio_codec_enable(encoder);
2538 }
2539 }
2540
2541 static void g4x_enable_dp(struct intel_encoder *encoder)
2542 {
2543 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2544
2545 intel_enable_dp(encoder);
2546 intel_edp_backlight_on(intel_dp);
2547 }
2548
2549 static void vlv_enable_dp(struct intel_encoder *encoder)
2550 {
2551 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2552
2553 intel_edp_backlight_on(intel_dp);
2554 intel_psr_enable(intel_dp);
2555 }
2556
2557 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2558 {
2559 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2560 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2561
2562 intel_dp_prepare(encoder);
2563
2564 /* Only ilk+ has port A */
2565 if (dport->port == PORT_A) {
2566 ironlake_set_pll_cpu_edp(intel_dp);
2567 ironlake_edp_pll_on(intel_dp);
2568 }
2569 }
2570
2571 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2572 {
2573 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2574 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2575 enum pipe pipe = intel_dp->pps_pipe;
2576 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2577
2578 edp_panel_vdd_off_sync(intel_dp);
2579
2580 /*
2581 * VLV seems to get confused when multiple power seqeuencers
2582 * have the same port selected (even if only one has power/vdd
2583 * enabled). The failure manifests as vlv_wait_port_ready() failing
2584 * CHV on the other hand doesn't seem to mind having the same port
2585 * selected in multiple power seqeuencers, but let's clear the
2586 * port select always when logically disconnecting a power sequencer
2587 * from a port.
2588 */
2589 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2590 pipe_name(pipe), port_name(intel_dig_port->port));
2591 I915_WRITE(pp_on_reg, 0);
2592 POSTING_READ(pp_on_reg);
2593
2594 intel_dp->pps_pipe = INVALID_PIPE;
2595 }
2596
2597 static void vlv_steal_power_sequencer(struct drm_device *dev,
2598 enum pipe pipe)
2599 {
2600 struct drm_i915_private *dev_priv = dev->dev_private;
2601 struct intel_encoder *encoder;
2602
2603 lockdep_assert_held(&dev_priv->pps_mutex);
2604
2605 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2606 return;
2607
2608 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2609 base.head) {
2610 struct intel_dp *intel_dp;
2611 enum port port;
2612
2613 if (encoder->type != INTEL_OUTPUT_EDP)
2614 continue;
2615
2616 intel_dp = enc_to_intel_dp(&encoder->base);
2617 port = dp_to_dig_port(intel_dp)->port;
2618
2619 if (intel_dp->pps_pipe != pipe)
2620 continue;
2621
2622 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2623 pipe_name(pipe), port_name(port));
2624
2625 WARN(encoder->connectors_active,
2626 "stealing pipe %c power sequencer from active eDP port %c\n",
2627 pipe_name(pipe), port_name(port));
2628
2629 /* make sure vdd is off before we steal it */
2630 vlv_detach_power_sequencer(intel_dp);
2631 }
2632 }
2633
2634 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2635 {
2636 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2637 struct intel_encoder *encoder = &intel_dig_port->base;
2638 struct drm_device *dev = encoder->base.dev;
2639 struct drm_i915_private *dev_priv = dev->dev_private;
2640 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2641
2642 lockdep_assert_held(&dev_priv->pps_mutex);
2643
2644 if (!is_edp(intel_dp))
2645 return;
2646
2647 if (intel_dp->pps_pipe == crtc->pipe)
2648 return;
2649
2650 /*
2651 * If another power sequencer was being used on this
2652 * port previously make sure to turn off vdd there while
2653 * we still have control of it.
2654 */
2655 if (intel_dp->pps_pipe != INVALID_PIPE)
2656 vlv_detach_power_sequencer(intel_dp);
2657
2658 /*
2659 * We may be stealing the power
2660 * sequencer from another port.
2661 */
2662 vlv_steal_power_sequencer(dev, crtc->pipe);
2663
2664 /* now it's all ours */
2665 intel_dp->pps_pipe = crtc->pipe;
2666
2667 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2668 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2669
2670 /* init power sequencer on this pipe and port */
2671 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2672 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2673 }
2674
2675 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2676 {
2677 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2678 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2679 struct drm_device *dev = encoder->base.dev;
2680 struct drm_i915_private *dev_priv = dev->dev_private;
2681 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2682 enum dpio_channel port = vlv_dport_to_channel(dport);
2683 int pipe = intel_crtc->pipe;
2684 u32 val;
2685
2686 mutex_lock(&dev_priv->sb_lock);
2687
2688 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2689 val = 0;
2690 if (pipe)
2691 val |= (1<<21);
2692 else
2693 val &= ~(1<<21);
2694 val |= 0x001000c4;
2695 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2696 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2697 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2698
2699 mutex_unlock(&dev_priv->sb_lock);
2700
2701 intel_enable_dp(encoder);
2702 }
2703
2704 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2705 {
2706 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2707 struct drm_device *dev = encoder->base.dev;
2708 struct drm_i915_private *dev_priv = dev->dev_private;
2709 struct intel_crtc *intel_crtc =
2710 to_intel_crtc(encoder->base.crtc);
2711 enum dpio_channel port = vlv_dport_to_channel(dport);
2712 int pipe = intel_crtc->pipe;
2713
2714 intel_dp_prepare(encoder);
2715
2716 /* Program Tx lane resets to default */
2717 mutex_lock(&dev_priv->sb_lock);
2718 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2719 DPIO_PCS_TX_LANE2_RESET |
2720 DPIO_PCS_TX_LANE1_RESET);
2721 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2722 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2723 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2724 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2725 DPIO_PCS_CLK_SOFT_RESET);
2726
2727 /* Fix up inter-pair skew failure */
2728 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2729 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2730 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2731 mutex_unlock(&dev_priv->sb_lock);
2732 }
2733
2734 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2735 {
2736 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2737 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2738 struct drm_device *dev = encoder->base.dev;
2739 struct drm_i915_private *dev_priv = dev->dev_private;
2740 struct intel_crtc *intel_crtc =
2741 to_intel_crtc(encoder->base.crtc);
2742 enum dpio_channel ch = vlv_dport_to_channel(dport);
2743 int pipe = intel_crtc->pipe;
2744 int data, i, stagger;
2745 u32 val;
2746
2747 mutex_lock(&dev_priv->sb_lock);
2748
2749 /* allow hardware to manage TX FIFO reset source */
2750 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2751 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2752 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2753
2754 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2755 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2756 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2757
2758 /* Deassert soft data lane reset*/
2759 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2760 val |= CHV_PCS_REQ_SOFTRESET_EN;
2761 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2762
2763 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2764 val |= CHV_PCS_REQ_SOFTRESET_EN;
2765 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2766
2767 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2768 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2769 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2770
2771 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2772 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2773 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2774
2775 /* Program Tx lane latency optimal setting*/
2776 for (i = 0; i < 4; i++) {
2777 /* Set the upar bit */
2778 data = (i == 1) ? 0x0 : 0x1;
2779 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2780 data << DPIO_UPAR_SHIFT);
2781 }
2782
2783 /* Data lane stagger programming */
2784 if (intel_crtc->config->port_clock > 270000)
2785 stagger = 0x18;
2786 else if (intel_crtc->config->port_clock > 135000)
2787 stagger = 0xd;
2788 else if (intel_crtc->config->port_clock > 67500)
2789 stagger = 0x7;
2790 else if (intel_crtc->config->port_clock > 33750)
2791 stagger = 0x4;
2792 else
2793 stagger = 0x2;
2794
2795 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2796 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2797 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2798
2799 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2800 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2801 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2802
2803 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2804 DPIO_LANESTAGGER_STRAP(stagger) |
2805 DPIO_LANESTAGGER_STRAP_OVRD |
2806 DPIO_TX1_STAGGER_MASK(0x1f) |
2807 DPIO_TX1_STAGGER_MULT(6) |
2808 DPIO_TX2_STAGGER_MULT(0));
2809
2810 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2811 DPIO_LANESTAGGER_STRAP(stagger) |
2812 DPIO_LANESTAGGER_STRAP_OVRD |
2813 DPIO_TX1_STAGGER_MASK(0x1f) |
2814 DPIO_TX1_STAGGER_MULT(7) |
2815 DPIO_TX2_STAGGER_MULT(5));
2816
2817 mutex_unlock(&dev_priv->sb_lock);
2818
2819 intel_enable_dp(encoder);
2820 }
2821
2822 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2823 {
2824 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2825 struct drm_device *dev = encoder->base.dev;
2826 struct drm_i915_private *dev_priv = dev->dev_private;
2827 struct intel_crtc *intel_crtc =
2828 to_intel_crtc(encoder->base.crtc);
2829 enum dpio_channel ch = vlv_dport_to_channel(dport);
2830 enum pipe pipe = intel_crtc->pipe;
2831 u32 val;
2832
2833 intel_dp_prepare(encoder);
2834
2835 mutex_lock(&dev_priv->sb_lock);
2836
2837 /* program left/right clock distribution */
2838 if (pipe != PIPE_B) {
2839 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2840 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2841 if (ch == DPIO_CH0)
2842 val |= CHV_BUFLEFTENA1_FORCE;
2843 if (ch == DPIO_CH1)
2844 val |= CHV_BUFRIGHTENA1_FORCE;
2845 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2846 } else {
2847 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2848 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2849 if (ch == DPIO_CH0)
2850 val |= CHV_BUFLEFTENA2_FORCE;
2851 if (ch == DPIO_CH1)
2852 val |= CHV_BUFRIGHTENA2_FORCE;
2853 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2854 }
2855
2856 /* program clock channel usage */
2857 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2858 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2859 if (pipe != PIPE_B)
2860 val &= ~CHV_PCS_USEDCLKCHANNEL;
2861 else
2862 val |= CHV_PCS_USEDCLKCHANNEL;
2863 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2864
2865 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2866 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2867 if (pipe != PIPE_B)
2868 val &= ~CHV_PCS_USEDCLKCHANNEL;
2869 else
2870 val |= CHV_PCS_USEDCLKCHANNEL;
2871 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2872
2873 /*
2874 * This a a bit weird since generally CL
2875 * matches the pipe, but here we need to
2876 * pick the CL based on the port.
2877 */
2878 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2879 if (pipe != PIPE_B)
2880 val &= ~CHV_CMN_USEDCLKCHANNEL;
2881 else
2882 val |= CHV_CMN_USEDCLKCHANNEL;
2883 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2884
2885 mutex_unlock(&dev_priv->sb_lock);
2886 }
2887
2888 /*
2889 * Native read with retry for link status and receiver capability reads for
2890 * cases where the sink may still be asleep.
2891 *
2892 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2893 * supposed to retry 3 times per the spec.
2894 */
2895 static ssize_t
2896 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2897 void *buffer, size_t size)
2898 {
2899 ssize_t ret;
2900 int i;
2901
2902 /*
2903 * Sometime we just get the same incorrect byte repeated
2904 * over the entire buffer. Doing just one throw away read
2905 * initially seems to "solve" it.
2906 */
2907 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2908
2909 for (i = 0; i < 3; i++) {
2910 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2911 if (ret == size)
2912 return ret;
2913 msleep(1);
2914 }
2915
2916 return ret;
2917 }
2918
2919 /*
2920 * Fetch AUX CH registers 0x202 - 0x207 which contain
2921 * link status information
2922 */
2923 static bool
2924 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2925 {
2926 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2927 DP_LANE0_1_STATUS,
2928 link_status,
2929 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2930 }
2931
2932 /* These are source-specific values. */
2933 static uint8_t
2934 intel_dp_voltage_max(struct intel_dp *intel_dp)
2935 {
2936 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2937 struct drm_i915_private *dev_priv = dev->dev_private;
2938 enum port port = dp_to_dig_port(intel_dp)->port;
2939
2940 if (IS_BROXTON(dev))
2941 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2942 else if (INTEL_INFO(dev)->gen >= 9) {
2943 if (dev_priv->edp_low_vswing && port == PORT_A)
2944 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2945 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2946 } else if (IS_VALLEYVIEW(dev))
2947 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2948 else if (IS_GEN7(dev) && port == PORT_A)
2949 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2950 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2951 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2952 else
2953 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2954 }
2955
2956 static uint8_t
2957 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2958 {
2959 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2960 enum port port = dp_to_dig_port(intel_dp)->port;
2961
2962 if (INTEL_INFO(dev)->gen >= 9) {
2963 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2964 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2965 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2966 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2967 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2968 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2969 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2970 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2971 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2972 default:
2973 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2974 }
2975 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2976 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2977 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2978 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2979 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2980 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2981 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2982 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2983 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2984 default:
2985 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2986 }
2987 } else if (IS_VALLEYVIEW(dev)) {
2988 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2989 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2990 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2991 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2992 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2993 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2994 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2995 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2996 default:
2997 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2998 }
2999 } else if (IS_GEN7(dev) && port == PORT_A) {
3000 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3001 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3002 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3003 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3004 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3005 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3006 default:
3007 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3008 }
3009 } else {
3010 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3011 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3012 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3013 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3014 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3015 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3016 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3017 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3018 default:
3019 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3020 }
3021 }
3022 }
3023
3024 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3025 {
3026 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3027 struct drm_i915_private *dev_priv = dev->dev_private;
3028 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3029 struct intel_crtc *intel_crtc =
3030 to_intel_crtc(dport->base.base.crtc);
3031 unsigned long demph_reg_value, preemph_reg_value,
3032 uniqtranscale_reg_value;
3033 uint8_t train_set = intel_dp->train_set[0];
3034 enum dpio_channel port = vlv_dport_to_channel(dport);
3035 int pipe = intel_crtc->pipe;
3036
3037 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3038 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3039 preemph_reg_value = 0x0004000;
3040 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3041 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3042 demph_reg_value = 0x2B405555;
3043 uniqtranscale_reg_value = 0x552AB83A;
3044 break;
3045 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3046 demph_reg_value = 0x2B404040;
3047 uniqtranscale_reg_value = 0x5548B83A;
3048 break;
3049 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3050 demph_reg_value = 0x2B245555;
3051 uniqtranscale_reg_value = 0x5560B83A;
3052 break;
3053 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3054 demph_reg_value = 0x2B405555;
3055 uniqtranscale_reg_value = 0x5598DA3A;
3056 break;
3057 default:
3058 return 0;
3059 }
3060 break;
3061 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3062 preemph_reg_value = 0x0002000;
3063 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3064 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3065 demph_reg_value = 0x2B404040;
3066 uniqtranscale_reg_value = 0x5552B83A;
3067 break;
3068 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3069 demph_reg_value = 0x2B404848;
3070 uniqtranscale_reg_value = 0x5580B83A;
3071 break;
3072 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3073 demph_reg_value = 0x2B404040;
3074 uniqtranscale_reg_value = 0x55ADDA3A;
3075 break;
3076 default:
3077 return 0;
3078 }
3079 break;
3080 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3081 preemph_reg_value = 0x0000000;
3082 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3083 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3084 demph_reg_value = 0x2B305555;
3085 uniqtranscale_reg_value = 0x5570B83A;
3086 break;
3087 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3088 demph_reg_value = 0x2B2B4040;
3089 uniqtranscale_reg_value = 0x55ADDA3A;
3090 break;
3091 default:
3092 return 0;
3093 }
3094 break;
3095 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3096 preemph_reg_value = 0x0006000;
3097 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3098 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3099 demph_reg_value = 0x1B405555;
3100 uniqtranscale_reg_value = 0x55ADDA3A;
3101 break;
3102 default:
3103 return 0;
3104 }
3105 break;
3106 default:
3107 return 0;
3108 }
3109
3110 mutex_lock(&dev_priv->sb_lock);
3111 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3112 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3113 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3114 uniqtranscale_reg_value);
3115 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3116 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3117 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3118 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3119 mutex_unlock(&dev_priv->sb_lock);
3120
3121 return 0;
3122 }
3123
3124 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3125 {
3126 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3127 struct drm_i915_private *dev_priv = dev->dev_private;
3128 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3129 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3130 u32 deemph_reg_value, margin_reg_value, val;
3131 uint8_t train_set = intel_dp->train_set[0];
3132 enum dpio_channel ch = vlv_dport_to_channel(dport);
3133 enum pipe pipe = intel_crtc->pipe;
3134 int i;
3135
3136 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3137 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3138 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3139 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3140 deemph_reg_value = 128;
3141 margin_reg_value = 52;
3142 break;
3143 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3144 deemph_reg_value = 128;
3145 margin_reg_value = 77;
3146 break;
3147 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3148 deemph_reg_value = 128;
3149 margin_reg_value = 102;
3150 break;
3151 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3152 deemph_reg_value = 128;
3153 margin_reg_value = 154;
3154 /* FIXME extra to set for 1200 */
3155 break;
3156 default:
3157 return 0;
3158 }
3159 break;
3160 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3161 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3162 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3163 deemph_reg_value = 85;
3164 margin_reg_value = 78;
3165 break;
3166 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3167 deemph_reg_value = 85;
3168 margin_reg_value = 116;
3169 break;
3170 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3171 deemph_reg_value = 85;
3172 margin_reg_value = 154;
3173 break;
3174 default:
3175 return 0;
3176 }
3177 break;
3178 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3179 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3180 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3181 deemph_reg_value = 64;
3182 margin_reg_value = 104;
3183 break;
3184 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3185 deemph_reg_value = 64;
3186 margin_reg_value = 154;
3187 break;
3188 default:
3189 return 0;
3190 }
3191 break;
3192 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3193 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3194 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3195 deemph_reg_value = 43;
3196 margin_reg_value = 154;
3197 break;
3198 default:
3199 return 0;
3200 }
3201 break;
3202 default:
3203 return 0;
3204 }
3205
3206 mutex_lock(&dev_priv->sb_lock);
3207
3208 /* Clear calc init */
3209 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3210 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3211 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3212 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3213 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3214
3215 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3216 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3217 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3218 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3219 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3220
3221 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3222 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3223 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3224 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3225
3226 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3227 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3228 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3229 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3230
3231 /* Program swing deemph */
3232 for (i = 0; i < 4; i++) {
3233 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3234 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3235 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3236 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3237 }
3238
3239 /* Program swing margin */
3240 for (i = 0; i < 4; i++) {
3241 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3242 val &= ~DPIO_SWING_MARGIN000_MASK;
3243 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3244 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3245 }
3246
3247 /* Disable unique transition scale */
3248 for (i = 0; i < 4; i++) {
3249 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3250 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3251 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3252 }
3253
3254 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3255 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3256 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3257 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3258
3259 /*
3260 * The document said it needs to set bit 27 for ch0 and bit 26
3261 * for ch1. Might be a typo in the doc.
3262 * For now, for this unique transition scale selection, set bit
3263 * 27 for ch0 and ch1.
3264 */
3265 for (i = 0; i < 4; i++) {
3266 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3267 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3268 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3269 }
3270
3271 for (i = 0; i < 4; i++) {
3272 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3273 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3274 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3275 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3276 }
3277 }
3278
3279 /* Start swing calculation */
3280 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3281 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3282 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3283
3284 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3285 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3286 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3287
3288 /* LRC Bypass */
3289 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3290 val |= DPIO_LRC_BYPASS;
3291 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3292
3293 mutex_unlock(&dev_priv->sb_lock);
3294
3295 return 0;
3296 }
3297
3298 static void
3299 intel_get_adjust_train(struct intel_dp *intel_dp,
3300 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3301 {
3302 uint8_t v = 0;
3303 uint8_t p = 0;
3304 int lane;
3305 uint8_t voltage_max;
3306 uint8_t preemph_max;
3307
3308 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3309 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3310 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3311
3312 if (this_v > v)
3313 v = this_v;
3314 if (this_p > p)
3315 p = this_p;
3316 }
3317
3318 voltage_max = intel_dp_voltage_max(intel_dp);
3319 if (v >= voltage_max)
3320 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3321
3322 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3323 if (p >= preemph_max)
3324 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3325
3326 for (lane = 0; lane < 4; lane++)
3327 intel_dp->train_set[lane] = v | p;
3328 }
3329
3330 static uint32_t
3331 gen4_signal_levels(uint8_t train_set)
3332 {
3333 uint32_t signal_levels = 0;
3334
3335 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3336 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3337 default:
3338 signal_levels |= DP_VOLTAGE_0_4;
3339 break;
3340 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3341 signal_levels |= DP_VOLTAGE_0_6;
3342 break;
3343 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3344 signal_levels |= DP_VOLTAGE_0_8;
3345 break;
3346 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3347 signal_levels |= DP_VOLTAGE_1_2;
3348 break;
3349 }
3350 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3351 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3352 default:
3353 signal_levels |= DP_PRE_EMPHASIS_0;
3354 break;
3355 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3356 signal_levels |= DP_PRE_EMPHASIS_3_5;
3357 break;
3358 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3359 signal_levels |= DP_PRE_EMPHASIS_6;
3360 break;
3361 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3362 signal_levels |= DP_PRE_EMPHASIS_9_5;
3363 break;
3364 }
3365 return signal_levels;
3366 }
3367
3368 /* Gen6's DP voltage swing and pre-emphasis control */
3369 static uint32_t
3370 gen6_edp_signal_levels(uint8_t train_set)
3371 {
3372 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3373 DP_TRAIN_PRE_EMPHASIS_MASK);
3374 switch (signal_levels) {
3375 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3376 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3377 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3378 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3379 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3380 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3381 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3382 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3383 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3384 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3385 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3386 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3387 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3388 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3389 default:
3390 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3391 "0x%x\n", signal_levels);
3392 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3393 }
3394 }
3395
3396 /* Gen7's DP voltage swing and pre-emphasis control */
3397 static uint32_t
3398 gen7_edp_signal_levels(uint8_t train_set)
3399 {
3400 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3401 DP_TRAIN_PRE_EMPHASIS_MASK);
3402 switch (signal_levels) {
3403 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3404 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3405 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3406 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3407 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3408 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3409
3410 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3411 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3412 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3413 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3414
3415 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3416 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3417 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3418 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3419
3420 default:
3421 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3422 "0x%x\n", signal_levels);
3423 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3424 }
3425 }
3426
3427 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3428 static uint32_t
3429 hsw_signal_levels(uint8_t train_set)
3430 {
3431 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3432 DP_TRAIN_PRE_EMPHASIS_MASK);
3433 switch (signal_levels) {
3434 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3435 return DDI_BUF_TRANS_SELECT(0);
3436 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3437 return DDI_BUF_TRANS_SELECT(1);
3438 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3439 return DDI_BUF_TRANS_SELECT(2);
3440 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3441 return DDI_BUF_TRANS_SELECT(3);
3442
3443 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3444 return DDI_BUF_TRANS_SELECT(4);
3445 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3446 return DDI_BUF_TRANS_SELECT(5);
3447 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3448 return DDI_BUF_TRANS_SELECT(6);
3449
3450 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3451 return DDI_BUF_TRANS_SELECT(7);
3452 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3453 return DDI_BUF_TRANS_SELECT(8);
3454
3455 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3456 return DDI_BUF_TRANS_SELECT(9);
3457 default:
3458 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3459 "0x%x\n", signal_levels);
3460 return DDI_BUF_TRANS_SELECT(0);
3461 }
3462 }
3463
3464 static void bxt_signal_levels(struct intel_dp *intel_dp)
3465 {
3466 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3467 enum port port = dport->port;
3468 struct drm_device *dev = dport->base.base.dev;
3469 struct intel_encoder *encoder = &dport->base;
3470 uint8_t train_set = intel_dp->train_set[0];
3471 uint32_t level = 0;
3472
3473 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3474 DP_TRAIN_PRE_EMPHASIS_MASK);
3475 switch (signal_levels) {
3476 default:
3477 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emph level\n");
3478 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3479 level = 0;
3480 break;
3481 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3482 level = 1;
3483 break;
3484 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3485 level = 2;
3486 break;
3487 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3488 level = 3;
3489 break;
3490 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3491 level = 4;
3492 break;
3493 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3494 level = 5;
3495 break;
3496 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3497 level = 6;
3498 break;
3499 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3500 level = 7;
3501 break;
3502 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3503 level = 8;
3504 break;
3505 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3506 level = 9;
3507 break;
3508 }
3509
3510 bxt_ddi_vswing_sequence(dev, level, port, encoder->type);
3511 }
3512
3513 /* Properly updates "DP" with the correct signal levels. */
3514 static void
3515 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3516 {
3517 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3518 enum port port = intel_dig_port->port;
3519 struct drm_device *dev = intel_dig_port->base.base.dev;
3520 uint32_t signal_levels, mask;
3521 uint8_t train_set = intel_dp->train_set[0];
3522
3523 if (IS_BROXTON(dev)) {
3524 signal_levels = 0;
3525 bxt_signal_levels(intel_dp);
3526 mask = 0;
3527 } else if (HAS_DDI(dev)) {
3528 signal_levels = hsw_signal_levels(train_set);
3529 mask = DDI_BUF_EMP_MASK;
3530 } else if (IS_CHERRYVIEW(dev)) {
3531 signal_levels = chv_signal_levels(intel_dp);
3532 mask = 0;
3533 } else if (IS_VALLEYVIEW(dev)) {
3534 signal_levels = vlv_signal_levels(intel_dp);
3535 mask = 0;
3536 } else if (IS_GEN7(dev) && port == PORT_A) {
3537 signal_levels = gen7_edp_signal_levels(train_set);
3538 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3539 } else if (IS_GEN6(dev) && port == PORT_A) {
3540 signal_levels = gen6_edp_signal_levels(train_set);
3541 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3542 } else {
3543 signal_levels = gen4_signal_levels(train_set);
3544 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3545 }
3546
3547 if (mask)
3548 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3549
3550 DRM_DEBUG_KMS("Using vswing level %d\n",
3551 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3552 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3553 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3554 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3555
3556 *DP = (*DP & ~mask) | signal_levels;
3557 }
3558
3559 static bool
3560 intel_dp_set_link_train(struct intel_dp *intel_dp,
3561 uint32_t *DP,
3562 uint8_t dp_train_pat)
3563 {
3564 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3565 struct drm_device *dev = intel_dig_port->base.base.dev;
3566 struct drm_i915_private *dev_priv = dev->dev_private;
3567 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3568 int ret, len;
3569
3570 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3571
3572 I915_WRITE(intel_dp->output_reg, *DP);
3573 POSTING_READ(intel_dp->output_reg);
3574
3575 buf[0] = dp_train_pat;
3576 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3577 DP_TRAINING_PATTERN_DISABLE) {
3578 /* don't write DP_TRAINING_LANEx_SET on disable */
3579 len = 1;
3580 } else {
3581 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3582 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3583 len = intel_dp->lane_count + 1;
3584 }
3585
3586 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3587 buf, len);
3588
3589 return ret == len;
3590 }
3591
3592 static bool
3593 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3594 uint8_t dp_train_pat)
3595 {
3596 if (!intel_dp->train_set_valid)
3597 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3598 intel_dp_set_signal_levels(intel_dp, DP);
3599 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3600 }
3601
3602 static bool
3603 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3604 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3605 {
3606 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3607 struct drm_device *dev = intel_dig_port->base.base.dev;
3608 struct drm_i915_private *dev_priv = dev->dev_private;
3609 int ret;
3610
3611 intel_get_adjust_train(intel_dp, link_status);
3612 intel_dp_set_signal_levels(intel_dp, DP);
3613
3614 I915_WRITE(intel_dp->output_reg, *DP);
3615 POSTING_READ(intel_dp->output_reg);
3616
3617 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3618 intel_dp->train_set, intel_dp->lane_count);
3619
3620 return ret == intel_dp->lane_count;
3621 }
3622
3623 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3624 {
3625 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3626 struct drm_device *dev = intel_dig_port->base.base.dev;
3627 struct drm_i915_private *dev_priv = dev->dev_private;
3628 enum port port = intel_dig_port->port;
3629 uint32_t val;
3630
3631 if (!HAS_DDI(dev))
3632 return;
3633
3634 val = I915_READ(DP_TP_CTL(port));
3635 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3636 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3637 I915_WRITE(DP_TP_CTL(port), val);
3638
3639 /*
3640 * On PORT_A we can have only eDP in SST mode. There the only reason
3641 * we need to set idle transmission mode is to work around a HW issue
3642 * where we enable the pipe while not in idle link-training mode.
3643 * In this case there is requirement to wait for a minimum number of
3644 * idle patterns to be sent.
3645 */
3646 if (port == PORT_A)
3647 return;
3648
3649 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3650 1))
3651 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3652 }
3653
3654 /* Enable corresponding port and start training pattern 1 */
3655 void
3656 intel_dp_start_link_train(struct intel_dp *intel_dp)
3657 {
3658 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3659 struct drm_device *dev = encoder->dev;
3660 int i;
3661 uint8_t voltage;
3662 int voltage_tries, loop_tries;
3663 uint32_t DP = intel_dp->DP;
3664 uint8_t link_config[2];
3665
3666 if (HAS_DDI(dev))
3667 intel_ddi_prepare_link_retrain(encoder);
3668
3669 /* Write the link configuration data */
3670 link_config[0] = intel_dp->link_bw;
3671 link_config[1] = intel_dp->lane_count;
3672 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3673 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3674 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3675 if (intel_dp->num_sink_rates)
3676 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
3677 &intel_dp->rate_select, 1);
3678
3679 link_config[0] = 0;
3680 link_config[1] = DP_SET_ANSI_8B10B;
3681 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3682
3683 DP |= DP_PORT_EN;
3684
3685 /* clock recovery */
3686 if (!intel_dp_reset_link_train(intel_dp, &DP,
3687 DP_TRAINING_PATTERN_1 |
3688 DP_LINK_SCRAMBLING_DISABLE)) {
3689 DRM_ERROR("failed to enable link training\n");
3690 return;
3691 }
3692
3693 voltage = 0xff;
3694 voltage_tries = 0;
3695 loop_tries = 0;
3696 for (;;) {
3697 uint8_t link_status[DP_LINK_STATUS_SIZE];
3698
3699 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3700 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3701 DRM_ERROR("failed to get link status\n");
3702 break;
3703 }
3704
3705 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3706 DRM_DEBUG_KMS("clock recovery OK\n");
3707 break;
3708 }
3709
3710 /*
3711 * if we used previously trained voltage and pre-emphasis values
3712 * and we don't get clock recovery, reset link training values
3713 */
3714 if (intel_dp->train_set_valid) {
3715 DRM_DEBUG_KMS("clock recovery not ok, reset");
3716 /* clear the flag as we are not reusing train set */
3717 intel_dp->train_set_valid = false;
3718 if (!intel_dp_reset_link_train(intel_dp, &DP,
3719 DP_TRAINING_PATTERN_1 |
3720 DP_LINK_SCRAMBLING_DISABLE)) {
3721 DRM_ERROR("failed to enable link training\n");
3722 return;
3723 }
3724 continue;
3725 }
3726
3727 /* Check to see if we've tried the max voltage */
3728 for (i = 0; i < intel_dp->lane_count; i++)
3729 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3730 break;
3731 if (i == intel_dp->lane_count) {
3732 ++loop_tries;
3733 if (loop_tries == 5) {
3734 DRM_ERROR("too many full retries, give up\n");
3735 break;
3736 }
3737 intel_dp_reset_link_train(intel_dp, &DP,
3738 DP_TRAINING_PATTERN_1 |
3739 DP_LINK_SCRAMBLING_DISABLE);
3740 voltage_tries = 0;
3741 continue;
3742 }
3743
3744 /* Check to see if we've tried the same voltage 5 times */
3745 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3746 ++voltage_tries;
3747 if (voltage_tries == 5) {
3748 DRM_ERROR("too many voltage retries, give up\n");
3749 break;
3750 }
3751 } else
3752 voltage_tries = 0;
3753 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3754
3755 /* Update training set as requested by target */
3756 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3757 DRM_ERROR("failed to update link training\n");
3758 break;
3759 }
3760 }
3761
3762 intel_dp->DP = DP;
3763 }
3764
3765 void
3766 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3767 {
3768 bool channel_eq = false;
3769 int tries, cr_tries;
3770 uint32_t DP = intel_dp->DP;
3771 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3772
3773 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3774 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3775 training_pattern = DP_TRAINING_PATTERN_3;
3776
3777 /* channel equalization */
3778 if (!intel_dp_set_link_train(intel_dp, &DP,
3779 training_pattern |
3780 DP_LINK_SCRAMBLING_DISABLE)) {
3781 DRM_ERROR("failed to start channel equalization\n");
3782 return;
3783 }
3784
3785 tries = 0;
3786 cr_tries = 0;
3787 channel_eq = false;
3788 for (;;) {
3789 uint8_t link_status[DP_LINK_STATUS_SIZE];
3790
3791 if (cr_tries > 5) {
3792 DRM_ERROR("failed to train DP, aborting\n");
3793 break;
3794 }
3795
3796 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3797 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3798 DRM_ERROR("failed to get link status\n");
3799 break;
3800 }
3801
3802 /* Make sure clock is still ok */
3803 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3804 intel_dp->train_set_valid = false;
3805 intel_dp_start_link_train(intel_dp);
3806 intel_dp_set_link_train(intel_dp, &DP,
3807 training_pattern |
3808 DP_LINK_SCRAMBLING_DISABLE);
3809 cr_tries++;
3810 continue;
3811 }
3812
3813 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3814 channel_eq = true;
3815 break;
3816 }
3817
3818 /* Try 5 times, then try clock recovery if that fails */
3819 if (tries > 5) {
3820 intel_dp->train_set_valid = false;
3821 intel_dp_start_link_train(intel_dp);
3822 intel_dp_set_link_train(intel_dp, &DP,
3823 training_pattern |
3824 DP_LINK_SCRAMBLING_DISABLE);
3825 tries = 0;
3826 cr_tries++;
3827 continue;
3828 }
3829
3830 /* Update training set as requested by target */
3831 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3832 DRM_ERROR("failed to update link training\n");
3833 break;
3834 }
3835 ++tries;
3836 }
3837
3838 intel_dp_set_idle_link_train(intel_dp);
3839
3840 intel_dp->DP = DP;
3841
3842 if (channel_eq) {
3843 intel_dp->train_set_valid = true;
3844 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3845 }
3846 }
3847
3848 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3849 {
3850 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3851 DP_TRAINING_PATTERN_DISABLE);
3852 }
3853
3854 static void
3855 intel_dp_link_down(struct intel_dp *intel_dp)
3856 {
3857 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3858 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3859 enum port port = intel_dig_port->port;
3860 struct drm_device *dev = intel_dig_port->base.base.dev;
3861 struct drm_i915_private *dev_priv = dev->dev_private;
3862 uint32_t DP = intel_dp->DP;
3863
3864 if (WARN_ON(HAS_DDI(dev)))
3865 return;
3866
3867 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3868 return;
3869
3870 DRM_DEBUG_KMS("\n");
3871
3872 if ((IS_GEN7(dev) && port == PORT_A) ||
3873 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3874 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3875 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3876 } else {
3877 if (IS_CHERRYVIEW(dev))
3878 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3879 else
3880 DP &= ~DP_LINK_TRAIN_MASK;
3881 DP |= DP_LINK_TRAIN_PAT_IDLE;
3882 }
3883 I915_WRITE(intel_dp->output_reg, DP);
3884 POSTING_READ(intel_dp->output_reg);
3885
3886 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3887 I915_WRITE(intel_dp->output_reg, DP);
3888 POSTING_READ(intel_dp->output_reg);
3889
3890 /*
3891 * HW workaround for IBX, we need to move the port
3892 * to transcoder A after disabling it to allow the
3893 * matching HDMI port to be enabled on transcoder A.
3894 */
3895 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3896 /* always enable with pattern 1 (as per spec) */
3897 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3898 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3899 I915_WRITE(intel_dp->output_reg, DP);
3900 POSTING_READ(intel_dp->output_reg);
3901
3902 DP &= ~DP_PORT_EN;
3903 I915_WRITE(intel_dp->output_reg, DP);
3904 POSTING_READ(intel_dp->output_reg);
3905 }
3906
3907 msleep(intel_dp->panel_power_down_delay);
3908 }
3909
3910 static bool
3911 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3912 {
3913 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3914 struct drm_device *dev = dig_port->base.base.dev;
3915 struct drm_i915_private *dev_priv = dev->dev_private;
3916 uint8_t rev;
3917
3918 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3919 sizeof(intel_dp->dpcd)) < 0)
3920 return false; /* aux transfer failed */
3921
3922 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3923
3924 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3925 return false; /* DPCD not present */
3926
3927 /* Check if the panel supports PSR */
3928 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3929 if (is_edp(intel_dp)) {
3930 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3931 intel_dp->psr_dpcd,
3932 sizeof(intel_dp->psr_dpcd));
3933 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3934 dev_priv->psr.sink_support = true;
3935 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3936 }
3937
3938 if (INTEL_INFO(dev)->gen >= 9 &&
3939 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3940 uint8_t frame_sync_cap;
3941
3942 dev_priv->psr.sink_support = true;
3943 intel_dp_dpcd_read_wake(&intel_dp->aux,
3944 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3945 &frame_sync_cap, 1);
3946 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3947 /* PSR2 needs frame sync as well */
3948 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3949 DRM_DEBUG_KMS("PSR2 %s on sink",
3950 dev_priv->psr.psr2_support ? "supported" : "not supported");
3951 }
3952 }
3953
3954 /* Training Pattern 3 support, both source and sink */
3955 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3956 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3957 (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3958 intel_dp->use_tps3 = true;
3959 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3960 } else
3961 intel_dp->use_tps3 = false;
3962
3963 /* Intermediate frequency support */
3964 if (is_edp(intel_dp) &&
3965 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3966 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3967 (rev >= 0x03)) { /* eDp v1.4 or higher */
3968 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3969 int i;
3970
3971 intel_dp_dpcd_read_wake(&intel_dp->aux,
3972 DP_SUPPORTED_LINK_RATES,
3973 sink_rates,
3974 sizeof(sink_rates));
3975
3976 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3977 int val = le16_to_cpu(sink_rates[i]);
3978
3979 if (val == 0)
3980 break;
3981
3982 /* Value read is in kHz while drm clock is saved in deca-kHz */
3983 intel_dp->sink_rates[i] = (val * 200) / 10;
3984 }
3985 intel_dp->num_sink_rates = i;
3986 }
3987
3988 intel_dp_print_rates(intel_dp);
3989
3990 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3991 DP_DWN_STRM_PORT_PRESENT))
3992 return true; /* native DP sink */
3993
3994 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3995 return true; /* no per-port downstream info */
3996
3997 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3998 intel_dp->downstream_ports,
3999 DP_MAX_DOWNSTREAM_PORTS) < 0)
4000 return false; /* downstream port status fetch failed */
4001
4002 return true;
4003 }
4004
4005 static void
4006 intel_dp_probe_oui(struct intel_dp *intel_dp)
4007 {
4008 u8 buf[3];
4009
4010 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
4011 return;
4012
4013 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
4014 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
4015 buf[0], buf[1], buf[2]);
4016
4017 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
4018 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
4019 buf[0], buf[1], buf[2]);
4020 }
4021
4022 static bool
4023 intel_dp_probe_mst(struct intel_dp *intel_dp)
4024 {
4025 u8 buf[1];
4026
4027 if (!intel_dp->can_mst)
4028 return false;
4029
4030 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4031 return false;
4032
4033 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
4034 if (buf[0] & DP_MST_CAP) {
4035 DRM_DEBUG_KMS("Sink is MST capable\n");
4036 intel_dp->is_mst = true;
4037 } else {
4038 DRM_DEBUG_KMS("Sink is not MST capable\n");
4039 intel_dp->is_mst = false;
4040 }
4041 }
4042
4043 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4044 return intel_dp->is_mst;
4045 }
4046
4047 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4048 {
4049 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4050 struct drm_device *dev = intel_dig_port->base.base.dev;
4051 struct intel_crtc *intel_crtc =
4052 to_intel_crtc(intel_dig_port->base.base.crtc);
4053 u8 buf;
4054 int test_crc_count;
4055 int attempts = 6;
4056 int ret = 0;
4057
4058 hsw_disable_ips(intel_crtc);
4059
4060 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0) {
4061 ret = -EIO;
4062 goto out;
4063 }
4064
4065 if (!(buf & DP_TEST_CRC_SUPPORTED)) {
4066 ret = -ENOTTY;
4067 goto out;
4068 }
4069
4070 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
4071 ret = -EIO;
4072 goto out;
4073 }
4074
4075 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4076 buf | DP_TEST_SINK_START) < 0) {
4077 ret = -EIO;
4078 goto out;
4079 }
4080
4081 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0) {
4082 ret = -EIO;
4083 goto out;
4084 }
4085
4086 test_crc_count = buf & DP_TEST_COUNT_MASK;
4087
4088 do {
4089 if (drm_dp_dpcd_readb(&intel_dp->aux,
4090 DP_TEST_SINK_MISC, &buf) < 0) {
4091 ret = -EIO;
4092 goto out;
4093 }
4094 intel_wait_for_vblank(dev, intel_crtc->pipe);
4095 } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
4096
4097 if (attempts == 0) {
4098 DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n");
4099 ret = -ETIMEDOUT;
4100 goto out;
4101 }
4102
4103 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4104 ret = -EIO;
4105 goto out;
4106 }
4107
4108 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
4109 ret = -EIO;
4110 goto out;
4111 }
4112 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4113 buf & ~DP_TEST_SINK_START) < 0) {
4114 ret = -EIO;
4115 goto out;
4116 }
4117 out:
4118 hsw_enable_ips(intel_crtc);
4119 return ret;
4120 }
4121
4122 static bool
4123 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4124 {
4125 return intel_dp_dpcd_read_wake(&intel_dp->aux,
4126 DP_DEVICE_SERVICE_IRQ_VECTOR,
4127 sink_irq_vector, 1) == 1;
4128 }
4129
4130 static bool
4131 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4132 {
4133 int ret;
4134
4135 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4136 DP_SINK_COUNT_ESI,
4137 sink_irq_vector, 14);
4138 if (ret != 14)
4139 return false;
4140
4141 return true;
4142 }
4143
4144 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4145 {
4146 uint8_t test_result = DP_TEST_ACK;
4147 return test_result;
4148 }
4149
4150 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4151 {
4152 uint8_t test_result = DP_TEST_NAK;
4153 return test_result;
4154 }
4155
4156 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4157 {
4158 uint8_t test_result = DP_TEST_NAK;
4159 struct intel_connector *intel_connector = intel_dp->attached_connector;
4160 struct drm_connector *connector = &intel_connector->base;
4161
4162 if (intel_connector->detect_edid == NULL ||
4163 connector->edid_corrupt ||
4164 intel_dp->aux.i2c_defer_count > 6) {
4165 /* Check EDID read for NACKs, DEFERs and corruption
4166 * (DP CTS 1.2 Core r1.1)
4167 * 4.2.2.4 : Failed EDID read, I2C_NAK
4168 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4169 * 4.2.2.6 : EDID corruption detected
4170 * Use failsafe mode for all cases
4171 */
4172 if (intel_dp->aux.i2c_nack_count > 0 ||
4173 intel_dp->aux.i2c_defer_count > 0)
4174 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4175 intel_dp->aux.i2c_nack_count,
4176 intel_dp->aux.i2c_defer_count);
4177 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4178 } else {
4179 if (!drm_dp_dpcd_write(&intel_dp->aux,
4180 DP_TEST_EDID_CHECKSUM,
4181 &intel_connector->detect_edid->checksum,
4182 1))
4183 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4184
4185 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4186 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4187 }
4188
4189 /* Set test active flag here so userspace doesn't interrupt things */
4190 intel_dp->compliance_test_active = 1;
4191
4192 return test_result;
4193 }
4194
4195 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4196 {
4197 uint8_t test_result = DP_TEST_NAK;
4198 return test_result;
4199 }
4200
4201 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4202 {
4203 uint8_t response = DP_TEST_NAK;
4204 uint8_t rxdata = 0;
4205 int status = 0;
4206
4207 intel_dp->compliance_test_active = 0;
4208 intel_dp->compliance_test_type = 0;
4209 intel_dp->compliance_test_data = 0;
4210
4211 intel_dp->aux.i2c_nack_count = 0;
4212 intel_dp->aux.i2c_defer_count = 0;
4213
4214 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4215 if (status <= 0) {
4216 DRM_DEBUG_KMS("Could not read test request from sink\n");
4217 goto update_status;
4218 }
4219
4220 switch (rxdata) {
4221 case DP_TEST_LINK_TRAINING:
4222 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4223 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4224 response = intel_dp_autotest_link_training(intel_dp);
4225 break;
4226 case DP_TEST_LINK_VIDEO_PATTERN:
4227 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4228 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4229 response = intel_dp_autotest_video_pattern(intel_dp);
4230 break;
4231 case DP_TEST_LINK_EDID_READ:
4232 DRM_DEBUG_KMS("EDID test requested\n");
4233 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4234 response = intel_dp_autotest_edid(intel_dp);
4235 break;
4236 case DP_TEST_LINK_PHY_TEST_PATTERN:
4237 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4238 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4239 response = intel_dp_autotest_phy_pattern(intel_dp);
4240 break;
4241 default:
4242 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4243 break;
4244 }
4245
4246 update_status:
4247 status = drm_dp_dpcd_write(&intel_dp->aux,
4248 DP_TEST_RESPONSE,
4249 &response, 1);
4250 if (status <= 0)
4251 DRM_DEBUG_KMS("Could not write test response to sink\n");
4252 }
4253
4254 static int
4255 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4256 {
4257 bool bret;
4258
4259 if (intel_dp->is_mst) {
4260 u8 esi[16] = { 0 };
4261 int ret = 0;
4262 int retry;
4263 bool handled;
4264 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4265 go_again:
4266 if (bret == true) {
4267
4268 /* check link status - esi[10] = 0x200c */
4269 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4270 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4271 intel_dp_start_link_train(intel_dp);
4272 intel_dp_complete_link_train(intel_dp);
4273 intel_dp_stop_link_train(intel_dp);
4274 }
4275
4276 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4277 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4278
4279 if (handled) {
4280 for (retry = 0; retry < 3; retry++) {
4281 int wret;
4282 wret = drm_dp_dpcd_write(&intel_dp->aux,
4283 DP_SINK_COUNT_ESI+1,
4284 &esi[1], 3);
4285 if (wret == 3) {
4286 break;
4287 }
4288 }
4289
4290 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4291 if (bret == true) {
4292 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4293 goto go_again;
4294 }
4295 } else
4296 ret = 0;
4297
4298 return ret;
4299 } else {
4300 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4301 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4302 intel_dp->is_mst = false;
4303 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4304 /* send a hotplug event */
4305 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4306 }
4307 }
4308 return -EINVAL;
4309 }
4310
4311 /*
4312 * According to DP spec
4313 * 5.1.2:
4314 * 1. Read DPCD
4315 * 2. Configure link according to Receiver Capabilities
4316 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4317 * 4. Check link status on receipt of hot-plug interrupt
4318 */
4319 static void
4320 intel_dp_check_link_status(struct intel_dp *intel_dp)
4321 {
4322 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4323 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4324 u8 sink_irq_vector;
4325 u8 link_status[DP_LINK_STATUS_SIZE];
4326
4327 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4328
4329 if (!intel_encoder->connectors_active)
4330 return;
4331
4332 if (WARN_ON(!intel_encoder->base.crtc))
4333 return;
4334
4335 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4336 return;
4337
4338 /* Try to read receiver status if the link appears to be up */
4339 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4340 return;
4341 }
4342
4343 /* Now read the DPCD to see if it's actually running */
4344 if (!intel_dp_get_dpcd(intel_dp)) {
4345 return;
4346 }
4347
4348 /* Try to read the source of the interrupt */
4349 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4350 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4351 /* Clear interrupt source */
4352 drm_dp_dpcd_writeb(&intel_dp->aux,
4353 DP_DEVICE_SERVICE_IRQ_VECTOR,
4354 sink_irq_vector);
4355
4356 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4357 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4358 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4359 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4360 }
4361
4362 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4363 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4364 intel_encoder->base.name);
4365 intel_dp_start_link_train(intel_dp);
4366 intel_dp_complete_link_train(intel_dp);
4367 intel_dp_stop_link_train(intel_dp);
4368 }
4369 }
4370
4371 /* XXX this is probably wrong for multiple downstream ports */
4372 static enum drm_connector_status
4373 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4374 {
4375 uint8_t *dpcd = intel_dp->dpcd;
4376 uint8_t type;
4377
4378 if (!intel_dp_get_dpcd(intel_dp))
4379 return connector_status_disconnected;
4380
4381 /* if there's no downstream port, we're done */
4382 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4383 return connector_status_connected;
4384
4385 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4386 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4387 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4388 uint8_t reg;
4389
4390 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4391 &reg, 1) < 0)
4392 return connector_status_unknown;
4393
4394 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4395 : connector_status_disconnected;
4396 }
4397
4398 /* If no HPD, poke DDC gently */
4399 if (drm_probe_ddc(&intel_dp->aux.ddc))
4400 return connector_status_connected;
4401
4402 /* Well we tried, say unknown for unreliable port types */
4403 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4404 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4405 if (type == DP_DS_PORT_TYPE_VGA ||
4406 type == DP_DS_PORT_TYPE_NON_EDID)
4407 return connector_status_unknown;
4408 } else {
4409 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4410 DP_DWN_STRM_PORT_TYPE_MASK;
4411 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4412 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4413 return connector_status_unknown;
4414 }
4415
4416 /* Anything else is out of spec, warn and ignore */
4417 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4418 return connector_status_disconnected;
4419 }
4420
4421 static enum drm_connector_status
4422 edp_detect(struct intel_dp *intel_dp)
4423 {
4424 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4425 enum drm_connector_status status;
4426
4427 status = intel_panel_detect(dev);
4428 if (status == connector_status_unknown)
4429 status = connector_status_connected;
4430
4431 return status;
4432 }
4433
4434 static enum drm_connector_status
4435 ironlake_dp_detect(struct intel_dp *intel_dp)
4436 {
4437 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4438 struct drm_i915_private *dev_priv = dev->dev_private;
4439 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4440
4441 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4442 return connector_status_disconnected;
4443
4444 return intel_dp_detect_dpcd(intel_dp);
4445 }
4446
4447 static int g4x_digital_port_connected(struct drm_device *dev,
4448 struct intel_digital_port *intel_dig_port)
4449 {
4450 struct drm_i915_private *dev_priv = dev->dev_private;
4451 uint32_t bit;
4452
4453 if (IS_VALLEYVIEW(dev)) {
4454 switch (intel_dig_port->port) {
4455 case PORT_B:
4456 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4457 break;
4458 case PORT_C:
4459 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4460 break;
4461 case PORT_D:
4462 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4463 break;
4464 default:
4465 return -EINVAL;
4466 }
4467 } else {
4468 switch (intel_dig_port->port) {
4469 case PORT_B:
4470 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4471 break;
4472 case PORT_C:
4473 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4474 break;
4475 case PORT_D:
4476 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4477 break;
4478 default:
4479 return -EINVAL;
4480 }
4481 }
4482
4483 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4484 return 0;
4485 return 1;
4486 }
4487
4488 static enum drm_connector_status
4489 g4x_dp_detect(struct intel_dp *intel_dp)
4490 {
4491 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4492 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4493 int ret;
4494
4495 /* Can't disconnect eDP, but you can close the lid... */
4496 if (is_edp(intel_dp)) {
4497 enum drm_connector_status status;
4498
4499 status = intel_panel_detect(dev);
4500 if (status == connector_status_unknown)
4501 status = connector_status_connected;
4502 return status;
4503 }
4504
4505 ret = g4x_digital_port_connected(dev, intel_dig_port);
4506 if (ret == -EINVAL)
4507 return connector_status_unknown;
4508 else if (ret == 0)
4509 return connector_status_disconnected;
4510
4511 return intel_dp_detect_dpcd(intel_dp);
4512 }
4513
4514 static struct edid *
4515 intel_dp_get_edid(struct intel_dp *intel_dp)
4516 {
4517 struct intel_connector *intel_connector = intel_dp->attached_connector;
4518
4519 /* use cached edid if we have one */
4520 if (intel_connector->edid) {
4521 /* invalid edid */
4522 if (IS_ERR(intel_connector->edid))
4523 return NULL;
4524
4525 return drm_edid_duplicate(intel_connector->edid);
4526 } else
4527 return drm_get_edid(&intel_connector->base,
4528 &intel_dp->aux.ddc);
4529 }
4530
4531 static void
4532 intel_dp_set_edid(struct intel_dp *intel_dp)
4533 {
4534 struct intel_connector *intel_connector = intel_dp->attached_connector;
4535 struct edid *edid;
4536
4537 edid = intel_dp_get_edid(intel_dp);
4538 intel_connector->detect_edid = edid;
4539
4540 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4541 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4542 else
4543 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4544 }
4545
4546 static void
4547 intel_dp_unset_edid(struct intel_dp *intel_dp)
4548 {
4549 struct intel_connector *intel_connector = intel_dp->attached_connector;
4550
4551 kfree(intel_connector->detect_edid);
4552 intel_connector->detect_edid = NULL;
4553
4554 intel_dp->has_audio = false;
4555 }
4556
4557 static enum intel_display_power_domain
4558 intel_dp_power_get(struct intel_dp *dp)
4559 {
4560 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4561 enum intel_display_power_domain power_domain;
4562
4563 power_domain = intel_display_port_power_domain(encoder);
4564 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4565
4566 return power_domain;
4567 }
4568
4569 static void
4570 intel_dp_power_put(struct intel_dp *dp,
4571 enum intel_display_power_domain power_domain)
4572 {
4573 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4574 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4575 }
4576
4577 static enum drm_connector_status
4578 intel_dp_detect(struct drm_connector *connector, bool force)
4579 {
4580 struct intel_dp *intel_dp = intel_attached_dp(connector);
4581 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4582 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4583 struct drm_device *dev = connector->dev;
4584 enum drm_connector_status status;
4585 enum intel_display_power_domain power_domain;
4586 bool ret;
4587 u8 sink_irq_vector;
4588
4589 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4590 connector->base.id, connector->name);
4591 intel_dp_unset_edid(intel_dp);
4592
4593 if (intel_dp->is_mst) {
4594 /* MST devices are disconnected from a monitor POV */
4595 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4596 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4597 return connector_status_disconnected;
4598 }
4599
4600 power_domain = intel_dp_power_get(intel_dp);
4601
4602 /* Can't disconnect eDP, but you can close the lid... */
4603 if (is_edp(intel_dp))
4604 status = edp_detect(intel_dp);
4605 else if (HAS_PCH_SPLIT(dev))
4606 status = ironlake_dp_detect(intel_dp);
4607 else
4608 status = g4x_dp_detect(intel_dp);
4609 if (status != connector_status_connected)
4610 goto out;
4611
4612 intel_dp_probe_oui(intel_dp);
4613
4614 ret = intel_dp_probe_mst(intel_dp);
4615 if (ret) {
4616 /* if we are in MST mode then this connector
4617 won't appear connected or have anything with EDID on it */
4618 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4619 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4620 status = connector_status_disconnected;
4621 goto out;
4622 }
4623
4624 intel_dp_set_edid(intel_dp);
4625
4626 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4627 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4628 status = connector_status_connected;
4629
4630 /* Try to read the source of the interrupt */
4631 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4632 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4633 /* Clear interrupt source */
4634 drm_dp_dpcd_writeb(&intel_dp->aux,
4635 DP_DEVICE_SERVICE_IRQ_VECTOR,
4636 sink_irq_vector);
4637
4638 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4639 intel_dp_handle_test_request(intel_dp);
4640 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4641 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4642 }
4643
4644 out:
4645 intel_dp_power_put(intel_dp, power_domain);
4646 return status;
4647 }
4648
4649 static void
4650 intel_dp_force(struct drm_connector *connector)
4651 {
4652 struct intel_dp *intel_dp = intel_attached_dp(connector);
4653 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4654 enum intel_display_power_domain power_domain;
4655
4656 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4657 connector->base.id, connector->name);
4658 intel_dp_unset_edid(intel_dp);
4659
4660 if (connector->status != connector_status_connected)
4661 return;
4662
4663 power_domain = intel_dp_power_get(intel_dp);
4664
4665 intel_dp_set_edid(intel_dp);
4666
4667 intel_dp_power_put(intel_dp, power_domain);
4668
4669 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4670 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4671 }
4672
4673 static int intel_dp_get_modes(struct drm_connector *connector)
4674 {
4675 struct intel_connector *intel_connector = to_intel_connector(connector);
4676 struct edid *edid;
4677
4678 edid = intel_connector->detect_edid;
4679 if (edid) {
4680 int ret = intel_connector_update_modes(connector, edid);
4681 if (ret)
4682 return ret;
4683 }
4684
4685 /* if eDP has no EDID, fall back to fixed mode */
4686 if (is_edp(intel_attached_dp(connector)) &&
4687 intel_connector->panel.fixed_mode) {
4688 struct drm_display_mode *mode;
4689
4690 mode = drm_mode_duplicate(connector->dev,
4691 intel_connector->panel.fixed_mode);
4692 if (mode) {
4693 drm_mode_probed_add(connector, mode);
4694 return 1;
4695 }
4696 }
4697
4698 return 0;
4699 }
4700
4701 static bool
4702 intel_dp_detect_audio(struct drm_connector *connector)
4703 {
4704 bool has_audio = false;
4705 struct edid *edid;
4706
4707 edid = to_intel_connector(connector)->detect_edid;
4708 if (edid)
4709 has_audio = drm_detect_monitor_audio(edid);
4710
4711 return has_audio;
4712 }
4713
4714 static int
4715 intel_dp_set_property(struct drm_connector *connector,
4716 struct drm_property *property,
4717 uint64_t val)
4718 {
4719 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4720 struct intel_connector *intel_connector = to_intel_connector(connector);
4721 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4722 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4723 int ret;
4724
4725 ret = drm_object_property_set_value(&connector->base, property, val);
4726 if (ret)
4727 return ret;
4728
4729 if (property == dev_priv->force_audio_property) {
4730 int i = val;
4731 bool has_audio;
4732
4733 if (i == intel_dp->force_audio)
4734 return 0;
4735
4736 intel_dp->force_audio = i;
4737
4738 if (i == HDMI_AUDIO_AUTO)
4739 has_audio = intel_dp_detect_audio(connector);
4740 else
4741 has_audio = (i == HDMI_AUDIO_ON);
4742
4743 if (has_audio == intel_dp->has_audio)
4744 return 0;
4745
4746 intel_dp->has_audio = has_audio;
4747 goto done;
4748 }
4749
4750 if (property == dev_priv->broadcast_rgb_property) {
4751 bool old_auto = intel_dp->color_range_auto;
4752 uint32_t old_range = intel_dp->color_range;
4753
4754 switch (val) {
4755 case INTEL_BROADCAST_RGB_AUTO:
4756 intel_dp->color_range_auto = true;
4757 break;
4758 case INTEL_BROADCAST_RGB_FULL:
4759 intel_dp->color_range_auto = false;
4760 intel_dp->color_range = 0;
4761 break;
4762 case INTEL_BROADCAST_RGB_LIMITED:
4763 intel_dp->color_range_auto = false;
4764 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4765 break;
4766 default:
4767 return -EINVAL;
4768 }
4769
4770 if (old_auto == intel_dp->color_range_auto &&
4771 old_range == intel_dp->color_range)
4772 return 0;
4773
4774 goto done;
4775 }
4776
4777 if (is_edp(intel_dp) &&
4778 property == connector->dev->mode_config.scaling_mode_property) {
4779 if (val == DRM_MODE_SCALE_NONE) {
4780 DRM_DEBUG_KMS("no scaling not supported\n");
4781 return -EINVAL;
4782 }
4783
4784 if (intel_connector->panel.fitting_mode == val) {
4785 /* the eDP scaling property is not changed */
4786 return 0;
4787 }
4788 intel_connector->panel.fitting_mode = val;
4789
4790 goto done;
4791 }
4792
4793 return -EINVAL;
4794
4795 done:
4796 if (intel_encoder->base.crtc)
4797 intel_crtc_restore_mode(intel_encoder->base.crtc);
4798
4799 return 0;
4800 }
4801
4802 static void
4803 intel_dp_connector_destroy(struct drm_connector *connector)
4804 {
4805 struct intel_connector *intel_connector = to_intel_connector(connector);
4806
4807 kfree(intel_connector->detect_edid);
4808
4809 if (!IS_ERR_OR_NULL(intel_connector->edid))
4810 kfree(intel_connector->edid);
4811
4812 /* Can't call is_edp() since the encoder may have been destroyed
4813 * already. */
4814 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4815 intel_panel_fini(&intel_connector->panel);
4816
4817 drm_connector_cleanup(connector);
4818 kfree(connector);
4819 }
4820
4821 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4822 {
4823 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4824 struct intel_dp *intel_dp = &intel_dig_port->dp;
4825
4826 drm_dp_aux_unregister(&intel_dp->aux);
4827 intel_dp_mst_encoder_cleanup(intel_dig_port);
4828 if (is_edp(intel_dp)) {
4829 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4830 /*
4831 * vdd might still be enabled do to the delayed vdd off.
4832 * Make sure vdd is actually turned off here.
4833 */
4834 pps_lock(intel_dp);
4835 edp_panel_vdd_off_sync(intel_dp);
4836 pps_unlock(intel_dp);
4837
4838 if (intel_dp->edp_notifier.notifier_call) {
4839 unregister_reboot_notifier(&intel_dp->edp_notifier);
4840 intel_dp->edp_notifier.notifier_call = NULL;
4841 }
4842 }
4843 drm_encoder_cleanup(encoder);
4844 kfree(intel_dig_port);
4845 }
4846
4847 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4848 {
4849 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4850
4851 if (!is_edp(intel_dp))
4852 return;
4853
4854 /*
4855 * vdd might still be enabled do to the delayed vdd off.
4856 * Make sure vdd is actually turned off here.
4857 */
4858 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4859 pps_lock(intel_dp);
4860 edp_panel_vdd_off_sync(intel_dp);
4861 pps_unlock(intel_dp);
4862 }
4863
4864 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4865 {
4866 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4867 struct drm_device *dev = intel_dig_port->base.base.dev;
4868 struct drm_i915_private *dev_priv = dev->dev_private;
4869 enum intel_display_power_domain power_domain;
4870
4871 lockdep_assert_held(&dev_priv->pps_mutex);
4872
4873 if (!edp_have_panel_vdd(intel_dp))
4874 return;
4875
4876 /*
4877 * The VDD bit needs a power domain reference, so if the bit is
4878 * already enabled when we boot or resume, grab this reference and
4879 * schedule a vdd off, so we don't hold on to the reference
4880 * indefinitely.
4881 */
4882 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4883 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4884 intel_display_power_get(dev_priv, power_domain);
4885
4886 edp_panel_vdd_schedule_off(intel_dp);
4887 }
4888
4889 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4890 {
4891 struct intel_dp *intel_dp;
4892
4893 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4894 return;
4895
4896 intel_dp = enc_to_intel_dp(encoder);
4897
4898 pps_lock(intel_dp);
4899
4900 /*
4901 * Read out the current power sequencer assignment,
4902 * in case the BIOS did something with it.
4903 */
4904 if (IS_VALLEYVIEW(encoder->dev))
4905 vlv_initial_power_sequencer_setup(intel_dp);
4906
4907 intel_edp_panel_vdd_sanitize(intel_dp);
4908
4909 pps_unlock(intel_dp);
4910 }
4911
4912 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4913 .dpms = intel_connector_dpms,
4914 .detect = intel_dp_detect,
4915 .force = intel_dp_force,
4916 .fill_modes = drm_helper_probe_single_connector_modes,
4917 .set_property = intel_dp_set_property,
4918 .atomic_get_property = intel_connector_atomic_get_property,
4919 .destroy = intel_dp_connector_destroy,
4920 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4921 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4922 };
4923
4924 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4925 .get_modes = intel_dp_get_modes,
4926 .mode_valid = intel_dp_mode_valid,
4927 .best_encoder = intel_best_encoder,
4928 };
4929
4930 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4931 .reset = intel_dp_encoder_reset,
4932 .destroy = intel_dp_encoder_destroy,
4933 };
4934
4935 enum irqreturn
4936 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4937 {
4938 struct intel_dp *intel_dp = &intel_dig_port->dp;
4939 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4940 struct drm_device *dev = intel_dig_port->base.base.dev;
4941 struct drm_i915_private *dev_priv = dev->dev_private;
4942 enum intel_display_power_domain power_domain;
4943 enum irqreturn ret = IRQ_NONE;
4944
4945 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4946 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4947
4948 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4949 /*
4950 * vdd off can generate a long pulse on eDP which
4951 * would require vdd on to handle it, and thus we
4952 * would end up in an endless cycle of
4953 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4954 */
4955 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4956 port_name(intel_dig_port->port));
4957 return IRQ_HANDLED;
4958 }
4959
4960 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4961 port_name(intel_dig_port->port),
4962 long_hpd ? "long" : "short");
4963
4964 power_domain = intel_display_port_power_domain(intel_encoder);
4965 intel_display_power_get(dev_priv, power_domain);
4966
4967 if (long_hpd) {
4968 /* indicate that we need to restart link training */
4969 intel_dp->train_set_valid = false;
4970
4971 if (HAS_PCH_SPLIT(dev)) {
4972 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4973 goto mst_fail;
4974 } else {
4975 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4976 goto mst_fail;
4977 }
4978
4979 if (!intel_dp_get_dpcd(intel_dp)) {
4980 goto mst_fail;
4981 }
4982
4983 intel_dp_probe_oui(intel_dp);
4984
4985 if (!intel_dp_probe_mst(intel_dp))
4986 goto mst_fail;
4987
4988 } else {
4989 if (intel_dp->is_mst) {
4990 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4991 goto mst_fail;
4992 }
4993
4994 if (!intel_dp->is_mst) {
4995 /*
4996 * we'll check the link status via the normal hot plug path later -
4997 * but for short hpds we should check it now
4998 */
4999 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5000 intel_dp_check_link_status(intel_dp);
5001 drm_modeset_unlock(&dev->mode_config.connection_mutex);
5002 }
5003 }
5004
5005 ret = IRQ_HANDLED;
5006
5007 goto put_power;
5008 mst_fail:
5009 /* if we were in MST mode, and device is not there get out of MST mode */
5010 if (intel_dp->is_mst) {
5011 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5012 intel_dp->is_mst = false;
5013 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
5014 }
5015 put_power:
5016 intel_display_power_put(dev_priv, power_domain);
5017
5018 return ret;
5019 }
5020
5021 /* Return which DP Port should be selected for Transcoder DP control */
5022 int
5023 intel_trans_dp_port_sel(struct drm_crtc *crtc)
5024 {
5025 struct drm_device *dev = crtc->dev;
5026 struct intel_encoder *intel_encoder;
5027 struct intel_dp *intel_dp;
5028
5029 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5030 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5031
5032 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
5033 intel_encoder->type == INTEL_OUTPUT_EDP)
5034 return intel_dp->output_reg;
5035 }
5036
5037 return -1;
5038 }
5039
5040 /* check the VBT to see whether the eDP is on DP-D port */
5041 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5042 {
5043 struct drm_i915_private *dev_priv = dev->dev_private;
5044 union child_device_config *p_child;
5045 int i;
5046 static const short port_mapping[] = {
5047 [PORT_B] = PORT_IDPB,
5048 [PORT_C] = PORT_IDPC,
5049 [PORT_D] = PORT_IDPD,
5050 };
5051
5052 if (port == PORT_A)
5053 return true;
5054
5055 if (!dev_priv->vbt.child_dev_num)
5056 return false;
5057
5058 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5059 p_child = dev_priv->vbt.child_dev + i;
5060
5061 if (p_child->common.dvo_port == port_mapping[port] &&
5062 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5063 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5064 return true;
5065 }
5066 return false;
5067 }
5068
5069 void
5070 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5071 {
5072 struct intel_connector *intel_connector = to_intel_connector(connector);
5073
5074 intel_attach_force_audio_property(connector);
5075 intel_attach_broadcast_rgb_property(connector);
5076 intel_dp->color_range_auto = true;
5077
5078 if (is_edp(intel_dp)) {
5079 drm_mode_create_scaling_mode_property(connector->dev);
5080 drm_object_attach_property(
5081 &connector->base,
5082 connector->dev->mode_config.scaling_mode_property,
5083 DRM_MODE_SCALE_ASPECT);
5084 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5085 }
5086 }
5087
5088 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5089 {
5090 intel_dp->last_power_cycle = jiffies;
5091 intel_dp->last_power_on = jiffies;
5092 intel_dp->last_backlight_off = jiffies;
5093 }
5094
5095 static void
5096 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5097 struct intel_dp *intel_dp)
5098 {
5099 struct drm_i915_private *dev_priv = dev->dev_private;
5100 struct edp_power_seq cur, vbt, spec,
5101 *final = &intel_dp->pps_delays;
5102 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5103 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg = 0;
5104
5105 lockdep_assert_held(&dev_priv->pps_mutex);
5106
5107 /* already initialized? */
5108 if (final->t11_t12 != 0)
5109 return;
5110
5111 if (IS_BROXTON(dev)) {
5112 /*
5113 * TODO: BXT has 2 sets of PPS registers.
5114 * Correct Register for Broxton need to be identified
5115 * using VBT. hardcoding for now
5116 */
5117 pp_ctrl_reg = BXT_PP_CONTROL(0);
5118 pp_on_reg = BXT_PP_ON_DELAYS(0);
5119 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5120 } else if (HAS_PCH_SPLIT(dev)) {
5121 pp_ctrl_reg = PCH_PP_CONTROL;
5122 pp_on_reg = PCH_PP_ON_DELAYS;
5123 pp_off_reg = PCH_PP_OFF_DELAYS;
5124 pp_div_reg = PCH_PP_DIVISOR;
5125 } else {
5126 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5127
5128 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5129 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5130 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5131 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5132 }
5133
5134 /* Workaround: Need to write PP_CONTROL with the unlock key as
5135 * the very first thing. */
5136 pp_ctl = ironlake_get_pp_control(intel_dp);
5137
5138 pp_on = I915_READ(pp_on_reg);
5139 pp_off = I915_READ(pp_off_reg);
5140 if (!IS_BROXTON(dev)) {
5141 I915_WRITE(pp_ctrl_reg, pp_ctl);
5142 pp_div = I915_READ(pp_div_reg);
5143 }
5144
5145 /* Pull timing values out of registers */
5146 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5147 PANEL_POWER_UP_DELAY_SHIFT;
5148
5149 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5150 PANEL_LIGHT_ON_DELAY_SHIFT;
5151
5152 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5153 PANEL_LIGHT_OFF_DELAY_SHIFT;
5154
5155 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5156 PANEL_POWER_DOWN_DELAY_SHIFT;
5157
5158 if (IS_BROXTON(dev)) {
5159 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5160 BXT_POWER_CYCLE_DELAY_SHIFT;
5161 if (tmp > 0)
5162 cur.t11_t12 = (tmp - 1) * 1000;
5163 else
5164 cur.t11_t12 = 0;
5165 } else {
5166 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5167 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5168 }
5169
5170 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5171 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5172
5173 vbt = dev_priv->vbt.edp_pps;
5174
5175 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5176 * our hw here, which are all in 100usec. */
5177 spec.t1_t3 = 210 * 10;
5178 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5179 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5180 spec.t10 = 500 * 10;
5181 /* This one is special and actually in units of 100ms, but zero
5182 * based in the hw (so we need to add 100 ms). But the sw vbt
5183 * table multiplies it with 1000 to make it in units of 100usec,
5184 * too. */
5185 spec.t11_t12 = (510 + 100) * 10;
5186
5187 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5188 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5189
5190 /* Use the max of the register settings and vbt. If both are
5191 * unset, fall back to the spec limits. */
5192 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5193 spec.field : \
5194 max(cur.field, vbt.field))
5195 assign_final(t1_t3);
5196 assign_final(t8);
5197 assign_final(t9);
5198 assign_final(t10);
5199 assign_final(t11_t12);
5200 #undef assign_final
5201
5202 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5203 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5204 intel_dp->backlight_on_delay = get_delay(t8);
5205 intel_dp->backlight_off_delay = get_delay(t9);
5206 intel_dp->panel_power_down_delay = get_delay(t10);
5207 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5208 #undef get_delay
5209
5210 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5211 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5212 intel_dp->panel_power_cycle_delay);
5213
5214 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5215 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5216 }
5217
5218 static void
5219 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5220 struct intel_dp *intel_dp)
5221 {
5222 struct drm_i915_private *dev_priv = dev->dev_private;
5223 u32 pp_on, pp_off, pp_div, port_sel = 0;
5224 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5225 int pp_on_reg, pp_off_reg, pp_div_reg = 0, pp_ctrl_reg;
5226 enum port port = dp_to_dig_port(intel_dp)->port;
5227 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5228
5229 lockdep_assert_held(&dev_priv->pps_mutex);
5230
5231 if (IS_BROXTON(dev)) {
5232 /*
5233 * TODO: BXT has 2 sets of PPS registers.
5234 * Correct Register for Broxton need to be identified
5235 * using VBT. hardcoding for now
5236 */
5237 pp_ctrl_reg = BXT_PP_CONTROL(0);
5238 pp_on_reg = BXT_PP_ON_DELAYS(0);
5239 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5240
5241 } else if (HAS_PCH_SPLIT(dev)) {
5242 pp_on_reg = PCH_PP_ON_DELAYS;
5243 pp_off_reg = PCH_PP_OFF_DELAYS;
5244 pp_div_reg = PCH_PP_DIVISOR;
5245 } else {
5246 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5247
5248 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5249 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5250 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5251 }
5252
5253 /*
5254 * And finally store the new values in the power sequencer. The
5255 * backlight delays are set to 1 because we do manual waits on them. For
5256 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5257 * we'll end up waiting for the backlight off delay twice: once when we
5258 * do the manual sleep, and once when we disable the panel and wait for
5259 * the PP_STATUS bit to become zero.
5260 */
5261 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5262 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5263 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5264 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5265 /* Compute the divisor for the pp clock, simply match the Bspec
5266 * formula. */
5267 if (IS_BROXTON(dev)) {
5268 pp_div = I915_READ(pp_ctrl_reg);
5269 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5270 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5271 << BXT_POWER_CYCLE_DELAY_SHIFT);
5272 } else {
5273 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5274 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5275 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5276 }
5277
5278 /* Haswell doesn't have any port selection bits for the panel
5279 * power sequencer any more. */
5280 if (IS_VALLEYVIEW(dev)) {
5281 port_sel = PANEL_PORT_SELECT_VLV(port);
5282 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5283 if (port == PORT_A)
5284 port_sel = PANEL_PORT_SELECT_DPA;
5285 else
5286 port_sel = PANEL_PORT_SELECT_DPD;
5287 }
5288
5289 pp_on |= port_sel;
5290
5291 I915_WRITE(pp_on_reg, pp_on);
5292 I915_WRITE(pp_off_reg, pp_off);
5293 if (IS_BROXTON(dev))
5294 I915_WRITE(pp_ctrl_reg, pp_div);
5295 else
5296 I915_WRITE(pp_div_reg, pp_div);
5297
5298 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5299 I915_READ(pp_on_reg),
5300 I915_READ(pp_off_reg),
5301 IS_BROXTON(dev) ?
5302 (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5303 I915_READ(pp_div_reg));
5304 }
5305
5306 /**
5307 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5308 * @dev: DRM device
5309 * @refresh_rate: RR to be programmed
5310 *
5311 * This function gets called when refresh rate (RR) has to be changed from
5312 * one frequency to another. Switches can be between high and low RR
5313 * supported by the panel or to any other RR based on media playback (in
5314 * this case, RR value needs to be passed from user space).
5315 *
5316 * The caller of this function needs to take a lock on dev_priv->drrs.
5317 */
5318 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5319 {
5320 struct drm_i915_private *dev_priv = dev->dev_private;
5321 struct intel_encoder *encoder;
5322 struct intel_digital_port *dig_port = NULL;
5323 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5324 struct intel_crtc_state *config = NULL;
5325 struct intel_crtc *intel_crtc = NULL;
5326 u32 reg, val;
5327 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5328
5329 if (refresh_rate <= 0) {
5330 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5331 return;
5332 }
5333
5334 if (intel_dp == NULL) {
5335 DRM_DEBUG_KMS("DRRS not supported.\n");
5336 return;
5337 }
5338
5339 /*
5340 * FIXME: This needs proper synchronization with psr state for some
5341 * platforms that cannot have PSR and DRRS enabled at the same time.
5342 */
5343
5344 dig_port = dp_to_dig_port(intel_dp);
5345 encoder = &dig_port->base;
5346 intel_crtc = to_intel_crtc(encoder->base.crtc);
5347
5348 if (!intel_crtc) {
5349 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5350 return;
5351 }
5352
5353 config = intel_crtc->config;
5354
5355 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5356 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5357 return;
5358 }
5359
5360 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5361 refresh_rate)
5362 index = DRRS_LOW_RR;
5363
5364 if (index == dev_priv->drrs.refresh_rate_type) {
5365 DRM_DEBUG_KMS(
5366 "DRRS requested for previously set RR...ignoring\n");
5367 return;
5368 }
5369
5370 if (!intel_crtc->active) {
5371 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5372 return;
5373 }
5374
5375 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5376 switch (index) {
5377 case DRRS_HIGH_RR:
5378 intel_dp_set_m_n(intel_crtc, M1_N1);
5379 break;
5380 case DRRS_LOW_RR:
5381 intel_dp_set_m_n(intel_crtc, M2_N2);
5382 break;
5383 case DRRS_MAX_RR:
5384 default:
5385 DRM_ERROR("Unsupported refreshrate type\n");
5386 }
5387 } else if (INTEL_INFO(dev)->gen > 6) {
5388 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5389 val = I915_READ(reg);
5390
5391 if (index > DRRS_HIGH_RR) {
5392 if (IS_VALLEYVIEW(dev))
5393 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5394 else
5395 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5396 } else {
5397 if (IS_VALLEYVIEW(dev))
5398 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5399 else
5400 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5401 }
5402 I915_WRITE(reg, val);
5403 }
5404
5405 dev_priv->drrs.refresh_rate_type = index;
5406
5407 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5408 }
5409
5410 /**
5411 * intel_edp_drrs_enable - init drrs struct if supported
5412 * @intel_dp: DP struct
5413 *
5414 * Initializes frontbuffer_bits and drrs.dp
5415 */
5416 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5417 {
5418 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5419 struct drm_i915_private *dev_priv = dev->dev_private;
5420 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5421 struct drm_crtc *crtc = dig_port->base.base.crtc;
5422 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5423
5424 if (!intel_crtc->config->has_drrs) {
5425 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5426 return;
5427 }
5428
5429 mutex_lock(&dev_priv->drrs.mutex);
5430 if (WARN_ON(dev_priv->drrs.dp)) {
5431 DRM_ERROR("DRRS already enabled\n");
5432 goto unlock;
5433 }
5434
5435 dev_priv->drrs.busy_frontbuffer_bits = 0;
5436
5437 dev_priv->drrs.dp = intel_dp;
5438
5439 unlock:
5440 mutex_unlock(&dev_priv->drrs.mutex);
5441 }
5442
5443 /**
5444 * intel_edp_drrs_disable - Disable DRRS
5445 * @intel_dp: DP struct
5446 *
5447 */
5448 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5449 {
5450 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5451 struct drm_i915_private *dev_priv = dev->dev_private;
5452 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5453 struct drm_crtc *crtc = dig_port->base.base.crtc;
5454 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5455
5456 if (!intel_crtc->config->has_drrs)
5457 return;
5458
5459 mutex_lock(&dev_priv->drrs.mutex);
5460 if (!dev_priv->drrs.dp) {
5461 mutex_unlock(&dev_priv->drrs.mutex);
5462 return;
5463 }
5464
5465 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5466 intel_dp_set_drrs_state(dev_priv->dev,
5467 intel_dp->attached_connector->panel.
5468 fixed_mode->vrefresh);
5469
5470 dev_priv->drrs.dp = NULL;
5471 mutex_unlock(&dev_priv->drrs.mutex);
5472
5473 cancel_delayed_work_sync(&dev_priv->drrs.work);
5474 }
5475
5476 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5477 {
5478 struct drm_i915_private *dev_priv =
5479 container_of(work, typeof(*dev_priv), drrs.work.work);
5480 struct intel_dp *intel_dp;
5481
5482 mutex_lock(&dev_priv->drrs.mutex);
5483
5484 intel_dp = dev_priv->drrs.dp;
5485
5486 if (!intel_dp)
5487 goto unlock;
5488
5489 /*
5490 * The delayed work can race with an invalidate hence we need to
5491 * recheck.
5492 */
5493
5494 if (dev_priv->drrs.busy_frontbuffer_bits)
5495 goto unlock;
5496
5497 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5498 intel_dp_set_drrs_state(dev_priv->dev,
5499 intel_dp->attached_connector->panel.
5500 downclock_mode->vrefresh);
5501
5502 unlock:
5503 mutex_unlock(&dev_priv->drrs.mutex);
5504 }
5505
5506 /**
5507 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5508 * @dev: DRM device
5509 * @frontbuffer_bits: frontbuffer plane tracking bits
5510 *
5511 * This function gets called everytime rendering on the given planes start.
5512 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5513 *
5514 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5515 */
5516 void intel_edp_drrs_invalidate(struct drm_device *dev,
5517 unsigned frontbuffer_bits)
5518 {
5519 struct drm_i915_private *dev_priv = dev->dev_private;
5520 struct drm_crtc *crtc;
5521 enum pipe pipe;
5522
5523 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5524 return;
5525
5526 cancel_delayed_work(&dev_priv->drrs.work);
5527
5528 mutex_lock(&dev_priv->drrs.mutex);
5529 if (!dev_priv->drrs.dp) {
5530 mutex_unlock(&dev_priv->drrs.mutex);
5531 return;
5532 }
5533
5534 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5535 pipe = to_intel_crtc(crtc)->pipe;
5536
5537 /* invalidate means busy screen hence upclock */
5538 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
5539 intel_dp_set_drrs_state(dev_priv->dev,
5540 dev_priv->drrs.dp->attached_connector->panel.
5541 fixed_mode->vrefresh);
5542 }
5543
5544 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5545
5546 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5547 mutex_unlock(&dev_priv->drrs.mutex);
5548 }
5549
5550 /**
5551 * intel_edp_drrs_flush - Restart Idleness DRRS
5552 * @dev: DRM device
5553 * @frontbuffer_bits: frontbuffer plane tracking bits
5554 *
5555 * This function gets called every time rendering on the given planes has
5556 * completed or flip on a crtc is completed. So DRRS should be upclocked
5557 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5558 * if no other planes are dirty.
5559 *
5560 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5561 */
5562 void intel_edp_drrs_flush(struct drm_device *dev,
5563 unsigned frontbuffer_bits)
5564 {
5565 struct drm_i915_private *dev_priv = dev->dev_private;
5566 struct drm_crtc *crtc;
5567 enum pipe pipe;
5568
5569 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5570 return;
5571
5572 cancel_delayed_work(&dev_priv->drrs.work);
5573
5574 mutex_lock(&dev_priv->drrs.mutex);
5575 if (!dev_priv->drrs.dp) {
5576 mutex_unlock(&dev_priv->drrs.mutex);
5577 return;
5578 }
5579
5580 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5581 pipe = to_intel_crtc(crtc)->pipe;
5582 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5583
5584 /* flush means busy screen hence upclock */
5585 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5586 intel_dp_set_drrs_state(dev_priv->dev,
5587 dev_priv->drrs.dp->attached_connector->panel.
5588 fixed_mode->vrefresh);
5589
5590 /*
5591 * flush also means no more activity hence schedule downclock, if all
5592 * other fbs are quiescent too
5593 */
5594 if (!dev_priv->drrs.busy_frontbuffer_bits)
5595 schedule_delayed_work(&dev_priv->drrs.work,
5596 msecs_to_jiffies(1000));
5597 mutex_unlock(&dev_priv->drrs.mutex);
5598 }
5599
5600 /**
5601 * DOC: Display Refresh Rate Switching (DRRS)
5602 *
5603 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5604 * which enables swtching between low and high refresh rates,
5605 * dynamically, based on the usage scenario. This feature is applicable
5606 * for internal panels.
5607 *
5608 * Indication that the panel supports DRRS is given by the panel EDID, which
5609 * would list multiple refresh rates for one resolution.
5610 *
5611 * DRRS is of 2 types - static and seamless.
5612 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5613 * (may appear as a blink on screen) and is used in dock-undock scenario.
5614 * Seamless DRRS involves changing RR without any visual effect to the user
5615 * and can be used during normal system usage. This is done by programming
5616 * certain registers.
5617 *
5618 * Support for static/seamless DRRS may be indicated in the VBT based on
5619 * inputs from the panel spec.
5620 *
5621 * DRRS saves power by switching to low RR based on usage scenarios.
5622 *
5623 * eDP DRRS:-
5624 * The implementation is based on frontbuffer tracking implementation.
5625 * When there is a disturbance on the screen triggered by user activity or a
5626 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5627 * When there is no movement on screen, after a timeout of 1 second, a switch
5628 * to low RR is made.
5629 * For integration with frontbuffer tracking code,
5630 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5631 *
5632 * DRRS can be further extended to support other internal panels and also
5633 * the scenario of video playback wherein RR is set based on the rate
5634 * requested by userspace.
5635 */
5636
5637 /**
5638 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5639 * @intel_connector: eDP connector
5640 * @fixed_mode: preferred mode of panel
5641 *
5642 * This function is called only once at driver load to initialize basic
5643 * DRRS stuff.
5644 *
5645 * Returns:
5646 * Downclock mode if panel supports it, else return NULL.
5647 * DRRS support is determined by the presence of downclock mode (apart
5648 * from VBT setting).
5649 */
5650 static struct drm_display_mode *
5651 intel_dp_drrs_init(struct intel_connector *intel_connector,
5652 struct drm_display_mode *fixed_mode)
5653 {
5654 struct drm_connector *connector = &intel_connector->base;
5655 struct drm_device *dev = connector->dev;
5656 struct drm_i915_private *dev_priv = dev->dev_private;
5657 struct drm_display_mode *downclock_mode = NULL;
5658
5659 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5660 mutex_init(&dev_priv->drrs.mutex);
5661
5662 if (INTEL_INFO(dev)->gen <= 6) {
5663 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5664 return NULL;
5665 }
5666
5667 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5668 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5669 return NULL;
5670 }
5671
5672 downclock_mode = intel_find_panel_downclock
5673 (dev, fixed_mode, connector);
5674
5675 if (!downclock_mode) {
5676 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5677 return NULL;
5678 }
5679
5680 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5681
5682 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5683 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5684 return downclock_mode;
5685 }
5686
5687 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5688 struct intel_connector *intel_connector)
5689 {
5690 struct drm_connector *connector = &intel_connector->base;
5691 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5692 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5693 struct drm_device *dev = intel_encoder->base.dev;
5694 struct drm_i915_private *dev_priv = dev->dev_private;
5695 struct drm_display_mode *fixed_mode = NULL;
5696 struct drm_display_mode *downclock_mode = NULL;
5697 bool has_dpcd;
5698 struct drm_display_mode *scan;
5699 struct edid *edid;
5700 enum pipe pipe = INVALID_PIPE;
5701
5702 if (!is_edp(intel_dp))
5703 return true;
5704
5705 pps_lock(intel_dp);
5706 intel_edp_panel_vdd_sanitize(intel_dp);
5707 pps_unlock(intel_dp);
5708
5709 /* Cache DPCD and EDID for edp. */
5710 has_dpcd = intel_dp_get_dpcd(intel_dp);
5711
5712 if (has_dpcd) {
5713 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5714 dev_priv->no_aux_handshake =
5715 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5716 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5717 } else {
5718 /* if this fails, presume the device is a ghost */
5719 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5720 return false;
5721 }
5722
5723 /* We now know it's not a ghost, init power sequence regs. */
5724 pps_lock(intel_dp);
5725 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5726 pps_unlock(intel_dp);
5727
5728 mutex_lock(&dev->mode_config.mutex);
5729 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5730 if (edid) {
5731 if (drm_add_edid_modes(connector, edid)) {
5732 drm_mode_connector_update_edid_property(connector,
5733 edid);
5734 drm_edid_to_eld(connector, edid);
5735 } else {
5736 kfree(edid);
5737 edid = ERR_PTR(-EINVAL);
5738 }
5739 } else {
5740 edid = ERR_PTR(-ENOENT);
5741 }
5742 intel_connector->edid = edid;
5743
5744 /* prefer fixed mode from EDID if available */
5745 list_for_each_entry(scan, &connector->probed_modes, head) {
5746 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5747 fixed_mode = drm_mode_duplicate(dev, scan);
5748 downclock_mode = intel_dp_drrs_init(
5749 intel_connector, fixed_mode);
5750 break;
5751 }
5752 }
5753
5754 /* fallback to VBT if available for eDP */
5755 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5756 fixed_mode = drm_mode_duplicate(dev,
5757 dev_priv->vbt.lfp_lvds_vbt_mode);
5758 if (fixed_mode)
5759 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5760 }
5761 mutex_unlock(&dev->mode_config.mutex);
5762
5763 if (IS_VALLEYVIEW(dev)) {
5764 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5765 register_reboot_notifier(&intel_dp->edp_notifier);
5766
5767 /*
5768 * Figure out the current pipe for the initial backlight setup.
5769 * If the current pipe isn't valid, try the PPS pipe, and if that
5770 * fails just assume pipe A.
5771 */
5772 if (IS_CHERRYVIEW(dev))
5773 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5774 else
5775 pipe = PORT_TO_PIPE(intel_dp->DP);
5776
5777 if (pipe != PIPE_A && pipe != PIPE_B)
5778 pipe = intel_dp->pps_pipe;
5779
5780 if (pipe != PIPE_A && pipe != PIPE_B)
5781 pipe = PIPE_A;
5782
5783 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5784 pipe_name(pipe));
5785 }
5786
5787 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5788 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5789 intel_panel_setup_backlight(connector, pipe);
5790
5791 return true;
5792 }
5793
5794 bool
5795 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5796 struct intel_connector *intel_connector)
5797 {
5798 struct drm_connector *connector = &intel_connector->base;
5799 struct intel_dp *intel_dp = &intel_dig_port->dp;
5800 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5801 struct drm_device *dev = intel_encoder->base.dev;
5802 struct drm_i915_private *dev_priv = dev->dev_private;
5803 enum port port = intel_dig_port->port;
5804 int type;
5805
5806 intel_dp->pps_pipe = INVALID_PIPE;
5807
5808 /* intel_dp vfuncs */
5809 if (INTEL_INFO(dev)->gen >= 9)
5810 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5811 else if (IS_VALLEYVIEW(dev))
5812 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5813 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5814 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5815 else if (HAS_PCH_SPLIT(dev))
5816 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5817 else
5818 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5819
5820 if (INTEL_INFO(dev)->gen >= 9)
5821 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5822 else
5823 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5824
5825 /* Preserve the current hw state. */
5826 intel_dp->DP = I915_READ(intel_dp->output_reg);
5827 intel_dp->attached_connector = intel_connector;
5828
5829 if (intel_dp_is_edp(dev, port))
5830 type = DRM_MODE_CONNECTOR_eDP;
5831 else
5832 type = DRM_MODE_CONNECTOR_DisplayPort;
5833
5834 /*
5835 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5836 * for DP the encoder type can be set by the caller to
5837 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5838 */
5839 if (type == DRM_MODE_CONNECTOR_eDP)
5840 intel_encoder->type = INTEL_OUTPUT_EDP;
5841
5842 /* eDP only on port B and/or C on vlv/chv */
5843 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5844 port != PORT_B && port != PORT_C))
5845 return false;
5846
5847 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5848 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5849 port_name(port));
5850
5851 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5852 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5853
5854 connector->interlace_allowed = true;
5855 connector->doublescan_allowed = 0;
5856
5857 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5858 edp_panel_vdd_work);
5859
5860 intel_connector_attach_encoder(intel_connector, intel_encoder);
5861 drm_connector_register(connector);
5862
5863 if (HAS_DDI(dev))
5864 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5865 else
5866 intel_connector->get_hw_state = intel_connector_get_hw_state;
5867 intel_connector->unregister = intel_dp_connector_unregister;
5868
5869 /* Set up the hotplug pin. */
5870 switch (port) {
5871 case PORT_A:
5872 intel_encoder->hpd_pin = HPD_PORT_A;
5873 break;
5874 case PORT_B:
5875 intel_encoder->hpd_pin = HPD_PORT_B;
5876 break;
5877 case PORT_C:
5878 intel_encoder->hpd_pin = HPD_PORT_C;
5879 break;
5880 case PORT_D:
5881 intel_encoder->hpd_pin = HPD_PORT_D;
5882 break;
5883 default:
5884 BUG();
5885 }
5886
5887 if (is_edp(intel_dp)) {
5888 pps_lock(intel_dp);
5889 intel_dp_init_panel_power_timestamps(intel_dp);
5890 if (IS_VALLEYVIEW(dev))
5891 vlv_initial_power_sequencer_setup(intel_dp);
5892 else
5893 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5894 pps_unlock(intel_dp);
5895 }
5896
5897 intel_dp_aux_init(intel_dp, intel_connector);
5898
5899 /* init MST on ports that can support it */
5900 if (HAS_DP_MST(dev) &&
5901 (port == PORT_B || port == PORT_C || port == PORT_D))
5902 intel_dp_mst_encoder_init(intel_dig_port,
5903 intel_connector->base.base.id);
5904
5905 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5906 drm_dp_aux_unregister(&intel_dp->aux);
5907 if (is_edp(intel_dp)) {
5908 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5909 /*
5910 * vdd might still be enabled do to the delayed vdd off.
5911 * Make sure vdd is actually turned off here.
5912 */
5913 pps_lock(intel_dp);
5914 edp_panel_vdd_off_sync(intel_dp);
5915 pps_unlock(intel_dp);
5916 }
5917 drm_connector_unregister(connector);
5918 drm_connector_cleanup(connector);
5919 return false;
5920 }
5921
5922 intel_dp_add_properties(intel_dp, connector);
5923
5924 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5925 * 0xd. Failure to do so will result in spurious interrupts being
5926 * generated on the port when a cable is not attached.
5927 */
5928 if (IS_G4X(dev) && !IS_GM45(dev)) {
5929 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5930 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5931 }
5932
5933 i915_debugfs_connector_add(connector);
5934
5935 return true;
5936 }
5937
5938 void
5939 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5940 {
5941 struct drm_i915_private *dev_priv = dev->dev_private;
5942 struct intel_digital_port *intel_dig_port;
5943 struct intel_encoder *intel_encoder;
5944 struct drm_encoder *encoder;
5945 struct intel_connector *intel_connector;
5946
5947 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5948 if (!intel_dig_port)
5949 return;
5950
5951 intel_connector = intel_connector_alloc();
5952 if (!intel_connector) {
5953 kfree(intel_dig_port);
5954 return;
5955 }
5956
5957 intel_encoder = &intel_dig_port->base;
5958 encoder = &intel_encoder->base;
5959
5960 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5961 DRM_MODE_ENCODER_TMDS);
5962
5963 intel_encoder->compute_config = intel_dp_compute_config;
5964 intel_encoder->disable = intel_disable_dp;
5965 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5966 intel_encoder->get_config = intel_dp_get_config;
5967 intel_encoder->suspend = intel_dp_encoder_suspend;
5968 if (IS_CHERRYVIEW(dev)) {
5969 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5970 intel_encoder->pre_enable = chv_pre_enable_dp;
5971 intel_encoder->enable = vlv_enable_dp;
5972 intel_encoder->post_disable = chv_post_disable_dp;
5973 } else if (IS_VALLEYVIEW(dev)) {
5974 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5975 intel_encoder->pre_enable = vlv_pre_enable_dp;
5976 intel_encoder->enable = vlv_enable_dp;
5977 intel_encoder->post_disable = vlv_post_disable_dp;
5978 } else {
5979 intel_encoder->pre_enable = g4x_pre_enable_dp;
5980 intel_encoder->enable = g4x_enable_dp;
5981 if (INTEL_INFO(dev)->gen >= 5)
5982 intel_encoder->post_disable = ilk_post_disable_dp;
5983 }
5984
5985 intel_dig_port->port = port;
5986 intel_dig_port->dp.output_reg = output_reg;
5987
5988 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5989 if (IS_CHERRYVIEW(dev)) {
5990 if (port == PORT_D)
5991 intel_encoder->crtc_mask = 1 << 2;
5992 else
5993 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5994 } else {
5995 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5996 }
5997 intel_encoder->cloneable = 0;
5998
5999 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6000 dev_priv->hotplug.irq_port[port] = intel_dig_port;
6001
6002 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
6003 drm_encoder_cleanup(encoder);
6004 kfree(intel_dig_port);
6005 kfree(intel_connector);
6006 }
6007 }
6008
6009 void intel_dp_mst_suspend(struct drm_device *dev)
6010 {
6011 struct drm_i915_private *dev_priv = dev->dev_private;
6012 int i;
6013
6014 /* disable MST */
6015 for (i = 0; i < I915_MAX_PORTS; i++) {
6016 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6017 if (!intel_dig_port)
6018 continue;
6019
6020 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6021 if (!intel_dig_port->dp.can_mst)
6022 continue;
6023 if (intel_dig_port->dp.is_mst)
6024 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6025 }
6026 }
6027 }
6028
6029 void intel_dp_mst_resume(struct drm_device *dev)
6030 {
6031 struct drm_i915_private *dev_priv = dev->dev_private;
6032 int i;
6033
6034 for (i = 0; i < I915_MAX_PORTS; i++) {
6035 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6036 if (!intel_dig_port)
6037 continue;
6038 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6039 int ret;
6040
6041 if (!intel_dig_port->dp.can_mst)
6042 continue;
6043
6044 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6045 if (ret != 0) {
6046 intel_dp_check_mst_status(&intel_dig_port->dp);
6047 }
6048 }
6049 }
6050 }
This page took 0.167371 seconds and 6 git commands to generate.