drm/i915: Fix edp vdd locking
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121 struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123 switch (max_link_bw) {
124 case DP_LINK_BW_1_62:
125 case DP_LINK_BW_2_7:
126 break;
127 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129 INTEL_INFO(dev)->gen >= 8) &&
130 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131 max_link_bw = DP_LINK_BW_5_4;
132 else
133 max_link_bw = DP_LINK_BW_2_7;
134 break;
135 default:
136 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137 max_link_bw);
138 max_link_bw = DP_LINK_BW_1_62;
139 break;
140 }
141 return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147 struct drm_device *dev = intel_dig_port->base.base.dev;
148 u8 source_max, sink_max;
149
150 source_max = 4;
151 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153 source_max = 2;
154
155 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157 return min(source_max, sink_max);
158 }
159
160 /*
161 * The units on the numbers in the next two are... bizarre. Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 * 270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000. At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186 return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191 struct drm_display_mode *mode)
192 {
193 struct intel_dp *intel_dp = intel_attached_dp(connector);
194 struct intel_connector *intel_connector = to_intel_connector(connector);
195 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196 int target_clock = mode->clock;
197 int max_rate, mode_rate, max_lanes, max_link_clock;
198
199 if (is_edp(intel_dp) && fixed_mode) {
200 if (mode->hdisplay > fixed_mode->hdisplay)
201 return MODE_PANEL;
202
203 if (mode->vdisplay > fixed_mode->vdisplay)
204 return MODE_PANEL;
205
206 target_clock = fixed_mode->clock;
207 }
208
209 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210 max_lanes = intel_dp_max_lane_count(intel_dp);
211
212 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213 mode_rate = intel_dp_link_required(target_clock, 18);
214
215 if (mode_rate > max_rate)
216 return MODE_CLOCK_HIGH;
217
218 if (mode->clock < 10000)
219 return MODE_CLOCK_LOW;
220
221 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222 return MODE_H_ILLEGAL;
223
224 return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(uint8_t *src, int src_bytes)
229 {
230 int i;
231 uint32_t v = 0;
232
233 if (src_bytes > 4)
234 src_bytes = 4;
235 for (i = 0; i < src_bytes; i++)
236 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237 return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243 int i;
244 if (dst_bytes > 4)
245 dst_bytes = 4;
246 for (i = 0; i < dst_bytes; i++)
247 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 uint32_t clkcfg;
256
257 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258 if (IS_VALLEYVIEW(dev))
259 return 200;
260
261 clkcfg = I915_READ(CLKCFG);
262 switch (clkcfg & CLKCFG_FSB_MASK) {
263 case CLKCFG_FSB_400:
264 return 100;
265 case CLKCFG_FSB_533:
266 return 133;
267 case CLKCFG_FSB_667:
268 return 166;
269 case CLKCFG_FSB_800:
270 return 200;
271 case CLKCFG_FSB_1067:
272 return 266;
273 case CLKCFG_FSB_1333:
274 return 333;
275 /* these two are just a guess; one of them might be right */
276 case CLKCFG_FSB_1600:
277 case CLKCFG_FSB_1600_ALT:
278 return 400;
279 default:
280 return 133;
281 }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286 struct intel_dp *intel_dp,
287 struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp,
291 struct edp_power_seq *out);
292
293 static enum pipe
294 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
295 {
296 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
298 struct drm_device *dev = intel_dig_port->base.base.dev;
299 struct drm_i915_private *dev_priv = dev->dev_private;
300 enum port port = intel_dig_port->port;
301 enum pipe pipe;
302
303 lockdep_assert_held(&dev_priv->pps_mutex);
304
305 /* modeset should have pipe */
306 if (crtc)
307 return to_intel_crtc(crtc)->pipe;
308
309 /* init time, try to find a pipe with this port selected */
310 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
311 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
312 PANEL_PORT_SELECT_MASK;
313 if (port_sel == PANEL_PORT_SELECT_VLV(port))
314 return pipe;
315 }
316
317 /* shrug */
318 return PIPE_A;
319 }
320
321 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
322 {
323 struct drm_device *dev = intel_dp_to_dev(intel_dp);
324
325 if (HAS_PCH_SPLIT(dev))
326 return PCH_PP_CONTROL;
327 else
328 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
329 }
330
331 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
332 {
333 struct drm_device *dev = intel_dp_to_dev(intel_dp);
334
335 if (HAS_PCH_SPLIT(dev))
336 return PCH_PP_STATUS;
337 else
338 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
339 }
340
341 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
342 This function only applicable when panel PM state is not to be tracked */
343 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
344 void *unused)
345 {
346 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
347 edp_notifier);
348 struct drm_device *dev = intel_dp_to_dev(intel_dp);
349 struct drm_i915_private *dev_priv = dev->dev_private;
350 u32 pp_div;
351 u32 pp_ctrl_reg, pp_div_reg;
352
353 if (!is_edp(intel_dp) || code != SYS_RESTART)
354 return 0;
355
356 mutex_lock(&dev_priv->pps_mutex);
357
358 if (IS_VALLEYVIEW(dev)) {
359 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
360
361 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
362 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
363 pp_div = I915_READ(pp_div_reg);
364 pp_div &= PP_REFERENCE_DIVIDER_MASK;
365
366 /* 0x1F write to PP_DIV_REG sets max cycle delay */
367 I915_WRITE(pp_div_reg, pp_div | 0x1F);
368 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
369 msleep(intel_dp->panel_power_cycle_delay);
370 }
371
372 mutex_unlock(&dev_priv->pps_mutex);
373
374 return 0;
375 }
376
377 static bool edp_have_panel_power(struct intel_dp *intel_dp)
378 {
379 struct drm_device *dev = intel_dp_to_dev(intel_dp);
380 struct drm_i915_private *dev_priv = dev->dev_private;
381
382 lockdep_assert_held(&dev_priv->pps_mutex);
383
384 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
385 }
386
387 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
388 {
389 struct drm_device *dev = intel_dp_to_dev(intel_dp);
390 struct drm_i915_private *dev_priv = dev->dev_private;
391 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
392 struct intel_encoder *intel_encoder = &intel_dig_port->base;
393 enum intel_display_power_domain power_domain;
394
395 lockdep_assert_held(&dev_priv->pps_mutex);
396
397 power_domain = intel_display_port_power_domain(intel_encoder);
398 return intel_display_power_enabled(dev_priv, power_domain) &&
399 (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
400 }
401
402 static void
403 intel_dp_check_edp(struct intel_dp *intel_dp)
404 {
405 struct drm_device *dev = intel_dp_to_dev(intel_dp);
406 struct drm_i915_private *dev_priv = dev->dev_private;
407
408 if (!is_edp(intel_dp))
409 return;
410
411 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
412 WARN(1, "eDP powered off while attempting aux channel communication.\n");
413 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
414 I915_READ(_pp_stat_reg(intel_dp)),
415 I915_READ(_pp_ctrl_reg(intel_dp)));
416 }
417 }
418
419 static uint32_t
420 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
421 {
422 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
423 struct drm_device *dev = intel_dig_port->base.base.dev;
424 struct drm_i915_private *dev_priv = dev->dev_private;
425 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
426 uint32_t status;
427 bool done;
428
429 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
430 if (has_aux_irq)
431 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
432 msecs_to_jiffies_timeout(10));
433 else
434 done = wait_for_atomic(C, 10) == 0;
435 if (!done)
436 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
437 has_aux_irq);
438 #undef C
439
440 return status;
441 }
442
443 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
444 {
445 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
446 struct drm_device *dev = intel_dig_port->base.base.dev;
447
448 /*
449 * The clock divider is based off the hrawclk, and would like to run at
450 * 2MHz. So, take the hrawclk value and divide by 2 and use that
451 */
452 return index ? 0 : intel_hrawclk(dev) / 2;
453 }
454
455 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
456 {
457 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
458 struct drm_device *dev = intel_dig_port->base.base.dev;
459
460 if (index)
461 return 0;
462
463 if (intel_dig_port->port == PORT_A) {
464 if (IS_GEN6(dev) || IS_GEN7(dev))
465 return 200; /* SNB & IVB eDP input clock at 400Mhz */
466 else
467 return 225; /* eDP input clock at 450Mhz */
468 } else {
469 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
470 }
471 }
472
473 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
474 {
475 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
476 struct drm_device *dev = intel_dig_port->base.base.dev;
477 struct drm_i915_private *dev_priv = dev->dev_private;
478
479 if (intel_dig_port->port == PORT_A) {
480 if (index)
481 return 0;
482 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
483 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
484 /* Workaround for non-ULT HSW */
485 switch (index) {
486 case 0: return 63;
487 case 1: return 72;
488 default: return 0;
489 }
490 } else {
491 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
492 }
493 }
494
495 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
496 {
497 return index ? 0 : 100;
498 }
499
500 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
501 bool has_aux_irq,
502 int send_bytes,
503 uint32_t aux_clock_divider)
504 {
505 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
506 struct drm_device *dev = intel_dig_port->base.base.dev;
507 uint32_t precharge, timeout;
508
509 if (IS_GEN6(dev))
510 precharge = 3;
511 else
512 precharge = 5;
513
514 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
515 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
516 else
517 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
518
519 return DP_AUX_CH_CTL_SEND_BUSY |
520 DP_AUX_CH_CTL_DONE |
521 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
522 DP_AUX_CH_CTL_TIME_OUT_ERROR |
523 timeout |
524 DP_AUX_CH_CTL_RECEIVE_ERROR |
525 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
526 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
527 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
528 }
529
530 static int
531 intel_dp_aux_ch(struct intel_dp *intel_dp,
532 uint8_t *send, int send_bytes,
533 uint8_t *recv, int recv_size)
534 {
535 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
536 struct drm_device *dev = intel_dig_port->base.base.dev;
537 struct drm_i915_private *dev_priv = dev->dev_private;
538 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
539 uint32_t ch_data = ch_ctl + 4;
540 uint32_t aux_clock_divider;
541 int i, ret, recv_bytes;
542 uint32_t status;
543 int try, clock = 0;
544 bool has_aux_irq = HAS_AUX_IRQ(dev);
545 bool vdd;
546
547 mutex_lock(&dev_priv->pps_mutex);
548
549 /*
550 * We will be called with VDD already enabled for dpcd/edid/oui reads.
551 * In such cases we want to leave VDD enabled and it's up to upper layers
552 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
553 * ourselves.
554 */
555 vdd = edp_panel_vdd_on(intel_dp);
556
557 /* dp aux is extremely sensitive to irq latency, hence request the
558 * lowest possible wakeup latency and so prevent the cpu from going into
559 * deep sleep states.
560 */
561 pm_qos_update_request(&dev_priv->pm_qos, 0);
562
563 intel_dp_check_edp(intel_dp);
564
565 intel_aux_display_runtime_get(dev_priv);
566
567 /* Try to wait for any previous AUX channel activity */
568 for (try = 0; try < 3; try++) {
569 status = I915_READ_NOTRACE(ch_ctl);
570 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
571 break;
572 msleep(1);
573 }
574
575 if (try == 3) {
576 WARN(1, "dp_aux_ch not started status 0x%08x\n",
577 I915_READ(ch_ctl));
578 ret = -EBUSY;
579 goto out;
580 }
581
582 /* Only 5 data registers! */
583 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
584 ret = -E2BIG;
585 goto out;
586 }
587
588 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
589 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
590 has_aux_irq,
591 send_bytes,
592 aux_clock_divider);
593
594 /* Must try at least 3 times according to DP spec */
595 for (try = 0; try < 5; try++) {
596 /* Load the send data into the aux channel data registers */
597 for (i = 0; i < send_bytes; i += 4)
598 I915_WRITE(ch_data + i,
599 pack_aux(send + i, send_bytes - i));
600
601 /* Send the command and wait for it to complete */
602 I915_WRITE(ch_ctl, send_ctl);
603
604 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
605
606 /* Clear done status and any errors */
607 I915_WRITE(ch_ctl,
608 status |
609 DP_AUX_CH_CTL_DONE |
610 DP_AUX_CH_CTL_TIME_OUT_ERROR |
611 DP_AUX_CH_CTL_RECEIVE_ERROR);
612
613 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
614 DP_AUX_CH_CTL_RECEIVE_ERROR))
615 continue;
616 if (status & DP_AUX_CH_CTL_DONE)
617 break;
618 }
619 if (status & DP_AUX_CH_CTL_DONE)
620 break;
621 }
622
623 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
624 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
625 ret = -EBUSY;
626 goto out;
627 }
628
629 /* Check for timeout or receive error.
630 * Timeouts occur when the sink is not connected
631 */
632 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
633 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
634 ret = -EIO;
635 goto out;
636 }
637
638 /* Timeouts occur when the device isn't connected, so they're
639 * "normal" -- don't fill the kernel log with these */
640 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
641 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
642 ret = -ETIMEDOUT;
643 goto out;
644 }
645
646 /* Unload any bytes sent back from the other side */
647 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
648 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
649 if (recv_bytes > recv_size)
650 recv_bytes = recv_size;
651
652 for (i = 0; i < recv_bytes; i += 4)
653 unpack_aux(I915_READ(ch_data + i),
654 recv + i, recv_bytes - i);
655
656 ret = recv_bytes;
657 out:
658 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
659 intel_aux_display_runtime_put(dev_priv);
660
661 if (vdd)
662 edp_panel_vdd_off(intel_dp, false);
663
664 mutex_unlock(&dev_priv->pps_mutex);
665
666 return ret;
667 }
668
669 #define BARE_ADDRESS_SIZE 3
670 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
671 static ssize_t
672 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
673 {
674 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
675 uint8_t txbuf[20], rxbuf[20];
676 size_t txsize, rxsize;
677 int ret;
678
679 txbuf[0] = msg->request << 4;
680 txbuf[1] = msg->address >> 8;
681 txbuf[2] = msg->address & 0xff;
682 txbuf[3] = msg->size - 1;
683
684 switch (msg->request & ~DP_AUX_I2C_MOT) {
685 case DP_AUX_NATIVE_WRITE:
686 case DP_AUX_I2C_WRITE:
687 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
688 rxsize = 1;
689
690 if (WARN_ON(txsize > 20))
691 return -E2BIG;
692
693 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
694
695 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
696 if (ret > 0) {
697 msg->reply = rxbuf[0] >> 4;
698
699 /* Return payload size. */
700 ret = msg->size;
701 }
702 break;
703
704 case DP_AUX_NATIVE_READ:
705 case DP_AUX_I2C_READ:
706 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
707 rxsize = msg->size + 1;
708
709 if (WARN_ON(rxsize > 20))
710 return -E2BIG;
711
712 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
713 if (ret > 0) {
714 msg->reply = rxbuf[0] >> 4;
715 /*
716 * Assume happy day, and copy the data. The caller is
717 * expected to check msg->reply before touching it.
718 *
719 * Return payload size.
720 */
721 ret--;
722 memcpy(msg->buffer, rxbuf + 1, ret);
723 }
724 break;
725
726 default:
727 ret = -EINVAL;
728 break;
729 }
730
731 return ret;
732 }
733
734 static void
735 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
736 {
737 struct drm_device *dev = intel_dp_to_dev(intel_dp);
738 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
739 enum port port = intel_dig_port->port;
740 const char *name = NULL;
741 int ret;
742
743 switch (port) {
744 case PORT_A:
745 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
746 name = "DPDDC-A";
747 break;
748 case PORT_B:
749 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
750 name = "DPDDC-B";
751 break;
752 case PORT_C:
753 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
754 name = "DPDDC-C";
755 break;
756 case PORT_D:
757 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
758 name = "DPDDC-D";
759 break;
760 default:
761 BUG();
762 }
763
764 if (!HAS_DDI(dev))
765 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
766
767 intel_dp->aux.name = name;
768 intel_dp->aux.dev = dev->dev;
769 intel_dp->aux.transfer = intel_dp_aux_transfer;
770
771 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
772 connector->base.kdev->kobj.name);
773
774 ret = drm_dp_aux_register(&intel_dp->aux);
775 if (ret < 0) {
776 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
777 name, ret);
778 return;
779 }
780
781 ret = sysfs_create_link(&connector->base.kdev->kobj,
782 &intel_dp->aux.ddc.dev.kobj,
783 intel_dp->aux.ddc.dev.kobj.name);
784 if (ret < 0) {
785 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
786 drm_dp_aux_unregister(&intel_dp->aux);
787 }
788 }
789
790 static void
791 intel_dp_connector_unregister(struct intel_connector *intel_connector)
792 {
793 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
794
795 if (!intel_connector->mst_port)
796 sysfs_remove_link(&intel_connector->base.kdev->kobj,
797 intel_dp->aux.ddc.dev.kobj.name);
798 intel_connector_unregister(intel_connector);
799 }
800
801 static void
802 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
803 {
804 switch (link_bw) {
805 case DP_LINK_BW_1_62:
806 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
807 break;
808 case DP_LINK_BW_2_7:
809 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
810 break;
811 case DP_LINK_BW_5_4:
812 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
813 break;
814 }
815 }
816
817 static void
818 intel_dp_set_clock(struct intel_encoder *encoder,
819 struct intel_crtc_config *pipe_config, int link_bw)
820 {
821 struct drm_device *dev = encoder->base.dev;
822 const struct dp_link_dpll *divisor = NULL;
823 int i, count = 0;
824
825 if (IS_G4X(dev)) {
826 divisor = gen4_dpll;
827 count = ARRAY_SIZE(gen4_dpll);
828 } else if (HAS_PCH_SPLIT(dev)) {
829 divisor = pch_dpll;
830 count = ARRAY_SIZE(pch_dpll);
831 } else if (IS_CHERRYVIEW(dev)) {
832 divisor = chv_dpll;
833 count = ARRAY_SIZE(chv_dpll);
834 } else if (IS_VALLEYVIEW(dev)) {
835 divisor = vlv_dpll;
836 count = ARRAY_SIZE(vlv_dpll);
837 }
838
839 if (divisor && count) {
840 for (i = 0; i < count; i++) {
841 if (link_bw == divisor[i].link_bw) {
842 pipe_config->dpll = divisor[i].dpll;
843 pipe_config->clock_set = true;
844 break;
845 }
846 }
847 }
848 }
849
850 bool
851 intel_dp_compute_config(struct intel_encoder *encoder,
852 struct intel_crtc_config *pipe_config)
853 {
854 struct drm_device *dev = encoder->base.dev;
855 struct drm_i915_private *dev_priv = dev->dev_private;
856 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
857 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
858 enum port port = dp_to_dig_port(intel_dp)->port;
859 struct intel_crtc *intel_crtc = encoder->new_crtc;
860 struct intel_connector *intel_connector = intel_dp->attached_connector;
861 int lane_count, clock;
862 int min_lane_count = 1;
863 int max_lane_count = intel_dp_max_lane_count(intel_dp);
864 /* Conveniently, the link BW constants become indices with a shift...*/
865 int min_clock = 0;
866 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
867 int bpp, mode_rate;
868 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
869 int link_avail, link_clock;
870
871 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
872 pipe_config->has_pch_encoder = true;
873
874 pipe_config->has_dp_encoder = true;
875 pipe_config->has_drrs = false;
876 pipe_config->has_audio = intel_dp->has_audio;
877
878 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
879 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
880 adjusted_mode);
881 if (!HAS_PCH_SPLIT(dev))
882 intel_gmch_panel_fitting(intel_crtc, pipe_config,
883 intel_connector->panel.fitting_mode);
884 else
885 intel_pch_panel_fitting(intel_crtc, pipe_config,
886 intel_connector->panel.fitting_mode);
887 }
888
889 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
890 return false;
891
892 DRM_DEBUG_KMS("DP link computation with max lane count %i "
893 "max bw %02x pixel clock %iKHz\n",
894 max_lane_count, bws[max_clock],
895 adjusted_mode->crtc_clock);
896
897 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
898 * bpc in between. */
899 bpp = pipe_config->pipe_bpp;
900 if (is_edp(intel_dp)) {
901 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
902 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
903 dev_priv->vbt.edp_bpp);
904 bpp = dev_priv->vbt.edp_bpp;
905 }
906
907 if (IS_BROADWELL(dev)) {
908 /* Yes, it's an ugly hack. */
909 min_lane_count = max_lane_count;
910 DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
911 min_lane_count);
912 } else if (dev_priv->vbt.edp_lanes) {
913 min_lane_count = min(dev_priv->vbt.edp_lanes,
914 max_lane_count);
915 DRM_DEBUG_KMS("using min %u lanes per VBT\n",
916 min_lane_count);
917 }
918
919 if (dev_priv->vbt.edp_rate) {
920 min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
921 DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
922 bws[min_clock]);
923 }
924 }
925
926 for (; bpp >= 6*3; bpp -= 2*3) {
927 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
928 bpp);
929
930 for (clock = min_clock; clock <= max_clock; clock++) {
931 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
932 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
933 link_avail = intel_dp_max_data_rate(link_clock,
934 lane_count);
935
936 if (mode_rate <= link_avail) {
937 goto found;
938 }
939 }
940 }
941 }
942
943 return false;
944
945 found:
946 if (intel_dp->color_range_auto) {
947 /*
948 * See:
949 * CEA-861-E - 5.1 Default Encoding Parameters
950 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
951 */
952 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
953 intel_dp->color_range = DP_COLOR_RANGE_16_235;
954 else
955 intel_dp->color_range = 0;
956 }
957
958 if (intel_dp->color_range)
959 pipe_config->limited_color_range = true;
960
961 intel_dp->link_bw = bws[clock];
962 intel_dp->lane_count = lane_count;
963 pipe_config->pipe_bpp = bpp;
964 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
965
966 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
967 intel_dp->link_bw, intel_dp->lane_count,
968 pipe_config->port_clock, bpp);
969 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
970 mode_rate, link_avail);
971
972 intel_link_compute_m_n(bpp, lane_count,
973 adjusted_mode->crtc_clock,
974 pipe_config->port_clock,
975 &pipe_config->dp_m_n);
976
977 if (intel_connector->panel.downclock_mode != NULL &&
978 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
979 pipe_config->has_drrs = true;
980 intel_link_compute_m_n(bpp, lane_count,
981 intel_connector->panel.downclock_mode->clock,
982 pipe_config->port_clock,
983 &pipe_config->dp_m2_n2);
984 }
985
986 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
987 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
988 else
989 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
990
991 return true;
992 }
993
994 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
995 {
996 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
997 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
998 struct drm_device *dev = crtc->base.dev;
999 struct drm_i915_private *dev_priv = dev->dev_private;
1000 u32 dpa_ctl;
1001
1002 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
1003 dpa_ctl = I915_READ(DP_A);
1004 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1005
1006 if (crtc->config.port_clock == 162000) {
1007 /* For a long time we've carried around a ILK-DevA w/a for the
1008 * 160MHz clock. If we're really unlucky, it's still required.
1009 */
1010 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1011 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1012 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1013 } else {
1014 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1015 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1016 }
1017
1018 I915_WRITE(DP_A, dpa_ctl);
1019
1020 POSTING_READ(DP_A);
1021 udelay(500);
1022 }
1023
1024 static void intel_dp_prepare(struct intel_encoder *encoder)
1025 {
1026 struct drm_device *dev = encoder->base.dev;
1027 struct drm_i915_private *dev_priv = dev->dev_private;
1028 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1029 enum port port = dp_to_dig_port(intel_dp)->port;
1030 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1031 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1032
1033 /*
1034 * There are four kinds of DP registers:
1035 *
1036 * IBX PCH
1037 * SNB CPU
1038 * IVB CPU
1039 * CPT PCH
1040 *
1041 * IBX PCH and CPU are the same for almost everything,
1042 * except that the CPU DP PLL is configured in this
1043 * register
1044 *
1045 * CPT PCH is quite different, having many bits moved
1046 * to the TRANS_DP_CTL register instead. That
1047 * configuration happens (oddly) in ironlake_pch_enable
1048 */
1049
1050 /* Preserve the BIOS-computed detected bit. This is
1051 * supposed to be read-only.
1052 */
1053 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1054
1055 /* Handle DP bits in common between all three register formats */
1056 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1057 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1058
1059 if (crtc->config.has_audio) {
1060 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1061 pipe_name(crtc->pipe));
1062 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1063 intel_write_eld(&encoder->base, adjusted_mode);
1064 }
1065
1066 /* Split out the IBX/CPU vs CPT settings */
1067
1068 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1069 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1070 intel_dp->DP |= DP_SYNC_HS_HIGH;
1071 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1072 intel_dp->DP |= DP_SYNC_VS_HIGH;
1073 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1074
1075 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1076 intel_dp->DP |= DP_ENHANCED_FRAMING;
1077
1078 intel_dp->DP |= crtc->pipe << 29;
1079 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1080 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1081 intel_dp->DP |= intel_dp->color_range;
1082
1083 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1084 intel_dp->DP |= DP_SYNC_HS_HIGH;
1085 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1086 intel_dp->DP |= DP_SYNC_VS_HIGH;
1087 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1088
1089 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1090 intel_dp->DP |= DP_ENHANCED_FRAMING;
1091
1092 if (!IS_CHERRYVIEW(dev)) {
1093 if (crtc->pipe == 1)
1094 intel_dp->DP |= DP_PIPEB_SELECT;
1095 } else {
1096 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1097 }
1098 } else {
1099 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1100 }
1101 }
1102
1103 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1104 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1105
1106 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1107 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1108
1109 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1110 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1111
1112 static void wait_panel_status(struct intel_dp *intel_dp,
1113 u32 mask,
1114 u32 value)
1115 {
1116 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1117 struct drm_i915_private *dev_priv = dev->dev_private;
1118 u32 pp_stat_reg, pp_ctrl_reg;
1119
1120 lockdep_assert_held(&dev_priv->pps_mutex);
1121
1122 pp_stat_reg = _pp_stat_reg(intel_dp);
1123 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1124
1125 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1126 mask, value,
1127 I915_READ(pp_stat_reg),
1128 I915_READ(pp_ctrl_reg));
1129
1130 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1131 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1132 I915_READ(pp_stat_reg),
1133 I915_READ(pp_ctrl_reg));
1134 }
1135
1136 DRM_DEBUG_KMS("Wait complete\n");
1137 }
1138
1139 static void wait_panel_on(struct intel_dp *intel_dp)
1140 {
1141 DRM_DEBUG_KMS("Wait for panel power on\n");
1142 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1143 }
1144
1145 static void wait_panel_off(struct intel_dp *intel_dp)
1146 {
1147 DRM_DEBUG_KMS("Wait for panel power off time\n");
1148 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1149 }
1150
1151 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1152 {
1153 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1154
1155 /* When we disable the VDD override bit last we have to do the manual
1156 * wait. */
1157 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1158 intel_dp->panel_power_cycle_delay);
1159
1160 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1161 }
1162
1163 static void wait_backlight_on(struct intel_dp *intel_dp)
1164 {
1165 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1166 intel_dp->backlight_on_delay);
1167 }
1168
1169 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1170 {
1171 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1172 intel_dp->backlight_off_delay);
1173 }
1174
1175 /* Read the current pp_control value, unlocking the register if it
1176 * is locked
1177 */
1178
1179 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1180 {
1181 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1182 struct drm_i915_private *dev_priv = dev->dev_private;
1183 u32 control;
1184
1185 lockdep_assert_held(&dev_priv->pps_mutex);
1186
1187 control = I915_READ(_pp_ctrl_reg(intel_dp));
1188 control &= ~PANEL_UNLOCK_MASK;
1189 control |= PANEL_UNLOCK_REGS;
1190 return control;
1191 }
1192
1193 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1194 {
1195 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1196 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1197 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1198 struct drm_i915_private *dev_priv = dev->dev_private;
1199 enum intel_display_power_domain power_domain;
1200 u32 pp;
1201 u32 pp_stat_reg, pp_ctrl_reg;
1202 bool need_to_disable = !intel_dp->want_panel_vdd;
1203
1204 lockdep_assert_held(&dev_priv->pps_mutex);
1205
1206 if (!is_edp(intel_dp))
1207 return false;
1208
1209 intel_dp->want_panel_vdd = true;
1210
1211 if (edp_have_panel_vdd(intel_dp))
1212 return need_to_disable;
1213
1214 power_domain = intel_display_port_power_domain(intel_encoder);
1215 intel_display_power_get(dev_priv, power_domain);
1216
1217 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1218
1219 if (!edp_have_panel_power(intel_dp))
1220 wait_panel_power_cycle(intel_dp);
1221
1222 pp = ironlake_get_pp_control(intel_dp);
1223 pp |= EDP_FORCE_VDD;
1224
1225 pp_stat_reg = _pp_stat_reg(intel_dp);
1226 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1227
1228 I915_WRITE(pp_ctrl_reg, pp);
1229 POSTING_READ(pp_ctrl_reg);
1230 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1231 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1232 /*
1233 * If the panel wasn't on, delay before accessing aux channel
1234 */
1235 if (!edp_have_panel_power(intel_dp)) {
1236 DRM_DEBUG_KMS("eDP was not running\n");
1237 msleep(intel_dp->panel_power_up_delay);
1238 }
1239
1240 return need_to_disable;
1241 }
1242
1243 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1244 {
1245 struct drm_i915_private *dev_priv =
1246 intel_dp_to_dev(intel_dp)->dev_private;
1247 bool vdd;
1248
1249 if (!is_edp(intel_dp))
1250 return;
1251
1252 mutex_lock(&dev_priv->pps_mutex);
1253 vdd = edp_panel_vdd_on(intel_dp);
1254 mutex_unlock(&dev_priv->pps_mutex);
1255
1256 WARN(!vdd, "eDP VDD already requested on\n");
1257 }
1258
1259 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1260 {
1261 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1262 struct drm_i915_private *dev_priv = dev->dev_private;
1263 struct intel_digital_port *intel_dig_port =
1264 dp_to_dig_port(intel_dp);
1265 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1266 enum intel_display_power_domain power_domain;
1267 u32 pp;
1268 u32 pp_stat_reg, pp_ctrl_reg;
1269
1270 lockdep_assert_held(&dev_priv->pps_mutex);
1271
1272 WARN_ON(intel_dp->want_panel_vdd);
1273
1274 if (!edp_have_panel_vdd(intel_dp))
1275 return;
1276
1277 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1278
1279 pp = ironlake_get_pp_control(intel_dp);
1280 pp &= ~EDP_FORCE_VDD;
1281
1282 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1283 pp_stat_reg = _pp_stat_reg(intel_dp);
1284
1285 I915_WRITE(pp_ctrl_reg, pp);
1286 POSTING_READ(pp_ctrl_reg);
1287
1288 /* Make sure sequencer is idle before allowing subsequent activity */
1289 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1290 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1291
1292 if ((pp & POWER_TARGET_ON) == 0)
1293 intel_dp->last_power_cycle = jiffies;
1294
1295 power_domain = intel_display_port_power_domain(intel_encoder);
1296 intel_display_power_put(dev_priv, power_domain);
1297 }
1298
1299 static void edp_panel_vdd_work(struct work_struct *__work)
1300 {
1301 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1302 struct intel_dp, panel_vdd_work);
1303 struct drm_i915_private *dev_priv =
1304 intel_dp_to_dev(intel_dp)->dev_private;
1305
1306 mutex_lock(&dev_priv->pps_mutex);
1307 if (!intel_dp->want_panel_vdd)
1308 edp_panel_vdd_off_sync(intel_dp);
1309 mutex_unlock(&dev_priv->pps_mutex);
1310 }
1311
1312 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1313 {
1314 unsigned long delay;
1315
1316 /*
1317 * Queue the timer to fire a long time from now (relative to the power
1318 * down delay) to keep the panel power up across a sequence of
1319 * operations.
1320 */
1321 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1322 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1323 }
1324
1325 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1326 {
1327 struct drm_i915_private *dev_priv =
1328 intel_dp_to_dev(intel_dp)->dev_private;
1329
1330 lockdep_assert_held(&dev_priv->pps_mutex);
1331
1332 if (!is_edp(intel_dp))
1333 return;
1334
1335 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1336
1337 intel_dp->want_panel_vdd = false;
1338
1339 if (sync)
1340 edp_panel_vdd_off_sync(intel_dp);
1341 else
1342 edp_panel_vdd_schedule_off(intel_dp);
1343 }
1344
1345 static void intel_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1346 {
1347 struct drm_i915_private *dev_priv =
1348 intel_dp_to_dev(intel_dp)->dev_private;
1349
1350 if (!is_edp(intel_dp))
1351 return;
1352
1353 mutex_lock(&dev_priv->pps_mutex);
1354 edp_panel_vdd_off(intel_dp, sync);
1355 mutex_unlock(&dev_priv->pps_mutex);
1356 }
1357
1358 void intel_edp_panel_on(struct intel_dp *intel_dp)
1359 {
1360 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1361 struct drm_i915_private *dev_priv = dev->dev_private;
1362 u32 pp;
1363 u32 pp_ctrl_reg;
1364
1365 if (!is_edp(intel_dp))
1366 return;
1367
1368 DRM_DEBUG_KMS("Turn eDP power on\n");
1369
1370 mutex_lock(&dev_priv->pps_mutex);
1371
1372 if (edp_have_panel_power(intel_dp)) {
1373 DRM_DEBUG_KMS("eDP power already on\n");
1374 goto out;
1375 }
1376
1377 wait_panel_power_cycle(intel_dp);
1378
1379 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1380 pp = ironlake_get_pp_control(intel_dp);
1381 if (IS_GEN5(dev)) {
1382 /* ILK workaround: disable reset around power sequence */
1383 pp &= ~PANEL_POWER_RESET;
1384 I915_WRITE(pp_ctrl_reg, pp);
1385 POSTING_READ(pp_ctrl_reg);
1386 }
1387
1388 pp |= POWER_TARGET_ON;
1389 if (!IS_GEN5(dev))
1390 pp |= PANEL_POWER_RESET;
1391
1392 I915_WRITE(pp_ctrl_reg, pp);
1393 POSTING_READ(pp_ctrl_reg);
1394
1395 wait_panel_on(intel_dp);
1396 intel_dp->last_power_on = jiffies;
1397
1398 if (IS_GEN5(dev)) {
1399 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1400 I915_WRITE(pp_ctrl_reg, pp);
1401 POSTING_READ(pp_ctrl_reg);
1402 }
1403
1404 out:
1405 mutex_unlock(&dev_priv->pps_mutex);
1406 }
1407
1408 void intel_edp_panel_off(struct intel_dp *intel_dp)
1409 {
1410 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1411 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1412 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1413 struct drm_i915_private *dev_priv = dev->dev_private;
1414 enum intel_display_power_domain power_domain;
1415 u32 pp;
1416 u32 pp_ctrl_reg;
1417
1418 if (!is_edp(intel_dp))
1419 return;
1420
1421 DRM_DEBUG_KMS("Turn eDP power off\n");
1422
1423 mutex_lock(&dev_priv->pps_mutex);
1424
1425 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1426
1427 pp = ironlake_get_pp_control(intel_dp);
1428 /* We need to switch off panel power _and_ force vdd, for otherwise some
1429 * panels get very unhappy and cease to work. */
1430 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1431 EDP_BLC_ENABLE);
1432
1433 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1434
1435 intel_dp->want_panel_vdd = false;
1436
1437 I915_WRITE(pp_ctrl_reg, pp);
1438 POSTING_READ(pp_ctrl_reg);
1439
1440 intel_dp->last_power_cycle = jiffies;
1441 wait_panel_off(intel_dp);
1442
1443 /* We got a reference when we enabled the VDD. */
1444 power_domain = intel_display_port_power_domain(intel_encoder);
1445 intel_display_power_put(dev_priv, power_domain);
1446
1447 mutex_unlock(&dev_priv->pps_mutex);
1448 }
1449
1450 /* Enable backlight in the panel power control. */
1451 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1452 {
1453 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1454 struct drm_device *dev = intel_dig_port->base.base.dev;
1455 struct drm_i915_private *dev_priv = dev->dev_private;
1456 u32 pp;
1457 u32 pp_ctrl_reg;
1458
1459 /*
1460 * If we enable the backlight right away following a panel power
1461 * on, we may see slight flicker as the panel syncs with the eDP
1462 * link. So delay a bit to make sure the image is solid before
1463 * allowing it to appear.
1464 */
1465 wait_backlight_on(intel_dp);
1466
1467 mutex_lock(&dev_priv->pps_mutex);
1468
1469 pp = ironlake_get_pp_control(intel_dp);
1470 pp |= EDP_BLC_ENABLE;
1471
1472 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1473
1474 I915_WRITE(pp_ctrl_reg, pp);
1475 POSTING_READ(pp_ctrl_reg);
1476
1477 mutex_unlock(&dev_priv->pps_mutex);
1478 }
1479
1480 /* Enable backlight PWM and backlight PP control. */
1481 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1482 {
1483 if (!is_edp(intel_dp))
1484 return;
1485
1486 DRM_DEBUG_KMS("\n");
1487
1488 intel_panel_enable_backlight(intel_dp->attached_connector);
1489 _intel_edp_backlight_on(intel_dp);
1490 }
1491
1492 /* Disable backlight in the panel power control. */
1493 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1494 {
1495 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1496 struct drm_i915_private *dev_priv = dev->dev_private;
1497 u32 pp;
1498 u32 pp_ctrl_reg;
1499
1500 if (!is_edp(intel_dp))
1501 return;
1502
1503 mutex_lock(&dev_priv->pps_mutex);
1504
1505 pp = ironlake_get_pp_control(intel_dp);
1506 pp &= ~EDP_BLC_ENABLE;
1507
1508 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1509
1510 I915_WRITE(pp_ctrl_reg, pp);
1511 POSTING_READ(pp_ctrl_reg);
1512
1513 mutex_unlock(&dev_priv->pps_mutex);
1514
1515 intel_dp->last_backlight_off = jiffies;
1516 edp_wait_backlight_off(intel_dp);
1517 }
1518
1519 /* Disable backlight PP control and backlight PWM. */
1520 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1521 {
1522 if (!is_edp(intel_dp))
1523 return;
1524
1525 DRM_DEBUG_KMS("\n");
1526
1527 _intel_edp_backlight_off(intel_dp);
1528 intel_panel_disable_backlight(intel_dp->attached_connector);
1529 }
1530
1531 /*
1532 * Hook for controlling the panel power control backlight through the bl_power
1533 * sysfs attribute. Take care to handle multiple calls.
1534 */
1535 static void intel_edp_backlight_power(struct intel_connector *connector,
1536 bool enable)
1537 {
1538 struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
1539 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1540 bool is_enabled;
1541
1542 mutex_lock(&dev_priv->pps_mutex);
1543 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1544 mutex_unlock(&dev_priv->pps_mutex);
1545
1546 if (is_enabled == enable)
1547 return;
1548
1549 DRM_DEBUG_KMS("panel power control backlight %s\n",
1550 enable ? "enable" : "disable");
1551
1552 if (enable)
1553 _intel_edp_backlight_on(intel_dp);
1554 else
1555 _intel_edp_backlight_off(intel_dp);
1556 }
1557
1558 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1559 {
1560 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1561 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1562 struct drm_device *dev = crtc->dev;
1563 struct drm_i915_private *dev_priv = dev->dev_private;
1564 u32 dpa_ctl;
1565
1566 assert_pipe_disabled(dev_priv,
1567 to_intel_crtc(crtc)->pipe);
1568
1569 DRM_DEBUG_KMS("\n");
1570 dpa_ctl = I915_READ(DP_A);
1571 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1572 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1573
1574 /* We don't adjust intel_dp->DP while tearing down the link, to
1575 * facilitate link retraining (e.g. after hotplug). Hence clear all
1576 * enable bits here to ensure that we don't enable too much. */
1577 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1578 intel_dp->DP |= DP_PLL_ENABLE;
1579 I915_WRITE(DP_A, intel_dp->DP);
1580 POSTING_READ(DP_A);
1581 udelay(200);
1582 }
1583
1584 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1585 {
1586 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1587 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1588 struct drm_device *dev = crtc->dev;
1589 struct drm_i915_private *dev_priv = dev->dev_private;
1590 u32 dpa_ctl;
1591
1592 assert_pipe_disabled(dev_priv,
1593 to_intel_crtc(crtc)->pipe);
1594
1595 dpa_ctl = I915_READ(DP_A);
1596 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1597 "dp pll off, should be on\n");
1598 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1599
1600 /* We can't rely on the value tracked for the DP register in
1601 * intel_dp->DP because link_down must not change that (otherwise link
1602 * re-training will fail. */
1603 dpa_ctl &= ~DP_PLL_ENABLE;
1604 I915_WRITE(DP_A, dpa_ctl);
1605 POSTING_READ(DP_A);
1606 udelay(200);
1607 }
1608
1609 /* If the sink supports it, try to set the power state appropriately */
1610 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1611 {
1612 int ret, i;
1613
1614 /* Should have a valid DPCD by this point */
1615 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1616 return;
1617
1618 if (mode != DRM_MODE_DPMS_ON) {
1619 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1620 DP_SET_POWER_D3);
1621 } else {
1622 /*
1623 * When turning on, we need to retry for 1ms to give the sink
1624 * time to wake up.
1625 */
1626 for (i = 0; i < 3; i++) {
1627 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1628 DP_SET_POWER_D0);
1629 if (ret == 1)
1630 break;
1631 msleep(1);
1632 }
1633 }
1634
1635 if (ret != 1)
1636 DRM_DEBUG_KMS("failed to %s sink power state\n",
1637 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1638 }
1639
1640 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1641 enum pipe *pipe)
1642 {
1643 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1644 enum port port = dp_to_dig_port(intel_dp)->port;
1645 struct drm_device *dev = encoder->base.dev;
1646 struct drm_i915_private *dev_priv = dev->dev_private;
1647 enum intel_display_power_domain power_domain;
1648 u32 tmp;
1649
1650 power_domain = intel_display_port_power_domain(encoder);
1651 if (!intel_display_power_enabled(dev_priv, power_domain))
1652 return false;
1653
1654 tmp = I915_READ(intel_dp->output_reg);
1655
1656 if (!(tmp & DP_PORT_EN))
1657 return false;
1658
1659 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1660 *pipe = PORT_TO_PIPE_CPT(tmp);
1661 } else if (IS_CHERRYVIEW(dev)) {
1662 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1663 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1664 *pipe = PORT_TO_PIPE(tmp);
1665 } else {
1666 u32 trans_sel;
1667 u32 trans_dp;
1668 int i;
1669
1670 switch (intel_dp->output_reg) {
1671 case PCH_DP_B:
1672 trans_sel = TRANS_DP_PORT_SEL_B;
1673 break;
1674 case PCH_DP_C:
1675 trans_sel = TRANS_DP_PORT_SEL_C;
1676 break;
1677 case PCH_DP_D:
1678 trans_sel = TRANS_DP_PORT_SEL_D;
1679 break;
1680 default:
1681 return true;
1682 }
1683
1684 for_each_pipe(dev_priv, i) {
1685 trans_dp = I915_READ(TRANS_DP_CTL(i));
1686 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1687 *pipe = i;
1688 return true;
1689 }
1690 }
1691
1692 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1693 intel_dp->output_reg);
1694 }
1695
1696 return true;
1697 }
1698
1699 static void intel_dp_get_config(struct intel_encoder *encoder,
1700 struct intel_crtc_config *pipe_config)
1701 {
1702 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1703 u32 tmp, flags = 0;
1704 struct drm_device *dev = encoder->base.dev;
1705 struct drm_i915_private *dev_priv = dev->dev_private;
1706 enum port port = dp_to_dig_port(intel_dp)->port;
1707 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1708 int dotclock;
1709
1710 tmp = I915_READ(intel_dp->output_reg);
1711 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1712 pipe_config->has_audio = true;
1713
1714 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1715 if (tmp & DP_SYNC_HS_HIGH)
1716 flags |= DRM_MODE_FLAG_PHSYNC;
1717 else
1718 flags |= DRM_MODE_FLAG_NHSYNC;
1719
1720 if (tmp & DP_SYNC_VS_HIGH)
1721 flags |= DRM_MODE_FLAG_PVSYNC;
1722 else
1723 flags |= DRM_MODE_FLAG_NVSYNC;
1724 } else {
1725 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1726 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1727 flags |= DRM_MODE_FLAG_PHSYNC;
1728 else
1729 flags |= DRM_MODE_FLAG_NHSYNC;
1730
1731 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1732 flags |= DRM_MODE_FLAG_PVSYNC;
1733 else
1734 flags |= DRM_MODE_FLAG_NVSYNC;
1735 }
1736
1737 pipe_config->adjusted_mode.flags |= flags;
1738
1739 pipe_config->has_dp_encoder = true;
1740
1741 intel_dp_get_m_n(crtc, pipe_config);
1742
1743 if (port == PORT_A) {
1744 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1745 pipe_config->port_clock = 162000;
1746 else
1747 pipe_config->port_clock = 270000;
1748 }
1749
1750 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1751 &pipe_config->dp_m_n);
1752
1753 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1754 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1755
1756 pipe_config->adjusted_mode.crtc_clock = dotclock;
1757
1758 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1759 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1760 /*
1761 * This is a big fat ugly hack.
1762 *
1763 * Some machines in UEFI boot mode provide us a VBT that has 18
1764 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1765 * unknown we fail to light up. Yet the same BIOS boots up with
1766 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1767 * max, not what it tells us to use.
1768 *
1769 * Note: This will still be broken if the eDP panel is not lit
1770 * up by the BIOS, and thus we can't get the mode at module
1771 * load.
1772 */
1773 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1774 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1775 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1776 }
1777 }
1778
1779 static bool is_edp_psr(struct intel_dp *intel_dp)
1780 {
1781 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1782 }
1783
1784 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1785 {
1786 struct drm_i915_private *dev_priv = dev->dev_private;
1787
1788 if (!HAS_PSR(dev))
1789 return false;
1790
1791 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1792 }
1793
1794 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1795 struct edp_vsc_psr *vsc_psr)
1796 {
1797 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1798 struct drm_device *dev = dig_port->base.base.dev;
1799 struct drm_i915_private *dev_priv = dev->dev_private;
1800 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1801 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1802 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1803 uint32_t *data = (uint32_t *) vsc_psr;
1804 unsigned int i;
1805
1806 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1807 the video DIP being updated before program video DIP data buffer
1808 registers for DIP being updated. */
1809 I915_WRITE(ctl_reg, 0);
1810 POSTING_READ(ctl_reg);
1811
1812 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1813 if (i < sizeof(struct edp_vsc_psr))
1814 I915_WRITE(data_reg + i, *data++);
1815 else
1816 I915_WRITE(data_reg + i, 0);
1817 }
1818
1819 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1820 POSTING_READ(ctl_reg);
1821 }
1822
1823 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1824 {
1825 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1826 struct drm_i915_private *dev_priv = dev->dev_private;
1827 struct edp_vsc_psr psr_vsc;
1828
1829 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1830 memset(&psr_vsc, 0, sizeof(psr_vsc));
1831 psr_vsc.sdp_header.HB0 = 0;
1832 psr_vsc.sdp_header.HB1 = 0x7;
1833 psr_vsc.sdp_header.HB2 = 0x2;
1834 psr_vsc.sdp_header.HB3 = 0x8;
1835 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1836
1837 /* Avoid continuous PSR exit by masking memup and hpd */
1838 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1839 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1840 }
1841
1842 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1843 {
1844 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1845 struct drm_device *dev = dig_port->base.base.dev;
1846 struct drm_i915_private *dev_priv = dev->dev_private;
1847 uint32_t aux_clock_divider;
1848 int precharge = 0x3;
1849 int msg_size = 5; /* Header(4) + Message(1) */
1850 bool only_standby = false;
1851
1852 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1853
1854 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1855 only_standby = true;
1856
1857 /* Enable PSR in sink */
1858 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1859 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1860 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1861 else
1862 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1863 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1864
1865 /* Setup AUX registers */
1866 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1867 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1868 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1869 DP_AUX_CH_CTL_TIME_OUT_400us |
1870 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1871 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1872 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1873 }
1874
1875 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1876 {
1877 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1878 struct drm_device *dev = dig_port->base.base.dev;
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880 uint32_t max_sleep_time = 0x1f;
1881 uint32_t idle_frames = 1;
1882 uint32_t val = 0x0;
1883 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1884 bool only_standby = false;
1885
1886 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1887 only_standby = true;
1888
1889 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
1890 val |= EDP_PSR_LINK_STANDBY;
1891 val |= EDP_PSR_TP2_TP3_TIME_0us;
1892 val |= EDP_PSR_TP1_TIME_0us;
1893 val |= EDP_PSR_SKIP_AUX_EXIT;
1894 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
1895 } else
1896 val |= EDP_PSR_LINK_DISABLE;
1897
1898 I915_WRITE(EDP_PSR_CTL(dev), val |
1899 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1900 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1901 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1902 EDP_PSR_ENABLE);
1903 }
1904
1905 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1906 {
1907 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1908 struct drm_device *dev = dig_port->base.base.dev;
1909 struct drm_i915_private *dev_priv = dev->dev_private;
1910 struct drm_crtc *crtc = dig_port->base.base.crtc;
1911 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1912
1913 lockdep_assert_held(&dev_priv->psr.lock);
1914 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1915 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
1916
1917 dev_priv->psr.source_ok = false;
1918
1919 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
1920 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1921 return false;
1922 }
1923
1924 if (!i915.enable_psr) {
1925 DRM_DEBUG_KMS("PSR disable by flag\n");
1926 return false;
1927 }
1928
1929 /* Below limitations aren't valid for Broadwell */
1930 if (IS_BROADWELL(dev))
1931 goto out;
1932
1933 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1934 S3D_ENABLE) {
1935 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1936 return false;
1937 }
1938
1939 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1940 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1941 return false;
1942 }
1943
1944 out:
1945 dev_priv->psr.source_ok = true;
1946 return true;
1947 }
1948
1949 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1950 {
1951 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1952 struct drm_device *dev = intel_dig_port->base.base.dev;
1953 struct drm_i915_private *dev_priv = dev->dev_private;
1954
1955 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1956 WARN_ON(dev_priv->psr.active);
1957 lockdep_assert_held(&dev_priv->psr.lock);
1958
1959 /* Enable PSR on the panel */
1960 intel_edp_psr_enable_sink(intel_dp);
1961
1962 /* Enable PSR on the host */
1963 intel_edp_psr_enable_source(intel_dp);
1964
1965 dev_priv->psr.active = true;
1966 }
1967
1968 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1969 {
1970 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1971 struct drm_i915_private *dev_priv = dev->dev_private;
1972
1973 if (!HAS_PSR(dev)) {
1974 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1975 return;
1976 }
1977
1978 if (!is_edp_psr(intel_dp)) {
1979 DRM_DEBUG_KMS("PSR not supported by this panel\n");
1980 return;
1981 }
1982
1983 mutex_lock(&dev_priv->psr.lock);
1984 if (dev_priv->psr.enabled) {
1985 DRM_DEBUG_KMS("PSR already in use\n");
1986 mutex_unlock(&dev_priv->psr.lock);
1987 return;
1988 }
1989
1990 dev_priv->psr.busy_frontbuffer_bits = 0;
1991
1992 /* Setup PSR once */
1993 intel_edp_psr_setup(intel_dp);
1994
1995 if (intel_edp_psr_match_conditions(intel_dp))
1996 dev_priv->psr.enabled = intel_dp;
1997 mutex_unlock(&dev_priv->psr.lock);
1998 }
1999
2000 void intel_edp_psr_disable(struct intel_dp *intel_dp)
2001 {
2002 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2003 struct drm_i915_private *dev_priv = dev->dev_private;
2004
2005 mutex_lock(&dev_priv->psr.lock);
2006 if (!dev_priv->psr.enabled) {
2007 mutex_unlock(&dev_priv->psr.lock);
2008 return;
2009 }
2010
2011 if (dev_priv->psr.active) {
2012 I915_WRITE(EDP_PSR_CTL(dev),
2013 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
2014
2015 /* Wait till PSR is idle */
2016 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
2017 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
2018 DRM_ERROR("Timed out waiting for PSR Idle State\n");
2019
2020 dev_priv->psr.active = false;
2021 } else {
2022 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2023 }
2024
2025 dev_priv->psr.enabled = NULL;
2026 mutex_unlock(&dev_priv->psr.lock);
2027
2028 cancel_delayed_work_sync(&dev_priv->psr.work);
2029 }
2030
2031 static void intel_edp_psr_work(struct work_struct *work)
2032 {
2033 struct drm_i915_private *dev_priv =
2034 container_of(work, typeof(*dev_priv), psr.work.work);
2035 struct intel_dp *intel_dp = dev_priv->psr.enabled;
2036
2037 mutex_lock(&dev_priv->psr.lock);
2038 intel_dp = dev_priv->psr.enabled;
2039
2040 if (!intel_dp)
2041 goto unlock;
2042
2043 /*
2044 * The delayed work can race with an invalidate hence we need to
2045 * recheck. Since psr_flush first clears this and then reschedules we
2046 * won't ever miss a flush when bailing out here.
2047 */
2048 if (dev_priv->psr.busy_frontbuffer_bits)
2049 goto unlock;
2050
2051 intel_edp_psr_do_enable(intel_dp);
2052 unlock:
2053 mutex_unlock(&dev_priv->psr.lock);
2054 }
2055
2056 static void intel_edp_psr_do_exit(struct drm_device *dev)
2057 {
2058 struct drm_i915_private *dev_priv = dev->dev_private;
2059
2060 if (dev_priv->psr.active) {
2061 u32 val = I915_READ(EDP_PSR_CTL(dev));
2062
2063 WARN_ON(!(val & EDP_PSR_ENABLE));
2064
2065 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
2066
2067 dev_priv->psr.active = false;
2068 }
2069
2070 }
2071
2072 void intel_edp_psr_invalidate(struct drm_device *dev,
2073 unsigned frontbuffer_bits)
2074 {
2075 struct drm_i915_private *dev_priv = dev->dev_private;
2076 struct drm_crtc *crtc;
2077 enum pipe pipe;
2078
2079 mutex_lock(&dev_priv->psr.lock);
2080 if (!dev_priv->psr.enabled) {
2081 mutex_unlock(&dev_priv->psr.lock);
2082 return;
2083 }
2084
2085 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2086 pipe = to_intel_crtc(crtc)->pipe;
2087
2088 intel_edp_psr_do_exit(dev);
2089
2090 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2091
2092 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2093 mutex_unlock(&dev_priv->psr.lock);
2094 }
2095
2096 void intel_edp_psr_flush(struct drm_device *dev,
2097 unsigned frontbuffer_bits)
2098 {
2099 struct drm_i915_private *dev_priv = dev->dev_private;
2100 struct drm_crtc *crtc;
2101 enum pipe pipe;
2102
2103 mutex_lock(&dev_priv->psr.lock);
2104 if (!dev_priv->psr.enabled) {
2105 mutex_unlock(&dev_priv->psr.lock);
2106 return;
2107 }
2108
2109 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2110 pipe = to_intel_crtc(crtc)->pipe;
2111 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2112
2113 /*
2114 * On Haswell sprite plane updates don't result in a psr invalidating
2115 * signal in the hardware. Which means we need to manually fake this in
2116 * software for all flushes, not just when we've seen a preceding
2117 * invalidation through frontbuffer rendering.
2118 */
2119 if (IS_HASWELL(dev) &&
2120 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2121 intel_edp_psr_do_exit(dev);
2122
2123 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2124 schedule_delayed_work(&dev_priv->psr.work,
2125 msecs_to_jiffies(100));
2126 mutex_unlock(&dev_priv->psr.lock);
2127 }
2128
2129 void intel_edp_psr_init(struct drm_device *dev)
2130 {
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132
2133 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2134 mutex_init(&dev_priv->psr.lock);
2135 }
2136
2137 static void intel_disable_dp(struct intel_encoder *encoder)
2138 {
2139 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2140 enum port port = dp_to_dig_port(intel_dp)->port;
2141 struct drm_device *dev = encoder->base.dev;
2142
2143 /* Make sure the panel is off before trying to change the mode. But also
2144 * ensure that we have vdd while we switch off the panel. */
2145 intel_edp_panel_vdd_on(intel_dp);
2146 intel_edp_backlight_off(intel_dp);
2147 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2148 intel_edp_panel_off(intel_dp);
2149
2150 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
2151 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
2152 intel_dp_link_down(intel_dp);
2153 }
2154
2155 static void g4x_post_disable_dp(struct intel_encoder *encoder)
2156 {
2157 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2158 enum port port = dp_to_dig_port(intel_dp)->port;
2159
2160 if (port != PORT_A)
2161 return;
2162
2163 intel_dp_link_down(intel_dp);
2164 ironlake_edp_pll_off(intel_dp);
2165 }
2166
2167 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2168 {
2169 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2170
2171 intel_dp_link_down(intel_dp);
2172 }
2173
2174 static void chv_post_disable_dp(struct intel_encoder *encoder)
2175 {
2176 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2177 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2178 struct drm_device *dev = encoder->base.dev;
2179 struct drm_i915_private *dev_priv = dev->dev_private;
2180 struct intel_crtc *intel_crtc =
2181 to_intel_crtc(encoder->base.crtc);
2182 enum dpio_channel ch = vlv_dport_to_channel(dport);
2183 enum pipe pipe = intel_crtc->pipe;
2184 u32 val;
2185
2186 intel_dp_link_down(intel_dp);
2187
2188 mutex_lock(&dev_priv->dpio_lock);
2189
2190 /* Propagate soft reset to data lane reset */
2191 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2192 val |= CHV_PCS_REQ_SOFTRESET_EN;
2193 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2194
2195 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2196 val |= CHV_PCS_REQ_SOFTRESET_EN;
2197 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2198
2199 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2200 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2201 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2202
2203 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2204 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2205 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2206
2207 mutex_unlock(&dev_priv->dpio_lock);
2208 }
2209
2210 static void intel_enable_dp(struct intel_encoder *encoder)
2211 {
2212 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2213 struct drm_device *dev = encoder->base.dev;
2214 struct drm_i915_private *dev_priv = dev->dev_private;
2215 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2216
2217 if (WARN_ON(dp_reg & DP_PORT_EN))
2218 return;
2219
2220 intel_edp_panel_vdd_on(intel_dp);
2221 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2222 intel_dp_start_link_train(intel_dp);
2223 intel_edp_panel_on(intel_dp);
2224 intel_edp_panel_vdd_off(intel_dp, true);
2225 intel_dp_complete_link_train(intel_dp);
2226 intel_dp_stop_link_train(intel_dp);
2227 }
2228
2229 static void g4x_enable_dp(struct intel_encoder *encoder)
2230 {
2231 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2232
2233 intel_enable_dp(encoder);
2234 intel_edp_backlight_on(intel_dp);
2235 }
2236
2237 static void vlv_enable_dp(struct intel_encoder *encoder)
2238 {
2239 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2240
2241 intel_edp_backlight_on(intel_dp);
2242 }
2243
2244 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2245 {
2246 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2247 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2248
2249 intel_dp_prepare(encoder);
2250
2251 /* Only ilk+ has port A */
2252 if (dport->port == PORT_A) {
2253 ironlake_set_pll_cpu_edp(intel_dp);
2254 ironlake_edp_pll_on(intel_dp);
2255 }
2256 }
2257
2258 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2259 {
2260 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2261 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2262 struct drm_device *dev = encoder->base.dev;
2263 struct drm_i915_private *dev_priv = dev->dev_private;
2264 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2265 enum dpio_channel port = vlv_dport_to_channel(dport);
2266 int pipe = intel_crtc->pipe;
2267 struct edp_power_seq power_seq;
2268 u32 val;
2269
2270 mutex_lock(&dev_priv->dpio_lock);
2271
2272 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2273 val = 0;
2274 if (pipe)
2275 val |= (1<<21);
2276 else
2277 val &= ~(1<<21);
2278 val |= 0x001000c4;
2279 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2280 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2281 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2282
2283 mutex_unlock(&dev_priv->dpio_lock);
2284
2285 if (is_edp(intel_dp)) {
2286 /* init power sequencer on this pipe and port */
2287 mutex_lock(&dev_priv->pps_mutex);
2288 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2289 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2290 &power_seq);
2291 mutex_unlock(&dev_priv->pps_mutex);
2292 }
2293
2294 intel_enable_dp(encoder);
2295
2296 vlv_wait_port_ready(dev_priv, dport);
2297 }
2298
2299 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2300 {
2301 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2302 struct drm_device *dev = encoder->base.dev;
2303 struct drm_i915_private *dev_priv = dev->dev_private;
2304 struct intel_crtc *intel_crtc =
2305 to_intel_crtc(encoder->base.crtc);
2306 enum dpio_channel port = vlv_dport_to_channel(dport);
2307 int pipe = intel_crtc->pipe;
2308
2309 intel_dp_prepare(encoder);
2310
2311 /* Program Tx lane resets to default */
2312 mutex_lock(&dev_priv->dpio_lock);
2313 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2314 DPIO_PCS_TX_LANE2_RESET |
2315 DPIO_PCS_TX_LANE1_RESET);
2316 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2317 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2318 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2319 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2320 DPIO_PCS_CLK_SOFT_RESET);
2321
2322 /* Fix up inter-pair skew failure */
2323 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2324 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2325 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2326 mutex_unlock(&dev_priv->dpio_lock);
2327 }
2328
2329 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2330 {
2331 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2332 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2333 struct drm_device *dev = encoder->base.dev;
2334 struct drm_i915_private *dev_priv = dev->dev_private;
2335 struct edp_power_seq power_seq;
2336 struct intel_crtc *intel_crtc =
2337 to_intel_crtc(encoder->base.crtc);
2338 enum dpio_channel ch = vlv_dport_to_channel(dport);
2339 int pipe = intel_crtc->pipe;
2340 int data, i;
2341 u32 val;
2342
2343 mutex_lock(&dev_priv->dpio_lock);
2344
2345 /* Deassert soft data lane reset*/
2346 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2347 val |= CHV_PCS_REQ_SOFTRESET_EN;
2348 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2349
2350 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2351 val |= CHV_PCS_REQ_SOFTRESET_EN;
2352 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2353
2354 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2355 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2356 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2357
2358 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2359 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2360 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2361
2362 /* Program Tx lane latency optimal setting*/
2363 for (i = 0; i < 4; i++) {
2364 /* Set the latency optimal bit */
2365 data = (i == 1) ? 0x0 : 0x6;
2366 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2367 data << DPIO_FRC_LATENCY_SHFIT);
2368
2369 /* Set the upar bit */
2370 data = (i == 1) ? 0x0 : 0x1;
2371 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2372 data << DPIO_UPAR_SHIFT);
2373 }
2374
2375 /* Data lane stagger programming */
2376 /* FIXME: Fix up value only after power analysis */
2377
2378 mutex_unlock(&dev_priv->dpio_lock);
2379
2380 if (is_edp(intel_dp)) {
2381 /* init power sequencer on this pipe and port */
2382 mutex_lock(&dev_priv->pps_mutex);
2383 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2384 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2385 &power_seq);
2386 mutex_unlock(&dev_priv->pps_mutex);
2387 }
2388
2389 intel_enable_dp(encoder);
2390
2391 vlv_wait_port_ready(dev_priv, dport);
2392 }
2393
2394 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2395 {
2396 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2397 struct drm_device *dev = encoder->base.dev;
2398 struct drm_i915_private *dev_priv = dev->dev_private;
2399 struct intel_crtc *intel_crtc =
2400 to_intel_crtc(encoder->base.crtc);
2401 enum dpio_channel ch = vlv_dport_to_channel(dport);
2402 enum pipe pipe = intel_crtc->pipe;
2403 u32 val;
2404
2405 intel_dp_prepare(encoder);
2406
2407 mutex_lock(&dev_priv->dpio_lock);
2408
2409 /* program left/right clock distribution */
2410 if (pipe != PIPE_B) {
2411 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2412 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2413 if (ch == DPIO_CH0)
2414 val |= CHV_BUFLEFTENA1_FORCE;
2415 if (ch == DPIO_CH1)
2416 val |= CHV_BUFRIGHTENA1_FORCE;
2417 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2418 } else {
2419 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2420 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2421 if (ch == DPIO_CH0)
2422 val |= CHV_BUFLEFTENA2_FORCE;
2423 if (ch == DPIO_CH1)
2424 val |= CHV_BUFRIGHTENA2_FORCE;
2425 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2426 }
2427
2428 /* program clock channel usage */
2429 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2430 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2431 if (pipe != PIPE_B)
2432 val &= ~CHV_PCS_USEDCLKCHANNEL;
2433 else
2434 val |= CHV_PCS_USEDCLKCHANNEL;
2435 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2436
2437 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2438 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2439 if (pipe != PIPE_B)
2440 val &= ~CHV_PCS_USEDCLKCHANNEL;
2441 else
2442 val |= CHV_PCS_USEDCLKCHANNEL;
2443 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2444
2445 /*
2446 * This a a bit weird since generally CL
2447 * matches the pipe, but here we need to
2448 * pick the CL based on the port.
2449 */
2450 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2451 if (pipe != PIPE_B)
2452 val &= ~CHV_CMN_USEDCLKCHANNEL;
2453 else
2454 val |= CHV_CMN_USEDCLKCHANNEL;
2455 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2456
2457 mutex_unlock(&dev_priv->dpio_lock);
2458 }
2459
2460 /*
2461 * Native read with retry for link status and receiver capability reads for
2462 * cases where the sink may still be asleep.
2463 *
2464 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2465 * supposed to retry 3 times per the spec.
2466 */
2467 static ssize_t
2468 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2469 void *buffer, size_t size)
2470 {
2471 ssize_t ret;
2472 int i;
2473
2474 for (i = 0; i < 3; i++) {
2475 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2476 if (ret == size)
2477 return ret;
2478 msleep(1);
2479 }
2480
2481 return ret;
2482 }
2483
2484 /*
2485 * Fetch AUX CH registers 0x202 - 0x207 which contain
2486 * link status information
2487 */
2488 static bool
2489 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2490 {
2491 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2492 DP_LANE0_1_STATUS,
2493 link_status,
2494 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2495 }
2496
2497 /* These are source-specific values. */
2498 static uint8_t
2499 intel_dp_voltage_max(struct intel_dp *intel_dp)
2500 {
2501 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2502 enum port port = dp_to_dig_port(intel_dp)->port;
2503
2504 if (IS_VALLEYVIEW(dev))
2505 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2506 else if (IS_GEN7(dev) && port == PORT_A)
2507 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2508 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2509 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2510 else
2511 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2512 }
2513
2514 static uint8_t
2515 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2516 {
2517 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2518 enum port port = dp_to_dig_port(intel_dp)->port;
2519
2520 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2521 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2522 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2523 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2524 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2525 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2526 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2527 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2528 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2529 default:
2530 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2531 }
2532 } else if (IS_VALLEYVIEW(dev)) {
2533 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2534 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2535 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2536 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2537 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2538 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2539 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2540 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2541 default:
2542 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2543 }
2544 } else if (IS_GEN7(dev) && port == PORT_A) {
2545 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2546 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2547 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2548 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2549 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2550 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2551 default:
2552 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2553 }
2554 } else {
2555 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2556 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2557 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2558 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2559 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2560 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2561 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2562 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2563 default:
2564 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2565 }
2566 }
2567 }
2568
2569 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2570 {
2571 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2572 struct drm_i915_private *dev_priv = dev->dev_private;
2573 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2574 struct intel_crtc *intel_crtc =
2575 to_intel_crtc(dport->base.base.crtc);
2576 unsigned long demph_reg_value, preemph_reg_value,
2577 uniqtranscale_reg_value;
2578 uint8_t train_set = intel_dp->train_set[0];
2579 enum dpio_channel port = vlv_dport_to_channel(dport);
2580 int pipe = intel_crtc->pipe;
2581
2582 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2583 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2584 preemph_reg_value = 0x0004000;
2585 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2586 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2587 demph_reg_value = 0x2B405555;
2588 uniqtranscale_reg_value = 0x552AB83A;
2589 break;
2590 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2591 demph_reg_value = 0x2B404040;
2592 uniqtranscale_reg_value = 0x5548B83A;
2593 break;
2594 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2595 demph_reg_value = 0x2B245555;
2596 uniqtranscale_reg_value = 0x5560B83A;
2597 break;
2598 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2599 demph_reg_value = 0x2B405555;
2600 uniqtranscale_reg_value = 0x5598DA3A;
2601 break;
2602 default:
2603 return 0;
2604 }
2605 break;
2606 case DP_TRAIN_PRE_EMPH_LEVEL_1:
2607 preemph_reg_value = 0x0002000;
2608 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2609 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2610 demph_reg_value = 0x2B404040;
2611 uniqtranscale_reg_value = 0x5552B83A;
2612 break;
2613 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2614 demph_reg_value = 0x2B404848;
2615 uniqtranscale_reg_value = 0x5580B83A;
2616 break;
2617 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2618 demph_reg_value = 0x2B404040;
2619 uniqtranscale_reg_value = 0x55ADDA3A;
2620 break;
2621 default:
2622 return 0;
2623 }
2624 break;
2625 case DP_TRAIN_PRE_EMPH_LEVEL_2:
2626 preemph_reg_value = 0x0000000;
2627 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2628 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2629 demph_reg_value = 0x2B305555;
2630 uniqtranscale_reg_value = 0x5570B83A;
2631 break;
2632 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2633 demph_reg_value = 0x2B2B4040;
2634 uniqtranscale_reg_value = 0x55ADDA3A;
2635 break;
2636 default:
2637 return 0;
2638 }
2639 break;
2640 case DP_TRAIN_PRE_EMPH_LEVEL_3:
2641 preemph_reg_value = 0x0006000;
2642 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2643 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2644 demph_reg_value = 0x1B405555;
2645 uniqtranscale_reg_value = 0x55ADDA3A;
2646 break;
2647 default:
2648 return 0;
2649 }
2650 break;
2651 default:
2652 return 0;
2653 }
2654
2655 mutex_lock(&dev_priv->dpio_lock);
2656 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2657 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2658 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2659 uniqtranscale_reg_value);
2660 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2661 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2662 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2663 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2664 mutex_unlock(&dev_priv->dpio_lock);
2665
2666 return 0;
2667 }
2668
2669 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2670 {
2671 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2672 struct drm_i915_private *dev_priv = dev->dev_private;
2673 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2674 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2675 u32 deemph_reg_value, margin_reg_value, val;
2676 uint8_t train_set = intel_dp->train_set[0];
2677 enum dpio_channel ch = vlv_dport_to_channel(dport);
2678 enum pipe pipe = intel_crtc->pipe;
2679 int i;
2680
2681 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2682 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2683 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2684 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2685 deemph_reg_value = 128;
2686 margin_reg_value = 52;
2687 break;
2688 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2689 deemph_reg_value = 128;
2690 margin_reg_value = 77;
2691 break;
2692 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2693 deemph_reg_value = 128;
2694 margin_reg_value = 102;
2695 break;
2696 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2697 deemph_reg_value = 128;
2698 margin_reg_value = 154;
2699 /* FIXME extra to set for 1200 */
2700 break;
2701 default:
2702 return 0;
2703 }
2704 break;
2705 case DP_TRAIN_PRE_EMPH_LEVEL_1:
2706 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2707 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2708 deemph_reg_value = 85;
2709 margin_reg_value = 78;
2710 break;
2711 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2712 deemph_reg_value = 85;
2713 margin_reg_value = 116;
2714 break;
2715 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2716 deemph_reg_value = 85;
2717 margin_reg_value = 154;
2718 break;
2719 default:
2720 return 0;
2721 }
2722 break;
2723 case DP_TRAIN_PRE_EMPH_LEVEL_2:
2724 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2725 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2726 deemph_reg_value = 64;
2727 margin_reg_value = 104;
2728 break;
2729 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2730 deemph_reg_value = 64;
2731 margin_reg_value = 154;
2732 break;
2733 default:
2734 return 0;
2735 }
2736 break;
2737 case DP_TRAIN_PRE_EMPH_LEVEL_3:
2738 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2739 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2740 deemph_reg_value = 43;
2741 margin_reg_value = 154;
2742 break;
2743 default:
2744 return 0;
2745 }
2746 break;
2747 default:
2748 return 0;
2749 }
2750
2751 mutex_lock(&dev_priv->dpio_lock);
2752
2753 /* Clear calc init */
2754 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2755 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2756 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2757
2758 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2759 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2760 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2761
2762 /* Program swing deemph */
2763 for (i = 0; i < 4; i++) {
2764 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2765 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2766 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2767 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2768 }
2769
2770 /* Program swing margin */
2771 for (i = 0; i < 4; i++) {
2772 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2773 val &= ~DPIO_SWING_MARGIN000_MASK;
2774 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
2775 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2776 }
2777
2778 /* Disable unique transition scale */
2779 for (i = 0; i < 4; i++) {
2780 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2781 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2782 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2783 }
2784
2785 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2786 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
2787 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2788 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
2789
2790 /*
2791 * The document said it needs to set bit 27 for ch0 and bit 26
2792 * for ch1. Might be a typo in the doc.
2793 * For now, for this unique transition scale selection, set bit
2794 * 27 for ch0 and ch1.
2795 */
2796 for (i = 0; i < 4; i++) {
2797 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2798 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2799 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2800 }
2801
2802 for (i = 0; i < 4; i++) {
2803 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2804 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2805 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2806 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2807 }
2808 }
2809
2810 /* Start swing calculation */
2811 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2812 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2813 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2814
2815 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2816 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2817 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2818
2819 /* LRC Bypass */
2820 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2821 val |= DPIO_LRC_BYPASS;
2822 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2823
2824 mutex_unlock(&dev_priv->dpio_lock);
2825
2826 return 0;
2827 }
2828
2829 static void
2830 intel_get_adjust_train(struct intel_dp *intel_dp,
2831 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2832 {
2833 uint8_t v = 0;
2834 uint8_t p = 0;
2835 int lane;
2836 uint8_t voltage_max;
2837 uint8_t preemph_max;
2838
2839 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2840 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2841 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2842
2843 if (this_v > v)
2844 v = this_v;
2845 if (this_p > p)
2846 p = this_p;
2847 }
2848
2849 voltage_max = intel_dp_voltage_max(intel_dp);
2850 if (v >= voltage_max)
2851 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2852
2853 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2854 if (p >= preemph_max)
2855 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2856
2857 for (lane = 0; lane < 4; lane++)
2858 intel_dp->train_set[lane] = v | p;
2859 }
2860
2861 static uint32_t
2862 intel_gen4_signal_levels(uint8_t train_set)
2863 {
2864 uint32_t signal_levels = 0;
2865
2866 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2867 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2868 default:
2869 signal_levels |= DP_VOLTAGE_0_4;
2870 break;
2871 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2872 signal_levels |= DP_VOLTAGE_0_6;
2873 break;
2874 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2875 signal_levels |= DP_VOLTAGE_0_8;
2876 break;
2877 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2878 signal_levels |= DP_VOLTAGE_1_2;
2879 break;
2880 }
2881 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2882 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2883 default:
2884 signal_levels |= DP_PRE_EMPHASIS_0;
2885 break;
2886 case DP_TRAIN_PRE_EMPH_LEVEL_1:
2887 signal_levels |= DP_PRE_EMPHASIS_3_5;
2888 break;
2889 case DP_TRAIN_PRE_EMPH_LEVEL_2:
2890 signal_levels |= DP_PRE_EMPHASIS_6;
2891 break;
2892 case DP_TRAIN_PRE_EMPH_LEVEL_3:
2893 signal_levels |= DP_PRE_EMPHASIS_9_5;
2894 break;
2895 }
2896 return signal_levels;
2897 }
2898
2899 /* Gen6's DP voltage swing and pre-emphasis control */
2900 static uint32_t
2901 intel_gen6_edp_signal_levels(uint8_t train_set)
2902 {
2903 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2904 DP_TRAIN_PRE_EMPHASIS_MASK);
2905 switch (signal_levels) {
2906 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2907 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2908 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2909 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2910 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2911 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2912 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2913 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2914 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2915 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2916 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2917 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2918 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2919 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2920 default:
2921 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2922 "0x%x\n", signal_levels);
2923 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2924 }
2925 }
2926
2927 /* Gen7's DP voltage swing and pre-emphasis control */
2928 static uint32_t
2929 intel_gen7_edp_signal_levels(uint8_t train_set)
2930 {
2931 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2932 DP_TRAIN_PRE_EMPHASIS_MASK);
2933 switch (signal_levels) {
2934 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2935 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2936 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2937 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2938 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2939 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2940
2941 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2942 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2943 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2944 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2945
2946 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2947 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2948 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2949 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2950
2951 default:
2952 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2953 "0x%x\n", signal_levels);
2954 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2955 }
2956 }
2957
2958 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2959 static uint32_t
2960 intel_hsw_signal_levels(uint8_t train_set)
2961 {
2962 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2963 DP_TRAIN_PRE_EMPHASIS_MASK);
2964 switch (signal_levels) {
2965 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2966 return DDI_BUF_TRANS_SELECT(0);
2967 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2968 return DDI_BUF_TRANS_SELECT(1);
2969 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2970 return DDI_BUF_TRANS_SELECT(2);
2971 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
2972 return DDI_BUF_TRANS_SELECT(3);
2973
2974 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2975 return DDI_BUF_TRANS_SELECT(4);
2976 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2977 return DDI_BUF_TRANS_SELECT(5);
2978 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2979 return DDI_BUF_TRANS_SELECT(6);
2980
2981 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2982 return DDI_BUF_TRANS_SELECT(7);
2983 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2984 return DDI_BUF_TRANS_SELECT(8);
2985 default:
2986 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2987 "0x%x\n", signal_levels);
2988 return DDI_BUF_TRANS_SELECT(0);
2989 }
2990 }
2991
2992 /* Properly updates "DP" with the correct signal levels. */
2993 static void
2994 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2995 {
2996 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2997 enum port port = intel_dig_port->port;
2998 struct drm_device *dev = intel_dig_port->base.base.dev;
2999 uint32_t signal_levels, mask;
3000 uint8_t train_set = intel_dp->train_set[0];
3001
3002 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3003 signal_levels = intel_hsw_signal_levels(train_set);
3004 mask = DDI_BUF_EMP_MASK;
3005 } else if (IS_CHERRYVIEW(dev)) {
3006 signal_levels = intel_chv_signal_levels(intel_dp);
3007 mask = 0;
3008 } else if (IS_VALLEYVIEW(dev)) {
3009 signal_levels = intel_vlv_signal_levels(intel_dp);
3010 mask = 0;
3011 } else if (IS_GEN7(dev) && port == PORT_A) {
3012 signal_levels = intel_gen7_edp_signal_levels(train_set);
3013 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3014 } else if (IS_GEN6(dev) && port == PORT_A) {
3015 signal_levels = intel_gen6_edp_signal_levels(train_set);
3016 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3017 } else {
3018 signal_levels = intel_gen4_signal_levels(train_set);
3019 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3020 }
3021
3022 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3023
3024 *DP = (*DP & ~mask) | signal_levels;
3025 }
3026
3027 static bool
3028 intel_dp_set_link_train(struct intel_dp *intel_dp,
3029 uint32_t *DP,
3030 uint8_t dp_train_pat)
3031 {
3032 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3033 struct drm_device *dev = intel_dig_port->base.base.dev;
3034 struct drm_i915_private *dev_priv = dev->dev_private;
3035 enum port port = intel_dig_port->port;
3036 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3037 int ret, len;
3038
3039 if (HAS_DDI(dev)) {
3040 uint32_t temp = I915_READ(DP_TP_CTL(port));
3041
3042 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3043 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3044 else
3045 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3046
3047 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3048 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3049 case DP_TRAINING_PATTERN_DISABLE:
3050 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3051
3052 break;
3053 case DP_TRAINING_PATTERN_1:
3054 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3055 break;
3056 case DP_TRAINING_PATTERN_2:
3057 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3058 break;
3059 case DP_TRAINING_PATTERN_3:
3060 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3061 break;
3062 }
3063 I915_WRITE(DP_TP_CTL(port), temp);
3064
3065 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3066 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3067
3068 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3069 case DP_TRAINING_PATTERN_DISABLE:
3070 *DP |= DP_LINK_TRAIN_OFF_CPT;
3071 break;
3072 case DP_TRAINING_PATTERN_1:
3073 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3074 break;
3075 case DP_TRAINING_PATTERN_2:
3076 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3077 break;
3078 case DP_TRAINING_PATTERN_3:
3079 DRM_ERROR("DP training pattern 3 not supported\n");
3080 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3081 break;
3082 }
3083
3084 } else {
3085 if (IS_CHERRYVIEW(dev))
3086 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
3087 else
3088 *DP &= ~DP_LINK_TRAIN_MASK;
3089
3090 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3091 case DP_TRAINING_PATTERN_DISABLE:
3092 *DP |= DP_LINK_TRAIN_OFF;
3093 break;
3094 case DP_TRAINING_PATTERN_1:
3095 *DP |= DP_LINK_TRAIN_PAT_1;
3096 break;
3097 case DP_TRAINING_PATTERN_2:
3098 *DP |= DP_LINK_TRAIN_PAT_2;
3099 break;
3100 case DP_TRAINING_PATTERN_3:
3101 if (IS_CHERRYVIEW(dev)) {
3102 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
3103 } else {
3104 DRM_ERROR("DP training pattern 3 not supported\n");
3105 *DP |= DP_LINK_TRAIN_PAT_2;
3106 }
3107 break;
3108 }
3109 }
3110
3111 I915_WRITE(intel_dp->output_reg, *DP);
3112 POSTING_READ(intel_dp->output_reg);
3113
3114 buf[0] = dp_train_pat;
3115 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3116 DP_TRAINING_PATTERN_DISABLE) {
3117 /* don't write DP_TRAINING_LANEx_SET on disable */
3118 len = 1;
3119 } else {
3120 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3121 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3122 len = intel_dp->lane_count + 1;
3123 }
3124
3125 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3126 buf, len);
3127
3128 return ret == len;
3129 }
3130
3131 static bool
3132 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3133 uint8_t dp_train_pat)
3134 {
3135 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3136 intel_dp_set_signal_levels(intel_dp, DP);
3137 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3138 }
3139
3140 static bool
3141 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3142 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3143 {
3144 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3145 struct drm_device *dev = intel_dig_port->base.base.dev;
3146 struct drm_i915_private *dev_priv = dev->dev_private;
3147 int ret;
3148
3149 intel_get_adjust_train(intel_dp, link_status);
3150 intel_dp_set_signal_levels(intel_dp, DP);
3151
3152 I915_WRITE(intel_dp->output_reg, *DP);
3153 POSTING_READ(intel_dp->output_reg);
3154
3155 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3156 intel_dp->train_set, intel_dp->lane_count);
3157
3158 return ret == intel_dp->lane_count;
3159 }
3160
3161 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3162 {
3163 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3164 struct drm_device *dev = intel_dig_port->base.base.dev;
3165 struct drm_i915_private *dev_priv = dev->dev_private;
3166 enum port port = intel_dig_port->port;
3167 uint32_t val;
3168
3169 if (!HAS_DDI(dev))
3170 return;
3171
3172 val = I915_READ(DP_TP_CTL(port));
3173 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3174 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3175 I915_WRITE(DP_TP_CTL(port), val);
3176
3177 /*
3178 * On PORT_A we can have only eDP in SST mode. There the only reason
3179 * we need to set idle transmission mode is to work around a HW issue
3180 * where we enable the pipe while not in idle link-training mode.
3181 * In this case there is requirement to wait for a minimum number of
3182 * idle patterns to be sent.
3183 */
3184 if (port == PORT_A)
3185 return;
3186
3187 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3188 1))
3189 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3190 }
3191
3192 /* Enable corresponding port and start training pattern 1 */
3193 void
3194 intel_dp_start_link_train(struct intel_dp *intel_dp)
3195 {
3196 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3197 struct drm_device *dev = encoder->dev;
3198 int i;
3199 uint8_t voltage;
3200 int voltage_tries, loop_tries;
3201 uint32_t DP = intel_dp->DP;
3202 uint8_t link_config[2];
3203
3204 if (HAS_DDI(dev))
3205 intel_ddi_prepare_link_retrain(encoder);
3206
3207 /* Write the link configuration data */
3208 link_config[0] = intel_dp->link_bw;
3209 link_config[1] = intel_dp->lane_count;
3210 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3211 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3212 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3213
3214 link_config[0] = 0;
3215 link_config[1] = DP_SET_ANSI_8B10B;
3216 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3217
3218 DP |= DP_PORT_EN;
3219
3220 /* clock recovery */
3221 if (!intel_dp_reset_link_train(intel_dp, &DP,
3222 DP_TRAINING_PATTERN_1 |
3223 DP_LINK_SCRAMBLING_DISABLE)) {
3224 DRM_ERROR("failed to enable link training\n");
3225 return;
3226 }
3227
3228 voltage = 0xff;
3229 voltage_tries = 0;
3230 loop_tries = 0;
3231 for (;;) {
3232 uint8_t link_status[DP_LINK_STATUS_SIZE];
3233
3234 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3235 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3236 DRM_ERROR("failed to get link status\n");
3237 break;
3238 }
3239
3240 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3241 DRM_DEBUG_KMS("clock recovery OK\n");
3242 break;
3243 }
3244
3245 /* Check to see if we've tried the max voltage */
3246 for (i = 0; i < intel_dp->lane_count; i++)
3247 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3248 break;
3249 if (i == intel_dp->lane_count) {
3250 ++loop_tries;
3251 if (loop_tries == 5) {
3252 DRM_ERROR("too many full retries, give up\n");
3253 break;
3254 }
3255 intel_dp_reset_link_train(intel_dp, &DP,
3256 DP_TRAINING_PATTERN_1 |
3257 DP_LINK_SCRAMBLING_DISABLE);
3258 voltage_tries = 0;
3259 continue;
3260 }
3261
3262 /* Check to see if we've tried the same voltage 5 times */
3263 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3264 ++voltage_tries;
3265 if (voltage_tries == 5) {
3266 DRM_ERROR("too many voltage retries, give up\n");
3267 break;
3268 }
3269 } else
3270 voltage_tries = 0;
3271 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3272
3273 /* Update training set as requested by target */
3274 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3275 DRM_ERROR("failed to update link training\n");
3276 break;
3277 }
3278 }
3279
3280 intel_dp->DP = DP;
3281 }
3282
3283 void
3284 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3285 {
3286 bool channel_eq = false;
3287 int tries, cr_tries;
3288 uint32_t DP = intel_dp->DP;
3289 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3290
3291 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3292 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3293 training_pattern = DP_TRAINING_PATTERN_3;
3294
3295 /* channel equalization */
3296 if (!intel_dp_set_link_train(intel_dp, &DP,
3297 training_pattern |
3298 DP_LINK_SCRAMBLING_DISABLE)) {
3299 DRM_ERROR("failed to start channel equalization\n");
3300 return;
3301 }
3302
3303 tries = 0;
3304 cr_tries = 0;
3305 channel_eq = false;
3306 for (;;) {
3307 uint8_t link_status[DP_LINK_STATUS_SIZE];
3308
3309 if (cr_tries > 5) {
3310 DRM_ERROR("failed to train DP, aborting\n");
3311 break;
3312 }
3313
3314 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3315 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3316 DRM_ERROR("failed to get link status\n");
3317 break;
3318 }
3319
3320 /* Make sure clock is still ok */
3321 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3322 intel_dp_start_link_train(intel_dp);
3323 intel_dp_set_link_train(intel_dp, &DP,
3324 training_pattern |
3325 DP_LINK_SCRAMBLING_DISABLE);
3326 cr_tries++;
3327 continue;
3328 }
3329
3330 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3331 channel_eq = true;
3332 break;
3333 }
3334
3335 /* Try 5 times, then try clock recovery if that fails */
3336 if (tries > 5) {
3337 intel_dp_link_down(intel_dp);
3338 intel_dp_start_link_train(intel_dp);
3339 intel_dp_set_link_train(intel_dp, &DP,
3340 training_pattern |
3341 DP_LINK_SCRAMBLING_DISABLE);
3342 tries = 0;
3343 cr_tries++;
3344 continue;
3345 }
3346
3347 /* Update training set as requested by target */
3348 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3349 DRM_ERROR("failed to update link training\n");
3350 break;
3351 }
3352 ++tries;
3353 }
3354
3355 intel_dp_set_idle_link_train(intel_dp);
3356
3357 intel_dp->DP = DP;
3358
3359 if (channel_eq)
3360 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3361
3362 }
3363
3364 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3365 {
3366 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3367 DP_TRAINING_PATTERN_DISABLE);
3368 }
3369
3370 static void
3371 intel_dp_link_down(struct intel_dp *intel_dp)
3372 {
3373 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3374 enum port port = intel_dig_port->port;
3375 struct drm_device *dev = intel_dig_port->base.base.dev;
3376 struct drm_i915_private *dev_priv = dev->dev_private;
3377 struct intel_crtc *intel_crtc =
3378 to_intel_crtc(intel_dig_port->base.base.crtc);
3379 uint32_t DP = intel_dp->DP;
3380
3381 if (WARN_ON(HAS_DDI(dev)))
3382 return;
3383
3384 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3385 return;
3386
3387 DRM_DEBUG_KMS("\n");
3388
3389 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3390 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3391 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3392 } else {
3393 if (IS_CHERRYVIEW(dev))
3394 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3395 else
3396 DP &= ~DP_LINK_TRAIN_MASK;
3397 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3398 }
3399 POSTING_READ(intel_dp->output_reg);
3400
3401 if (HAS_PCH_IBX(dev) &&
3402 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3403 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3404
3405 /* Hardware workaround: leaving our transcoder select
3406 * set to transcoder B while it's off will prevent the
3407 * corresponding HDMI output on transcoder A.
3408 *
3409 * Combine this with another hardware workaround:
3410 * transcoder select bit can only be cleared while the
3411 * port is enabled.
3412 */
3413 DP &= ~DP_PIPEB_SELECT;
3414 I915_WRITE(intel_dp->output_reg, DP);
3415
3416 /* Changes to enable or select take place the vblank
3417 * after being written.
3418 */
3419 if (WARN_ON(crtc == NULL)) {
3420 /* We should never try to disable a port without a crtc
3421 * attached. For paranoia keep the code around for a
3422 * bit. */
3423 POSTING_READ(intel_dp->output_reg);
3424 msleep(50);
3425 } else
3426 intel_wait_for_vblank(dev, intel_crtc->pipe);
3427 }
3428
3429 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3430 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3431 POSTING_READ(intel_dp->output_reg);
3432 msleep(intel_dp->panel_power_down_delay);
3433 }
3434
3435 static bool
3436 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3437 {
3438 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3439 struct drm_device *dev = dig_port->base.base.dev;
3440 struct drm_i915_private *dev_priv = dev->dev_private;
3441
3442 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3443 sizeof(intel_dp->dpcd)) < 0)
3444 return false; /* aux transfer failed */
3445
3446 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3447
3448 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3449 return false; /* DPCD not present */
3450
3451 /* Check if the panel supports PSR */
3452 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3453 if (is_edp(intel_dp)) {
3454 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3455 intel_dp->psr_dpcd,
3456 sizeof(intel_dp->psr_dpcd));
3457 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3458 dev_priv->psr.sink_support = true;
3459 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3460 }
3461 }
3462
3463 /* Training Pattern 3 support */
3464 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3465 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3466 intel_dp->use_tps3 = true;
3467 DRM_DEBUG_KMS("Displayport TPS3 supported");
3468 } else
3469 intel_dp->use_tps3 = false;
3470
3471 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3472 DP_DWN_STRM_PORT_PRESENT))
3473 return true; /* native DP sink */
3474
3475 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3476 return true; /* no per-port downstream info */
3477
3478 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3479 intel_dp->downstream_ports,
3480 DP_MAX_DOWNSTREAM_PORTS) < 0)
3481 return false; /* downstream port status fetch failed */
3482
3483 return true;
3484 }
3485
3486 static void
3487 intel_dp_probe_oui(struct intel_dp *intel_dp)
3488 {
3489 u8 buf[3];
3490
3491 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3492 return;
3493
3494 intel_edp_panel_vdd_on(intel_dp);
3495
3496 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3497 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3498 buf[0], buf[1], buf[2]);
3499
3500 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3501 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3502 buf[0], buf[1], buf[2]);
3503
3504 intel_edp_panel_vdd_off(intel_dp, false);
3505 }
3506
3507 static bool
3508 intel_dp_probe_mst(struct intel_dp *intel_dp)
3509 {
3510 u8 buf[1];
3511
3512 if (!intel_dp->can_mst)
3513 return false;
3514
3515 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3516 return false;
3517
3518 intel_edp_panel_vdd_on(intel_dp);
3519 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3520 if (buf[0] & DP_MST_CAP) {
3521 DRM_DEBUG_KMS("Sink is MST capable\n");
3522 intel_dp->is_mst = true;
3523 } else {
3524 DRM_DEBUG_KMS("Sink is not MST capable\n");
3525 intel_dp->is_mst = false;
3526 }
3527 }
3528 intel_edp_panel_vdd_off(intel_dp, false);
3529
3530 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3531 return intel_dp->is_mst;
3532 }
3533
3534 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3535 {
3536 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3537 struct drm_device *dev = intel_dig_port->base.base.dev;
3538 struct intel_crtc *intel_crtc =
3539 to_intel_crtc(intel_dig_port->base.base.crtc);
3540 u8 buf[1];
3541
3542 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3543 return -EAGAIN;
3544
3545 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3546 return -ENOTTY;
3547
3548 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3549 DP_TEST_SINK_START) < 0)
3550 return -EAGAIN;
3551
3552 /* Wait 2 vblanks to be sure we will have the correct CRC value */
3553 intel_wait_for_vblank(dev, intel_crtc->pipe);
3554 intel_wait_for_vblank(dev, intel_crtc->pipe);
3555
3556 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3557 return -EAGAIN;
3558
3559 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3560 return 0;
3561 }
3562
3563 static bool
3564 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3565 {
3566 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3567 DP_DEVICE_SERVICE_IRQ_VECTOR,
3568 sink_irq_vector, 1) == 1;
3569 }
3570
3571 static bool
3572 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3573 {
3574 int ret;
3575
3576 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3577 DP_SINK_COUNT_ESI,
3578 sink_irq_vector, 14);
3579 if (ret != 14)
3580 return false;
3581
3582 return true;
3583 }
3584
3585 static void
3586 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3587 {
3588 /* NAK by default */
3589 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3590 }
3591
3592 static int
3593 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3594 {
3595 bool bret;
3596
3597 if (intel_dp->is_mst) {
3598 u8 esi[16] = { 0 };
3599 int ret = 0;
3600 int retry;
3601 bool handled;
3602 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3603 go_again:
3604 if (bret == true) {
3605
3606 /* check link status - esi[10] = 0x200c */
3607 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3608 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3609 intel_dp_start_link_train(intel_dp);
3610 intel_dp_complete_link_train(intel_dp);
3611 intel_dp_stop_link_train(intel_dp);
3612 }
3613
3614 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3615 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3616
3617 if (handled) {
3618 for (retry = 0; retry < 3; retry++) {
3619 int wret;
3620 wret = drm_dp_dpcd_write(&intel_dp->aux,
3621 DP_SINK_COUNT_ESI+1,
3622 &esi[1], 3);
3623 if (wret == 3) {
3624 break;
3625 }
3626 }
3627
3628 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3629 if (bret == true) {
3630 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3631 goto go_again;
3632 }
3633 } else
3634 ret = 0;
3635
3636 return ret;
3637 } else {
3638 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3639 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3640 intel_dp->is_mst = false;
3641 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3642 /* send a hotplug event */
3643 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3644 }
3645 }
3646 return -EINVAL;
3647 }
3648
3649 /*
3650 * According to DP spec
3651 * 5.1.2:
3652 * 1. Read DPCD
3653 * 2. Configure link according to Receiver Capabilities
3654 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3655 * 4. Check link status on receipt of hot-plug interrupt
3656 */
3657 void
3658 intel_dp_check_link_status(struct intel_dp *intel_dp)
3659 {
3660 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3661 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3662 u8 sink_irq_vector;
3663 u8 link_status[DP_LINK_STATUS_SIZE];
3664
3665 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3666
3667 if (!intel_encoder->connectors_active)
3668 return;
3669
3670 if (WARN_ON(!intel_encoder->base.crtc))
3671 return;
3672
3673 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3674 return;
3675
3676 /* Try to read receiver status if the link appears to be up */
3677 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3678 return;
3679 }
3680
3681 /* Now read the DPCD to see if it's actually running */
3682 if (!intel_dp_get_dpcd(intel_dp)) {
3683 return;
3684 }
3685
3686 /* Try to read the source of the interrupt */
3687 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3688 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3689 /* Clear interrupt source */
3690 drm_dp_dpcd_writeb(&intel_dp->aux,
3691 DP_DEVICE_SERVICE_IRQ_VECTOR,
3692 sink_irq_vector);
3693
3694 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3695 intel_dp_handle_test_request(intel_dp);
3696 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3697 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3698 }
3699
3700 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3701 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3702 intel_encoder->base.name);
3703 intel_dp_start_link_train(intel_dp);
3704 intel_dp_complete_link_train(intel_dp);
3705 intel_dp_stop_link_train(intel_dp);
3706 }
3707 }
3708
3709 /* XXX this is probably wrong for multiple downstream ports */
3710 static enum drm_connector_status
3711 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3712 {
3713 uint8_t *dpcd = intel_dp->dpcd;
3714 uint8_t type;
3715
3716 if (!intel_dp_get_dpcd(intel_dp))
3717 return connector_status_disconnected;
3718
3719 /* if there's no downstream port, we're done */
3720 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3721 return connector_status_connected;
3722
3723 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3724 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3725 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3726 uint8_t reg;
3727
3728 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3729 &reg, 1) < 0)
3730 return connector_status_unknown;
3731
3732 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3733 : connector_status_disconnected;
3734 }
3735
3736 /* If no HPD, poke DDC gently */
3737 if (drm_probe_ddc(&intel_dp->aux.ddc))
3738 return connector_status_connected;
3739
3740 /* Well we tried, say unknown for unreliable port types */
3741 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3742 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3743 if (type == DP_DS_PORT_TYPE_VGA ||
3744 type == DP_DS_PORT_TYPE_NON_EDID)
3745 return connector_status_unknown;
3746 } else {
3747 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3748 DP_DWN_STRM_PORT_TYPE_MASK;
3749 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3750 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3751 return connector_status_unknown;
3752 }
3753
3754 /* Anything else is out of spec, warn and ignore */
3755 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3756 return connector_status_disconnected;
3757 }
3758
3759 static enum drm_connector_status
3760 edp_detect(struct intel_dp *intel_dp)
3761 {
3762 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3763 enum drm_connector_status status;
3764
3765 status = intel_panel_detect(dev);
3766 if (status == connector_status_unknown)
3767 status = connector_status_connected;
3768
3769 return status;
3770 }
3771
3772 static enum drm_connector_status
3773 ironlake_dp_detect(struct intel_dp *intel_dp)
3774 {
3775 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3776 struct drm_i915_private *dev_priv = dev->dev_private;
3777 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3778
3779 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3780 return connector_status_disconnected;
3781
3782 return intel_dp_detect_dpcd(intel_dp);
3783 }
3784
3785 static enum drm_connector_status
3786 g4x_dp_detect(struct intel_dp *intel_dp)
3787 {
3788 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3789 struct drm_i915_private *dev_priv = dev->dev_private;
3790 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3791 uint32_t bit;
3792
3793 if (IS_VALLEYVIEW(dev)) {
3794 switch (intel_dig_port->port) {
3795 case PORT_B:
3796 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3797 break;
3798 case PORT_C:
3799 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3800 break;
3801 case PORT_D:
3802 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3803 break;
3804 default:
3805 return connector_status_unknown;
3806 }
3807 } else {
3808 switch (intel_dig_port->port) {
3809 case PORT_B:
3810 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3811 break;
3812 case PORT_C:
3813 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3814 break;
3815 case PORT_D:
3816 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3817 break;
3818 default:
3819 return connector_status_unknown;
3820 }
3821 }
3822
3823 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3824 return connector_status_disconnected;
3825
3826 return intel_dp_detect_dpcd(intel_dp);
3827 }
3828
3829 static struct edid *
3830 intel_dp_get_edid(struct intel_dp *intel_dp)
3831 {
3832 struct intel_connector *intel_connector = intel_dp->attached_connector;
3833
3834 /* use cached edid if we have one */
3835 if (intel_connector->edid) {
3836 /* invalid edid */
3837 if (IS_ERR(intel_connector->edid))
3838 return NULL;
3839
3840 return drm_edid_duplicate(intel_connector->edid);
3841 } else
3842 return drm_get_edid(&intel_connector->base,
3843 &intel_dp->aux.ddc);
3844 }
3845
3846 static void
3847 intel_dp_set_edid(struct intel_dp *intel_dp)
3848 {
3849 struct intel_connector *intel_connector = intel_dp->attached_connector;
3850 struct edid *edid;
3851
3852 edid = intel_dp_get_edid(intel_dp);
3853 intel_connector->detect_edid = edid;
3854
3855 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
3856 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
3857 else
3858 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3859 }
3860
3861 static void
3862 intel_dp_unset_edid(struct intel_dp *intel_dp)
3863 {
3864 struct intel_connector *intel_connector = intel_dp->attached_connector;
3865
3866 kfree(intel_connector->detect_edid);
3867 intel_connector->detect_edid = NULL;
3868
3869 intel_dp->has_audio = false;
3870 }
3871
3872 static enum intel_display_power_domain
3873 intel_dp_power_get(struct intel_dp *dp)
3874 {
3875 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
3876 enum intel_display_power_domain power_domain;
3877
3878 power_domain = intel_display_port_power_domain(encoder);
3879 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
3880
3881 return power_domain;
3882 }
3883
3884 static void
3885 intel_dp_power_put(struct intel_dp *dp,
3886 enum intel_display_power_domain power_domain)
3887 {
3888 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
3889 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
3890 }
3891
3892 static enum drm_connector_status
3893 intel_dp_detect(struct drm_connector *connector, bool force)
3894 {
3895 struct intel_dp *intel_dp = intel_attached_dp(connector);
3896 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3897 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3898 struct drm_device *dev = connector->dev;
3899 enum drm_connector_status status;
3900 enum intel_display_power_domain power_domain;
3901 bool ret;
3902
3903 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3904 connector->base.id, connector->name);
3905 intel_dp_unset_edid(intel_dp);
3906
3907 if (intel_dp->is_mst) {
3908 /* MST devices are disconnected from a monitor POV */
3909 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3910 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3911 return connector_status_disconnected;
3912 }
3913
3914 power_domain = intel_dp_power_get(intel_dp);
3915
3916 /* Can't disconnect eDP, but you can close the lid... */
3917 if (is_edp(intel_dp))
3918 status = edp_detect(intel_dp);
3919 else if (HAS_PCH_SPLIT(dev))
3920 status = ironlake_dp_detect(intel_dp);
3921 else
3922 status = g4x_dp_detect(intel_dp);
3923 if (status != connector_status_connected)
3924 goto out;
3925
3926 intel_dp_probe_oui(intel_dp);
3927
3928 ret = intel_dp_probe_mst(intel_dp);
3929 if (ret) {
3930 /* if we are in MST mode then this connector
3931 won't appear connected or have anything with EDID on it */
3932 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3933 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3934 status = connector_status_disconnected;
3935 goto out;
3936 }
3937
3938 intel_dp_set_edid(intel_dp);
3939
3940 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3941 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3942 status = connector_status_connected;
3943
3944 out:
3945 intel_dp_power_put(intel_dp, power_domain);
3946 return status;
3947 }
3948
3949 static void
3950 intel_dp_force(struct drm_connector *connector)
3951 {
3952 struct intel_dp *intel_dp = intel_attached_dp(connector);
3953 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3954 enum intel_display_power_domain power_domain;
3955
3956 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3957 connector->base.id, connector->name);
3958 intel_dp_unset_edid(intel_dp);
3959
3960 if (connector->status != connector_status_connected)
3961 return;
3962
3963 power_domain = intel_dp_power_get(intel_dp);
3964
3965 intel_dp_set_edid(intel_dp);
3966
3967 intel_dp_power_put(intel_dp, power_domain);
3968
3969 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3970 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3971 }
3972
3973 static int intel_dp_get_modes(struct drm_connector *connector)
3974 {
3975 struct intel_connector *intel_connector = to_intel_connector(connector);
3976 struct edid *edid;
3977
3978 edid = intel_connector->detect_edid;
3979 if (edid) {
3980 int ret = intel_connector_update_modes(connector, edid);
3981 if (ret)
3982 return ret;
3983 }
3984
3985 /* if eDP has no EDID, fall back to fixed mode */
3986 if (is_edp(intel_attached_dp(connector)) &&
3987 intel_connector->panel.fixed_mode) {
3988 struct drm_display_mode *mode;
3989
3990 mode = drm_mode_duplicate(connector->dev,
3991 intel_connector->panel.fixed_mode);
3992 if (mode) {
3993 drm_mode_probed_add(connector, mode);
3994 return 1;
3995 }
3996 }
3997
3998 return 0;
3999 }
4000
4001 static bool
4002 intel_dp_detect_audio(struct drm_connector *connector)
4003 {
4004 bool has_audio = false;
4005 struct edid *edid;
4006
4007 edid = to_intel_connector(connector)->detect_edid;
4008 if (edid)
4009 has_audio = drm_detect_monitor_audio(edid);
4010
4011 return has_audio;
4012 }
4013
4014 static int
4015 intel_dp_set_property(struct drm_connector *connector,
4016 struct drm_property *property,
4017 uint64_t val)
4018 {
4019 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4020 struct intel_connector *intel_connector = to_intel_connector(connector);
4021 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4022 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4023 int ret;
4024
4025 ret = drm_object_property_set_value(&connector->base, property, val);
4026 if (ret)
4027 return ret;
4028
4029 if (property == dev_priv->force_audio_property) {
4030 int i = val;
4031 bool has_audio;
4032
4033 if (i == intel_dp->force_audio)
4034 return 0;
4035
4036 intel_dp->force_audio = i;
4037
4038 if (i == HDMI_AUDIO_AUTO)
4039 has_audio = intel_dp_detect_audio(connector);
4040 else
4041 has_audio = (i == HDMI_AUDIO_ON);
4042
4043 if (has_audio == intel_dp->has_audio)
4044 return 0;
4045
4046 intel_dp->has_audio = has_audio;
4047 goto done;
4048 }
4049
4050 if (property == dev_priv->broadcast_rgb_property) {
4051 bool old_auto = intel_dp->color_range_auto;
4052 uint32_t old_range = intel_dp->color_range;
4053
4054 switch (val) {
4055 case INTEL_BROADCAST_RGB_AUTO:
4056 intel_dp->color_range_auto = true;
4057 break;
4058 case INTEL_BROADCAST_RGB_FULL:
4059 intel_dp->color_range_auto = false;
4060 intel_dp->color_range = 0;
4061 break;
4062 case INTEL_BROADCAST_RGB_LIMITED:
4063 intel_dp->color_range_auto = false;
4064 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4065 break;
4066 default:
4067 return -EINVAL;
4068 }
4069
4070 if (old_auto == intel_dp->color_range_auto &&
4071 old_range == intel_dp->color_range)
4072 return 0;
4073
4074 goto done;
4075 }
4076
4077 if (is_edp(intel_dp) &&
4078 property == connector->dev->mode_config.scaling_mode_property) {
4079 if (val == DRM_MODE_SCALE_NONE) {
4080 DRM_DEBUG_KMS("no scaling not supported\n");
4081 return -EINVAL;
4082 }
4083
4084 if (intel_connector->panel.fitting_mode == val) {
4085 /* the eDP scaling property is not changed */
4086 return 0;
4087 }
4088 intel_connector->panel.fitting_mode = val;
4089
4090 goto done;
4091 }
4092
4093 return -EINVAL;
4094
4095 done:
4096 if (intel_encoder->base.crtc)
4097 intel_crtc_restore_mode(intel_encoder->base.crtc);
4098
4099 return 0;
4100 }
4101
4102 static void
4103 intel_dp_connector_destroy(struct drm_connector *connector)
4104 {
4105 struct intel_connector *intel_connector = to_intel_connector(connector);
4106
4107 intel_dp_unset_edid(intel_attached_dp(connector));
4108
4109 if (!IS_ERR_OR_NULL(intel_connector->edid))
4110 kfree(intel_connector->edid);
4111
4112 /* Can't call is_edp() since the encoder may have been destroyed
4113 * already. */
4114 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4115 intel_panel_fini(&intel_connector->panel);
4116
4117 drm_connector_cleanup(connector);
4118 kfree(connector);
4119 }
4120
4121 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4122 {
4123 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4124 struct intel_dp *intel_dp = &intel_dig_port->dp;
4125 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4126 struct drm_i915_private *dev_priv = dev->dev_private;
4127
4128 drm_dp_aux_unregister(&intel_dp->aux);
4129 intel_dp_mst_encoder_cleanup(intel_dig_port);
4130 drm_encoder_cleanup(encoder);
4131 if (is_edp(intel_dp)) {
4132 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4133 mutex_lock(&dev_priv->pps_mutex);
4134 edp_panel_vdd_off_sync(intel_dp);
4135 mutex_unlock(&dev_priv->pps_mutex);
4136 if (intel_dp->edp_notifier.notifier_call) {
4137 unregister_reboot_notifier(&intel_dp->edp_notifier);
4138 intel_dp->edp_notifier.notifier_call = NULL;
4139 }
4140 }
4141 kfree(intel_dig_port);
4142 }
4143
4144 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4145 {
4146 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4147 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4148 struct drm_i915_private *dev_priv = dev->dev_private;
4149
4150 if (!is_edp(intel_dp))
4151 return;
4152
4153 mutex_lock(&dev_priv->pps_mutex);
4154 edp_panel_vdd_off_sync(intel_dp);
4155 mutex_unlock(&dev_priv->pps_mutex);
4156 }
4157
4158 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4159 {
4160 intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4161 }
4162
4163 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4164 .dpms = intel_connector_dpms,
4165 .detect = intel_dp_detect,
4166 .force = intel_dp_force,
4167 .fill_modes = drm_helper_probe_single_connector_modes,
4168 .set_property = intel_dp_set_property,
4169 .destroy = intel_dp_connector_destroy,
4170 };
4171
4172 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4173 .get_modes = intel_dp_get_modes,
4174 .mode_valid = intel_dp_mode_valid,
4175 .best_encoder = intel_best_encoder,
4176 };
4177
4178 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4179 .reset = intel_dp_encoder_reset,
4180 .destroy = intel_dp_encoder_destroy,
4181 };
4182
4183 void
4184 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4185 {
4186 return;
4187 }
4188
4189 bool
4190 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4191 {
4192 struct intel_dp *intel_dp = &intel_dig_port->dp;
4193 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4194 struct drm_device *dev = intel_dig_port->base.base.dev;
4195 struct drm_i915_private *dev_priv = dev->dev_private;
4196 enum intel_display_power_domain power_domain;
4197 bool ret = true;
4198
4199 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4200 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4201
4202 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4203 port_name(intel_dig_port->port),
4204 long_hpd ? "long" : "short");
4205
4206 power_domain = intel_display_port_power_domain(intel_encoder);
4207 intel_display_power_get(dev_priv, power_domain);
4208
4209 if (long_hpd) {
4210 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4211 goto mst_fail;
4212
4213 if (!intel_dp_get_dpcd(intel_dp)) {
4214 goto mst_fail;
4215 }
4216
4217 intel_dp_probe_oui(intel_dp);
4218
4219 if (!intel_dp_probe_mst(intel_dp))
4220 goto mst_fail;
4221
4222 } else {
4223 if (intel_dp->is_mst) {
4224 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4225 goto mst_fail;
4226 }
4227
4228 if (!intel_dp->is_mst) {
4229 /*
4230 * we'll check the link status via the normal hot plug path later -
4231 * but for short hpds we should check it now
4232 */
4233 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4234 intel_dp_check_link_status(intel_dp);
4235 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4236 }
4237 }
4238 ret = false;
4239 goto put_power;
4240 mst_fail:
4241 /* if we were in MST mode, and device is not there get out of MST mode */
4242 if (intel_dp->is_mst) {
4243 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4244 intel_dp->is_mst = false;
4245 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4246 }
4247 put_power:
4248 intel_display_power_put(dev_priv, power_domain);
4249
4250 return ret;
4251 }
4252
4253 /* Return which DP Port should be selected for Transcoder DP control */
4254 int
4255 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4256 {
4257 struct drm_device *dev = crtc->dev;
4258 struct intel_encoder *intel_encoder;
4259 struct intel_dp *intel_dp;
4260
4261 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4262 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4263
4264 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4265 intel_encoder->type == INTEL_OUTPUT_EDP)
4266 return intel_dp->output_reg;
4267 }
4268
4269 return -1;
4270 }
4271
4272 /* check the VBT to see whether the eDP is on DP-D port */
4273 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4274 {
4275 struct drm_i915_private *dev_priv = dev->dev_private;
4276 union child_device_config *p_child;
4277 int i;
4278 static const short port_mapping[] = {
4279 [PORT_B] = PORT_IDPB,
4280 [PORT_C] = PORT_IDPC,
4281 [PORT_D] = PORT_IDPD,
4282 };
4283
4284 if (port == PORT_A)
4285 return true;
4286
4287 if (!dev_priv->vbt.child_dev_num)
4288 return false;
4289
4290 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4291 p_child = dev_priv->vbt.child_dev + i;
4292
4293 if (p_child->common.dvo_port == port_mapping[port] &&
4294 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4295 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4296 return true;
4297 }
4298 return false;
4299 }
4300
4301 void
4302 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4303 {
4304 struct intel_connector *intel_connector = to_intel_connector(connector);
4305
4306 intel_attach_force_audio_property(connector);
4307 intel_attach_broadcast_rgb_property(connector);
4308 intel_dp->color_range_auto = true;
4309
4310 if (is_edp(intel_dp)) {
4311 drm_mode_create_scaling_mode_property(connector->dev);
4312 drm_object_attach_property(
4313 &connector->base,
4314 connector->dev->mode_config.scaling_mode_property,
4315 DRM_MODE_SCALE_ASPECT);
4316 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4317 }
4318 }
4319
4320 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4321 {
4322 intel_dp->last_power_cycle = jiffies;
4323 intel_dp->last_power_on = jiffies;
4324 intel_dp->last_backlight_off = jiffies;
4325 }
4326
4327 static void
4328 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4329 struct intel_dp *intel_dp,
4330 struct edp_power_seq *out)
4331 {
4332 struct drm_i915_private *dev_priv = dev->dev_private;
4333 struct edp_power_seq cur, vbt, spec, final;
4334 u32 pp_on, pp_off, pp_div, pp;
4335 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4336
4337 lockdep_assert_held(&dev_priv->pps_mutex);
4338
4339 if (HAS_PCH_SPLIT(dev)) {
4340 pp_ctrl_reg = PCH_PP_CONTROL;
4341 pp_on_reg = PCH_PP_ON_DELAYS;
4342 pp_off_reg = PCH_PP_OFF_DELAYS;
4343 pp_div_reg = PCH_PP_DIVISOR;
4344 } else {
4345 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4346
4347 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4348 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4349 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4350 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4351 }
4352
4353 /* Workaround: Need to write PP_CONTROL with the unlock key as
4354 * the very first thing. */
4355 pp = ironlake_get_pp_control(intel_dp);
4356 I915_WRITE(pp_ctrl_reg, pp);
4357
4358 pp_on = I915_READ(pp_on_reg);
4359 pp_off = I915_READ(pp_off_reg);
4360 pp_div = I915_READ(pp_div_reg);
4361
4362 /* Pull timing values out of registers */
4363 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4364 PANEL_POWER_UP_DELAY_SHIFT;
4365
4366 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4367 PANEL_LIGHT_ON_DELAY_SHIFT;
4368
4369 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4370 PANEL_LIGHT_OFF_DELAY_SHIFT;
4371
4372 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4373 PANEL_POWER_DOWN_DELAY_SHIFT;
4374
4375 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4376 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4377
4378 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4379 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4380
4381 vbt = dev_priv->vbt.edp_pps;
4382
4383 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4384 * our hw here, which are all in 100usec. */
4385 spec.t1_t3 = 210 * 10;
4386 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4387 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4388 spec.t10 = 500 * 10;
4389 /* This one is special and actually in units of 100ms, but zero
4390 * based in the hw (so we need to add 100 ms). But the sw vbt
4391 * table multiplies it with 1000 to make it in units of 100usec,
4392 * too. */
4393 spec.t11_t12 = (510 + 100) * 10;
4394
4395 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4396 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4397
4398 /* Use the max of the register settings and vbt. If both are
4399 * unset, fall back to the spec limits. */
4400 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
4401 spec.field : \
4402 max(cur.field, vbt.field))
4403 assign_final(t1_t3);
4404 assign_final(t8);
4405 assign_final(t9);
4406 assign_final(t10);
4407 assign_final(t11_t12);
4408 #undef assign_final
4409
4410 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
4411 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4412 intel_dp->backlight_on_delay = get_delay(t8);
4413 intel_dp->backlight_off_delay = get_delay(t9);
4414 intel_dp->panel_power_down_delay = get_delay(t10);
4415 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4416 #undef get_delay
4417
4418 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4419 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4420 intel_dp->panel_power_cycle_delay);
4421
4422 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4423 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4424
4425 if (out)
4426 *out = final;
4427 }
4428
4429 static void
4430 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4431 struct intel_dp *intel_dp,
4432 struct edp_power_seq *seq)
4433 {
4434 struct drm_i915_private *dev_priv = dev->dev_private;
4435 u32 pp_on, pp_off, pp_div, port_sel = 0;
4436 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4437 int pp_on_reg, pp_off_reg, pp_div_reg;
4438 enum port port = dp_to_dig_port(intel_dp)->port;
4439
4440 lockdep_assert_held(&dev_priv->pps_mutex);
4441
4442 if (HAS_PCH_SPLIT(dev)) {
4443 pp_on_reg = PCH_PP_ON_DELAYS;
4444 pp_off_reg = PCH_PP_OFF_DELAYS;
4445 pp_div_reg = PCH_PP_DIVISOR;
4446 } else {
4447 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4448
4449 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4450 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4451 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4452 }
4453
4454 /*
4455 * And finally store the new values in the power sequencer. The
4456 * backlight delays are set to 1 because we do manual waits on them. For
4457 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4458 * we'll end up waiting for the backlight off delay twice: once when we
4459 * do the manual sleep, and once when we disable the panel and wait for
4460 * the PP_STATUS bit to become zero.
4461 */
4462 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4463 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4464 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4465 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4466 /* Compute the divisor for the pp clock, simply match the Bspec
4467 * formula. */
4468 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4469 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4470 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4471
4472 /* Haswell doesn't have any port selection bits for the panel
4473 * power sequencer any more. */
4474 if (IS_VALLEYVIEW(dev)) {
4475 port_sel = PANEL_PORT_SELECT_VLV(port);
4476 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4477 if (port == PORT_A)
4478 port_sel = PANEL_PORT_SELECT_DPA;
4479 else
4480 port_sel = PANEL_PORT_SELECT_DPD;
4481 }
4482
4483 pp_on |= port_sel;
4484
4485 I915_WRITE(pp_on_reg, pp_on);
4486 I915_WRITE(pp_off_reg, pp_off);
4487 I915_WRITE(pp_div_reg, pp_div);
4488
4489 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4490 I915_READ(pp_on_reg),
4491 I915_READ(pp_off_reg),
4492 I915_READ(pp_div_reg));
4493 }
4494
4495 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4496 {
4497 struct drm_i915_private *dev_priv = dev->dev_private;
4498 struct intel_encoder *encoder;
4499 struct intel_dp *intel_dp = NULL;
4500 struct intel_crtc_config *config = NULL;
4501 struct intel_crtc *intel_crtc = NULL;
4502 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4503 u32 reg, val;
4504 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4505
4506 if (refresh_rate <= 0) {
4507 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4508 return;
4509 }
4510
4511 if (intel_connector == NULL) {
4512 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4513 return;
4514 }
4515
4516 /*
4517 * FIXME: This needs proper synchronization with psr state. But really
4518 * hard to tell without seeing the user of this function of this code.
4519 * Check locking and ordering once that lands.
4520 */
4521 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4522 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4523 return;
4524 }
4525
4526 encoder = intel_attached_encoder(&intel_connector->base);
4527 intel_dp = enc_to_intel_dp(&encoder->base);
4528 intel_crtc = encoder->new_crtc;
4529
4530 if (!intel_crtc) {
4531 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4532 return;
4533 }
4534
4535 config = &intel_crtc->config;
4536
4537 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4538 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4539 return;
4540 }
4541
4542 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4543 index = DRRS_LOW_RR;
4544
4545 if (index == intel_dp->drrs_state.refresh_rate_type) {
4546 DRM_DEBUG_KMS(
4547 "DRRS requested for previously set RR...ignoring\n");
4548 return;
4549 }
4550
4551 if (!intel_crtc->active) {
4552 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4553 return;
4554 }
4555
4556 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4557 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4558 val = I915_READ(reg);
4559 if (index > DRRS_HIGH_RR) {
4560 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4561 intel_dp_set_m_n(intel_crtc);
4562 } else {
4563 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4564 }
4565 I915_WRITE(reg, val);
4566 }
4567
4568 /*
4569 * mutex taken to ensure that there is no race between differnt
4570 * drrs calls trying to update refresh rate. This scenario may occur
4571 * in future when idleness detection based DRRS in kernel and
4572 * possible calls from user space to set differnt RR are made.
4573 */
4574
4575 mutex_lock(&intel_dp->drrs_state.mutex);
4576
4577 intel_dp->drrs_state.refresh_rate_type = index;
4578
4579 mutex_unlock(&intel_dp->drrs_state.mutex);
4580
4581 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4582 }
4583
4584 static struct drm_display_mode *
4585 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4586 struct intel_connector *intel_connector,
4587 struct drm_display_mode *fixed_mode)
4588 {
4589 struct drm_connector *connector = &intel_connector->base;
4590 struct intel_dp *intel_dp = &intel_dig_port->dp;
4591 struct drm_device *dev = intel_dig_port->base.base.dev;
4592 struct drm_i915_private *dev_priv = dev->dev_private;
4593 struct drm_display_mode *downclock_mode = NULL;
4594
4595 if (INTEL_INFO(dev)->gen <= 6) {
4596 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4597 return NULL;
4598 }
4599
4600 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4601 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4602 return NULL;
4603 }
4604
4605 downclock_mode = intel_find_panel_downclock
4606 (dev, fixed_mode, connector);
4607
4608 if (!downclock_mode) {
4609 DRM_DEBUG_KMS("DRRS not supported\n");
4610 return NULL;
4611 }
4612
4613 dev_priv->drrs.connector = intel_connector;
4614
4615 mutex_init(&intel_dp->drrs_state.mutex);
4616
4617 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4618
4619 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4620 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
4621 return downclock_mode;
4622 }
4623
4624 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4625 {
4626 struct drm_device *dev = intel_encoder->base.dev;
4627 struct drm_i915_private *dev_priv = dev->dev_private;
4628 struct intel_dp *intel_dp;
4629 enum intel_display_power_domain power_domain;
4630
4631 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4632 return;
4633
4634 mutex_lock(&dev_priv->pps_mutex);
4635
4636 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4637 if (!edp_have_panel_vdd(intel_dp))
4638 goto out;
4639 /*
4640 * The VDD bit needs a power domain reference, so if the bit is
4641 * already enabled when we boot or resume, grab this reference and
4642 * schedule a vdd off, so we don't hold on to the reference
4643 * indefinitely.
4644 */
4645 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4646 power_domain = intel_display_port_power_domain(intel_encoder);
4647 intel_display_power_get(dev_priv, power_domain);
4648
4649 edp_panel_vdd_schedule_off(intel_dp);
4650 out:
4651 mutex_unlock(&dev_priv->pps_mutex);
4652 }
4653
4654 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4655 struct intel_connector *intel_connector,
4656 struct edp_power_seq *power_seq)
4657 {
4658 struct drm_connector *connector = &intel_connector->base;
4659 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4660 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4661 struct drm_device *dev = intel_encoder->base.dev;
4662 struct drm_i915_private *dev_priv = dev->dev_private;
4663 struct drm_display_mode *fixed_mode = NULL;
4664 struct drm_display_mode *downclock_mode = NULL;
4665 bool has_dpcd;
4666 struct drm_display_mode *scan;
4667 struct edid *edid;
4668
4669 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4670
4671 if (!is_edp(intel_dp))
4672 return true;
4673
4674 intel_edp_panel_vdd_sanitize(intel_encoder);
4675
4676 /* Cache DPCD and EDID for edp. */
4677 intel_edp_panel_vdd_on(intel_dp);
4678 has_dpcd = intel_dp_get_dpcd(intel_dp);
4679 intel_edp_panel_vdd_off(intel_dp, false);
4680
4681 if (has_dpcd) {
4682 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4683 dev_priv->no_aux_handshake =
4684 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4685 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4686 } else {
4687 /* if this fails, presume the device is a ghost */
4688 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4689 return false;
4690 }
4691
4692 /* We now know it's not a ghost, init power sequence regs. */
4693 mutex_lock(&dev_priv->pps_mutex);
4694 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4695 mutex_unlock(&dev_priv->pps_mutex);
4696
4697 mutex_lock(&dev->mode_config.mutex);
4698 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4699 if (edid) {
4700 if (drm_add_edid_modes(connector, edid)) {
4701 drm_mode_connector_update_edid_property(connector,
4702 edid);
4703 drm_edid_to_eld(connector, edid);
4704 } else {
4705 kfree(edid);
4706 edid = ERR_PTR(-EINVAL);
4707 }
4708 } else {
4709 edid = ERR_PTR(-ENOENT);
4710 }
4711 intel_connector->edid = edid;
4712
4713 /* prefer fixed mode from EDID if available */
4714 list_for_each_entry(scan, &connector->probed_modes, head) {
4715 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4716 fixed_mode = drm_mode_duplicate(dev, scan);
4717 downclock_mode = intel_dp_drrs_init(
4718 intel_dig_port,
4719 intel_connector, fixed_mode);
4720 break;
4721 }
4722 }
4723
4724 /* fallback to VBT if available for eDP */
4725 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4726 fixed_mode = drm_mode_duplicate(dev,
4727 dev_priv->vbt.lfp_lvds_vbt_mode);
4728 if (fixed_mode)
4729 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4730 }
4731 mutex_unlock(&dev->mode_config.mutex);
4732
4733 if (IS_VALLEYVIEW(dev)) {
4734 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4735 register_reboot_notifier(&intel_dp->edp_notifier);
4736 }
4737
4738 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4739 intel_connector->panel.backlight_power = intel_edp_backlight_power;
4740 intel_panel_setup_backlight(connector);
4741
4742 return true;
4743 }
4744
4745 bool
4746 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4747 struct intel_connector *intel_connector)
4748 {
4749 struct drm_connector *connector = &intel_connector->base;
4750 struct intel_dp *intel_dp = &intel_dig_port->dp;
4751 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4752 struct drm_device *dev = intel_encoder->base.dev;
4753 struct drm_i915_private *dev_priv = dev->dev_private;
4754 enum port port = intel_dig_port->port;
4755 struct edp_power_seq power_seq = { 0 };
4756 int type;
4757
4758 /* intel_dp vfuncs */
4759 if (IS_VALLEYVIEW(dev))
4760 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4761 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4762 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4763 else if (HAS_PCH_SPLIT(dev))
4764 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4765 else
4766 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4767
4768 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4769
4770 /* Preserve the current hw state. */
4771 intel_dp->DP = I915_READ(intel_dp->output_reg);
4772 intel_dp->attached_connector = intel_connector;
4773
4774 if (intel_dp_is_edp(dev, port))
4775 type = DRM_MODE_CONNECTOR_eDP;
4776 else
4777 type = DRM_MODE_CONNECTOR_DisplayPort;
4778
4779 /*
4780 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4781 * for DP the encoder type can be set by the caller to
4782 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4783 */
4784 if (type == DRM_MODE_CONNECTOR_eDP)
4785 intel_encoder->type = INTEL_OUTPUT_EDP;
4786
4787 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4788 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4789 port_name(port));
4790
4791 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4792 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4793
4794 connector->interlace_allowed = true;
4795 connector->doublescan_allowed = 0;
4796
4797 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4798 edp_panel_vdd_work);
4799
4800 intel_connector_attach_encoder(intel_connector, intel_encoder);
4801 drm_connector_register(connector);
4802
4803 if (HAS_DDI(dev))
4804 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4805 else
4806 intel_connector->get_hw_state = intel_connector_get_hw_state;
4807 intel_connector->unregister = intel_dp_connector_unregister;
4808
4809 /* Set up the hotplug pin. */
4810 switch (port) {
4811 case PORT_A:
4812 intel_encoder->hpd_pin = HPD_PORT_A;
4813 break;
4814 case PORT_B:
4815 intel_encoder->hpd_pin = HPD_PORT_B;
4816 break;
4817 case PORT_C:
4818 intel_encoder->hpd_pin = HPD_PORT_C;
4819 break;
4820 case PORT_D:
4821 intel_encoder->hpd_pin = HPD_PORT_D;
4822 break;
4823 default:
4824 BUG();
4825 }
4826
4827 if (is_edp(intel_dp)) {
4828 mutex_lock(&dev_priv->pps_mutex);
4829 intel_dp_init_panel_power_timestamps(intel_dp);
4830 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4831 mutex_unlock(&dev_priv->pps_mutex);
4832 }
4833
4834 intel_dp_aux_init(intel_dp, intel_connector);
4835
4836 /* init MST on ports that can support it */
4837 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4838 if (port == PORT_B || port == PORT_C || port == PORT_D) {
4839 intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id);
4840 }
4841 }
4842
4843 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4844 drm_dp_aux_unregister(&intel_dp->aux);
4845 if (is_edp(intel_dp)) {
4846 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4847 mutex_lock(&dev_priv->pps_mutex);
4848 edp_panel_vdd_off_sync(intel_dp);
4849 mutex_unlock(&dev_priv->pps_mutex);
4850 }
4851 drm_connector_unregister(connector);
4852 drm_connector_cleanup(connector);
4853 return false;
4854 }
4855
4856 intel_dp_add_properties(intel_dp, connector);
4857
4858 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4859 * 0xd. Failure to do so will result in spurious interrupts being
4860 * generated on the port when a cable is not attached.
4861 */
4862 if (IS_G4X(dev) && !IS_GM45(dev)) {
4863 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4864 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4865 }
4866
4867 return true;
4868 }
4869
4870 void
4871 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4872 {
4873 struct drm_i915_private *dev_priv = dev->dev_private;
4874 struct intel_digital_port *intel_dig_port;
4875 struct intel_encoder *intel_encoder;
4876 struct drm_encoder *encoder;
4877 struct intel_connector *intel_connector;
4878
4879 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4880 if (!intel_dig_port)
4881 return;
4882
4883 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4884 if (!intel_connector) {
4885 kfree(intel_dig_port);
4886 return;
4887 }
4888
4889 intel_encoder = &intel_dig_port->base;
4890 encoder = &intel_encoder->base;
4891
4892 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4893 DRM_MODE_ENCODER_TMDS);
4894
4895 intel_encoder->compute_config = intel_dp_compute_config;
4896 intel_encoder->disable = intel_disable_dp;
4897 intel_encoder->get_hw_state = intel_dp_get_hw_state;
4898 intel_encoder->get_config = intel_dp_get_config;
4899 intel_encoder->suspend = intel_dp_encoder_suspend;
4900 if (IS_CHERRYVIEW(dev)) {
4901 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4902 intel_encoder->pre_enable = chv_pre_enable_dp;
4903 intel_encoder->enable = vlv_enable_dp;
4904 intel_encoder->post_disable = chv_post_disable_dp;
4905 } else if (IS_VALLEYVIEW(dev)) {
4906 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4907 intel_encoder->pre_enable = vlv_pre_enable_dp;
4908 intel_encoder->enable = vlv_enable_dp;
4909 intel_encoder->post_disable = vlv_post_disable_dp;
4910 } else {
4911 intel_encoder->pre_enable = g4x_pre_enable_dp;
4912 intel_encoder->enable = g4x_enable_dp;
4913 intel_encoder->post_disable = g4x_post_disable_dp;
4914 }
4915
4916 intel_dig_port->port = port;
4917 intel_dig_port->dp.output_reg = output_reg;
4918
4919 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4920 if (IS_CHERRYVIEW(dev)) {
4921 if (port == PORT_D)
4922 intel_encoder->crtc_mask = 1 << 2;
4923 else
4924 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4925 } else {
4926 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4927 }
4928 intel_encoder->cloneable = 0;
4929 intel_encoder->hot_plug = intel_dp_hot_plug;
4930
4931 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4932 dev_priv->hpd_irq_port[port] = intel_dig_port;
4933
4934 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4935 drm_encoder_cleanup(encoder);
4936 kfree(intel_dig_port);
4937 kfree(intel_connector);
4938 }
4939 }
4940
4941 void intel_dp_mst_suspend(struct drm_device *dev)
4942 {
4943 struct drm_i915_private *dev_priv = dev->dev_private;
4944 int i;
4945
4946 /* disable MST */
4947 for (i = 0; i < I915_MAX_PORTS; i++) {
4948 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4949 if (!intel_dig_port)
4950 continue;
4951
4952 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4953 if (!intel_dig_port->dp.can_mst)
4954 continue;
4955 if (intel_dig_port->dp.is_mst)
4956 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
4957 }
4958 }
4959 }
4960
4961 void intel_dp_mst_resume(struct drm_device *dev)
4962 {
4963 struct drm_i915_private *dev_priv = dev->dev_private;
4964 int i;
4965
4966 for (i = 0; i < I915_MAX_PORTS; i++) {
4967 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4968 if (!intel_dig_port)
4969 continue;
4970 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4971 int ret;
4972
4973 if (!intel_dig_port->dp.can_mst)
4974 continue;
4975
4976 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
4977 if (ret != 0) {
4978 intel_dp_check_mst_status(&intel_dig_port->dp);
4979 }
4980 }
4981 }
4982 }
This page took 0.292929 seconds and 6 git commands to generate.