Merge branch 'for-3.19' of git://linux-nfs.org/~bfields/linux
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_hdmi.c
1 /*
2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
3 * Copyright © 2006-2009 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Eric Anholt <eric@anholt.net>
26 * Jesse Barnes <jesse.barnes@intel.com>
27 */
28
29 #include <linux/i2c.h>
30 #include <linux/slab.h>
31 #include <linux/delay.h>
32 #include <linux/hdmi.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_edid.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39
40 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
41 {
42 return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
43 }
44
45 static void
46 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
47 {
48 struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
49 struct drm_i915_private *dev_priv = dev->dev_private;
50 uint32_t enabled_bits;
51
52 enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
53
54 WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
55 "HDMI port enabled, expecting disabled\n");
56 }
57
58 struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
59 {
60 struct intel_digital_port *intel_dig_port =
61 container_of(encoder, struct intel_digital_port, base.base);
62 return &intel_dig_port->hdmi;
63 }
64
65 static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
66 {
67 return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
68 }
69
70 static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
71 {
72 switch (type) {
73 case HDMI_INFOFRAME_TYPE_AVI:
74 return VIDEO_DIP_SELECT_AVI;
75 case HDMI_INFOFRAME_TYPE_SPD:
76 return VIDEO_DIP_SELECT_SPD;
77 case HDMI_INFOFRAME_TYPE_VENDOR:
78 return VIDEO_DIP_SELECT_VENDOR;
79 default:
80 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
81 return 0;
82 }
83 }
84
85 static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
86 {
87 switch (type) {
88 case HDMI_INFOFRAME_TYPE_AVI:
89 return VIDEO_DIP_ENABLE_AVI;
90 case HDMI_INFOFRAME_TYPE_SPD:
91 return VIDEO_DIP_ENABLE_SPD;
92 case HDMI_INFOFRAME_TYPE_VENDOR:
93 return VIDEO_DIP_ENABLE_VENDOR;
94 default:
95 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
96 return 0;
97 }
98 }
99
100 static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
101 {
102 switch (type) {
103 case HDMI_INFOFRAME_TYPE_AVI:
104 return VIDEO_DIP_ENABLE_AVI_HSW;
105 case HDMI_INFOFRAME_TYPE_SPD:
106 return VIDEO_DIP_ENABLE_SPD_HSW;
107 case HDMI_INFOFRAME_TYPE_VENDOR:
108 return VIDEO_DIP_ENABLE_VS_HSW;
109 default:
110 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
111 return 0;
112 }
113 }
114
115 static u32 hsw_infoframe_data_reg(enum hdmi_infoframe_type type,
116 enum transcoder cpu_transcoder,
117 struct drm_i915_private *dev_priv)
118 {
119 switch (type) {
120 case HDMI_INFOFRAME_TYPE_AVI:
121 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder);
122 case HDMI_INFOFRAME_TYPE_SPD:
123 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder);
124 case HDMI_INFOFRAME_TYPE_VENDOR:
125 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder);
126 default:
127 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
128 return 0;
129 }
130 }
131
132 static void g4x_write_infoframe(struct drm_encoder *encoder,
133 enum hdmi_infoframe_type type,
134 const void *frame, ssize_t len)
135 {
136 const uint32_t *data = frame;
137 struct drm_device *dev = encoder->dev;
138 struct drm_i915_private *dev_priv = dev->dev_private;
139 u32 val = I915_READ(VIDEO_DIP_CTL);
140 int i;
141
142 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
143
144 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
145 val |= g4x_infoframe_index(type);
146
147 val &= ~g4x_infoframe_enable(type);
148
149 I915_WRITE(VIDEO_DIP_CTL, val);
150
151 mmiowb();
152 for (i = 0; i < len; i += 4) {
153 I915_WRITE(VIDEO_DIP_DATA, *data);
154 data++;
155 }
156 /* Write every possible data byte to force correct ECC calculation. */
157 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
158 I915_WRITE(VIDEO_DIP_DATA, 0);
159 mmiowb();
160
161 val |= g4x_infoframe_enable(type);
162 val &= ~VIDEO_DIP_FREQ_MASK;
163 val |= VIDEO_DIP_FREQ_VSYNC;
164
165 I915_WRITE(VIDEO_DIP_CTL, val);
166 POSTING_READ(VIDEO_DIP_CTL);
167 }
168
169 static bool g4x_infoframe_enabled(struct drm_encoder *encoder)
170 {
171 struct drm_device *dev = encoder->dev;
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
174 u32 val = I915_READ(VIDEO_DIP_CTL);
175
176 if (VIDEO_DIP_PORT(intel_dig_port->port) == (val & VIDEO_DIP_PORT_MASK))
177 return val & VIDEO_DIP_ENABLE;
178
179 return false;
180 }
181
182 static void ibx_write_infoframe(struct drm_encoder *encoder,
183 enum hdmi_infoframe_type type,
184 const void *frame, ssize_t len)
185 {
186 const uint32_t *data = frame;
187 struct drm_device *dev = encoder->dev;
188 struct drm_i915_private *dev_priv = dev->dev_private;
189 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
190 int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
191 u32 val = I915_READ(reg);
192
193 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
194
195 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
196 val |= g4x_infoframe_index(type);
197
198 val &= ~g4x_infoframe_enable(type);
199
200 I915_WRITE(reg, val);
201
202 mmiowb();
203 for (i = 0; i < len; i += 4) {
204 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
205 data++;
206 }
207 /* Write every possible data byte to force correct ECC calculation. */
208 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
209 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
210 mmiowb();
211
212 val |= g4x_infoframe_enable(type);
213 val &= ~VIDEO_DIP_FREQ_MASK;
214 val |= VIDEO_DIP_FREQ_VSYNC;
215
216 I915_WRITE(reg, val);
217 POSTING_READ(reg);
218 }
219
220 static bool ibx_infoframe_enabled(struct drm_encoder *encoder)
221 {
222 struct drm_device *dev = encoder->dev;
223 struct drm_i915_private *dev_priv = dev->dev_private;
224 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
225 int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
226 u32 val = I915_READ(reg);
227
228 return val & VIDEO_DIP_ENABLE;
229 }
230
231 static void cpt_write_infoframe(struct drm_encoder *encoder,
232 enum hdmi_infoframe_type type,
233 const void *frame, ssize_t len)
234 {
235 const uint32_t *data = frame;
236 struct drm_device *dev = encoder->dev;
237 struct drm_i915_private *dev_priv = dev->dev_private;
238 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
239 int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
240 u32 val = I915_READ(reg);
241
242 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
243
244 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
245 val |= g4x_infoframe_index(type);
246
247 /* The DIP control register spec says that we need to update the AVI
248 * infoframe without clearing its enable bit */
249 if (type != HDMI_INFOFRAME_TYPE_AVI)
250 val &= ~g4x_infoframe_enable(type);
251
252 I915_WRITE(reg, val);
253
254 mmiowb();
255 for (i = 0; i < len; i += 4) {
256 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
257 data++;
258 }
259 /* Write every possible data byte to force correct ECC calculation. */
260 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
261 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
262 mmiowb();
263
264 val |= g4x_infoframe_enable(type);
265 val &= ~VIDEO_DIP_FREQ_MASK;
266 val |= VIDEO_DIP_FREQ_VSYNC;
267
268 I915_WRITE(reg, val);
269 POSTING_READ(reg);
270 }
271
272 static bool cpt_infoframe_enabled(struct drm_encoder *encoder)
273 {
274 struct drm_device *dev = encoder->dev;
275 struct drm_i915_private *dev_priv = dev->dev_private;
276 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
277 int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
278 u32 val = I915_READ(reg);
279
280 return val & VIDEO_DIP_ENABLE;
281 }
282
283 static void vlv_write_infoframe(struct drm_encoder *encoder,
284 enum hdmi_infoframe_type type,
285 const void *frame, ssize_t len)
286 {
287 const uint32_t *data = frame;
288 struct drm_device *dev = encoder->dev;
289 struct drm_i915_private *dev_priv = dev->dev_private;
290 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
291 int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
292 u32 val = I915_READ(reg);
293
294 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
295
296 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
297 val |= g4x_infoframe_index(type);
298
299 val &= ~g4x_infoframe_enable(type);
300
301 I915_WRITE(reg, val);
302
303 mmiowb();
304 for (i = 0; i < len; i += 4) {
305 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
306 data++;
307 }
308 /* Write every possible data byte to force correct ECC calculation. */
309 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
310 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
311 mmiowb();
312
313 val |= g4x_infoframe_enable(type);
314 val &= ~VIDEO_DIP_FREQ_MASK;
315 val |= VIDEO_DIP_FREQ_VSYNC;
316
317 I915_WRITE(reg, val);
318 POSTING_READ(reg);
319 }
320
321 static bool vlv_infoframe_enabled(struct drm_encoder *encoder)
322 {
323 struct drm_device *dev = encoder->dev;
324 struct drm_i915_private *dev_priv = dev->dev_private;
325 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
326 int reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
327 u32 val = I915_READ(reg);
328
329 return val & VIDEO_DIP_ENABLE;
330 }
331
332 static void hsw_write_infoframe(struct drm_encoder *encoder,
333 enum hdmi_infoframe_type type,
334 const void *frame, ssize_t len)
335 {
336 const uint32_t *data = frame;
337 struct drm_device *dev = encoder->dev;
338 struct drm_i915_private *dev_priv = dev->dev_private;
339 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
340 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
341 u32 data_reg;
342 int i;
343 u32 val = I915_READ(ctl_reg);
344
345 data_reg = hsw_infoframe_data_reg(type,
346 intel_crtc->config.cpu_transcoder,
347 dev_priv);
348 if (data_reg == 0)
349 return;
350
351 val &= ~hsw_infoframe_enable(type);
352 I915_WRITE(ctl_reg, val);
353
354 mmiowb();
355 for (i = 0; i < len; i += 4) {
356 I915_WRITE(data_reg + i, *data);
357 data++;
358 }
359 /* Write every possible data byte to force correct ECC calculation. */
360 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
361 I915_WRITE(data_reg + i, 0);
362 mmiowb();
363
364 val |= hsw_infoframe_enable(type);
365 I915_WRITE(ctl_reg, val);
366 POSTING_READ(ctl_reg);
367 }
368
369 static bool hsw_infoframe_enabled(struct drm_encoder *encoder)
370 {
371 struct drm_device *dev = encoder->dev;
372 struct drm_i915_private *dev_priv = dev->dev_private;
373 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
374 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
375 u32 val = I915_READ(ctl_reg);
376
377 return val & (VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
378 VIDEO_DIP_ENABLE_VS_HSW);
379 }
380
381 /*
382 * The data we write to the DIP data buffer registers is 1 byte bigger than the
383 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
384 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
385 * used for both technologies.
386 *
387 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
388 * DW1: DB3 | DB2 | DB1 | DB0
389 * DW2: DB7 | DB6 | DB5 | DB4
390 * DW3: ...
391 *
392 * (HB is Header Byte, DB is Data Byte)
393 *
394 * The hdmi pack() functions don't know about that hardware specific hole so we
395 * trick them by giving an offset into the buffer and moving back the header
396 * bytes by one.
397 */
398 static void intel_write_infoframe(struct drm_encoder *encoder,
399 union hdmi_infoframe *frame)
400 {
401 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
402 uint8_t buffer[VIDEO_DIP_DATA_SIZE];
403 ssize_t len;
404
405 /* see comment above for the reason for this offset */
406 len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
407 if (len < 0)
408 return;
409
410 /* Insert the 'hole' (see big comment above) at position 3 */
411 buffer[0] = buffer[1];
412 buffer[1] = buffer[2];
413 buffer[2] = buffer[3];
414 buffer[3] = 0;
415 len++;
416
417 intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
418 }
419
420 static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
421 struct drm_display_mode *adjusted_mode)
422 {
423 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
424 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
425 union hdmi_infoframe frame;
426 int ret;
427
428 /* Set user selected PAR to incoming mode's member */
429 adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;
430
431 ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
432 adjusted_mode);
433 if (ret < 0) {
434 DRM_ERROR("couldn't fill AVI infoframe\n");
435 return;
436 }
437
438 if (intel_hdmi->rgb_quant_range_selectable) {
439 if (intel_crtc->config.limited_color_range)
440 frame.avi.quantization_range =
441 HDMI_QUANTIZATION_RANGE_LIMITED;
442 else
443 frame.avi.quantization_range =
444 HDMI_QUANTIZATION_RANGE_FULL;
445 }
446
447 intel_write_infoframe(encoder, &frame);
448 }
449
450 static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
451 {
452 union hdmi_infoframe frame;
453 int ret;
454
455 ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
456 if (ret < 0) {
457 DRM_ERROR("couldn't fill SPD infoframe\n");
458 return;
459 }
460
461 frame.spd.sdi = HDMI_SPD_SDI_PC;
462
463 intel_write_infoframe(encoder, &frame);
464 }
465
466 static void
467 intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
468 struct drm_display_mode *adjusted_mode)
469 {
470 union hdmi_infoframe frame;
471 int ret;
472
473 ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
474 adjusted_mode);
475 if (ret < 0)
476 return;
477
478 intel_write_infoframe(encoder, &frame);
479 }
480
481 static void g4x_set_infoframes(struct drm_encoder *encoder,
482 bool enable,
483 struct drm_display_mode *adjusted_mode)
484 {
485 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
486 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
487 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
488 u32 reg = VIDEO_DIP_CTL;
489 u32 val = I915_READ(reg);
490 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
491
492 assert_hdmi_port_disabled(intel_hdmi);
493
494 /* If the registers were not initialized yet, they might be zeroes,
495 * which means we're selecting the AVI DIP and we're setting its
496 * frequency to once. This seems to really confuse the HW and make
497 * things stop working (the register spec says the AVI always needs to
498 * be sent every VSync). So here we avoid writing to the register more
499 * than we need and also explicitly select the AVI DIP and explicitly
500 * set its frequency to every VSync. Avoiding to write it twice seems to
501 * be enough to solve the problem, but being defensive shouldn't hurt us
502 * either. */
503 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
504
505 if (!enable) {
506 if (!(val & VIDEO_DIP_ENABLE))
507 return;
508 val &= ~VIDEO_DIP_ENABLE;
509 I915_WRITE(reg, val);
510 POSTING_READ(reg);
511 return;
512 }
513
514 if (port != (val & VIDEO_DIP_PORT_MASK)) {
515 if (val & VIDEO_DIP_ENABLE) {
516 val &= ~VIDEO_DIP_ENABLE;
517 I915_WRITE(reg, val);
518 POSTING_READ(reg);
519 }
520 val &= ~VIDEO_DIP_PORT_MASK;
521 val |= port;
522 }
523
524 val |= VIDEO_DIP_ENABLE;
525 val &= ~VIDEO_DIP_ENABLE_VENDOR;
526
527 I915_WRITE(reg, val);
528 POSTING_READ(reg);
529
530 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
531 intel_hdmi_set_spd_infoframe(encoder);
532 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
533 }
534
535 static void ibx_set_infoframes(struct drm_encoder *encoder,
536 bool enable,
537 struct drm_display_mode *adjusted_mode)
538 {
539 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
540 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
541 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
542 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
543 u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
544 u32 val = I915_READ(reg);
545 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
546
547 assert_hdmi_port_disabled(intel_hdmi);
548
549 /* See the big comment in g4x_set_infoframes() */
550 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
551
552 if (!enable) {
553 if (!(val & VIDEO_DIP_ENABLE))
554 return;
555 val &= ~VIDEO_DIP_ENABLE;
556 I915_WRITE(reg, val);
557 POSTING_READ(reg);
558 return;
559 }
560
561 if (port != (val & VIDEO_DIP_PORT_MASK)) {
562 if (val & VIDEO_DIP_ENABLE) {
563 val &= ~VIDEO_DIP_ENABLE;
564 I915_WRITE(reg, val);
565 POSTING_READ(reg);
566 }
567 val &= ~VIDEO_DIP_PORT_MASK;
568 val |= port;
569 }
570
571 val |= VIDEO_DIP_ENABLE;
572 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
573 VIDEO_DIP_ENABLE_GCP);
574
575 I915_WRITE(reg, val);
576 POSTING_READ(reg);
577
578 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
579 intel_hdmi_set_spd_infoframe(encoder);
580 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
581 }
582
583 static void cpt_set_infoframes(struct drm_encoder *encoder,
584 bool enable,
585 struct drm_display_mode *adjusted_mode)
586 {
587 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
588 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
589 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
590 u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
591 u32 val = I915_READ(reg);
592
593 assert_hdmi_port_disabled(intel_hdmi);
594
595 /* See the big comment in g4x_set_infoframes() */
596 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
597
598 if (!enable) {
599 if (!(val & VIDEO_DIP_ENABLE))
600 return;
601 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI);
602 I915_WRITE(reg, val);
603 POSTING_READ(reg);
604 return;
605 }
606
607 /* Set both together, unset both together: see the spec. */
608 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
609 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
610 VIDEO_DIP_ENABLE_GCP);
611
612 I915_WRITE(reg, val);
613 POSTING_READ(reg);
614
615 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
616 intel_hdmi_set_spd_infoframe(encoder);
617 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
618 }
619
620 static void vlv_set_infoframes(struct drm_encoder *encoder,
621 bool enable,
622 struct drm_display_mode *adjusted_mode)
623 {
624 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
625 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
626 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
627 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
628 u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
629 u32 val = I915_READ(reg);
630 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
631
632 assert_hdmi_port_disabled(intel_hdmi);
633
634 /* See the big comment in g4x_set_infoframes() */
635 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
636
637 if (!enable) {
638 if (!(val & VIDEO_DIP_ENABLE))
639 return;
640 val &= ~VIDEO_DIP_ENABLE;
641 I915_WRITE(reg, val);
642 POSTING_READ(reg);
643 return;
644 }
645
646 if (port != (val & VIDEO_DIP_PORT_MASK)) {
647 if (val & VIDEO_DIP_ENABLE) {
648 val &= ~VIDEO_DIP_ENABLE;
649 I915_WRITE(reg, val);
650 POSTING_READ(reg);
651 }
652 val &= ~VIDEO_DIP_PORT_MASK;
653 val |= port;
654 }
655
656 val |= VIDEO_DIP_ENABLE;
657 val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR |
658 VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_GCP);
659
660 I915_WRITE(reg, val);
661 POSTING_READ(reg);
662
663 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
664 intel_hdmi_set_spd_infoframe(encoder);
665 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
666 }
667
668 static void hsw_set_infoframes(struct drm_encoder *encoder,
669 bool enable,
670 struct drm_display_mode *adjusted_mode)
671 {
672 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
673 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
674 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
675 u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
676 u32 val = I915_READ(reg);
677
678 assert_hdmi_port_disabled(intel_hdmi);
679
680 if (!enable) {
681 I915_WRITE(reg, 0);
682 POSTING_READ(reg);
683 return;
684 }
685
686 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
687 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW);
688
689 I915_WRITE(reg, val);
690 POSTING_READ(reg);
691
692 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
693 intel_hdmi_set_spd_infoframe(encoder);
694 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
695 }
696
697 static void intel_hdmi_prepare(struct intel_encoder *encoder)
698 {
699 struct drm_device *dev = encoder->base.dev;
700 struct drm_i915_private *dev_priv = dev->dev_private;
701 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
702 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
703 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
704 u32 hdmi_val;
705
706 hdmi_val = SDVO_ENCODING_HDMI;
707 if (!HAS_PCH_SPLIT(dev))
708 hdmi_val |= intel_hdmi->color_range;
709 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
710 hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
711 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
712 hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
713
714 if (crtc->config.pipe_bpp > 24)
715 hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
716 else
717 hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
718
719 if (crtc->config.has_hdmi_sink)
720 hdmi_val |= HDMI_MODE_SELECT_HDMI;
721
722 if (HAS_PCH_CPT(dev))
723 hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
724 else if (IS_CHERRYVIEW(dev))
725 hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
726 else
727 hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
728
729 I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
730 POSTING_READ(intel_hdmi->hdmi_reg);
731 }
732
733 static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
734 enum pipe *pipe)
735 {
736 struct drm_device *dev = encoder->base.dev;
737 struct drm_i915_private *dev_priv = dev->dev_private;
738 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
739 enum intel_display_power_domain power_domain;
740 u32 tmp;
741
742 power_domain = intel_display_port_power_domain(encoder);
743 if (!intel_display_power_is_enabled(dev_priv, power_domain))
744 return false;
745
746 tmp = I915_READ(intel_hdmi->hdmi_reg);
747
748 if (!(tmp & SDVO_ENABLE))
749 return false;
750
751 if (HAS_PCH_CPT(dev))
752 *pipe = PORT_TO_PIPE_CPT(tmp);
753 else if (IS_CHERRYVIEW(dev))
754 *pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
755 else
756 *pipe = PORT_TO_PIPE(tmp);
757
758 return true;
759 }
760
761 static void intel_hdmi_get_config(struct intel_encoder *encoder,
762 struct intel_crtc_config *pipe_config)
763 {
764 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
765 struct drm_device *dev = encoder->base.dev;
766 struct drm_i915_private *dev_priv = dev->dev_private;
767 u32 tmp, flags = 0;
768 int dotclock;
769
770 tmp = I915_READ(intel_hdmi->hdmi_reg);
771
772 if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
773 flags |= DRM_MODE_FLAG_PHSYNC;
774 else
775 flags |= DRM_MODE_FLAG_NHSYNC;
776
777 if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
778 flags |= DRM_MODE_FLAG_PVSYNC;
779 else
780 flags |= DRM_MODE_FLAG_NVSYNC;
781
782 if (tmp & HDMI_MODE_SELECT_HDMI)
783 pipe_config->has_hdmi_sink = true;
784
785 if (intel_hdmi->infoframe_enabled(&encoder->base))
786 pipe_config->has_infoframe = true;
787
788 if (tmp & SDVO_AUDIO_ENABLE)
789 pipe_config->has_audio = true;
790
791 if (!HAS_PCH_SPLIT(dev) &&
792 tmp & HDMI_COLOR_RANGE_16_235)
793 pipe_config->limited_color_range = true;
794
795 pipe_config->adjusted_mode.flags |= flags;
796
797 if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
798 dotclock = pipe_config->port_clock * 2 / 3;
799 else
800 dotclock = pipe_config->port_clock;
801
802 if (HAS_PCH_SPLIT(dev_priv->dev))
803 ironlake_check_encoder_dotclock(pipe_config, dotclock);
804
805 pipe_config->adjusted_mode.crtc_clock = dotclock;
806 }
807
808 static void intel_enable_hdmi(struct intel_encoder *encoder)
809 {
810 struct drm_device *dev = encoder->base.dev;
811 struct drm_i915_private *dev_priv = dev->dev_private;
812 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
813 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
814 u32 temp;
815 u32 enable_bits = SDVO_ENABLE;
816
817 if (intel_crtc->config.has_audio)
818 enable_bits |= SDVO_AUDIO_ENABLE;
819
820 temp = I915_READ(intel_hdmi->hdmi_reg);
821
822 /* HW workaround for IBX, we need to move the port to transcoder A
823 * before disabling it, so restore the transcoder select bit here. */
824 if (HAS_PCH_IBX(dev))
825 enable_bits |= SDVO_PIPE_SEL(intel_crtc->pipe);
826
827 /* HW workaround, need to toggle enable bit off and on for 12bpc, but
828 * we do this anyway which shows more stable in testing.
829 */
830 if (HAS_PCH_SPLIT(dev)) {
831 I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
832 POSTING_READ(intel_hdmi->hdmi_reg);
833 }
834
835 temp |= enable_bits;
836
837 I915_WRITE(intel_hdmi->hdmi_reg, temp);
838 POSTING_READ(intel_hdmi->hdmi_reg);
839
840 /* HW workaround, need to write this twice for issue that may result
841 * in first write getting masked.
842 */
843 if (HAS_PCH_SPLIT(dev)) {
844 I915_WRITE(intel_hdmi->hdmi_reg, temp);
845 POSTING_READ(intel_hdmi->hdmi_reg);
846 }
847
848 if (intel_crtc->config.has_audio) {
849 WARN_ON(!intel_crtc->config.has_hdmi_sink);
850 DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
851 pipe_name(intel_crtc->pipe));
852 intel_audio_codec_enable(encoder);
853 }
854 }
855
856 static void vlv_enable_hdmi(struct intel_encoder *encoder)
857 {
858 }
859
860 static void intel_disable_hdmi(struct intel_encoder *encoder)
861 {
862 struct drm_device *dev = encoder->base.dev;
863 struct drm_i915_private *dev_priv = dev->dev_private;
864 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
865 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
866 u32 temp;
867 u32 enable_bits = SDVO_ENABLE | SDVO_AUDIO_ENABLE;
868
869 if (crtc->config.has_audio)
870 intel_audio_codec_disable(encoder);
871
872 temp = I915_READ(intel_hdmi->hdmi_reg);
873
874 /* HW workaround for IBX, we need to move the port to transcoder A
875 * before disabling it. */
876 if (HAS_PCH_IBX(dev)) {
877 struct drm_crtc *crtc = encoder->base.crtc;
878 int pipe = crtc ? to_intel_crtc(crtc)->pipe : -1;
879
880 if (temp & SDVO_PIPE_B_SELECT) {
881 temp &= ~SDVO_PIPE_B_SELECT;
882 I915_WRITE(intel_hdmi->hdmi_reg, temp);
883 POSTING_READ(intel_hdmi->hdmi_reg);
884
885 /* Again we need to write this twice. */
886 I915_WRITE(intel_hdmi->hdmi_reg, temp);
887 POSTING_READ(intel_hdmi->hdmi_reg);
888
889 /* Transcoder selection bits only update
890 * effectively on vblank. */
891 if (crtc)
892 intel_wait_for_vblank(dev, pipe);
893 else
894 msleep(50);
895 }
896 }
897
898 /* HW workaround, need to toggle enable bit off and on for 12bpc, but
899 * we do this anyway which shows more stable in testing.
900 */
901 if (HAS_PCH_SPLIT(dev)) {
902 I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
903 POSTING_READ(intel_hdmi->hdmi_reg);
904 }
905
906 temp &= ~enable_bits;
907
908 I915_WRITE(intel_hdmi->hdmi_reg, temp);
909 POSTING_READ(intel_hdmi->hdmi_reg);
910
911 /* HW workaround, need to write this twice for issue that may result
912 * in first write getting masked.
913 */
914 if (HAS_PCH_SPLIT(dev)) {
915 I915_WRITE(intel_hdmi->hdmi_reg, temp);
916 POSTING_READ(intel_hdmi->hdmi_reg);
917 }
918 }
919
920 static int hdmi_portclock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
921 {
922 struct drm_device *dev = intel_hdmi_to_dev(hdmi);
923
924 if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
925 return 165000;
926 else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
927 return 300000;
928 else
929 return 225000;
930 }
931
932 static enum drm_mode_status
933 intel_hdmi_mode_valid(struct drm_connector *connector,
934 struct drm_display_mode *mode)
935 {
936 int clock = mode->clock;
937
938 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
939 clock *= 2;
940
941 if (clock > hdmi_portclock_limit(intel_attached_hdmi(connector),
942 true))
943 return MODE_CLOCK_HIGH;
944 if (clock < 20000)
945 return MODE_CLOCK_LOW;
946
947 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
948 return MODE_NO_DBLESCAN;
949
950 return MODE_OK;
951 }
952
953 static bool hdmi_12bpc_possible(struct intel_crtc *crtc)
954 {
955 struct drm_device *dev = crtc->base.dev;
956 struct intel_encoder *encoder;
957 int count = 0, count_hdmi = 0;
958
959 if (HAS_GMCH_DISPLAY(dev))
960 return false;
961
962 for_each_intel_encoder(dev, encoder) {
963 if (encoder->new_crtc != crtc)
964 continue;
965
966 count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
967 count++;
968 }
969
970 /*
971 * HDMI 12bpc affects the clocks, so it's only possible
972 * when not cloning with other encoder types.
973 */
974 return count_hdmi > 0 && count_hdmi == count;
975 }
976
977 bool intel_hdmi_compute_config(struct intel_encoder *encoder,
978 struct intel_crtc_config *pipe_config)
979 {
980 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
981 struct drm_device *dev = encoder->base.dev;
982 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
983 int clock_12bpc = pipe_config->adjusted_mode.crtc_clock * 3 / 2;
984 int portclock_limit = hdmi_portclock_limit(intel_hdmi, false);
985 int desired_bpp;
986
987 pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
988
989 if (pipe_config->has_hdmi_sink)
990 pipe_config->has_infoframe = true;
991
992 if (intel_hdmi->color_range_auto) {
993 /* See CEA-861-E - 5.1 Default Encoding Parameters */
994 if (pipe_config->has_hdmi_sink &&
995 drm_match_cea_mode(adjusted_mode) > 1)
996 intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
997 else
998 intel_hdmi->color_range = 0;
999 }
1000
1001 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
1002 pipe_config->pixel_multiplier = 2;
1003 }
1004
1005 if (intel_hdmi->color_range)
1006 pipe_config->limited_color_range = true;
1007
1008 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
1009 pipe_config->has_pch_encoder = true;
1010
1011 if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
1012 pipe_config->has_audio = true;
1013
1014 /*
1015 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
1016 * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
1017 * outputs. We also need to check that the higher clock still fits
1018 * within limits.
1019 */
1020 if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
1021 clock_12bpc <= portclock_limit &&
1022 hdmi_12bpc_possible(encoder->new_crtc)) {
1023 DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
1024 desired_bpp = 12*3;
1025
1026 /* Need to adjust the port link by 1.5x for 12bpc. */
1027 pipe_config->port_clock = clock_12bpc;
1028 } else {
1029 DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
1030 desired_bpp = 8*3;
1031 }
1032
1033 if (!pipe_config->bw_constrained) {
1034 DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
1035 pipe_config->pipe_bpp = desired_bpp;
1036 }
1037
1038 if (adjusted_mode->crtc_clock > portclock_limit) {
1039 DRM_DEBUG_KMS("too high HDMI clock, rejecting mode\n");
1040 return false;
1041 }
1042
1043 return true;
1044 }
1045
1046 static void
1047 intel_hdmi_unset_edid(struct drm_connector *connector)
1048 {
1049 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1050
1051 intel_hdmi->has_hdmi_sink = false;
1052 intel_hdmi->has_audio = false;
1053 intel_hdmi->rgb_quant_range_selectable = false;
1054
1055 kfree(to_intel_connector(connector)->detect_edid);
1056 to_intel_connector(connector)->detect_edid = NULL;
1057 }
1058
1059 static bool
1060 intel_hdmi_set_edid(struct drm_connector *connector)
1061 {
1062 struct drm_i915_private *dev_priv = to_i915(connector->dev);
1063 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1064 struct intel_encoder *intel_encoder =
1065 &hdmi_to_dig_port(intel_hdmi)->base;
1066 enum intel_display_power_domain power_domain;
1067 struct edid *edid;
1068 bool connected = false;
1069
1070 power_domain = intel_display_port_power_domain(intel_encoder);
1071 intel_display_power_get(dev_priv, power_domain);
1072
1073 edid = drm_get_edid(connector,
1074 intel_gmbus_get_adapter(dev_priv,
1075 intel_hdmi->ddc_bus));
1076
1077 intel_display_power_put(dev_priv, power_domain);
1078
1079 to_intel_connector(connector)->detect_edid = edid;
1080 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
1081 intel_hdmi->rgb_quant_range_selectable =
1082 drm_rgb_quant_range_selectable(edid);
1083
1084 intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
1085 if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
1086 intel_hdmi->has_audio =
1087 intel_hdmi->force_audio == HDMI_AUDIO_ON;
1088
1089 if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
1090 intel_hdmi->has_hdmi_sink =
1091 drm_detect_hdmi_monitor(edid);
1092
1093 connected = true;
1094 }
1095
1096 return connected;
1097 }
1098
1099 static enum drm_connector_status
1100 intel_hdmi_detect(struct drm_connector *connector, bool force)
1101 {
1102 enum drm_connector_status status;
1103
1104 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1105 connector->base.id, connector->name);
1106
1107 intel_hdmi_unset_edid(connector);
1108
1109 if (intel_hdmi_set_edid(connector)) {
1110 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1111
1112 hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1113 status = connector_status_connected;
1114 } else
1115 status = connector_status_disconnected;
1116
1117 return status;
1118 }
1119
1120 static void
1121 intel_hdmi_force(struct drm_connector *connector)
1122 {
1123 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1124
1125 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1126 connector->base.id, connector->name);
1127
1128 intel_hdmi_unset_edid(connector);
1129
1130 if (connector->status != connector_status_connected)
1131 return;
1132
1133 intel_hdmi_set_edid(connector);
1134 hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1135 }
1136
1137 static int intel_hdmi_get_modes(struct drm_connector *connector)
1138 {
1139 struct edid *edid;
1140
1141 edid = to_intel_connector(connector)->detect_edid;
1142 if (edid == NULL)
1143 return 0;
1144
1145 return intel_connector_update_modes(connector, edid);
1146 }
1147
1148 static bool
1149 intel_hdmi_detect_audio(struct drm_connector *connector)
1150 {
1151 bool has_audio = false;
1152 struct edid *edid;
1153
1154 edid = to_intel_connector(connector)->detect_edid;
1155 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
1156 has_audio = drm_detect_monitor_audio(edid);
1157
1158 return has_audio;
1159 }
1160
1161 static int
1162 intel_hdmi_set_property(struct drm_connector *connector,
1163 struct drm_property *property,
1164 uint64_t val)
1165 {
1166 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1167 struct intel_digital_port *intel_dig_port =
1168 hdmi_to_dig_port(intel_hdmi);
1169 struct drm_i915_private *dev_priv = connector->dev->dev_private;
1170 int ret;
1171
1172 ret = drm_object_property_set_value(&connector->base, property, val);
1173 if (ret)
1174 return ret;
1175
1176 if (property == dev_priv->force_audio_property) {
1177 enum hdmi_force_audio i = val;
1178 bool has_audio;
1179
1180 if (i == intel_hdmi->force_audio)
1181 return 0;
1182
1183 intel_hdmi->force_audio = i;
1184
1185 if (i == HDMI_AUDIO_AUTO)
1186 has_audio = intel_hdmi_detect_audio(connector);
1187 else
1188 has_audio = (i == HDMI_AUDIO_ON);
1189
1190 if (i == HDMI_AUDIO_OFF_DVI)
1191 intel_hdmi->has_hdmi_sink = 0;
1192
1193 intel_hdmi->has_audio = has_audio;
1194 goto done;
1195 }
1196
1197 if (property == dev_priv->broadcast_rgb_property) {
1198 bool old_auto = intel_hdmi->color_range_auto;
1199 uint32_t old_range = intel_hdmi->color_range;
1200
1201 switch (val) {
1202 case INTEL_BROADCAST_RGB_AUTO:
1203 intel_hdmi->color_range_auto = true;
1204 break;
1205 case INTEL_BROADCAST_RGB_FULL:
1206 intel_hdmi->color_range_auto = false;
1207 intel_hdmi->color_range = 0;
1208 break;
1209 case INTEL_BROADCAST_RGB_LIMITED:
1210 intel_hdmi->color_range_auto = false;
1211 intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
1212 break;
1213 default:
1214 return -EINVAL;
1215 }
1216
1217 if (old_auto == intel_hdmi->color_range_auto &&
1218 old_range == intel_hdmi->color_range)
1219 return 0;
1220
1221 goto done;
1222 }
1223
1224 if (property == connector->dev->mode_config.aspect_ratio_property) {
1225 switch (val) {
1226 case DRM_MODE_PICTURE_ASPECT_NONE:
1227 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
1228 break;
1229 case DRM_MODE_PICTURE_ASPECT_4_3:
1230 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
1231 break;
1232 case DRM_MODE_PICTURE_ASPECT_16_9:
1233 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
1234 break;
1235 default:
1236 return -EINVAL;
1237 }
1238 goto done;
1239 }
1240
1241 return -EINVAL;
1242
1243 done:
1244 if (intel_dig_port->base.base.crtc)
1245 intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
1246
1247 return 0;
1248 }
1249
1250 static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
1251 {
1252 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1253 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1254 struct drm_display_mode *adjusted_mode =
1255 &intel_crtc->config.adjusted_mode;
1256
1257 intel_hdmi_prepare(encoder);
1258
1259 intel_hdmi->set_infoframes(&encoder->base,
1260 intel_crtc->config.has_hdmi_sink,
1261 adjusted_mode);
1262 }
1263
1264 static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
1265 {
1266 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1267 struct intel_hdmi *intel_hdmi = &dport->hdmi;
1268 struct drm_device *dev = encoder->base.dev;
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270 struct intel_crtc *intel_crtc =
1271 to_intel_crtc(encoder->base.crtc);
1272 struct drm_display_mode *adjusted_mode =
1273 &intel_crtc->config.adjusted_mode;
1274 enum dpio_channel port = vlv_dport_to_channel(dport);
1275 int pipe = intel_crtc->pipe;
1276 u32 val;
1277
1278 /* Enable clock channels for this port */
1279 mutex_lock(&dev_priv->dpio_lock);
1280 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1281 val = 0;
1282 if (pipe)
1283 val |= (1<<21);
1284 else
1285 val &= ~(1<<21);
1286 val |= 0x001000c4;
1287 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1288
1289 /* HDMI 1.0V-2dB */
1290 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
1291 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
1292 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
1293 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
1294 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
1295 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1296 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1297 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1298
1299 /* Program lane clock */
1300 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1301 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1302 mutex_unlock(&dev_priv->dpio_lock);
1303
1304 intel_hdmi->set_infoframes(&encoder->base,
1305 intel_crtc->config.has_hdmi_sink,
1306 adjusted_mode);
1307
1308 intel_enable_hdmi(encoder);
1309
1310 vlv_wait_port_ready(dev_priv, dport);
1311 }
1312
1313 static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1314 {
1315 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1316 struct drm_device *dev = encoder->base.dev;
1317 struct drm_i915_private *dev_priv = dev->dev_private;
1318 struct intel_crtc *intel_crtc =
1319 to_intel_crtc(encoder->base.crtc);
1320 enum dpio_channel port = vlv_dport_to_channel(dport);
1321 int pipe = intel_crtc->pipe;
1322
1323 intel_hdmi_prepare(encoder);
1324
1325 /* Program Tx lane resets to default */
1326 mutex_lock(&dev_priv->dpio_lock);
1327 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1328 DPIO_PCS_TX_LANE2_RESET |
1329 DPIO_PCS_TX_LANE1_RESET);
1330 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1331 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1332 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1333 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1334 DPIO_PCS_CLK_SOFT_RESET);
1335
1336 /* Fix up inter-pair skew failure */
1337 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1338 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1339 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1340
1341 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1342 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1343 mutex_unlock(&dev_priv->dpio_lock);
1344 }
1345
1346 static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1347 {
1348 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1349 struct drm_device *dev = encoder->base.dev;
1350 struct drm_i915_private *dev_priv = dev->dev_private;
1351 struct intel_crtc *intel_crtc =
1352 to_intel_crtc(encoder->base.crtc);
1353 enum dpio_channel ch = vlv_dport_to_channel(dport);
1354 enum pipe pipe = intel_crtc->pipe;
1355 u32 val;
1356
1357 intel_hdmi_prepare(encoder);
1358
1359 mutex_lock(&dev_priv->dpio_lock);
1360
1361 /* program left/right clock distribution */
1362 if (pipe != PIPE_B) {
1363 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1364 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1365 if (ch == DPIO_CH0)
1366 val |= CHV_BUFLEFTENA1_FORCE;
1367 if (ch == DPIO_CH1)
1368 val |= CHV_BUFRIGHTENA1_FORCE;
1369 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1370 } else {
1371 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1372 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1373 if (ch == DPIO_CH0)
1374 val |= CHV_BUFLEFTENA2_FORCE;
1375 if (ch == DPIO_CH1)
1376 val |= CHV_BUFRIGHTENA2_FORCE;
1377 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1378 }
1379
1380 /* program clock channel usage */
1381 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
1382 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1383 if (pipe != PIPE_B)
1384 val &= ~CHV_PCS_USEDCLKCHANNEL;
1385 else
1386 val |= CHV_PCS_USEDCLKCHANNEL;
1387 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
1388
1389 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
1390 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1391 if (pipe != PIPE_B)
1392 val &= ~CHV_PCS_USEDCLKCHANNEL;
1393 else
1394 val |= CHV_PCS_USEDCLKCHANNEL;
1395 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
1396
1397 /*
1398 * This a a bit weird since generally CL
1399 * matches the pipe, but here we need to
1400 * pick the CL based on the port.
1401 */
1402 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
1403 if (pipe != PIPE_B)
1404 val &= ~CHV_CMN_USEDCLKCHANNEL;
1405 else
1406 val |= CHV_CMN_USEDCLKCHANNEL;
1407 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
1408
1409 mutex_unlock(&dev_priv->dpio_lock);
1410 }
1411
1412 static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
1413 {
1414 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1415 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1416 struct intel_crtc *intel_crtc =
1417 to_intel_crtc(encoder->base.crtc);
1418 enum dpio_channel port = vlv_dport_to_channel(dport);
1419 int pipe = intel_crtc->pipe;
1420
1421 /* Reset lanes to avoid HDMI flicker (VLV w/a) */
1422 mutex_lock(&dev_priv->dpio_lock);
1423 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1424 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1425 mutex_unlock(&dev_priv->dpio_lock);
1426 }
1427
1428 static void chv_hdmi_post_disable(struct intel_encoder *encoder)
1429 {
1430 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1431 struct drm_device *dev = encoder->base.dev;
1432 struct drm_i915_private *dev_priv = dev->dev_private;
1433 struct intel_crtc *intel_crtc =
1434 to_intel_crtc(encoder->base.crtc);
1435 enum dpio_channel ch = vlv_dport_to_channel(dport);
1436 enum pipe pipe = intel_crtc->pipe;
1437 u32 val;
1438
1439 mutex_lock(&dev_priv->dpio_lock);
1440
1441 /* Propagate soft reset to data lane reset */
1442 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1443 val |= CHV_PCS_REQ_SOFTRESET_EN;
1444 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1445
1446 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1447 val |= CHV_PCS_REQ_SOFTRESET_EN;
1448 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1449
1450 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1451 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1452 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1453
1454 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1455 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1456 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1457
1458 mutex_unlock(&dev_priv->dpio_lock);
1459 }
1460
1461 static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
1462 {
1463 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1464 struct intel_hdmi *intel_hdmi = &dport->hdmi;
1465 struct drm_device *dev = encoder->base.dev;
1466 struct drm_i915_private *dev_priv = dev->dev_private;
1467 struct intel_crtc *intel_crtc =
1468 to_intel_crtc(encoder->base.crtc);
1469 struct drm_display_mode *adjusted_mode =
1470 &intel_crtc->config.adjusted_mode;
1471 enum dpio_channel ch = vlv_dport_to_channel(dport);
1472 int pipe = intel_crtc->pipe;
1473 int data, i;
1474 u32 val;
1475
1476 mutex_lock(&dev_priv->dpio_lock);
1477
1478 /* allow hardware to manage TX FIFO reset source */
1479 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
1480 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
1481 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
1482
1483 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
1484 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
1485 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
1486
1487 /* Deassert soft data lane reset*/
1488 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1489 val |= CHV_PCS_REQ_SOFTRESET_EN;
1490 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1491
1492 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1493 val |= CHV_PCS_REQ_SOFTRESET_EN;
1494 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1495
1496 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1497 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1498 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1499
1500 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1501 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1502 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1503
1504 /* Program Tx latency optimal setting */
1505 for (i = 0; i < 4; i++) {
1506 /* Set the latency optimal bit */
1507 data = (i == 1) ? 0x0 : 0x6;
1508 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
1509 data << DPIO_FRC_LATENCY_SHFIT);
1510
1511 /* Set the upar bit */
1512 data = (i == 1) ? 0x0 : 0x1;
1513 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
1514 data << DPIO_UPAR_SHIFT);
1515 }
1516
1517 /* Data lane stagger programming */
1518 /* FIXME: Fix up value only after power analysis */
1519
1520 /* Clear calc init */
1521 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1522 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1523 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
1524 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1525 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1526
1527 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1528 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1529 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
1530 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1531 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1532
1533 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
1534 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
1535 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
1536 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
1537
1538 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
1539 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
1540 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
1541 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
1542
1543 /* FIXME: Program the support xxx V-dB */
1544 /* Use 800mV-0dB */
1545 for (i = 0; i < 4; i++) {
1546 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
1547 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
1548 val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
1549 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
1550 }
1551
1552 for (i = 0; i < 4; i++) {
1553 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
1554 val &= ~DPIO_SWING_MARGIN000_MASK;
1555 val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
1556 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
1557 }
1558
1559 /* Disable unique transition scale */
1560 for (i = 0; i < 4; i++) {
1561 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
1562 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
1563 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
1564 }
1565
1566 /* Additional steps for 1200mV-0dB */
1567 #if 0
1568 val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch));
1569 if (ch)
1570 val |= DPIO_TX_UNIQ_TRANS_SCALE_CH1;
1571 else
1572 val |= DPIO_TX_UNIQ_TRANS_SCALE_CH0;
1573 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val);
1574
1575 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch),
1576 vlv_dpio_read(dev_priv, pipe, VLV_TX_DW2(ch)) |
1577 (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT));
1578 #endif
1579 /* Start swing calculation */
1580 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1581 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1582 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1583
1584 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1585 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1586 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1587
1588 /* LRC Bypass */
1589 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1590 val |= DPIO_LRC_BYPASS;
1591 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
1592
1593 mutex_unlock(&dev_priv->dpio_lock);
1594
1595 intel_hdmi->set_infoframes(&encoder->base,
1596 intel_crtc->config.has_hdmi_sink,
1597 adjusted_mode);
1598
1599 intel_enable_hdmi(encoder);
1600
1601 vlv_wait_port_ready(dev_priv, dport);
1602 }
1603
1604 static void intel_hdmi_destroy(struct drm_connector *connector)
1605 {
1606 kfree(to_intel_connector(connector)->detect_edid);
1607 drm_connector_cleanup(connector);
1608 kfree(connector);
1609 }
1610
1611 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
1612 .dpms = intel_connector_dpms,
1613 .detect = intel_hdmi_detect,
1614 .force = intel_hdmi_force,
1615 .fill_modes = drm_helper_probe_single_connector_modes,
1616 .set_property = intel_hdmi_set_property,
1617 .destroy = intel_hdmi_destroy,
1618 };
1619
1620 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
1621 .get_modes = intel_hdmi_get_modes,
1622 .mode_valid = intel_hdmi_mode_valid,
1623 .best_encoder = intel_best_encoder,
1624 };
1625
1626 static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
1627 .destroy = intel_encoder_destroy,
1628 };
1629
1630 static void
1631 intel_attach_aspect_ratio_property(struct drm_connector *connector)
1632 {
1633 if (!drm_mode_create_aspect_ratio_property(connector->dev))
1634 drm_object_attach_property(&connector->base,
1635 connector->dev->mode_config.aspect_ratio_property,
1636 DRM_MODE_PICTURE_ASPECT_NONE);
1637 }
1638
1639 static void
1640 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
1641 {
1642 intel_attach_force_audio_property(connector);
1643 intel_attach_broadcast_rgb_property(connector);
1644 intel_hdmi->color_range_auto = true;
1645 intel_attach_aspect_ratio_property(connector);
1646 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
1647 }
1648
1649 void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
1650 struct intel_connector *intel_connector)
1651 {
1652 struct drm_connector *connector = &intel_connector->base;
1653 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
1654 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1655 struct drm_device *dev = intel_encoder->base.dev;
1656 struct drm_i915_private *dev_priv = dev->dev_private;
1657 enum port port = intel_dig_port->port;
1658
1659 drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
1660 DRM_MODE_CONNECTOR_HDMIA);
1661 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
1662
1663 connector->interlace_allowed = 1;
1664 connector->doublescan_allowed = 0;
1665 connector->stereo_allowed = 1;
1666
1667 switch (port) {
1668 case PORT_B:
1669 intel_hdmi->ddc_bus = GMBUS_PORT_DPB;
1670 intel_encoder->hpd_pin = HPD_PORT_B;
1671 break;
1672 case PORT_C:
1673 intel_hdmi->ddc_bus = GMBUS_PORT_DPC;
1674 intel_encoder->hpd_pin = HPD_PORT_C;
1675 break;
1676 case PORT_D:
1677 if (IS_CHERRYVIEW(dev))
1678 intel_hdmi->ddc_bus = GMBUS_PORT_DPD_CHV;
1679 else
1680 intel_hdmi->ddc_bus = GMBUS_PORT_DPD;
1681 intel_encoder->hpd_pin = HPD_PORT_D;
1682 break;
1683 case PORT_A:
1684 intel_encoder->hpd_pin = HPD_PORT_A;
1685 /* Internal port only for eDP. */
1686 default:
1687 BUG();
1688 }
1689
1690 if (IS_VALLEYVIEW(dev)) {
1691 intel_hdmi->write_infoframe = vlv_write_infoframe;
1692 intel_hdmi->set_infoframes = vlv_set_infoframes;
1693 intel_hdmi->infoframe_enabled = vlv_infoframe_enabled;
1694 } else if (IS_G4X(dev)) {
1695 intel_hdmi->write_infoframe = g4x_write_infoframe;
1696 intel_hdmi->set_infoframes = g4x_set_infoframes;
1697 intel_hdmi->infoframe_enabled = g4x_infoframe_enabled;
1698 } else if (HAS_DDI(dev)) {
1699 intel_hdmi->write_infoframe = hsw_write_infoframe;
1700 intel_hdmi->set_infoframes = hsw_set_infoframes;
1701 intel_hdmi->infoframe_enabled = hsw_infoframe_enabled;
1702 } else if (HAS_PCH_IBX(dev)) {
1703 intel_hdmi->write_infoframe = ibx_write_infoframe;
1704 intel_hdmi->set_infoframes = ibx_set_infoframes;
1705 intel_hdmi->infoframe_enabled = ibx_infoframe_enabled;
1706 } else {
1707 intel_hdmi->write_infoframe = cpt_write_infoframe;
1708 intel_hdmi->set_infoframes = cpt_set_infoframes;
1709 intel_hdmi->infoframe_enabled = cpt_infoframe_enabled;
1710 }
1711
1712 if (HAS_DDI(dev))
1713 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
1714 else
1715 intel_connector->get_hw_state = intel_connector_get_hw_state;
1716 intel_connector->unregister = intel_connector_unregister;
1717
1718 intel_hdmi_add_properties(intel_hdmi, connector);
1719
1720 intel_connector_attach_encoder(intel_connector, intel_encoder);
1721 drm_connector_register(connector);
1722
1723 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1724 * 0xd. Failure to do so will result in spurious interrupts being
1725 * generated on the port when a cable is not attached.
1726 */
1727 if (IS_G4X(dev) && !IS_GM45(dev)) {
1728 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1729 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1730 }
1731 }
1732
1733 void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
1734 {
1735 struct intel_digital_port *intel_dig_port;
1736 struct intel_encoder *intel_encoder;
1737 struct intel_connector *intel_connector;
1738
1739 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
1740 if (!intel_dig_port)
1741 return;
1742
1743 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
1744 if (!intel_connector) {
1745 kfree(intel_dig_port);
1746 return;
1747 }
1748
1749 intel_encoder = &intel_dig_port->base;
1750
1751 drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
1752 DRM_MODE_ENCODER_TMDS);
1753
1754 intel_encoder->compute_config = intel_hdmi_compute_config;
1755 intel_encoder->disable = intel_disable_hdmi;
1756 intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
1757 intel_encoder->get_config = intel_hdmi_get_config;
1758 if (IS_CHERRYVIEW(dev)) {
1759 intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
1760 intel_encoder->pre_enable = chv_hdmi_pre_enable;
1761 intel_encoder->enable = vlv_enable_hdmi;
1762 intel_encoder->post_disable = chv_hdmi_post_disable;
1763 } else if (IS_VALLEYVIEW(dev)) {
1764 intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
1765 intel_encoder->pre_enable = vlv_hdmi_pre_enable;
1766 intel_encoder->enable = vlv_enable_hdmi;
1767 intel_encoder->post_disable = vlv_hdmi_post_disable;
1768 } else {
1769 intel_encoder->pre_enable = intel_hdmi_pre_enable;
1770 intel_encoder->enable = intel_enable_hdmi;
1771 }
1772
1773 intel_encoder->type = INTEL_OUTPUT_HDMI;
1774 if (IS_CHERRYVIEW(dev)) {
1775 if (port == PORT_D)
1776 intel_encoder->crtc_mask = 1 << 2;
1777 else
1778 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1779 } else {
1780 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
1781 }
1782 intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
1783 /*
1784 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
1785 * to work on real hardware. And since g4x can send infoframes to
1786 * only one port anyway, nothing is lost by allowing it.
1787 */
1788 if (IS_G4X(dev))
1789 intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
1790
1791 intel_dig_port->port = port;
1792 intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
1793 intel_dig_port->dp.output_reg = 0;
1794
1795 intel_hdmi_init_connector(intel_dig_port, intel_connector);
1796 }
This page took 0.066561 seconds and 6 git commands to generate.