drm/i915: Remove trailing white space
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39 #define DP_RECEIVER_CAP_SIZE 0xf
40 #define DP_LINK_STATUS_SIZE 6
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE 9
44
45 struct intel_dp {
46 struct intel_encoder base;
47 uint32_t output_reg;
48 uint32_t DP;
49 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
50 bool has_audio;
51 int force_audio;
52 uint32_t color_range;
53 int dpms_mode;
54 uint8_t link_bw;
55 uint8_t lane_count;
56 uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
57 struct i2c_adapter adapter;
58 struct i2c_algo_dp_aux_data algo;
59 bool is_pch_edp;
60 uint8_t train_set[4];
61 int panel_power_up_delay;
62 int panel_power_down_delay;
63 int panel_power_cycle_delay;
64 int backlight_on_delay;
65 int backlight_off_delay;
66 struct drm_display_mode *panel_fixed_mode; /* for eDP */
67 struct delayed_work panel_vdd_work;
68 bool want_panel_vdd;
69 };
70
71 /**
72 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
73 * @intel_dp: DP struct
74 *
75 * If a CPU or PCH DP output is attached to an eDP panel, this function
76 * will return true, and false otherwise.
77 */
78 static bool is_edp(struct intel_dp *intel_dp)
79 {
80 return intel_dp->base.type == INTEL_OUTPUT_EDP;
81 }
82
83 /**
84 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
85 * @intel_dp: DP struct
86 *
87 * Returns true if the given DP struct corresponds to a PCH DP port attached
88 * to an eDP panel, false otherwise. Helpful for determining whether we
89 * may need FDI resources for a given DP output or not.
90 */
91 static bool is_pch_edp(struct intel_dp *intel_dp)
92 {
93 return intel_dp->is_pch_edp;
94 }
95
96 /**
97 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
98 * @intel_dp: DP struct
99 *
100 * Returns true if the given DP struct corresponds to a CPU eDP port.
101 */
102 static bool is_cpu_edp(struct intel_dp *intel_dp)
103 {
104 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
105 }
106
107 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
108 {
109 return container_of(encoder, struct intel_dp, base.base);
110 }
111
112 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
113 {
114 return container_of(intel_attached_encoder(connector),
115 struct intel_dp, base);
116 }
117
118 /**
119 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
120 * @encoder: DRM encoder
121 *
122 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
123 * by intel_display.c.
124 */
125 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
126 {
127 struct intel_dp *intel_dp;
128
129 if (!encoder)
130 return false;
131
132 intel_dp = enc_to_intel_dp(encoder);
133
134 return is_pch_edp(intel_dp);
135 }
136
137 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
138 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_link_down(struct intel_dp *intel_dp);
140
141 void
142 intel_edp_link_config(struct intel_encoder *intel_encoder,
143 int *lane_num, int *link_bw)
144 {
145 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
146
147 *lane_num = intel_dp->lane_count;
148 if (intel_dp->link_bw == DP_LINK_BW_1_62)
149 *link_bw = 162000;
150 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
151 *link_bw = 270000;
152 }
153
154 static int
155 intel_dp_max_lane_count(struct intel_dp *intel_dp)
156 {
157 int max_lane_count = 4;
158
159 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
160 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
161 switch (max_lane_count) {
162 case 1: case 2: case 4:
163 break;
164 default:
165 max_lane_count = 4;
166 }
167 }
168 return max_lane_count;
169 }
170
171 static int
172 intel_dp_max_link_bw(struct intel_dp *intel_dp)
173 {
174 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
175
176 switch (max_link_bw) {
177 case DP_LINK_BW_1_62:
178 case DP_LINK_BW_2_7:
179 break;
180 default:
181 max_link_bw = DP_LINK_BW_1_62;
182 break;
183 }
184 return max_link_bw;
185 }
186
187 static int
188 intel_dp_link_clock(uint8_t link_bw)
189 {
190 if (link_bw == DP_LINK_BW_2_7)
191 return 270000;
192 else
193 return 162000;
194 }
195
196 /*
197 * The units on the numbers in the next two are... bizarre. Examples will
198 * make it clearer; this one parallels an example in the eDP spec.
199 *
200 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
201 *
202 * 270000 * 1 * 8 / 10 == 216000
203 *
204 * The actual data capacity of that configuration is 2.16Gbit/s, so the
205 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
206 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
207 * 119000. At 18bpp that's 2142000 kilobits per second.
208 *
209 * Thus the strange-looking division by 10 in intel_dp_link_required, to
210 * get the result in decakilobits instead of kilobits.
211 */
212
213 static int
214 intel_dp_link_required(struct intel_dp *intel_dp, int pixel_clock)
215 {
216 struct drm_crtc *crtc = intel_dp->base.base.crtc;
217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
218 int bpp = 24;
219
220 if (intel_crtc)
221 bpp = intel_crtc->bpp;
222
223 return (pixel_clock * bpp + 9) / 10;
224 }
225
226 static int
227 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
228 {
229 return (max_link_clock * max_lanes * 8) / 10;
230 }
231
232 static int
233 intel_dp_mode_valid(struct drm_connector *connector,
234 struct drm_display_mode *mode)
235 {
236 struct intel_dp *intel_dp = intel_attached_dp(connector);
237 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
238 int max_lanes = intel_dp_max_lane_count(intel_dp);
239
240 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
241 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
242 return MODE_PANEL;
243
244 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
245 return MODE_PANEL;
246 }
247
248 if (intel_dp_link_required(intel_dp, mode->clock)
249 > intel_dp_max_data_rate(max_link_clock, max_lanes))
250 return MODE_CLOCK_HIGH;
251
252 if (mode->clock < 10000)
253 return MODE_CLOCK_LOW;
254
255 return MODE_OK;
256 }
257
258 static uint32_t
259 pack_aux(uint8_t *src, int src_bytes)
260 {
261 int i;
262 uint32_t v = 0;
263
264 if (src_bytes > 4)
265 src_bytes = 4;
266 for (i = 0; i < src_bytes; i++)
267 v |= ((uint32_t) src[i]) << ((3-i) * 8);
268 return v;
269 }
270
271 static void
272 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
273 {
274 int i;
275 if (dst_bytes > 4)
276 dst_bytes = 4;
277 for (i = 0; i < dst_bytes; i++)
278 dst[i] = src >> ((3-i) * 8);
279 }
280
281 /* hrawclock is 1/4 the FSB frequency */
282 static int
283 intel_hrawclk(struct drm_device *dev)
284 {
285 struct drm_i915_private *dev_priv = dev->dev_private;
286 uint32_t clkcfg;
287
288 clkcfg = I915_READ(CLKCFG);
289 switch (clkcfg & CLKCFG_FSB_MASK) {
290 case CLKCFG_FSB_400:
291 return 100;
292 case CLKCFG_FSB_533:
293 return 133;
294 case CLKCFG_FSB_667:
295 return 166;
296 case CLKCFG_FSB_800:
297 return 200;
298 case CLKCFG_FSB_1067:
299 return 266;
300 case CLKCFG_FSB_1333:
301 return 333;
302 /* these two are just a guess; one of them might be right */
303 case CLKCFG_FSB_1600:
304 case CLKCFG_FSB_1600_ALT:
305 return 400;
306 default:
307 return 133;
308 }
309 }
310
311 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
312 {
313 struct drm_device *dev = intel_dp->base.base.dev;
314 struct drm_i915_private *dev_priv = dev->dev_private;
315
316 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
317 }
318
319 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
320 {
321 struct drm_device *dev = intel_dp->base.base.dev;
322 struct drm_i915_private *dev_priv = dev->dev_private;
323
324 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
325 }
326
327 static void
328 intel_dp_check_edp(struct intel_dp *intel_dp)
329 {
330 struct drm_device *dev = intel_dp->base.base.dev;
331 struct drm_i915_private *dev_priv = dev->dev_private;
332
333 if (!is_edp(intel_dp))
334 return;
335 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
336 WARN(1, "eDP powered off while attempting aux channel communication.\n");
337 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
338 I915_READ(PCH_PP_STATUS),
339 I915_READ(PCH_PP_CONTROL));
340 }
341 }
342
343 static int
344 intel_dp_aux_ch(struct intel_dp *intel_dp,
345 uint8_t *send, int send_bytes,
346 uint8_t *recv, int recv_size)
347 {
348 uint32_t output_reg = intel_dp->output_reg;
349 struct drm_device *dev = intel_dp->base.base.dev;
350 struct drm_i915_private *dev_priv = dev->dev_private;
351 uint32_t ch_ctl = output_reg + 0x10;
352 uint32_t ch_data = ch_ctl + 4;
353 int i;
354 int recv_bytes;
355 uint32_t status;
356 uint32_t aux_clock_divider;
357 int try, precharge;
358
359 intel_dp_check_edp(intel_dp);
360 /* The clock divider is based off the hrawclk,
361 * and would like to run at 2MHz. So, take the
362 * hrawclk value and divide by 2 and use that
363 *
364 * Note that PCH attached eDP panels should use a 125MHz input
365 * clock divider.
366 */
367 if (is_cpu_edp(intel_dp)) {
368 if (IS_GEN6(dev))
369 aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
370 else
371 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
372 } else if (HAS_PCH_SPLIT(dev))
373 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
374 else
375 aux_clock_divider = intel_hrawclk(dev) / 2;
376
377 if (IS_GEN6(dev))
378 precharge = 3;
379 else
380 precharge = 5;
381
382 /* Try to wait for any previous AUX channel activity */
383 for (try = 0; try < 3; try++) {
384 status = I915_READ(ch_ctl);
385 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
386 break;
387 msleep(1);
388 }
389
390 if (try == 3) {
391 WARN(1, "dp_aux_ch not started status 0x%08x\n",
392 I915_READ(ch_ctl));
393 return -EBUSY;
394 }
395
396 /* Must try at least 3 times according to DP spec */
397 for (try = 0; try < 5; try++) {
398 /* Load the send data into the aux channel data registers */
399 for (i = 0; i < send_bytes; i += 4)
400 I915_WRITE(ch_data + i,
401 pack_aux(send + i, send_bytes - i));
402
403 /* Send the command and wait for it to complete */
404 I915_WRITE(ch_ctl,
405 DP_AUX_CH_CTL_SEND_BUSY |
406 DP_AUX_CH_CTL_TIME_OUT_400us |
407 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
408 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
409 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
410 DP_AUX_CH_CTL_DONE |
411 DP_AUX_CH_CTL_TIME_OUT_ERROR |
412 DP_AUX_CH_CTL_RECEIVE_ERROR);
413 for (;;) {
414 status = I915_READ(ch_ctl);
415 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
416 break;
417 udelay(100);
418 }
419
420 /* Clear done status and any errors */
421 I915_WRITE(ch_ctl,
422 status |
423 DP_AUX_CH_CTL_DONE |
424 DP_AUX_CH_CTL_TIME_OUT_ERROR |
425 DP_AUX_CH_CTL_RECEIVE_ERROR);
426 if (status & DP_AUX_CH_CTL_DONE)
427 break;
428 }
429
430 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
431 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
432 return -EBUSY;
433 }
434
435 /* Check for timeout or receive error.
436 * Timeouts occur when the sink is not connected
437 */
438 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
439 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
440 return -EIO;
441 }
442
443 /* Timeouts occur when the device isn't connected, so they're
444 * "normal" -- don't fill the kernel log with these */
445 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
446 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
447 return -ETIMEDOUT;
448 }
449
450 /* Unload any bytes sent back from the other side */
451 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
452 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
453 if (recv_bytes > recv_size)
454 recv_bytes = recv_size;
455
456 for (i = 0; i < recv_bytes; i += 4)
457 unpack_aux(I915_READ(ch_data + i),
458 recv + i, recv_bytes - i);
459
460 return recv_bytes;
461 }
462
463 /* Write data to the aux channel in native mode */
464 static int
465 intel_dp_aux_native_write(struct intel_dp *intel_dp,
466 uint16_t address, uint8_t *send, int send_bytes)
467 {
468 int ret;
469 uint8_t msg[20];
470 int msg_bytes;
471 uint8_t ack;
472
473 intel_dp_check_edp(intel_dp);
474 if (send_bytes > 16)
475 return -1;
476 msg[0] = AUX_NATIVE_WRITE << 4;
477 msg[1] = address >> 8;
478 msg[2] = address & 0xff;
479 msg[3] = send_bytes - 1;
480 memcpy(&msg[4], send, send_bytes);
481 msg_bytes = send_bytes + 4;
482 for (;;) {
483 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
484 if (ret < 0)
485 return ret;
486 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
487 break;
488 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
489 udelay(100);
490 else
491 return -EIO;
492 }
493 return send_bytes;
494 }
495
496 /* Write a single byte to the aux channel in native mode */
497 static int
498 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
499 uint16_t address, uint8_t byte)
500 {
501 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
502 }
503
504 /* read bytes from a native aux channel */
505 static int
506 intel_dp_aux_native_read(struct intel_dp *intel_dp,
507 uint16_t address, uint8_t *recv, int recv_bytes)
508 {
509 uint8_t msg[4];
510 int msg_bytes;
511 uint8_t reply[20];
512 int reply_bytes;
513 uint8_t ack;
514 int ret;
515
516 intel_dp_check_edp(intel_dp);
517 msg[0] = AUX_NATIVE_READ << 4;
518 msg[1] = address >> 8;
519 msg[2] = address & 0xff;
520 msg[3] = recv_bytes - 1;
521
522 msg_bytes = 4;
523 reply_bytes = recv_bytes + 1;
524
525 for (;;) {
526 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
527 reply, reply_bytes);
528 if (ret == 0)
529 return -EPROTO;
530 if (ret < 0)
531 return ret;
532 ack = reply[0];
533 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
534 memcpy(recv, reply + 1, ret - 1);
535 return ret - 1;
536 }
537 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
538 udelay(100);
539 else
540 return -EIO;
541 }
542 }
543
544 static int
545 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
546 uint8_t write_byte, uint8_t *read_byte)
547 {
548 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
549 struct intel_dp *intel_dp = container_of(adapter,
550 struct intel_dp,
551 adapter);
552 uint16_t address = algo_data->address;
553 uint8_t msg[5];
554 uint8_t reply[2];
555 unsigned retry;
556 int msg_bytes;
557 int reply_bytes;
558 int ret;
559
560 intel_dp_check_edp(intel_dp);
561 /* Set up the command byte */
562 if (mode & MODE_I2C_READ)
563 msg[0] = AUX_I2C_READ << 4;
564 else
565 msg[0] = AUX_I2C_WRITE << 4;
566
567 if (!(mode & MODE_I2C_STOP))
568 msg[0] |= AUX_I2C_MOT << 4;
569
570 msg[1] = address >> 8;
571 msg[2] = address;
572
573 switch (mode) {
574 case MODE_I2C_WRITE:
575 msg[3] = 0;
576 msg[4] = write_byte;
577 msg_bytes = 5;
578 reply_bytes = 1;
579 break;
580 case MODE_I2C_READ:
581 msg[3] = 0;
582 msg_bytes = 4;
583 reply_bytes = 2;
584 break;
585 default:
586 msg_bytes = 3;
587 reply_bytes = 1;
588 break;
589 }
590
591 for (retry = 0; retry < 5; retry++) {
592 ret = intel_dp_aux_ch(intel_dp,
593 msg, msg_bytes,
594 reply, reply_bytes);
595 if (ret < 0) {
596 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
597 return ret;
598 }
599
600 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
601 case AUX_NATIVE_REPLY_ACK:
602 /* I2C-over-AUX Reply field is only valid
603 * when paired with AUX ACK.
604 */
605 break;
606 case AUX_NATIVE_REPLY_NACK:
607 DRM_DEBUG_KMS("aux_ch native nack\n");
608 return -EREMOTEIO;
609 case AUX_NATIVE_REPLY_DEFER:
610 udelay(100);
611 continue;
612 default:
613 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
614 reply[0]);
615 return -EREMOTEIO;
616 }
617
618 switch (reply[0] & AUX_I2C_REPLY_MASK) {
619 case AUX_I2C_REPLY_ACK:
620 if (mode == MODE_I2C_READ) {
621 *read_byte = reply[1];
622 }
623 return reply_bytes - 1;
624 case AUX_I2C_REPLY_NACK:
625 DRM_DEBUG_KMS("aux_i2c nack\n");
626 return -EREMOTEIO;
627 case AUX_I2C_REPLY_DEFER:
628 DRM_DEBUG_KMS("aux_i2c defer\n");
629 udelay(100);
630 break;
631 default:
632 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
633 return -EREMOTEIO;
634 }
635 }
636
637 DRM_ERROR("too many retries, giving up\n");
638 return -EREMOTEIO;
639 }
640
641 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
642 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
643
644 static int
645 intel_dp_i2c_init(struct intel_dp *intel_dp,
646 struct intel_connector *intel_connector, const char *name)
647 {
648 int ret;
649
650 DRM_DEBUG_KMS("i2c_init %s\n", name);
651 intel_dp->algo.running = false;
652 intel_dp->algo.address = 0;
653 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
654
655 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
656 intel_dp->adapter.owner = THIS_MODULE;
657 intel_dp->adapter.class = I2C_CLASS_DDC;
658 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
659 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
660 intel_dp->adapter.algo_data = &intel_dp->algo;
661 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
662
663 ironlake_edp_panel_vdd_on(intel_dp);
664 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
665 ironlake_edp_panel_vdd_off(intel_dp, false);
666 return ret;
667 }
668
669 static bool
670 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
671 struct drm_display_mode *adjusted_mode)
672 {
673 struct drm_device *dev = encoder->dev;
674 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
675 int lane_count, clock;
676 int max_lane_count = intel_dp_max_lane_count(intel_dp);
677 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
678 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
679
680 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
681 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
682 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
683 mode, adjusted_mode);
684 /*
685 * the mode->clock is used to calculate the Data&Link M/N
686 * of the pipe. For the eDP the fixed clock should be used.
687 */
688 mode->clock = intel_dp->panel_fixed_mode->clock;
689 }
690
691 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
692 for (clock = 0; clock <= max_clock; clock++) {
693 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
694
695 if (intel_dp_link_required(intel_dp, mode->clock)
696 <= link_avail) {
697 intel_dp->link_bw = bws[clock];
698 intel_dp->lane_count = lane_count;
699 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
700 DRM_DEBUG_KMS("Display port link bw %02x lane "
701 "count %d clock %d\n",
702 intel_dp->link_bw, intel_dp->lane_count,
703 adjusted_mode->clock);
704 return true;
705 }
706 }
707 }
708
709 return false;
710 }
711
712 struct intel_dp_m_n {
713 uint32_t tu;
714 uint32_t gmch_m;
715 uint32_t gmch_n;
716 uint32_t link_m;
717 uint32_t link_n;
718 };
719
720 static void
721 intel_reduce_ratio(uint32_t *num, uint32_t *den)
722 {
723 while (*num > 0xffffff || *den > 0xffffff) {
724 *num >>= 1;
725 *den >>= 1;
726 }
727 }
728
729 static void
730 intel_dp_compute_m_n(int bpp,
731 int nlanes,
732 int pixel_clock,
733 int link_clock,
734 struct intel_dp_m_n *m_n)
735 {
736 m_n->tu = 64;
737 m_n->gmch_m = (pixel_clock * bpp) >> 3;
738 m_n->gmch_n = link_clock * nlanes;
739 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
740 m_n->link_m = pixel_clock;
741 m_n->link_n = link_clock;
742 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
743 }
744
745 void
746 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
747 struct drm_display_mode *adjusted_mode)
748 {
749 struct drm_device *dev = crtc->dev;
750 struct drm_mode_config *mode_config = &dev->mode_config;
751 struct drm_encoder *encoder;
752 struct drm_i915_private *dev_priv = dev->dev_private;
753 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
754 int lane_count = 4;
755 struct intel_dp_m_n m_n;
756 int pipe = intel_crtc->pipe;
757
758 /*
759 * Find the lane count in the intel_encoder private
760 */
761 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
762 struct intel_dp *intel_dp;
763
764 if (encoder->crtc != crtc)
765 continue;
766
767 intel_dp = enc_to_intel_dp(encoder);
768 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT || is_pch_edp(intel_dp)) {
769 lane_count = intel_dp->lane_count;
770 break;
771 } else if (is_cpu_edp(intel_dp)) {
772 lane_count = dev_priv->edp.lanes;
773 break;
774 }
775 }
776
777 /*
778 * Compute the GMCH and Link ratios. The '3' here is
779 * the number of bytes_per_pixel post-LUT, which we always
780 * set up for 8-bits of R/G/B, or 3 bytes total.
781 */
782 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
783 mode->clock, adjusted_mode->clock, &m_n);
784
785 if (HAS_PCH_SPLIT(dev)) {
786 I915_WRITE(TRANSDATA_M1(pipe),
787 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
788 m_n.gmch_m);
789 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
790 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
791 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
792 } else {
793 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
794 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
795 m_n.gmch_m);
796 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
797 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
798 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
799 }
800 }
801
802 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
803 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
804
805 static void
806 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
807 struct drm_display_mode *adjusted_mode)
808 {
809 struct drm_device *dev = encoder->dev;
810 struct drm_i915_private *dev_priv = dev->dev_private;
811 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
812 struct drm_crtc *crtc = intel_dp->base.base.crtc;
813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
814
815 /* Turn on the eDP PLL if needed */
816 if (is_edp(intel_dp)) {
817 if (!is_pch_edp(intel_dp))
818 ironlake_edp_pll_on(encoder);
819 else
820 ironlake_edp_pll_off(encoder);
821 }
822
823 /*
824 * There are three kinds of DP registers:
825 *
826 * IBX PCH
827 * CPU
828 * CPT PCH
829 *
830 * IBX PCH and CPU are the same for almost everything,
831 * except that the CPU DP PLL is configured in this
832 * register
833 *
834 * CPT PCH is quite different, having many bits moved
835 * to the TRANS_DP_CTL register instead. That
836 * configuration happens (oddly) in ironlake_pch_enable
837 */
838
839 /* Preserve the BIOS-computed detected bit. This is
840 * supposed to be read-only.
841 */
842 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
843 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
844
845 /* Handle DP bits in common between all three register formats */
846
847 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
848
849 switch (intel_dp->lane_count) {
850 case 1:
851 intel_dp->DP |= DP_PORT_WIDTH_1;
852 break;
853 case 2:
854 intel_dp->DP |= DP_PORT_WIDTH_2;
855 break;
856 case 4:
857 intel_dp->DP |= DP_PORT_WIDTH_4;
858 break;
859 }
860 if (intel_dp->has_audio) {
861 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
862 pipe_name(intel_crtc->pipe));
863 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
864 intel_write_eld(encoder, adjusted_mode);
865 }
866 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
867 intel_dp->link_configuration[0] = intel_dp->link_bw;
868 intel_dp->link_configuration[1] = intel_dp->lane_count;
869 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
870 /*
871 * Check for DPCD version > 1.1 and enhanced framing support
872 */
873 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
874 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
875 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
876 }
877
878 /* Split out the IBX/CPU vs CPT settings */
879
880 if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
881 intel_dp->DP |= intel_dp->color_range;
882
883 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
884 intel_dp->DP |= DP_SYNC_HS_HIGH;
885 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
886 intel_dp->DP |= DP_SYNC_VS_HIGH;
887 intel_dp->DP |= DP_LINK_TRAIN_OFF;
888
889 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
890 intel_dp->DP |= DP_ENHANCED_FRAMING;
891
892 if (intel_crtc->pipe == 1)
893 intel_dp->DP |= DP_PIPEB_SELECT;
894
895 if (is_cpu_edp(intel_dp)) {
896 /* don't miss out required setting for eDP */
897 intel_dp->DP |= DP_PLL_ENABLE;
898 if (adjusted_mode->clock < 200000)
899 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
900 else
901 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
902 }
903 } else {
904 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
905 }
906 }
907
908 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
909 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
910
911 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
912 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
913
914 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
915 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
916
917 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
918 u32 mask,
919 u32 value)
920 {
921 struct drm_device *dev = intel_dp->base.base.dev;
922 struct drm_i915_private *dev_priv = dev->dev_private;
923
924 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
925 mask, value,
926 I915_READ(PCH_PP_STATUS),
927 I915_READ(PCH_PP_CONTROL));
928
929 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
930 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
931 I915_READ(PCH_PP_STATUS),
932 I915_READ(PCH_PP_CONTROL));
933 }
934 }
935
936 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
937 {
938 DRM_DEBUG_KMS("Wait for panel power on\n");
939 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
940 }
941
942 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
943 {
944 DRM_DEBUG_KMS("Wait for panel power off time\n");
945 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
946 }
947
948 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
949 {
950 DRM_DEBUG_KMS("Wait for panel power cycle\n");
951 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
952 }
953
954
955 /* Read the current pp_control value, unlocking the register if it
956 * is locked
957 */
958
959 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
960 {
961 u32 control = I915_READ(PCH_PP_CONTROL);
962
963 control &= ~PANEL_UNLOCK_MASK;
964 control |= PANEL_UNLOCK_REGS;
965 return control;
966 }
967
968 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
969 {
970 struct drm_device *dev = intel_dp->base.base.dev;
971 struct drm_i915_private *dev_priv = dev->dev_private;
972 u32 pp;
973
974 if (!is_edp(intel_dp))
975 return;
976 DRM_DEBUG_KMS("Turn eDP VDD on\n");
977
978 WARN(intel_dp->want_panel_vdd,
979 "eDP VDD already requested on\n");
980
981 intel_dp->want_panel_vdd = true;
982
983 if (ironlake_edp_have_panel_vdd(intel_dp)) {
984 DRM_DEBUG_KMS("eDP VDD already on\n");
985 return;
986 }
987
988 if (!ironlake_edp_have_panel_power(intel_dp))
989 ironlake_wait_panel_power_cycle(intel_dp);
990
991 pp = ironlake_get_pp_control(dev_priv);
992 pp |= EDP_FORCE_VDD;
993 I915_WRITE(PCH_PP_CONTROL, pp);
994 POSTING_READ(PCH_PP_CONTROL);
995 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
996 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
997
998 /*
999 * If the panel wasn't on, delay before accessing aux channel
1000 */
1001 if (!ironlake_edp_have_panel_power(intel_dp)) {
1002 DRM_DEBUG_KMS("eDP was not running\n");
1003 msleep(intel_dp->panel_power_up_delay);
1004 }
1005 }
1006
1007 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1008 {
1009 struct drm_device *dev = intel_dp->base.base.dev;
1010 struct drm_i915_private *dev_priv = dev->dev_private;
1011 u32 pp;
1012
1013 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1014 pp = ironlake_get_pp_control(dev_priv);
1015 pp &= ~EDP_FORCE_VDD;
1016 I915_WRITE(PCH_PP_CONTROL, pp);
1017 POSTING_READ(PCH_PP_CONTROL);
1018
1019 /* Make sure sequencer is idle before allowing subsequent activity */
1020 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1021 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1022
1023 msleep(intel_dp->panel_power_down_delay);
1024 }
1025 }
1026
1027 static void ironlake_panel_vdd_work(struct work_struct *__work)
1028 {
1029 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1030 struct intel_dp, panel_vdd_work);
1031 struct drm_device *dev = intel_dp->base.base.dev;
1032
1033 mutex_lock(&dev->mode_config.mutex);
1034 ironlake_panel_vdd_off_sync(intel_dp);
1035 mutex_unlock(&dev->mode_config.mutex);
1036 }
1037
1038 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1039 {
1040 if (!is_edp(intel_dp))
1041 return;
1042
1043 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1044 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1045
1046 intel_dp->want_panel_vdd = false;
1047
1048 if (sync) {
1049 ironlake_panel_vdd_off_sync(intel_dp);
1050 } else {
1051 /*
1052 * Queue the timer to fire a long
1053 * time from now (relative to the power down delay)
1054 * to keep the panel power up across a sequence of operations
1055 */
1056 schedule_delayed_work(&intel_dp->panel_vdd_work,
1057 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1058 }
1059 }
1060
1061 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1062 {
1063 struct drm_device *dev = intel_dp->base.base.dev;
1064 struct drm_i915_private *dev_priv = dev->dev_private;
1065 u32 pp;
1066
1067 if (!is_edp(intel_dp))
1068 return;
1069
1070 DRM_DEBUG_KMS("Turn eDP power on\n");
1071
1072 if (ironlake_edp_have_panel_power(intel_dp)) {
1073 DRM_DEBUG_KMS("eDP power already on\n");
1074 return;
1075 }
1076
1077 ironlake_wait_panel_power_cycle(intel_dp);
1078
1079 pp = ironlake_get_pp_control(dev_priv);
1080 if (IS_GEN5(dev)) {
1081 /* ILK workaround: disable reset around power sequence */
1082 pp &= ~PANEL_POWER_RESET;
1083 I915_WRITE(PCH_PP_CONTROL, pp);
1084 POSTING_READ(PCH_PP_CONTROL);
1085 }
1086
1087 pp |= POWER_TARGET_ON;
1088 if (!IS_GEN5(dev))
1089 pp |= PANEL_POWER_RESET;
1090
1091 I915_WRITE(PCH_PP_CONTROL, pp);
1092 POSTING_READ(PCH_PP_CONTROL);
1093
1094 ironlake_wait_panel_on(intel_dp);
1095
1096 if (IS_GEN5(dev)) {
1097 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1098 I915_WRITE(PCH_PP_CONTROL, pp);
1099 POSTING_READ(PCH_PP_CONTROL);
1100 }
1101 }
1102
1103 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1104 {
1105 struct drm_device *dev = intel_dp->base.base.dev;
1106 struct drm_i915_private *dev_priv = dev->dev_private;
1107 u32 pp;
1108
1109 if (!is_edp(intel_dp))
1110 return;
1111
1112 DRM_DEBUG_KMS("Turn eDP power off\n");
1113
1114 WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
1115
1116 pp = ironlake_get_pp_control(dev_priv);
1117 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1118 I915_WRITE(PCH_PP_CONTROL, pp);
1119 POSTING_READ(PCH_PP_CONTROL);
1120
1121 ironlake_wait_panel_off(intel_dp);
1122 }
1123
1124 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1125 {
1126 struct drm_device *dev = intel_dp->base.base.dev;
1127 struct drm_i915_private *dev_priv = dev->dev_private;
1128 u32 pp;
1129
1130 if (!is_edp(intel_dp))
1131 return;
1132
1133 DRM_DEBUG_KMS("\n");
1134 /*
1135 * If we enable the backlight right away following a panel power
1136 * on, we may see slight flicker as the panel syncs with the eDP
1137 * link. So delay a bit to make sure the image is solid before
1138 * allowing it to appear.
1139 */
1140 msleep(intel_dp->backlight_on_delay);
1141 pp = ironlake_get_pp_control(dev_priv);
1142 pp |= EDP_BLC_ENABLE;
1143 I915_WRITE(PCH_PP_CONTROL, pp);
1144 POSTING_READ(PCH_PP_CONTROL);
1145 }
1146
1147 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1148 {
1149 struct drm_device *dev = intel_dp->base.base.dev;
1150 struct drm_i915_private *dev_priv = dev->dev_private;
1151 u32 pp;
1152
1153 if (!is_edp(intel_dp))
1154 return;
1155
1156 DRM_DEBUG_KMS("\n");
1157 pp = ironlake_get_pp_control(dev_priv);
1158 pp &= ~EDP_BLC_ENABLE;
1159 I915_WRITE(PCH_PP_CONTROL, pp);
1160 POSTING_READ(PCH_PP_CONTROL);
1161 msleep(intel_dp->backlight_off_delay);
1162 }
1163
1164 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1165 {
1166 struct drm_device *dev = encoder->dev;
1167 struct drm_i915_private *dev_priv = dev->dev_private;
1168 u32 dpa_ctl;
1169
1170 DRM_DEBUG_KMS("\n");
1171 dpa_ctl = I915_READ(DP_A);
1172 dpa_ctl |= DP_PLL_ENABLE;
1173 I915_WRITE(DP_A, dpa_ctl);
1174 POSTING_READ(DP_A);
1175 udelay(200);
1176 }
1177
1178 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1179 {
1180 struct drm_device *dev = encoder->dev;
1181 struct drm_i915_private *dev_priv = dev->dev_private;
1182 u32 dpa_ctl;
1183
1184 dpa_ctl = I915_READ(DP_A);
1185 dpa_ctl &= ~DP_PLL_ENABLE;
1186 I915_WRITE(DP_A, dpa_ctl);
1187 POSTING_READ(DP_A);
1188 udelay(200);
1189 }
1190
1191 /* If the sink supports it, try to set the power state appropriately */
1192 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1193 {
1194 int ret, i;
1195
1196 /* Should have a valid DPCD by this point */
1197 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1198 return;
1199
1200 if (mode != DRM_MODE_DPMS_ON) {
1201 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1202 DP_SET_POWER_D3);
1203 if (ret != 1)
1204 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1205 } else {
1206 /*
1207 * When turning on, we need to retry for 1ms to give the sink
1208 * time to wake up.
1209 */
1210 for (i = 0; i < 3; i++) {
1211 ret = intel_dp_aux_native_write_1(intel_dp,
1212 DP_SET_POWER,
1213 DP_SET_POWER_D0);
1214 if (ret == 1)
1215 break;
1216 msleep(1);
1217 }
1218 }
1219 }
1220
1221 static void intel_dp_prepare(struct drm_encoder *encoder)
1222 {
1223 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1224
1225 ironlake_edp_backlight_off(intel_dp);
1226 ironlake_edp_panel_off(intel_dp);
1227
1228 /* Wake up the sink first */
1229 ironlake_edp_panel_vdd_on(intel_dp);
1230 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1231 intel_dp_link_down(intel_dp);
1232 ironlake_edp_panel_vdd_off(intel_dp, false);
1233
1234 /* Make sure the panel is off before trying to
1235 * change the mode
1236 */
1237 }
1238
1239 static void intel_dp_commit(struct drm_encoder *encoder)
1240 {
1241 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1242 struct drm_device *dev = encoder->dev;
1243 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1244
1245 ironlake_edp_panel_vdd_on(intel_dp);
1246 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1247 intel_dp_start_link_train(intel_dp);
1248 ironlake_edp_panel_on(intel_dp);
1249 ironlake_edp_panel_vdd_off(intel_dp, true);
1250 intel_dp_complete_link_train(intel_dp);
1251 ironlake_edp_backlight_on(intel_dp);
1252
1253 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1254
1255 if (HAS_PCH_CPT(dev))
1256 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1257 }
1258
1259 static void
1260 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1261 {
1262 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1263 struct drm_device *dev = encoder->dev;
1264 struct drm_i915_private *dev_priv = dev->dev_private;
1265 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1266
1267 if (mode != DRM_MODE_DPMS_ON) {
1268 ironlake_edp_backlight_off(intel_dp);
1269 ironlake_edp_panel_off(intel_dp);
1270
1271 ironlake_edp_panel_vdd_on(intel_dp);
1272 intel_dp_sink_dpms(intel_dp, mode);
1273 intel_dp_link_down(intel_dp);
1274 ironlake_edp_panel_vdd_off(intel_dp, false);
1275
1276 if (is_cpu_edp(intel_dp))
1277 ironlake_edp_pll_off(encoder);
1278 } else {
1279 if (is_cpu_edp(intel_dp))
1280 ironlake_edp_pll_on(encoder);
1281
1282 ironlake_edp_panel_vdd_on(intel_dp);
1283 intel_dp_sink_dpms(intel_dp, mode);
1284 if (!(dp_reg & DP_PORT_EN)) {
1285 intel_dp_start_link_train(intel_dp);
1286 ironlake_edp_panel_on(intel_dp);
1287 ironlake_edp_panel_vdd_off(intel_dp, true);
1288 intel_dp_complete_link_train(intel_dp);
1289 } else
1290 ironlake_edp_panel_vdd_off(intel_dp, false);
1291 ironlake_edp_backlight_on(intel_dp);
1292 }
1293 intel_dp->dpms_mode = mode;
1294 }
1295
1296 /*
1297 * Native read with retry for link status and receiver capability reads for
1298 * cases where the sink may still be asleep.
1299 */
1300 static bool
1301 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1302 uint8_t *recv, int recv_bytes)
1303 {
1304 int ret, i;
1305
1306 /*
1307 * Sinks are *supposed* to come up within 1ms from an off state,
1308 * but we're also supposed to retry 3 times per the spec.
1309 */
1310 for (i = 0; i < 3; i++) {
1311 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1312 recv_bytes);
1313 if (ret == recv_bytes)
1314 return true;
1315 msleep(1);
1316 }
1317
1318 return false;
1319 }
1320
1321 /*
1322 * Fetch AUX CH registers 0x202 - 0x207 which contain
1323 * link status information
1324 */
1325 static bool
1326 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1327 {
1328 return intel_dp_aux_native_read_retry(intel_dp,
1329 DP_LANE0_1_STATUS,
1330 link_status,
1331 DP_LINK_STATUS_SIZE);
1332 }
1333
1334 static uint8_t
1335 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1336 int r)
1337 {
1338 return link_status[r - DP_LANE0_1_STATUS];
1339 }
1340
1341 static uint8_t
1342 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1343 int lane)
1344 {
1345 int s = ((lane & 1) ?
1346 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1347 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1348 uint8_t l = adjust_request[lane>>1];
1349
1350 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1351 }
1352
1353 static uint8_t
1354 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1355 int lane)
1356 {
1357 int s = ((lane & 1) ?
1358 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1359 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1360 uint8_t l = adjust_request[lane>>1];
1361
1362 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1363 }
1364
1365
1366 #if 0
1367 static char *voltage_names[] = {
1368 "0.4V", "0.6V", "0.8V", "1.2V"
1369 };
1370 static char *pre_emph_names[] = {
1371 "0dB", "3.5dB", "6dB", "9.5dB"
1372 };
1373 static char *link_train_names[] = {
1374 "pattern 1", "pattern 2", "idle", "off"
1375 };
1376 #endif
1377
1378 /*
1379 * These are source-specific values; current Intel hardware supports
1380 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1381 */
1382 #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
1383 #define I830_DP_VOLTAGE_MAX_CPT DP_TRAIN_VOLTAGE_SWING_1200
1384
1385 static uint8_t
1386 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1387 {
1388 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1389 case DP_TRAIN_VOLTAGE_SWING_400:
1390 return DP_TRAIN_PRE_EMPHASIS_6;
1391 case DP_TRAIN_VOLTAGE_SWING_600:
1392 return DP_TRAIN_PRE_EMPHASIS_6;
1393 case DP_TRAIN_VOLTAGE_SWING_800:
1394 return DP_TRAIN_PRE_EMPHASIS_3_5;
1395 case DP_TRAIN_VOLTAGE_SWING_1200:
1396 default:
1397 return DP_TRAIN_PRE_EMPHASIS_0;
1398 }
1399 }
1400
1401 static void
1402 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1403 {
1404 struct drm_device *dev = intel_dp->base.base.dev;
1405 uint8_t v = 0;
1406 uint8_t p = 0;
1407 int lane;
1408 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1409 int voltage_max;
1410
1411 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1412 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1413 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1414
1415 if (this_v > v)
1416 v = this_v;
1417 if (this_p > p)
1418 p = this_p;
1419 }
1420
1421 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1422 voltage_max = I830_DP_VOLTAGE_MAX_CPT;
1423 else
1424 voltage_max = I830_DP_VOLTAGE_MAX;
1425 if (v >= voltage_max)
1426 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1427
1428 if (p >= intel_dp_pre_emphasis_max(v))
1429 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1430
1431 for (lane = 0; lane < 4; lane++)
1432 intel_dp->train_set[lane] = v | p;
1433 }
1434
1435 static uint32_t
1436 intel_dp_signal_levels(uint8_t train_set)
1437 {
1438 uint32_t signal_levels = 0;
1439
1440 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1441 case DP_TRAIN_VOLTAGE_SWING_400:
1442 default:
1443 signal_levels |= DP_VOLTAGE_0_4;
1444 break;
1445 case DP_TRAIN_VOLTAGE_SWING_600:
1446 signal_levels |= DP_VOLTAGE_0_6;
1447 break;
1448 case DP_TRAIN_VOLTAGE_SWING_800:
1449 signal_levels |= DP_VOLTAGE_0_8;
1450 break;
1451 case DP_TRAIN_VOLTAGE_SWING_1200:
1452 signal_levels |= DP_VOLTAGE_1_2;
1453 break;
1454 }
1455 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1456 case DP_TRAIN_PRE_EMPHASIS_0:
1457 default:
1458 signal_levels |= DP_PRE_EMPHASIS_0;
1459 break;
1460 case DP_TRAIN_PRE_EMPHASIS_3_5:
1461 signal_levels |= DP_PRE_EMPHASIS_3_5;
1462 break;
1463 case DP_TRAIN_PRE_EMPHASIS_6:
1464 signal_levels |= DP_PRE_EMPHASIS_6;
1465 break;
1466 case DP_TRAIN_PRE_EMPHASIS_9_5:
1467 signal_levels |= DP_PRE_EMPHASIS_9_5;
1468 break;
1469 }
1470 return signal_levels;
1471 }
1472
1473 /* Gen6's DP voltage swing and pre-emphasis control */
1474 static uint32_t
1475 intel_gen6_edp_signal_levels(uint8_t train_set)
1476 {
1477 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1478 DP_TRAIN_PRE_EMPHASIS_MASK);
1479 switch (signal_levels) {
1480 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1481 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1482 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1483 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1484 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1485 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1486 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1487 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1488 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1489 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1490 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1491 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1492 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1493 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1494 default:
1495 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1496 "0x%x\n", signal_levels);
1497 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1498 }
1499 }
1500
1501 static uint8_t
1502 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1503 int lane)
1504 {
1505 int s = (lane & 1) * 4;
1506 uint8_t l = link_status[lane>>1];
1507
1508 return (l >> s) & 0xf;
1509 }
1510
1511 /* Check for clock recovery is done on all channels */
1512 static bool
1513 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1514 {
1515 int lane;
1516 uint8_t lane_status;
1517
1518 for (lane = 0; lane < lane_count; lane++) {
1519 lane_status = intel_get_lane_status(link_status, lane);
1520 if ((lane_status & DP_LANE_CR_DONE) == 0)
1521 return false;
1522 }
1523 return true;
1524 }
1525
1526 /* Check to see if channel eq is done on all channels */
1527 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1528 DP_LANE_CHANNEL_EQ_DONE|\
1529 DP_LANE_SYMBOL_LOCKED)
1530 static bool
1531 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1532 {
1533 uint8_t lane_align;
1534 uint8_t lane_status;
1535 int lane;
1536
1537 lane_align = intel_dp_link_status(link_status,
1538 DP_LANE_ALIGN_STATUS_UPDATED);
1539 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1540 return false;
1541 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1542 lane_status = intel_get_lane_status(link_status, lane);
1543 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1544 return false;
1545 }
1546 return true;
1547 }
1548
1549 static bool
1550 intel_dp_set_link_train(struct intel_dp *intel_dp,
1551 uint32_t dp_reg_value,
1552 uint8_t dp_train_pat)
1553 {
1554 struct drm_device *dev = intel_dp->base.base.dev;
1555 struct drm_i915_private *dev_priv = dev->dev_private;
1556 int ret;
1557
1558 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1559 POSTING_READ(intel_dp->output_reg);
1560
1561 intel_dp_aux_native_write_1(intel_dp,
1562 DP_TRAINING_PATTERN_SET,
1563 dp_train_pat);
1564
1565 ret = intel_dp_aux_native_write(intel_dp,
1566 DP_TRAINING_LANE0_SET,
1567 intel_dp->train_set, 4);
1568 if (ret != 4)
1569 return false;
1570
1571 return true;
1572 }
1573
1574 /* Enable corresponding port and start training pattern 1 */
1575 static void
1576 intel_dp_start_link_train(struct intel_dp *intel_dp)
1577 {
1578 struct drm_device *dev = intel_dp->base.base.dev;
1579 struct drm_i915_private *dev_priv = dev->dev_private;
1580 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1581 int i;
1582 uint8_t voltage;
1583 bool clock_recovery = false;
1584 int voltage_tries, loop_tries;
1585 u32 reg;
1586 uint32_t DP = intel_dp->DP;
1587
1588 /*
1589 * On CPT we have to enable the port in training pattern 1, which
1590 * will happen below in intel_dp_set_link_train. Otherwise, enable
1591 * the port and wait for it to become active.
1592 */
1593 if (!HAS_PCH_CPT(dev)) {
1594 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1595 POSTING_READ(intel_dp->output_reg);
1596 intel_wait_for_vblank(dev, intel_crtc->pipe);
1597 }
1598
1599 /* Write the link configuration data */
1600 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1601 intel_dp->link_configuration,
1602 DP_LINK_CONFIGURATION_SIZE);
1603
1604 DP |= DP_PORT_EN;
1605 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1606 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1607 else
1608 DP &= ~DP_LINK_TRAIN_MASK;
1609 memset(intel_dp->train_set, 0, 4);
1610 voltage = 0xff;
1611 voltage_tries = 0;
1612 loop_tries = 0;
1613 clock_recovery = false;
1614 for (;;) {
1615 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1616 uint8_t link_status[DP_LINK_STATUS_SIZE];
1617 uint32_t signal_levels;
1618
1619 if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1620 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1621 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1622 } else {
1623 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1624 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1625 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1626 }
1627
1628 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1629 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1630 else
1631 reg = DP | DP_LINK_TRAIN_PAT_1;
1632
1633 if (!intel_dp_set_link_train(intel_dp, reg,
1634 DP_TRAINING_PATTERN_1 |
1635 DP_LINK_SCRAMBLING_DISABLE))
1636 break;
1637 /* Set training pattern 1 */
1638
1639 udelay(100);
1640 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1641 DRM_ERROR("failed to get link status\n");
1642 break;
1643 }
1644
1645 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1646 DRM_DEBUG_KMS("clock recovery OK\n");
1647 clock_recovery = true;
1648 break;
1649 }
1650
1651 /* Check to see if we've tried the max voltage */
1652 for (i = 0; i < intel_dp->lane_count; i++)
1653 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1654 break;
1655 if (i == intel_dp->lane_count) {
1656 ++loop_tries;
1657 if (loop_tries == 5) {
1658 DRM_DEBUG_KMS("too many full retries, give up\n");
1659 break;
1660 }
1661 memset(intel_dp->train_set, 0, 4);
1662 voltage_tries = 0;
1663 continue;
1664 }
1665
1666 /* Check to see if we've tried the same voltage 5 times */
1667 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1668 ++voltage_tries;
1669 if (voltage_tries == 5) {
1670 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1671 break;
1672 }
1673 } else
1674 voltage_tries = 0;
1675 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1676
1677 /* Compute new intel_dp->train_set as requested by target */
1678 intel_get_adjust_train(intel_dp, link_status);
1679 }
1680
1681 intel_dp->DP = DP;
1682 }
1683
1684 static void
1685 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1686 {
1687 struct drm_device *dev = intel_dp->base.base.dev;
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1689 bool channel_eq = false;
1690 int tries, cr_tries;
1691 u32 reg;
1692 uint32_t DP = intel_dp->DP;
1693
1694 /* channel equalization */
1695 tries = 0;
1696 cr_tries = 0;
1697 channel_eq = false;
1698 for (;;) {
1699 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1700 uint32_t signal_levels;
1701 uint8_t link_status[DP_LINK_STATUS_SIZE];
1702
1703 if (cr_tries > 5) {
1704 DRM_ERROR("failed to train DP, aborting\n");
1705 intel_dp_link_down(intel_dp);
1706 break;
1707 }
1708
1709 if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1710 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1711 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1712 } else {
1713 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1714 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1715 }
1716
1717 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1718 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1719 else
1720 reg = DP | DP_LINK_TRAIN_PAT_2;
1721
1722 /* channel eq pattern */
1723 if (!intel_dp_set_link_train(intel_dp, reg,
1724 DP_TRAINING_PATTERN_2 |
1725 DP_LINK_SCRAMBLING_DISABLE))
1726 break;
1727
1728 udelay(400);
1729 if (!intel_dp_get_link_status(intel_dp, link_status))
1730 break;
1731
1732 /* Make sure clock is still ok */
1733 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1734 intel_dp_start_link_train(intel_dp);
1735 cr_tries++;
1736 continue;
1737 }
1738
1739 if (intel_channel_eq_ok(intel_dp, link_status)) {
1740 channel_eq = true;
1741 break;
1742 }
1743
1744 /* Try 5 times, then try clock recovery if that fails */
1745 if (tries > 5) {
1746 intel_dp_link_down(intel_dp);
1747 intel_dp_start_link_train(intel_dp);
1748 tries = 0;
1749 cr_tries++;
1750 continue;
1751 }
1752
1753 /* Compute new intel_dp->train_set as requested by target */
1754 intel_get_adjust_train(intel_dp, link_status);
1755 ++tries;
1756 }
1757
1758 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1759 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1760 else
1761 reg = DP | DP_LINK_TRAIN_OFF;
1762
1763 I915_WRITE(intel_dp->output_reg, reg);
1764 POSTING_READ(intel_dp->output_reg);
1765 intel_dp_aux_native_write_1(intel_dp,
1766 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1767 }
1768
1769 static void
1770 intel_dp_link_down(struct intel_dp *intel_dp)
1771 {
1772 struct drm_device *dev = intel_dp->base.base.dev;
1773 struct drm_i915_private *dev_priv = dev->dev_private;
1774 uint32_t DP = intel_dp->DP;
1775
1776 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1777 return;
1778
1779 DRM_DEBUG_KMS("\n");
1780
1781 if (is_edp(intel_dp)) {
1782 DP &= ~DP_PLL_ENABLE;
1783 I915_WRITE(intel_dp->output_reg, DP);
1784 POSTING_READ(intel_dp->output_reg);
1785 udelay(100);
1786 }
1787
1788 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp)) {
1789 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1790 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1791 } else {
1792 DP &= ~DP_LINK_TRAIN_MASK;
1793 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1794 }
1795 POSTING_READ(intel_dp->output_reg);
1796
1797 msleep(17);
1798
1799 if (is_edp(intel_dp)) {
1800 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1801 DP |= DP_LINK_TRAIN_OFF_CPT;
1802 else
1803 DP |= DP_LINK_TRAIN_OFF;
1804 }
1805
1806 if (!HAS_PCH_CPT(dev) &&
1807 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1808 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1809
1810 /* Hardware workaround: leaving our transcoder select
1811 * set to transcoder B while it's off will prevent the
1812 * corresponding HDMI output on transcoder A.
1813 *
1814 * Combine this with another hardware workaround:
1815 * transcoder select bit can only be cleared while the
1816 * port is enabled.
1817 */
1818 DP &= ~DP_PIPEB_SELECT;
1819 I915_WRITE(intel_dp->output_reg, DP);
1820
1821 /* Changes to enable or select take place the vblank
1822 * after being written.
1823 */
1824 if (crtc == NULL) {
1825 /* We can arrive here never having been attached
1826 * to a CRTC, for instance, due to inheriting
1827 * random state from the BIOS.
1828 *
1829 * If the pipe is not running, play safe and
1830 * wait for the clocks to stabilise before
1831 * continuing.
1832 */
1833 POSTING_READ(intel_dp->output_reg);
1834 msleep(50);
1835 } else
1836 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1837 }
1838
1839 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1840 POSTING_READ(intel_dp->output_reg);
1841 msleep(intel_dp->panel_power_down_delay);
1842 }
1843
1844 static bool
1845 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1846 {
1847 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1848 sizeof(intel_dp->dpcd)) &&
1849 (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1850 return true;
1851 }
1852
1853 return false;
1854 }
1855
1856 static bool
1857 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1858 {
1859 int ret;
1860
1861 ret = intel_dp_aux_native_read_retry(intel_dp,
1862 DP_DEVICE_SERVICE_IRQ_VECTOR,
1863 sink_irq_vector, 1);
1864 if (!ret)
1865 return false;
1866
1867 return true;
1868 }
1869
1870 static void
1871 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1872 {
1873 /* NAK by default */
1874 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1875 }
1876
1877 /*
1878 * According to DP spec
1879 * 5.1.2:
1880 * 1. Read DPCD
1881 * 2. Configure link according to Receiver Capabilities
1882 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1883 * 4. Check link status on receipt of hot-plug interrupt
1884 */
1885
1886 static void
1887 intel_dp_check_link_status(struct intel_dp *intel_dp)
1888 {
1889 u8 sink_irq_vector;
1890 u8 link_status[DP_LINK_STATUS_SIZE];
1891
1892 if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1893 return;
1894
1895 if (!intel_dp->base.base.crtc)
1896 return;
1897
1898 /* Try to read receiver status if the link appears to be up */
1899 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1900 intel_dp_link_down(intel_dp);
1901 return;
1902 }
1903
1904 /* Now read the DPCD to see if it's actually running */
1905 if (!intel_dp_get_dpcd(intel_dp)) {
1906 intel_dp_link_down(intel_dp);
1907 return;
1908 }
1909
1910 /* Try to read the source of the interrupt */
1911 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1912 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1913 /* Clear interrupt source */
1914 intel_dp_aux_native_write_1(intel_dp,
1915 DP_DEVICE_SERVICE_IRQ_VECTOR,
1916 sink_irq_vector);
1917
1918 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
1919 intel_dp_handle_test_request(intel_dp);
1920 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
1921 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
1922 }
1923
1924 if (!intel_channel_eq_ok(intel_dp, link_status)) {
1925 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1926 drm_get_encoder_name(&intel_dp->base.base));
1927 intel_dp_start_link_train(intel_dp);
1928 intel_dp_complete_link_train(intel_dp);
1929 }
1930 }
1931
1932 static enum drm_connector_status
1933 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1934 {
1935 if (intel_dp_get_dpcd(intel_dp))
1936 return connector_status_connected;
1937 return connector_status_disconnected;
1938 }
1939
1940 static enum drm_connector_status
1941 ironlake_dp_detect(struct intel_dp *intel_dp)
1942 {
1943 enum drm_connector_status status;
1944
1945 /* Can't disconnect eDP, but you can close the lid... */
1946 if (is_edp(intel_dp)) {
1947 status = intel_panel_detect(intel_dp->base.base.dev);
1948 if (status == connector_status_unknown)
1949 status = connector_status_connected;
1950 return status;
1951 }
1952
1953 return intel_dp_detect_dpcd(intel_dp);
1954 }
1955
1956 static enum drm_connector_status
1957 g4x_dp_detect(struct intel_dp *intel_dp)
1958 {
1959 struct drm_device *dev = intel_dp->base.base.dev;
1960 struct drm_i915_private *dev_priv = dev->dev_private;
1961 uint32_t temp, bit;
1962
1963 switch (intel_dp->output_reg) {
1964 case DP_B:
1965 bit = DPB_HOTPLUG_INT_STATUS;
1966 break;
1967 case DP_C:
1968 bit = DPC_HOTPLUG_INT_STATUS;
1969 break;
1970 case DP_D:
1971 bit = DPD_HOTPLUG_INT_STATUS;
1972 break;
1973 default:
1974 return connector_status_unknown;
1975 }
1976
1977 temp = I915_READ(PORT_HOTPLUG_STAT);
1978
1979 if ((temp & bit) == 0)
1980 return connector_status_disconnected;
1981
1982 return intel_dp_detect_dpcd(intel_dp);
1983 }
1984
1985 static struct edid *
1986 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1987 {
1988 struct intel_dp *intel_dp = intel_attached_dp(connector);
1989 struct edid *edid;
1990
1991 ironlake_edp_panel_vdd_on(intel_dp);
1992 edid = drm_get_edid(connector, adapter);
1993 ironlake_edp_panel_vdd_off(intel_dp, false);
1994 return edid;
1995 }
1996
1997 static int
1998 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
1999 {
2000 struct intel_dp *intel_dp = intel_attached_dp(connector);
2001 int ret;
2002
2003 ironlake_edp_panel_vdd_on(intel_dp);
2004 ret = intel_ddc_get_modes(connector, adapter);
2005 ironlake_edp_panel_vdd_off(intel_dp, false);
2006 return ret;
2007 }
2008
2009
2010 /**
2011 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2012 *
2013 * \return true if DP port is connected.
2014 * \return false if DP port is disconnected.
2015 */
2016 static enum drm_connector_status
2017 intel_dp_detect(struct drm_connector *connector, bool force)
2018 {
2019 struct intel_dp *intel_dp = intel_attached_dp(connector);
2020 struct drm_device *dev = intel_dp->base.base.dev;
2021 enum drm_connector_status status;
2022 struct edid *edid = NULL;
2023
2024 intel_dp->has_audio = false;
2025
2026 if (HAS_PCH_SPLIT(dev))
2027 status = ironlake_dp_detect(intel_dp);
2028 else
2029 status = g4x_dp_detect(intel_dp);
2030
2031 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2032 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2033 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2034 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2035
2036 if (status != connector_status_connected)
2037 return status;
2038
2039 if (intel_dp->force_audio) {
2040 intel_dp->has_audio = intel_dp->force_audio > 0;
2041 } else {
2042 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2043 if (edid) {
2044 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2045 connector->display_info.raw_edid = NULL;
2046 kfree(edid);
2047 }
2048 }
2049
2050 return connector_status_connected;
2051 }
2052
2053 static int intel_dp_get_modes(struct drm_connector *connector)
2054 {
2055 struct intel_dp *intel_dp = intel_attached_dp(connector);
2056 struct drm_device *dev = intel_dp->base.base.dev;
2057 struct drm_i915_private *dev_priv = dev->dev_private;
2058 int ret;
2059
2060 /* We should parse the EDID data and find out if it has an audio sink
2061 */
2062
2063 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2064 if (ret) {
2065 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2066 struct drm_display_mode *newmode;
2067 list_for_each_entry(newmode, &connector->probed_modes,
2068 head) {
2069 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2070 intel_dp->panel_fixed_mode =
2071 drm_mode_duplicate(dev, newmode);
2072 break;
2073 }
2074 }
2075 }
2076 return ret;
2077 }
2078
2079 /* if eDP has no EDID, try to use fixed panel mode from VBT */
2080 if (is_edp(intel_dp)) {
2081 /* initialize panel mode from VBT if available for eDP */
2082 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2083 intel_dp->panel_fixed_mode =
2084 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2085 if (intel_dp->panel_fixed_mode) {
2086 intel_dp->panel_fixed_mode->type |=
2087 DRM_MODE_TYPE_PREFERRED;
2088 }
2089 }
2090 if (intel_dp->panel_fixed_mode) {
2091 struct drm_display_mode *mode;
2092 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2093 drm_mode_probed_add(connector, mode);
2094 return 1;
2095 }
2096 }
2097 return 0;
2098 }
2099
2100 static bool
2101 intel_dp_detect_audio(struct drm_connector *connector)
2102 {
2103 struct intel_dp *intel_dp = intel_attached_dp(connector);
2104 struct edid *edid;
2105 bool has_audio = false;
2106
2107 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2108 if (edid) {
2109 has_audio = drm_detect_monitor_audio(edid);
2110
2111 connector->display_info.raw_edid = NULL;
2112 kfree(edid);
2113 }
2114
2115 return has_audio;
2116 }
2117
2118 static int
2119 intel_dp_set_property(struct drm_connector *connector,
2120 struct drm_property *property,
2121 uint64_t val)
2122 {
2123 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2124 struct intel_dp *intel_dp = intel_attached_dp(connector);
2125 int ret;
2126
2127 ret = drm_connector_property_set_value(connector, property, val);
2128 if (ret)
2129 return ret;
2130
2131 if (property == dev_priv->force_audio_property) {
2132 int i = val;
2133 bool has_audio;
2134
2135 if (i == intel_dp->force_audio)
2136 return 0;
2137
2138 intel_dp->force_audio = i;
2139
2140 if (i == 0)
2141 has_audio = intel_dp_detect_audio(connector);
2142 else
2143 has_audio = i > 0;
2144
2145 if (has_audio == intel_dp->has_audio)
2146 return 0;
2147
2148 intel_dp->has_audio = has_audio;
2149 goto done;
2150 }
2151
2152 if (property == dev_priv->broadcast_rgb_property) {
2153 if (val == !!intel_dp->color_range)
2154 return 0;
2155
2156 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2157 goto done;
2158 }
2159
2160 return -EINVAL;
2161
2162 done:
2163 if (intel_dp->base.base.crtc) {
2164 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2165 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2166 crtc->x, crtc->y,
2167 crtc->fb);
2168 }
2169
2170 return 0;
2171 }
2172
2173 static void
2174 intel_dp_destroy(struct drm_connector *connector)
2175 {
2176 struct drm_device *dev = connector->dev;
2177
2178 if (intel_dpd_is_edp(dev))
2179 intel_panel_destroy_backlight(dev);
2180
2181 drm_sysfs_connector_remove(connector);
2182 drm_connector_cleanup(connector);
2183 kfree(connector);
2184 }
2185
2186 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2187 {
2188 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2189
2190 i2c_del_adapter(&intel_dp->adapter);
2191 drm_encoder_cleanup(encoder);
2192 if (is_edp(intel_dp)) {
2193 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2194 ironlake_panel_vdd_off_sync(intel_dp);
2195 }
2196 kfree(intel_dp);
2197 }
2198
2199 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2200 .dpms = intel_dp_dpms,
2201 .mode_fixup = intel_dp_mode_fixup,
2202 .prepare = intel_dp_prepare,
2203 .mode_set = intel_dp_mode_set,
2204 .commit = intel_dp_commit,
2205 };
2206
2207 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2208 .dpms = drm_helper_connector_dpms,
2209 .detect = intel_dp_detect,
2210 .fill_modes = drm_helper_probe_single_connector_modes,
2211 .set_property = intel_dp_set_property,
2212 .destroy = intel_dp_destroy,
2213 };
2214
2215 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2216 .get_modes = intel_dp_get_modes,
2217 .mode_valid = intel_dp_mode_valid,
2218 .best_encoder = intel_best_encoder,
2219 };
2220
2221 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2222 .destroy = intel_dp_encoder_destroy,
2223 };
2224
2225 static void
2226 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2227 {
2228 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2229
2230 intel_dp_check_link_status(intel_dp);
2231 }
2232
2233 /* Return which DP Port should be selected for Transcoder DP control */
2234 int
2235 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2236 {
2237 struct drm_device *dev = crtc->dev;
2238 struct drm_mode_config *mode_config = &dev->mode_config;
2239 struct drm_encoder *encoder;
2240
2241 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2242 struct intel_dp *intel_dp;
2243
2244 if (encoder->crtc != crtc)
2245 continue;
2246
2247 intel_dp = enc_to_intel_dp(encoder);
2248 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2249 intel_dp->base.type == INTEL_OUTPUT_EDP)
2250 return intel_dp->output_reg;
2251 }
2252
2253 return -1;
2254 }
2255
2256 /* check the VBT to see whether the eDP is on DP-D port */
2257 bool intel_dpd_is_edp(struct drm_device *dev)
2258 {
2259 struct drm_i915_private *dev_priv = dev->dev_private;
2260 struct child_device_config *p_child;
2261 int i;
2262
2263 if (!dev_priv->child_dev_num)
2264 return false;
2265
2266 for (i = 0; i < dev_priv->child_dev_num; i++) {
2267 p_child = dev_priv->child_dev + i;
2268
2269 if (p_child->dvo_port == PORT_IDPD &&
2270 p_child->device_type == DEVICE_TYPE_eDP)
2271 return true;
2272 }
2273 return false;
2274 }
2275
2276 static void
2277 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2278 {
2279 intel_attach_force_audio_property(connector);
2280 intel_attach_broadcast_rgb_property(connector);
2281 }
2282
2283 void
2284 intel_dp_init(struct drm_device *dev, int output_reg)
2285 {
2286 struct drm_i915_private *dev_priv = dev->dev_private;
2287 struct drm_connector *connector;
2288 struct intel_dp *intel_dp;
2289 struct intel_encoder *intel_encoder;
2290 struct intel_connector *intel_connector;
2291 const char *name = NULL;
2292 int type;
2293
2294 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2295 if (!intel_dp)
2296 return;
2297
2298 intel_dp->output_reg = output_reg;
2299 intel_dp->dpms_mode = -1;
2300
2301 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2302 if (!intel_connector) {
2303 kfree(intel_dp);
2304 return;
2305 }
2306 intel_encoder = &intel_dp->base;
2307
2308 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2309 if (intel_dpd_is_edp(dev))
2310 intel_dp->is_pch_edp = true;
2311
2312 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2313 type = DRM_MODE_CONNECTOR_eDP;
2314 intel_encoder->type = INTEL_OUTPUT_EDP;
2315 } else {
2316 type = DRM_MODE_CONNECTOR_DisplayPort;
2317 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2318 }
2319
2320 connector = &intel_connector->base;
2321 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2322 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2323
2324 connector->polled = DRM_CONNECTOR_POLL_HPD;
2325
2326 if (output_reg == DP_B || output_reg == PCH_DP_B)
2327 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2328 else if (output_reg == DP_C || output_reg == PCH_DP_C)
2329 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2330 else if (output_reg == DP_D || output_reg == PCH_DP_D)
2331 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2332
2333 if (is_edp(intel_dp)) {
2334 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2335 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2336 ironlake_panel_vdd_work);
2337 }
2338
2339 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2340 connector->interlace_allowed = true;
2341 connector->doublescan_allowed = 0;
2342
2343 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2344 DRM_MODE_ENCODER_TMDS);
2345 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2346
2347 intel_connector_attach_encoder(intel_connector, intel_encoder);
2348 drm_sysfs_connector_add(connector);
2349
2350 /* Set up the DDC bus. */
2351 switch (output_reg) {
2352 case DP_A:
2353 name = "DPDDC-A";
2354 break;
2355 case DP_B:
2356 case PCH_DP_B:
2357 dev_priv->hotplug_supported_mask |=
2358 HDMIB_HOTPLUG_INT_STATUS;
2359 name = "DPDDC-B";
2360 break;
2361 case DP_C:
2362 case PCH_DP_C:
2363 dev_priv->hotplug_supported_mask |=
2364 HDMIC_HOTPLUG_INT_STATUS;
2365 name = "DPDDC-C";
2366 break;
2367 case DP_D:
2368 case PCH_DP_D:
2369 dev_priv->hotplug_supported_mask |=
2370 HDMID_HOTPLUG_INT_STATUS;
2371 name = "DPDDC-D";
2372 break;
2373 }
2374
2375 /* Cache some DPCD data in the eDP case */
2376 if (is_edp(intel_dp)) {
2377 bool ret;
2378 struct edp_power_seq cur, vbt;
2379 u32 pp_on, pp_off, pp_div;
2380
2381 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2382 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2383 pp_div = I915_READ(PCH_PP_DIVISOR);
2384
2385 /* Pull timing values out of registers */
2386 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2387 PANEL_POWER_UP_DELAY_SHIFT;
2388
2389 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2390 PANEL_LIGHT_ON_DELAY_SHIFT;
2391
2392 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2393 PANEL_LIGHT_OFF_DELAY_SHIFT;
2394
2395 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2396 PANEL_POWER_DOWN_DELAY_SHIFT;
2397
2398 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2399 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2400
2401 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2402 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2403
2404 vbt = dev_priv->edp.pps;
2405
2406 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2407 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2408
2409 #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2410
2411 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2412 intel_dp->backlight_on_delay = get_delay(t8);
2413 intel_dp->backlight_off_delay = get_delay(t9);
2414 intel_dp->panel_power_down_delay = get_delay(t10);
2415 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2416
2417 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2418 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2419 intel_dp->panel_power_cycle_delay);
2420
2421 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2422 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2423
2424 ironlake_edp_panel_vdd_on(intel_dp);
2425 ret = intel_dp_get_dpcd(intel_dp);
2426 ironlake_edp_panel_vdd_off(intel_dp, false);
2427
2428 if (ret) {
2429 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2430 dev_priv->no_aux_handshake =
2431 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2432 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2433 } else {
2434 /* if this fails, presume the device is a ghost */
2435 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2436 intel_dp_encoder_destroy(&intel_dp->base.base);
2437 intel_dp_destroy(&intel_connector->base);
2438 return;
2439 }
2440 }
2441
2442 intel_dp_i2c_init(intel_dp, intel_connector, name);
2443
2444 intel_encoder->hot_plug = intel_dp_hot_plug;
2445
2446 if (is_edp(intel_dp)) {
2447 dev_priv->int_edp_connector = connector;
2448 intel_panel_setup_backlight(dev);
2449 }
2450
2451 intel_dp_add_properties(intel_dp, connector);
2452
2453 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2454 * 0xd. Failure to do so will result in spurious interrupts being
2455 * generated on the port when a cable is not attached.
2456 */
2457 if (IS_G4X(dev) && !IS_GM45(dev)) {
2458 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2459 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2460 }
2461 }
This page took 0.083066 seconds and 6 git commands to generate.