09df74b8e917b1dac90d460be50d1c4c5152881c
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL (1 << 0x2)
144 #define RING_EXECLIST1_VALID (1 << 0x3)
145 #define RING_EXECLIST0_VALID (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156
157 #define CTX_LRI_HEADER_0 0x01
158 #define CTX_CONTEXT_CONTROL 0x02
159 #define CTX_RING_HEAD 0x04
160 #define CTX_RING_TAIL 0x06
161 #define CTX_RING_BUFFER_START 0x08
162 #define CTX_RING_BUFFER_CONTROL 0x0a
163 #define CTX_BB_HEAD_U 0x0c
164 #define CTX_BB_HEAD_L 0x0e
165 #define CTX_BB_STATE 0x10
166 #define CTX_SECOND_BB_HEAD_U 0x12
167 #define CTX_SECOND_BB_HEAD_L 0x14
168 #define CTX_SECOND_BB_STATE 0x16
169 #define CTX_BB_PER_CTX_PTR 0x18
170 #define CTX_RCS_INDIRECT_CTX 0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172 #define CTX_LRI_HEADER_1 0x21
173 #define CTX_CTX_TIMESTAMP 0x22
174 #define CTX_PDP3_UDW 0x24
175 #define CTX_PDP3_LDW 0x26
176 #define CTX_PDP2_UDW 0x28
177 #define CTX_PDP2_LDW 0x2a
178 #define CTX_PDP1_UDW 0x2c
179 #define CTX_PDP1_LDW 0x2e
180 #define CTX_PDP0_UDW 0x30
181 #define CTX_PDP0_LDW 0x32
182 #define CTX_LRI_HEADER_2 0x41
183 #define CTX_R_PWR_CLK_STATE 0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191 enum {
192 ADVANCED_CONTEXT = 0,
193 LEGACY_CONTEXT,
194 ADVANCED_AD_CONTEXT,
195 LEGACY_64B_CONTEXT
196 };
197 #define GEN8_CTX_MODE_SHIFT 3
198 enum {
199 FAULT_AND_HANG = 0,
200 FAULT_AND_HALT, /* Debug only */
201 FAULT_AND_STREAM,
202 FAULT_AND_CONTINUE /* Unsupported */
203 };
204 #define GEN8_CTX_ID_SHIFT 32
205
206 static int intel_lr_context_pin(struct intel_engine_cs *ring,
207 struct intel_context *ctx);
208
209 /**
210 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
211 * @dev: DRM device.
212 * @enable_execlists: value of i915.enable_execlists module parameter.
213 *
214 * Only certain platforms support Execlists (the prerequisites being
215 * support for Logical Ring Contexts and Aliasing PPGTT or better).
216 *
217 * Return: 1 if Execlists is supported and has to be enabled.
218 */
219 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
220 {
221 WARN_ON(i915.enable_ppgtt == -1);
222
223 if (INTEL_INFO(dev)->gen >= 9)
224 return 1;
225
226 if (enable_execlists == 0)
227 return 0;
228
229 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
230 i915.use_mmio_flip >= 0)
231 return 1;
232
233 return 0;
234 }
235
236 /**
237 * intel_execlists_ctx_id() - get the Execlists Context ID
238 * @ctx_obj: Logical Ring Context backing object.
239 *
240 * Do not confuse with ctx->id! Unfortunately we have a name overload
241 * here: the old context ID we pass to userspace as a handler so that
242 * they can refer to a context, and the new context ID we pass to the
243 * ELSP so that the GPU can inform us of the context status via
244 * interrupts.
245 *
246 * Return: 20-bits globally unique context ID.
247 */
248 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
249 {
250 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
251
252 /* LRCA is required to be 4K aligned so the more significant 20 bits
253 * are globally unique */
254 return lrca >> 12;
255 }
256
257 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
258 struct drm_i915_gem_object *ctx_obj)
259 {
260 struct drm_device *dev = ring->dev;
261 uint64_t desc;
262 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
263
264 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
265
266 desc = GEN8_CTX_VALID;
267 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
268 desc |= GEN8_CTX_L3LLC_COHERENT;
269 desc |= GEN8_CTX_PRIVILEGE;
270 desc |= lrca;
271 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
272
273 /* TODO: WaDisableLiteRestore when we start using semaphore
274 * signalling between Command Streamers */
275 /* desc |= GEN8_CTX_FORCE_RESTORE; */
276
277 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
278 if (IS_GEN9(dev) &&
279 INTEL_REVID(dev) <= SKL_REVID_B0 &&
280 (ring->id == BCS || ring->id == VCS ||
281 ring->id == VECS || ring->id == VCS2))
282 desc |= GEN8_CTX_FORCE_RESTORE;
283
284 return desc;
285 }
286
287 static void execlists_elsp_write(struct intel_engine_cs *ring,
288 struct drm_i915_gem_object *ctx_obj0,
289 struct drm_i915_gem_object *ctx_obj1)
290 {
291 struct drm_device *dev = ring->dev;
292 struct drm_i915_private *dev_priv = dev->dev_private;
293 uint64_t temp = 0;
294 uint32_t desc[4];
295
296 /* XXX: You must always write both descriptors in the order below. */
297 if (ctx_obj1)
298 temp = execlists_ctx_descriptor(ring, ctx_obj1);
299 else
300 temp = 0;
301 desc[1] = (u32)(temp >> 32);
302 desc[0] = (u32)temp;
303
304 temp = execlists_ctx_descriptor(ring, ctx_obj0);
305 desc[3] = (u32)(temp >> 32);
306 desc[2] = (u32)temp;
307
308 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
309 I915_WRITE(RING_ELSP(ring), desc[1]);
310 I915_WRITE(RING_ELSP(ring), desc[0]);
311 I915_WRITE(RING_ELSP(ring), desc[3]);
312
313 /* The context is automatically loaded after the following */
314 I915_WRITE(RING_ELSP(ring), desc[2]);
315
316 /* ELSP is a wo register, so use another nearby reg for posting instead */
317 POSTING_READ(RING_EXECLIST_STATUS(ring));
318 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
319 }
320
321 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
322 struct drm_i915_gem_object *ring_obj,
323 u32 tail)
324 {
325 struct page *page;
326 uint32_t *reg_state;
327
328 page = i915_gem_object_get_page(ctx_obj, 1);
329 reg_state = kmap_atomic(page);
330
331 reg_state[CTX_RING_TAIL+1] = tail;
332 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
333
334 kunmap_atomic(reg_state);
335
336 return 0;
337 }
338
339 static void execlists_submit_contexts(struct intel_engine_cs *ring,
340 struct intel_context *to0, u32 tail0,
341 struct intel_context *to1, u32 tail1)
342 {
343 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
344 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
345 struct drm_i915_gem_object *ctx_obj1 = NULL;
346 struct intel_ringbuffer *ringbuf1 = NULL;
347
348 BUG_ON(!ctx_obj0);
349 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
350 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
351
352 execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
353
354 if (to1) {
355 ringbuf1 = to1->engine[ring->id].ringbuf;
356 ctx_obj1 = to1->engine[ring->id].state;
357 BUG_ON(!ctx_obj1);
358 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
359 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
360
361 execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
362 }
363
364 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
365 }
366
367 static void execlists_context_unqueue(struct intel_engine_cs *ring)
368 {
369 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
370 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
371
372 assert_spin_locked(&ring->execlist_lock);
373
374 if (list_empty(&ring->execlist_queue))
375 return;
376
377 /* Try to read in pairs */
378 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
379 execlist_link) {
380 if (!req0) {
381 req0 = cursor;
382 } else if (req0->ctx == cursor->ctx) {
383 /* Same ctx: ignore first request, as second request
384 * will update tail past first request's workload */
385 cursor->elsp_submitted = req0->elsp_submitted;
386 list_del(&req0->execlist_link);
387 list_add_tail(&req0->execlist_link,
388 &ring->execlist_retired_req_list);
389 req0 = cursor;
390 } else {
391 req1 = cursor;
392 break;
393 }
394 }
395
396 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
397 /*
398 * WaIdleLiteRestore: make sure we never cause a lite
399 * restore with HEAD==TAIL
400 */
401 if (req0 && req0->elsp_submitted) {
402 /*
403 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
404 * as we resubmit the request. See gen8_emit_request()
405 * for where we prepare the padding after the end of the
406 * request.
407 */
408 struct intel_ringbuffer *ringbuf;
409
410 ringbuf = req0->ctx->engine[ring->id].ringbuf;
411 req0->tail += 8;
412 req0->tail &= ringbuf->size - 1;
413 }
414 }
415
416 WARN_ON(req1 && req1->elsp_submitted);
417
418 execlists_submit_contexts(ring, req0->ctx, req0->tail,
419 req1 ? req1->ctx : NULL,
420 req1 ? req1->tail : 0);
421
422 req0->elsp_submitted++;
423 if (req1)
424 req1->elsp_submitted++;
425 }
426
427 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
428 u32 request_id)
429 {
430 struct drm_i915_gem_request *head_req;
431
432 assert_spin_locked(&ring->execlist_lock);
433
434 head_req = list_first_entry_or_null(&ring->execlist_queue,
435 struct drm_i915_gem_request,
436 execlist_link);
437
438 if (head_req != NULL) {
439 struct drm_i915_gem_object *ctx_obj =
440 head_req->ctx->engine[ring->id].state;
441 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
442 WARN(head_req->elsp_submitted == 0,
443 "Never submitted head request\n");
444
445 if (--head_req->elsp_submitted <= 0) {
446 list_del(&head_req->execlist_link);
447 list_add_tail(&head_req->execlist_link,
448 &ring->execlist_retired_req_list);
449 return true;
450 }
451 }
452 }
453
454 return false;
455 }
456
457 /**
458 * intel_lrc_irq_handler() - handle Context Switch interrupts
459 * @ring: Engine Command Streamer to handle.
460 *
461 * Check the unread Context Status Buffers and manage the submission of new
462 * contexts to the ELSP accordingly.
463 */
464 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
465 {
466 struct drm_i915_private *dev_priv = ring->dev->dev_private;
467 u32 status_pointer;
468 u8 read_pointer;
469 u8 write_pointer;
470 u32 status;
471 u32 status_id;
472 u32 submit_contexts = 0;
473
474 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
475
476 read_pointer = ring->next_context_status_buffer;
477 write_pointer = status_pointer & 0x07;
478 if (read_pointer > write_pointer)
479 write_pointer += 6;
480
481 spin_lock(&ring->execlist_lock);
482
483 while (read_pointer < write_pointer) {
484 read_pointer++;
485 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
486 (read_pointer % 6) * 8);
487 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
488 (read_pointer % 6) * 8 + 4);
489
490 if (status & GEN8_CTX_STATUS_PREEMPTED) {
491 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
492 if (execlists_check_remove_request(ring, status_id))
493 WARN(1, "Lite Restored request removed from queue\n");
494 } else
495 WARN(1, "Preemption without Lite Restore\n");
496 }
497
498 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
499 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
500 if (execlists_check_remove_request(ring, status_id))
501 submit_contexts++;
502 }
503 }
504
505 if (submit_contexts != 0)
506 execlists_context_unqueue(ring);
507
508 spin_unlock(&ring->execlist_lock);
509
510 WARN(submit_contexts > 2, "More than two context complete events?\n");
511 ring->next_context_status_buffer = write_pointer % 6;
512
513 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
514 ((u32)ring->next_context_status_buffer & 0x07) << 8);
515 }
516
517 static int execlists_context_queue(struct intel_engine_cs *ring,
518 struct intel_context *to,
519 u32 tail,
520 struct drm_i915_gem_request *request)
521 {
522 struct drm_i915_gem_request *cursor;
523 struct drm_i915_private *dev_priv = ring->dev->dev_private;
524 unsigned long flags;
525 int num_elements = 0;
526
527 if (to != ring->default_context)
528 intel_lr_context_pin(ring, to);
529
530 if (!request) {
531 /*
532 * If there isn't a request associated with this submission,
533 * create one as a temporary holder.
534 */
535 request = kzalloc(sizeof(*request), GFP_KERNEL);
536 if (request == NULL)
537 return -ENOMEM;
538 request->ring = ring;
539 request->ctx = to;
540 kref_init(&request->ref);
541 request->uniq = dev_priv->request_uniq++;
542 i915_gem_context_reference(request->ctx);
543 } else {
544 i915_gem_request_reference(request);
545 WARN_ON(to != request->ctx);
546 }
547 request->tail = tail;
548
549 intel_runtime_pm_get(dev_priv);
550
551 spin_lock_irqsave(&ring->execlist_lock, flags);
552
553 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
554 if (++num_elements > 2)
555 break;
556
557 if (num_elements > 2) {
558 struct drm_i915_gem_request *tail_req;
559
560 tail_req = list_last_entry(&ring->execlist_queue,
561 struct drm_i915_gem_request,
562 execlist_link);
563
564 if (to == tail_req->ctx) {
565 WARN(tail_req->elsp_submitted != 0,
566 "More than 2 already-submitted reqs queued\n");
567 list_del(&tail_req->execlist_link);
568 list_add_tail(&tail_req->execlist_link,
569 &ring->execlist_retired_req_list);
570 }
571 }
572
573 list_add_tail(&request->execlist_link, &ring->execlist_queue);
574 if (num_elements == 0)
575 execlists_context_unqueue(ring);
576
577 spin_unlock_irqrestore(&ring->execlist_lock, flags);
578
579 return 0;
580 }
581
582 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
583 struct intel_context *ctx)
584 {
585 struct intel_engine_cs *ring = ringbuf->ring;
586 uint32_t flush_domains;
587 int ret;
588
589 flush_domains = 0;
590 if (ring->gpu_caches_dirty)
591 flush_domains = I915_GEM_GPU_DOMAINS;
592
593 ret = ring->emit_flush(ringbuf, ctx,
594 I915_GEM_GPU_DOMAINS, flush_domains);
595 if (ret)
596 return ret;
597
598 ring->gpu_caches_dirty = false;
599 return 0;
600 }
601
602 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
603 struct intel_context *ctx,
604 struct list_head *vmas)
605 {
606 struct intel_engine_cs *ring = ringbuf->ring;
607 struct i915_vma *vma;
608 uint32_t flush_domains = 0;
609 bool flush_chipset = false;
610 int ret;
611
612 list_for_each_entry(vma, vmas, exec_list) {
613 struct drm_i915_gem_object *obj = vma->obj;
614
615 ret = i915_gem_object_sync(obj, ring);
616 if (ret)
617 return ret;
618
619 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
620 flush_chipset |= i915_gem_clflush_object(obj, false);
621
622 flush_domains |= obj->base.write_domain;
623 }
624
625 if (flush_domains & I915_GEM_DOMAIN_GTT)
626 wmb();
627
628 /* Unconditionally invalidate gpu caches and ensure that we do flush
629 * any residual writes from the previous batch.
630 */
631 return logical_ring_invalidate_all_caches(ringbuf, ctx);
632 }
633
634 /**
635 * execlists_submission() - submit a batchbuffer for execution, Execlists style
636 * @dev: DRM device.
637 * @file: DRM file.
638 * @ring: Engine Command Streamer to submit to.
639 * @ctx: Context to employ for this submission.
640 * @args: execbuffer call arguments.
641 * @vmas: list of vmas.
642 * @batch_obj: the batchbuffer to submit.
643 * @exec_start: batchbuffer start virtual address pointer.
644 * @dispatch_flags: translated execbuffer call flags.
645 *
646 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
647 * away the submission details of the execbuffer ioctl call.
648 *
649 * Return: non-zero if the submission fails.
650 */
651 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
652 struct intel_engine_cs *ring,
653 struct intel_context *ctx,
654 struct drm_i915_gem_execbuffer2 *args,
655 struct list_head *vmas,
656 struct drm_i915_gem_object *batch_obj,
657 u64 exec_start, u32 dispatch_flags)
658 {
659 struct drm_i915_private *dev_priv = dev->dev_private;
660 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
661 int instp_mode;
662 u32 instp_mask;
663 int ret;
664
665 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
666 instp_mask = I915_EXEC_CONSTANTS_MASK;
667 switch (instp_mode) {
668 case I915_EXEC_CONSTANTS_REL_GENERAL:
669 case I915_EXEC_CONSTANTS_ABSOLUTE:
670 case I915_EXEC_CONSTANTS_REL_SURFACE:
671 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
672 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
673 return -EINVAL;
674 }
675
676 if (instp_mode != dev_priv->relative_constants_mode) {
677 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
678 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
679 return -EINVAL;
680 }
681
682 /* The HW changed the meaning on this bit on gen6 */
683 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
684 }
685 break;
686 default:
687 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
688 return -EINVAL;
689 }
690
691 if (args->num_cliprects != 0) {
692 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
693 return -EINVAL;
694 } else {
695 if (args->DR4 == 0xffffffff) {
696 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
697 args->DR4 = 0;
698 }
699
700 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
701 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
702 return -EINVAL;
703 }
704 }
705
706 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
707 DRM_DEBUG("sol reset is gen7 only\n");
708 return -EINVAL;
709 }
710
711 ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
712 if (ret)
713 return ret;
714
715 if (ring == &dev_priv->ring[RCS] &&
716 instp_mode != dev_priv->relative_constants_mode) {
717 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
718 if (ret)
719 return ret;
720
721 intel_logical_ring_emit(ringbuf, MI_NOOP);
722 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
723 intel_logical_ring_emit(ringbuf, INSTPM);
724 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
725 intel_logical_ring_advance(ringbuf);
726
727 dev_priv->relative_constants_mode = instp_mode;
728 }
729
730 ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
731 if (ret)
732 return ret;
733
734 trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
735
736 i915_gem_execbuffer_move_to_active(vmas, ring);
737 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
738
739 return 0;
740 }
741
742 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
743 {
744 struct drm_i915_gem_request *req, *tmp;
745 struct drm_i915_private *dev_priv = ring->dev->dev_private;
746 unsigned long flags;
747 struct list_head retired_list;
748
749 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
750 if (list_empty(&ring->execlist_retired_req_list))
751 return;
752
753 INIT_LIST_HEAD(&retired_list);
754 spin_lock_irqsave(&ring->execlist_lock, flags);
755 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
756 spin_unlock_irqrestore(&ring->execlist_lock, flags);
757
758 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
759 struct intel_context *ctx = req->ctx;
760 struct drm_i915_gem_object *ctx_obj =
761 ctx->engine[ring->id].state;
762
763 if (ctx_obj && (ctx != ring->default_context))
764 intel_lr_context_unpin(ring, ctx);
765 intel_runtime_pm_put(dev_priv);
766 list_del(&req->execlist_link);
767 i915_gem_request_unreference(req);
768 }
769 }
770
771 void intel_logical_ring_stop(struct intel_engine_cs *ring)
772 {
773 struct drm_i915_private *dev_priv = ring->dev->dev_private;
774 int ret;
775
776 if (!intel_ring_initialized(ring))
777 return;
778
779 ret = intel_ring_idle(ring);
780 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
781 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
782 ring->name, ret);
783
784 /* TODO: Is this correct with Execlists enabled? */
785 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
786 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
787 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
788 return;
789 }
790 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
791 }
792
793 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
794 struct intel_context *ctx)
795 {
796 struct intel_engine_cs *ring = ringbuf->ring;
797 int ret;
798
799 if (!ring->gpu_caches_dirty)
800 return 0;
801
802 ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
803 if (ret)
804 return ret;
805
806 ring->gpu_caches_dirty = false;
807 return 0;
808 }
809
810 /*
811 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
812 * @ringbuf: Logical Ringbuffer to advance.
813 *
814 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
815 * really happens during submission is that the context and current tail will be placed
816 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
817 * point, the tail *inside* the context is updated and the ELSP written to.
818 */
819 static void
820 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
821 struct intel_context *ctx,
822 struct drm_i915_gem_request *request)
823 {
824 struct intel_engine_cs *ring = ringbuf->ring;
825
826 intel_logical_ring_advance(ringbuf);
827
828 if (intel_ring_stopped(ring))
829 return;
830
831 execlists_context_queue(ring, ctx, ringbuf->tail, request);
832 }
833
834 static int intel_lr_context_pin(struct intel_engine_cs *ring,
835 struct intel_context *ctx)
836 {
837 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
838 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
839 int ret = 0;
840
841 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
842 if (ctx->engine[ring->id].pin_count++ == 0) {
843 ret = i915_gem_obj_ggtt_pin(ctx_obj,
844 GEN8_LR_CONTEXT_ALIGN, 0);
845 if (ret)
846 goto reset_pin_count;
847
848 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
849 if (ret)
850 goto unpin_ctx_obj;
851 }
852
853 return ret;
854
855 unpin_ctx_obj:
856 i915_gem_object_ggtt_unpin(ctx_obj);
857 reset_pin_count:
858 ctx->engine[ring->id].pin_count = 0;
859
860 return ret;
861 }
862
863 void intel_lr_context_unpin(struct intel_engine_cs *ring,
864 struct intel_context *ctx)
865 {
866 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
867 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
868
869 if (ctx_obj) {
870 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
871 if (--ctx->engine[ring->id].pin_count == 0) {
872 intel_unpin_ringbuffer_obj(ringbuf);
873 i915_gem_object_ggtt_unpin(ctx_obj);
874 }
875 }
876 }
877
878 static int logical_ring_alloc_request(struct intel_engine_cs *ring,
879 struct intel_context *ctx)
880 {
881 struct drm_i915_gem_request *request;
882 struct drm_i915_private *dev_private = ring->dev->dev_private;
883 int ret;
884
885 if (ring->outstanding_lazy_request)
886 return 0;
887
888 request = kzalloc(sizeof(*request), GFP_KERNEL);
889 if (request == NULL)
890 return -ENOMEM;
891
892 if (ctx != ring->default_context) {
893 ret = intel_lr_context_pin(ring, ctx);
894 if (ret) {
895 kfree(request);
896 return ret;
897 }
898 }
899
900 kref_init(&request->ref);
901 request->ring = ring;
902 request->uniq = dev_private->request_uniq++;
903
904 ret = i915_gem_get_seqno(ring->dev, &request->seqno);
905 if (ret) {
906 intel_lr_context_unpin(ring, ctx);
907 kfree(request);
908 return ret;
909 }
910
911 request->ctx = ctx;
912 i915_gem_context_reference(request->ctx);
913 request->ringbuf = ctx->engine[ring->id].ringbuf;
914
915 ring->outstanding_lazy_request = request;
916 return 0;
917 }
918
919 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
920 int bytes)
921 {
922 struct intel_engine_cs *ring = ringbuf->ring;
923 struct drm_i915_gem_request *request;
924 int ret;
925
926 if (intel_ring_space(ringbuf) >= bytes)
927 return 0;
928
929 list_for_each_entry(request, &ring->request_list, list) {
930 /*
931 * The request queue is per-engine, so can contain requests
932 * from multiple ringbuffers. Here, we must ignore any that
933 * aren't from the ringbuffer we're considering.
934 */
935 struct intel_context *ctx = request->ctx;
936 if (ctx->engine[ring->id].ringbuf != ringbuf)
937 continue;
938
939 /* Would completion of this request free enough space? */
940 if (__intel_ring_space(request->tail, ringbuf->tail,
941 ringbuf->size) >= bytes) {
942 break;
943 }
944 }
945
946 if (&request->list == &ring->request_list)
947 return -ENOSPC;
948
949 ret = i915_wait_request(request);
950 if (ret)
951 return ret;
952
953 i915_gem_retire_requests_ring(ring);
954
955 return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
956 }
957
958 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
959 struct intel_context *ctx,
960 int bytes)
961 {
962 struct intel_engine_cs *ring = ringbuf->ring;
963 struct drm_device *dev = ring->dev;
964 struct drm_i915_private *dev_priv = dev->dev_private;
965 unsigned long end;
966 int ret;
967
968 ret = logical_ring_wait_request(ringbuf, bytes);
969 if (ret != -ENOSPC)
970 return ret;
971
972 /* Force the context submission in case we have been skipping it */
973 intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
974
975 /* With GEM the hangcheck timer should kick us out of the loop,
976 * leaving it early runs the risk of corrupting GEM state (due
977 * to running on almost untested codepaths). But on resume
978 * timers don't work yet, so prevent a complete hang in that
979 * case by choosing an insanely large timeout. */
980 end = jiffies + 60 * HZ;
981
982 ret = 0;
983 do {
984 if (intel_ring_space(ringbuf) >= bytes)
985 break;
986
987 msleep(1);
988
989 if (dev_priv->mm.interruptible && signal_pending(current)) {
990 ret = -ERESTARTSYS;
991 break;
992 }
993
994 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
995 dev_priv->mm.interruptible);
996 if (ret)
997 break;
998
999 if (time_after(jiffies, end)) {
1000 ret = -EBUSY;
1001 break;
1002 }
1003 } while (1);
1004
1005 return ret;
1006 }
1007
1008 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
1009 struct intel_context *ctx)
1010 {
1011 uint32_t __iomem *virt;
1012 int rem = ringbuf->size - ringbuf->tail;
1013
1014 if (ringbuf->space < rem) {
1015 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
1016
1017 if (ret)
1018 return ret;
1019 }
1020
1021 virt = ringbuf->virtual_start + ringbuf->tail;
1022 rem /= 4;
1023 while (rem--)
1024 iowrite32(MI_NOOP, virt++);
1025
1026 ringbuf->tail = 0;
1027 intel_ring_update_space(ringbuf);
1028
1029 return 0;
1030 }
1031
1032 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
1033 struct intel_context *ctx, int bytes)
1034 {
1035 int ret;
1036
1037 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1038 ret = logical_ring_wrap_buffer(ringbuf, ctx);
1039 if (unlikely(ret))
1040 return ret;
1041 }
1042
1043 if (unlikely(ringbuf->space < bytes)) {
1044 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
1045 if (unlikely(ret))
1046 return ret;
1047 }
1048
1049 return 0;
1050 }
1051
1052 /**
1053 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1054 *
1055 * @ringbuf: Logical ringbuffer.
1056 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1057 *
1058 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1059 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1060 * and also preallocates a request (every workload submission is still mediated through
1061 * requests, same as it did with legacy ringbuffer submission).
1062 *
1063 * Return: non-zero if the ringbuffer is not ready to be written to.
1064 */
1065 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
1066 struct intel_context *ctx, int num_dwords)
1067 {
1068 struct intel_engine_cs *ring = ringbuf->ring;
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 int ret;
1072
1073 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1074 dev_priv->mm.interruptible);
1075 if (ret)
1076 return ret;
1077
1078 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
1079 if (ret)
1080 return ret;
1081
1082 /* Preallocate the olr before touching the ring */
1083 ret = logical_ring_alloc_request(ring, ctx);
1084 if (ret)
1085 return ret;
1086
1087 ringbuf->space -= num_dwords * sizeof(uint32_t);
1088 return 0;
1089 }
1090
1091 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1092 struct intel_context *ctx)
1093 {
1094 int ret, i;
1095 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1096 struct drm_device *dev = ring->dev;
1097 struct drm_i915_private *dev_priv = dev->dev_private;
1098 struct i915_workarounds *w = &dev_priv->workarounds;
1099
1100 if (WARN_ON_ONCE(w->count == 0))
1101 return 0;
1102
1103 ring->gpu_caches_dirty = true;
1104 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1105 if (ret)
1106 return ret;
1107
1108 ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1109 if (ret)
1110 return ret;
1111
1112 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1113 for (i = 0; i < w->count; i++) {
1114 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1115 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1116 }
1117 intel_logical_ring_emit(ringbuf, MI_NOOP);
1118
1119 intel_logical_ring_advance(ringbuf);
1120
1121 ring->gpu_caches_dirty = true;
1122 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1123 if (ret)
1124 return ret;
1125
1126 return 0;
1127 }
1128
1129 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1130 {
1131 struct drm_device *dev = ring->dev;
1132 struct drm_i915_private *dev_priv = dev->dev_private;
1133
1134 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1135 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1136
1137 I915_WRITE(RING_MODE_GEN7(ring),
1138 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1139 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1140 POSTING_READ(RING_MODE_GEN7(ring));
1141 ring->next_context_status_buffer = 0;
1142 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1143
1144 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1145
1146 return 0;
1147 }
1148
1149 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1150 {
1151 struct drm_device *dev = ring->dev;
1152 struct drm_i915_private *dev_priv = dev->dev_private;
1153 int ret;
1154
1155 ret = gen8_init_common_ring(ring);
1156 if (ret)
1157 return ret;
1158
1159 /* We need to disable the AsyncFlip performance optimisations in order
1160 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1161 * programmed to '1' on all products.
1162 *
1163 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1164 */
1165 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1166
1167 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1168
1169 return init_workarounds_ring(ring);
1170 }
1171
1172 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1173 {
1174 int ret;
1175
1176 ret = gen8_init_common_ring(ring);
1177 if (ret)
1178 return ret;
1179
1180 return init_workarounds_ring(ring);
1181 }
1182
1183 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1184 struct intel_context *ctx,
1185 u64 offset, unsigned dispatch_flags)
1186 {
1187 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1188 int ret;
1189
1190 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1191 if (ret)
1192 return ret;
1193
1194 /* FIXME(BDW): Address space and security selectors. */
1195 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1196 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1197 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1198 intel_logical_ring_emit(ringbuf, MI_NOOP);
1199 intel_logical_ring_advance(ringbuf);
1200
1201 return 0;
1202 }
1203
1204 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1205 {
1206 struct drm_device *dev = ring->dev;
1207 struct drm_i915_private *dev_priv = dev->dev_private;
1208 unsigned long flags;
1209
1210 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1211 return false;
1212
1213 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1214 if (ring->irq_refcount++ == 0) {
1215 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1216 POSTING_READ(RING_IMR(ring->mmio_base));
1217 }
1218 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1219
1220 return true;
1221 }
1222
1223 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1224 {
1225 struct drm_device *dev = ring->dev;
1226 struct drm_i915_private *dev_priv = dev->dev_private;
1227 unsigned long flags;
1228
1229 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1230 if (--ring->irq_refcount == 0) {
1231 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1232 POSTING_READ(RING_IMR(ring->mmio_base));
1233 }
1234 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1235 }
1236
1237 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1238 struct intel_context *ctx,
1239 u32 invalidate_domains,
1240 u32 unused)
1241 {
1242 struct intel_engine_cs *ring = ringbuf->ring;
1243 struct drm_device *dev = ring->dev;
1244 struct drm_i915_private *dev_priv = dev->dev_private;
1245 uint32_t cmd;
1246 int ret;
1247
1248 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1249 if (ret)
1250 return ret;
1251
1252 cmd = MI_FLUSH_DW + 1;
1253
1254 /* We always require a command barrier so that subsequent
1255 * commands, such as breadcrumb interrupts, are strictly ordered
1256 * wrt the contents of the write cache being flushed to memory
1257 * (and thus being coherent from the CPU).
1258 */
1259 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1260
1261 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1262 cmd |= MI_INVALIDATE_TLB;
1263 if (ring == &dev_priv->ring[VCS])
1264 cmd |= MI_INVALIDATE_BSD;
1265 }
1266
1267 intel_logical_ring_emit(ringbuf, cmd);
1268 intel_logical_ring_emit(ringbuf,
1269 I915_GEM_HWS_SCRATCH_ADDR |
1270 MI_FLUSH_DW_USE_GTT);
1271 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1272 intel_logical_ring_emit(ringbuf, 0); /* value */
1273 intel_logical_ring_advance(ringbuf);
1274
1275 return 0;
1276 }
1277
1278 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1279 struct intel_context *ctx,
1280 u32 invalidate_domains,
1281 u32 flush_domains)
1282 {
1283 struct intel_engine_cs *ring = ringbuf->ring;
1284 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1285 u32 flags = 0;
1286 int ret;
1287
1288 flags |= PIPE_CONTROL_CS_STALL;
1289
1290 if (flush_domains) {
1291 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1292 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1293 }
1294
1295 if (invalidate_domains) {
1296 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1297 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1298 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1299 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1300 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1301 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1302 flags |= PIPE_CONTROL_QW_WRITE;
1303 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1304 }
1305
1306 ret = intel_logical_ring_begin(ringbuf, ctx, 6);
1307 if (ret)
1308 return ret;
1309
1310 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1311 intel_logical_ring_emit(ringbuf, flags);
1312 intel_logical_ring_emit(ringbuf, scratch_addr);
1313 intel_logical_ring_emit(ringbuf, 0);
1314 intel_logical_ring_emit(ringbuf, 0);
1315 intel_logical_ring_emit(ringbuf, 0);
1316 intel_logical_ring_advance(ringbuf);
1317
1318 return 0;
1319 }
1320
1321 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1322 {
1323 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1324 }
1325
1326 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1327 {
1328 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1329 }
1330
1331 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1332 struct drm_i915_gem_request *request)
1333 {
1334 struct intel_engine_cs *ring = ringbuf->ring;
1335 u32 cmd;
1336 int ret;
1337
1338 /*
1339 * Reserve space for 2 NOOPs at the end of each request to be
1340 * used as a workaround for not being allowed to do lite
1341 * restore with HEAD==TAIL (WaIdleLiteRestore).
1342 */
1343 ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1344 if (ret)
1345 return ret;
1346
1347 cmd = MI_STORE_DWORD_IMM_GEN4;
1348 cmd |= MI_GLOBAL_GTT;
1349
1350 intel_logical_ring_emit(ringbuf, cmd);
1351 intel_logical_ring_emit(ringbuf,
1352 (ring->status_page.gfx_addr +
1353 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1354 intel_logical_ring_emit(ringbuf, 0);
1355 intel_logical_ring_emit(ringbuf,
1356 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1357 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1358 intel_logical_ring_emit(ringbuf, MI_NOOP);
1359 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1360
1361 /*
1362 * Here we add two extra NOOPs as padding to avoid
1363 * lite restore of a context with HEAD==TAIL.
1364 */
1365 intel_logical_ring_emit(ringbuf, MI_NOOP);
1366 intel_logical_ring_emit(ringbuf, MI_NOOP);
1367 intel_logical_ring_advance(ringbuf);
1368
1369 return 0;
1370 }
1371
1372 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1373 struct intel_context *ctx)
1374 {
1375 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1376 struct render_state so;
1377 struct drm_i915_file_private *file_priv = ctx->file_priv;
1378 struct drm_file *file = file_priv ? file_priv->file : NULL;
1379 int ret;
1380
1381 ret = i915_gem_render_state_prepare(ring, &so);
1382 if (ret)
1383 return ret;
1384
1385 if (so.rodata == NULL)
1386 return 0;
1387
1388 ret = ring->emit_bb_start(ringbuf,
1389 ctx,
1390 so.ggtt_offset,
1391 I915_DISPATCH_SECURE);
1392 if (ret)
1393 goto out;
1394
1395 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1396
1397 ret = __i915_add_request(ring, file, so.obj);
1398 /* intel_logical_ring_add_request moves object to inactive if it
1399 * fails */
1400 out:
1401 i915_gem_render_state_fini(&so);
1402 return ret;
1403 }
1404
1405 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1406 struct intel_context *ctx)
1407 {
1408 int ret;
1409
1410 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1411 if (ret)
1412 return ret;
1413
1414 return intel_lr_context_render_state_init(ring, ctx);
1415 }
1416
1417 /**
1418 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1419 *
1420 * @ring: Engine Command Streamer.
1421 *
1422 */
1423 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1424 {
1425 struct drm_i915_private *dev_priv;
1426
1427 if (!intel_ring_initialized(ring))
1428 return;
1429
1430 dev_priv = ring->dev->dev_private;
1431
1432 intel_logical_ring_stop(ring);
1433 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1434 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1435
1436 if (ring->cleanup)
1437 ring->cleanup(ring);
1438
1439 i915_cmd_parser_fini_ring(ring);
1440
1441 if (ring->status_page.obj) {
1442 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1443 ring->status_page.obj = NULL;
1444 }
1445 }
1446
1447 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1448 {
1449 int ret;
1450
1451 /* Intentionally left blank. */
1452 ring->buffer = NULL;
1453
1454 ring->dev = dev;
1455 INIT_LIST_HEAD(&ring->active_list);
1456 INIT_LIST_HEAD(&ring->request_list);
1457 init_waitqueue_head(&ring->irq_queue);
1458
1459 INIT_LIST_HEAD(&ring->execlist_queue);
1460 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1461 spin_lock_init(&ring->execlist_lock);
1462
1463 ret = i915_cmd_parser_init_ring(ring);
1464 if (ret)
1465 return ret;
1466
1467 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1468
1469 return ret;
1470 }
1471
1472 static int logical_render_ring_init(struct drm_device *dev)
1473 {
1474 struct drm_i915_private *dev_priv = dev->dev_private;
1475 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1476 int ret;
1477
1478 ring->name = "render ring";
1479 ring->id = RCS;
1480 ring->mmio_base = RENDER_RING_BASE;
1481 ring->irq_enable_mask =
1482 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1483 ring->irq_keep_mask =
1484 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1485 if (HAS_L3_DPF(dev))
1486 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1487
1488 if (INTEL_INFO(dev)->gen >= 9)
1489 ring->init_hw = gen9_init_render_ring;
1490 else
1491 ring->init_hw = gen8_init_render_ring;
1492 ring->init_context = gen8_init_rcs_context;
1493 ring->cleanup = intel_fini_pipe_control;
1494 ring->get_seqno = gen8_get_seqno;
1495 ring->set_seqno = gen8_set_seqno;
1496 ring->emit_request = gen8_emit_request;
1497 ring->emit_flush = gen8_emit_flush_render;
1498 ring->irq_get = gen8_logical_ring_get_irq;
1499 ring->irq_put = gen8_logical_ring_put_irq;
1500 ring->emit_bb_start = gen8_emit_bb_start;
1501
1502 ring->dev = dev;
1503 ret = logical_ring_init(dev, ring);
1504 if (ret)
1505 return ret;
1506
1507 return intel_init_pipe_control(ring);
1508 }
1509
1510 static int logical_bsd_ring_init(struct drm_device *dev)
1511 {
1512 struct drm_i915_private *dev_priv = dev->dev_private;
1513 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1514
1515 ring->name = "bsd ring";
1516 ring->id = VCS;
1517 ring->mmio_base = GEN6_BSD_RING_BASE;
1518 ring->irq_enable_mask =
1519 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1520 ring->irq_keep_mask =
1521 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1522
1523 ring->init_hw = gen8_init_common_ring;
1524 ring->get_seqno = gen8_get_seqno;
1525 ring->set_seqno = gen8_set_seqno;
1526 ring->emit_request = gen8_emit_request;
1527 ring->emit_flush = gen8_emit_flush;
1528 ring->irq_get = gen8_logical_ring_get_irq;
1529 ring->irq_put = gen8_logical_ring_put_irq;
1530 ring->emit_bb_start = gen8_emit_bb_start;
1531
1532 return logical_ring_init(dev, ring);
1533 }
1534
1535 static int logical_bsd2_ring_init(struct drm_device *dev)
1536 {
1537 struct drm_i915_private *dev_priv = dev->dev_private;
1538 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1539
1540 ring->name = "bds2 ring";
1541 ring->id = VCS2;
1542 ring->mmio_base = GEN8_BSD2_RING_BASE;
1543 ring->irq_enable_mask =
1544 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1545 ring->irq_keep_mask =
1546 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1547
1548 ring->init_hw = gen8_init_common_ring;
1549 ring->get_seqno = gen8_get_seqno;
1550 ring->set_seqno = gen8_set_seqno;
1551 ring->emit_request = gen8_emit_request;
1552 ring->emit_flush = gen8_emit_flush;
1553 ring->irq_get = gen8_logical_ring_get_irq;
1554 ring->irq_put = gen8_logical_ring_put_irq;
1555 ring->emit_bb_start = gen8_emit_bb_start;
1556
1557 return logical_ring_init(dev, ring);
1558 }
1559
1560 static int logical_blt_ring_init(struct drm_device *dev)
1561 {
1562 struct drm_i915_private *dev_priv = dev->dev_private;
1563 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1564
1565 ring->name = "blitter ring";
1566 ring->id = BCS;
1567 ring->mmio_base = BLT_RING_BASE;
1568 ring->irq_enable_mask =
1569 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1570 ring->irq_keep_mask =
1571 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1572
1573 ring->init_hw = gen8_init_common_ring;
1574 ring->get_seqno = gen8_get_seqno;
1575 ring->set_seqno = gen8_set_seqno;
1576 ring->emit_request = gen8_emit_request;
1577 ring->emit_flush = gen8_emit_flush;
1578 ring->irq_get = gen8_logical_ring_get_irq;
1579 ring->irq_put = gen8_logical_ring_put_irq;
1580 ring->emit_bb_start = gen8_emit_bb_start;
1581
1582 return logical_ring_init(dev, ring);
1583 }
1584
1585 static int logical_vebox_ring_init(struct drm_device *dev)
1586 {
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1589
1590 ring->name = "video enhancement ring";
1591 ring->id = VECS;
1592 ring->mmio_base = VEBOX_RING_BASE;
1593 ring->irq_enable_mask =
1594 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1595 ring->irq_keep_mask =
1596 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1597
1598 ring->init_hw = gen8_init_common_ring;
1599 ring->get_seqno = gen8_get_seqno;
1600 ring->set_seqno = gen8_set_seqno;
1601 ring->emit_request = gen8_emit_request;
1602 ring->emit_flush = gen8_emit_flush;
1603 ring->irq_get = gen8_logical_ring_get_irq;
1604 ring->irq_put = gen8_logical_ring_put_irq;
1605 ring->emit_bb_start = gen8_emit_bb_start;
1606
1607 return logical_ring_init(dev, ring);
1608 }
1609
1610 /**
1611 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1612 * @dev: DRM device.
1613 *
1614 * This function inits the engines for an Execlists submission style (the equivalent in the
1615 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1616 * those engines that are present in the hardware.
1617 *
1618 * Return: non-zero if the initialization failed.
1619 */
1620 int intel_logical_rings_init(struct drm_device *dev)
1621 {
1622 struct drm_i915_private *dev_priv = dev->dev_private;
1623 int ret;
1624
1625 ret = logical_render_ring_init(dev);
1626 if (ret)
1627 return ret;
1628
1629 if (HAS_BSD(dev)) {
1630 ret = logical_bsd_ring_init(dev);
1631 if (ret)
1632 goto cleanup_render_ring;
1633 }
1634
1635 if (HAS_BLT(dev)) {
1636 ret = logical_blt_ring_init(dev);
1637 if (ret)
1638 goto cleanup_bsd_ring;
1639 }
1640
1641 if (HAS_VEBOX(dev)) {
1642 ret = logical_vebox_ring_init(dev);
1643 if (ret)
1644 goto cleanup_blt_ring;
1645 }
1646
1647 if (HAS_BSD2(dev)) {
1648 ret = logical_bsd2_ring_init(dev);
1649 if (ret)
1650 goto cleanup_vebox_ring;
1651 }
1652
1653 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1654 if (ret)
1655 goto cleanup_bsd2_ring;
1656
1657 return 0;
1658
1659 cleanup_bsd2_ring:
1660 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1661 cleanup_vebox_ring:
1662 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1663 cleanup_blt_ring:
1664 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1665 cleanup_bsd_ring:
1666 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1667 cleanup_render_ring:
1668 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1669
1670 return ret;
1671 }
1672
1673 static u32
1674 make_rpcs(struct drm_device *dev)
1675 {
1676 u32 rpcs = 0;
1677
1678 /*
1679 * No explicit RPCS request is needed to ensure full
1680 * slice/subslice/EU enablement prior to Gen9.
1681 */
1682 if (INTEL_INFO(dev)->gen < 9)
1683 return 0;
1684
1685 /*
1686 * Starting in Gen9, render power gating can leave
1687 * slice/subslice/EU in a partially enabled state. We
1688 * must make an explicit request through RPCS for full
1689 * enablement.
1690 */
1691 if (INTEL_INFO(dev)->has_slice_pg) {
1692 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1693 rpcs |= INTEL_INFO(dev)->slice_total <<
1694 GEN8_RPCS_S_CNT_SHIFT;
1695 rpcs |= GEN8_RPCS_ENABLE;
1696 }
1697
1698 if (INTEL_INFO(dev)->has_subslice_pg) {
1699 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1700 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1701 GEN8_RPCS_SS_CNT_SHIFT;
1702 rpcs |= GEN8_RPCS_ENABLE;
1703 }
1704
1705 if (INTEL_INFO(dev)->has_eu_pg) {
1706 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1707 GEN8_RPCS_EU_MIN_SHIFT;
1708 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1709 GEN8_RPCS_EU_MAX_SHIFT;
1710 rpcs |= GEN8_RPCS_ENABLE;
1711 }
1712
1713 return rpcs;
1714 }
1715
1716 static int
1717 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1718 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1719 {
1720 struct drm_device *dev = ring->dev;
1721 struct drm_i915_private *dev_priv = dev->dev_private;
1722 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1723 struct page *page;
1724 uint32_t *reg_state;
1725 int ret;
1726
1727 if (!ppgtt)
1728 ppgtt = dev_priv->mm.aliasing_ppgtt;
1729
1730 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1731 if (ret) {
1732 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1733 return ret;
1734 }
1735
1736 ret = i915_gem_object_get_pages(ctx_obj);
1737 if (ret) {
1738 DRM_DEBUG_DRIVER("Could not get object pages\n");
1739 return ret;
1740 }
1741
1742 i915_gem_object_pin_pages(ctx_obj);
1743
1744 /* The second page of the context object contains some fields which must
1745 * be set up prior to the first execution. */
1746 page = i915_gem_object_get_page(ctx_obj, 1);
1747 reg_state = kmap_atomic(page);
1748
1749 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1750 * commands followed by (reg, value) pairs. The values we are setting here are
1751 * only for the first context restore: on a subsequent save, the GPU will
1752 * recreate this batchbuffer with new values (including all the missing
1753 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1754 if (ring->id == RCS)
1755 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1756 else
1757 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1758 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1759 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1760 reg_state[CTX_CONTEXT_CONTROL+1] =
1761 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1762 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1763 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1764 reg_state[CTX_RING_HEAD+1] = 0;
1765 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1766 reg_state[CTX_RING_TAIL+1] = 0;
1767 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1768 /* Ring buffer start address is not known until the buffer is pinned.
1769 * It is written to the context image in execlists_update_context()
1770 */
1771 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1772 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1773 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1774 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1775 reg_state[CTX_BB_HEAD_U+1] = 0;
1776 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1777 reg_state[CTX_BB_HEAD_L+1] = 0;
1778 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1779 reg_state[CTX_BB_STATE+1] = (1<<5);
1780 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1781 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1782 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1783 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1784 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1785 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1786 if (ring->id == RCS) {
1787 /* TODO: according to BSpec, the register state context
1788 * for CHV does not have these. OTOH, these registers do
1789 * exist in CHV. I'm waiting for a clarification */
1790 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1791 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1792 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1793 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1794 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1795 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1796 }
1797 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1798 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1799 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1800 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1801 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1802 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1803 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1804 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1805 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1806 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1807 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1808 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1809 reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1810 reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1811 reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1812 reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1813 reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1814 reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1815 reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1816 reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1817 if (ring->id == RCS) {
1818 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1819 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1820 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1821 }
1822
1823 kunmap_atomic(reg_state);
1824
1825 ctx_obj->dirty = 1;
1826 set_page_dirty(page);
1827 i915_gem_object_unpin_pages(ctx_obj);
1828
1829 return 0;
1830 }
1831
1832 /**
1833 * intel_lr_context_free() - free the LRC specific bits of a context
1834 * @ctx: the LR context to free.
1835 *
1836 * The real context freeing is done in i915_gem_context_free: this only
1837 * takes care of the bits that are LRC related: the per-engine backing
1838 * objects and the logical ringbuffer.
1839 */
1840 void intel_lr_context_free(struct intel_context *ctx)
1841 {
1842 int i;
1843
1844 for (i = 0; i < I915_NUM_RINGS; i++) {
1845 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1846
1847 if (ctx_obj) {
1848 struct intel_ringbuffer *ringbuf =
1849 ctx->engine[i].ringbuf;
1850 struct intel_engine_cs *ring = ringbuf->ring;
1851
1852 if (ctx == ring->default_context) {
1853 intel_unpin_ringbuffer_obj(ringbuf);
1854 i915_gem_object_ggtt_unpin(ctx_obj);
1855 }
1856 WARN_ON(ctx->engine[ring->id].pin_count);
1857 intel_destroy_ringbuffer_obj(ringbuf);
1858 kfree(ringbuf);
1859 drm_gem_object_unreference(&ctx_obj->base);
1860 }
1861 }
1862 }
1863
1864 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1865 {
1866 int ret = 0;
1867
1868 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1869
1870 switch (ring->id) {
1871 case RCS:
1872 if (INTEL_INFO(ring->dev)->gen >= 9)
1873 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1874 else
1875 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1876 break;
1877 case VCS:
1878 case BCS:
1879 case VECS:
1880 case VCS2:
1881 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1882 break;
1883 }
1884
1885 return ret;
1886 }
1887
1888 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1889 struct drm_i915_gem_object *default_ctx_obj)
1890 {
1891 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1892
1893 /* The status page is offset 0 from the default context object
1894 * in LRC mode. */
1895 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1896 ring->status_page.page_addr =
1897 kmap(sg_page(default_ctx_obj->pages->sgl));
1898 ring->status_page.obj = default_ctx_obj;
1899
1900 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1901 (u32)ring->status_page.gfx_addr);
1902 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1903 }
1904
1905 /**
1906 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1907 * @ctx: LR context to create.
1908 * @ring: engine to be used with the context.
1909 *
1910 * This function can be called more than once, with different engines, if we plan
1911 * to use the context with them. The context backing objects and the ringbuffers
1912 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1913 * the creation is a deferred call: it's better to make sure first that we need to use
1914 * a given ring with the context.
1915 *
1916 * Return: non-zero on error.
1917 */
1918 int intel_lr_context_deferred_create(struct intel_context *ctx,
1919 struct intel_engine_cs *ring)
1920 {
1921 const bool is_global_default_ctx = (ctx == ring->default_context);
1922 struct drm_device *dev = ring->dev;
1923 struct drm_i915_gem_object *ctx_obj;
1924 uint32_t context_size;
1925 struct intel_ringbuffer *ringbuf;
1926 int ret;
1927
1928 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1929 WARN_ON(ctx->engine[ring->id].state);
1930
1931 context_size = round_up(get_lr_context_size(ring), 4096);
1932
1933 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1934 if (IS_ERR(ctx_obj)) {
1935 ret = PTR_ERR(ctx_obj);
1936 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1937 return ret;
1938 }
1939
1940 if (is_global_default_ctx) {
1941 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1942 if (ret) {
1943 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1944 ret);
1945 drm_gem_object_unreference(&ctx_obj->base);
1946 return ret;
1947 }
1948 }
1949
1950 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1951 if (!ringbuf) {
1952 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1953 ring->name);
1954 ret = -ENOMEM;
1955 goto error_unpin_ctx;
1956 }
1957
1958 ringbuf->ring = ring;
1959
1960 ringbuf->size = 32 * PAGE_SIZE;
1961 ringbuf->effective_size = ringbuf->size;
1962 ringbuf->head = 0;
1963 ringbuf->tail = 0;
1964 ringbuf->last_retired_head = -1;
1965 intel_ring_update_space(ringbuf);
1966
1967 if (ringbuf->obj == NULL) {
1968 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1969 if (ret) {
1970 DRM_DEBUG_DRIVER(
1971 "Failed to allocate ringbuffer obj %s: %d\n",
1972 ring->name, ret);
1973 goto error_free_rbuf;
1974 }
1975
1976 if (is_global_default_ctx) {
1977 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1978 if (ret) {
1979 DRM_ERROR(
1980 "Failed to pin and map ringbuffer %s: %d\n",
1981 ring->name, ret);
1982 goto error_destroy_rbuf;
1983 }
1984 }
1985
1986 }
1987
1988 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1989 if (ret) {
1990 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1991 goto error;
1992 }
1993
1994 ctx->engine[ring->id].ringbuf = ringbuf;
1995 ctx->engine[ring->id].state = ctx_obj;
1996
1997 if (ctx == ring->default_context)
1998 lrc_setup_hardware_status_page(ring, ctx_obj);
1999 else if (ring->id == RCS && !ctx->rcs_initialized) {
2000 if (ring->init_context) {
2001 ret = ring->init_context(ring, ctx);
2002 if (ret) {
2003 DRM_ERROR("ring init context: %d\n", ret);
2004 ctx->engine[ring->id].ringbuf = NULL;
2005 ctx->engine[ring->id].state = NULL;
2006 goto error;
2007 }
2008 }
2009
2010 ctx->rcs_initialized = true;
2011 }
2012
2013 return 0;
2014
2015 error:
2016 if (is_global_default_ctx)
2017 intel_unpin_ringbuffer_obj(ringbuf);
2018 error_destroy_rbuf:
2019 intel_destroy_ringbuffer_obj(ringbuf);
2020 error_free_rbuf:
2021 kfree(ringbuf);
2022 error_unpin_ctx:
2023 if (is_global_default_ctx)
2024 i915_gem_object_ggtt_unpin(ctx_obj);
2025 drm_gem_object_unreference(&ctx_obj->base);
2026 return ret;
2027 }
2028
2029 void intel_lr_context_reset(struct drm_device *dev,
2030 struct intel_context *ctx)
2031 {
2032 struct drm_i915_private *dev_priv = dev->dev_private;
2033 struct intel_engine_cs *ring;
2034 int i;
2035
2036 for_each_ring(ring, dev_priv, i) {
2037 struct drm_i915_gem_object *ctx_obj =
2038 ctx->engine[ring->id].state;
2039 struct intel_ringbuffer *ringbuf =
2040 ctx->engine[ring->id].ringbuf;
2041 uint32_t *reg_state;
2042 struct page *page;
2043
2044 if (!ctx_obj)
2045 continue;
2046
2047 if (i915_gem_object_get_pages(ctx_obj)) {
2048 WARN(1, "Failed get_pages for context obj\n");
2049 continue;
2050 }
2051 page = i915_gem_object_get_page(ctx_obj, 1);
2052 reg_state = kmap_atomic(page);
2053
2054 reg_state[CTX_RING_HEAD+1] = 0;
2055 reg_state[CTX_RING_TAIL+1] = 0;
2056
2057 kunmap_atomic(reg_state);
2058
2059 ringbuf->head = 0;
2060 ringbuf->tail = 0;
2061 }
2062 }
This page took 0.11834 seconds and 5 git commands to generate.