drm/i915: debug sink dpms aux errors also on enable
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121 struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123 switch (max_link_bw) {
124 case DP_LINK_BW_1_62:
125 case DP_LINK_BW_2_7:
126 break;
127 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129 INTEL_INFO(dev)->gen >= 8) &&
130 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131 max_link_bw = DP_LINK_BW_5_4;
132 else
133 max_link_bw = DP_LINK_BW_2_7;
134 break;
135 default:
136 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137 max_link_bw);
138 max_link_bw = DP_LINK_BW_1_62;
139 break;
140 }
141 return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147 struct drm_device *dev = intel_dig_port->base.base.dev;
148 u8 source_max, sink_max;
149
150 source_max = 4;
151 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153 source_max = 2;
154
155 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157 return min(source_max, sink_max);
158 }
159
160 /*
161 * The units on the numbers in the next two are... bizarre. Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 * 270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000. At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186 return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191 struct drm_display_mode *mode)
192 {
193 struct intel_dp *intel_dp = intel_attached_dp(connector);
194 struct intel_connector *intel_connector = to_intel_connector(connector);
195 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196 int target_clock = mode->clock;
197 int max_rate, mode_rate, max_lanes, max_link_clock;
198
199 if (is_edp(intel_dp) && fixed_mode) {
200 if (mode->hdisplay > fixed_mode->hdisplay)
201 return MODE_PANEL;
202
203 if (mode->vdisplay > fixed_mode->vdisplay)
204 return MODE_PANEL;
205
206 target_clock = fixed_mode->clock;
207 }
208
209 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210 max_lanes = intel_dp_max_lane_count(intel_dp);
211
212 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213 mode_rate = intel_dp_link_required(target_clock, 18);
214
215 if (mode_rate > max_rate)
216 return MODE_CLOCK_HIGH;
217
218 if (mode->clock < 10000)
219 return MODE_CLOCK_LOW;
220
221 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222 return MODE_H_ILLEGAL;
223
224 return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(uint8_t *src, int src_bytes)
229 {
230 int i;
231 uint32_t v = 0;
232
233 if (src_bytes > 4)
234 src_bytes = 4;
235 for (i = 0; i < src_bytes; i++)
236 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237 return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243 int i;
244 if (dst_bytes > 4)
245 dst_bytes = 4;
246 for (i = 0; i < dst_bytes; i++)
247 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 uint32_t clkcfg;
256
257 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258 if (IS_VALLEYVIEW(dev))
259 return 200;
260
261 clkcfg = I915_READ(CLKCFG);
262 switch (clkcfg & CLKCFG_FSB_MASK) {
263 case CLKCFG_FSB_400:
264 return 100;
265 case CLKCFG_FSB_533:
266 return 133;
267 case CLKCFG_FSB_667:
268 return 166;
269 case CLKCFG_FSB_800:
270 return 200;
271 case CLKCFG_FSB_1067:
272 return 266;
273 case CLKCFG_FSB_1333:
274 return 333;
275 /* these two are just a guess; one of them might be right */
276 case CLKCFG_FSB_1600:
277 case CLKCFG_FSB_1600_ALT:
278 return 400;
279 default:
280 return 133;
281 }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286 struct intel_dp *intel_dp,
287 struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp,
291 struct edp_power_seq *out);
292
293 static enum pipe
294 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
295 {
296 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
298 struct drm_device *dev = intel_dig_port->base.base.dev;
299 struct drm_i915_private *dev_priv = dev->dev_private;
300 enum port port = intel_dig_port->port;
301 enum pipe pipe;
302
303 /* modeset should have pipe */
304 if (crtc)
305 return to_intel_crtc(crtc)->pipe;
306
307 /* init time, try to find a pipe with this port selected */
308 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
309 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
310 PANEL_PORT_SELECT_MASK;
311 if (port_sel == PANEL_PORT_SELECT_VLV(port))
312 return pipe;
313 }
314
315 /* shrug */
316 return PIPE_A;
317 }
318
319 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
320 {
321 struct drm_device *dev = intel_dp_to_dev(intel_dp);
322
323 if (HAS_PCH_SPLIT(dev))
324 return PCH_PP_CONTROL;
325 else
326 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
327 }
328
329 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
330 {
331 struct drm_device *dev = intel_dp_to_dev(intel_dp);
332
333 if (HAS_PCH_SPLIT(dev))
334 return PCH_PP_STATUS;
335 else
336 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
337 }
338
339 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
340 This function only applicable when panel PM state is not to be tracked */
341 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
342 void *unused)
343 {
344 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
345 edp_notifier);
346 struct drm_device *dev = intel_dp_to_dev(intel_dp);
347 struct drm_i915_private *dev_priv = dev->dev_private;
348 u32 pp_div;
349 u32 pp_ctrl_reg, pp_div_reg;
350 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
351
352 if (!is_edp(intel_dp) || code != SYS_RESTART)
353 return 0;
354
355 if (IS_VALLEYVIEW(dev)) {
356 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
357 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
358 pp_div = I915_READ(pp_div_reg);
359 pp_div &= PP_REFERENCE_DIVIDER_MASK;
360
361 /* 0x1F write to PP_DIV_REG sets max cycle delay */
362 I915_WRITE(pp_div_reg, pp_div | 0x1F);
363 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
364 msleep(intel_dp->panel_power_cycle_delay);
365 }
366
367 return 0;
368 }
369
370 static bool edp_have_panel_power(struct intel_dp *intel_dp)
371 {
372 struct drm_device *dev = intel_dp_to_dev(intel_dp);
373 struct drm_i915_private *dev_priv = dev->dev_private;
374
375 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
376 }
377
378 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
379 {
380 struct drm_device *dev = intel_dp_to_dev(intel_dp);
381 struct drm_i915_private *dev_priv = dev->dev_private;
382 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
383 struct intel_encoder *intel_encoder = &intel_dig_port->base;
384 enum intel_display_power_domain power_domain;
385
386 power_domain = intel_display_port_power_domain(intel_encoder);
387 return intel_display_power_enabled(dev_priv, power_domain) &&
388 (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
389 }
390
391 static void
392 intel_dp_check_edp(struct intel_dp *intel_dp)
393 {
394 struct drm_device *dev = intel_dp_to_dev(intel_dp);
395 struct drm_i915_private *dev_priv = dev->dev_private;
396
397 if (!is_edp(intel_dp))
398 return;
399
400 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
401 WARN(1, "eDP powered off while attempting aux channel communication.\n");
402 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
403 I915_READ(_pp_stat_reg(intel_dp)),
404 I915_READ(_pp_ctrl_reg(intel_dp)));
405 }
406 }
407
408 static uint32_t
409 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
410 {
411 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
412 struct drm_device *dev = intel_dig_port->base.base.dev;
413 struct drm_i915_private *dev_priv = dev->dev_private;
414 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
415 uint32_t status;
416 bool done;
417
418 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
419 if (has_aux_irq)
420 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
421 msecs_to_jiffies_timeout(10));
422 else
423 done = wait_for_atomic(C, 10) == 0;
424 if (!done)
425 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
426 has_aux_irq);
427 #undef C
428
429 return status;
430 }
431
432 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
433 {
434 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
435 struct drm_device *dev = intel_dig_port->base.base.dev;
436
437 /*
438 * The clock divider is based off the hrawclk, and would like to run at
439 * 2MHz. So, take the hrawclk value and divide by 2 and use that
440 */
441 return index ? 0 : intel_hrawclk(dev) / 2;
442 }
443
444 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
445 {
446 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
447 struct drm_device *dev = intel_dig_port->base.base.dev;
448
449 if (index)
450 return 0;
451
452 if (intel_dig_port->port == PORT_A) {
453 if (IS_GEN6(dev) || IS_GEN7(dev))
454 return 200; /* SNB & IVB eDP input clock at 400Mhz */
455 else
456 return 225; /* eDP input clock at 450Mhz */
457 } else {
458 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
459 }
460 }
461
462 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
463 {
464 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
465 struct drm_device *dev = intel_dig_port->base.base.dev;
466 struct drm_i915_private *dev_priv = dev->dev_private;
467
468 if (intel_dig_port->port == PORT_A) {
469 if (index)
470 return 0;
471 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
472 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
473 /* Workaround for non-ULT HSW */
474 switch (index) {
475 case 0: return 63;
476 case 1: return 72;
477 default: return 0;
478 }
479 } else {
480 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
481 }
482 }
483
484 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
485 {
486 return index ? 0 : 100;
487 }
488
489 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
490 bool has_aux_irq,
491 int send_bytes,
492 uint32_t aux_clock_divider)
493 {
494 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
495 struct drm_device *dev = intel_dig_port->base.base.dev;
496 uint32_t precharge, timeout;
497
498 if (IS_GEN6(dev))
499 precharge = 3;
500 else
501 precharge = 5;
502
503 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
504 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
505 else
506 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
507
508 return DP_AUX_CH_CTL_SEND_BUSY |
509 DP_AUX_CH_CTL_DONE |
510 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
511 DP_AUX_CH_CTL_TIME_OUT_ERROR |
512 timeout |
513 DP_AUX_CH_CTL_RECEIVE_ERROR |
514 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
515 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
516 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
517 }
518
519 static int
520 intel_dp_aux_ch(struct intel_dp *intel_dp,
521 uint8_t *send, int send_bytes,
522 uint8_t *recv, int recv_size)
523 {
524 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
525 struct drm_device *dev = intel_dig_port->base.base.dev;
526 struct drm_i915_private *dev_priv = dev->dev_private;
527 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
528 uint32_t ch_data = ch_ctl + 4;
529 uint32_t aux_clock_divider;
530 int i, ret, recv_bytes;
531 uint32_t status;
532 int try, clock = 0;
533 bool has_aux_irq = HAS_AUX_IRQ(dev);
534 bool vdd;
535
536 /*
537 * We will be called with VDD already enabled for dpcd/edid/oui reads.
538 * In such cases we want to leave VDD enabled and it's up to upper layers
539 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
540 * ourselves.
541 */
542 vdd = edp_panel_vdd_on(intel_dp);
543
544 /* dp aux is extremely sensitive to irq latency, hence request the
545 * lowest possible wakeup latency and so prevent the cpu from going into
546 * deep sleep states.
547 */
548 pm_qos_update_request(&dev_priv->pm_qos, 0);
549
550 intel_dp_check_edp(intel_dp);
551
552 intel_aux_display_runtime_get(dev_priv);
553
554 /* Try to wait for any previous AUX channel activity */
555 for (try = 0; try < 3; try++) {
556 status = I915_READ_NOTRACE(ch_ctl);
557 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
558 break;
559 msleep(1);
560 }
561
562 if (try == 3) {
563 WARN(1, "dp_aux_ch not started status 0x%08x\n",
564 I915_READ(ch_ctl));
565 ret = -EBUSY;
566 goto out;
567 }
568
569 /* Only 5 data registers! */
570 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
571 ret = -E2BIG;
572 goto out;
573 }
574
575 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
576 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
577 has_aux_irq,
578 send_bytes,
579 aux_clock_divider);
580
581 /* Must try at least 3 times according to DP spec */
582 for (try = 0; try < 5; try++) {
583 /* Load the send data into the aux channel data registers */
584 for (i = 0; i < send_bytes; i += 4)
585 I915_WRITE(ch_data + i,
586 pack_aux(send + i, send_bytes - i));
587
588 /* Send the command and wait for it to complete */
589 I915_WRITE(ch_ctl, send_ctl);
590
591 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
592
593 /* Clear done status and any errors */
594 I915_WRITE(ch_ctl,
595 status |
596 DP_AUX_CH_CTL_DONE |
597 DP_AUX_CH_CTL_TIME_OUT_ERROR |
598 DP_AUX_CH_CTL_RECEIVE_ERROR);
599
600 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
601 DP_AUX_CH_CTL_RECEIVE_ERROR))
602 continue;
603 if (status & DP_AUX_CH_CTL_DONE)
604 break;
605 }
606 if (status & DP_AUX_CH_CTL_DONE)
607 break;
608 }
609
610 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
611 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
612 ret = -EBUSY;
613 goto out;
614 }
615
616 /* Check for timeout or receive error.
617 * Timeouts occur when the sink is not connected
618 */
619 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
620 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
621 ret = -EIO;
622 goto out;
623 }
624
625 /* Timeouts occur when the device isn't connected, so they're
626 * "normal" -- don't fill the kernel log with these */
627 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
628 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
629 ret = -ETIMEDOUT;
630 goto out;
631 }
632
633 /* Unload any bytes sent back from the other side */
634 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
635 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
636 if (recv_bytes > recv_size)
637 recv_bytes = recv_size;
638
639 for (i = 0; i < recv_bytes; i += 4)
640 unpack_aux(I915_READ(ch_data + i),
641 recv + i, recv_bytes - i);
642
643 ret = recv_bytes;
644 out:
645 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
646 intel_aux_display_runtime_put(dev_priv);
647
648 if (vdd)
649 edp_panel_vdd_off(intel_dp, false);
650
651 return ret;
652 }
653
654 #define BARE_ADDRESS_SIZE 3
655 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
656 static ssize_t
657 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
658 {
659 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
660 uint8_t txbuf[20], rxbuf[20];
661 size_t txsize, rxsize;
662 int ret;
663
664 txbuf[0] = msg->request << 4;
665 txbuf[1] = msg->address >> 8;
666 txbuf[2] = msg->address & 0xff;
667 txbuf[3] = msg->size - 1;
668
669 switch (msg->request & ~DP_AUX_I2C_MOT) {
670 case DP_AUX_NATIVE_WRITE:
671 case DP_AUX_I2C_WRITE:
672 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
673 rxsize = 1;
674
675 if (WARN_ON(txsize > 20))
676 return -E2BIG;
677
678 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
679
680 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
681 if (ret > 0) {
682 msg->reply = rxbuf[0] >> 4;
683
684 /* Return payload size. */
685 ret = msg->size;
686 }
687 break;
688
689 case DP_AUX_NATIVE_READ:
690 case DP_AUX_I2C_READ:
691 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
692 rxsize = msg->size + 1;
693
694 if (WARN_ON(rxsize > 20))
695 return -E2BIG;
696
697 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
698 if (ret > 0) {
699 msg->reply = rxbuf[0] >> 4;
700 /*
701 * Assume happy day, and copy the data. The caller is
702 * expected to check msg->reply before touching it.
703 *
704 * Return payload size.
705 */
706 ret--;
707 memcpy(msg->buffer, rxbuf + 1, ret);
708 }
709 break;
710
711 default:
712 ret = -EINVAL;
713 break;
714 }
715
716 return ret;
717 }
718
719 static void
720 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
721 {
722 struct drm_device *dev = intel_dp_to_dev(intel_dp);
723 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
724 enum port port = intel_dig_port->port;
725 const char *name = NULL;
726 int ret;
727
728 switch (port) {
729 case PORT_A:
730 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
731 name = "DPDDC-A";
732 break;
733 case PORT_B:
734 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
735 name = "DPDDC-B";
736 break;
737 case PORT_C:
738 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
739 name = "DPDDC-C";
740 break;
741 case PORT_D:
742 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
743 name = "DPDDC-D";
744 break;
745 default:
746 BUG();
747 }
748
749 if (!HAS_DDI(dev))
750 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
751
752 intel_dp->aux.name = name;
753 intel_dp->aux.dev = dev->dev;
754 intel_dp->aux.transfer = intel_dp_aux_transfer;
755
756 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
757 connector->base.kdev->kobj.name);
758
759 ret = drm_dp_aux_register(&intel_dp->aux);
760 if (ret < 0) {
761 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
762 name, ret);
763 return;
764 }
765
766 ret = sysfs_create_link(&connector->base.kdev->kobj,
767 &intel_dp->aux.ddc.dev.kobj,
768 intel_dp->aux.ddc.dev.kobj.name);
769 if (ret < 0) {
770 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
771 drm_dp_aux_unregister(&intel_dp->aux);
772 }
773 }
774
775 static void
776 intel_dp_connector_unregister(struct intel_connector *intel_connector)
777 {
778 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
779
780 if (!intel_connector->mst_port)
781 sysfs_remove_link(&intel_connector->base.kdev->kobj,
782 intel_dp->aux.ddc.dev.kobj.name);
783 intel_connector_unregister(intel_connector);
784 }
785
786 static void
787 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
788 {
789 switch (link_bw) {
790 case DP_LINK_BW_1_62:
791 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
792 break;
793 case DP_LINK_BW_2_7:
794 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
795 break;
796 case DP_LINK_BW_5_4:
797 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
798 break;
799 }
800 }
801
802 static void
803 intel_dp_set_clock(struct intel_encoder *encoder,
804 struct intel_crtc_config *pipe_config, int link_bw)
805 {
806 struct drm_device *dev = encoder->base.dev;
807 const struct dp_link_dpll *divisor = NULL;
808 int i, count = 0;
809
810 if (IS_G4X(dev)) {
811 divisor = gen4_dpll;
812 count = ARRAY_SIZE(gen4_dpll);
813 } else if (HAS_PCH_SPLIT(dev)) {
814 divisor = pch_dpll;
815 count = ARRAY_SIZE(pch_dpll);
816 } else if (IS_CHERRYVIEW(dev)) {
817 divisor = chv_dpll;
818 count = ARRAY_SIZE(chv_dpll);
819 } else if (IS_VALLEYVIEW(dev)) {
820 divisor = vlv_dpll;
821 count = ARRAY_SIZE(vlv_dpll);
822 }
823
824 if (divisor && count) {
825 for (i = 0; i < count; i++) {
826 if (link_bw == divisor[i].link_bw) {
827 pipe_config->dpll = divisor[i].dpll;
828 pipe_config->clock_set = true;
829 break;
830 }
831 }
832 }
833 }
834
835 bool
836 intel_dp_compute_config(struct intel_encoder *encoder,
837 struct intel_crtc_config *pipe_config)
838 {
839 struct drm_device *dev = encoder->base.dev;
840 struct drm_i915_private *dev_priv = dev->dev_private;
841 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
842 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
843 enum port port = dp_to_dig_port(intel_dp)->port;
844 struct intel_crtc *intel_crtc = encoder->new_crtc;
845 struct intel_connector *intel_connector = intel_dp->attached_connector;
846 int lane_count, clock;
847 int min_lane_count = 1;
848 int max_lane_count = intel_dp_max_lane_count(intel_dp);
849 /* Conveniently, the link BW constants become indices with a shift...*/
850 int min_clock = 0;
851 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
852 int bpp, mode_rate;
853 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
854 int link_avail, link_clock;
855
856 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
857 pipe_config->has_pch_encoder = true;
858
859 pipe_config->has_dp_encoder = true;
860 pipe_config->has_drrs = false;
861 pipe_config->has_audio = intel_dp->has_audio;
862
863 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
864 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
865 adjusted_mode);
866 if (!HAS_PCH_SPLIT(dev))
867 intel_gmch_panel_fitting(intel_crtc, pipe_config,
868 intel_connector->panel.fitting_mode);
869 else
870 intel_pch_panel_fitting(intel_crtc, pipe_config,
871 intel_connector->panel.fitting_mode);
872 }
873
874 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
875 return false;
876
877 DRM_DEBUG_KMS("DP link computation with max lane count %i "
878 "max bw %02x pixel clock %iKHz\n",
879 max_lane_count, bws[max_clock],
880 adjusted_mode->crtc_clock);
881
882 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
883 * bpc in between. */
884 bpp = pipe_config->pipe_bpp;
885 if (is_edp(intel_dp)) {
886 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
887 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
888 dev_priv->vbt.edp_bpp);
889 bpp = dev_priv->vbt.edp_bpp;
890 }
891
892 if (IS_BROADWELL(dev)) {
893 /* Yes, it's an ugly hack. */
894 min_lane_count = max_lane_count;
895 DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
896 min_lane_count);
897 } else if (dev_priv->vbt.edp_lanes) {
898 min_lane_count = min(dev_priv->vbt.edp_lanes,
899 max_lane_count);
900 DRM_DEBUG_KMS("using min %u lanes per VBT\n",
901 min_lane_count);
902 }
903
904 if (dev_priv->vbt.edp_rate) {
905 min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
906 DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
907 bws[min_clock]);
908 }
909 }
910
911 for (; bpp >= 6*3; bpp -= 2*3) {
912 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
913 bpp);
914
915 for (clock = min_clock; clock <= max_clock; clock++) {
916 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
917 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
918 link_avail = intel_dp_max_data_rate(link_clock,
919 lane_count);
920
921 if (mode_rate <= link_avail) {
922 goto found;
923 }
924 }
925 }
926 }
927
928 return false;
929
930 found:
931 if (intel_dp->color_range_auto) {
932 /*
933 * See:
934 * CEA-861-E - 5.1 Default Encoding Parameters
935 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
936 */
937 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
938 intel_dp->color_range = DP_COLOR_RANGE_16_235;
939 else
940 intel_dp->color_range = 0;
941 }
942
943 if (intel_dp->color_range)
944 pipe_config->limited_color_range = true;
945
946 intel_dp->link_bw = bws[clock];
947 intel_dp->lane_count = lane_count;
948 pipe_config->pipe_bpp = bpp;
949 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
950
951 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
952 intel_dp->link_bw, intel_dp->lane_count,
953 pipe_config->port_clock, bpp);
954 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
955 mode_rate, link_avail);
956
957 intel_link_compute_m_n(bpp, lane_count,
958 adjusted_mode->crtc_clock,
959 pipe_config->port_clock,
960 &pipe_config->dp_m_n);
961
962 if (intel_connector->panel.downclock_mode != NULL &&
963 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
964 pipe_config->has_drrs = true;
965 intel_link_compute_m_n(bpp, lane_count,
966 intel_connector->panel.downclock_mode->clock,
967 pipe_config->port_clock,
968 &pipe_config->dp_m2_n2);
969 }
970
971 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
972 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
973 else
974 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
975
976 return true;
977 }
978
979 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
980 {
981 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
982 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
983 struct drm_device *dev = crtc->base.dev;
984 struct drm_i915_private *dev_priv = dev->dev_private;
985 u32 dpa_ctl;
986
987 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
988 dpa_ctl = I915_READ(DP_A);
989 dpa_ctl &= ~DP_PLL_FREQ_MASK;
990
991 if (crtc->config.port_clock == 162000) {
992 /* For a long time we've carried around a ILK-DevA w/a for the
993 * 160MHz clock. If we're really unlucky, it's still required.
994 */
995 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
996 dpa_ctl |= DP_PLL_FREQ_160MHZ;
997 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
998 } else {
999 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1000 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1001 }
1002
1003 I915_WRITE(DP_A, dpa_ctl);
1004
1005 POSTING_READ(DP_A);
1006 udelay(500);
1007 }
1008
1009 static void intel_dp_prepare(struct intel_encoder *encoder)
1010 {
1011 struct drm_device *dev = encoder->base.dev;
1012 struct drm_i915_private *dev_priv = dev->dev_private;
1013 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1014 enum port port = dp_to_dig_port(intel_dp)->port;
1015 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1016 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1017
1018 /*
1019 * There are four kinds of DP registers:
1020 *
1021 * IBX PCH
1022 * SNB CPU
1023 * IVB CPU
1024 * CPT PCH
1025 *
1026 * IBX PCH and CPU are the same for almost everything,
1027 * except that the CPU DP PLL is configured in this
1028 * register
1029 *
1030 * CPT PCH is quite different, having many bits moved
1031 * to the TRANS_DP_CTL register instead. That
1032 * configuration happens (oddly) in ironlake_pch_enable
1033 */
1034
1035 /* Preserve the BIOS-computed detected bit. This is
1036 * supposed to be read-only.
1037 */
1038 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1039
1040 /* Handle DP bits in common between all three register formats */
1041 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1042 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1043
1044 if (crtc->config.has_audio) {
1045 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1046 pipe_name(crtc->pipe));
1047 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1048 intel_write_eld(&encoder->base, adjusted_mode);
1049 }
1050
1051 /* Split out the IBX/CPU vs CPT settings */
1052
1053 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1054 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1055 intel_dp->DP |= DP_SYNC_HS_HIGH;
1056 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1057 intel_dp->DP |= DP_SYNC_VS_HIGH;
1058 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1059
1060 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1061 intel_dp->DP |= DP_ENHANCED_FRAMING;
1062
1063 intel_dp->DP |= crtc->pipe << 29;
1064 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1065 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1066 intel_dp->DP |= intel_dp->color_range;
1067
1068 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1069 intel_dp->DP |= DP_SYNC_HS_HIGH;
1070 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1071 intel_dp->DP |= DP_SYNC_VS_HIGH;
1072 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1073
1074 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1075 intel_dp->DP |= DP_ENHANCED_FRAMING;
1076
1077 if (!IS_CHERRYVIEW(dev)) {
1078 if (crtc->pipe == 1)
1079 intel_dp->DP |= DP_PIPEB_SELECT;
1080 } else {
1081 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1082 }
1083 } else {
1084 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1085 }
1086 }
1087
1088 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1089 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1090
1091 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1092 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1093
1094 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1095 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1096
1097 static void wait_panel_status(struct intel_dp *intel_dp,
1098 u32 mask,
1099 u32 value)
1100 {
1101 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1102 struct drm_i915_private *dev_priv = dev->dev_private;
1103 u32 pp_stat_reg, pp_ctrl_reg;
1104
1105 pp_stat_reg = _pp_stat_reg(intel_dp);
1106 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1107
1108 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1109 mask, value,
1110 I915_READ(pp_stat_reg),
1111 I915_READ(pp_ctrl_reg));
1112
1113 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1114 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1115 I915_READ(pp_stat_reg),
1116 I915_READ(pp_ctrl_reg));
1117 }
1118
1119 DRM_DEBUG_KMS("Wait complete\n");
1120 }
1121
1122 static void wait_panel_on(struct intel_dp *intel_dp)
1123 {
1124 DRM_DEBUG_KMS("Wait for panel power on\n");
1125 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1126 }
1127
1128 static void wait_panel_off(struct intel_dp *intel_dp)
1129 {
1130 DRM_DEBUG_KMS("Wait for panel power off time\n");
1131 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1132 }
1133
1134 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1135 {
1136 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1137
1138 /* When we disable the VDD override bit last we have to do the manual
1139 * wait. */
1140 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1141 intel_dp->panel_power_cycle_delay);
1142
1143 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1144 }
1145
1146 static void wait_backlight_on(struct intel_dp *intel_dp)
1147 {
1148 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1149 intel_dp->backlight_on_delay);
1150 }
1151
1152 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1153 {
1154 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1155 intel_dp->backlight_off_delay);
1156 }
1157
1158 /* Read the current pp_control value, unlocking the register if it
1159 * is locked
1160 */
1161
1162 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1163 {
1164 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1165 struct drm_i915_private *dev_priv = dev->dev_private;
1166 u32 control;
1167
1168 control = I915_READ(_pp_ctrl_reg(intel_dp));
1169 control &= ~PANEL_UNLOCK_MASK;
1170 control |= PANEL_UNLOCK_REGS;
1171 return control;
1172 }
1173
1174 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1175 {
1176 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1177 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1178 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1179 struct drm_i915_private *dev_priv = dev->dev_private;
1180 enum intel_display_power_domain power_domain;
1181 u32 pp;
1182 u32 pp_stat_reg, pp_ctrl_reg;
1183 bool need_to_disable = !intel_dp->want_panel_vdd;
1184
1185 if (!is_edp(intel_dp))
1186 return false;
1187
1188 intel_dp->want_panel_vdd = true;
1189
1190 if (edp_have_panel_vdd(intel_dp))
1191 return need_to_disable;
1192
1193 power_domain = intel_display_port_power_domain(intel_encoder);
1194 intel_display_power_get(dev_priv, power_domain);
1195
1196 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1197
1198 if (!edp_have_panel_power(intel_dp))
1199 wait_panel_power_cycle(intel_dp);
1200
1201 pp = ironlake_get_pp_control(intel_dp);
1202 pp |= EDP_FORCE_VDD;
1203
1204 pp_stat_reg = _pp_stat_reg(intel_dp);
1205 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1206
1207 I915_WRITE(pp_ctrl_reg, pp);
1208 POSTING_READ(pp_ctrl_reg);
1209 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1210 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1211 /*
1212 * If the panel wasn't on, delay before accessing aux channel
1213 */
1214 if (!edp_have_panel_power(intel_dp)) {
1215 DRM_DEBUG_KMS("eDP was not running\n");
1216 msleep(intel_dp->panel_power_up_delay);
1217 }
1218
1219 return need_to_disable;
1220 }
1221
1222 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1223 {
1224 bool vdd;
1225
1226 if (!is_edp(intel_dp))
1227 return;
1228
1229 vdd = edp_panel_vdd_on(intel_dp);
1230
1231 WARN(!vdd, "eDP VDD already requested on\n");
1232 }
1233
1234 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1235 {
1236 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1237 struct drm_i915_private *dev_priv = dev->dev_private;
1238 struct intel_digital_port *intel_dig_port =
1239 dp_to_dig_port(intel_dp);
1240 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1241 enum intel_display_power_domain power_domain;
1242 u32 pp;
1243 u32 pp_stat_reg, pp_ctrl_reg;
1244
1245 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1246
1247 WARN_ON(intel_dp->want_panel_vdd);
1248
1249 if (!edp_have_panel_vdd(intel_dp))
1250 return;
1251
1252 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1253
1254 pp = ironlake_get_pp_control(intel_dp);
1255 pp &= ~EDP_FORCE_VDD;
1256
1257 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1258 pp_stat_reg = _pp_stat_reg(intel_dp);
1259
1260 I915_WRITE(pp_ctrl_reg, pp);
1261 POSTING_READ(pp_ctrl_reg);
1262
1263 /* Make sure sequencer is idle before allowing subsequent activity */
1264 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1265 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1266
1267 if ((pp & POWER_TARGET_ON) == 0)
1268 intel_dp->last_power_cycle = jiffies;
1269
1270 power_domain = intel_display_port_power_domain(intel_encoder);
1271 intel_display_power_put(dev_priv, power_domain);
1272 }
1273
1274 static void edp_panel_vdd_work(struct work_struct *__work)
1275 {
1276 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1277 struct intel_dp, panel_vdd_work);
1278 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1279
1280 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1281 if (!intel_dp->want_panel_vdd)
1282 edp_panel_vdd_off_sync(intel_dp);
1283 drm_modeset_unlock(&dev->mode_config.connection_mutex);
1284 }
1285
1286 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1287 {
1288 unsigned long delay;
1289
1290 /*
1291 * Queue the timer to fire a long time from now (relative to the power
1292 * down delay) to keep the panel power up across a sequence of
1293 * operations.
1294 */
1295 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1296 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1297 }
1298
1299 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1300 {
1301 if (!is_edp(intel_dp))
1302 return;
1303
1304 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1305
1306 intel_dp->want_panel_vdd = false;
1307
1308 if (sync)
1309 edp_panel_vdd_off_sync(intel_dp);
1310 else
1311 edp_panel_vdd_schedule_off(intel_dp);
1312 }
1313
1314 static void intel_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1315 {
1316 edp_panel_vdd_off(intel_dp, sync);
1317 }
1318
1319 void intel_edp_panel_on(struct intel_dp *intel_dp)
1320 {
1321 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1322 struct drm_i915_private *dev_priv = dev->dev_private;
1323 u32 pp;
1324 u32 pp_ctrl_reg;
1325
1326 if (!is_edp(intel_dp))
1327 return;
1328
1329 DRM_DEBUG_KMS("Turn eDP power on\n");
1330
1331 if (edp_have_panel_power(intel_dp)) {
1332 DRM_DEBUG_KMS("eDP power already on\n");
1333 return;
1334 }
1335
1336 wait_panel_power_cycle(intel_dp);
1337
1338 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1339 pp = ironlake_get_pp_control(intel_dp);
1340 if (IS_GEN5(dev)) {
1341 /* ILK workaround: disable reset around power sequence */
1342 pp &= ~PANEL_POWER_RESET;
1343 I915_WRITE(pp_ctrl_reg, pp);
1344 POSTING_READ(pp_ctrl_reg);
1345 }
1346
1347 pp |= POWER_TARGET_ON;
1348 if (!IS_GEN5(dev))
1349 pp |= PANEL_POWER_RESET;
1350
1351 I915_WRITE(pp_ctrl_reg, pp);
1352 POSTING_READ(pp_ctrl_reg);
1353
1354 wait_panel_on(intel_dp);
1355 intel_dp->last_power_on = jiffies;
1356
1357 if (IS_GEN5(dev)) {
1358 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1359 I915_WRITE(pp_ctrl_reg, pp);
1360 POSTING_READ(pp_ctrl_reg);
1361 }
1362 }
1363
1364 void intel_edp_panel_off(struct intel_dp *intel_dp)
1365 {
1366 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1367 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1368 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1369 struct drm_i915_private *dev_priv = dev->dev_private;
1370 enum intel_display_power_domain power_domain;
1371 u32 pp;
1372 u32 pp_ctrl_reg;
1373
1374 if (!is_edp(intel_dp))
1375 return;
1376
1377 DRM_DEBUG_KMS("Turn eDP power off\n");
1378
1379 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1380
1381 pp = ironlake_get_pp_control(intel_dp);
1382 /* We need to switch off panel power _and_ force vdd, for otherwise some
1383 * panels get very unhappy and cease to work. */
1384 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1385 EDP_BLC_ENABLE);
1386
1387 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1388
1389 intel_dp->want_panel_vdd = false;
1390
1391 I915_WRITE(pp_ctrl_reg, pp);
1392 POSTING_READ(pp_ctrl_reg);
1393
1394 intel_dp->last_power_cycle = jiffies;
1395 wait_panel_off(intel_dp);
1396
1397 /* We got a reference when we enabled the VDD. */
1398 power_domain = intel_display_port_power_domain(intel_encoder);
1399 intel_display_power_put(dev_priv, power_domain);
1400 }
1401
1402 /* Enable backlight in the panel power control. */
1403 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1404 {
1405 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1406 struct drm_device *dev = intel_dig_port->base.base.dev;
1407 struct drm_i915_private *dev_priv = dev->dev_private;
1408 u32 pp;
1409 u32 pp_ctrl_reg;
1410
1411 /*
1412 * If we enable the backlight right away following a panel power
1413 * on, we may see slight flicker as the panel syncs with the eDP
1414 * link. So delay a bit to make sure the image is solid before
1415 * allowing it to appear.
1416 */
1417 wait_backlight_on(intel_dp);
1418 pp = ironlake_get_pp_control(intel_dp);
1419 pp |= EDP_BLC_ENABLE;
1420
1421 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1422
1423 I915_WRITE(pp_ctrl_reg, pp);
1424 POSTING_READ(pp_ctrl_reg);
1425 }
1426
1427 /* Enable backlight PWM and backlight PP control. */
1428 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1429 {
1430 if (!is_edp(intel_dp))
1431 return;
1432
1433 DRM_DEBUG_KMS("\n");
1434
1435 intel_panel_enable_backlight(intel_dp->attached_connector);
1436 _intel_edp_backlight_on(intel_dp);
1437 }
1438
1439 /* Disable backlight in the panel power control. */
1440 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1441 {
1442 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1443 struct drm_i915_private *dev_priv = dev->dev_private;
1444 u32 pp;
1445 u32 pp_ctrl_reg;
1446
1447 pp = ironlake_get_pp_control(intel_dp);
1448 pp &= ~EDP_BLC_ENABLE;
1449
1450 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1451
1452 I915_WRITE(pp_ctrl_reg, pp);
1453 POSTING_READ(pp_ctrl_reg);
1454 intel_dp->last_backlight_off = jiffies;
1455
1456 edp_wait_backlight_off(intel_dp);
1457 }
1458
1459 /* Disable backlight PP control and backlight PWM. */
1460 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1461 {
1462 if (!is_edp(intel_dp))
1463 return;
1464
1465 DRM_DEBUG_KMS("\n");
1466
1467 _intel_edp_backlight_off(intel_dp);
1468 intel_panel_disable_backlight(intel_dp->attached_connector);
1469 }
1470
1471 /*
1472 * Hook for controlling the panel power control backlight through the bl_power
1473 * sysfs attribute. Take care to handle multiple calls.
1474 */
1475 static void intel_edp_backlight_power(struct intel_connector *connector,
1476 bool enable)
1477 {
1478 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1479 bool is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1480
1481 if (is_enabled == enable)
1482 return;
1483
1484 DRM_DEBUG_KMS("panel power control backlight %s\n",
1485 enable ? "enable" : "disable");
1486
1487 if (enable)
1488 _intel_edp_backlight_on(intel_dp);
1489 else
1490 _intel_edp_backlight_off(intel_dp);
1491 }
1492
1493 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1494 {
1495 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1496 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1497 struct drm_device *dev = crtc->dev;
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499 u32 dpa_ctl;
1500
1501 assert_pipe_disabled(dev_priv,
1502 to_intel_crtc(crtc)->pipe);
1503
1504 DRM_DEBUG_KMS("\n");
1505 dpa_ctl = I915_READ(DP_A);
1506 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1507 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1508
1509 /* We don't adjust intel_dp->DP while tearing down the link, to
1510 * facilitate link retraining (e.g. after hotplug). Hence clear all
1511 * enable bits here to ensure that we don't enable too much. */
1512 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1513 intel_dp->DP |= DP_PLL_ENABLE;
1514 I915_WRITE(DP_A, intel_dp->DP);
1515 POSTING_READ(DP_A);
1516 udelay(200);
1517 }
1518
1519 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1520 {
1521 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1522 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1523 struct drm_device *dev = crtc->dev;
1524 struct drm_i915_private *dev_priv = dev->dev_private;
1525 u32 dpa_ctl;
1526
1527 assert_pipe_disabled(dev_priv,
1528 to_intel_crtc(crtc)->pipe);
1529
1530 dpa_ctl = I915_READ(DP_A);
1531 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1532 "dp pll off, should be on\n");
1533 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1534
1535 /* We can't rely on the value tracked for the DP register in
1536 * intel_dp->DP because link_down must not change that (otherwise link
1537 * re-training will fail. */
1538 dpa_ctl &= ~DP_PLL_ENABLE;
1539 I915_WRITE(DP_A, dpa_ctl);
1540 POSTING_READ(DP_A);
1541 udelay(200);
1542 }
1543
1544 /* If the sink supports it, try to set the power state appropriately */
1545 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1546 {
1547 int ret, i;
1548
1549 /* Should have a valid DPCD by this point */
1550 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1551 return;
1552
1553 if (mode != DRM_MODE_DPMS_ON) {
1554 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1555 DP_SET_POWER_D3);
1556 } else {
1557 /*
1558 * When turning on, we need to retry for 1ms to give the sink
1559 * time to wake up.
1560 */
1561 for (i = 0; i < 3; i++) {
1562 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1563 DP_SET_POWER_D0);
1564 if (ret == 1)
1565 break;
1566 msleep(1);
1567 }
1568 }
1569
1570 if (ret != 1)
1571 DRM_DEBUG_KMS("failed to %s sink power state\n",
1572 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1573 }
1574
1575 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1576 enum pipe *pipe)
1577 {
1578 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1579 enum port port = dp_to_dig_port(intel_dp)->port;
1580 struct drm_device *dev = encoder->base.dev;
1581 struct drm_i915_private *dev_priv = dev->dev_private;
1582 enum intel_display_power_domain power_domain;
1583 u32 tmp;
1584
1585 power_domain = intel_display_port_power_domain(encoder);
1586 if (!intel_display_power_enabled(dev_priv, power_domain))
1587 return false;
1588
1589 tmp = I915_READ(intel_dp->output_reg);
1590
1591 if (!(tmp & DP_PORT_EN))
1592 return false;
1593
1594 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1595 *pipe = PORT_TO_PIPE_CPT(tmp);
1596 } else if (IS_CHERRYVIEW(dev)) {
1597 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1598 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1599 *pipe = PORT_TO_PIPE(tmp);
1600 } else {
1601 u32 trans_sel;
1602 u32 trans_dp;
1603 int i;
1604
1605 switch (intel_dp->output_reg) {
1606 case PCH_DP_B:
1607 trans_sel = TRANS_DP_PORT_SEL_B;
1608 break;
1609 case PCH_DP_C:
1610 trans_sel = TRANS_DP_PORT_SEL_C;
1611 break;
1612 case PCH_DP_D:
1613 trans_sel = TRANS_DP_PORT_SEL_D;
1614 break;
1615 default:
1616 return true;
1617 }
1618
1619 for_each_pipe(dev_priv, i) {
1620 trans_dp = I915_READ(TRANS_DP_CTL(i));
1621 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1622 *pipe = i;
1623 return true;
1624 }
1625 }
1626
1627 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1628 intel_dp->output_reg);
1629 }
1630
1631 return true;
1632 }
1633
1634 static void intel_dp_get_config(struct intel_encoder *encoder,
1635 struct intel_crtc_config *pipe_config)
1636 {
1637 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1638 u32 tmp, flags = 0;
1639 struct drm_device *dev = encoder->base.dev;
1640 struct drm_i915_private *dev_priv = dev->dev_private;
1641 enum port port = dp_to_dig_port(intel_dp)->port;
1642 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1643 int dotclock;
1644
1645 tmp = I915_READ(intel_dp->output_reg);
1646 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1647 pipe_config->has_audio = true;
1648
1649 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1650 if (tmp & DP_SYNC_HS_HIGH)
1651 flags |= DRM_MODE_FLAG_PHSYNC;
1652 else
1653 flags |= DRM_MODE_FLAG_NHSYNC;
1654
1655 if (tmp & DP_SYNC_VS_HIGH)
1656 flags |= DRM_MODE_FLAG_PVSYNC;
1657 else
1658 flags |= DRM_MODE_FLAG_NVSYNC;
1659 } else {
1660 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1661 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1662 flags |= DRM_MODE_FLAG_PHSYNC;
1663 else
1664 flags |= DRM_MODE_FLAG_NHSYNC;
1665
1666 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1667 flags |= DRM_MODE_FLAG_PVSYNC;
1668 else
1669 flags |= DRM_MODE_FLAG_NVSYNC;
1670 }
1671
1672 pipe_config->adjusted_mode.flags |= flags;
1673
1674 pipe_config->has_dp_encoder = true;
1675
1676 intel_dp_get_m_n(crtc, pipe_config);
1677
1678 if (port == PORT_A) {
1679 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1680 pipe_config->port_clock = 162000;
1681 else
1682 pipe_config->port_clock = 270000;
1683 }
1684
1685 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1686 &pipe_config->dp_m_n);
1687
1688 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1689 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1690
1691 pipe_config->adjusted_mode.crtc_clock = dotclock;
1692
1693 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1694 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1695 /*
1696 * This is a big fat ugly hack.
1697 *
1698 * Some machines in UEFI boot mode provide us a VBT that has 18
1699 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1700 * unknown we fail to light up. Yet the same BIOS boots up with
1701 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1702 * max, not what it tells us to use.
1703 *
1704 * Note: This will still be broken if the eDP panel is not lit
1705 * up by the BIOS, and thus we can't get the mode at module
1706 * load.
1707 */
1708 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1709 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1710 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1711 }
1712 }
1713
1714 static bool is_edp_psr(struct intel_dp *intel_dp)
1715 {
1716 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1717 }
1718
1719 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1720 {
1721 struct drm_i915_private *dev_priv = dev->dev_private;
1722
1723 if (!HAS_PSR(dev))
1724 return false;
1725
1726 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1727 }
1728
1729 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1730 struct edp_vsc_psr *vsc_psr)
1731 {
1732 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1733 struct drm_device *dev = dig_port->base.base.dev;
1734 struct drm_i915_private *dev_priv = dev->dev_private;
1735 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1736 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1737 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1738 uint32_t *data = (uint32_t *) vsc_psr;
1739 unsigned int i;
1740
1741 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1742 the video DIP being updated before program video DIP data buffer
1743 registers for DIP being updated. */
1744 I915_WRITE(ctl_reg, 0);
1745 POSTING_READ(ctl_reg);
1746
1747 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1748 if (i < sizeof(struct edp_vsc_psr))
1749 I915_WRITE(data_reg + i, *data++);
1750 else
1751 I915_WRITE(data_reg + i, 0);
1752 }
1753
1754 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1755 POSTING_READ(ctl_reg);
1756 }
1757
1758 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1759 {
1760 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1761 struct drm_i915_private *dev_priv = dev->dev_private;
1762 struct edp_vsc_psr psr_vsc;
1763
1764 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1765 memset(&psr_vsc, 0, sizeof(psr_vsc));
1766 psr_vsc.sdp_header.HB0 = 0;
1767 psr_vsc.sdp_header.HB1 = 0x7;
1768 psr_vsc.sdp_header.HB2 = 0x2;
1769 psr_vsc.sdp_header.HB3 = 0x8;
1770 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1771
1772 /* Avoid continuous PSR exit by masking memup and hpd */
1773 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1774 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1775 }
1776
1777 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1778 {
1779 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1780 struct drm_device *dev = dig_port->base.base.dev;
1781 struct drm_i915_private *dev_priv = dev->dev_private;
1782 uint32_t aux_clock_divider;
1783 int precharge = 0x3;
1784 int msg_size = 5; /* Header(4) + Message(1) */
1785 bool only_standby = false;
1786
1787 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1788
1789 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1790 only_standby = true;
1791
1792 /* Enable PSR in sink */
1793 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1794 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1795 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1796 else
1797 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1798 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1799
1800 /* Setup AUX registers */
1801 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1802 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1803 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1804 DP_AUX_CH_CTL_TIME_OUT_400us |
1805 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1806 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1807 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1808 }
1809
1810 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1811 {
1812 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1813 struct drm_device *dev = dig_port->base.base.dev;
1814 struct drm_i915_private *dev_priv = dev->dev_private;
1815 uint32_t max_sleep_time = 0x1f;
1816 uint32_t idle_frames = 1;
1817 uint32_t val = 0x0;
1818 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1819 bool only_standby = false;
1820
1821 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1822 only_standby = true;
1823
1824 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
1825 val |= EDP_PSR_LINK_STANDBY;
1826 val |= EDP_PSR_TP2_TP3_TIME_0us;
1827 val |= EDP_PSR_TP1_TIME_0us;
1828 val |= EDP_PSR_SKIP_AUX_EXIT;
1829 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
1830 } else
1831 val |= EDP_PSR_LINK_DISABLE;
1832
1833 I915_WRITE(EDP_PSR_CTL(dev), val |
1834 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1835 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1836 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1837 EDP_PSR_ENABLE);
1838 }
1839
1840 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1841 {
1842 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1843 struct drm_device *dev = dig_port->base.base.dev;
1844 struct drm_i915_private *dev_priv = dev->dev_private;
1845 struct drm_crtc *crtc = dig_port->base.base.crtc;
1846 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1847
1848 lockdep_assert_held(&dev_priv->psr.lock);
1849 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1850 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
1851
1852 dev_priv->psr.source_ok = false;
1853
1854 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
1855 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1856 return false;
1857 }
1858
1859 if (!i915.enable_psr) {
1860 DRM_DEBUG_KMS("PSR disable by flag\n");
1861 return false;
1862 }
1863
1864 /* Below limitations aren't valid for Broadwell */
1865 if (IS_BROADWELL(dev))
1866 goto out;
1867
1868 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1869 S3D_ENABLE) {
1870 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1871 return false;
1872 }
1873
1874 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1875 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1876 return false;
1877 }
1878
1879 out:
1880 dev_priv->psr.source_ok = true;
1881 return true;
1882 }
1883
1884 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1885 {
1886 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1887 struct drm_device *dev = intel_dig_port->base.base.dev;
1888 struct drm_i915_private *dev_priv = dev->dev_private;
1889
1890 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1891 WARN_ON(dev_priv->psr.active);
1892 lockdep_assert_held(&dev_priv->psr.lock);
1893
1894 /* Enable PSR on the panel */
1895 intel_edp_psr_enable_sink(intel_dp);
1896
1897 /* Enable PSR on the host */
1898 intel_edp_psr_enable_source(intel_dp);
1899
1900 dev_priv->psr.active = true;
1901 }
1902
1903 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1904 {
1905 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1906 struct drm_i915_private *dev_priv = dev->dev_private;
1907
1908 if (!HAS_PSR(dev)) {
1909 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1910 return;
1911 }
1912
1913 if (!is_edp_psr(intel_dp)) {
1914 DRM_DEBUG_KMS("PSR not supported by this panel\n");
1915 return;
1916 }
1917
1918 mutex_lock(&dev_priv->psr.lock);
1919 if (dev_priv->psr.enabled) {
1920 DRM_DEBUG_KMS("PSR already in use\n");
1921 mutex_unlock(&dev_priv->psr.lock);
1922 return;
1923 }
1924
1925 dev_priv->psr.busy_frontbuffer_bits = 0;
1926
1927 /* Setup PSR once */
1928 intel_edp_psr_setup(intel_dp);
1929
1930 if (intel_edp_psr_match_conditions(intel_dp))
1931 dev_priv->psr.enabled = intel_dp;
1932 mutex_unlock(&dev_priv->psr.lock);
1933 }
1934
1935 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1936 {
1937 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1938 struct drm_i915_private *dev_priv = dev->dev_private;
1939
1940 mutex_lock(&dev_priv->psr.lock);
1941 if (!dev_priv->psr.enabled) {
1942 mutex_unlock(&dev_priv->psr.lock);
1943 return;
1944 }
1945
1946 if (dev_priv->psr.active) {
1947 I915_WRITE(EDP_PSR_CTL(dev),
1948 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1949
1950 /* Wait till PSR is idle */
1951 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1952 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1953 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1954
1955 dev_priv->psr.active = false;
1956 } else {
1957 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1958 }
1959
1960 dev_priv->psr.enabled = NULL;
1961 mutex_unlock(&dev_priv->psr.lock);
1962
1963 cancel_delayed_work_sync(&dev_priv->psr.work);
1964 }
1965
1966 static void intel_edp_psr_work(struct work_struct *work)
1967 {
1968 struct drm_i915_private *dev_priv =
1969 container_of(work, typeof(*dev_priv), psr.work.work);
1970 struct intel_dp *intel_dp = dev_priv->psr.enabled;
1971
1972 mutex_lock(&dev_priv->psr.lock);
1973 intel_dp = dev_priv->psr.enabled;
1974
1975 if (!intel_dp)
1976 goto unlock;
1977
1978 /*
1979 * The delayed work can race with an invalidate hence we need to
1980 * recheck. Since psr_flush first clears this and then reschedules we
1981 * won't ever miss a flush when bailing out here.
1982 */
1983 if (dev_priv->psr.busy_frontbuffer_bits)
1984 goto unlock;
1985
1986 intel_edp_psr_do_enable(intel_dp);
1987 unlock:
1988 mutex_unlock(&dev_priv->psr.lock);
1989 }
1990
1991 static void intel_edp_psr_do_exit(struct drm_device *dev)
1992 {
1993 struct drm_i915_private *dev_priv = dev->dev_private;
1994
1995 if (dev_priv->psr.active) {
1996 u32 val = I915_READ(EDP_PSR_CTL(dev));
1997
1998 WARN_ON(!(val & EDP_PSR_ENABLE));
1999
2000 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
2001
2002 dev_priv->psr.active = false;
2003 }
2004
2005 }
2006
2007 void intel_edp_psr_invalidate(struct drm_device *dev,
2008 unsigned frontbuffer_bits)
2009 {
2010 struct drm_i915_private *dev_priv = dev->dev_private;
2011 struct drm_crtc *crtc;
2012 enum pipe pipe;
2013
2014 mutex_lock(&dev_priv->psr.lock);
2015 if (!dev_priv->psr.enabled) {
2016 mutex_unlock(&dev_priv->psr.lock);
2017 return;
2018 }
2019
2020 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2021 pipe = to_intel_crtc(crtc)->pipe;
2022
2023 intel_edp_psr_do_exit(dev);
2024
2025 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2026
2027 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2028 mutex_unlock(&dev_priv->psr.lock);
2029 }
2030
2031 void intel_edp_psr_flush(struct drm_device *dev,
2032 unsigned frontbuffer_bits)
2033 {
2034 struct drm_i915_private *dev_priv = dev->dev_private;
2035 struct drm_crtc *crtc;
2036 enum pipe pipe;
2037
2038 mutex_lock(&dev_priv->psr.lock);
2039 if (!dev_priv->psr.enabled) {
2040 mutex_unlock(&dev_priv->psr.lock);
2041 return;
2042 }
2043
2044 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2045 pipe = to_intel_crtc(crtc)->pipe;
2046 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2047
2048 /*
2049 * On Haswell sprite plane updates don't result in a psr invalidating
2050 * signal in the hardware. Which means we need to manually fake this in
2051 * software for all flushes, not just when we've seen a preceding
2052 * invalidation through frontbuffer rendering.
2053 */
2054 if (IS_HASWELL(dev) &&
2055 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2056 intel_edp_psr_do_exit(dev);
2057
2058 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2059 schedule_delayed_work(&dev_priv->psr.work,
2060 msecs_to_jiffies(100));
2061 mutex_unlock(&dev_priv->psr.lock);
2062 }
2063
2064 void intel_edp_psr_init(struct drm_device *dev)
2065 {
2066 struct drm_i915_private *dev_priv = dev->dev_private;
2067
2068 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2069 mutex_init(&dev_priv->psr.lock);
2070 }
2071
2072 static void intel_disable_dp(struct intel_encoder *encoder)
2073 {
2074 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2075 enum port port = dp_to_dig_port(intel_dp)->port;
2076 struct drm_device *dev = encoder->base.dev;
2077
2078 /* Make sure the panel is off before trying to change the mode. But also
2079 * ensure that we have vdd while we switch off the panel. */
2080 intel_edp_panel_vdd_on(intel_dp);
2081 intel_edp_backlight_off(intel_dp);
2082 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2083 intel_edp_panel_off(intel_dp);
2084
2085 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
2086 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
2087 intel_dp_link_down(intel_dp);
2088 }
2089
2090 static void g4x_post_disable_dp(struct intel_encoder *encoder)
2091 {
2092 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2093 enum port port = dp_to_dig_port(intel_dp)->port;
2094
2095 if (port != PORT_A)
2096 return;
2097
2098 intel_dp_link_down(intel_dp);
2099 ironlake_edp_pll_off(intel_dp);
2100 }
2101
2102 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2103 {
2104 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2105
2106 intel_dp_link_down(intel_dp);
2107 }
2108
2109 static void chv_post_disable_dp(struct intel_encoder *encoder)
2110 {
2111 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2112 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2113 struct drm_device *dev = encoder->base.dev;
2114 struct drm_i915_private *dev_priv = dev->dev_private;
2115 struct intel_crtc *intel_crtc =
2116 to_intel_crtc(encoder->base.crtc);
2117 enum dpio_channel ch = vlv_dport_to_channel(dport);
2118 enum pipe pipe = intel_crtc->pipe;
2119 u32 val;
2120
2121 intel_dp_link_down(intel_dp);
2122
2123 mutex_lock(&dev_priv->dpio_lock);
2124
2125 /* Propagate soft reset to data lane reset */
2126 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2127 val |= CHV_PCS_REQ_SOFTRESET_EN;
2128 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2129
2130 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2131 val |= CHV_PCS_REQ_SOFTRESET_EN;
2132 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2133
2134 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2135 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2136 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2137
2138 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2139 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2140 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2141
2142 mutex_unlock(&dev_priv->dpio_lock);
2143 }
2144
2145 static void intel_enable_dp(struct intel_encoder *encoder)
2146 {
2147 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2148 struct drm_device *dev = encoder->base.dev;
2149 struct drm_i915_private *dev_priv = dev->dev_private;
2150 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2151
2152 if (WARN_ON(dp_reg & DP_PORT_EN))
2153 return;
2154
2155 intel_edp_panel_vdd_on(intel_dp);
2156 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2157 intel_dp_start_link_train(intel_dp);
2158 intel_edp_panel_on(intel_dp);
2159 intel_edp_panel_vdd_off(intel_dp, true);
2160 intel_dp_complete_link_train(intel_dp);
2161 intel_dp_stop_link_train(intel_dp);
2162 }
2163
2164 static void g4x_enable_dp(struct intel_encoder *encoder)
2165 {
2166 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2167
2168 intel_enable_dp(encoder);
2169 intel_edp_backlight_on(intel_dp);
2170 }
2171
2172 static void vlv_enable_dp(struct intel_encoder *encoder)
2173 {
2174 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2175
2176 intel_edp_backlight_on(intel_dp);
2177 }
2178
2179 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2180 {
2181 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2182 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2183
2184 intel_dp_prepare(encoder);
2185
2186 /* Only ilk+ has port A */
2187 if (dport->port == PORT_A) {
2188 ironlake_set_pll_cpu_edp(intel_dp);
2189 ironlake_edp_pll_on(intel_dp);
2190 }
2191 }
2192
2193 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2194 {
2195 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2196 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2197 struct drm_device *dev = encoder->base.dev;
2198 struct drm_i915_private *dev_priv = dev->dev_private;
2199 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2200 enum dpio_channel port = vlv_dport_to_channel(dport);
2201 int pipe = intel_crtc->pipe;
2202 struct edp_power_seq power_seq;
2203 u32 val;
2204
2205 mutex_lock(&dev_priv->dpio_lock);
2206
2207 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2208 val = 0;
2209 if (pipe)
2210 val |= (1<<21);
2211 else
2212 val &= ~(1<<21);
2213 val |= 0x001000c4;
2214 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2215 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2216 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2217
2218 mutex_unlock(&dev_priv->dpio_lock);
2219
2220 if (is_edp(intel_dp)) {
2221 /* init power sequencer on this pipe and port */
2222 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2223 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2224 &power_seq);
2225 }
2226
2227 intel_enable_dp(encoder);
2228
2229 vlv_wait_port_ready(dev_priv, dport);
2230 }
2231
2232 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2233 {
2234 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2235 struct drm_device *dev = encoder->base.dev;
2236 struct drm_i915_private *dev_priv = dev->dev_private;
2237 struct intel_crtc *intel_crtc =
2238 to_intel_crtc(encoder->base.crtc);
2239 enum dpio_channel port = vlv_dport_to_channel(dport);
2240 int pipe = intel_crtc->pipe;
2241
2242 intel_dp_prepare(encoder);
2243
2244 /* Program Tx lane resets to default */
2245 mutex_lock(&dev_priv->dpio_lock);
2246 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2247 DPIO_PCS_TX_LANE2_RESET |
2248 DPIO_PCS_TX_LANE1_RESET);
2249 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2250 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2251 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2252 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2253 DPIO_PCS_CLK_SOFT_RESET);
2254
2255 /* Fix up inter-pair skew failure */
2256 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2257 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2258 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2259 mutex_unlock(&dev_priv->dpio_lock);
2260 }
2261
2262 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2263 {
2264 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2265 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2266 struct drm_device *dev = encoder->base.dev;
2267 struct drm_i915_private *dev_priv = dev->dev_private;
2268 struct edp_power_seq power_seq;
2269 struct intel_crtc *intel_crtc =
2270 to_intel_crtc(encoder->base.crtc);
2271 enum dpio_channel ch = vlv_dport_to_channel(dport);
2272 int pipe = intel_crtc->pipe;
2273 int data, i;
2274 u32 val;
2275
2276 mutex_lock(&dev_priv->dpio_lock);
2277
2278 /* Deassert soft data lane reset*/
2279 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2280 val |= CHV_PCS_REQ_SOFTRESET_EN;
2281 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2282
2283 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2284 val |= CHV_PCS_REQ_SOFTRESET_EN;
2285 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2286
2287 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2288 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2289 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2290
2291 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2292 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2293 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2294
2295 /* Program Tx lane latency optimal setting*/
2296 for (i = 0; i < 4; i++) {
2297 /* Set the latency optimal bit */
2298 data = (i == 1) ? 0x0 : 0x6;
2299 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2300 data << DPIO_FRC_LATENCY_SHFIT);
2301
2302 /* Set the upar bit */
2303 data = (i == 1) ? 0x0 : 0x1;
2304 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2305 data << DPIO_UPAR_SHIFT);
2306 }
2307
2308 /* Data lane stagger programming */
2309 /* FIXME: Fix up value only after power analysis */
2310
2311 mutex_unlock(&dev_priv->dpio_lock);
2312
2313 if (is_edp(intel_dp)) {
2314 /* init power sequencer on this pipe and port */
2315 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2316 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2317 &power_seq);
2318 }
2319
2320 intel_enable_dp(encoder);
2321
2322 vlv_wait_port_ready(dev_priv, dport);
2323 }
2324
2325 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2326 {
2327 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2328 struct drm_device *dev = encoder->base.dev;
2329 struct drm_i915_private *dev_priv = dev->dev_private;
2330 struct intel_crtc *intel_crtc =
2331 to_intel_crtc(encoder->base.crtc);
2332 enum dpio_channel ch = vlv_dport_to_channel(dport);
2333 enum pipe pipe = intel_crtc->pipe;
2334 u32 val;
2335
2336 intel_dp_prepare(encoder);
2337
2338 mutex_lock(&dev_priv->dpio_lock);
2339
2340 /* program left/right clock distribution */
2341 if (pipe != PIPE_B) {
2342 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2343 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2344 if (ch == DPIO_CH0)
2345 val |= CHV_BUFLEFTENA1_FORCE;
2346 if (ch == DPIO_CH1)
2347 val |= CHV_BUFRIGHTENA1_FORCE;
2348 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2349 } else {
2350 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2351 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2352 if (ch == DPIO_CH0)
2353 val |= CHV_BUFLEFTENA2_FORCE;
2354 if (ch == DPIO_CH1)
2355 val |= CHV_BUFRIGHTENA2_FORCE;
2356 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2357 }
2358
2359 /* program clock channel usage */
2360 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2361 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2362 if (pipe != PIPE_B)
2363 val &= ~CHV_PCS_USEDCLKCHANNEL;
2364 else
2365 val |= CHV_PCS_USEDCLKCHANNEL;
2366 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2367
2368 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2369 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2370 if (pipe != PIPE_B)
2371 val &= ~CHV_PCS_USEDCLKCHANNEL;
2372 else
2373 val |= CHV_PCS_USEDCLKCHANNEL;
2374 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2375
2376 /*
2377 * This a a bit weird since generally CL
2378 * matches the pipe, but here we need to
2379 * pick the CL based on the port.
2380 */
2381 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2382 if (pipe != PIPE_B)
2383 val &= ~CHV_CMN_USEDCLKCHANNEL;
2384 else
2385 val |= CHV_CMN_USEDCLKCHANNEL;
2386 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2387
2388 mutex_unlock(&dev_priv->dpio_lock);
2389 }
2390
2391 /*
2392 * Native read with retry for link status and receiver capability reads for
2393 * cases where the sink may still be asleep.
2394 *
2395 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2396 * supposed to retry 3 times per the spec.
2397 */
2398 static ssize_t
2399 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2400 void *buffer, size_t size)
2401 {
2402 ssize_t ret;
2403 int i;
2404
2405 for (i = 0; i < 3; i++) {
2406 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2407 if (ret == size)
2408 return ret;
2409 msleep(1);
2410 }
2411
2412 return ret;
2413 }
2414
2415 /*
2416 * Fetch AUX CH registers 0x202 - 0x207 which contain
2417 * link status information
2418 */
2419 static bool
2420 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2421 {
2422 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2423 DP_LANE0_1_STATUS,
2424 link_status,
2425 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2426 }
2427
2428 /* These are source-specific values. */
2429 static uint8_t
2430 intel_dp_voltage_max(struct intel_dp *intel_dp)
2431 {
2432 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2433 enum port port = dp_to_dig_port(intel_dp)->port;
2434
2435 if (IS_VALLEYVIEW(dev))
2436 return DP_TRAIN_VOLTAGE_SWING_1200;
2437 else if (IS_GEN7(dev) && port == PORT_A)
2438 return DP_TRAIN_VOLTAGE_SWING_800;
2439 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2440 return DP_TRAIN_VOLTAGE_SWING_1200;
2441 else
2442 return DP_TRAIN_VOLTAGE_SWING_800;
2443 }
2444
2445 static uint8_t
2446 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2447 {
2448 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2449 enum port port = dp_to_dig_port(intel_dp)->port;
2450
2451 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2452 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2453 case DP_TRAIN_VOLTAGE_SWING_400:
2454 return DP_TRAIN_PRE_EMPHASIS_9_5;
2455 case DP_TRAIN_VOLTAGE_SWING_600:
2456 return DP_TRAIN_PRE_EMPHASIS_6;
2457 case DP_TRAIN_VOLTAGE_SWING_800:
2458 return DP_TRAIN_PRE_EMPHASIS_3_5;
2459 case DP_TRAIN_VOLTAGE_SWING_1200:
2460 default:
2461 return DP_TRAIN_PRE_EMPHASIS_0;
2462 }
2463 } else if (IS_VALLEYVIEW(dev)) {
2464 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2465 case DP_TRAIN_VOLTAGE_SWING_400:
2466 return DP_TRAIN_PRE_EMPHASIS_9_5;
2467 case DP_TRAIN_VOLTAGE_SWING_600:
2468 return DP_TRAIN_PRE_EMPHASIS_6;
2469 case DP_TRAIN_VOLTAGE_SWING_800:
2470 return DP_TRAIN_PRE_EMPHASIS_3_5;
2471 case DP_TRAIN_VOLTAGE_SWING_1200:
2472 default:
2473 return DP_TRAIN_PRE_EMPHASIS_0;
2474 }
2475 } else if (IS_GEN7(dev) && port == PORT_A) {
2476 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2477 case DP_TRAIN_VOLTAGE_SWING_400:
2478 return DP_TRAIN_PRE_EMPHASIS_6;
2479 case DP_TRAIN_VOLTAGE_SWING_600:
2480 case DP_TRAIN_VOLTAGE_SWING_800:
2481 return DP_TRAIN_PRE_EMPHASIS_3_5;
2482 default:
2483 return DP_TRAIN_PRE_EMPHASIS_0;
2484 }
2485 } else {
2486 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2487 case DP_TRAIN_VOLTAGE_SWING_400:
2488 return DP_TRAIN_PRE_EMPHASIS_6;
2489 case DP_TRAIN_VOLTAGE_SWING_600:
2490 return DP_TRAIN_PRE_EMPHASIS_6;
2491 case DP_TRAIN_VOLTAGE_SWING_800:
2492 return DP_TRAIN_PRE_EMPHASIS_3_5;
2493 case DP_TRAIN_VOLTAGE_SWING_1200:
2494 default:
2495 return DP_TRAIN_PRE_EMPHASIS_0;
2496 }
2497 }
2498 }
2499
2500 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2501 {
2502 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2503 struct drm_i915_private *dev_priv = dev->dev_private;
2504 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2505 struct intel_crtc *intel_crtc =
2506 to_intel_crtc(dport->base.base.crtc);
2507 unsigned long demph_reg_value, preemph_reg_value,
2508 uniqtranscale_reg_value;
2509 uint8_t train_set = intel_dp->train_set[0];
2510 enum dpio_channel port = vlv_dport_to_channel(dport);
2511 int pipe = intel_crtc->pipe;
2512
2513 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2514 case DP_TRAIN_PRE_EMPHASIS_0:
2515 preemph_reg_value = 0x0004000;
2516 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2517 case DP_TRAIN_VOLTAGE_SWING_400:
2518 demph_reg_value = 0x2B405555;
2519 uniqtranscale_reg_value = 0x552AB83A;
2520 break;
2521 case DP_TRAIN_VOLTAGE_SWING_600:
2522 demph_reg_value = 0x2B404040;
2523 uniqtranscale_reg_value = 0x5548B83A;
2524 break;
2525 case DP_TRAIN_VOLTAGE_SWING_800:
2526 demph_reg_value = 0x2B245555;
2527 uniqtranscale_reg_value = 0x5560B83A;
2528 break;
2529 case DP_TRAIN_VOLTAGE_SWING_1200:
2530 demph_reg_value = 0x2B405555;
2531 uniqtranscale_reg_value = 0x5598DA3A;
2532 break;
2533 default:
2534 return 0;
2535 }
2536 break;
2537 case DP_TRAIN_PRE_EMPHASIS_3_5:
2538 preemph_reg_value = 0x0002000;
2539 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2540 case DP_TRAIN_VOLTAGE_SWING_400:
2541 demph_reg_value = 0x2B404040;
2542 uniqtranscale_reg_value = 0x5552B83A;
2543 break;
2544 case DP_TRAIN_VOLTAGE_SWING_600:
2545 demph_reg_value = 0x2B404848;
2546 uniqtranscale_reg_value = 0x5580B83A;
2547 break;
2548 case DP_TRAIN_VOLTAGE_SWING_800:
2549 demph_reg_value = 0x2B404040;
2550 uniqtranscale_reg_value = 0x55ADDA3A;
2551 break;
2552 default:
2553 return 0;
2554 }
2555 break;
2556 case DP_TRAIN_PRE_EMPHASIS_6:
2557 preemph_reg_value = 0x0000000;
2558 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2559 case DP_TRAIN_VOLTAGE_SWING_400:
2560 demph_reg_value = 0x2B305555;
2561 uniqtranscale_reg_value = 0x5570B83A;
2562 break;
2563 case DP_TRAIN_VOLTAGE_SWING_600:
2564 demph_reg_value = 0x2B2B4040;
2565 uniqtranscale_reg_value = 0x55ADDA3A;
2566 break;
2567 default:
2568 return 0;
2569 }
2570 break;
2571 case DP_TRAIN_PRE_EMPHASIS_9_5:
2572 preemph_reg_value = 0x0006000;
2573 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2574 case DP_TRAIN_VOLTAGE_SWING_400:
2575 demph_reg_value = 0x1B405555;
2576 uniqtranscale_reg_value = 0x55ADDA3A;
2577 break;
2578 default:
2579 return 0;
2580 }
2581 break;
2582 default:
2583 return 0;
2584 }
2585
2586 mutex_lock(&dev_priv->dpio_lock);
2587 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2588 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2589 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2590 uniqtranscale_reg_value);
2591 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2592 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2593 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2594 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2595 mutex_unlock(&dev_priv->dpio_lock);
2596
2597 return 0;
2598 }
2599
2600 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2601 {
2602 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2603 struct drm_i915_private *dev_priv = dev->dev_private;
2604 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2605 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2606 u32 deemph_reg_value, margin_reg_value, val;
2607 uint8_t train_set = intel_dp->train_set[0];
2608 enum dpio_channel ch = vlv_dport_to_channel(dport);
2609 enum pipe pipe = intel_crtc->pipe;
2610 int i;
2611
2612 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2613 case DP_TRAIN_PRE_EMPHASIS_0:
2614 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2615 case DP_TRAIN_VOLTAGE_SWING_400:
2616 deemph_reg_value = 128;
2617 margin_reg_value = 52;
2618 break;
2619 case DP_TRAIN_VOLTAGE_SWING_600:
2620 deemph_reg_value = 128;
2621 margin_reg_value = 77;
2622 break;
2623 case DP_TRAIN_VOLTAGE_SWING_800:
2624 deemph_reg_value = 128;
2625 margin_reg_value = 102;
2626 break;
2627 case DP_TRAIN_VOLTAGE_SWING_1200:
2628 deemph_reg_value = 128;
2629 margin_reg_value = 154;
2630 /* FIXME extra to set for 1200 */
2631 break;
2632 default:
2633 return 0;
2634 }
2635 break;
2636 case DP_TRAIN_PRE_EMPHASIS_3_5:
2637 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2638 case DP_TRAIN_VOLTAGE_SWING_400:
2639 deemph_reg_value = 85;
2640 margin_reg_value = 78;
2641 break;
2642 case DP_TRAIN_VOLTAGE_SWING_600:
2643 deemph_reg_value = 85;
2644 margin_reg_value = 116;
2645 break;
2646 case DP_TRAIN_VOLTAGE_SWING_800:
2647 deemph_reg_value = 85;
2648 margin_reg_value = 154;
2649 break;
2650 default:
2651 return 0;
2652 }
2653 break;
2654 case DP_TRAIN_PRE_EMPHASIS_6:
2655 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2656 case DP_TRAIN_VOLTAGE_SWING_400:
2657 deemph_reg_value = 64;
2658 margin_reg_value = 104;
2659 break;
2660 case DP_TRAIN_VOLTAGE_SWING_600:
2661 deemph_reg_value = 64;
2662 margin_reg_value = 154;
2663 break;
2664 default:
2665 return 0;
2666 }
2667 break;
2668 case DP_TRAIN_PRE_EMPHASIS_9_5:
2669 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2670 case DP_TRAIN_VOLTAGE_SWING_400:
2671 deemph_reg_value = 43;
2672 margin_reg_value = 154;
2673 break;
2674 default:
2675 return 0;
2676 }
2677 break;
2678 default:
2679 return 0;
2680 }
2681
2682 mutex_lock(&dev_priv->dpio_lock);
2683
2684 /* Clear calc init */
2685 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2686 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2687 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2688
2689 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2690 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2691 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2692
2693 /* Program swing deemph */
2694 for (i = 0; i < 4; i++) {
2695 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2696 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2697 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2698 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2699 }
2700
2701 /* Program swing margin */
2702 for (i = 0; i < 4; i++) {
2703 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2704 val &= ~DPIO_SWING_MARGIN000_MASK;
2705 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
2706 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2707 }
2708
2709 /* Disable unique transition scale */
2710 for (i = 0; i < 4; i++) {
2711 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2712 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2713 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2714 }
2715
2716 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2717 == DP_TRAIN_PRE_EMPHASIS_0) &&
2718 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2719 == DP_TRAIN_VOLTAGE_SWING_1200)) {
2720
2721 /*
2722 * The document said it needs to set bit 27 for ch0 and bit 26
2723 * for ch1. Might be a typo in the doc.
2724 * For now, for this unique transition scale selection, set bit
2725 * 27 for ch0 and ch1.
2726 */
2727 for (i = 0; i < 4; i++) {
2728 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2729 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2730 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2731 }
2732
2733 for (i = 0; i < 4; i++) {
2734 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2735 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2736 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2737 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2738 }
2739 }
2740
2741 /* Start swing calculation */
2742 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2743 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2744 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2745
2746 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2747 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2748 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2749
2750 /* LRC Bypass */
2751 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2752 val |= DPIO_LRC_BYPASS;
2753 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2754
2755 mutex_unlock(&dev_priv->dpio_lock);
2756
2757 return 0;
2758 }
2759
2760 static void
2761 intel_get_adjust_train(struct intel_dp *intel_dp,
2762 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2763 {
2764 uint8_t v = 0;
2765 uint8_t p = 0;
2766 int lane;
2767 uint8_t voltage_max;
2768 uint8_t preemph_max;
2769
2770 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2771 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2772 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2773
2774 if (this_v > v)
2775 v = this_v;
2776 if (this_p > p)
2777 p = this_p;
2778 }
2779
2780 voltage_max = intel_dp_voltage_max(intel_dp);
2781 if (v >= voltage_max)
2782 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2783
2784 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2785 if (p >= preemph_max)
2786 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2787
2788 for (lane = 0; lane < 4; lane++)
2789 intel_dp->train_set[lane] = v | p;
2790 }
2791
2792 static uint32_t
2793 intel_gen4_signal_levels(uint8_t train_set)
2794 {
2795 uint32_t signal_levels = 0;
2796
2797 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2798 case DP_TRAIN_VOLTAGE_SWING_400:
2799 default:
2800 signal_levels |= DP_VOLTAGE_0_4;
2801 break;
2802 case DP_TRAIN_VOLTAGE_SWING_600:
2803 signal_levels |= DP_VOLTAGE_0_6;
2804 break;
2805 case DP_TRAIN_VOLTAGE_SWING_800:
2806 signal_levels |= DP_VOLTAGE_0_8;
2807 break;
2808 case DP_TRAIN_VOLTAGE_SWING_1200:
2809 signal_levels |= DP_VOLTAGE_1_2;
2810 break;
2811 }
2812 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2813 case DP_TRAIN_PRE_EMPHASIS_0:
2814 default:
2815 signal_levels |= DP_PRE_EMPHASIS_0;
2816 break;
2817 case DP_TRAIN_PRE_EMPHASIS_3_5:
2818 signal_levels |= DP_PRE_EMPHASIS_3_5;
2819 break;
2820 case DP_TRAIN_PRE_EMPHASIS_6:
2821 signal_levels |= DP_PRE_EMPHASIS_6;
2822 break;
2823 case DP_TRAIN_PRE_EMPHASIS_9_5:
2824 signal_levels |= DP_PRE_EMPHASIS_9_5;
2825 break;
2826 }
2827 return signal_levels;
2828 }
2829
2830 /* Gen6's DP voltage swing and pre-emphasis control */
2831 static uint32_t
2832 intel_gen6_edp_signal_levels(uint8_t train_set)
2833 {
2834 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2835 DP_TRAIN_PRE_EMPHASIS_MASK);
2836 switch (signal_levels) {
2837 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2838 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2839 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2840 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2841 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2842 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2843 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2844 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2845 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2846 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2847 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2848 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2849 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2850 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2851 default:
2852 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2853 "0x%x\n", signal_levels);
2854 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2855 }
2856 }
2857
2858 /* Gen7's DP voltage swing and pre-emphasis control */
2859 static uint32_t
2860 intel_gen7_edp_signal_levels(uint8_t train_set)
2861 {
2862 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2863 DP_TRAIN_PRE_EMPHASIS_MASK);
2864 switch (signal_levels) {
2865 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2866 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2867 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2868 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2869 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2870 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2871
2872 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2873 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2874 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2875 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2876
2877 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2878 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2879 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2880 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2881
2882 default:
2883 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2884 "0x%x\n", signal_levels);
2885 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2886 }
2887 }
2888
2889 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2890 static uint32_t
2891 intel_hsw_signal_levels(uint8_t train_set)
2892 {
2893 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2894 DP_TRAIN_PRE_EMPHASIS_MASK);
2895 switch (signal_levels) {
2896 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2897 return DDI_BUF_TRANS_SELECT(0);
2898 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2899 return DDI_BUF_TRANS_SELECT(1);
2900 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2901 return DDI_BUF_TRANS_SELECT(2);
2902 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2903 return DDI_BUF_TRANS_SELECT(3);
2904
2905 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2906 return DDI_BUF_TRANS_SELECT(4);
2907 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2908 return DDI_BUF_TRANS_SELECT(5);
2909 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2910 return DDI_BUF_TRANS_SELECT(6);
2911
2912 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2913 return DDI_BUF_TRANS_SELECT(7);
2914 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2915 return DDI_BUF_TRANS_SELECT(8);
2916 default:
2917 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2918 "0x%x\n", signal_levels);
2919 return DDI_BUF_TRANS_SELECT(0);
2920 }
2921 }
2922
2923 /* Properly updates "DP" with the correct signal levels. */
2924 static void
2925 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2926 {
2927 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2928 enum port port = intel_dig_port->port;
2929 struct drm_device *dev = intel_dig_port->base.base.dev;
2930 uint32_t signal_levels, mask;
2931 uint8_t train_set = intel_dp->train_set[0];
2932
2933 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2934 signal_levels = intel_hsw_signal_levels(train_set);
2935 mask = DDI_BUF_EMP_MASK;
2936 } else if (IS_CHERRYVIEW(dev)) {
2937 signal_levels = intel_chv_signal_levels(intel_dp);
2938 mask = 0;
2939 } else if (IS_VALLEYVIEW(dev)) {
2940 signal_levels = intel_vlv_signal_levels(intel_dp);
2941 mask = 0;
2942 } else if (IS_GEN7(dev) && port == PORT_A) {
2943 signal_levels = intel_gen7_edp_signal_levels(train_set);
2944 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2945 } else if (IS_GEN6(dev) && port == PORT_A) {
2946 signal_levels = intel_gen6_edp_signal_levels(train_set);
2947 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2948 } else {
2949 signal_levels = intel_gen4_signal_levels(train_set);
2950 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2951 }
2952
2953 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2954
2955 *DP = (*DP & ~mask) | signal_levels;
2956 }
2957
2958 static bool
2959 intel_dp_set_link_train(struct intel_dp *intel_dp,
2960 uint32_t *DP,
2961 uint8_t dp_train_pat)
2962 {
2963 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2964 struct drm_device *dev = intel_dig_port->base.base.dev;
2965 struct drm_i915_private *dev_priv = dev->dev_private;
2966 enum port port = intel_dig_port->port;
2967 uint8_t buf[sizeof(intel_dp->train_set) + 1];
2968 int ret, len;
2969
2970 if (HAS_DDI(dev)) {
2971 uint32_t temp = I915_READ(DP_TP_CTL(port));
2972
2973 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2974 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2975 else
2976 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2977
2978 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2979 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2980 case DP_TRAINING_PATTERN_DISABLE:
2981 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2982
2983 break;
2984 case DP_TRAINING_PATTERN_1:
2985 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2986 break;
2987 case DP_TRAINING_PATTERN_2:
2988 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2989 break;
2990 case DP_TRAINING_PATTERN_3:
2991 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2992 break;
2993 }
2994 I915_WRITE(DP_TP_CTL(port), temp);
2995
2996 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2997 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2998
2999 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3000 case DP_TRAINING_PATTERN_DISABLE:
3001 *DP |= DP_LINK_TRAIN_OFF_CPT;
3002 break;
3003 case DP_TRAINING_PATTERN_1:
3004 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3005 break;
3006 case DP_TRAINING_PATTERN_2:
3007 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3008 break;
3009 case DP_TRAINING_PATTERN_3:
3010 DRM_ERROR("DP training pattern 3 not supported\n");
3011 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3012 break;
3013 }
3014
3015 } else {
3016 if (IS_CHERRYVIEW(dev))
3017 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
3018 else
3019 *DP &= ~DP_LINK_TRAIN_MASK;
3020
3021 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3022 case DP_TRAINING_PATTERN_DISABLE:
3023 *DP |= DP_LINK_TRAIN_OFF;
3024 break;
3025 case DP_TRAINING_PATTERN_1:
3026 *DP |= DP_LINK_TRAIN_PAT_1;
3027 break;
3028 case DP_TRAINING_PATTERN_2:
3029 *DP |= DP_LINK_TRAIN_PAT_2;
3030 break;
3031 case DP_TRAINING_PATTERN_3:
3032 if (IS_CHERRYVIEW(dev)) {
3033 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
3034 } else {
3035 DRM_ERROR("DP training pattern 3 not supported\n");
3036 *DP |= DP_LINK_TRAIN_PAT_2;
3037 }
3038 break;
3039 }
3040 }
3041
3042 I915_WRITE(intel_dp->output_reg, *DP);
3043 POSTING_READ(intel_dp->output_reg);
3044
3045 buf[0] = dp_train_pat;
3046 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3047 DP_TRAINING_PATTERN_DISABLE) {
3048 /* don't write DP_TRAINING_LANEx_SET on disable */
3049 len = 1;
3050 } else {
3051 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3052 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3053 len = intel_dp->lane_count + 1;
3054 }
3055
3056 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3057 buf, len);
3058
3059 return ret == len;
3060 }
3061
3062 static bool
3063 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3064 uint8_t dp_train_pat)
3065 {
3066 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3067 intel_dp_set_signal_levels(intel_dp, DP);
3068 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3069 }
3070
3071 static bool
3072 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3073 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3074 {
3075 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3076 struct drm_device *dev = intel_dig_port->base.base.dev;
3077 struct drm_i915_private *dev_priv = dev->dev_private;
3078 int ret;
3079
3080 intel_get_adjust_train(intel_dp, link_status);
3081 intel_dp_set_signal_levels(intel_dp, DP);
3082
3083 I915_WRITE(intel_dp->output_reg, *DP);
3084 POSTING_READ(intel_dp->output_reg);
3085
3086 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3087 intel_dp->train_set, intel_dp->lane_count);
3088
3089 return ret == intel_dp->lane_count;
3090 }
3091
3092 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3093 {
3094 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3095 struct drm_device *dev = intel_dig_port->base.base.dev;
3096 struct drm_i915_private *dev_priv = dev->dev_private;
3097 enum port port = intel_dig_port->port;
3098 uint32_t val;
3099
3100 if (!HAS_DDI(dev))
3101 return;
3102
3103 val = I915_READ(DP_TP_CTL(port));
3104 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3105 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3106 I915_WRITE(DP_TP_CTL(port), val);
3107
3108 /*
3109 * On PORT_A we can have only eDP in SST mode. There the only reason
3110 * we need to set idle transmission mode is to work around a HW issue
3111 * where we enable the pipe while not in idle link-training mode.
3112 * In this case there is requirement to wait for a minimum number of
3113 * idle patterns to be sent.
3114 */
3115 if (port == PORT_A)
3116 return;
3117
3118 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3119 1))
3120 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3121 }
3122
3123 /* Enable corresponding port and start training pattern 1 */
3124 void
3125 intel_dp_start_link_train(struct intel_dp *intel_dp)
3126 {
3127 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3128 struct drm_device *dev = encoder->dev;
3129 int i;
3130 uint8_t voltage;
3131 int voltage_tries, loop_tries;
3132 uint32_t DP = intel_dp->DP;
3133 uint8_t link_config[2];
3134
3135 if (HAS_DDI(dev))
3136 intel_ddi_prepare_link_retrain(encoder);
3137
3138 /* Write the link configuration data */
3139 link_config[0] = intel_dp->link_bw;
3140 link_config[1] = intel_dp->lane_count;
3141 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3142 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3143 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3144
3145 link_config[0] = 0;
3146 link_config[1] = DP_SET_ANSI_8B10B;
3147 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3148
3149 DP |= DP_PORT_EN;
3150
3151 /* clock recovery */
3152 if (!intel_dp_reset_link_train(intel_dp, &DP,
3153 DP_TRAINING_PATTERN_1 |
3154 DP_LINK_SCRAMBLING_DISABLE)) {
3155 DRM_ERROR("failed to enable link training\n");
3156 return;
3157 }
3158
3159 voltage = 0xff;
3160 voltage_tries = 0;
3161 loop_tries = 0;
3162 for (;;) {
3163 uint8_t link_status[DP_LINK_STATUS_SIZE];
3164
3165 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3166 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3167 DRM_ERROR("failed to get link status\n");
3168 break;
3169 }
3170
3171 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3172 DRM_DEBUG_KMS("clock recovery OK\n");
3173 break;
3174 }
3175
3176 /* Check to see if we've tried the max voltage */
3177 for (i = 0; i < intel_dp->lane_count; i++)
3178 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3179 break;
3180 if (i == intel_dp->lane_count) {
3181 ++loop_tries;
3182 if (loop_tries == 5) {
3183 DRM_ERROR("too many full retries, give up\n");
3184 break;
3185 }
3186 intel_dp_reset_link_train(intel_dp, &DP,
3187 DP_TRAINING_PATTERN_1 |
3188 DP_LINK_SCRAMBLING_DISABLE);
3189 voltage_tries = 0;
3190 continue;
3191 }
3192
3193 /* Check to see if we've tried the same voltage 5 times */
3194 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3195 ++voltage_tries;
3196 if (voltage_tries == 5) {
3197 DRM_ERROR("too many voltage retries, give up\n");
3198 break;
3199 }
3200 } else
3201 voltage_tries = 0;
3202 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3203
3204 /* Update training set as requested by target */
3205 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3206 DRM_ERROR("failed to update link training\n");
3207 break;
3208 }
3209 }
3210
3211 intel_dp->DP = DP;
3212 }
3213
3214 void
3215 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3216 {
3217 bool channel_eq = false;
3218 int tries, cr_tries;
3219 uint32_t DP = intel_dp->DP;
3220 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3221
3222 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3223 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3224 training_pattern = DP_TRAINING_PATTERN_3;
3225
3226 /* channel equalization */
3227 if (!intel_dp_set_link_train(intel_dp, &DP,
3228 training_pattern |
3229 DP_LINK_SCRAMBLING_DISABLE)) {
3230 DRM_ERROR("failed to start channel equalization\n");
3231 return;
3232 }
3233
3234 tries = 0;
3235 cr_tries = 0;
3236 channel_eq = false;
3237 for (;;) {
3238 uint8_t link_status[DP_LINK_STATUS_SIZE];
3239
3240 if (cr_tries > 5) {
3241 DRM_ERROR("failed to train DP, aborting\n");
3242 break;
3243 }
3244
3245 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3246 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3247 DRM_ERROR("failed to get link status\n");
3248 break;
3249 }
3250
3251 /* Make sure clock is still ok */
3252 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3253 intel_dp_start_link_train(intel_dp);
3254 intel_dp_set_link_train(intel_dp, &DP,
3255 training_pattern |
3256 DP_LINK_SCRAMBLING_DISABLE);
3257 cr_tries++;
3258 continue;
3259 }
3260
3261 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3262 channel_eq = true;
3263 break;
3264 }
3265
3266 /* Try 5 times, then try clock recovery if that fails */
3267 if (tries > 5) {
3268 intel_dp_link_down(intel_dp);
3269 intel_dp_start_link_train(intel_dp);
3270 intel_dp_set_link_train(intel_dp, &DP,
3271 training_pattern |
3272 DP_LINK_SCRAMBLING_DISABLE);
3273 tries = 0;
3274 cr_tries++;
3275 continue;
3276 }
3277
3278 /* Update training set as requested by target */
3279 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3280 DRM_ERROR("failed to update link training\n");
3281 break;
3282 }
3283 ++tries;
3284 }
3285
3286 intel_dp_set_idle_link_train(intel_dp);
3287
3288 intel_dp->DP = DP;
3289
3290 if (channel_eq)
3291 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3292
3293 }
3294
3295 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3296 {
3297 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3298 DP_TRAINING_PATTERN_DISABLE);
3299 }
3300
3301 static void
3302 intel_dp_link_down(struct intel_dp *intel_dp)
3303 {
3304 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3305 enum port port = intel_dig_port->port;
3306 struct drm_device *dev = intel_dig_port->base.base.dev;
3307 struct drm_i915_private *dev_priv = dev->dev_private;
3308 struct intel_crtc *intel_crtc =
3309 to_intel_crtc(intel_dig_port->base.base.crtc);
3310 uint32_t DP = intel_dp->DP;
3311
3312 if (WARN_ON(HAS_DDI(dev)))
3313 return;
3314
3315 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3316 return;
3317
3318 DRM_DEBUG_KMS("\n");
3319
3320 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3321 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3322 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3323 } else {
3324 if (IS_CHERRYVIEW(dev))
3325 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3326 else
3327 DP &= ~DP_LINK_TRAIN_MASK;
3328 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3329 }
3330 POSTING_READ(intel_dp->output_reg);
3331
3332 if (HAS_PCH_IBX(dev) &&
3333 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3334 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3335
3336 /* Hardware workaround: leaving our transcoder select
3337 * set to transcoder B while it's off will prevent the
3338 * corresponding HDMI output on transcoder A.
3339 *
3340 * Combine this with another hardware workaround:
3341 * transcoder select bit can only be cleared while the
3342 * port is enabled.
3343 */
3344 DP &= ~DP_PIPEB_SELECT;
3345 I915_WRITE(intel_dp->output_reg, DP);
3346
3347 /* Changes to enable or select take place the vblank
3348 * after being written.
3349 */
3350 if (WARN_ON(crtc == NULL)) {
3351 /* We should never try to disable a port without a crtc
3352 * attached. For paranoia keep the code around for a
3353 * bit. */
3354 POSTING_READ(intel_dp->output_reg);
3355 msleep(50);
3356 } else
3357 intel_wait_for_vblank(dev, intel_crtc->pipe);
3358 }
3359
3360 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3361 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3362 POSTING_READ(intel_dp->output_reg);
3363 msleep(intel_dp->panel_power_down_delay);
3364 }
3365
3366 static bool
3367 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3368 {
3369 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3370 struct drm_device *dev = dig_port->base.base.dev;
3371 struct drm_i915_private *dev_priv = dev->dev_private;
3372
3373 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3374 sizeof(intel_dp->dpcd)) < 0)
3375 return false; /* aux transfer failed */
3376
3377 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3378
3379 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3380 return false; /* DPCD not present */
3381
3382 /* Check if the panel supports PSR */
3383 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3384 if (is_edp(intel_dp)) {
3385 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3386 intel_dp->psr_dpcd,
3387 sizeof(intel_dp->psr_dpcd));
3388 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3389 dev_priv->psr.sink_support = true;
3390 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3391 }
3392 }
3393
3394 /* Training Pattern 3 support */
3395 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3396 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3397 intel_dp->use_tps3 = true;
3398 DRM_DEBUG_KMS("Displayport TPS3 supported");
3399 } else
3400 intel_dp->use_tps3 = false;
3401
3402 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3403 DP_DWN_STRM_PORT_PRESENT))
3404 return true; /* native DP sink */
3405
3406 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3407 return true; /* no per-port downstream info */
3408
3409 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3410 intel_dp->downstream_ports,
3411 DP_MAX_DOWNSTREAM_PORTS) < 0)
3412 return false; /* downstream port status fetch failed */
3413
3414 return true;
3415 }
3416
3417 static void
3418 intel_dp_probe_oui(struct intel_dp *intel_dp)
3419 {
3420 u8 buf[3];
3421
3422 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3423 return;
3424
3425 intel_edp_panel_vdd_on(intel_dp);
3426
3427 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3428 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3429 buf[0], buf[1], buf[2]);
3430
3431 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3432 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3433 buf[0], buf[1], buf[2]);
3434
3435 intel_edp_panel_vdd_off(intel_dp, false);
3436 }
3437
3438 static bool
3439 intel_dp_probe_mst(struct intel_dp *intel_dp)
3440 {
3441 u8 buf[1];
3442
3443 if (!intel_dp->can_mst)
3444 return false;
3445
3446 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3447 return false;
3448
3449 intel_edp_panel_vdd_on(intel_dp);
3450 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3451 if (buf[0] & DP_MST_CAP) {
3452 DRM_DEBUG_KMS("Sink is MST capable\n");
3453 intel_dp->is_mst = true;
3454 } else {
3455 DRM_DEBUG_KMS("Sink is not MST capable\n");
3456 intel_dp->is_mst = false;
3457 }
3458 }
3459 intel_edp_panel_vdd_off(intel_dp, false);
3460
3461 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3462 return intel_dp->is_mst;
3463 }
3464
3465 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3466 {
3467 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3468 struct drm_device *dev = intel_dig_port->base.base.dev;
3469 struct intel_crtc *intel_crtc =
3470 to_intel_crtc(intel_dig_port->base.base.crtc);
3471 u8 buf[1];
3472
3473 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3474 return -EAGAIN;
3475
3476 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3477 return -ENOTTY;
3478
3479 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3480 DP_TEST_SINK_START) < 0)
3481 return -EAGAIN;
3482
3483 /* Wait 2 vblanks to be sure we will have the correct CRC value */
3484 intel_wait_for_vblank(dev, intel_crtc->pipe);
3485 intel_wait_for_vblank(dev, intel_crtc->pipe);
3486
3487 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3488 return -EAGAIN;
3489
3490 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3491 return 0;
3492 }
3493
3494 static bool
3495 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3496 {
3497 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3498 DP_DEVICE_SERVICE_IRQ_VECTOR,
3499 sink_irq_vector, 1) == 1;
3500 }
3501
3502 static bool
3503 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3504 {
3505 int ret;
3506
3507 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3508 DP_SINK_COUNT_ESI,
3509 sink_irq_vector, 14);
3510 if (ret != 14)
3511 return false;
3512
3513 return true;
3514 }
3515
3516 static void
3517 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3518 {
3519 /* NAK by default */
3520 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3521 }
3522
3523 static int
3524 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3525 {
3526 bool bret;
3527
3528 if (intel_dp->is_mst) {
3529 u8 esi[16] = { 0 };
3530 int ret = 0;
3531 int retry;
3532 bool handled;
3533 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3534 go_again:
3535 if (bret == true) {
3536
3537 /* check link status - esi[10] = 0x200c */
3538 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3539 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3540 intel_dp_start_link_train(intel_dp);
3541 intel_dp_complete_link_train(intel_dp);
3542 intel_dp_stop_link_train(intel_dp);
3543 }
3544
3545 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3546 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3547
3548 if (handled) {
3549 for (retry = 0; retry < 3; retry++) {
3550 int wret;
3551 wret = drm_dp_dpcd_write(&intel_dp->aux,
3552 DP_SINK_COUNT_ESI+1,
3553 &esi[1], 3);
3554 if (wret == 3) {
3555 break;
3556 }
3557 }
3558
3559 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3560 if (bret == true) {
3561 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3562 goto go_again;
3563 }
3564 } else
3565 ret = 0;
3566
3567 return ret;
3568 } else {
3569 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3570 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3571 intel_dp->is_mst = false;
3572 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3573 /* send a hotplug event */
3574 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3575 }
3576 }
3577 return -EINVAL;
3578 }
3579
3580 /*
3581 * According to DP spec
3582 * 5.1.2:
3583 * 1. Read DPCD
3584 * 2. Configure link according to Receiver Capabilities
3585 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3586 * 4. Check link status on receipt of hot-plug interrupt
3587 */
3588 void
3589 intel_dp_check_link_status(struct intel_dp *intel_dp)
3590 {
3591 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3592 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3593 u8 sink_irq_vector;
3594 u8 link_status[DP_LINK_STATUS_SIZE];
3595
3596 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3597
3598 if (!intel_encoder->connectors_active)
3599 return;
3600
3601 if (WARN_ON(!intel_encoder->base.crtc))
3602 return;
3603
3604 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3605 return;
3606
3607 /* Try to read receiver status if the link appears to be up */
3608 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3609 return;
3610 }
3611
3612 /* Now read the DPCD to see if it's actually running */
3613 if (!intel_dp_get_dpcd(intel_dp)) {
3614 return;
3615 }
3616
3617 /* Try to read the source of the interrupt */
3618 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3619 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3620 /* Clear interrupt source */
3621 drm_dp_dpcd_writeb(&intel_dp->aux,
3622 DP_DEVICE_SERVICE_IRQ_VECTOR,
3623 sink_irq_vector);
3624
3625 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3626 intel_dp_handle_test_request(intel_dp);
3627 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3628 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3629 }
3630
3631 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3632 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3633 intel_encoder->base.name);
3634 intel_dp_start_link_train(intel_dp);
3635 intel_dp_complete_link_train(intel_dp);
3636 intel_dp_stop_link_train(intel_dp);
3637 }
3638 }
3639
3640 /* XXX this is probably wrong for multiple downstream ports */
3641 static enum drm_connector_status
3642 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3643 {
3644 uint8_t *dpcd = intel_dp->dpcd;
3645 uint8_t type;
3646
3647 if (!intel_dp_get_dpcd(intel_dp))
3648 return connector_status_disconnected;
3649
3650 /* if there's no downstream port, we're done */
3651 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3652 return connector_status_connected;
3653
3654 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3655 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3656 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3657 uint8_t reg;
3658
3659 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3660 &reg, 1) < 0)
3661 return connector_status_unknown;
3662
3663 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3664 : connector_status_disconnected;
3665 }
3666
3667 /* If no HPD, poke DDC gently */
3668 if (drm_probe_ddc(&intel_dp->aux.ddc))
3669 return connector_status_connected;
3670
3671 /* Well we tried, say unknown for unreliable port types */
3672 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3673 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3674 if (type == DP_DS_PORT_TYPE_VGA ||
3675 type == DP_DS_PORT_TYPE_NON_EDID)
3676 return connector_status_unknown;
3677 } else {
3678 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3679 DP_DWN_STRM_PORT_TYPE_MASK;
3680 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3681 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3682 return connector_status_unknown;
3683 }
3684
3685 /* Anything else is out of spec, warn and ignore */
3686 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3687 return connector_status_disconnected;
3688 }
3689
3690 static enum drm_connector_status
3691 ironlake_dp_detect(struct intel_dp *intel_dp)
3692 {
3693 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3694 struct drm_i915_private *dev_priv = dev->dev_private;
3695 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3696 enum drm_connector_status status;
3697
3698 /* Can't disconnect eDP, but you can close the lid... */
3699 if (is_edp(intel_dp)) {
3700 status = intel_panel_detect(dev);
3701 if (status == connector_status_unknown)
3702 status = connector_status_connected;
3703 return status;
3704 }
3705
3706 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3707 return connector_status_disconnected;
3708
3709 return intel_dp_detect_dpcd(intel_dp);
3710 }
3711
3712 static enum drm_connector_status
3713 g4x_dp_detect(struct intel_dp *intel_dp)
3714 {
3715 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3716 struct drm_i915_private *dev_priv = dev->dev_private;
3717 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3718 uint32_t bit;
3719
3720 /* Can't disconnect eDP, but you can close the lid... */
3721 if (is_edp(intel_dp)) {
3722 enum drm_connector_status status;
3723
3724 status = intel_panel_detect(dev);
3725 if (status == connector_status_unknown)
3726 status = connector_status_connected;
3727 return status;
3728 }
3729
3730 if (IS_VALLEYVIEW(dev)) {
3731 switch (intel_dig_port->port) {
3732 case PORT_B:
3733 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3734 break;
3735 case PORT_C:
3736 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3737 break;
3738 case PORT_D:
3739 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3740 break;
3741 default:
3742 return connector_status_unknown;
3743 }
3744 } else {
3745 switch (intel_dig_port->port) {
3746 case PORT_B:
3747 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3748 break;
3749 case PORT_C:
3750 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3751 break;
3752 case PORT_D:
3753 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3754 break;
3755 default:
3756 return connector_status_unknown;
3757 }
3758 }
3759
3760 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3761 return connector_status_disconnected;
3762
3763 return intel_dp_detect_dpcd(intel_dp);
3764 }
3765
3766 static struct edid *
3767 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3768 {
3769 struct intel_connector *intel_connector = to_intel_connector(connector);
3770
3771 /* use cached edid if we have one */
3772 if (intel_connector->edid) {
3773 /* invalid edid */
3774 if (IS_ERR(intel_connector->edid))
3775 return NULL;
3776
3777 return drm_edid_duplicate(intel_connector->edid);
3778 }
3779
3780 return drm_get_edid(connector, adapter);
3781 }
3782
3783 static int
3784 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3785 {
3786 struct intel_connector *intel_connector = to_intel_connector(connector);
3787
3788 /* use cached edid if we have one */
3789 if (intel_connector->edid) {
3790 /* invalid edid */
3791 if (IS_ERR(intel_connector->edid))
3792 return 0;
3793
3794 return intel_connector_update_modes(connector,
3795 intel_connector->edid);
3796 }
3797
3798 return intel_ddc_get_modes(connector, adapter);
3799 }
3800
3801 static enum drm_connector_status
3802 intel_dp_detect(struct drm_connector *connector, bool force)
3803 {
3804 struct intel_dp *intel_dp = intel_attached_dp(connector);
3805 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3806 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3807 struct drm_device *dev = connector->dev;
3808 struct drm_i915_private *dev_priv = dev->dev_private;
3809 enum drm_connector_status status;
3810 enum intel_display_power_domain power_domain;
3811 struct edid *edid = NULL;
3812 bool ret;
3813
3814 power_domain = intel_display_port_power_domain(intel_encoder);
3815 intel_display_power_get(dev_priv, power_domain);
3816
3817 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3818 connector->base.id, connector->name);
3819
3820 if (intel_dp->is_mst) {
3821 /* MST devices are disconnected from a monitor POV */
3822 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3823 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3824 status = connector_status_disconnected;
3825 goto out;
3826 }
3827
3828 intel_dp->has_audio = false;
3829
3830 if (HAS_PCH_SPLIT(dev))
3831 status = ironlake_dp_detect(intel_dp);
3832 else
3833 status = g4x_dp_detect(intel_dp);
3834
3835 if (status != connector_status_connected)
3836 goto out;
3837
3838 intel_dp_probe_oui(intel_dp);
3839
3840 ret = intel_dp_probe_mst(intel_dp);
3841 if (ret) {
3842 /* if we are in MST mode then this connector
3843 won't appear connected or have anything with EDID on it */
3844 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3845 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3846 status = connector_status_disconnected;
3847 goto out;
3848 }
3849
3850 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3851 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3852 } else {
3853 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3854 if (edid) {
3855 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3856 kfree(edid);
3857 }
3858 }
3859
3860 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3861 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3862 status = connector_status_connected;
3863
3864 out:
3865 intel_display_power_put(dev_priv, power_domain);
3866 return status;
3867 }
3868
3869 static int intel_dp_get_modes(struct drm_connector *connector)
3870 {
3871 struct intel_dp *intel_dp = intel_attached_dp(connector);
3872 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3873 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3874 struct intel_connector *intel_connector = to_intel_connector(connector);
3875 struct drm_device *dev = connector->dev;
3876 struct drm_i915_private *dev_priv = dev->dev_private;
3877 enum intel_display_power_domain power_domain;
3878 int ret;
3879
3880 /* We should parse the EDID data and find out if it has an audio sink
3881 */
3882
3883 power_domain = intel_display_port_power_domain(intel_encoder);
3884 intel_display_power_get(dev_priv, power_domain);
3885
3886 ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3887 intel_display_power_put(dev_priv, power_domain);
3888 if (ret)
3889 return ret;
3890
3891 /* if eDP has no EDID, fall back to fixed mode */
3892 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3893 struct drm_display_mode *mode;
3894 mode = drm_mode_duplicate(dev,
3895 intel_connector->panel.fixed_mode);
3896 if (mode) {
3897 drm_mode_probed_add(connector, mode);
3898 return 1;
3899 }
3900 }
3901 return 0;
3902 }
3903
3904 static bool
3905 intel_dp_detect_audio(struct drm_connector *connector)
3906 {
3907 struct intel_dp *intel_dp = intel_attached_dp(connector);
3908 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3909 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3910 struct drm_device *dev = connector->dev;
3911 struct drm_i915_private *dev_priv = dev->dev_private;
3912 enum intel_display_power_domain power_domain;
3913 struct edid *edid;
3914 bool has_audio = false;
3915
3916 power_domain = intel_display_port_power_domain(intel_encoder);
3917 intel_display_power_get(dev_priv, power_domain);
3918
3919 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3920 if (edid) {
3921 has_audio = drm_detect_monitor_audio(edid);
3922 kfree(edid);
3923 }
3924
3925 intel_display_power_put(dev_priv, power_domain);
3926
3927 return has_audio;
3928 }
3929
3930 static int
3931 intel_dp_set_property(struct drm_connector *connector,
3932 struct drm_property *property,
3933 uint64_t val)
3934 {
3935 struct drm_i915_private *dev_priv = connector->dev->dev_private;
3936 struct intel_connector *intel_connector = to_intel_connector(connector);
3937 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3938 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3939 int ret;
3940
3941 ret = drm_object_property_set_value(&connector->base, property, val);
3942 if (ret)
3943 return ret;
3944
3945 if (property == dev_priv->force_audio_property) {
3946 int i = val;
3947 bool has_audio;
3948
3949 if (i == intel_dp->force_audio)
3950 return 0;
3951
3952 intel_dp->force_audio = i;
3953
3954 if (i == HDMI_AUDIO_AUTO)
3955 has_audio = intel_dp_detect_audio(connector);
3956 else
3957 has_audio = (i == HDMI_AUDIO_ON);
3958
3959 if (has_audio == intel_dp->has_audio)
3960 return 0;
3961
3962 intel_dp->has_audio = has_audio;
3963 goto done;
3964 }
3965
3966 if (property == dev_priv->broadcast_rgb_property) {
3967 bool old_auto = intel_dp->color_range_auto;
3968 uint32_t old_range = intel_dp->color_range;
3969
3970 switch (val) {
3971 case INTEL_BROADCAST_RGB_AUTO:
3972 intel_dp->color_range_auto = true;
3973 break;
3974 case INTEL_BROADCAST_RGB_FULL:
3975 intel_dp->color_range_auto = false;
3976 intel_dp->color_range = 0;
3977 break;
3978 case INTEL_BROADCAST_RGB_LIMITED:
3979 intel_dp->color_range_auto = false;
3980 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3981 break;
3982 default:
3983 return -EINVAL;
3984 }
3985
3986 if (old_auto == intel_dp->color_range_auto &&
3987 old_range == intel_dp->color_range)
3988 return 0;
3989
3990 goto done;
3991 }
3992
3993 if (is_edp(intel_dp) &&
3994 property == connector->dev->mode_config.scaling_mode_property) {
3995 if (val == DRM_MODE_SCALE_NONE) {
3996 DRM_DEBUG_KMS("no scaling not supported\n");
3997 return -EINVAL;
3998 }
3999
4000 if (intel_connector->panel.fitting_mode == val) {
4001 /* the eDP scaling property is not changed */
4002 return 0;
4003 }
4004 intel_connector->panel.fitting_mode = val;
4005
4006 goto done;
4007 }
4008
4009 return -EINVAL;
4010
4011 done:
4012 if (intel_encoder->base.crtc)
4013 intel_crtc_restore_mode(intel_encoder->base.crtc);
4014
4015 return 0;
4016 }
4017
4018 static void
4019 intel_dp_connector_destroy(struct drm_connector *connector)
4020 {
4021 struct intel_connector *intel_connector = to_intel_connector(connector);
4022
4023 if (!IS_ERR_OR_NULL(intel_connector->edid))
4024 kfree(intel_connector->edid);
4025
4026 /* Can't call is_edp() since the encoder may have been destroyed
4027 * already. */
4028 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4029 intel_panel_fini(&intel_connector->panel);
4030
4031 drm_connector_cleanup(connector);
4032 kfree(connector);
4033 }
4034
4035 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4036 {
4037 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4038 struct intel_dp *intel_dp = &intel_dig_port->dp;
4039 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4040
4041 drm_dp_aux_unregister(&intel_dp->aux);
4042 intel_dp_mst_encoder_cleanup(intel_dig_port);
4043 drm_encoder_cleanup(encoder);
4044 if (is_edp(intel_dp)) {
4045 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4046 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4047 edp_panel_vdd_off_sync(intel_dp);
4048 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4049 if (intel_dp->edp_notifier.notifier_call) {
4050 unregister_reboot_notifier(&intel_dp->edp_notifier);
4051 intel_dp->edp_notifier.notifier_call = NULL;
4052 }
4053 }
4054 kfree(intel_dig_port);
4055 }
4056
4057 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4058 {
4059 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4060
4061 if (!is_edp(intel_dp))
4062 return;
4063
4064 edp_panel_vdd_off_sync(intel_dp);
4065 }
4066
4067 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4068 {
4069 intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4070 }
4071
4072 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4073 .dpms = intel_connector_dpms,
4074 .detect = intel_dp_detect,
4075 .fill_modes = drm_helper_probe_single_connector_modes,
4076 .set_property = intel_dp_set_property,
4077 .destroy = intel_dp_connector_destroy,
4078 };
4079
4080 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4081 .get_modes = intel_dp_get_modes,
4082 .mode_valid = intel_dp_mode_valid,
4083 .best_encoder = intel_best_encoder,
4084 };
4085
4086 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4087 .reset = intel_dp_encoder_reset,
4088 .destroy = intel_dp_encoder_destroy,
4089 };
4090
4091 void
4092 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4093 {
4094 return;
4095 }
4096
4097 bool
4098 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4099 {
4100 struct intel_dp *intel_dp = &intel_dig_port->dp;
4101 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4102 struct drm_device *dev = intel_dig_port->base.base.dev;
4103 struct drm_i915_private *dev_priv = dev->dev_private;
4104 enum intel_display_power_domain power_domain;
4105 bool ret = true;
4106
4107 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4108 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4109
4110 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4111 port_name(intel_dig_port->port),
4112 long_hpd ? "long" : "short");
4113
4114 power_domain = intel_display_port_power_domain(intel_encoder);
4115 intel_display_power_get(dev_priv, power_domain);
4116
4117 if (long_hpd) {
4118 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4119 goto mst_fail;
4120
4121 if (!intel_dp_get_dpcd(intel_dp)) {
4122 goto mst_fail;
4123 }
4124
4125 intel_dp_probe_oui(intel_dp);
4126
4127 if (!intel_dp_probe_mst(intel_dp))
4128 goto mst_fail;
4129
4130 } else {
4131 if (intel_dp->is_mst) {
4132 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4133 goto mst_fail;
4134 }
4135
4136 if (!intel_dp->is_mst) {
4137 /*
4138 * we'll check the link status via the normal hot plug path later -
4139 * but for short hpds we should check it now
4140 */
4141 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4142 intel_dp_check_link_status(intel_dp);
4143 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4144 }
4145 }
4146 ret = false;
4147 goto put_power;
4148 mst_fail:
4149 /* if we were in MST mode, and device is not there get out of MST mode */
4150 if (intel_dp->is_mst) {
4151 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4152 intel_dp->is_mst = false;
4153 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4154 }
4155 put_power:
4156 intel_display_power_put(dev_priv, power_domain);
4157
4158 return ret;
4159 }
4160
4161 /* Return which DP Port should be selected for Transcoder DP control */
4162 int
4163 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4164 {
4165 struct drm_device *dev = crtc->dev;
4166 struct intel_encoder *intel_encoder;
4167 struct intel_dp *intel_dp;
4168
4169 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4170 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4171
4172 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4173 intel_encoder->type == INTEL_OUTPUT_EDP)
4174 return intel_dp->output_reg;
4175 }
4176
4177 return -1;
4178 }
4179
4180 /* check the VBT to see whether the eDP is on DP-D port */
4181 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4182 {
4183 struct drm_i915_private *dev_priv = dev->dev_private;
4184 union child_device_config *p_child;
4185 int i;
4186 static const short port_mapping[] = {
4187 [PORT_B] = PORT_IDPB,
4188 [PORT_C] = PORT_IDPC,
4189 [PORT_D] = PORT_IDPD,
4190 };
4191
4192 if (port == PORT_A)
4193 return true;
4194
4195 if (!dev_priv->vbt.child_dev_num)
4196 return false;
4197
4198 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4199 p_child = dev_priv->vbt.child_dev + i;
4200
4201 if (p_child->common.dvo_port == port_mapping[port] &&
4202 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4203 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4204 return true;
4205 }
4206 return false;
4207 }
4208
4209 void
4210 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4211 {
4212 struct intel_connector *intel_connector = to_intel_connector(connector);
4213
4214 intel_attach_force_audio_property(connector);
4215 intel_attach_broadcast_rgb_property(connector);
4216 intel_dp->color_range_auto = true;
4217
4218 if (is_edp(intel_dp)) {
4219 drm_mode_create_scaling_mode_property(connector->dev);
4220 drm_object_attach_property(
4221 &connector->base,
4222 connector->dev->mode_config.scaling_mode_property,
4223 DRM_MODE_SCALE_ASPECT);
4224 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4225 }
4226 }
4227
4228 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4229 {
4230 intel_dp->last_power_cycle = jiffies;
4231 intel_dp->last_power_on = jiffies;
4232 intel_dp->last_backlight_off = jiffies;
4233 }
4234
4235 static void
4236 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4237 struct intel_dp *intel_dp,
4238 struct edp_power_seq *out)
4239 {
4240 struct drm_i915_private *dev_priv = dev->dev_private;
4241 struct edp_power_seq cur, vbt, spec, final;
4242 u32 pp_on, pp_off, pp_div, pp;
4243 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4244
4245 if (HAS_PCH_SPLIT(dev)) {
4246 pp_ctrl_reg = PCH_PP_CONTROL;
4247 pp_on_reg = PCH_PP_ON_DELAYS;
4248 pp_off_reg = PCH_PP_OFF_DELAYS;
4249 pp_div_reg = PCH_PP_DIVISOR;
4250 } else {
4251 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4252
4253 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4254 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4255 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4256 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4257 }
4258
4259 /* Workaround: Need to write PP_CONTROL with the unlock key as
4260 * the very first thing. */
4261 pp = ironlake_get_pp_control(intel_dp);
4262 I915_WRITE(pp_ctrl_reg, pp);
4263
4264 pp_on = I915_READ(pp_on_reg);
4265 pp_off = I915_READ(pp_off_reg);
4266 pp_div = I915_READ(pp_div_reg);
4267
4268 /* Pull timing values out of registers */
4269 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4270 PANEL_POWER_UP_DELAY_SHIFT;
4271
4272 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4273 PANEL_LIGHT_ON_DELAY_SHIFT;
4274
4275 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4276 PANEL_LIGHT_OFF_DELAY_SHIFT;
4277
4278 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4279 PANEL_POWER_DOWN_DELAY_SHIFT;
4280
4281 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4282 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4283
4284 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4285 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4286
4287 vbt = dev_priv->vbt.edp_pps;
4288
4289 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4290 * our hw here, which are all in 100usec. */
4291 spec.t1_t3 = 210 * 10;
4292 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4293 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4294 spec.t10 = 500 * 10;
4295 /* This one is special and actually in units of 100ms, but zero
4296 * based in the hw (so we need to add 100 ms). But the sw vbt
4297 * table multiplies it with 1000 to make it in units of 100usec,
4298 * too. */
4299 spec.t11_t12 = (510 + 100) * 10;
4300
4301 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4302 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4303
4304 /* Use the max of the register settings and vbt. If both are
4305 * unset, fall back to the spec limits. */
4306 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
4307 spec.field : \
4308 max(cur.field, vbt.field))
4309 assign_final(t1_t3);
4310 assign_final(t8);
4311 assign_final(t9);
4312 assign_final(t10);
4313 assign_final(t11_t12);
4314 #undef assign_final
4315
4316 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
4317 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4318 intel_dp->backlight_on_delay = get_delay(t8);
4319 intel_dp->backlight_off_delay = get_delay(t9);
4320 intel_dp->panel_power_down_delay = get_delay(t10);
4321 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4322 #undef get_delay
4323
4324 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4325 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4326 intel_dp->panel_power_cycle_delay);
4327
4328 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4329 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4330
4331 if (out)
4332 *out = final;
4333 }
4334
4335 static void
4336 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4337 struct intel_dp *intel_dp,
4338 struct edp_power_seq *seq)
4339 {
4340 struct drm_i915_private *dev_priv = dev->dev_private;
4341 u32 pp_on, pp_off, pp_div, port_sel = 0;
4342 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4343 int pp_on_reg, pp_off_reg, pp_div_reg;
4344 enum port port = dp_to_dig_port(intel_dp)->port;
4345
4346 if (HAS_PCH_SPLIT(dev)) {
4347 pp_on_reg = PCH_PP_ON_DELAYS;
4348 pp_off_reg = PCH_PP_OFF_DELAYS;
4349 pp_div_reg = PCH_PP_DIVISOR;
4350 } else {
4351 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4352
4353 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4354 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4355 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4356 }
4357
4358 /*
4359 * And finally store the new values in the power sequencer. The
4360 * backlight delays are set to 1 because we do manual waits on them. For
4361 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4362 * we'll end up waiting for the backlight off delay twice: once when we
4363 * do the manual sleep, and once when we disable the panel and wait for
4364 * the PP_STATUS bit to become zero.
4365 */
4366 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4367 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4368 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4369 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4370 /* Compute the divisor for the pp clock, simply match the Bspec
4371 * formula. */
4372 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4373 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4374 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4375
4376 /* Haswell doesn't have any port selection bits for the panel
4377 * power sequencer any more. */
4378 if (IS_VALLEYVIEW(dev)) {
4379 port_sel = PANEL_PORT_SELECT_VLV(port);
4380 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4381 if (port == PORT_A)
4382 port_sel = PANEL_PORT_SELECT_DPA;
4383 else
4384 port_sel = PANEL_PORT_SELECT_DPD;
4385 }
4386
4387 pp_on |= port_sel;
4388
4389 I915_WRITE(pp_on_reg, pp_on);
4390 I915_WRITE(pp_off_reg, pp_off);
4391 I915_WRITE(pp_div_reg, pp_div);
4392
4393 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4394 I915_READ(pp_on_reg),
4395 I915_READ(pp_off_reg),
4396 I915_READ(pp_div_reg));
4397 }
4398
4399 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4400 {
4401 struct drm_i915_private *dev_priv = dev->dev_private;
4402 struct intel_encoder *encoder;
4403 struct intel_dp *intel_dp = NULL;
4404 struct intel_crtc_config *config = NULL;
4405 struct intel_crtc *intel_crtc = NULL;
4406 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4407 u32 reg, val;
4408 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4409
4410 if (refresh_rate <= 0) {
4411 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4412 return;
4413 }
4414
4415 if (intel_connector == NULL) {
4416 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4417 return;
4418 }
4419
4420 /*
4421 * FIXME: This needs proper synchronization with psr state. But really
4422 * hard to tell without seeing the user of this function of this code.
4423 * Check locking and ordering once that lands.
4424 */
4425 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4426 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4427 return;
4428 }
4429
4430 encoder = intel_attached_encoder(&intel_connector->base);
4431 intel_dp = enc_to_intel_dp(&encoder->base);
4432 intel_crtc = encoder->new_crtc;
4433
4434 if (!intel_crtc) {
4435 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4436 return;
4437 }
4438
4439 config = &intel_crtc->config;
4440
4441 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4442 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4443 return;
4444 }
4445
4446 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4447 index = DRRS_LOW_RR;
4448
4449 if (index == intel_dp->drrs_state.refresh_rate_type) {
4450 DRM_DEBUG_KMS(
4451 "DRRS requested for previously set RR...ignoring\n");
4452 return;
4453 }
4454
4455 if (!intel_crtc->active) {
4456 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4457 return;
4458 }
4459
4460 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4461 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4462 val = I915_READ(reg);
4463 if (index > DRRS_HIGH_RR) {
4464 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4465 intel_dp_set_m_n(intel_crtc);
4466 } else {
4467 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4468 }
4469 I915_WRITE(reg, val);
4470 }
4471
4472 /*
4473 * mutex taken to ensure that there is no race between differnt
4474 * drrs calls trying to update refresh rate. This scenario may occur
4475 * in future when idleness detection based DRRS in kernel and
4476 * possible calls from user space to set differnt RR are made.
4477 */
4478
4479 mutex_lock(&intel_dp->drrs_state.mutex);
4480
4481 intel_dp->drrs_state.refresh_rate_type = index;
4482
4483 mutex_unlock(&intel_dp->drrs_state.mutex);
4484
4485 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4486 }
4487
4488 static struct drm_display_mode *
4489 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4490 struct intel_connector *intel_connector,
4491 struct drm_display_mode *fixed_mode)
4492 {
4493 struct drm_connector *connector = &intel_connector->base;
4494 struct intel_dp *intel_dp = &intel_dig_port->dp;
4495 struct drm_device *dev = intel_dig_port->base.base.dev;
4496 struct drm_i915_private *dev_priv = dev->dev_private;
4497 struct drm_display_mode *downclock_mode = NULL;
4498
4499 if (INTEL_INFO(dev)->gen <= 6) {
4500 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4501 return NULL;
4502 }
4503
4504 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4505 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4506 return NULL;
4507 }
4508
4509 downclock_mode = intel_find_panel_downclock
4510 (dev, fixed_mode, connector);
4511
4512 if (!downclock_mode) {
4513 DRM_DEBUG_KMS("DRRS not supported\n");
4514 return NULL;
4515 }
4516
4517 dev_priv->drrs.connector = intel_connector;
4518
4519 mutex_init(&intel_dp->drrs_state.mutex);
4520
4521 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4522
4523 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4524 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
4525 return downclock_mode;
4526 }
4527
4528 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4529 {
4530 struct drm_device *dev = intel_encoder->base.dev;
4531 struct drm_i915_private *dev_priv = dev->dev_private;
4532 struct intel_dp *intel_dp;
4533 enum intel_display_power_domain power_domain;
4534
4535 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4536 return;
4537
4538 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4539 if (!edp_have_panel_vdd(intel_dp))
4540 return;
4541 /*
4542 * The VDD bit needs a power domain reference, so if the bit is
4543 * already enabled when we boot or resume, grab this reference and
4544 * schedule a vdd off, so we don't hold on to the reference
4545 * indefinitely.
4546 */
4547 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4548 power_domain = intel_display_port_power_domain(intel_encoder);
4549 intel_display_power_get(dev_priv, power_domain);
4550
4551 edp_panel_vdd_schedule_off(intel_dp);
4552 }
4553
4554 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4555 struct intel_connector *intel_connector,
4556 struct edp_power_seq *power_seq)
4557 {
4558 struct drm_connector *connector = &intel_connector->base;
4559 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4560 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4561 struct drm_device *dev = intel_encoder->base.dev;
4562 struct drm_i915_private *dev_priv = dev->dev_private;
4563 struct drm_display_mode *fixed_mode = NULL;
4564 struct drm_display_mode *downclock_mode = NULL;
4565 bool has_dpcd;
4566 struct drm_display_mode *scan;
4567 struct edid *edid;
4568
4569 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4570
4571 if (!is_edp(intel_dp))
4572 return true;
4573
4574 intel_edp_panel_vdd_sanitize(intel_encoder);
4575
4576 /* Cache DPCD and EDID for edp. */
4577 intel_edp_panel_vdd_on(intel_dp);
4578 has_dpcd = intel_dp_get_dpcd(intel_dp);
4579 intel_edp_panel_vdd_off(intel_dp, false);
4580
4581 if (has_dpcd) {
4582 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4583 dev_priv->no_aux_handshake =
4584 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4585 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4586 } else {
4587 /* if this fails, presume the device is a ghost */
4588 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4589 return false;
4590 }
4591
4592 /* We now know it's not a ghost, init power sequence regs. */
4593 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4594
4595 mutex_lock(&dev->mode_config.mutex);
4596 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4597 if (edid) {
4598 if (drm_add_edid_modes(connector, edid)) {
4599 drm_mode_connector_update_edid_property(connector,
4600 edid);
4601 drm_edid_to_eld(connector, edid);
4602 } else {
4603 kfree(edid);
4604 edid = ERR_PTR(-EINVAL);
4605 }
4606 } else {
4607 edid = ERR_PTR(-ENOENT);
4608 }
4609 intel_connector->edid = edid;
4610
4611 /* prefer fixed mode from EDID if available */
4612 list_for_each_entry(scan, &connector->probed_modes, head) {
4613 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4614 fixed_mode = drm_mode_duplicate(dev, scan);
4615 downclock_mode = intel_dp_drrs_init(
4616 intel_dig_port,
4617 intel_connector, fixed_mode);
4618 break;
4619 }
4620 }
4621
4622 /* fallback to VBT if available for eDP */
4623 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4624 fixed_mode = drm_mode_duplicate(dev,
4625 dev_priv->vbt.lfp_lvds_vbt_mode);
4626 if (fixed_mode)
4627 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4628 }
4629 mutex_unlock(&dev->mode_config.mutex);
4630
4631 if (IS_VALLEYVIEW(dev)) {
4632 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4633 register_reboot_notifier(&intel_dp->edp_notifier);
4634 }
4635
4636 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4637 intel_connector->panel.backlight_power = intel_edp_backlight_power;
4638 intel_panel_setup_backlight(connector);
4639
4640 return true;
4641 }
4642
4643 bool
4644 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4645 struct intel_connector *intel_connector)
4646 {
4647 struct drm_connector *connector = &intel_connector->base;
4648 struct intel_dp *intel_dp = &intel_dig_port->dp;
4649 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4650 struct drm_device *dev = intel_encoder->base.dev;
4651 struct drm_i915_private *dev_priv = dev->dev_private;
4652 enum port port = intel_dig_port->port;
4653 struct edp_power_seq power_seq = { 0 };
4654 int type;
4655
4656 /* intel_dp vfuncs */
4657 if (IS_VALLEYVIEW(dev))
4658 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4659 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4660 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4661 else if (HAS_PCH_SPLIT(dev))
4662 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4663 else
4664 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4665
4666 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4667
4668 /* Preserve the current hw state. */
4669 intel_dp->DP = I915_READ(intel_dp->output_reg);
4670 intel_dp->attached_connector = intel_connector;
4671
4672 if (intel_dp_is_edp(dev, port))
4673 type = DRM_MODE_CONNECTOR_eDP;
4674 else
4675 type = DRM_MODE_CONNECTOR_DisplayPort;
4676
4677 /*
4678 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4679 * for DP the encoder type can be set by the caller to
4680 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4681 */
4682 if (type == DRM_MODE_CONNECTOR_eDP)
4683 intel_encoder->type = INTEL_OUTPUT_EDP;
4684
4685 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4686 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4687 port_name(port));
4688
4689 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4690 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4691
4692 connector->interlace_allowed = true;
4693 connector->doublescan_allowed = 0;
4694
4695 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4696 edp_panel_vdd_work);
4697
4698 intel_connector_attach_encoder(intel_connector, intel_encoder);
4699 drm_connector_register(connector);
4700
4701 if (HAS_DDI(dev))
4702 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4703 else
4704 intel_connector->get_hw_state = intel_connector_get_hw_state;
4705 intel_connector->unregister = intel_dp_connector_unregister;
4706
4707 /* Set up the hotplug pin. */
4708 switch (port) {
4709 case PORT_A:
4710 intel_encoder->hpd_pin = HPD_PORT_A;
4711 break;
4712 case PORT_B:
4713 intel_encoder->hpd_pin = HPD_PORT_B;
4714 break;
4715 case PORT_C:
4716 intel_encoder->hpd_pin = HPD_PORT_C;
4717 break;
4718 case PORT_D:
4719 intel_encoder->hpd_pin = HPD_PORT_D;
4720 break;
4721 default:
4722 BUG();
4723 }
4724
4725 if (is_edp(intel_dp)) {
4726 intel_dp_init_panel_power_timestamps(intel_dp);
4727 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4728 }
4729
4730 intel_dp_aux_init(intel_dp, intel_connector);
4731
4732 /* init MST on ports that can support it */
4733 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4734 if (port == PORT_B || port == PORT_C || port == PORT_D) {
4735 intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id);
4736 }
4737 }
4738
4739 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4740 drm_dp_aux_unregister(&intel_dp->aux);
4741 if (is_edp(intel_dp)) {
4742 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4743 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4744 edp_panel_vdd_off_sync(intel_dp);
4745 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4746 }
4747 drm_connector_unregister(connector);
4748 drm_connector_cleanup(connector);
4749 return false;
4750 }
4751
4752 intel_dp_add_properties(intel_dp, connector);
4753
4754 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4755 * 0xd. Failure to do so will result in spurious interrupts being
4756 * generated on the port when a cable is not attached.
4757 */
4758 if (IS_G4X(dev) && !IS_GM45(dev)) {
4759 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4760 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4761 }
4762
4763 return true;
4764 }
4765
4766 void
4767 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4768 {
4769 struct drm_i915_private *dev_priv = dev->dev_private;
4770 struct intel_digital_port *intel_dig_port;
4771 struct intel_encoder *intel_encoder;
4772 struct drm_encoder *encoder;
4773 struct intel_connector *intel_connector;
4774
4775 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4776 if (!intel_dig_port)
4777 return;
4778
4779 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4780 if (!intel_connector) {
4781 kfree(intel_dig_port);
4782 return;
4783 }
4784
4785 intel_encoder = &intel_dig_port->base;
4786 encoder = &intel_encoder->base;
4787
4788 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4789 DRM_MODE_ENCODER_TMDS);
4790
4791 intel_encoder->compute_config = intel_dp_compute_config;
4792 intel_encoder->disable = intel_disable_dp;
4793 intel_encoder->get_hw_state = intel_dp_get_hw_state;
4794 intel_encoder->get_config = intel_dp_get_config;
4795 intel_encoder->suspend = intel_dp_encoder_suspend;
4796 if (IS_CHERRYVIEW(dev)) {
4797 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4798 intel_encoder->pre_enable = chv_pre_enable_dp;
4799 intel_encoder->enable = vlv_enable_dp;
4800 intel_encoder->post_disable = chv_post_disable_dp;
4801 } else if (IS_VALLEYVIEW(dev)) {
4802 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4803 intel_encoder->pre_enable = vlv_pre_enable_dp;
4804 intel_encoder->enable = vlv_enable_dp;
4805 intel_encoder->post_disable = vlv_post_disable_dp;
4806 } else {
4807 intel_encoder->pre_enable = g4x_pre_enable_dp;
4808 intel_encoder->enable = g4x_enable_dp;
4809 intel_encoder->post_disable = g4x_post_disable_dp;
4810 }
4811
4812 intel_dig_port->port = port;
4813 intel_dig_port->dp.output_reg = output_reg;
4814
4815 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4816 if (IS_CHERRYVIEW(dev)) {
4817 if (port == PORT_D)
4818 intel_encoder->crtc_mask = 1 << 2;
4819 else
4820 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4821 } else {
4822 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4823 }
4824 intel_encoder->cloneable = 0;
4825 intel_encoder->hot_plug = intel_dp_hot_plug;
4826
4827 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4828 dev_priv->hpd_irq_port[port] = intel_dig_port;
4829
4830 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4831 drm_encoder_cleanup(encoder);
4832 kfree(intel_dig_port);
4833 kfree(intel_connector);
4834 }
4835 }
4836
4837 void intel_dp_mst_suspend(struct drm_device *dev)
4838 {
4839 struct drm_i915_private *dev_priv = dev->dev_private;
4840 int i;
4841
4842 /* disable MST */
4843 for (i = 0; i < I915_MAX_PORTS; i++) {
4844 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4845 if (!intel_dig_port)
4846 continue;
4847
4848 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4849 if (!intel_dig_port->dp.can_mst)
4850 continue;
4851 if (intel_dig_port->dp.is_mst)
4852 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
4853 }
4854 }
4855 }
4856
4857 void intel_dp_mst_resume(struct drm_device *dev)
4858 {
4859 struct drm_i915_private *dev_priv = dev->dev_private;
4860 int i;
4861
4862 for (i = 0; i < I915_MAX_PORTS; i++) {
4863 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4864 if (!intel_dig_port)
4865 continue;
4866 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4867 int ret;
4868
4869 if (!intel_dig_port->dp.can_mst)
4870 continue;
4871
4872 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
4873 if (ret != 0) {
4874 intel_dp_check_mst_status(&intel_dig_port->dp);
4875 }
4876 }
4877 }
4878 }
This page took 0.236787 seconds and 6 git commands to generate.