Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121 struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123 switch (max_link_bw) {
124 case DP_LINK_BW_1_62:
125 case DP_LINK_BW_2_7:
126 break;
127 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129 INTEL_INFO(dev)->gen >= 8) &&
130 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131 max_link_bw = DP_LINK_BW_5_4;
132 else
133 max_link_bw = DP_LINK_BW_2_7;
134 break;
135 default:
136 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137 max_link_bw);
138 max_link_bw = DP_LINK_BW_1_62;
139 break;
140 }
141 return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147 struct drm_device *dev = intel_dig_port->base.base.dev;
148 u8 source_max, sink_max;
149
150 source_max = 4;
151 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153 source_max = 2;
154
155 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157 return min(source_max, sink_max);
158 }
159
160 /*
161 * The units on the numbers in the next two are... bizarre. Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 * 270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000. At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186 return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191 struct drm_display_mode *mode)
192 {
193 struct intel_dp *intel_dp = intel_attached_dp(connector);
194 struct intel_connector *intel_connector = to_intel_connector(connector);
195 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196 int target_clock = mode->clock;
197 int max_rate, mode_rate, max_lanes, max_link_clock;
198
199 if (is_edp(intel_dp) && fixed_mode) {
200 if (mode->hdisplay > fixed_mode->hdisplay)
201 return MODE_PANEL;
202
203 if (mode->vdisplay > fixed_mode->vdisplay)
204 return MODE_PANEL;
205
206 target_clock = fixed_mode->clock;
207 }
208
209 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210 max_lanes = intel_dp_max_lane_count(intel_dp);
211
212 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213 mode_rate = intel_dp_link_required(target_clock, 18);
214
215 if (mode_rate > max_rate)
216 return MODE_CLOCK_HIGH;
217
218 if (mode->clock < 10000)
219 return MODE_CLOCK_LOW;
220
221 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222 return MODE_H_ILLEGAL;
223
224 return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(uint8_t *src, int src_bytes)
229 {
230 int i;
231 uint32_t v = 0;
232
233 if (src_bytes > 4)
234 src_bytes = 4;
235 for (i = 0; i < src_bytes; i++)
236 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237 return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243 int i;
244 if (dst_bytes > 4)
245 dst_bytes = 4;
246 for (i = 0; i < dst_bytes; i++)
247 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 uint32_t clkcfg;
256
257 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258 if (IS_VALLEYVIEW(dev))
259 return 200;
260
261 clkcfg = I915_READ(CLKCFG);
262 switch (clkcfg & CLKCFG_FSB_MASK) {
263 case CLKCFG_FSB_400:
264 return 100;
265 case CLKCFG_FSB_533:
266 return 133;
267 case CLKCFG_FSB_667:
268 return 166;
269 case CLKCFG_FSB_800:
270 return 200;
271 case CLKCFG_FSB_1067:
272 return 266;
273 case CLKCFG_FSB_1333:
274 return 333;
275 /* these two are just a guess; one of them might be right */
276 case CLKCFG_FSB_1600:
277 case CLKCFG_FSB_1600_ALT:
278 return 400;
279 default:
280 return 133;
281 }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286 struct intel_dp *intel_dp,
287 struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp,
291 struct edp_power_seq *out);
292
293 static enum pipe
294 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
295 {
296 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
298 struct drm_device *dev = intel_dig_port->base.base.dev;
299 struct drm_i915_private *dev_priv = dev->dev_private;
300 enum port port = intel_dig_port->port;
301 enum pipe pipe;
302
303 /* modeset should have pipe */
304 if (crtc)
305 return to_intel_crtc(crtc)->pipe;
306
307 /* init time, try to find a pipe with this port selected */
308 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
309 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
310 PANEL_PORT_SELECT_MASK;
311 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
312 return pipe;
313 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
314 return pipe;
315 }
316
317 /* shrug */
318 return PIPE_A;
319 }
320
321 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
322 {
323 struct drm_device *dev = intel_dp_to_dev(intel_dp);
324
325 if (HAS_PCH_SPLIT(dev))
326 return PCH_PP_CONTROL;
327 else
328 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
329 }
330
331 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
332 {
333 struct drm_device *dev = intel_dp_to_dev(intel_dp);
334
335 if (HAS_PCH_SPLIT(dev))
336 return PCH_PP_STATUS;
337 else
338 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
339 }
340
341 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
342 This function only applicable when panel PM state is not to be tracked */
343 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
344 void *unused)
345 {
346 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
347 edp_notifier);
348 struct drm_device *dev = intel_dp_to_dev(intel_dp);
349 struct drm_i915_private *dev_priv = dev->dev_private;
350 u32 pp_div;
351 u32 pp_ctrl_reg, pp_div_reg;
352 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
353
354 if (!is_edp(intel_dp) || code != SYS_RESTART)
355 return 0;
356
357 if (IS_VALLEYVIEW(dev)) {
358 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
359 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
360 pp_div = I915_READ(pp_div_reg);
361 pp_div &= PP_REFERENCE_DIVIDER_MASK;
362
363 /* 0x1F write to PP_DIV_REG sets max cycle delay */
364 I915_WRITE(pp_div_reg, pp_div | 0x1F);
365 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
366 msleep(intel_dp->panel_power_cycle_delay);
367 }
368
369 return 0;
370 }
371
372 static bool edp_have_panel_power(struct intel_dp *intel_dp)
373 {
374 struct drm_device *dev = intel_dp_to_dev(intel_dp);
375 struct drm_i915_private *dev_priv = dev->dev_private;
376
377 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
378 }
379
380 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
381 {
382 struct drm_device *dev = intel_dp_to_dev(intel_dp);
383 struct drm_i915_private *dev_priv = dev->dev_private;
384 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
385 struct intel_encoder *intel_encoder = &intel_dig_port->base;
386 enum intel_display_power_domain power_domain;
387
388 power_domain = intel_display_port_power_domain(intel_encoder);
389 return intel_display_power_enabled(dev_priv, power_domain) &&
390 (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
391 }
392
393 static void
394 intel_dp_check_edp(struct intel_dp *intel_dp)
395 {
396 struct drm_device *dev = intel_dp_to_dev(intel_dp);
397 struct drm_i915_private *dev_priv = dev->dev_private;
398
399 if (!is_edp(intel_dp))
400 return;
401
402 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
403 WARN(1, "eDP powered off while attempting aux channel communication.\n");
404 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
405 I915_READ(_pp_stat_reg(intel_dp)),
406 I915_READ(_pp_ctrl_reg(intel_dp)));
407 }
408 }
409
410 static uint32_t
411 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
412 {
413 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
414 struct drm_device *dev = intel_dig_port->base.base.dev;
415 struct drm_i915_private *dev_priv = dev->dev_private;
416 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
417 uint32_t status;
418 bool done;
419
420 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
421 if (has_aux_irq)
422 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
423 msecs_to_jiffies_timeout(10));
424 else
425 done = wait_for_atomic(C, 10) == 0;
426 if (!done)
427 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
428 has_aux_irq);
429 #undef C
430
431 return status;
432 }
433
434 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
435 {
436 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
437 struct drm_device *dev = intel_dig_port->base.base.dev;
438
439 /*
440 * The clock divider is based off the hrawclk, and would like to run at
441 * 2MHz. So, take the hrawclk value and divide by 2 and use that
442 */
443 return index ? 0 : intel_hrawclk(dev) / 2;
444 }
445
446 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
447 {
448 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
449 struct drm_device *dev = intel_dig_port->base.base.dev;
450
451 if (index)
452 return 0;
453
454 if (intel_dig_port->port == PORT_A) {
455 if (IS_GEN6(dev) || IS_GEN7(dev))
456 return 200; /* SNB & IVB eDP input clock at 400Mhz */
457 else
458 return 225; /* eDP input clock at 450Mhz */
459 } else {
460 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
461 }
462 }
463
464 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
465 {
466 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
467 struct drm_device *dev = intel_dig_port->base.base.dev;
468 struct drm_i915_private *dev_priv = dev->dev_private;
469
470 if (intel_dig_port->port == PORT_A) {
471 if (index)
472 return 0;
473 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
474 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
475 /* Workaround for non-ULT HSW */
476 switch (index) {
477 case 0: return 63;
478 case 1: return 72;
479 default: return 0;
480 }
481 } else {
482 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
483 }
484 }
485
486 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
487 {
488 return index ? 0 : 100;
489 }
490
491 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
492 bool has_aux_irq,
493 int send_bytes,
494 uint32_t aux_clock_divider)
495 {
496 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
497 struct drm_device *dev = intel_dig_port->base.base.dev;
498 uint32_t precharge, timeout;
499
500 if (IS_GEN6(dev))
501 precharge = 3;
502 else
503 precharge = 5;
504
505 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
506 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
507 else
508 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
509
510 return DP_AUX_CH_CTL_SEND_BUSY |
511 DP_AUX_CH_CTL_DONE |
512 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
513 DP_AUX_CH_CTL_TIME_OUT_ERROR |
514 timeout |
515 DP_AUX_CH_CTL_RECEIVE_ERROR |
516 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
517 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
518 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
519 }
520
521 static int
522 intel_dp_aux_ch(struct intel_dp *intel_dp,
523 uint8_t *send, int send_bytes,
524 uint8_t *recv, int recv_size)
525 {
526 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
527 struct drm_device *dev = intel_dig_port->base.base.dev;
528 struct drm_i915_private *dev_priv = dev->dev_private;
529 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
530 uint32_t ch_data = ch_ctl + 4;
531 uint32_t aux_clock_divider;
532 int i, ret, recv_bytes;
533 uint32_t status;
534 int try, clock = 0;
535 bool has_aux_irq = HAS_AUX_IRQ(dev);
536 bool vdd;
537
538 vdd = _edp_panel_vdd_on(intel_dp);
539
540 /* dp aux is extremely sensitive to irq latency, hence request the
541 * lowest possible wakeup latency and so prevent the cpu from going into
542 * deep sleep states.
543 */
544 pm_qos_update_request(&dev_priv->pm_qos, 0);
545
546 intel_dp_check_edp(intel_dp);
547
548 intel_aux_display_runtime_get(dev_priv);
549
550 /* Try to wait for any previous AUX channel activity */
551 for (try = 0; try < 3; try++) {
552 status = I915_READ_NOTRACE(ch_ctl);
553 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
554 break;
555 msleep(1);
556 }
557
558 if (try == 3) {
559 WARN(1, "dp_aux_ch not started status 0x%08x\n",
560 I915_READ(ch_ctl));
561 ret = -EBUSY;
562 goto out;
563 }
564
565 /* Only 5 data registers! */
566 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
567 ret = -E2BIG;
568 goto out;
569 }
570
571 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
572 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
573 has_aux_irq,
574 send_bytes,
575 aux_clock_divider);
576
577 /* Must try at least 3 times according to DP spec */
578 for (try = 0; try < 5; try++) {
579 /* Load the send data into the aux channel data registers */
580 for (i = 0; i < send_bytes; i += 4)
581 I915_WRITE(ch_data + i,
582 pack_aux(send + i, send_bytes - i));
583
584 /* Send the command and wait for it to complete */
585 I915_WRITE(ch_ctl, send_ctl);
586
587 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
588
589 /* Clear done status and any errors */
590 I915_WRITE(ch_ctl,
591 status |
592 DP_AUX_CH_CTL_DONE |
593 DP_AUX_CH_CTL_TIME_OUT_ERROR |
594 DP_AUX_CH_CTL_RECEIVE_ERROR);
595
596 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
597 DP_AUX_CH_CTL_RECEIVE_ERROR))
598 continue;
599 if (status & DP_AUX_CH_CTL_DONE)
600 break;
601 }
602 if (status & DP_AUX_CH_CTL_DONE)
603 break;
604 }
605
606 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
607 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
608 ret = -EBUSY;
609 goto out;
610 }
611
612 /* Check for timeout or receive error.
613 * Timeouts occur when the sink is not connected
614 */
615 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
616 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
617 ret = -EIO;
618 goto out;
619 }
620
621 /* Timeouts occur when the device isn't connected, so they're
622 * "normal" -- don't fill the kernel log with these */
623 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
624 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
625 ret = -ETIMEDOUT;
626 goto out;
627 }
628
629 /* Unload any bytes sent back from the other side */
630 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
631 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
632 if (recv_bytes > recv_size)
633 recv_bytes = recv_size;
634
635 for (i = 0; i < recv_bytes; i += 4)
636 unpack_aux(I915_READ(ch_data + i),
637 recv + i, recv_bytes - i);
638
639 ret = recv_bytes;
640 out:
641 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
642 intel_aux_display_runtime_put(dev_priv);
643
644 if (vdd)
645 edp_panel_vdd_off(intel_dp, false);
646
647 return ret;
648 }
649
650 #define BARE_ADDRESS_SIZE 3
651 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
652 static ssize_t
653 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
654 {
655 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
656 uint8_t txbuf[20], rxbuf[20];
657 size_t txsize, rxsize;
658 int ret;
659
660 txbuf[0] = msg->request << 4;
661 txbuf[1] = msg->address >> 8;
662 txbuf[2] = msg->address & 0xff;
663 txbuf[3] = msg->size - 1;
664
665 switch (msg->request & ~DP_AUX_I2C_MOT) {
666 case DP_AUX_NATIVE_WRITE:
667 case DP_AUX_I2C_WRITE:
668 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
669 rxsize = 1;
670
671 if (WARN_ON(txsize > 20))
672 return -E2BIG;
673
674 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
675
676 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
677 if (ret > 0) {
678 msg->reply = rxbuf[0] >> 4;
679
680 /* Return payload size. */
681 ret = msg->size;
682 }
683 break;
684
685 case DP_AUX_NATIVE_READ:
686 case DP_AUX_I2C_READ:
687 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
688 rxsize = msg->size + 1;
689
690 if (WARN_ON(rxsize > 20))
691 return -E2BIG;
692
693 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
694 if (ret > 0) {
695 msg->reply = rxbuf[0] >> 4;
696 /*
697 * Assume happy day, and copy the data. The caller is
698 * expected to check msg->reply before touching it.
699 *
700 * Return payload size.
701 */
702 ret--;
703 memcpy(msg->buffer, rxbuf + 1, ret);
704 }
705 break;
706
707 default:
708 ret = -EINVAL;
709 break;
710 }
711
712 return ret;
713 }
714
715 static void
716 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
717 {
718 struct drm_device *dev = intel_dp_to_dev(intel_dp);
719 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
720 enum port port = intel_dig_port->port;
721 const char *name = NULL;
722 int ret;
723
724 switch (port) {
725 case PORT_A:
726 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
727 name = "DPDDC-A";
728 break;
729 case PORT_B:
730 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
731 name = "DPDDC-B";
732 break;
733 case PORT_C:
734 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
735 name = "DPDDC-C";
736 break;
737 case PORT_D:
738 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
739 name = "DPDDC-D";
740 break;
741 default:
742 BUG();
743 }
744
745 if (!HAS_DDI(dev))
746 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
747
748 intel_dp->aux.name = name;
749 intel_dp->aux.dev = dev->dev;
750 intel_dp->aux.transfer = intel_dp_aux_transfer;
751
752 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
753 connector->base.kdev->kobj.name);
754
755 ret = drm_dp_aux_register(&intel_dp->aux);
756 if (ret < 0) {
757 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
758 name, ret);
759 return;
760 }
761
762 ret = sysfs_create_link(&connector->base.kdev->kobj,
763 &intel_dp->aux.ddc.dev.kobj,
764 intel_dp->aux.ddc.dev.kobj.name);
765 if (ret < 0) {
766 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
767 drm_dp_aux_unregister(&intel_dp->aux);
768 }
769 }
770
771 static void
772 intel_dp_connector_unregister(struct intel_connector *intel_connector)
773 {
774 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
775
776 if (!intel_connector->mst_port)
777 sysfs_remove_link(&intel_connector->base.kdev->kobj,
778 intel_dp->aux.ddc.dev.kobj.name);
779 intel_connector_unregister(intel_connector);
780 }
781
782 static void
783 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
784 {
785 switch (link_bw) {
786 case DP_LINK_BW_1_62:
787 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
788 break;
789 case DP_LINK_BW_2_7:
790 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
791 break;
792 case DP_LINK_BW_5_4:
793 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
794 break;
795 }
796 }
797
798 static void
799 intel_dp_set_clock(struct intel_encoder *encoder,
800 struct intel_crtc_config *pipe_config, int link_bw)
801 {
802 struct drm_device *dev = encoder->base.dev;
803 const struct dp_link_dpll *divisor = NULL;
804 int i, count = 0;
805
806 if (IS_G4X(dev)) {
807 divisor = gen4_dpll;
808 count = ARRAY_SIZE(gen4_dpll);
809 } else if (HAS_PCH_SPLIT(dev)) {
810 divisor = pch_dpll;
811 count = ARRAY_SIZE(pch_dpll);
812 } else if (IS_CHERRYVIEW(dev)) {
813 divisor = chv_dpll;
814 count = ARRAY_SIZE(chv_dpll);
815 } else if (IS_VALLEYVIEW(dev)) {
816 divisor = vlv_dpll;
817 count = ARRAY_SIZE(vlv_dpll);
818 }
819
820 if (divisor && count) {
821 for (i = 0; i < count; i++) {
822 if (link_bw == divisor[i].link_bw) {
823 pipe_config->dpll = divisor[i].dpll;
824 pipe_config->clock_set = true;
825 break;
826 }
827 }
828 }
829 }
830
831 static void
832 intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
833 {
834 struct drm_device *dev = crtc->base.dev;
835 struct drm_i915_private *dev_priv = dev->dev_private;
836 enum transcoder transcoder = crtc->config.cpu_transcoder;
837
838 I915_WRITE(PIPE_DATA_M2(transcoder),
839 TU_SIZE(m_n->tu) | m_n->gmch_m);
840 I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
841 I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
842 I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
843 }
844
845 bool
846 intel_dp_compute_config(struct intel_encoder *encoder,
847 struct intel_crtc_config *pipe_config)
848 {
849 struct drm_device *dev = encoder->base.dev;
850 struct drm_i915_private *dev_priv = dev->dev_private;
851 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
852 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
853 enum port port = dp_to_dig_port(intel_dp)->port;
854 struct intel_crtc *intel_crtc = encoder->new_crtc;
855 struct intel_connector *intel_connector = intel_dp->attached_connector;
856 int lane_count, clock;
857 int min_lane_count = 1;
858 int max_lane_count = intel_dp_max_lane_count(intel_dp);
859 /* Conveniently, the link BW constants become indices with a shift...*/
860 int min_clock = 0;
861 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
862 int bpp, mode_rate;
863 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
864 int link_avail, link_clock;
865
866 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
867 pipe_config->has_pch_encoder = true;
868
869 pipe_config->has_dp_encoder = true;
870 pipe_config->has_audio = intel_dp->has_audio;
871
872 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
873 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
874 adjusted_mode);
875 if (!HAS_PCH_SPLIT(dev))
876 intel_gmch_panel_fitting(intel_crtc, pipe_config,
877 intel_connector->panel.fitting_mode);
878 else
879 intel_pch_panel_fitting(intel_crtc, pipe_config,
880 intel_connector->panel.fitting_mode);
881 }
882
883 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
884 return false;
885
886 DRM_DEBUG_KMS("DP link computation with max lane count %i "
887 "max bw %02x pixel clock %iKHz\n",
888 max_lane_count, bws[max_clock],
889 adjusted_mode->crtc_clock);
890
891 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
892 * bpc in between. */
893 bpp = pipe_config->pipe_bpp;
894 if (is_edp(intel_dp)) {
895 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
896 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
897 dev_priv->vbt.edp_bpp);
898 bpp = dev_priv->vbt.edp_bpp;
899 }
900
901 if (IS_BROADWELL(dev)) {
902 /* Yes, it's an ugly hack. */
903 min_lane_count = max_lane_count;
904 DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
905 min_lane_count);
906 } else if (dev_priv->vbt.edp_lanes) {
907 min_lane_count = min(dev_priv->vbt.edp_lanes,
908 max_lane_count);
909 DRM_DEBUG_KMS("using min %u lanes per VBT\n",
910 min_lane_count);
911 }
912
913 if (dev_priv->vbt.edp_rate) {
914 min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
915 DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
916 bws[min_clock]);
917 }
918 }
919
920 for (; bpp >= 6*3; bpp -= 2*3) {
921 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
922 bpp);
923
924 for (clock = min_clock; clock <= max_clock; clock++) {
925 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
926 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
927 link_avail = intel_dp_max_data_rate(link_clock,
928 lane_count);
929
930 if (mode_rate <= link_avail) {
931 goto found;
932 }
933 }
934 }
935 }
936
937 return false;
938
939 found:
940 if (intel_dp->color_range_auto) {
941 /*
942 * See:
943 * CEA-861-E - 5.1 Default Encoding Parameters
944 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
945 */
946 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
947 intel_dp->color_range = DP_COLOR_RANGE_16_235;
948 else
949 intel_dp->color_range = 0;
950 }
951
952 if (intel_dp->color_range)
953 pipe_config->limited_color_range = true;
954
955 intel_dp->link_bw = bws[clock];
956 intel_dp->lane_count = lane_count;
957 pipe_config->pipe_bpp = bpp;
958 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
959
960 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
961 intel_dp->link_bw, intel_dp->lane_count,
962 pipe_config->port_clock, bpp);
963 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
964 mode_rate, link_avail);
965
966 intel_link_compute_m_n(bpp, lane_count,
967 adjusted_mode->crtc_clock,
968 pipe_config->port_clock,
969 &pipe_config->dp_m_n);
970
971 if (intel_connector->panel.downclock_mode != NULL &&
972 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
973 intel_link_compute_m_n(bpp, lane_count,
974 intel_connector->panel.downclock_mode->clock,
975 pipe_config->port_clock,
976 &pipe_config->dp_m2_n2);
977 }
978
979 if (HAS_DDI(dev))
980 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
981 else
982 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
983
984 return true;
985 }
986
987 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
988 {
989 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
990 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
991 struct drm_device *dev = crtc->base.dev;
992 struct drm_i915_private *dev_priv = dev->dev_private;
993 u32 dpa_ctl;
994
995 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
996 dpa_ctl = I915_READ(DP_A);
997 dpa_ctl &= ~DP_PLL_FREQ_MASK;
998
999 if (crtc->config.port_clock == 162000) {
1000 /* For a long time we've carried around a ILK-DevA w/a for the
1001 * 160MHz clock. If we're really unlucky, it's still required.
1002 */
1003 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1004 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1005 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1006 } else {
1007 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1008 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1009 }
1010
1011 I915_WRITE(DP_A, dpa_ctl);
1012
1013 POSTING_READ(DP_A);
1014 udelay(500);
1015 }
1016
1017 static void intel_dp_prepare(struct intel_encoder *encoder)
1018 {
1019 struct drm_device *dev = encoder->base.dev;
1020 struct drm_i915_private *dev_priv = dev->dev_private;
1021 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1022 enum port port = dp_to_dig_port(intel_dp)->port;
1023 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1024 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1025
1026 /*
1027 * There are four kinds of DP registers:
1028 *
1029 * IBX PCH
1030 * SNB CPU
1031 * IVB CPU
1032 * CPT PCH
1033 *
1034 * IBX PCH and CPU are the same for almost everything,
1035 * except that the CPU DP PLL is configured in this
1036 * register
1037 *
1038 * CPT PCH is quite different, having many bits moved
1039 * to the TRANS_DP_CTL register instead. That
1040 * configuration happens (oddly) in ironlake_pch_enable
1041 */
1042
1043 /* Preserve the BIOS-computed detected bit. This is
1044 * supposed to be read-only.
1045 */
1046 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1047
1048 /* Handle DP bits in common between all three register formats */
1049 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1050 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1051
1052 if (crtc->config.has_audio) {
1053 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1054 pipe_name(crtc->pipe));
1055 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1056 intel_write_eld(&encoder->base, adjusted_mode);
1057 }
1058
1059 /* Split out the IBX/CPU vs CPT settings */
1060
1061 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1062 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1063 intel_dp->DP |= DP_SYNC_HS_HIGH;
1064 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1065 intel_dp->DP |= DP_SYNC_VS_HIGH;
1066 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1067
1068 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1069 intel_dp->DP |= DP_ENHANCED_FRAMING;
1070
1071 intel_dp->DP |= crtc->pipe << 29;
1072 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1073 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1074 intel_dp->DP |= intel_dp->color_range;
1075
1076 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1077 intel_dp->DP |= DP_SYNC_HS_HIGH;
1078 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1079 intel_dp->DP |= DP_SYNC_VS_HIGH;
1080 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1081
1082 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1083 intel_dp->DP |= DP_ENHANCED_FRAMING;
1084
1085 if (!IS_CHERRYVIEW(dev)) {
1086 if (crtc->pipe == 1)
1087 intel_dp->DP |= DP_PIPEB_SELECT;
1088 } else {
1089 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1090 }
1091 } else {
1092 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1093 }
1094 }
1095
1096 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1097 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1098
1099 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1100 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1101
1102 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1103 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1104
1105 static void wait_panel_status(struct intel_dp *intel_dp,
1106 u32 mask,
1107 u32 value)
1108 {
1109 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1110 struct drm_i915_private *dev_priv = dev->dev_private;
1111 u32 pp_stat_reg, pp_ctrl_reg;
1112
1113 pp_stat_reg = _pp_stat_reg(intel_dp);
1114 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1115
1116 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1117 mask, value,
1118 I915_READ(pp_stat_reg),
1119 I915_READ(pp_ctrl_reg));
1120
1121 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1122 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1123 I915_READ(pp_stat_reg),
1124 I915_READ(pp_ctrl_reg));
1125 }
1126
1127 DRM_DEBUG_KMS("Wait complete\n");
1128 }
1129
1130 static void wait_panel_on(struct intel_dp *intel_dp)
1131 {
1132 DRM_DEBUG_KMS("Wait for panel power on\n");
1133 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1134 }
1135
1136 static void wait_panel_off(struct intel_dp *intel_dp)
1137 {
1138 DRM_DEBUG_KMS("Wait for panel power off time\n");
1139 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1140 }
1141
1142 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1143 {
1144 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1145
1146 /* When we disable the VDD override bit last we have to do the manual
1147 * wait. */
1148 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1149 intel_dp->panel_power_cycle_delay);
1150
1151 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1152 }
1153
1154 static void wait_backlight_on(struct intel_dp *intel_dp)
1155 {
1156 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1157 intel_dp->backlight_on_delay);
1158 }
1159
1160 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1161 {
1162 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1163 intel_dp->backlight_off_delay);
1164 }
1165
1166 /* Read the current pp_control value, unlocking the register if it
1167 * is locked
1168 */
1169
1170 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1171 {
1172 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1173 struct drm_i915_private *dev_priv = dev->dev_private;
1174 u32 control;
1175
1176 control = I915_READ(_pp_ctrl_reg(intel_dp));
1177 control &= ~PANEL_UNLOCK_MASK;
1178 control |= PANEL_UNLOCK_REGS;
1179 return control;
1180 }
1181
1182 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1183 {
1184 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1185 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1186 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1187 struct drm_i915_private *dev_priv = dev->dev_private;
1188 enum intel_display_power_domain power_domain;
1189 u32 pp;
1190 u32 pp_stat_reg, pp_ctrl_reg;
1191 bool need_to_disable = !intel_dp->want_panel_vdd;
1192
1193 if (!is_edp(intel_dp))
1194 return false;
1195
1196 intel_dp->want_panel_vdd = true;
1197
1198 if (edp_have_panel_vdd(intel_dp))
1199 return need_to_disable;
1200
1201 power_domain = intel_display_port_power_domain(intel_encoder);
1202 intel_display_power_get(dev_priv, power_domain);
1203
1204 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1205
1206 if (!edp_have_panel_power(intel_dp))
1207 wait_panel_power_cycle(intel_dp);
1208
1209 pp = ironlake_get_pp_control(intel_dp);
1210 pp |= EDP_FORCE_VDD;
1211
1212 pp_stat_reg = _pp_stat_reg(intel_dp);
1213 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1214
1215 I915_WRITE(pp_ctrl_reg, pp);
1216 POSTING_READ(pp_ctrl_reg);
1217 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1218 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1219 /*
1220 * If the panel wasn't on, delay before accessing aux channel
1221 */
1222 if (!edp_have_panel_power(intel_dp)) {
1223 DRM_DEBUG_KMS("eDP was not running\n");
1224 msleep(intel_dp->panel_power_up_delay);
1225 }
1226
1227 return need_to_disable;
1228 }
1229
1230 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1231 {
1232 if (is_edp(intel_dp)) {
1233 bool vdd = _edp_panel_vdd_on(intel_dp);
1234
1235 WARN(!vdd, "eDP VDD already requested on\n");
1236 }
1237 }
1238
1239 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1240 {
1241 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1242 struct drm_i915_private *dev_priv = dev->dev_private;
1243 u32 pp;
1244 u32 pp_stat_reg, pp_ctrl_reg;
1245
1246 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1247
1248 if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1249 struct intel_digital_port *intel_dig_port =
1250 dp_to_dig_port(intel_dp);
1251 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1252 enum intel_display_power_domain power_domain;
1253
1254 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1255
1256 pp = ironlake_get_pp_control(intel_dp);
1257 pp &= ~EDP_FORCE_VDD;
1258
1259 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1260 pp_stat_reg = _pp_stat_reg(intel_dp);
1261
1262 I915_WRITE(pp_ctrl_reg, pp);
1263 POSTING_READ(pp_ctrl_reg);
1264
1265 /* Make sure sequencer is idle before allowing subsequent activity */
1266 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1267 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1268
1269 if ((pp & POWER_TARGET_ON) == 0)
1270 intel_dp->last_power_cycle = jiffies;
1271
1272 power_domain = intel_display_port_power_domain(intel_encoder);
1273 intel_display_power_put(dev_priv, power_domain);
1274 }
1275 }
1276
1277 static void edp_panel_vdd_work(struct work_struct *__work)
1278 {
1279 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1280 struct intel_dp, panel_vdd_work);
1281 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1282
1283 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1284 edp_panel_vdd_off_sync(intel_dp);
1285 drm_modeset_unlock(&dev->mode_config.connection_mutex);
1286 }
1287
1288 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1289 {
1290 unsigned long delay;
1291
1292 /*
1293 * Queue the timer to fire a long time from now (relative to the power
1294 * down delay) to keep the panel power up across a sequence of
1295 * operations.
1296 */
1297 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1298 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1299 }
1300
1301 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1302 {
1303 if (!is_edp(intel_dp))
1304 return;
1305
1306 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1307
1308 intel_dp->want_panel_vdd = false;
1309
1310 if (sync)
1311 edp_panel_vdd_off_sync(intel_dp);
1312 else
1313 edp_panel_vdd_schedule_off(intel_dp);
1314 }
1315
1316 void intel_edp_panel_on(struct intel_dp *intel_dp)
1317 {
1318 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1319 struct drm_i915_private *dev_priv = dev->dev_private;
1320 u32 pp;
1321 u32 pp_ctrl_reg;
1322
1323 if (!is_edp(intel_dp))
1324 return;
1325
1326 DRM_DEBUG_KMS("Turn eDP power on\n");
1327
1328 if (edp_have_panel_power(intel_dp)) {
1329 DRM_DEBUG_KMS("eDP power already on\n");
1330 return;
1331 }
1332
1333 wait_panel_power_cycle(intel_dp);
1334
1335 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1336 pp = ironlake_get_pp_control(intel_dp);
1337 if (IS_GEN5(dev)) {
1338 /* ILK workaround: disable reset around power sequence */
1339 pp &= ~PANEL_POWER_RESET;
1340 I915_WRITE(pp_ctrl_reg, pp);
1341 POSTING_READ(pp_ctrl_reg);
1342 }
1343
1344 pp |= POWER_TARGET_ON;
1345 if (!IS_GEN5(dev))
1346 pp |= PANEL_POWER_RESET;
1347
1348 I915_WRITE(pp_ctrl_reg, pp);
1349 POSTING_READ(pp_ctrl_reg);
1350
1351 wait_panel_on(intel_dp);
1352 intel_dp->last_power_on = jiffies;
1353
1354 if (IS_GEN5(dev)) {
1355 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1356 I915_WRITE(pp_ctrl_reg, pp);
1357 POSTING_READ(pp_ctrl_reg);
1358 }
1359 }
1360
1361 void intel_edp_panel_off(struct intel_dp *intel_dp)
1362 {
1363 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1364 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1365 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1366 struct drm_i915_private *dev_priv = dev->dev_private;
1367 enum intel_display_power_domain power_domain;
1368 u32 pp;
1369 u32 pp_ctrl_reg;
1370
1371 if (!is_edp(intel_dp))
1372 return;
1373
1374 DRM_DEBUG_KMS("Turn eDP power off\n");
1375
1376 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1377
1378 pp = ironlake_get_pp_control(intel_dp);
1379 /* We need to switch off panel power _and_ force vdd, for otherwise some
1380 * panels get very unhappy and cease to work. */
1381 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1382 EDP_BLC_ENABLE);
1383
1384 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1385
1386 intel_dp->want_panel_vdd = false;
1387
1388 I915_WRITE(pp_ctrl_reg, pp);
1389 POSTING_READ(pp_ctrl_reg);
1390
1391 intel_dp->last_power_cycle = jiffies;
1392 wait_panel_off(intel_dp);
1393
1394 /* We got a reference when we enabled the VDD. */
1395 power_domain = intel_display_port_power_domain(intel_encoder);
1396 intel_display_power_put(dev_priv, power_domain);
1397 }
1398
1399 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1400 {
1401 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1402 struct drm_device *dev = intel_dig_port->base.base.dev;
1403 struct drm_i915_private *dev_priv = dev->dev_private;
1404 u32 pp;
1405 u32 pp_ctrl_reg;
1406
1407 if (!is_edp(intel_dp))
1408 return;
1409
1410 DRM_DEBUG_KMS("\n");
1411
1412 intel_panel_enable_backlight(intel_dp->attached_connector);
1413
1414 /*
1415 * If we enable the backlight right away following a panel power
1416 * on, we may see slight flicker as the panel syncs with the eDP
1417 * link. So delay a bit to make sure the image is solid before
1418 * allowing it to appear.
1419 */
1420 wait_backlight_on(intel_dp);
1421 pp = ironlake_get_pp_control(intel_dp);
1422 pp |= EDP_BLC_ENABLE;
1423
1424 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1425
1426 I915_WRITE(pp_ctrl_reg, pp);
1427 POSTING_READ(pp_ctrl_reg);
1428 }
1429
1430 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1431 {
1432 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1433 struct drm_i915_private *dev_priv = dev->dev_private;
1434 u32 pp;
1435 u32 pp_ctrl_reg;
1436
1437 if (!is_edp(intel_dp))
1438 return;
1439
1440 DRM_DEBUG_KMS("\n");
1441 pp = ironlake_get_pp_control(intel_dp);
1442 pp &= ~EDP_BLC_ENABLE;
1443
1444 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1445
1446 I915_WRITE(pp_ctrl_reg, pp);
1447 POSTING_READ(pp_ctrl_reg);
1448 intel_dp->last_backlight_off = jiffies;
1449
1450 edp_wait_backlight_off(intel_dp);
1451
1452 intel_panel_disable_backlight(intel_dp->attached_connector);
1453 }
1454
1455 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1456 {
1457 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1458 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1459 struct drm_device *dev = crtc->dev;
1460 struct drm_i915_private *dev_priv = dev->dev_private;
1461 u32 dpa_ctl;
1462
1463 assert_pipe_disabled(dev_priv,
1464 to_intel_crtc(crtc)->pipe);
1465
1466 DRM_DEBUG_KMS("\n");
1467 dpa_ctl = I915_READ(DP_A);
1468 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1469 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1470
1471 /* We don't adjust intel_dp->DP while tearing down the link, to
1472 * facilitate link retraining (e.g. after hotplug). Hence clear all
1473 * enable bits here to ensure that we don't enable too much. */
1474 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1475 intel_dp->DP |= DP_PLL_ENABLE;
1476 I915_WRITE(DP_A, intel_dp->DP);
1477 POSTING_READ(DP_A);
1478 udelay(200);
1479 }
1480
1481 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1482 {
1483 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1484 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1485 struct drm_device *dev = crtc->dev;
1486 struct drm_i915_private *dev_priv = dev->dev_private;
1487 u32 dpa_ctl;
1488
1489 assert_pipe_disabled(dev_priv,
1490 to_intel_crtc(crtc)->pipe);
1491
1492 dpa_ctl = I915_READ(DP_A);
1493 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1494 "dp pll off, should be on\n");
1495 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1496
1497 /* We can't rely on the value tracked for the DP register in
1498 * intel_dp->DP because link_down must not change that (otherwise link
1499 * re-training will fail. */
1500 dpa_ctl &= ~DP_PLL_ENABLE;
1501 I915_WRITE(DP_A, dpa_ctl);
1502 POSTING_READ(DP_A);
1503 udelay(200);
1504 }
1505
1506 /* If the sink supports it, try to set the power state appropriately */
1507 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1508 {
1509 int ret, i;
1510
1511 /* Should have a valid DPCD by this point */
1512 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1513 return;
1514
1515 if (mode != DRM_MODE_DPMS_ON) {
1516 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1517 DP_SET_POWER_D3);
1518 if (ret != 1)
1519 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1520 } else {
1521 /*
1522 * When turning on, we need to retry for 1ms to give the sink
1523 * time to wake up.
1524 */
1525 for (i = 0; i < 3; i++) {
1526 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1527 DP_SET_POWER_D0);
1528 if (ret == 1)
1529 break;
1530 msleep(1);
1531 }
1532 }
1533 }
1534
1535 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1536 enum pipe *pipe)
1537 {
1538 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1539 enum port port = dp_to_dig_port(intel_dp)->port;
1540 struct drm_device *dev = encoder->base.dev;
1541 struct drm_i915_private *dev_priv = dev->dev_private;
1542 enum intel_display_power_domain power_domain;
1543 u32 tmp;
1544
1545 power_domain = intel_display_port_power_domain(encoder);
1546 if (!intel_display_power_enabled(dev_priv, power_domain))
1547 return false;
1548
1549 tmp = I915_READ(intel_dp->output_reg);
1550
1551 if (!(tmp & DP_PORT_EN))
1552 return false;
1553
1554 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1555 *pipe = PORT_TO_PIPE_CPT(tmp);
1556 } else if (IS_CHERRYVIEW(dev)) {
1557 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1558 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1559 *pipe = PORT_TO_PIPE(tmp);
1560 } else {
1561 u32 trans_sel;
1562 u32 trans_dp;
1563 int i;
1564
1565 switch (intel_dp->output_reg) {
1566 case PCH_DP_B:
1567 trans_sel = TRANS_DP_PORT_SEL_B;
1568 break;
1569 case PCH_DP_C:
1570 trans_sel = TRANS_DP_PORT_SEL_C;
1571 break;
1572 case PCH_DP_D:
1573 trans_sel = TRANS_DP_PORT_SEL_D;
1574 break;
1575 default:
1576 return true;
1577 }
1578
1579 for_each_pipe(i) {
1580 trans_dp = I915_READ(TRANS_DP_CTL(i));
1581 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1582 *pipe = i;
1583 return true;
1584 }
1585 }
1586
1587 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1588 intel_dp->output_reg);
1589 }
1590
1591 return true;
1592 }
1593
1594 static void intel_dp_get_config(struct intel_encoder *encoder,
1595 struct intel_crtc_config *pipe_config)
1596 {
1597 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1598 u32 tmp, flags = 0;
1599 struct drm_device *dev = encoder->base.dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 enum port port = dp_to_dig_port(intel_dp)->port;
1602 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1603 int dotclock;
1604
1605 tmp = I915_READ(intel_dp->output_reg);
1606 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1607 pipe_config->has_audio = true;
1608
1609 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1610 if (tmp & DP_SYNC_HS_HIGH)
1611 flags |= DRM_MODE_FLAG_PHSYNC;
1612 else
1613 flags |= DRM_MODE_FLAG_NHSYNC;
1614
1615 if (tmp & DP_SYNC_VS_HIGH)
1616 flags |= DRM_MODE_FLAG_PVSYNC;
1617 else
1618 flags |= DRM_MODE_FLAG_NVSYNC;
1619 } else {
1620 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1621 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1622 flags |= DRM_MODE_FLAG_PHSYNC;
1623 else
1624 flags |= DRM_MODE_FLAG_NHSYNC;
1625
1626 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1627 flags |= DRM_MODE_FLAG_PVSYNC;
1628 else
1629 flags |= DRM_MODE_FLAG_NVSYNC;
1630 }
1631
1632 pipe_config->adjusted_mode.flags |= flags;
1633
1634 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1635 tmp & DP_COLOR_RANGE_16_235)
1636 pipe_config->limited_color_range = true;
1637
1638 pipe_config->has_dp_encoder = true;
1639
1640 intel_dp_get_m_n(crtc, pipe_config);
1641
1642 if (port == PORT_A) {
1643 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1644 pipe_config->port_clock = 162000;
1645 else
1646 pipe_config->port_clock = 270000;
1647 }
1648
1649 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1650 &pipe_config->dp_m_n);
1651
1652 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1653 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1654
1655 pipe_config->adjusted_mode.crtc_clock = dotclock;
1656
1657 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1658 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1659 /*
1660 * This is a big fat ugly hack.
1661 *
1662 * Some machines in UEFI boot mode provide us a VBT that has 18
1663 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1664 * unknown we fail to light up. Yet the same BIOS boots up with
1665 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1666 * max, not what it tells us to use.
1667 *
1668 * Note: This will still be broken if the eDP panel is not lit
1669 * up by the BIOS, and thus we can't get the mode at module
1670 * load.
1671 */
1672 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1673 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1674 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1675 }
1676 }
1677
1678 static bool is_edp_psr(struct intel_dp *intel_dp)
1679 {
1680 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1681 }
1682
1683 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1684 {
1685 struct drm_i915_private *dev_priv = dev->dev_private;
1686
1687 if (!HAS_PSR(dev))
1688 return false;
1689
1690 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1691 }
1692
1693 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1694 struct edp_vsc_psr *vsc_psr)
1695 {
1696 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1697 struct drm_device *dev = dig_port->base.base.dev;
1698 struct drm_i915_private *dev_priv = dev->dev_private;
1699 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1700 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1701 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1702 uint32_t *data = (uint32_t *) vsc_psr;
1703 unsigned int i;
1704
1705 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1706 the video DIP being updated before program video DIP data buffer
1707 registers for DIP being updated. */
1708 I915_WRITE(ctl_reg, 0);
1709 POSTING_READ(ctl_reg);
1710
1711 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1712 if (i < sizeof(struct edp_vsc_psr))
1713 I915_WRITE(data_reg + i, *data++);
1714 else
1715 I915_WRITE(data_reg + i, 0);
1716 }
1717
1718 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1719 POSTING_READ(ctl_reg);
1720 }
1721
1722 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1723 {
1724 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1725 struct drm_i915_private *dev_priv = dev->dev_private;
1726 struct edp_vsc_psr psr_vsc;
1727
1728 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1729 memset(&psr_vsc, 0, sizeof(psr_vsc));
1730 psr_vsc.sdp_header.HB0 = 0;
1731 psr_vsc.sdp_header.HB1 = 0x7;
1732 psr_vsc.sdp_header.HB2 = 0x2;
1733 psr_vsc.sdp_header.HB3 = 0x8;
1734 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1735
1736 /* Avoid continuous PSR exit by masking memup and hpd */
1737 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1738 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1739 }
1740
1741 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1742 {
1743 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1744 struct drm_device *dev = dig_port->base.base.dev;
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746 uint32_t aux_clock_divider;
1747 int precharge = 0x3;
1748 int msg_size = 5; /* Header(4) + Message(1) */
1749 bool only_standby = false;
1750
1751 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1752
1753 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1754 only_standby = true;
1755
1756 /* Enable PSR in sink */
1757 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1758 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1759 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1760 else
1761 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1762 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1763
1764 /* Setup AUX registers */
1765 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1766 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1767 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1768 DP_AUX_CH_CTL_TIME_OUT_400us |
1769 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1770 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1771 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1772 }
1773
1774 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1775 {
1776 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1777 struct drm_device *dev = dig_port->base.base.dev;
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 uint32_t max_sleep_time = 0x1f;
1780 uint32_t idle_frames = 1;
1781 uint32_t val = 0x0;
1782 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1783 bool only_standby = false;
1784
1785 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1786 only_standby = true;
1787
1788 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
1789 val |= EDP_PSR_LINK_STANDBY;
1790 val |= EDP_PSR_TP2_TP3_TIME_0us;
1791 val |= EDP_PSR_TP1_TIME_0us;
1792 val |= EDP_PSR_SKIP_AUX_EXIT;
1793 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
1794 } else
1795 val |= EDP_PSR_LINK_DISABLE;
1796
1797 I915_WRITE(EDP_PSR_CTL(dev), val |
1798 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1799 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1800 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1801 EDP_PSR_ENABLE);
1802 }
1803
1804 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1805 {
1806 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1807 struct drm_device *dev = dig_port->base.base.dev;
1808 struct drm_i915_private *dev_priv = dev->dev_private;
1809 struct drm_crtc *crtc = dig_port->base.base.crtc;
1810 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1811
1812 lockdep_assert_held(&dev_priv->psr.lock);
1813 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1814 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
1815
1816 dev_priv->psr.source_ok = false;
1817
1818 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
1819 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1820 return false;
1821 }
1822
1823 if (!i915.enable_psr) {
1824 DRM_DEBUG_KMS("PSR disable by flag\n");
1825 return false;
1826 }
1827
1828 /* Below limitations aren't valid for Broadwell */
1829 if (IS_BROADWELL(dev))
1830 goto out;
1831
1832 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1833 S3D_ENABLE) {
1834 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1835 return false;
1836 }
1837
1838 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1839 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1840 return false;
1841 }
1842
1843 out:
1844 dev_priv->psr.source_ok = true;
1845 return true;
1846 }
1847
1848 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1849 {
1850 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1851 struct drm_device *dev = intel_dig_port->base.base.dev;
1852 struct drm_i915_private *dev_priv = dev->dev_private;
1853
1854 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1855 WARN_ON(dev_priv->psr.active);
1856 lockdep_assert_held(&dev_priv->psr.lock);
1857
1858 /* Enable PSR on the panel */
1859 intel_edp_psr_enable_sink(intel_dp);
1860
1861 /* Enable PSR on the host */
1862 intel_edp_psr_enable_source(intel_dp);
1863
1864 dev_priv->psr.active = true;
1865 }
1866
1867 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1868 {
1869 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1870 struct drm_i915_private *dev_priv = dev->dev_private;
1871
1872 if (!HAS_PSR(dev)) {
1873 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1874 return;
1875 }
1876
1877 if (!is_edp_psr(intel_dp)) {
1878 DRM_DEBUG_KMS("PSR not supported by this panel\n");
1879 return;
1880 }
1881
1882 mutex_lock(&dev_priv->psr.lock);
1883 if (dev_priv->psr.enabled) {
1884 DRM_DEBUG_KMS("PSR already in use\n");
1885 mutex_unlock(&dev_priv->psr.lock);
1886 return;
1887 }
1888
1889 dev_priv->psr.busy_frontbuffer_bits = 0;
1890
1891 /* Setup PSR once */
1892 intel_edp_psr_setup(intel_dp);
1893
1894 if (intel_edp_psr_match_conditions(intel_dp))
1895 dev_priv->psr.enabled = intel_dp;
1896 mutex_unlock(&dev_priv->psr.lock);
1897 }
1898
1899 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1900 {
1901 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1902 struct drm_i915_private *dev_priv = dev->dev_private;
1903
1904 mutex_lock(&dev_priv->psr.lock);
1905 if (!dev_priv->psr.enabled) {
1906 mutex_unlock(&dev_priv->psr.lock);
1907 return;
1908 }
1909
1910 if (dev_priv->psr.active) {
1911 I915_WRITE(EDP_PSR_CTL(dev),
1912 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1913
1914 /* Wait till PSR is idle */
1915 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1916 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1917 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1918
1919 dev_priv->psr.active = false;
1920 } else {
1921 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1922 }
1923
1924 dev_priv->psr.enabled = NULL;
1925 mutex_unlock(&dev_priv->psr.lock);
1926
1927 cancel_delayed_work_sync(&dev_priv->psr.work);
1928 }
1929
1930 static void intel_edp_psr_work(struct work_struct *work)
1931 {
1932 struct drm_i915_private *dev_priv =
1933 container_of(work, typeof(*dev_priv), psr.work.work);
1934 struct intel_dp *intel_dp = dev_priv->psr.enabled;
1935
1936 mutex_lock(&dev_priv->psr.lock);
1937 intel_dp = dev_priv->psr.enabled;
1938
1939 if (!intel_dp)
1940 goto unlock;
1941
1942 /*
1943 * The delayed work can race with an invalidate hence we need to
1944 * recheck. Since psr_flush first clears this and then reschedules we
1945 * won't ever miss a flush when bailing out here.
1946 */
1947 if (dev_priv->psr.busy_frontbuffer_bits)
1948 goto unlock;
1949
1950 intel_edp_psr_do_enable(intel_dp);
1951 unlock:
1952 mutex_unlock(&dev_priv->psr.lock);
1953 }
1954
1955 static void intel_edp_psr_do_exit(struct drm_device *dev)
1956 {
1957 struct drm_i915_private *dev_priv = dev->dev_private;
1958
1959 if (dev_priv->psr.active) {
1960 u32 val = I915_READ(EDP_PSR_CTL(dev));
1961
1962 WARN_ON(!(val & EDP_PSR_ENABLE));
1963
1964 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
1965
1966 dev_priv->psr.active = false;
1967 }
1968
1969 }
1970
1971 void intel_edp_psr_invalidate(struct drm_device *dev,
1972 unsigned frontbuffer_bits)
1973 {
1974 struct drm_i915_private *dev_priv = dev->dev_private;
1975 struct drm_crtc *crtc;
1976 enum pipe pipe;
1977
1978 mutex_lock(&dev_priv->psr.lock);
1979 if (!dev_priv->psr.enabled) {
1980 mutex_unlock(&dev_priv->psr.lock);
1981 return;
1982 }
1983
1984 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
1985 pipe = to_intel_crtc(crtc)->pipe;
1986
1987 intel_edp_psr_do_exit(dev);
1988
1989 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
1990
1991 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1992 mutex_unlock(&dev_priv->psr.lock);
1993 }
1994
1995 void intel_edp_psr_flush(struct drm_device *dev,
1996 unsigned frontbuffer_bits)
1997 {
1998 struct drm_i915_private *dev_priv = dev->dev_private;
1999 struct drm_crtc *crtc;
2000 enum pipe pipe;
2001
2002 mutex_lock(&dev_priv->psr.lock);
2003 if (!dev_priv->psr.enabled) {
2004 mutex_unlock(&dev_priv->psr.lock);
2005 return;
2006 }
2007
2008 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2009 pipe = to_intel_crtc(crtc)->pipe;
2010 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2011
2012 /*
2013 * On Haswell sprite plane updates don't result in a psr invalidating
2014 * signal in the hardware. Which means we need to manually fake this in
2015 * software for all flushes, not just when we've seen a preceding
2016 * invalidation through frontbuffer rendering.
2017 */
2018 if (IS_HASWELL(dev) &&
2019 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2020 intel_edp_psr_do_exit(dev);
2021
2022 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2023 schedule_delayed_work(&dev_priv->psr.work,
2024 msecs_to_jiffies(100));
2025 mutex_unlock(&dev_priv->psr.lock);
2026 }
2027
2028 void intel_edp_psr_init(struct drm_device *dev)
2029 {
2030 struct drm_i915_private *dev_priv = dev->dev_private;
2031
2032 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2033 mutex_init(&dev_priv->psr.lock);
2034 }
2035
2036 static void intel_disable_dp(struct intel_encoder *encoder)
2037 {
2038 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2039 enum port port = dp_to_dig_port(intel_dp)->port;
2040 struct drm_device *dev = encoder->base.dev;
2041
2042 /* Make sure the panel is off before trying to change the mode. But also
2043 * ensure that we have vdd while we switch off the panel. */
2044 intel_edp_panel_vdd_on(intel_dp);
2045 intel_edp_backlight_off(intel_dp);
2046 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2047 intel_edp_panel_off(intel_dp);
2048
2049 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
2050 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
2051 intel_dp_link_down(intel_dp);
2052 }
2053
2054 static void g4x_post_disable_dp(struct intel_encoder *encoder)
2055 {
2056 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2057 enum port port = dp_to_dig_port(intel_dp)->port;
2058
2059 if (port != PORT_A)
2060 return;
2061
2062 intel_dp_link_down(intel_dp);
2063 ironlake_edp_pll_off(intel_dp);
2064 }
2065
2066 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2067 {
2068 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2069
2070 intel_dp_link_down(intel_dp);
2071 }
2072
2073 static void chv_post_disable_dp(struct intel_encoder *encoder)
2074 {
2075 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2076 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2077 struct drm_device *dev = encoder->base.dev;
2078 struct drm_i915_private *dev_priv = dev->dev_private;
2079 struct intel_crtc *intel_crtc =
2080 to_intel_crtc(encoder->base.crtc);
2081 enum dpio_channel ch = vlv_dport_to_channel(dport);
2082 enum pipe pipe = intel_crtc->pipe;
2083 u32 val;
2084
2085 intel_dp_link_down(intel_dp);
2086
2087 mutex_lock(&dev_priv->dpio_lock);
2088
2089 /* Propagate soft reset to data lane reset */
2090 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2091 val |= CHV_PCS_REQ_SOFTRESET_EN;
2092 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2093
2094 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2095 val |= CHV_PCS_REQ_SOFTRESET_EN;
2096 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2097
2098 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2099 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2100 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2101
2102 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2103 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2104 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2105
2106 mutex_unlock(&dev_priv->dpio_lock);
2107 }
2108
2109 static void intel_enable_dp(struct intel_encoder *encoder)
2110 {
2111 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2112 struct drm_device *dev = encoder->base.dev;
2113 struct drm_i915_private *dev_priv = dev->dev_private;
2114 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2115
2116 if (WARN_ON(dp_reg & DP_PORT_EN))
2117 return;
2118
2119 intel_edp_panel_vdd_on(intel_dp);
2120 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2121 intel_dp_start_link_train(intel_dp);
2122 intel_edp_panel_on(intel_dp);
2123 edp_panel_vdd_off(intel_dp, true);
2124 intel_dp_complete_link_train(intel_dp);
2125 intel_dp_stop_link_train(intel_dp);
2126 }
2127
2128 static void g4x_enable_dp(struct intel_encoder *encoder)
2129 {
2130 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2131
2132 intel_enable_dp(encoder);
2133 intel_edp_backlight_on(intel_dp);
2134 }
2135
2136 static void vlv_enable_dp(struct intel_encoder *encoder)
2137 {
2138 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2139
2140 intel_edp_backlight_on(intel_dp);
2141 }
2142
2143 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2144 {
2145 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2146 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2147
2148 intel_dp_prepare(encoder);
2149
2150 /* Only ilk+ has port A */
2151 if (dport->port == PORT_A) {
2152 ironlake_set_pll_cpu_edp(intel_dp);
2153 ironlake_edp_pll_on(intel_dp);
2154 }
2155 }
2156
2157 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2158 {
2159 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2160 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2161 struct drm_device *dev = encoder->base.dev;
2162 struct drm_i915_private *dev_priv = dev->dev_private;
2163 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2164 enum dpio_channel port = vlv_dport_to_channel(dport);
2165 int pipe = intel_crtc->pipe;
2166 struct edp_power_seq power_seq;
2167 u32 val;
2168
2169 mutex_lock(&dev_priv->dpio_lock);
2170
2171 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2172 val = 0;
2173 if (pipe)
2174 val |= (1<<21);
2175 else
2176 val &= ~(1<<21);
2177 val |= 0x001000c4;
2178 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2179 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2180 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2181
2182 mutex_unlock(&dev_priv->dpio_lock);
2183
2184 if (is_edp(intel_dp)) {
2185 /* init power sequencer on this pipe and port */
2186 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2187 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2188 &power_seq);
2189 }
2190
2191 intel_enable_dp(encoder);
2192
2193 vlv_wait_port_ready(dev_priv, dport);
2194 }
2195
2196 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2197 {
2198 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2199 struct drm_device *dev = encoder->base.dev;
2200 struct drm_i915_private *dev_priv = dev->dev_private;
2201 struct intel_crtc *intel_crtc =
2202 to_intel_crtc(encoder->base.crtc);
2203 enum dpio_channel port = vlv_dport_to_channel(dport);
2204 int pipe = intel_crtc->pipe;
2205
2206 intel_dp_prepare(encoder);
2207
2208 /* Program Tx lane resets to default */
2209 mutex_lock(&dev_priv->dpio_lock);
2210 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2211 DPIO_PCS_TX_LANE2_RESET |
2212 DPIO_PCS_TX_LANE1_RESET);
2213 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2214 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2215 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2216 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2217 DPIO_PCS_CLK_SOFT_RESET);
2218
2219 /* Fix up inter-pair skew failure */
2220 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2221 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2222 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2223 mutex_unlock(&dev_priv->dpio_lock);
2224 }
2225
2226 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2227 {
2228 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2229 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2230 struct drm_device *dev = encoder->base.dev;
2231 struct drm_i915_private *dev_priv = dev->dev_private;
2232 struct edp_power_seq power_seq;
2233 struct intel_crtc *intel_crtc =
2234 to_intel_crtc(encoder->base.crtc);
2235 enum dpio_channel ch = vlv_dport_to_channel(dport);
2236 int pipe = intel_crtc->pipe;
2237 int data, i;
2238 u32 val;
2239
2240 mutex_lock(&dev_priv->dpio_lock);
2241
2242 /* Deassert soft data lane reset*/
2243 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2244 val |= CHV_PCS_REQ_SOFTRESET_EN;
2245 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2246
2247 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2248 val |= CHV_PCS_REQ_SOFTRESET_EN;
2249 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2250
2251 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2252 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2253 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2254
2255 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2256 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2257 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2258
2259 /* Program Tx lane latency optimal setting*/
2260 for (i = 0; i < 4; i++) {
2261 /* Set the latency optimal bit */
2262 data = (i == 1) ? 0x0 : 0x6;
2263 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2264 data << DPIO_FRC_LATENCY_SHFIT);
2265
2266 /* Set the upar bit */
2267 data = (i == 1) ? 0x0 : 0x1;
2268 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2269 data << DPIO_UPAR_SHIFT);
2270 }
2271
2272 /* Data lane stagger programming */
2273 /* FIXME: Fix up value only after power analysis */
2274
2275 mutex_unlock(&dev_priv->dpio_lock);
2276
2277 if (is_edp(intel_dp)) {
2278 /* init power sequencer on this pipe and port */
2279 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2280 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2281 &power_seq);
2282 }
2283
2284 intel_enable_dp(encoder);
2285
2286 vlv_wait_port_ready(dev_priv, dport);
2287 }
2288
2289 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2290 {
2291 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2292 struct drm_device *dev = encoder->base.dev;
2293 struct drm_i915_private *dev_priv = dev->dev_private;
2294 struct intel_crtc *intel_crtc =
2295 to_intel_crtc(encoder->base.crtc);
2296 enum dpio_channel ch = vlv_dport_to_channel(dport);
2297 enum pipe pipe = intel_crtc->pipe;
2298 u32 val;
2299
2300 mutex_lock(&dev_priv->dpio_lock);
2301
2302 /* program left/right clock distribution */
2303 if (pipe != PIPE_B) {
2304 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2305 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2306 if (ch == DPIO_CH0)
2307 val |= CHV_BUFLEFTENA1_FORCE;
2308 if (ch == DPIO_CH1)
2309 val |= CHV_BUFRIGHTENA1_FORCE;
2310 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2311 } else {
2312 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2313 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2314 if (ch == DPIO_CH0)
2315 val |= CHV_BUFLEFTENA2_FORCE;
2316 if (ch == DPIO_CH1)
2317 val |= CHV_BUFRIGHTENA2_FORCE;
2318 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2319 }
2320
2321 /* program clock channel usage */
2322 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2323 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2324 if (pipe != PIPE_B)
2325 val &= ~CHV_PCS_USEDCLKCHANNEL;
2326 else
2327 val |= CHV_PCS_USEDCLKCHANNEL;
2328 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2329
2330 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2331 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2332 if (pipe != PIPE_B)
2333 val &= ~CHV_PCS_USEDCLKCHANNEL;
2334 else
2335 val |= CHV_PCS_USEDCLKCHANNEL;
2336 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2337
2338 /*
2339 * This a a bit weird since generally CL
2340 * matches the pipe, but here we need to
2341 * pick the CL based on the port.
2342 */
2343 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2344 if (pipe != PIPE_B)
2345 val &= ~CHV_CMN_USEDCLKCHANNEL;
2346 else
2347 val |= CHV_CMN_USEDCLKCHANNEL;
2348 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2349
2350 mutex_unlock(&dev_priv->dpio_lock);
2351 }
2352
2353 /*
2354 * Native read with retry for link status and receiver capability reads for
2355 * cases where the sink may still be asleep.
2356 *
2357 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2358 * supposed to retry 3 times per the spec.
2359 */
2360 static ssize_t
2361 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2362 void *buffer, size_t size)
2363 {
2364 ssize_t ret;
2365 int i;
2366
2367 for (i = 0; i < 3; i++) {
2368 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2369 if (ret == size)
2370 return ret;
2371 msleep(1);
2372 }
2373
2374 return ret;
2375 }
2376
2377 /*
2378 * Fetch AUX CH registers 0x202 - 0x207 which contain
2379 * link status information
2380 */
2381 static bool
2382 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2383 {
2384 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2385 DP_LANE0_1_STATUS,
2386 link_status,
2387 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2388 }
2389
2390 /* These are source-specific values. */
2391 static uint8_t
2392 intel_dp_voltage_max(struct intel_dp *intel_dp)
2393 {
2394 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2395 enum port port = dp_to_dig_port(intel_dp)->port;
2396
2397 if (IS_VALLEYVIEW(dev))
2398 return DP_TRAIN_VOLTAGE_SWING_1200;
2399 else if (IS_GEN7(dev) && port == PORT_A)
2400 return DP_TRAIN_VOLTAGE_SWING_800;
2401 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2402 return DP_TRAIN_VOLTAGE_SWING_1200;
2403 else
2404 return DP_TRAIN_VOLTAGE_SWING_800;
2405 }
2406
2407 static uint8_t
2408 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2409 {
2410 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2411 enum port port = dp_to_dig_port(intel_dp)->port;
2412
2413 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2414 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2415 case DP_TRAIN_VOLTAGE_SWING_400:
2416 return DP_TRAIN_PRE_EMPHASIS_9_5;
2417 case DP_TRAIN_VOLTAGE_SWING_600:
2418 return DP_TRAIN_PRE_EMPHASIS_6;
2419 case DP_TRAIN_VOLTAGE_SWING_800:
2420 return DP_TRAIN_PRE_EMPHASIS_3_5;
2421 case DP_TRAIN_VOLTAGE_SWING_1200:
2422 default:
2423 return DP_TRAIN_PRE_EMPHASIS_0;
2424 }
2425 } else if (IS_VALLEYVIEW(dev)) {
2426 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2427 case DP_TRAIN_VOLTAGE_SWING_400:
2428 return DP_TRAIN_PRE_EMPHASIS_9_5;
2429 case DP_TRAIN_VOLTAGE_SWING_600:
2430 return DP_TRAIN_PRE_EMPHASIS_6;
2431 case DP_TRAIN_VOLTAGE_SWING_800:
2432 return DP_TRAIN_PRE_EMPHASIS_3_5;
2433 case DP_TRAIN_VOLTAGE_SWING_1200:
2434 default:
2435 return DP_TRAIN_PRE_EMPHASIS_0;
2436 }
2437 } else if (IS_GEN7(dev) && port == PORT_A) {
2438 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2439 case DP_TRAIN_VOLTAGE_SWING_400:
2440 return DP_TRAIN_PRE_EMPHASIS_6;
2441 case DP_TRAIN_VOLTAGE_SWING_600:
2442 case DP_TRAIN_VOLTAGE_SWING_800:
2443 return DP_TRAIN_PRE_EMPHASIS_3_5;
2444 default:
2445 return DP_TRAIN_PRE_EMPHASIS_0;
2446 }
2447 } else {
2448 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2449 case DP_TRAIN_VOLTAGE_SWING_400:
2450 return DP_TRAIN_PRE_EMPHASIS_6;
2451 case DP_TRAIN_VOLTAGE_SWING_600:
2452 return DP_TRAIN_PRE_EMPHASIS_6;
2453 case DP_TRAIN_VOLTAGE_SWING_800:
2454 return DP_TRAIN_PRE_EMPHASIS_3_5;
2455 case DP_TRAIN_VOLTAGE_SWING_1200:
2456 default:
2457 return DP_TRAIN_PRE_EMPHASIS_0;
2458 }
2459 }
2460 }
2461
2462 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2463 {
2464 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2465 struct drm_i915_private *dev_priv = dev->dev_private;
2466 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2467 struct intel_crtc *intel_crtc =
2468 to_intel_crtc(dport->base.base.crtc);
2469 unsigned long demph_reg_value, preemph_reg_value,
2470 uniqtranscale_reg_value;
2471 uint8_t train_set = intel_dp->train_set[0];
2472 enum dpio_channel port = vlv_dport_to_channel(dport);
2473 int pipe = intel_crtc->pipe;
2474
2475 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2476 case DP_TRAIN_PRE_EMPHASIS_0:
2477 preemph_reg_value = 0x0004000;
2478 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2479 case DP_TRAIN_VOLTAGE_SWING_400:
2480 demph_reg_value = 0x2B405555;
2481 uniqtranscale_reg_value = 0x552AB83A;
2482 break;
2483 case DP_TRAIN_VOLTAGE_SWING_600:
2484 demph_reg_value = 0x2B404040;
2485 uniqtranscale_reg_value = 0x5548B83A;
2486 break;
2487 case DP_TRAIN_VOLTAGE_SWING_800:
2488 demph_reg_value = 0x2B245555;
2489 uniqtranscale_reg_value = 0x5560B83A;
2490 break;
2491 case DP_TRAIN_VOLTAGE_SWING_1200:
2492 demph_reg_value = 0x2B405555;
2493 uniqtranscale_reg_value = 0x5598DA3A;
2494 break;
2495 default:
2496 return 0;
2497 }
2498 break;
2499 case DP_TRAIN_PRE_EMPHASIS_3_5:
2500 preemph_reg_value = 0x0002000;
2501 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2502 case DP_TRAIN_VOLTAGE_SWING_400:
2503 demph_reg_value = 0x2B404040;
2504 uniqtranscale_reg_value = 0x5552B83A;
2505 break;
2506 case DP_TRAIN_VOLTAGE_SWING_600:
2507 demph_reg_value = 0x2B404848;
2508 uniqtranscale_reg_value = 0x5580B83A;
2509 break;
2510 case DP_TRAIN_VOLTAGE_SWING_800:
2511 demph_reg_value = 0x2B404040;
2512 uniqtranscale_reg_value = 0x55ADDA3A;
2513 break;
2514 default:
2515 return 0;
2516 }
2517 break;
2518 case DP_TRAIN_PRE_EMPHASIS_6:
2519 preemph_reg_value = 0x0000000;
2520 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2521 case DP_TRAIN_VOLTAGE_SWING_400:
2522 demph_reg_value = 0x2B305555;
2523 uniqtranscale_reg_value = 0x5570B83A;
2524 break;
2525 case DP_TRAIN_VOLTAGE_SWING_600:
2526 demph_reg_value = 0x2B2B4040;
2527 uniqtranscale_reg_value = 0x55ADDA3A;
2528 break;
2529 default:
2530 return 0;
2531 }
2532 break;
2533 case DP_TRAIN_PRE_EMPHASIS_9_5:
2534 preemph_reg_value = 0x0006000;
2535 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2536 case DP_TRAIN_VOLTAGE_SWING_400:
2537 demph_reg_value = 0x1B405555;
2538 uniqtranscale_reg_value = 0x55ADDA3A;
2539 break;
2540 default:
2541 return 0;
2542 }
2543 break;
2544 default:
2545 return 0;
2546 }
2547
2548 mutex_lock(&dev_priv->dpio_lock);
2549 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2550 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2551 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2552 uniqtranscale_reg_value);
2553 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2554 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2555 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2556 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2557 mutex_unlock(&dev_priv->dpio_lock);
2558
2559 return 0;
2560 }
2561
2562 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2563 {
2564 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2565 struct drm_i915_private *dev_priv = dev->dev_private;
2566 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2567 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2568 u32 deemph_reg_value, margin_reg_value, val;
2569 uint8_t train_set = intel_dp->train_set[0];
2570 enum dpio_channel ch = vlv_dport_to_channel(dport);
2571 enum pipe pipe = intel_crtc->pipe;
2572 int i;
2573
2574 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2575 case DP_TRAIN_PRE_EMPHASIS_0:
2576 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2577 case DP_TRAIN_VOLTAGE_SWING_400:
2578 deemph_reg_value = 128;
2579 margin_reg_value = 52;
2580 break;
2581 case DP_TRAIN_VOLTAGE_SWING_600:
2582 deemph_reg_value = 128;
2583 margin_reg_value = 77;
2584 break;
2585 case DP_TRAIN_VOLTAGE_SWING_800:
2586 deemph_reg_value = 128;
2587 margin_reg_value = 102;
2588 break;
2589 case DP_TRAIN_VOLTAGE_SWING_1200:
2590 deemph_reg_value = 128;
2591 margin_reg_value = 154;
2592 /* FIXME extra to set for 1200 */
2593 break;
2594 default:
2595 return 0;
2596 }
2597 break;
2598 case DP_TRAIN_PRE_EMPHASIS_3_5:
2599 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2600 case DP_TRAIN_VOLTAGE_SWING_400:
2601 deemph_reg_value = 85;
2602 margin_reg_value = 78;
2603 break;
2604 case DP_TRAIN_VOLTAGE_SWING_600:
2605 deemph_reg_value = 85;
2606 margin_reg_value = 116;
2607 break;
2608 case DP_TRAIN_VOLTAGE_SWING_800:
2609 deemph_reg_value = 85;
2610 margin_reg_value = 154;
2611 break;
2612 default:
2613 return 0;
2614 }
2615 break;
2616 case DP_TRAIN_PRE_EMPHASIS_6:
2617 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2618 case DP_TRAIN_VOLTAGE_SWING_400:
2619 deemph_reg_value = 64;
2620 margin_reg_value = 104;
2621 break;
2622 case DP_TRAIN_VOLTAGE_SWING_600:
2623 deemph_reg_value = 64;
2624 margin_reg_value = 154;
2625 break;
2626 default:
2627 return 0;
2628 }
2629 break;
2630 case DP_TRAIN_PRE_EMPHASIS_9_5:
2631 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2632 case DP_TRAIN_VOLTAGE_SWING_400:
2633 deemph_reg_value = 43;
2634 margin_reg_value = 154;
2635 break;
2636 default:
2637 return 0;
2638 }
2639 break;
2640 default:
2641 return 0;
2642 }
2643
2644 mutex_lock(&dev_priv->dpio_lock);
2645
2646 /* Clear calc init */
2647 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2648 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2649 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2650
2651 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2652 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2653 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2654
2655 /* Program swing deemph */
2656 for (i = 0; i < 4; i++) {
2657 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2658 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2659 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2660 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2661 }
2662
2663 /* Program swing margin */
2664 for (i = 0; i < 4; i++) {
2665 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2666 val &= ~DPIO_SWING_MARGIN_MASK;
2667 val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2668 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2669 }
2670
2671 /* Disable unique transition scale */
2672 for (i = 0; i < 4; i++) {
2673 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2674 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2675 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2676 }
2677
2678 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2679 == DP_TRAIN_PRE_EMPHASIS_0) &&
2680 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2681 == DP_TRAIN_VOLTAGE_SWING_1200)) {
2682
2683 /*
2684 * The document said it needs to set bit 27 for ch0 and bit 26
2685 * for ch1. Might be a typo in the doc.
2686 * For now, for this unique transition scale selection, set bit
2687 * 27 for ch0 and ch1.
2688 */
2689 for (i = 0; i < 4; i++) {
2690 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2691 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2692 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2693 }
2694
2695 for (i = 0; i < 4; i++) {
2696 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2697 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2698 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2699 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2700 }
2701 }
2702
2703 /* Start swing calculation */
2704 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2705 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2706 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2707
2708 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2709 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2710 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2711
2712 /* LRC Bypass */
2713 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2714 val |= DPIO_LRC_BYPASS;
2715 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2716
2717 mutex_unlock(&dev_priv->dpio_lock);
2718
2719 return 0;
2720 }
2721
2722 static void
2723 intel_get_adjust_train(struct intel_dp *intel_dp,
2724 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2725 {
2726 uint8_t v = 0;
2727 uint8_t p = 0;
2728 int lane;
2729 uint8_t voltage_max;
2730 uint8_t preemph_max;
2731
2732 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2733 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2734 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2735
2736 if (this_v > v)
2737 v = this_v;
2738 if (this_p > p)
2739 p = this_p;
2740 }
2741
2742 voltage_max = intel_dp_voltage_max(intel_dp);
2743 if (v >= voltage_max)
2744 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2745
2746 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2747 if (p >= preemph_max)
2748 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2749
2750 for (lane = 0; lane < 4; lane++)
2751 intel_dp->train_set[lane] = v | p;
2752 }
2753
2754 static uint32_t
2755 intel_gen4_signal_levels(uint8_t train_set)
2756 {
2757 uint32_t signal_levels = 0;
2758
2759 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2760 case DP_TRAIN_VOLTAGE_SWING_400:
2761 default:
2762 signal_levels |= DP_VOLTAGE_0_4;
2763 break;
2764 case DP_TRAIN_VOLTAGE_SWING_600:
2765 signal_levels |= DP_VOLTAGE_0_6;
2766 break;
2767 case DP_TRAIN_VOLTAGE_SWING_800:
2768 signal_levels |= DP_VOLTAGE_0_8;
2769 break;
2770 case DP_TRAIN_VOLTAGE_SWING_1200:
2771 signal_levels |= DP_VOLTAGE_1_2;
2772 break;
2773 }
2774 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2775 case DP_TRAIN_PRE_EMPHASIS_0:
2776 default:
2777 signal_levels |= DP_PRE_EMPHASIS_0;
2778 break;
2779 case DP_TRAIN_PRE_EMPHASIS_3_5:
2780 signal_levels |= DP_PRE_EMPHASIS_3_5;
2781 break;
2782 case DP_TRAIN_PRE_EMPHASIS_6:
2783 signal_levels |= DP_PRE_EMPHASIS_6;
2784 break;
2785 case DP_TRAIN_PRE_EMPHASIS_9_5:
2786 signal_levels |= DP_PRE_EMPHASIS_9_5;
2787 break;
2788 }
2789 return signal_levels;
2790 }
2791
2792 /* Gen6's DP voltage swing and pre-emphasis control */
2793 static uint32_t
2794 intel_gen6_edp_signal_levels(uint8_t train_set)
2795 {
2796 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2797 DP_TRAIN_PRE_EMPHASIS_MASK);
2798 switch (signal_levels) {
2799 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2800 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2801 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2802 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2803 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2804 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2805 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2806 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2807 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2808 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2809 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2810 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2811 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2812 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2813 default:
2814 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2815 "0x%x\n", signal_levels);
2816 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2817 }
2818 }
2819
2820 /* Gen7's DP voltage swing and pre-emphasis control */
2821 static uint32_t
2822 intel_gen7_edp_signal_levels(uint8_t train_set)
2823 {
2824 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2825 DP_TRAIN_PRE_EMPHASIS_MASK);
2826 switch (signal_levels) {
2827 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2828 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2829 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2830 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2831 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2832 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2833
2834 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2835 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2836 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2837 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2838
2839 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2840 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2841 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2842 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2843
2844 default:
2845 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2846 "0x%x\n", signal_levels);
2847 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2848 }
2849 }
2850
2851 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2852 static uint32_t
2853 intel_hsw_signal_levels(uint8_t train_set)
2854 {
2855 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2856 DP_TRAIN_PRE_EMPHASIS_MASK);
2857 switch (signal_levels) {
2858 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2859 return DDI_BUF_EMP_400MV_0DB_HSW;
2860 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2861 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2862 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2863 return DDI_BUF_EMP_400MV_6DB_HSW;
2864 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2865 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2866
2867 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2868 return DDI_BUF_EMP_600MV_0DB_HSW;
2869 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2870 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2871 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2872 return DDI_BUF_EMP_600MV_6DB_HSW;
2873
2874 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2875 return DDI_BUF_EMP_800MV_0DB_HSW;
2876 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2877 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2878 default:
2879 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2880 "0x%x\n", signal_levels);
2881 return DDI_BUF_EMP_400MV_0DB_HSW;
2882 }
2883 }
2884
2885 /* Properly updates "DP" with the correct signal levels. */
2886 static void
2887 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2888 {
2889 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2890 enum port port = intel_dig_port->port;
2891 struct drm_device *dev = intel_dig_port->base.base.dev;
2892 uint32_t signal_levels, mask;
2893 uint8_t train_set = intel_dp->train_set[0];
2894
2895 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2896 signal_levels = intel_hsw_signal_levels(train_set);
2897 mask = DDI_BUF_EMP_MASK;
2898 } else if (IS_CHERRYVIEW(dev)) {
2899 signal_levels = intel_chv_signal_levels(intel_dp);
2900 mask = 0;
2901 } else if (IS_VALLEYVIEW(dev)) {
2902 signal_levels = intel_vlv_signal_levels(intel_dp);
2903 mask = 0;
2904 } else if (IS_GEN7(dev) && port == PORT_A) {
2905 signal_levels = intel_gen7_edp_signal_levels(train_set);
2906 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2907 } else if (IS_GEN6(dev) && port == PORT_A) {
2908 signal_levels = intel_gen6_edp_signal_levels(train_set);
2909 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2910 } else {
2911 signal_levels = intel_gen4_signal_levels(train_set);
2912 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2913 }
2914
2915 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2916
2917 *DP = (*DP & ~mask) | signal_levels;
2918 }
2919
2920 static bool
2921 intel_dp_set_link_train(struct intel_dp *intel_dp,
2922 uint32_t *DP,
2923 uint8_t dp_train_pat)
2924 {
2925 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2926 struct drm_device *dev = intel_dig_port->base.base.dev;
2927 struct drm_i915_private *dev_priv = dev->dev_private;
2928 enum port port = intel_dig_port->port;
2929 uint8_t buf[sizeof(intel_dp->train_set) + 1];
2930 int ret, len;
2931
2932 if (HAS_DDI(dev)) {
2933 uint32_t temp = I915_READ(DP_TP_CTL(port));
2934
2935 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2936 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2937 else
2938 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2939
2940 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2941 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2942 case DP_TRAINING_PATTERN_DISABLE:
2943 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2944
2945 break;
2946 case DP_TRAINING_PATTERN_1:
2947 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2948 break;
2949 case DP_TRAINING_PATTERN_2:
2950 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2951 break;
2952 case DP_TRAINING_PATTERN_3:
2953 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2954 break;
2955 }
2956 I915_WRITE(DP_TP_CTL(port), temp);
2957
2958 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2959 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2960
2961 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2962 case DP_TRAINING_PATTERN_DISABLE:
2963 *DP |= DP_LINK_TRAIN_OFF_CPT;
2964 break;
2965 case DP_TRAINING_PATTERN_1:
2966 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2967 break;
2968 case DP_TRAINING_PATTERN_2:
2969 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2970 break;
2971 case DP_TRAINING_PATTERN_3:
2972 DRM_ERROR("DP training pattern 3 not supported\n");
2973 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2974 break;
2975 }
2976
2977 } else {
2978 *DP &= ~DP_LINK_TRAIN_MASK;
2979
2980 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2981 case DP_TRAINING_PATTERN_DISABLE:
2982 *DP |= DP_LINK_TRAIN_OFF;
2983 break;
2984 case DP_TRAINING_PATTERN_1:
2985 *DP |= DP_LINK_TRAIN_PAT_1;
2986 break;
2987 case DP_TRAINING_PATTERN_2:
2988 *DP |= DP_LINK_TRAIN_PAT_2;
2989 break;
2990 case DP_TRAINING_PATTERN_3:
2991 DRM_ERROR("DP training pattern 3 not supported\n");
2992 *DP |= DP_LINK_TRAIN_PAT_2;
2993 break;
2994 }
2995 }
2996
2997 I915_WRITE(intel_dp->output_reg, *DP);
2998 POSTING_READ(intel_dp->output_reg);
2999
3000 buf[0] = dp_train_pat;
3001 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3002 DP_TRAINING_PATTERN_DISABLE) {
3003 /* don't write DP_TRAINING_LANEx_SET on disable */
3004 len = 1;
3005 } else {
3006 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3007 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3008 len = intel_dp->lane_count + 1;
3009 }
3010
3011 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3012 buf, len);
3013
3014 return ret == len;
3015 }
3016
3017 static bool
3018 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3019 uint8_t dp_train_pat)
3020 {
3021 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3022 intel_dp_set_signal_levels(intel_dp, DP);
3023 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3024 }
3025
3026 static bool
3027 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3028 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3029 {
3030 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3031 struct drm_device *dev = intel_dig_port->base.base.dev;
3032 struct drm_i915_private *dev_priv = dev->dev_private;
3033 int ret;
3034
3035 intel_get_adjust_train(intel_dp, link_status);
3036 intel_dp_set_signal_levels(intel_dp, DP);
3037
3038 I915_WRITE(intel_dp->output_reg, *DP);
3039 POSTING_READ(intel_dp->output_reg);
3040
3041 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3042 intel_dp->train_set, intel_dp->lane_count);
3043
3044 return ret == intel_dp->lane_count;
3045 }
3046
3047 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3048 {
3049 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3050 struct drm_device *dev = intel_dig_port->base.base.dev;
3051 struct drm_i915_private *dev_priv = dev->dev_private;
3052 enum port port = intel_dig_port->port;
3053 uint32_t val;
3054
3055 if (!HAS_DDI(dev))
3056 return;
3057
3058 val = I915_READ(DP_TP_CTL(port));
3059 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3060 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3061 I915_WRITE(DP_TP_CTL(port), val);
3062
3063 /*
3064 * On PORT_A we can have only eDP in SST mode. There the only reason
3065 * we need to set idle transmission mode is to work around a HW issue
3066 * where we enable the pipe while not in idle link-training mode.
3067 * In this case there is requirement to wait for a minimum number of
3068 * idle patterns to be sent.
3069 */
3070 if (port == PORT_A)
3071 return;
3072
3073 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3074 1))
3075 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3076 }
3077
3078 /* Enable corresponding port and start training pattern 1 */
3079 void
3080 intel_dp_start_link_train(struct intel_dp *intel_dp)
3081 {
3082 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3083 struct drm_device *dev = encoder->dev;
3084 int i;
3085 uint8_t voltage;
3086 int voltage_tries, loop_tries;
3087 uint32_t DP = intel_dp->DP;
3088 uint8_t link_config[2];
3089
3090 if (HAS_DDI(dev))
3091 intel_ddi_prepare_link_retrain(encoder);
3092
3093 /* Write the link configuration data */
3094 link_config[0] = intel_dp->link_bw;
3095 link_config[1] = intel_dp->lane_count;
3096 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3097 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3098 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3099
3100 link_config[0] = 0;
3101 link_config[1] = DP_SET_ANSI_8B10B;
3102 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3103
3104 DP |= DP_PORT_EN;
3105
3106 /* clock recovery */
3107 if (!intel_dp_reset_link_train(intel_dp, &DP,
3108 DP_TRAINING_PATTERN_1 |
3109 DP_LINK_SCRAMBLING_DISABLE)) {
3110 DRM_ERROR("failed to enable link training\n");
3111 return;
3112 }
3113
3114 voltage = 0xff;
3115 voltage_tries = 0;
3116 loop_tries = 0;
3117 for (;;) {
3118 uint8_t link_status[DP_LINK_STATUS_SIZE];
3119
3120 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3121 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3122 DRM_ERROR("failed to get link status\n");
3123 break;
3124 }
3125
3126 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3127 DRM_DEBUG_KMS("clock recovery OK\n");
3128 break;
3129 }
3130
3131 /* Check to see if we've tried the max voltage */
3132 for (i = 0; i < intel_dp->lane_count; i++)
3133 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3134 break;
3135 if (i == intel_dp->lane_count) {
3136 ++loop_tries;
3137 if (loop_tries == 5) {
3138 DRM_ERROR("too many full retries, give up\n");
3139 break;
3140 }
3141 intel_dp_reset_link_train(intel_dp, &DP,
3142 DP_TRAINING_PATTERN_1 |
3143 DP_LINK_SCRAMBLING_DISABLE);
3144 voltage_tries = 0;
3145 continue;
3146 }
3147
3148 /* Check to see if we've tried the same voltage 5 times */
3149 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3150 ++voltage_tries;
3151 if (voltage_tries == 5) {
3152 DRM_ERROR("too many voltage retries, give up\n");
3153 break;
3154 }
3155 } else
3156 voltage_tries = 0;
3157 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3158
3159 /* Update training set as requested by target */
3160 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3161 DRM_ERROR("failed to update link training\n");
3162 break;
3163 }
3164 }
3165
3166 intel_dp->DP = DP;
3167 }
3168
3169 void
3170 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3171 {
3172 bool channel_eq = false;
3173 int tries, cr_tries;
3174 uint32_t DP = intel_dp->DP;
3175 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3176
3177 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3178 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3179 training_pattern = DP_TRAINING_PATTERN_3;
3180
3181 /* channel equalization */
3182 if (!intel_dp_set_link_train(intel_dp, &DP,
3183 training_pattern |
3184 DP_LINK_SCRAMBLING_DISABLE)) {
3185 DRM_ERROR("failed to start channel equalization\n");
3186 return;
3187 }
3188
3189 tries = 0;
3190 cr_tries = 0;
3191 channel_eq = false;
3192 for (;;) {
3193 uint8_t link_status[DP_LINK_STATUS_SIZE];
3194
3195 if (cr_tries > 5) {
3196 DRM_ERROR("failed to train DP, aborting\n");
3197 break;
3198 }
3199
3200 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3201 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3202 DRM_ERROR("failed to get link status\n");
3203 break;
3204 }
3205
3206 /* Make sure clock is still ok */
3207 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3208 intel_dp_start_link_train(intel_dp);
3209 intel_dp_set_link_train(intel_dp, &DP,
3210 training_pattern |
3211 DP_LINK_SCRAMBLING_DISABLE);
3212 cr_tries++;
3213 continue;
3214 }
3215
3216 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3217 channel_eq = true;
3218 break;
3219 }
3220
3221 /* Try 5 times, then try clock recovery if that fails */
3222 if (tries > 5) {
3223 intel_dp_link_down(intel_dp);
3224 intel_dp_start_link_train(intel_dp);
3225 intel_dp_set_link_train(intel_dp, &DP,
3226 training_pattern |
3227 DP_LINK_SCRAMBLING_DISABLE);
3228 tries = 0;
3229 cr_tries++;
3230 continue;
3231 }
3232
3233 /* Update training set as requested by target */
3234 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3235 DRM_ERROR("failed to update link training\n");
3236 break;
3237 }
3238 ++tries;
3239 }
3240
3241 intel_dp_set_idle_link_train(intel_dp);
3242
3243 intel_dp->DP = DP;
3244
3245 if (channel_eq)
3246 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3247
3248 }
3249
3250 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3251 {
3252 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3253 DP_TRAINING_PATTERN_DISABLE);
3254 }
3255
3256 static void
3257 intel_dp_link_down(struct intel_dp *intel_dp)
3258 {
3259 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3260 enum port port = intel_dig_port->port;
3261 struct drm_device *dev = intel_dig_port->base.base.dev;
3262 struct drm_i915_private *dev_priv = dev->dev_private;
3263 struct intel_crtc *intel_crtc =
3264 to_intel_crtc(intel_dig_port->base.base.crtc);
3265 uint32_t DP = intel_dp->DP;
3266
3267 if (WARN_ON(HAS_DDI(dev)))
3268 return;
3269
3270 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3271 return;
3272
3273 DRM_DEBUG_KMS("\n");
3274
3275 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3276 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3277 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3278 } else {
3279 DP &= ~DP_LINK_TRAIN_MASK;
3280 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3281 }
3282 POSTING_READ(intel_dp->output_reg);
3283
3284 if (HAS_PCH_IBX(dev) &&
3285 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3286 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3287
3288 /* Hardware workaround: leaving our transcoder select
3289 * set to transcoder B while it's off will prevent the
3290 * corresponding HDMI output on transcoder A.
3291 *
3292 * Combine this with another hardware workaround:
3293 * transcoder select bit can only be cleared while the
3294 * port is enabled.
3295 */
3296 DP &= ~DP_PIPEB_SELECT;
3297 I915_WRITE(intel_dp->output_reg, DP);
3298
3299 /* Changes to enable or select take place the vblank
3300 * after being written.
3301 */
3302 if (WARN_ON(crtc == NULL)) {
3303 /* We should never try to disable a port without a crtc
3304 * attached. For paranoia keep the code around for a
3305 * bit. */
3306 POSTING_READ(intel_dp->output_reg);
3307 msleep(50);
3308 } else
3309 intel_wait_for_vblank(dev, intel_crtc->pipe);
3310 }
3311
3312 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3313 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3314 POSTING_READ(intel_dp->output_reg);
3315 msleep(intel_dp->panel_power_down_delay);
3316 }
3317
3318 static bool
3319 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3320 {
3321 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3322 struct drm_device *dev = dig_port->base.base.dev;
3323 struct drm_i915_private *dev_priv = dev->dev_private;
3324
3325 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3326
3327 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3328 sizeof(intel_dp->dpcd)) < 0)
3329 return false; /* aux transfer failed */
3330
3331 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3332 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3333 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3334
3335 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3336 return false; /* DPCD not present */
3337
3338 /* Check if the panel supports PSR */
3339 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3340 if (is_edp(intel_dp)) {
3341 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3342 intel_dp->psr_dpcd,
3343 sizeof(intel_dp->psr_dpcd));
3344 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3345 dev_priv->psr.sink_support = true;
3346 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3347 }
3348 }
3349
3350 /* Training Pattern 3 support */
3351 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3352 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3353 intel_dp->use_tps3 = true;
3354 DRM_DEBUG_KMS("Displayport TPS3 supported");
3355 } else
3356 intel_dp->use_tps3 = false;
3357
3358 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3359 DP_DWN_STRM_PORT_PRESENT))
3360 return true; /* native DP sink */
3361
3362 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3363 return true; /* no per-port downstream info */
3364
3365 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3366 intel_dp->downstream_ports,
3367 DP_MAX_DOWNSTREAM_PORTS) < 0)
3368 return false; /* downstream port status fetch failed */
3369
3370 return true;
3371 }
3372
3373 static void
3374 intel_dp_probe_oui(struct intel_dp *intel_dp)
3375 {
3376 u8 buf[3];
3377
3378 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3379 return;
3380
3381 intel_edp_panel_vdd_on(intel_dp);
3382
3383 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3384 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3385 buf[0], buf[1], buf[2]);
3386
3387 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3388 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3389 buf[0], buf[1], buf[2]);
3390
3391 edp_panel_vdd_off(intel_dp, false);
3392 }
3393
3394 static bool
3395 intel_dp_probe_mst(struct intel_dp *intel_dp)
3396 {
3397 u8 buf[1];
3398
3399 if (!intel_dp->can_mst)
3400 return false;
3401
3402 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3403 return false;
3404
3405 _edp_panel_vdd_on(intel_dp);
3406 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3407 if (buf[0] & DP_MST_CAP) {
3408 DRM_DEBUG_KMS("Sink is MST capable\n");
3409 intel_dp->is_mst = true;
3410 } else {
3411 DRM_DEBUG_KMS("Sink is not MST capable\n");
3412 intel_dp->is_mst = false;
3413 }
3414 }
3415 edp_panel_vdd_off(intel_dp, false);
3416
3417 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3418 return intel_dp->is_mst;
3419 }
3420
3421 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3422 {
3423 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3424 struct drm_device *dev = intel_dig_port->base.base.dev;
3425 struct intel_crtc *intel_crtc =
3426 to_intel_crtc(intel_dig_port->base.base.crtc);
3427 u8 buf[1];
3428
3429 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3430 return -EAGAIN;
3431
3432 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3433 return -ENOTTY;
3434
3435 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3436 DP_TEST_SINK_START) < 0)
3437 return -EAGAIN;
3438
3439 /* Wait 2 vblanks to be sure we will have the correct CRC value */
3440 intel_wait_for_vblank(dev, intel_crtc->pipe);
3441 intel_wait_for_vblank(dev, intel_crtc->pipe);
3442
3443 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3444 return -EAGAIN;
3445
3446 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3447 return 0;
3448 }
3449
3450 static bool
3451 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3452 {
3453 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3454 DP_DEVICE_SERVICE_IRQ_VECTOR,
3455 sink_irq_vector, 1) == 1;
3456 }
3457
3458 static bool
3459 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3460 {
3461 int ret;
3462
3463 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3464 DP_SINK_COUNT_ESI,
3465 sink_irq_vector, 14);
3466 if (ret != 14)
3467 return false;
3468
3469 return true;
3470 }
3471
3472 static void
3473 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3474 {
3475 /* NAK by default */
3476 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3477 }
3478
3479 static int
3480 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3481 {
3482 bool bret;
3483
3484 if (intel_dp->is_mst) {
3485 u8 esi[16] = { 0 };
3486 int ret = 0;
3487 int retry;
3488 bool handled;
3489 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3490 go_again:
3491 if (bret == true) {
3492
3493 /* check link status - esi[10] = 0x200c */
3494 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3495 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3496 intel_dp_start_link_train(intel_dp);
3497 intel_dp_complete_link_train(intel_dp);
3498 intel_dp_stop_link_train(intel_dp);
3499 }
3500
3501 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3502 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3503
3504 if (handled) {
3505 for (retry = 0; retry < 3; retry++) {
3506 int wret;
3507 wret = drm_dp_dpcd_write(&intel_dp->aux,
3508 DP_SINK_COUNT_ESI+1,
3509 &esi[1], 3);
3510 if (wret == 3) {
3511 break;
3512 }
3513 }
3514
3515 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3516 if (bret == true) {
3517 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3518 goto go_again;
3519 }
3520 } else
3521 ret = 0;
3522
3523 return ret;
3524 } else {
3525 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3526 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3527 intel_dp->is_mst = false;
3528 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3529 /* send a hotplug event */
3530 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3531 }
3532 }
3533 return -EINVAL;
3534 }
3535
3536 /*
3537 * According to DP spec
3538 * 5.1.2:
3539 * 1. Read DPCD
3540 * 2. Configure link according to Receiver Capabilities
3541 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3542 * 4. Check link status on receipt of hot-plug interrupt
3543 */
3544 void
3545 intel_dp_check_link_status(struct intel_dp *intel_dp)
3546 {
3547 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3548 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3549 u8 sink_irq_vector;
3550 u8 link_status[DP_LINK_STATUS_SIZE];
3551
3552 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3553
3554 if (!intel_encoder->connectors_active)
3555 return;
3556
3557 if (WARN_ON(!intel_encoder->base.crtc))
3558 return;
3559
3560 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3561 return;
3562
3563 /* Try to read receiver status if the link appears to be up */
3564 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3565 return;
3566 }
3567
3568 /* Now read the DPCD to see if it's actually running */
3569 if (!intel_dp_get_dpcd(intel_dp)) {
3570 return;
3571 }
3572
3573 /* Try to read the source of the interrupt */
3574 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3575 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3576 /* Clear interrupt source */
3577 drm_dp_dpcd_writeb(&intel_dp->aux,
3578 DP_DEVICE_SERVICE_IRQ_VECTOR,
3579 sink_irq_vector);
3580
3581 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3582 intel_dp_handle_test_request(intel_dp);
3583 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3584 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3585 }
3586
3587 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3588 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3589 intel_encoder->base.name);
3590 intel_dp_start_link_train(intel_dp);
3591 intel_dp_complete_link_train(intel_dp);
3592 intel_dp_stop_link_train(intel_dp);
3593 }
3594 }
3595
3596 /* XXX this is probably wrong for multiple downstream ports */
3597 static enum drm_connector_status
3598 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3599 {
3600 uint8_t *dpcd = intel_dp->dpcd;
3601 uint8_t type;
3602
3603 if (!intel_dp_get_dpcd(intel_dp))
3604 return connector_status_disconnected;
3605
3606 /* if there's no downstream port, we're done */
3607 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3608 return connector_status_connected;
3609
3610 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3611 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3612 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3613 uint8_t reg;
3614
3615 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3616 &reg, 1) < 0)
3617 return connector_status_unknown;
3618
3619 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3620 : connector_status_disconnected;
3621 }
3622
3623 /* If no HPD, poke DDC gently */
3624 if (drm_probe_ddc(&intel_dp->aux.ddc))
3625 return connector_status_connected;
3626
3627 /* Well we tried, say unknown for unreliable port types */
3628 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3629 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3630 if (type == DP_DS_PORT_TYPE_VGA ||
3631 type == DP_DS_PORT_TYPE_NON_EDID)
3632 return connector_status_unknown;
3633 } else {
3634 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3635 DP_DWN_STRM_PORT_TYPE_MASK;
3636 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3637 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3638 return connector_status_unknown;
3639 }
3640
3641 /* Anything else is out of spec, warn and ignore */
3642 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3643 return connector_status_disconnected;
3644 }
3645
3646 static enum drm_connector_status
3647 ironlake_dp_detect(struct intel_dp *intel_dp)
3648 {
3649 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3650 struct drm_i915_private *dev_priv = dev->dev_private;
3651 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3652 enum drm_connector_status status;
3653
3654 /* Can't disconnect eDP, but you can close the lid... */
3655 if (is_edp(intel_dp)) {
3656 status = intel_panel_detect(dev);
3657 if (status == connector_status_unknown)
3658 status = connector_status_connected;
3659 return status;
3660 }
3661
3662 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3663 return connector_status_disconnected;
3664
3665 return intel_dp_detect_dpcd(intel_dp);
3666 }
3667
3668 static int g4x_digital_port_connected(struct drm_device *dev,
3669 struct intel_digital_port *intel_dig_port)
3670 {
3671 struct drm_i915_private *dev_priv = dev->dev_private;
3672 uint32_t bit;
3673
3674 if (IS_VALLEYVIEW(dev)) {
3675 switch (intel_dig_port->port) {
3676 case PORT_B:
3677 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3678 break;
3679 case PORT_C:
3680 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3681 break;
3682 case PORT_D:
3683 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3684 break;
3685 default:
3686 return -EINVAL;
3687 }
3688 } else {
3689 switch (intel_dig_port->port) {
3690 case PORT_B:
3691 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3692 break;
3693 case PORT_C:
3694 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3695 break;
3696 case PORT_D:
3697 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3698 break;
3699 default:
3700 return -EINVAL;
3701 }
3702 }
3703
3704 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3705 return 0;
3706 return 1;
3707 }
3708
3709 static enum drm_connector_status
3710 g4x_dp_detect(struct intel_dp *intel_dp)
3711 {
3712 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3713 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3714 int ret;
3715
3716 /* Can't disconnect eDP, but you can close the lid... */
3717 if (is_edp(intel_dp)) {
3718 enum drm_connector_status status;
3719
3720 status = intel_panel_detect(dev);
3721 if (status == connector_status_unknown)
3722 status = connector_status_connected;
3723 return status;
3724 }
3725
3726 ret = g4x_digital_port_connected(dev, intel_dig_port);
3727 if (ret == -EINVAL)
3728 return connector_status_unknown;
3729 else if (ret == 0)
3730 return connector_status_disconnected;
3731
3732 return intel_dp_detect_dpcd(intel_dp);
3733 }
3734
3735 static struct edid *
3736 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3737 {
3738 struct intel_connector *intel_connector = to_intel_connector(connector);
3739
3740 /* use cached edid if we have one */
3741 if (intel_connector->edid) {
3742 /* invalid edid */
3743 if (IS_ERR(intel_connector->edid))
3744 return NULL;
3745
3746 return drm_edid_duplicate(intel_connector->edid);
3747 }
3748
3749 return drm_get_edid(connector, adapter);
3750 }
3751
3752 static int
3753 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3754 {
3755 struct intel_connector *intel_connector = to_intel_connector(connector);
3756
3757 /* use cached edid if we have one */
3758 if (intel_connector->edid) {
3759 /* invalid edid */
3760 if (IS_ERR(intel_connector->edid))
3761 return 0;
3762
3763 return intel_connector_update_modes(connector,
3764 intel_connector->edid);
3765 }
3766
3767 return intel_ddc_get_modes(connector, adapter);
3768 }
3769
3770 static enum drm_connector_status
3771 intel_dp_detect(struct drm_connector *connector, bool force)
3772 {
3773 struct intel_dp *intel_dp = intel_attached_dp(connector);
3774 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3775 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3776 struct drm_device *dev = connector->dev;
3777 struct drm_i915_private *dev_priv = dev->dev_private;
3778 enum drm_connector_status status;
3779 enum intel_display_power_domain power_domain;
3780 struct edid *edid = NULL;
3781 bool ret;
3782
3783 power_domain = intel_display_port_power_domain(intel_encoder);
3784 intel_display_power_get(dev_priv, power_domain);
3785
3786 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3787 connector->base.id, connector->name);
3788
3789 if (intel_dp->is_mst) {
3790 /* MST devices are disconnected from a monitor POV */
3791 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3792 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3793 status = connector_status_disconnected;
3794 goto out;
3795 }
3796
3797 intel_dp->has_audio = false;
3798
3799 if (HAS_PCH_SPLIT(dev))
3800 status = ironlake_dp_detect(intel_dp);
3801 else
3802 status = g4x_dp_detect(intel_dp);
3803
3804 if (status != connector_status_connected)
3805 goto out;
3806
3807 intel_dp_probe_oui(intel_dp);
3808
3809 ret = intel_dp_probe_mst(intel_dp);
3810 if (ret) {
3811 /* if we are in MST mode then this connector
3812 won't appear connected or have anything with EDID on it */
3813 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3814 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3815 status = connector_status_disconnected;
3816 goto out;
3817 }
3818
3819 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3820 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3821 } else {
3822 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3823 if (edid) {
3824 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3825 kfree(edid);
3826 }
3827 }
3828
3829 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3830 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3831 status = connector_status_connected;
3832
3833 out:
3834 intel_display_power_put(dev_priv, power_domain);
3835 return status;
3836 }
3837
3838 static int intel_dp_get_modes(struct drm_connector *connector)
3839 {
3840 struct intel_dp *intel_dp = intel_attached_dp(connector);
3841 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3842 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3843 struct intel_connector *intel_connector = to_intel_connector(connector);
3844 struct drm_device *dev = connector->dev;
3845 struct drm_i915_private *dev_priv = dev->dev_private;
3846 enum intel_display_power_domain power_domain;
3847 int ret;
3848
3849 /* We should parse the EDID data and find out if it has an audio sink
3850 */
3851
3852 power_domain = intel_display_port_power_domain(intel_encoder);
3853 intel_display_power_get(dev_priv, power_domain);
3854
3855 ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3856 intel_display_power_put(dev_priv, power_domain);
3857 if (ret)
3858 return ret;
3859
3860 /* if eDP has no EDID, fall back to fixed mode */
3861 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3862 struct drm_display_mode *mode;
3863 mode = drm_mode_duplicate(dev,
3864 intel_connector->panel.fixed_mode);
3865 if (mode) {
3866 drm_mode_probed_add(connector, mode);
3867 return 1;
3868 }
3869 }
3870 return 0;
3871 }
3872
3873 static bool
3874 intel_dp_detect_audio(struct drm_connector *connector)
3875 {
3876 struct intel_dp *intel_dp = intel_attached_dp(connector);
3877 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3878 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3879 struct drm_device *dev = connector->dev;
3880 struct drm_i915_private *dev_priv = dev->dev_private;
3881 enum intel_display_power_domain power_domain;
3882 struct edid *edid;
3883 bool has_audio = false;
3884
3885 power_domain = intel_display_port_power_domain(intel_encoder);
3886 intel_display_power_get(dev_priv, power_domain);
3887
3888 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3889 if (edid) {
3890 has_audio = drm_detect_monitor_audio(edid);
3891 kfree(edid);
3892 }
3893
3894 intel_display_power_put(dev_priv, power_domain);
3895
3896 return has_audio;
3897 }
3898
3899 static int
3900 intel_dp_set_property(struct drm_connector *connector,
3901 struct drm_property *property,
3902 uint64_t val)
3903 {
3904 struct drm_i915_private *dev_priv = connector->dev->dev_private;
3905 struct intel_connector *intel_connector = to_intel_connector(connector);
3906 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3907 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3908 int ret;
3909
3910 ret = drm_object_property_set_value(&connector->base, property, val);
3911 if (ret)
3912 return ret;
3913
3914 if (property == dev_priv->force_audio_property) {
3915 int i = val;
3916 bool has_audio;
3917
3918 if (i == intel_dp->force_audio)
3919 return 0;
3920
3921 intel_dp->force_audio = i;
3922
3923 if (i == HDMI_AUDIO_AUTO)
3924 has_audio = intel_dp_detect_audio(connector);
3925 else
3926 has_audio = (i == HDMI_AUDIO_ON);
3927
3928 if (has_audio == intel_dp->has_audio)
3929 return 0;
3930
3931 intel_dp->has_audio = has_audio;
3932 goto done;
3933 }
3934
3935 if (property == dev_priv->broadcast_rgb_property) {
3936 bool old_auto = intel_dp->color_range_auto;
3937 uint32_t old_range = intel_dp->color_range;
3938
3939 switch (val) {
3940 case INTEL_BROADCAST_RGB_AUTO:
3941 intel_dp->color_range_auto = true;
3942 break;
3943 case INTEL_BROADCAST_RGB_FULL:
3944 intel_dp->color_range_auto = false;
3945 intel_dp->color_range = 0;
3946 break;
3947 case INTEL_BROADCAST_RGB_LIMITED:
3948 intel_dp->color_range_auto = false;
3949 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3950 break;
3951 default:
3952 return -EINVAL;
3953 }
3954
3955 if (old_auto == intel_dp->color_range_auto &&
3956 old_range == intel_dp->color_range)
3957 return 0;
3958
3959 goto done;
3960 }
3961
3962 if (is_edp(intel_dp) &&
3963 property == connector->dev->mode_config.scaling_mode_property) {
3964 if (val == DRM_MODE_SCALE_NONE) {
3965 DRM_DEBUG_KMS("no scaling not supported\n");
3966 return -EINVAL;
3967 }
3968
3969 if (intel_connector->panel.fitting_mode == val) {
3970 /* the eDP scaling property is not changed */
3971 return 0;
3972 }
3973 intel_connector->panel.fitting_mode = val;
3974
3975 goto done;
3976 }
3977
3978 return -EINVAL;
3979
3980 done:
3981 if (intel_encoder->base.crtc)
3982 intel_crtc_restore_mode(intel_encoder->base.crtc);
3983
3984 return 0;
3985 }
3986
3987 static void
3988 intel_dp_connector_destroy(struct drm_connector *connector)
3989 {
3990 struct intel_connector *intel_connector = to_intel_connector(connector);
3991
3992 if (!IS_ERR_OR_NULL(intel_connector->edid))
3993 kfree(intel_connector->edid);
3994
3995 /* Can't call is_edp() since the encoder may have been destroyed
3996 * already. */
3997 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3998 intel_panel_fini(&intel_connector->panel);
3999
4000 drm_connector_cleanup(connector);
4001 kfree(connector);
4002 }
4003
4004 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4005 {
4006 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4007 struct intel_dp *intel_dp = &intel_dig_port->dp;
4008 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4009
4010 drm_dp_aux_unregister(&intel_dp->aux);
4011 intel_dp_mst_encoder_cleanup(intel_dig_port);
4012 drm_encoder_cleanup(encoder);
4013 if (is_edp(intel_dp)) {
4014 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4015 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4016 edp_panel_vdd_off_sync(intel_dp);
4017 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4018 if (intel_dp->edp_notifier.notifier_call) {
4019 unregister_reboot_notifier(&intel_dp->edp_notifier);
4020 intel_dp->edp_notifier.notifier_call = NULL;
4021 }
4022 }
4023 kfree(intel_dig_port);
4024 }
4025
4026 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4027 {
4028 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4029
4030 if (!is_edp(intel_dp))
4031 return;
4032
4033 edp_panel_vdd_off_sync(intel_dp);
4034 }
4035
4036 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4037 {
4038 intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4039 }
4040
4041 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4042 .dpms = intel_connector_dpms,
4043 .detect = intel_dp_detect,
4044 .fill_modes = drm_helper_probe_single_connector_modes,
4045 .set_property = intel_dp_set_property,
4046 .destroy = intel_dp_connector_destroy,
4047 };
4048
4049 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4050 .get_modes = intel_dp_get_modes,
4051 .mode_valid = intel_dp_mode_valid,
4052 .best_encoder = intel_best_encoder,
4053 };
4054
4055 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4056 .reset = intel_dp_encoder_reset,
4057 .destroy = intel_dp_encoder_destroy,
4058 };
4059
4060 void
4061 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4062 {
4063 return;
4064 }
4065
4066 bool
4067 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4068 {
4069 struct intel_dp *intel_dp = &intel_dig_port->dp;
4070 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4071 struct drm_device *dev = intel_dig_port->base.base.dev;
4072 struct drm_i915_private *dev_priv = dev->dev_private;
4073 enum intel_display_power_domain power_domain;
4074 bool ret = true;
4075
4076 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4077 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4078
4079 DRM_DEBUG_KMS("got hpd irq on port %d - %s\n", intel_dig_port->port,
4080 long_hpd ? "long" : "short");
4081
4082 power_domain = intel_display_port_power_domain(intel_encoder);
4083 intel_display_power_get(dev_priv, power_domain);
4084
4085 if (long_hpd) {
4086
4087 if (HAS_PCH_SPLIT(dev)) {
4088 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4089 goto mst_fail;
4090 } else {
4091 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4092 goto mst_fail;
4093 }
4094
4095 if (!intel_dp_get_dpcd(intel_dp)) {
4096 goto mst_fail;
4097 }
4098
4099 intel_dp_probe_oui(intel_dp);
4100
4101 if (!intel_dp_probe_mst(intel_dp))
4102 goto mst_fail;
4103
4104 } else {
4105 if (intel_dp->is_mst) {
4106 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4107 goto mst_fail;
4108 }
4109
4110 if (!intel_dp->is_mst) {
4111 /*
4112 * we'll check the link status via the normal hot plug path later -
4113 * but for short hpds we should check it now
4114 */
4115 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4116 intel_dp_check_link_status(intel_dp);
4117 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4118 }
4119 }
4120 ret = false;
4121 goto put_power;
4122 mst_fail:
4123 /* if we were in MST mode, and device is not there get out of MST mode */
4124 if (intel_dp->is_mst) {
4125 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4126 intel_dp->is_mst = false;
4127 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4128 }
4129 put_power:
4130 intel_display_power_put(dev_priv, power_domain);
4131
4132 return ret;
4133 }
4134
4135 /* Return which DP Port should be selected for Transcoder DP control */
4136 int
4137 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4138 {
4139 struct drm_device *dev = crtc->dev;
4140 struct intel_encoder *intel_encoder;
4141 struct intel_dp *intel_dp;
4142
4143 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4144 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4145
4146 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4147 intel_encoder->type == INTEL_OUTPUT_EDP)
4148 return intel_dp->output_reg;
4149 }
4150
4151 return -1;
4152 }
4153
4154 /* check the VBT to see whether the eDP is on DP-D port */
4155 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4156 {
4157 struct drm_i915_private *dev_priv = dev->dev_private;
4158 union child_device_config *p_child;
4159 int i;
4160 static const short port_mapping[] = {
4161 [PORT_B] = PORT_IDPB,
4162 [PORT_C] = PORT_IDPC,
4163 [PORT_D] = PORT_IDPD,
4164 };
4165
4166 if (port == PORT_A)
4167 return true;
4168
4169 if (!dev_priv->vbt.child_dev_num)
4170 return false;
4171
4172 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4173 p_child = dev_priv->vbt.child_dev + i;
4174
4175 if (p_child->common.dvo_port == port_mapping[port] &&
4176 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4177 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4178 return true;
4179 }
4180 return false;
4181 }
4182
4183 void
4184 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4185 {
4186 struct intel_connector *intel_connector = to_intel_connector(connector);
4187
4188 intel_attach_force_audio_property(connector);
4189 intel_attach_broadcast_rgb_property(connector);
4190 intel_dp->color_range_auto = true;
4191
4192 if (is_edp(intel_dp)) {
4193 drm_mode_create_scaling_mode_property(connector->dev);
4194 drm_object_attach_property(
4195 &connector->base,
4196 connector->dev->mode_config.scaling_mode_property,
4197 DRM_MODE_SCALE_ASPECT);
4198 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4199 }
4200 }
4201
4202 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4203 {
4204 intel_dp->last_power_cycle = jiffies;
4205 intel_dp->last_power_on = jiffies;
4206 intel_dp->last_backlight_off = jiffies;
4207 }
4208
4209 static void
4210 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4211 struct intel_dp *intel_dp,
4212 struct edp_power_seq *out)
4213 {
4214 struct drm_i915_private *dev_priv = dev->dev_private;
4215 struct edp_power_seq cur, vbt, spec, final;
4216 u32 pp_on, pp_off, pp_div, pp;
4217 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4218
4219 if (HAS_PCH_SPLIT(dev)) {
4220 pp_ctrl_reg = PCH_PP_CONTROL;
4221 pp_on_reg = PCH_PP_ON_DELAYS;
4222 pp_off_reg = PCH_PP_OFF_DELAYS;
4223 pp_div_reg = PCH_PP_DIVISOR;
4224 } else {
4225 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4226
4227 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4228 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4229 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4230 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4231 }
4232
4233 /* Workaround: Need to write PP_CONTROL with the unlock key as
4234 * the very first thing. */
4235 pp = ironlake_get_pp_control(intel_dp);
4236 I915_WRITE(pp_ctrl_reg, pp);
4237
4238 pp_on = I915_READ(pp_on_reg);
4239 pp_off = I915_READ(pp_off_reg);
4240 pp_div = I915_READ(pp_div_reg);
4241
4242 /* Pull timing values out of registers */
4243 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4244 PANEL_POWER_UP_DELAY_SHIFT;
4245
4246 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4247 PANEL_LIGHT_ON_DELAY_SHIFT;
4248
4249 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4250 PANEL_LIGHT_OFF_DELAY_SHIFT;
4251
4252 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4253 PANEL_POWER_DOWN_DELAY_SHIFT;
4254
4255 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4256 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4257
4258 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4259 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4260
4261 vbt = dev_priv->vbt.edp_pps;
4262
4263 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4264 * our hw here, which are all in 100usec. */
4265 spec.t1_t3 = 210 * 10;
4266 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4267 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4268 spec.t10 = 500 * 10;
4269 /* This one is special and actually in units of 100ms, but zero
4270 * based in the hw (so we need to add 100 ms). But the sw vbt
4271 * table multiplies it with 1000 to make it in units of 100usec,
4272 * too. */
4273 spec.t11_t12 = (510 + 100) * 10;
4274
4275 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4276 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4277
4278 /* Use the max of the register settings and vbt. If both are
4279 * unset, fall back to the spec limits. */
4280 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
4281 spec.field : \
4282 max(cur.field, vbt.field))
4283 assign_final(t1_t3);
4284 assign_final(t8);
4285 assign_final(t9);
4286 assign_final(t10);
4287 assign_final(t11_t12);
4288 #undef assign_final
4289
4290 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
4291 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4292 intel_dp->backlight_on_delay = get_delay(t8);
4293 intel_dp->backlight_off_delay = get_delay(t9);
4294 intel_dp->panel_power_down_delay = get_delay(t10);
4295 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4296 #undef get_delay
4297
4298 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4299 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4300 intel_dp->panel_power_cycle_delay);
4301
4302 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4303 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4304
4305 if (out)
4306 *out = final;
4307 }
4308
4309 static void
4310 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4311 struct intel_dp *intel_dp,
4312 struct edp_power_seq *seq)
4313 {
4314 struct drm_i915_private *dev_priv = dev->dev_private;
4315 u32 pp_on, pp_off, pp_div, port_sel = 0;
4316 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4317 int pp_on_reg, pp_off_reg, pp_div_reg;
4318
4319 if (HAS_PCH_SPLIT(dev)) {
4320 pp_on_reg = PCH_PP_ON_DELAYS;
4321 pp_off_reg = PCH_PP_OFF_DELAYS;
4322 pp_div_reg = PCH_PP_DIVISOR;
4323 } else {
4324 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4325
4326 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4327 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4328 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4329 }
4330
4331 /*
4332 * And finally store the new values in the power sequencer. The
4333 * backlight delays are set to 1 because we do manual waits on them. For
4334 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4335 * we'll end up waiting for the backlight off delay twice: once when we
4336 * do the manual sleep, and once when we disable the panel and wait for
4337 * the PP_STATUS bit to become zero.
4338 */
4339 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4340 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4341 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4342 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4343 /* Compute the divisor for the pp clock, simply match the Bspec
4344 * formula. */
4345 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4346 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4347 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4348
4349 /* Haswell doesn't have any port selection bits for the panel
4350 * power sequencer any more. */
4351 if (IS_VALLEYVIEW(dev)) {
4352 if (dp_to_dig_port(intel_dp)->port == PORT_B)
4353 port_sel = PANEL_PORT_SELECT_DPB_VLV;
4354 else
4355 port_sel = PANEL_PORT_SELECT_DPC_VLV;
4356 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4357 if (dp_to_dig_port(intel_dp)->port == PORT_A)
4358 port_sel = PANEL_PORT_SELECT_DPA;
4359 else
4360 port_sel = PANEL_PORT_SELECT_DPD;
4361 }
4362
4363 pp_on |= port_sel;
4364
4365 I915_WRITE(pp_on_reg, pp_on);
4366 I915_WRITE(pp_off_reg, pp_off);
4367 I915_WRITE(pp_div_reg, pp_div);
4368
4369 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4370 I915_READ(pp_on_reg),
4371 I915_READ(pp_off_reg),
4372 I915_READ(pp_div_reg));
4373 }
4374
4375 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4376 {
4377 struct drm_i915_private *dev_priv = dev->dev_private;
4378 struct intel_encoder *encoder;
4379 struct intel_dp *intel_dp = NULL;
4380 struct intel_crtc_config *config = NULL;
4381 struct intel_crtc *intel_crtc = NULL;
4382 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4383 u32 reg, val;
4384 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4385
4386 if (refresh_rate <= 0) {
4387 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4388 return;
4389 }
4390
4391 if (intel_connector == NULL) {
4392 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4393 return;
4394 }
4395
4396 /*
4397 * FIXME: This needs proper synchronization with psr state. But really
4398 * hard to tell without seeing the user of this function of this code.
4399 * Check locking and ordering once that lands.
4400 */
4401 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4402 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4403 return;
4404 }
4405
4406 encoder = intel_attached_encoder(&intel_connector->base);
4407 intel_dp = enc_to_intel_dp(&encoder->base);
4408 intel_crtc = encoder->new_crtc;
4409
4410 if (!intel_crtc) {
4411 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4412 return;
4413 }
4414
4415 config = &intel_crtc->config;
4416
4417 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4418 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4419 return;
4420 }
4421
4422 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4423 index = DRRS_LOW_RR;
4424
4425 if (index == intel_dp->drrs_state.refresh_rate_type) {
4426 DRM_DEBUG_KMS(
4427 "DRRS requested for previously set RR...ignoring\n");
4428 return;
4429 }
4430
4431 if (!intel_crtc->active) {
4432 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4433 return;
4434 }
4435
4436 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4437 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4438 val = I915_READ(reg);
4439 if (index > DRRS_HIGH_RR) {
4440 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4441 intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
4442 } else {
4443 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4444 }
4445 I915_WRITE(reg, val);
4446 }
4447
4448 /*
4449 * mutex taken to ensure that there is no race between differnt
4450 * drrs calls trying to update refresh rate. This scenario may occur
4451 * in future when idleness detection based DRRS in kernel and
4452 * possible calls from user space to set differnt RR are made.
4453 */
4454
4455 mutex_lock(&intel_dp->drrs_state.mutex);
4456
4457 intel_dp->drrs_state.refresh_rate_type = index;
4458
4459 mutex_unlock(&intel_dp->drrs_state.mutex);
4460
4461 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4462 }
4463
4464 static struct drm_display_mode *
4465 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4466 struct intel_connector *intel_connector,
4467 struct drm_display_mode *fixed_mode)
4468 {
4469 struct drm_connector *connector = &intel_connector->base;
4470 struct intel_dp *intel_dp = &intel_dig_port->dp;
4471 struct drm_device *dev = intel_dig_port->base.base.dev;
4472 struct drm_i915_private *dev_priv = dev->dev_private;
4473 struct drm_display_mode *downclock_mode = NULL;
4474
4475 if (INTEL_INFO(dev)->gen <= 6) {
4476 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4477 return NULL;
4478 }
4479
4480 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4481 DRM_INFO("VBT doesn't support DRRS\n");
4482 return NULL;
4483 }
4484
4485 downclock_mode = intel_find_panel_downclock
4486 (dev, fixed_mode, connector);
4487
4488 if (!downclock_mode) {
4489 DRM_INFO("DRRS not supported\n");
4490 return NULL;
4491 }
4492
4493 dev_priv->drrs.connector = intel_connector;
4494
4495 mutex_init(&intel_dp->drrs_state.mutex);
4496
4497 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4498
4499 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4500 DRM_INFO("seamless DRRS supported for eDP panel.\n");
4501 return downclock_mode;
4502 }
4503
4504 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4505 {
4506 struct drm_device *dev = intel_encoder->base.dev;
4507 struct drm_i915_private *dev_priv = dev->dev_private;
4508 struct intel_dp *intel_dp;
4509 enum intel_display_power_domain power_domain;
4510
4511 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4512 return;
4513
4514 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4515 if (!edp_have_panel_vdd(intel_dp))
4516 return;
4517 /*
4518 * The VDD bit needs a power domain reference, so if the bit is
4519 * already enabled when we boot or resume, grab this reference and
4520 * schedule a vdd off, so we don't hold on to the reference
4521 * indefinitely.
4522 */
4523 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4524 power_domain = intel_display_port_power_domain(intel_encoder);
4525 intel_display_power_get(dev_priv, power_domain);
4526
4527 edp_panel_vdd_schedule_off(intel_dp);
4528 }
4529
4530 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4531 struct intel_connector *intel_connector,
4532 struct edp_power_seq *power_seq)
4533 {
4534 struct drm_connector *connector = &intel_connector->base;
4535 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4536 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4537 struct drm_device *dev = intel_encoder->base.dev;
4538 struct drm_i915_private *dev_priv = dev->dev_private;
4539 struct drm_display_mode *fixed_mode = NULL;
4540 struct drm_display_mode *downclock_mode = NULL;
4541 bool has_dpcd;
4542 struct drm_display_mode *scan;
4543 struct edid *edid;
4544
4545 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4546
4547 if (!is_edp(intel_dp))
4548 return true;
4549
4550 intel_edp_panel_vdd_sanitize(intel_encoder);
4551
4552 /* Cache DPCD and EDID for edp. */
4553 intel_edp_panel_vdd_on(intel_dp);
4554 has_dpcd = intel_dp_get_dpcd(intel_dp);
4555 edp_panel_vdd_off(intel_dp, false);
4556
4557 if (has_dpcd) {
4558 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4559 dev_priv->no_aux_handshake =
4560 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4561 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4562 } else {
4563 /* if this fails, presume the device is a ghost */
4564 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4565 return false;
4566 }
4567
4568 /* We now know it's not a ghost, init power sequence regs. */
4569 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4570
4571 mutex_lock(&dev->mode_config.mutex);
4572 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4573 if (edid) {
4574 if (drm_add_edid_modes(connector, edid)) {
4575 drm_mode_connector_update_edid_property(connector,
4576 edid);
4577 drm_edid_to_eld(connector, edid);
4578 } else {
4579 kfree(edid);
4580 edid = ERR_PTR(-EINVAL);
4581 }
4582 } else {
4583 edid = ERR_PTR(-ENOENT);
4584 }
4585 intel_connector->edid = edid;
4586
4587 /* prefer fixed mode from EDID if available */
4588 list_for_each_entry(scan, &connector->probed_modes, head) {
4589 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4590 fixed_mode = drm_mode_duplicate(dev, scan);
4591 downclock_mode = intel_dp_drrs_init(
4592 intel_dig_port,
4593 intel_connector, fixed_mode);
4594 break;
4595 }
4596 }
4597
4598 /* fallback to VBT if available for eDP */
4599 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4600 fixed_mode = drm_mode_duplicate(dev,
4601 dev_priv->vbt.lfp_lvds_vbt_mode);
4602 if (fixed_mode)
4603 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4604 }
4605 mutex_unlock(&dev->mode_config.mutex);
4606
4607 if (IS_VALLEYVIEW(dev)) {
4608 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4609 register_reboot_notifier(&intel_dp->edp_notifier);
4610 }
4611
4612 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4613 intel_panel_setup_backlight(connector);
4614
4615 return true;
4616 }
4617
4618 bool
4619 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4620 struct intel_connector *intel_connector)
4621 {
4622 struct drm_connector *connector = &intel_connector->base;
4623 struct intel_dp *intel_dp = &intel_dig_port->dp;
4624 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4625 struct drm_device *dev = intel_encoder->base.dev;
4626 struct drm_i915_private *dev_priv = dev->dev_private;
4627 enum port port = intel_dig_port->port;
4628 struct edp_power_seq power_seq = { 0 };
4629 int type;
4630
4631 /* intel_dp vfuncs */
4632 if (IS_VALLEYVIEW(dev))
4633 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4634 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4635 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4636 else if (HAS_PCH_SPLIT(dev))
4637 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4638 else
4639 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4640
4641 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4642
4643 /* Preserve the current hw state. */
4644 intel_dp->DP = I915_READ(intel_dp->output_reg);
4645 intel_dp->attached_connector = intel_connector;
4646
4647 if (intel_dp_is_edp(dev, port))
4648 type = DRM_MODE_CONNECTOR_eDP;
4649 else
4650 type = DRM_MODE_CONNECTOR_DisplayPort;
4651
4652 /*
4653 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4654 * for DP the encoder type can be set by the caller to
4655 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4656 */
4657 if (type == DRM_MODE_CONNECTOR_eDP)
4658 intel_encoder->type = INTEL_OUTPUT_EDP;
4659
4660 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4661 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4662 port_name(port));
4663
4664 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4665 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4666
4667 connector->interlace_allowed = true;
4668 connector->doublescan_allowed = 0;
4669
4670 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4671 edp_panel_vdd_work);
4672
4673 intel_connector_attach_encoder(intel_connector, intel_encoder);
4674 drm_connector_register(connector);
4675
4676 if (HAS_DDI(dev))
4677 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4678 else
4679 intel_connector->get_hw_state = intel_connector_get_hw_state;
4680 intel_connector->unregister = intel_dp_connector_unregister;
4681
4682 /* Set up the hotplug pin. */
4683 switch (port) {
4684 case PORT_A:
4685 intel_encoder->hpd_pin = HPD_PORT_A;
4686 break;
4687 case PORT_B:
4688 intel_encoder->hpd_pin = HPD_PORT_B;
4689 break;
4690 case PORT_C:
4691 intel_encoder->hpd_pin = HPD_PORT_C;
4692 break;
4693 case PORT_D:
4694 intel_encoder->hpd_pin = HPD_PORT_D;
4695 break;
4696 default:
4697 BUG();
4698 }
4699
4700 if (is_edp(intel_dp)) {
4701 intel_dp_init_panel_power_timestamps(intel_dp);
4702 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4703 }
4704
4705 intel_dp_aux_init(intel_dp, intel_connector);
4706
4707 /* init MST on ports that can support it */
4708 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4709 if (port == PORT_B || port == PORT_C || port == PORT_D) {
4710 intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id);
4711 }
4712 }
4713
4714 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4715 drm_dp_aux_unregister(&intel_dp->aux);
4716 if (is_edp(intel_dp)) {
4717 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4718 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4719 edp_panel_vdd_off_sync(intel_dp);
4720 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4721 }
4722 drm_connector_unregister(connector);
4723 drm_connector_cleanup(connector);
4724 return false;
4725 }
4726
4727 intel_dp_add_properties(intel_dp, connector);
4728
4729 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4730 * 0xd. Failure to do so will result in spurious interrupts being
4731 * generated on the port when a cable is not attached.
4732 */
4733 if (IS_G4X(dev) && !IS_GM45(dev)) {
4734 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4735 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4736 }
4737
4738 return true;
4739 }
4740
4741 void
4742 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4743 {
4744 struct drm_i915_private *dev_priv = dev->dev_private;
4745 struct intel_digital_port *intel_dig_port;
4746 struct intel_encoder *intel_encoder;
4747 struct drm_encoder *encoder;
4748 struct intel_connector *intel_connector;
4749
4750 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4751 if (!intel_dig_port)
4752 return;
4753
4754 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4755 if (!intel_connector) {
4756 kfree(intel_dig_port);
4757 return;
4758 }
4759
4760 intel_encoder = &intel_dig_port->base;
4761 encoder = &intel_encoder->base;
4762
4763 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4764 DRM_MODE_ENCODER_TMDS);
4765
4766 intel_encoder->compute_config = intel_dp_compute_config;
4767 intel_encoder->disable = intel_disable_dp;
4768 intel_encoder->get_hw_state = intel_dp_get_hw_state;
4769 intel_encoder->get_config = intel_dp_get_config;
4770 intel_encoder->suspend = intel_dp_encoder_suspend;
4771 if (IS_CHERRYVIEW(dev)) {
4772 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4773 intel_encoder->pre_enable = chv_pre_enable_dp;
4774 intel_encoder->enable = vlv_enable_dp;
4775 intel_encoder->post_disable = chv_post_disable_dp;
4776 } else if (IS_VALLEYVIEW(dev)) {
4777 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4778 intel_encoder->pre_enable = vlv_pre_enable_dp;
4779 intel_encoder->enable = vlv_enable_dp;
4780 intel_encoder->post_disable = vlv_post_disable_dp;
4781 } else {
4782 intel_encoder->pre_enable = g4x_pre_enable_dp;
4783 intel_encoder->enable = g4x_enable_dp;
4784 intel_encoder->post_disable = g4x_post_disable_dp;
4785 }
4786
4787 intel_dig_port->port = port;
4788 intel_dig_port->dp.output_reg = output_reg;
4789
4790 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4791 if (IS_CHERRYVIEW(dev)) {
4792 if (port == PORT_D)
4793 intel_encoder->crtc_mask = 1 << 2;
4794 else
4795 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4796 } else {
4797 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4798 }
4799 intel_encoder->cloneable = 0;
4800 intel_encoder->hot_plug = intel_dp_hot_plug;
4801
4802 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4803 dev_priv->hpd_irq_port[port] = intel_dig_port;
4804
4805 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4806 drm_encoder_cleanup(encoder);
4807 kfree(intel_dig_port);
4808 kfree(intel_connector);
4809 }
4810 }
4811
4812 void intel_dp_mst_suspend(struct drm_device *dev)
4813 {
4814 struct drm_i915_private *dev_priv = dev->dev_private;
4815 int i;
4816
4817 /* disable MST */
4818 for (i = 0; i < I915_MAX_PORTS; i++) {
4819 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4820 if (!intel_dig_port)
4821 continue;
4822
4823 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4824 if (!intel_dig_port->dp.can_mst)
4825 continue;
4826 if (intel_dig_port->dp.is_mst)
4827 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
4828 }
4829 }
4830 }
4831
4832 void intel_dp_mst_resume(struct drm_device *dev)
4833 {
4834 struct drm_i915_private *dev_priv = dev->dev_private;
4835 int i;
4836
4837 for (i = 0; i < I915_MAX_PORTS; i++) {
4838 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4839 if (!intel_dig_port)
4840 continue;
4841 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4842 int ret;
4843
4844 if (!intel_dig_port->dp.can_mst)
4845 continue;
4846
4847 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
4848 if (ret != 0) {
4849 intel_dp_check_mst_status(&intel_dig_port->dp);
4850 }
4851 }
4852 }
4853 }
This page took 0.198164 seconds and 6 git commands to generate.