drm/modes: drop __drm_framebuffer_unregister.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211 ADVANCED_CONTEXT = 0,
212 LEGACY_32B_CONTEXT,
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
220 enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
228 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
229
230 static int intel_lr_context_pin(struct intel_context *ctx,
231 struct intel_engine_cs *engine);
232 static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
233 struct drm_i915_gem_object *default_ctx_obj);
234
235
236 /**
237 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
238 * @dev: DRM device.
239 * @enable_execlists: value of i915.enable_execlists module parameter.
240 *
241 * Only certain platforms support Execlists (the prerequisites being
242 * support for Logical Ring Contexts and Aliasing PPGTT or better).
243 *
244 * Return: 1 if Execlists is supported and has to be enabled.
245 */
246 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
247 {
248 WARN_ON(i915.enable_ppgtt == -1);
249
250 /* On platforms with execlist available, vGPU will only
251 * support execlist mode, no ring buffer mode.
252 */
253 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
254 return 1;
255
256 if (INTEL_INFO(dev)->gen >= 9)
257 return 1;
258
259 if (enable_execlists == 0)
260 return 0;
261
262 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
263 i915.use_mmio_flip >= 0)
264 return 1;
265
266 return 0;
267 }
268
269 static void
270 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
271 {
272 struct drm_device *dev = engine->dev;
273
274 if (IS_GEN8(dev) || IS_GEN9(dev))
275 engine->idle_lite_restore_wa = ~0;
276
277 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
278 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
279 (engine->id == VCS || engine->id == VCS2);
280
281 engine->ctx_desc_template = GEN8_CTX_VALID;
282 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
283 GEN8_CTX_ADDRESSING_MODE_SHIFT;
284 if (IS_GEN8(dev))
285 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
286 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
287
288 /* TODO: WaDisableLiteRestore when we start using semaphore
289 * signalling between Command Streamers */
290 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
291
292 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
293 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
294 if (engine->disable_lite_restore_wa)
295 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
296 }
297
298 /**
299 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
300 * descriptor for a pinned context
301 *
302 * @ctx: Context to work on
303 * @ring: Engine the descriptor will be used with
304 *
305 * The context descriptor encodes various attributes of a context,
306 * including its GTT address and some flags. Because it's fairly
307 * expensive to calculate, we'll just do it once and cache the result,
308 * which remains valid until the context is unpinned.
309 *
310 * This is what a descriptor looks like, from LSB to MSB:
311 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
312 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
313 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
314 * bits 52-63: reserved, may encode the engine ID (for GuC)
315 */
316 static void
317 intel_lr_context_descriptor_update(struct intel_context *ctx,
318 struct intel_engine_cs *engine)
319 {
320 uint64_t lrca, desc;
321
322 lrca = ctx->engine[engine->id].lrc_vma->node.start +
323 LRC_PPHWSP_PN * PAGE_SIZE;
324
325 desc = engine->ctx_desc_template; /* bits 0-11 */
326 desc |= lrca; /* bits 12-31 */
327 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
328
329 ctx->engine[engine->id].lrc_desc = desc;
330 }
331
332 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
333 struct intel_engine_cs *engine)
334 {
335 return ctx->engine[engine->id].lrc_desc;
336 }
337
338 /**
339 * intel_execlists_ctx_id() - get the Execlists Context ID
340 * @ctx: Context to get the ID for
341 * @ring: Engine to get the ID for
342 *
343 * Do not confuse with ctx->id! Unfortunately we have a name overload
344 * here: the old context ID we pass to userspace as a handler so that
345 * they can refer to a context, and the new context ID we pass to the
346 * ELSP so that the GPU can inform us of the context status via
347 * interrupts.
348 *
349 * The context ID is a portion of the context descriptor, so we can
350 * just extract the required part from the cached descriptor.
351 *
352 * Return: 20-bits globally unique context ID.
353 */
354 u32 intel_execlists_ctx_id(struct intel_context *ctx,
355 struct intel_engine_cs *engine)
356 {
357 return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
358 }
359
360 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
361 struct drm_i915_gem_request *rq1)
362 {
363
364 struct intel_engine_cs *engine = rq0->engine;
365 struct drm_device *dev = engine->dev;
366 struct drm_i915_private *dev_priv = dev->dev_private;
367 uint64_t desc[2];
368
369 if (rq1) {
370 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
371 rq1->elsp_submitted++;
372 } else {
373 desc[1] = 0;
374 }
375
376 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
377 rq0->elsp_submitted++;
378
379 /* You must always write both descriptors in the order below. */
380 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
381 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
382
383 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
384 /* The context is automatically loaded after the following */
385 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
386
387 /* ELSP is a wo register, use another nearby reg for posting */
388 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
389 }
390
391 static void
392 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
393 {
394 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
395 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
396 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
397 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
398 }
399
400 static void execlists_update_context(struct drm_i915_gem_request *rq)
401 {
402 struct intel_engine_cs *engine = rq->engine;
403 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
404 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
405
406 reg_state[CTX_RING_TAIL+1] = rq->tail;
407
408 /* True 32b PPGTT with dynamic page allocation: update PDP
409 * registers and point the unallocated PDPs to scratch page.
410 * PML4 is allocated during ppgtt init, so this is not needed
411 * in 48-bit mode.
412 */
413 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
414 execlists_update_context_pdps(ppgtt, reg_state);
415 }
416
417 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
418 struct drm_i915_gem_request *rq1)
419 {
420 struct drm_i915_private *dev_priv = rq0->i915;
421
422 execlists_update_context(rq0);
423
424 if (rq1)
425 execlists_update_context(rq1);
426
427 spin_lock_irq(&dev_priv->uncore.lock);
428 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
429
430 execlists_elsp_write(rq0, rq1);
431
432 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
433 spin_unlock_irq(&dev_priv->uncore.lock);
434 }
435
436 static void execlists_context_unqueue(struct intel_engine_cs *engine)
437 {
438 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
439 struct drm_i915_gem_request *cursor, *tmp;
440
441 assert_spin_locked(&engine->execlist_lock);
442
443 /*
444 * If irqs are not active generate a warning as batches that finish
445 * without the irqs may get lost and a GPU Hang may occur.
446 */
447 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
448
449 /* Try to read in pairs */
450 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
451 execlist_link) {
452 if (!req0) {
453 req0 = cursor;
454 } else if (req0->ctx == cursor->ctx) {
455 /* Same ctx: ignore first request, as second request
456 * will update tail past first request's workload */
457 cursor->elsp_submitted = req0->elsp_submitted;
458 list_move_tail(&req0->execlist_link,
459 &engine->execlist_retired_req_list);
460 req0 = cursor;
461 } else {
462 req1 = cursor;
463 WARN_ON(req1->elsp_submitted);
464 break;
465 }
466 }
467
468 if (unlikely(!req0))
469 return;
470
471 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
472 /*
473 * WaIdleLiteRestore: make sure we never cause a lite restore
474 * with HEAD==TAIL.
475 *
476 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
477 * resubmit the request. See gen8_emit_request() for where we
478 * prepare the padding after the end of the request.
479 */
480 struct intel_ringbuffer *ringbuf;
481
482 ringbuf = req0->ctx->engine[engine->id].ringbuf;
483 req0->tail += 8;
484 req0->tail &= ringbuf->size - 1;
485 }
486
487 execlists_submit_requests(req0, req1);
488 }
489
490 static unsigned int
491 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
492 {
493 struct drm_i915_gem_request *head_req;
494
495 assert_spin_locked(&engine->execlist_lock);
496
497 head_req = list_first_entry_or_null(&engine->execlist_queue,
498 struct drm_i915_gem_request,
499 execlist_link);
500
501 if (!head_req)
502 return 0;
503
504 if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
505 return 0;
506
507 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
508
509 if (--head_req->elsp_submitted > 0)
510 return 0;
511
512 list_move_tail(&head_req->execlist_link,
513 &engine->execlist_retired_req_list);
514
515 return 1;
516 }
517
518 static u32
519 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
520 u32 *context_id)
521 {
522 struct drm_i915_private *dev_priv = engine->dev->dev_private;
523 u32 status;
524
525 read_pointer %= GEN8_CSB_ENTRIES;
526
527 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
528
529 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
530 return 0;
531
532 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
533 read_pointer));
534
535 return status;
536 }
537
538 /**
539 * intel_lrc_irq_handler() - handle Context Switch interrupts
540 * @engine: Engine Command Streamer to handle.
541 *
542 * Check the unread Context Status Buffers and manage the submission of new
543 * contexts to the ELSP accordingly.
544 */
545 static void intel_lrc_irq_handler(unsigned long data)
546 {
547 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
548 struct drm_i915_private *dev_priv = engine->dev->dev_private;
549 u32 status_pointer;
550 unsigned int read_pointer, write_pointer;
551 u32 csb[GEN8_CSB_ENTRIES][2];
552 unsigned int csb_read = 0, i;
553 unsigned int submit_contexts = 0;
554
555 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
556
557 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
558
559 read_pointer = engine->next_context_status_buffer;
560 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
561 if (read_pointer > write_pointer)
562 write_pointer += GEN8_CSB_ENTRIES;
563
564 while (read_pointer < write_pointer) {
565 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
566 break;
567 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
568 &csb[csb_read][1]);
569 csb_read++;
570 }
571
572 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
573
574 /* Update the read pointer to the old write pointer. Manual ringbuffer
575 * management ftw </sarcasm> */
576 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
577 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
578 engine->next_context_status_buffer << 8));
579
580 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
581
582 spin_lock(&engine->execlist_lock);
583
584 for (i = 0; i < csb_read; i++) {
585 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
586 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
587 if (execlists_check_remove_request(engine, csb[i][1]))
588 WARN(1, "Lite Restored request removed from queue\n");
589 } else
590 WARN(1, "Preemption without Lite Restore\n");
591 }
592
593 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
594 GEN8_CTX_STATUS_ELEMENT_SWITCH))
595 submit_contexts +=
596 execlists_check_remove_request(engine, csb[i][1]);
597 }
598
599 if (submit_contexts) {
600 if (!engine->disable_lite_restore_wa ||
601 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
602 execlists_context_unqueue(engine);
603 }
604
605 spin_unlock(&engine->execlist_lock);
606
607 if (unlikely(submit_contexts > 2))
608 DRM_ERROR("More than two context complete events?\n");
609 }
610
611 static void execlists_context_queue(struct drm_i915_gem_request *request)
612 {
613 struct intel_engine_cs *engine = request->engine;
614 struct drm_i915_gem_request *cursor;
615 int num_elements = 0;
616
617 if (request->ctx != request->i915->kernel_context)
618 intel_lr_context_pin(request->ctx, engine);
619
620 i915_gem_request_reference(request);
621
622 spin_lock_bh(&engine->execlist_lock);
623
624 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
625 if (++num_elements > 2)
626 break;
627
628 if (num_elements > 2) {
629 struct drm_i915_gem_request *tail_req;
630
631 tail_req = list_last_entry(&engine->execlist_queue,
632 struct drm_i915_gem_request,
633 execlist_link);
634
635 if (request->ctx == tail_req->ctx) {
636 WARN(tail_req->elsp_submitted != 0,
637 "More than 2 already-submitted reqs queued\n");
638 list_move_tail(&tail_req->execlist_link,
639 &engine->execlist_retired_req_list);
640 }
641 }
642
643 list_add_tail(&request->execlist_link, &engine->execlist_queue);
644 if (num_elements == 0)
645 execlists_context_unqueue(engine);
646
647 spin_unlock_bh(&engine->execlist_lock);
648 }
649
650 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
651 {
652 struct intel_engine_cs *engine = req->engine;
653 uint32_t flush_domains;
654 int ret;
655
656 flush_domains = 0;
657 if (engine->gpu_caches_dirty)
658 flush_domains = I915_GEM_GPU_DOMAINS;
659
660 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
661 if (ret)
662 return ret;
663
664 engine->gpu_caches_dirty = false;
665 return 0;
666 }
667
668 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
669 struct list_head *vmas)
670 {
671 const unsigned other_rings = ~intel_engine_flag(req->engine);
672 struct i915_vma *vma;
673 uint32_t flush_domains = 0;
674 bool flush_chipset = false;
675 int ret;
676
677 list_for_each_entry(vma, vmas, exec_list) {
678 struct drm_i915_gem_object *obj = vma->obj;
679
680 if (obj->active & other_rings) {
681 ret = i915_gem_object_sync(obj, req->engine, &req);
682 if (ret)
683 return ret;
684 }
685
686 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
687 flush_chipset |= i915_gem_clflush_object(obj, false);
688
689 flush_domains |= obj->base.write_domain;
690 }
691
692 if (flush_domains & I915_GEM_DOMAIN_GTT)
693 wmb();
694
695 /* Unconditionally invalidate gpu caches and ensure that we do flush
696 * any residual writes from the previous batch.
697 */
698 return logical_ring_invalidate_all_caches(req);
699 }
700
701 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
702 {
703 int ret = 0;
704
705 request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
706
707 if (i915.enable_guc_submission) {
708 /*
709 * Check that the GuC has space for the request before
710 * going any further, as the i915_add_request() call
711 * later on mustn't fail ...
712 */
713 struct intel_guc *guc = &request->i915->guc;
714
715 ret = i915_guc_wq_check_space(guc->execbuf_client);
716 if (ret)
717 return ret;
718 }
719
720 if (request->ctx != request->i915->kernel_context)
721 ret = intel_lr_context_pin(request->ctx, request->engine);
722
723 return ret;
724 }
725
726 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
727 int bytes)
728 {
729 struct intel_ringbuffer *ringbuf = req->ringbuf;
730 struct intel_engine_cs *engine = req->engine;
731 struct drm_i915_gem_request *target;
732 unsigned space;
733 int ret;
734
735 if (intel_ring_space(ringbuf) >= bytes)
736 return 0;
737
738 /* The whole point of reserving space is to not wait! */
739 WARN_ON(ringbuf->reserved_in_use);
740
741 list_for_each_entry(target, &engine->request_list, list) {
742 /*
743 * The request queue is per-engine, so can contain requests
744 * from multiple ringbuffers. Here, we must ignore any that
745 * aren't from the ringbuffer we're considering.
746 */
747 if (target->ringbuf != ringbuf)
748 continue;
749
750 /* Would completion of this request free enough space? */
751 space = __intel_ring_space(target->postfix, ringbuf->tail,
752 ringbuf->size);
753 if (space >= bytes)
754 break;
755 }
756
757 if (WARN_ON(&target->list == &engine->request_list))
758 return -ENOSPC;
759
760 ret = i915_wait_request(target);
761 if (ret)
762 return ret;
763
764 ringbuf->space = space;
765 return 0;
766 }
767
768 /*
769 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
770 * @request: Request to advance the logical ringbuffer of.
771 *
772 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
773 * really happens during submission is that the context and current tail will be placed
774 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
775 * point, the tail *inside* the context is updated and the ELSP written to.
776 */
777 static int
778 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
779 {
780 struct intel_ringbuffer *ringbuf = request->ringbuf;
781 struct drm_i915_private *dev_priv = request->i915;
782 struct intel_engine_cs *engine = request->engine;
783
784 intel_logical_ring_advance(ringbuf);
785 request->tail = ringbuf->tail;
786
787 /*
788 * Here we add two extra NOOPs as padding to avoid
789 * lite restore of a context with HEAD==TAIL.
790 *
791 * Caller must reserve WA_TAIL_DWORDS for us!
792 */
793 intel_logical_ring_emit(ringbuf, MI_NOOP);
794 intel_logical_ring_emit(ringbuf, MI_NOOP);
795 intel_logical_ring_advance(ringbuf);
796
797 if (intel_engine_stopped(engine))
798 return 0;
799
800 if (engine->last_context != request->ctx) {
801 if (engine->last_context)
802 intel_lr_context_unpin(engine->last_context, engine);
803 if (request->ctx != request->i915->kernel_context) {
804 intel_lr_context_pin(request->ctx, engine);
805 engine->last_context = request->ctx;
806 } else {
807 engine->last_context = NULL;
808 }
809 }
810
811 if (dev_priv->guc.execbuf_client)
812 i915_guc_submit(dev_priv->guc.execbuf_client, request);
813 else
814 execlists_context_queue(request);
815
816 return 0;
817 }
818
819 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
820 {
821 uint32_t __iomem *virt;
822 int rem = ringbuf->size - ringbuf->tail;
823
824 virt = ringbuf->virtual_start + ringbuf->tail;
825 rem /= 4;
826 while (rem--)
827 iowrite32(MI_NOOP, virt++);
828
829 ringbuf->tail = 0;
830 intel_ring_update_space(ringbuf);
831 }
832
833 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
834 {
835 struct intel_ringbuffer *ringbuf = req->ringbuf;
836 int remain_usable = ringbuf->effective_size - ringbuf->tail;
837 int remain_actual = ringbuf->size - ringbuf->tail;
838 int ret, total_bytes, wait_bytes = 0;
839 bool need_wrap = false;
840
841 if (ringbuf->reserved_in_use)
842 total_bytes = bytes;
843 else
844 total_bytes = bytes + ringbuf->reserved_size;
845
846 if (unlikely(bytes > remain_usable)) {
847 /*
848 * Not enough space for the basic request. So need to flush
849 * out the remainder and then wait for base + reserved.
850 */
851 wait_bytes = remain_actual + total_bytes;
852 need_wrap = true;
853 } else {
854 if (unlikely(total_bytes > remain_usable)) {
855 /*
856 * The base request will fit but the reserved space
857 * falls off the end. So don't need an immediate wrap
858 * and only need to effectively wait for the reserved
859 * size space from the start of ringbuffer.
860 */
861 wait_bytes = remain_actual + ringbuf->reserved_size;
862 } else if (total_bytes > ringbuf->space) {
863 /* No wrapping required, just waiting. */
864 wait_bytes = total_bytes;
865 }
866 }
867
868 if (wait_bytes) {
869 ret = logical_ring_wait_for_space(req, wait_bytes);
870 if (unlikely(ret))
871 return ret;
872
873 if (need_wrap)
874 __wrap_ring_buffer(ringbuf);
875 }
876
877 return 0;
878 }
879
880 /**
881 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
882 *
883 * @req: The request to start some new work for
884 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
885 *
886 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
887 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
888 * and also preallocates a request (every workload submission is still mediated through
889 * requests, same as it did with legacy ringbuffer submission).
890 *
891 * Return: non-zero if the ringbuffer is not ready to be written to.
892 */
893 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
894 {
895 struct drm_i915_private *dev_priv;
896 int ret;
897
898 WARN_ON(req == NULL);
899 dev_priv = req->i915;
900
901 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
902 dev_priv->mm.interruptible);
903 if (ret)
904 return ret;
905
906 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
907 if (ret)
908 return ret;
909
910 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
911 return 0;
912 }
913
914 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
915 {
916 /*
917 * The first call merely notes the reserve request and is common for
918 * all back ends. The subsequent localised _begin() call actually
919 * ensures that the reservation is available. Without the begin, if
920 * the request creator immediately submitted the request without
921 * adding any commands to it then there might not actually be
922 * sufficient room for the submission commands.
923 */
924 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
925
926 return intel_logical_ring_begin(request, 0);
927 }
928
929 /**
930 * execlists_submission() - submit a batchbuffer for execution, Execlists style
931 * @dev: DRM device.
932 * @file: DRM file.
933 * @ring: Engine Command Streamer to submit to.
934 * @ctx: Context to employ for this submission.
935 * @args: execbuffer call arguments.
936 * @vmas: list of vmas.
937 * @batch_obj: the batchbuffer to submit.
938 * @exec_start: batchbuffer start virtual address pointer.
939 * @dispatch_flags: translated execbuffer call flags.
940 *
941 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
942 * away the submission details of the execbuffer ioctl call.
943 *
944 * Return: non-zero if the submission fails.
945 */
946 int intel_execlists_submission(struct i915_execbuffer_params *params,
947 struct drm_i915_gem_execbuffer2 *args,
948 struct list_head *vmas)
949 {
950 struct drm_device *dev = params->dev;
951 struct intel_engine_cs *engine = params->engine;
952 struct drm_i915_private *dev_priv = dev->dev_private;
953 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
954 u64 exec_start;
955 int instp_mode;
956 u32 instp_mask;
957 int ret;
958
959 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
960 instp_mask = I915_EXEC_CONSTANTS_MASK;
961 switch (instp_mode) {
962 case I915_EXEC_CONSTANTS_REL_GENERAL:
963 case I915_EXEC_CONSTANTS_ABSOLUTE:
964 case I915_EXEC_CONSTANTS_REL_SURFACE:
965 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
966 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
967 return -EINVAL;
968 }
969
970 if (instp_mode != dev_priv->relative_constants_mode) {
971 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
972 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
973 return -EINVAL;
974 }
975
976 /* The HW changed the meaning on this bit on gen6 */
977 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
978 }
979 break;
980 default:
981 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
982 return -EINVAL;
983 }
984
985 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
986 DRM_DEBUG("sol reset is gen7 only\n");
987 return -EINVAL;
988 }
989
990 ret = execlists_move_to_gpu(params->request, vmas);
991 if (ret)
992 return ret;
993
994 if (engine == &dev_priv->engine[RCS] &&
995 instp_mode != dev_priv->relative_constants_mode) {
996 ret = intel_logical_ring_begin(params->request, 4);
997 if (ret)
998 return ret;
999
1000 intel_logical_ring_emit(ringbuf, MI_NOOP);
1001 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
1002 intel_logical_ring_emit_reg(ringbuf, INSTPM);
1003 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
1004 intel_logical_ring_advance(ringbuf);
1005
1006 dev_priv->relative_constants_mode = instp_mode;
1007 }
1008
1009 exec_start = params->batch_obj_vm_offset +
1010 args->batch_start_offset;
1011
1012 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1013 if (ret)
1014 return ret;
1015
1016 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1017
1018 i915_gem_execbuffer_move_to_active(vmas, params->request);
1019 i915_gem_execbuffer_retire_commands(params);
1020
1021 return 0;
1022 }
1023
1024 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
1025 {
1026 struct drm_i915_gem_request *req, *tmp;
1027 struct list_head retired_list;
1028
1029 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1030 if (list_empty(&engine->execlist_retired_req_list))
1031 return;
1032
1033 INIT_LIST_HEAD(&retired_list);
1034 spin_lock_bh(&engine->execlist_lock);
1035 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1036 spin_unlock_bh(&engine->execlist_lock);
1037
1038 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1039 struct intel_context *ctx = req->ctx;
1040 struct drm_i915_gem_object *ctx_obj =
1041 ctx->engine[engine->id].state;
1042
1043 if (ctx_obj && (ctx != req->i915->kernel_context))
1044 intel_lr_context_unpin(ctx, engine);
1045
1046 list_del(&req->execlist_link);
1047 i915_gem_request_unreference(req);
1048 }
1049 }
1050
1051 void intel_logical_ring_stop(struct intel_engine_cs *engine)
1052 {
1053 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1054 int ret;
1055
1056 if (!intel_engine_initialized(engine))
1057 return;
1058
1059 ret = intel_engine_idle(engine);
1060 if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
1061 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1062 engine->name, ret);
1063
1064 /* TODO: Is this correct with Execlists enabled? */
1065 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
1066 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
1067 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
1068 return;
1069 }
1070 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
1071 }
1072
1073 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1074 {
1075 struct intel_engine_cs *engine = req->engine;
1076 int ret;
1077
1078 if (!engine->gpu_caches_dirty)
1079 return 0;
1080
1081 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1082 if (ret)
1083 return ret;
1084
1085 engine->gpu_caches_dirty = false;
1086 return 0;
1087 }
1088
1089 static int intel_lr_context_do_pin(struct intel_context *ctx,
1090 struct intel_engine_cs *engine)
1091 {
1092 struct drm_device *dev = engine->dev;
1093 struct drm_i915_private *dev_priv = dev->dev_private;
1094 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1095 struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
1096 struct page *lrc_state_page;
1097 uint32_t *lrc_reg_state;
1098 int ret;
1099
1100 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1101
1102 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1103 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1104 if (ret)
1105 return ret;
1106
1107 lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1108 if (WARN_ON(!lrc_state_page)) {
1109 ret = -ENODEV;
1110 goto unpin_ctx_obj;
1111 }
1112
1113 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
1114 if (ret)
1115 goto unpin_ctx_obj;
1116
1117 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1118 intel_lr_context_descriptor_update(ctx, engine);
1119 lrc_reg_state = kmap(lrc_state_page);
1120 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1121 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
1122 ctx_obj->dirty = true;
1123
1124 /* Invalidate GuC TLB. */
1125 if (i915.enable_guc_submission)
1126 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1127
1128 return ret;
1129
1130 unpin_ctx_obj:
1131 i915_gem_object_ggtt_unpin(ctx_obj);
1132
1133 return ret;
1134 }
1135
1136 static int intel_lr_context_pin(struct intel_context *ctx,
1137 struct intel_engine_cs *engine)
1138 {
1139 int ret = 0;
1140
1141 if (ctx->engine[engine->id].pin_count++ == 0) {
1142 ret = intel_lr_context_do_pin(ctx, engine);
1143 if (ret)
1144 goto reset_pin_count;
1145
1146 i915_gem_context_reference(ctx);
1147 }
1148 return ret;
1149
1150 reset_pin_count:
1151 ctx->engine[engine->id].pin_count = 0;
1152 return ret;
1153 }
1154
1155 void intel_lr_context_unpin(struct intel_context *ctx,
1156 struct intel_engine_cs *engine)
1157 {
1158 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1159
1160 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1161 if (--ctx->engine[engine->id].pin_count == 0) {
1162 kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
1163 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1164 i915_gem_object_ggtt_unpin(ctx_obj);
1165 ctx->engine[engine->id].lrc_vma = NULL;
1166 ctx->engine[engine->id].lrc_desc = 0;
1167 ctx->engine[engine->id].lrc_reg_state = NULL;
1168
1169 i915_gem_context_unreference(ctx);
1170 }
1171 }
1172
1173 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1174 {
1175 int ret, i;
1176 struct intel_engine_cs *engine = req->engine;
1177 struct intel_ringbuffer *ringbuf = req->ringbuf;
1178 struct drm_device *dev = engine->dev;
1179 struct drm_i915_private *dev_priv = dev->dev_private;
1180 struct i915_workarounds *w = &dev_priv->workarounds;
1181
1182 if (w->count == 0)
1183 return 0;
1184
1185 engine->gpu_caches_dirty = true;
1186 ret = logical_ring_flush_all_caches(req);
1187 if (ret)
1188 return ret;
1189
1190 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1191 if (ret)
1192 return ret;
1193
1194 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1195 for (i = 0; i < w->count; i++) {
1196 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1197 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1198 }
1199 intel_logical_ring_emit(ringbuf, MI_NOOP);
1200
1201 intel_logical_ring_advance(ringbuf);
1202
1203 engine->gpu_caches_dirty = true;
1204 ret = logical_ring_flush_all_caches(req);
1205 if (ret)
1206 return ret;
1207
1208 return 0;
1209 }
1210
1211 #define wa_ctx_emit(batch, index, cmd) \
1212 do { \
1213 int __index = (index)++; \
1214 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1215 return -ENOSPC; \
1216 } \
1217 batch[__index] = (cmd); \
1218 } while (0)
1219
1220 #define wa_ctx_emit_reg(batch, index, reg) \
1221 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1222
1223 /*
1224 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1225 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1226 * but there is a slight complication as this is applied in WA batch where the
1227 * values are only initialized once so we cannot take register value at the
1228 * beginning and reuse it further; hence we save its value to memory, upload a
1229 * constant value with bit21 set and then we restore it back with the saved value.
1230 * To simplify the WA, a constant value is formed by using the default value
1231 * of this register. This shouldn't be a problem because we are only modifying
1232 * it for a short period and this batch in non-premptible. We can ofcourse
1233 * use additional instructions that read the actual value of the register
1234 * at that time and set our bit of interest but it makes the WA complicated.
1235 *
1236 * This WA is also required for Gen9 so extracting as a function avoids
1237 * code duplication.
1238 */
1239 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1240 uint32_t *const batch,
1241 uint32_t index)
1242 {
1243 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1244
1245 /*
1246 * WaDisableLSQCROPERFforOCL:skl
1247 * This WA is implemented in skl_init_clock_gating() but since
1248 * this batch updates GEN8_L3SQCREG4 with default value we need to
1249 * set this bit here to retain the WA during flush.
1250 */
1251 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1252 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1253
1254 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1255 MI_SRM_LRM_GLOBAL_GTT));
1256 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1257 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1258 wa_ctx_emit(batch, index, 0);
1259
1260 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1261 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1262 wa_ctx_emit(batch, index, l3sqc4_flush);
1263
1264 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1265 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1266 PIPE_CONTROL_DC_FLUSH_ENABLE));
1267 wa_ctx_emit(batch, index, 0);
1268 wa_ctx_emit(batch, index, 0);
1269 wa_ctx_emit(batch, index, 0);
1270 wa_ctx_emit(batch, index, 0);
1271
1272 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1273 MI_SRM_LRM_GLOBAL_GTT));
1274 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1275 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1276 wa_ctx_emit(batch, index, 0);
1277
1278 return index;
1279 }
1280
1281 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1282 uint32_t offset,
1283 uint32_t start_alignment)
1284 {
1285 return wa_ctx->offset = ALIGN(offset, start_alignment);
1286 }
1287
1288 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1289 uint32_t offset,
1290 uint32_t size_alignment)
1291 {
1292 wa_ctx->size = offset - wa_ctx->offset;
1293
1294 WARN(wa_ctx->size % size_alignment,
1295 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1296 wa_ctx->size, size_alignment);
1297 return 0;
1298 }
1299
1300 /**
1301 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1302 *
1303 * @ring: only applicable for RCS
1304 * @wa_ctx: structure representing wa_ctx
1305 * offset: specifies start of the batch, should be cache-aligned. This is updated
1306 * with the offset value received as input.
1307 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1308 * @batch: page in which WA are loaded
1309 * @offset: This field specifies the start of the batch, it should be
1310 * cache-aligned otherwise it is adjusted accordingly.
1311 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1312 * initialized at the beginning and shared across all contexts but this field
1313 * helps us to have multiple batches at different offsets and select them based
1314 * on a criteria. At the moment this batch always start at the beginning of the page
1315 * and at this point we don't have multiple wa_ctx batch buffers.
1316 *
1317 * The number of WA applied are not known at the beginning; we use this field
1318 * to return the no of DWORDS written.
1319 *
1320 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1321 * so it adds NOOPs as padding to make it cacheline aligned.
1322 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1323 * makes a complete batch buffer.
1324 *
1325 * Return: non-zero if we exceed the PAGE_SIZE limit.
1326 */
1327
1328 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1329 struct i915_wa_ctx_bb *wa_ctx,
1330 uint32_t *const batch,
1331 uint32_t *offset)
1332 {
1333 uint32_t scratch_addr;
1334 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1335
1336 /* WaDisableCtxRestoreArbitration:bdw,chv */
1337 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1338
1339 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1340 if (IS_BROADWELL(engine->dev)) {
1341 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1342 if (rc < 0)
1343 return rc;
1344 index = rc;
1345 }
1346
1347 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1348 /* Actual scratch location is at 128 bytes offset */
1349 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1350
1351 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1352 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1353 PIPE_CONTROL_GLOBAL_GTT_IVB |
1354 PIPE_CONTROL_CS_STALL |
1355 PIPE_CONTROL_QW_WRITE));
1356 wa_ctx_emit(batch, index, scratch_addr);
1357 wa_ctx_emit(batch, index, 0);
1358 wa_ctx_emit(batch, index, 0);
1359 wa_ctx_emit(batch, index, 0);
1360
1361 /* Pad to end of cacheline */
1362 while (index % CACHELINE_DWORDS)
1363 wa_ctx_emit(batch, index, MI_NOOP);
1364
1365 /*
1366 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1367 * execution depends on the length specified in terms of cache lines
1368 * in the register CTX_RCS_INDIRECT_CTX
1369 */
1370
1371 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1372 }
1373
1374 /**
1375 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1376 *
1377 * @ring: only applicable for RCS
1378 * @wa_ctx: structure representing wa_ctx
1379 * offset: specifies start of the batch, should be cache-aligned.
1380 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1381 * @batch: page in which WA are loaded
1382 * @offset: This field specifies the start of this batch.
1383 * This batch is started immediately after indirect_ctx batch. Since we ensure
1384 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1385 *
1386 * The number of DWORDS written are returned using this field.
1387 *
1388 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1389 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1390 */
1391 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1392 struct i915_wa_ctx_bb *wa_ctx,
1393 uint32_t *const batch,
1394 uint32_t *offset)
1395 {
1396 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1397
1398 /* WaDisableCtxRestoreArbitration:bdw,chv */
1399 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1400
1401 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1402
1403 return wa_ctx_end(wa_ctx, *offset = index, 1);
1404 }
1405
1406 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1407 struct i915_wa_ctx_bb *wa_ctx,
1408 uint32_t *const batch,
1409 uint32_t *offset)
1410 {
1411 int ret;
1412 struct drm_device *dev = engine->dev;
1413 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1414
1415 /* WaDisableCtxRestoreArbitration:skl,bxt */
1416 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1417 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1418 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1419
1420 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1421 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1422 if (ret < 0)
1423 return ret;
1424 index = ret;
1425
1426 /* Pad to end of cacheline */
1427 while (index % CACHELINE_DWORDS)
1428 wa_ctx_emit(batch, index, MI_NOOP);
1429
1430 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1431 }
1432
1433 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1434 struct i915_wa_ctx_bb *wa_ctx,
1435 uint32_t *const batch,
1436 uint32_t *offset)
1437 {
1438 struct drm_device *dev = engine->dev;
1439 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1440
1441 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1442 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1443 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1444 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1445 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1446 wa_ctx_emit(batch, index,
1447 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1448 wa_ctx_emit(batch, index, MI_NOOP);
1449 }
1450
1451 /* WaClearTdlStateAckDirtyBits:bxt */
1452 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1453 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1454
1455 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1456 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1457
1458 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1459 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1460
1461 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1462 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1463
1464 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1465 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1466 wa_ctx_emit(batch, index, 0x0);
1467 wa_ctx_emit(batch, index, MI_NOOP);
1468 }
1469
1470 /* WaDisableCtxRestoreArbitration:skl,bxt */
1471 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1472 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1473 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1474
1475 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1476
1477 return wa_ctx_end(wa_ctx, *offset = index, 1);
1478 }
1479
1480 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1481 {
1482 int ret;
1483
1484 engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1485 PAGE_ALIGN(size));
1486 if (!engine->wa_ctx.obj) {
1487 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1488 return -ENOMEM;
1489 }
1490
1491 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1492 if (ret) {
1493 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1494 ret);
1495 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1496 return ret;
1497 }
1498
1499 return 0;
1500 }
1501
1502 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1503 {
1504 if (engine->wa_ctx.obj) {
1505 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1506 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1507 engine->wa_ctx.obj = NULL;
1508 }
1509 }
1510
1511 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1512 {
1513 int ret;
1514 uint32_t *batch;
1515 uint32_t offset;
1516 struct page *page;
1517 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1518
1519 WARN_ON(engine->id != RCS);
1520
1521 /* update this when WA for higher Gen are added */
1522 if (INTEL_INFO(engine->dev)->gen > 9) {
1523 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1524 INTEL_INFO(engine->dev)->gen);
1525 return 0;
1526 }
1527
1528 /* some WA perform writes to scratch page, ensure it is valid */
1529 if (engine->scratch.obj == NULL) {
1530 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1531 return -EINVAL;
1532 }
1533
1534 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1535 if (ret) {
1536 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1537 return ret;
1538 }
1539
1540 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1541 batch = kmap_atomic(page);
1542 offset = 0;
1543
1544 if (INTEL_INFO(engine->dev)->gen == 8) {
1545 ret = gen8_init_indirectctx_bb(engine,
1546 &wa_ctx->indirect_ctx,
1547 batch,
1548 &offset);
1549 if (ret)
1550 goto out;
1551
1552 ret = gen8_init_perctx_bb(engine,
1553 &wa_ctx->per_ctx,
1554 batch,
1555 &offset);
1556 if (ret)
1557 goto out;
1558 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1559 ret = gen9_init_indirectctx_bb(engine,
1560 &wa_ctx->indirect_ctx,
1561 batch,
1562 &offset);
1563 if (ret)
1564 goto out;
1565
1566 ret = gen9_init_perctx_bb(engine,
1567 &wa_ctx->per_ctx,
1568 batch,
1569 &offset);
1570 if (ret)
1571 goto out;
1572 }
1573
1574 out:
1575 kunmap_atomic(batch);
1576 if (ret)
1577 lrc_destroy_wa_ctx_obj(engine);
1578
1579 return ret;
1580 }
1581
1582 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1583 {
1584 struct drm_device *dev = engine->dev;
1585 struct drm_i915_private *dev_priv = dev->dev_private;
1586 unsigned int next_context_status_buffer_hw;
1587
1588 lrc_setup_hardware_status_page(engine,
1589 dev_priv->kernel_context->engine[engine->id].state);
1590
1591 I915_WRITE_IMR(engine,
1592 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1593 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1594
1595 I915_WRITE(RING_MODE_GEN7(engine),
1596 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1597 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1598 POSTING_READ(RING_MODE_GEN7(engine));
1599
1600 /*
1601 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1602 * zero, we need to read the write pointer from hardware and use its
1603 * value because "this register is power context save restored".
1604 * Effectively, these states have been observed:
1605 *
1606 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1607 * BDW | CSB regs not reset | CSB regs reset |
1608 * CHT | CSB regs not reset | CSB regs not reset |
1609 * SKL | ? | ? |
1610 * BXT | ? | ? |
1611 */
1612 next_context_status_buffer_hw =
1613 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1614
1615 /*
1616 * When the CSB registers are reset (also after power-up / gpu reset),
1617 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1618 * this special case, so the first element read is CSB[0].
1619 */
1620 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1621 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1622
1623 engine->next_context_status_buffer = next_context_status_buffer_hw;
1624 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1625
1626 intel_engine_init_hangcheck(engine);
1627
1628 return 0;
1629 }
1630
1631 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1632 {
1633 struct drm_device *dev = engine->dev;
1634 struct drm_i915_private *dev_priv = dev->dev_private;
1635 int ret;
1636
1637 ret = gen8_init_common_ring(engine);
1638 if (ret)
1639 return ret;
1640
1641 /* We need to disable the AsyncFlip performance optimisations in order
1642 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1643 * programmed to '1' on all products.
1644 *
1645 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1646 */
1647 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1648
1649 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1650
1651 return init_workarounds_ring(engine);
1652 }
1653
1654 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1655 {
1656 int ret;
1657
1658 ret = gen8_init_common_ring(engine);
1659 if (ret)
1660 return ret;
1661
1662 return init_workarounds_ring(engine);
1663 }
1664
1665 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1666 {
1667 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1668 struct intel_engine_cs *engine = req->engine;
1669 struct intel_ringbuffer *ringbuf = req->ringbuf;
1670 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1671 int i, ret;
1672
1673 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1674 if (ret)
1675 return ret;
1676
1677 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1678 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1679 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1680
1681 intel_logical_ring_emit_reg(ringbuf,
1682 GEN8_RING_PDP_UDW(engine, i));
1683 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1684 intel_logical_ring_emit_reg(ringbuf,
1685 GEN8_RING_PDP_LDW(engine, i));
1686 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1687 }
1688
1689 intel_logical_ring_emit(ringbuf, MI_NOOP);
1690 intel_logical_ring_advance(ringbuf);
1691
1692 return 0;
1693 }
1694
1695 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1696 u64 offset, unsigned dispatch_flags)
1697 {
1698 struct intel_ringbuffer *ringbuf = req->ringbuf;
1699 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1700 int ret;
1701
1702 /* Don't rely in hw updating PDPs, specially in lite-restore.
1703 * Ideally, we should set Force PD Restore in ctx descriptor,
1704 * but we can't. Force Restore would be a second option, but
1705 * it is unsafe in case of lite-restore (because the ctx is
1706 * not idle). PML4 is allocated during ppgtt init so this is
1707 * not needed in 48-bit.*/
1708 if (req->ctx->ppgtt &&
1709 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1710 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1711 !intel_vgpu_active(req->i915->dev)) {
1712 ret = intel_logical_ring_emit_pdps(req);
1713 if (ret)
1714 return ret;
1715 }
1716
1717 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1718 }
1719
1720 ret = intel_logical_ring_begin(req, 4);
1721 if (ret)
1722 return ret;
1723
1724 /* FIXME(BDW): Address space and security selectors. */
1725 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1726 (ppgtt<<8) |
1727 (dispatch_flags & I915_DISPATCH_RS ?
1728 MI_BATCH_RESOURCE_STREAMER : 0));
1729 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1730 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1731 intel_logical_ring_emit(ringbuf, MI_NOOP);
1732 intel_logical_ring_advance(ringbuf);
1733
1734 return 0;
1735 }
1736
1737 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1738 {
1739 struct drm_device *dev = engine->dev;
1740 struct drm_i915_private *dev_priv = dev->dev_private;
1741 unsigned long flags;
1742
1743 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1744 return false;
1745
1746 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1747 if (engine->irq_refcount++ == 0) {
1748 I915_WRITE_IMR(engine,
1749 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1750 POSTING_READ(RING_IMR(engine->mmio_base));
1751 }
1752 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1753
1754 return true;
1755 }
1756
1757 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1758 {
1759 struct drm_device *dev = engine->dev;
1760 struct drm_i915_private *dev_priv = dev->dev_private;
1761 unsigned long flags;
1762
1763 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1764 if (--engine->irq_refcount == 0) {
1765 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1766 POSTING_READ(RING_IMR(engine->mmio_base));
1767 }
1768 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1769 }
1770
1771 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1772 u32 invalidate_domains,
1773 u32 unused)
1774 {
1775 struct intel_ringbuffer *ringbuf = request->ringbuf;
1776 struct intel_engine_cs *engine = ringbuf->engine;
1777 struct drm_device *dev = engine->dev;
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 uint32_t cmd;
1780 int ret;
1781
1782 ret = intel_logical_ring_begin(request, 4);
1783 if (ret)
1784 return ret;
1785
1786 cmd = MI_FLUSH_DW + 1;
1787
1788 /* We always require a command barrier so that subsequent
1789 * commands, such as breadcrumb interrupts, are strictly ordered
1790 * wrt the contents of the write cache being flushed to memory
1791 * (and thus being coherent from the CPU).
1792 */
1793 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1794
1795 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1796 cmd |= MI_INVALIDATE_TLB;
1797 if (engine == &dev_priv->engine[VCS])
1798 cmd |= MI_INVALIDATE_BSD;
1799 }
1800
1801 intel_logical_ring_emit(ringbuf, cmd);
1802 intel_logical_ring_emit(ringbuf,
1803 I915_GEM_HWS_SCRATCH_ADDR |
1804 MI_FLUSH_DW_USE_GTT);
1805 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1806 intel_logical_ring_emit(ringbuf, 0); /* value */
1807 intel_logical_ring_advance(ringbuf);
1808
1809 return 0;
1810 }
1811
1812 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1813 u32 invalidate_domains,
1814 u32 flush_domains)
1815 {
1816 struct intel_ringbuffer *ringbuf = request->ringbuf;
1817 struct intel_engine_cs *engine = ringbuf->engine;
1818 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1819 bool vf_flush_wa = false;
1820 u32 flags = 0;
1821 int ret;
1822
1823 flags |= PIPE_CONTROL_CS_STALL;
1824
1825 if (flush_domains) {
1826 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1827 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1828 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1829 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1830 }
1831
1832 if (invalidate_domains) {
1833 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1834 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1835 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1836 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1837 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1838 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1839 flags |= PIPE_CONTROL_QW_WRITE;
1840 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1841
1842 /*
1843 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1844 * pipe control.
1845 */
1846 if (IS_GEN9(engine->dev))
1847 vf_flush_wa = true;
1848 }
1849
1850 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1851 if (ret)
1852 return ret;
1853
1854 if (vf_flush_wa) {
1855 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1856 intel_logical_ring_emit(ringbuf, 0);
1857 intel_logical_ring_emit(ringbuf, 0);
1858 intel_logical_ring_emit(ringbuf, 0);
1859 intel_logical_ring_emit(ringbuf, 0);
1860 intel_logical_ring_emit(ringbuf, 0);
1861 }
1862
1863 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1864 intel_logical_ring_emit(ringbuf, flags);
1865 intel_logical_ring_emit(ringbuf, scratch_addr);
1866 intel_logical_ring_emit(ringbuf, 0);
1867 intel_logical_ring_emit(ringbuf, 0);
1868 intel_logical_ring_emit(ringbuf, 0);
1869 intel_logical_ring_advance(ringbuf);
1870
1871 return 0;
1872 }
1873
1874 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1875 {
1876 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1877 }
1878
1879 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1880 {
1881 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1882 }
1883
1884 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1885 {
1886 /*
1887 * On BXT A steppings there is a HW coherency issue whereby the
1888 * MI_STORE_DATA_IMM storing the completed request's seqno
1889 * occasionally doesn't invalidate the CPU cache. Work around this by
1890 * clflushing the corresponding cacheline whenever the caller wants
1891 * the coherency to be guaranteed. Note that this cacheline is known
1892 * to be clean at this point, since we only write it in
1893 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1894 * this clflush in practice becomes an invalidate operation.
1895 */
1896 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1897 }
1898
1899 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1900 {
1901 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1902
1903 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1904 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1905 }
1906
1907 /*
1908 * Reserve space for 2 NOOPs at the end of each request to be
1909 * used as a workaround for not being allowed to do lite
1910 * restore with HEAD==TAIL (WaIdleLiteRestore).
1911 */
1912 #define WA_TAIL_DWORDS 2
1913
1914 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1915 {
1916 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1917 }
1918
1919 static int gen8_emit_request(struct drm_i915_gem_request *request)
1920 {
1921 struct intel_ringbuffer *ringbuf = request->ringbuf;
1922 int ret;
1923
1924 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1925 if (ret)
1926 return ret;
1927
1928 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1929 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1930
1931 intel_logical_ring_emit(ringbuf,
1932 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1933 intel_logical_ring_emit(ringbuf,
1934 hws_seqno_address(request->engine) |
1935 MI_FLUSH_DW_USE_GTT);
1936 intel_logical_ring_emit(ringbuf, 0);
1937 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1938 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1939 intel_logical_ring_emit(ringbuf, MI_NOOP);
1940 return intel_logical_ring_advance_and_submit(request);
1941 }
1942
1943 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1944 {
1945 struct intel_ringbuffer *ringbuf = request->ringbuf;
1946 int ret;
1947
1948 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1949 if (ret)
1950 return ret;
1951
1952 /* w/a for post sync ops following a GPGPU operation we
1953 * need a prior CS_STALL, which is emitted by the flush
1954 * following the batch.
1955 */
1956 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
1957 intel_logical_ring_emit(ringbuf,
1958 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1959 PIPE_CONTROL_CS_STALL |
1960 PIPE_CONTROL_QW_WRITE));
1961 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1962 intel_logical_ring_emit(ringbuf, 0);
1963 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1964 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1965 return intel_logical_ring_advance_and_submit(request);
1966 }
1967
1968 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1969 {
1970 struct render_state so;
1971 int ret;
1972
1973 ret = i915_gem_render_state_prepare(req->engine, &so);
1974 if (ret)
1975 return ret;
1976
1977 if (so.rodata == NULL)
1978 return 0;
1979
1980 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1981 I915_DISPATCH_SECURE);
1982 if (ret)
1983 goto out;
1984
1985 ret = req->engine->emit_bb_start(req,
1986 (so.ggtt_offset + so.aux_batch_offset),
1987 I915_DISPATCH_SECURE);
1988 if (ret)
1989 goto out;
1990
1991 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1992
1993 out:
1994 i915_gem_render_state_fini(&so);
1995 return ret;
1996 }
1997
1998 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1999 {
2000 int ret;
2001
2002 ret = intel_logical_ring_workarounds_emit(req);
2003 if (ret)
2004 return ret;
2005
2006 ret = intel_rcs_context_init_mocs(req);
2007 /*
2008 * Failing to program the MOCS is non-fatal.The system will not
2009 * run at peak performance. So generate an error and carry on.
2010 */
2011 if (ret)
2012 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2013
2014 return intel_lr_context_render_state_init(req);
2015 }
2016
2017 /**
2018 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2019 *
2020 * @ring: Engine Command Streamer.
2021 *
2022 */
2023 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2024 {
2025 struct drm_i915_private *dev_priv;
2026
2027 if (!intel_engine_initialized(engine))
2028 return;
2029
2030 /*
2031 * Tasklet cannot be active at this point due intel_mark_active/idle
2032 * so this is just for documentation.
2033 */
2034 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
2035 tasklet_kill(&engine->irq_tasklet);
2036
2037 dev_priv = engine->dev->dev_private;
2038
2039 if (engine->buffer) {
2040 intel_logical_ring_stop(engine);
2041 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2042 }
2043
2044 if (engine->cleanup)
2045 engine->cleanup(engine);
2046
2047 i915_cmd_parser_fini_ring(engine);
2048 i915_gem_batch_pool_fini(&engine->batch_pool);
2049
2050 if (engine->status_page.obj) {
2051 kunmap(sg_page(engine->status_page.obj->pages->sgl));
2052 engine->status_page.obj = NULL;
2053 }
2054
2055 engine->idle_lite_restore_wa = 0;
2056 engine->disable_lite_restore_wa = false;
2057 engine->ctx_desc_template = 0;
2058
2059 lrc_destroy_wa_ctx_obj(engine);
2060 engine->dev = NULL;
2061 }
2062
2063 static void
2064 logical_ring_default_vfuncs(struct drm_device *dev,
2065 struct intel_engine_cs *engine)
2066 {
2067 /* Default vfuncs which can be overriden by each engine. */
2068 engine->init_hw = gen8_init_common_ring;
2069 engine->emit_request = gen8_emit_request;
2070 engine->emit_flush = gen8_emit_flush;
2071 engine->irq_get = gen8_logical_ring_get_irq;
2072 engine->irq_put = gen8_logical_ring_put_irq;
2073 engine->emit_bb_start = gen8_emit_bb_start;
2074 engine->get_seqno = gen8_get_seqno;
2075 engine->set_seqno = gen8_set_seqno;
2076 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2077 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
2078 engine->set_seqno = bxt_a_set_seqno;
2079 }
2080 }
2081
2082 static inline void
2083 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2084 {
2085 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2086 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2087 }
2088
2089 static int
2090 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2091 {
2092 struct intel_context *dctx = to_i915(dev)->kernel_context;
2093 int ret;
2094
2095 /* Intentionally left blank. */
2096 engine->buffer = NULL;
2097
2098 engine->dev = dev;
2099 INIT_LIST_HEAD(&engine->active_list);
2100 INIT_LIST_HEAD(&engine->request_list);
2101 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2102 init_waitqueue_head(&engine->irq_queue);
2103
2104 INIT_LIST_HEAD(&engine->buffers);
2105 INIT_LIST_HEAD(&engine->execlist_queue);
2106 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2107 spin_lock_init(&engine->execlist_lock);
2108
2109 tasklet_init(&engine->irq_tasklet,
2110 intel_lrc_irq_handler, (unsigned long)engine);
2111
2112 logical_ring_init_platform_invariants(engine);
2113
2114 ret = i915_cmd_parser_init_ring(engine);
2115 if (ret)
2116 goto error;
2117
2118 ret = intel_lr_context_deferred_alloc(dctx, engine);
2119 if (ret)
2120 goto error;
2121
2122 /* As this is the default context, always pin it */
2123 ret = intel_lr_context_do_pin(dctx, engine);
2124 if (ret) {
2125 DRM_ERROR(
2126 "Failed to pin and map ringbuffer %s: %d\n",
2127 engine->name, ret);
2128 goto error;
2129 }
2130
2131 return 0;
2132
2133 error:
2134 intel_logical_ring_cleanup(engine);
2135 return ret;
2136 }
2137
2138 static int logical_render_ring_init(struct drm_device *dev)
2139 {
2140 struct drm_i915_private *dev_priv = dev->dev_private;
2141 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2142 int ret;
2143
2144 engine->name = "render ring";
2145 engine->id = RCS;
2146 engine->exec_id = I915_EXEC_RENDER;
2147 engine->guc_id = GUC_RENDER_ENGINE;
2148 engine->mmio_base = RENDER_RING_BASE;
2149
2150 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2151 if (HAS_L3_DPF(dev))
2152 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2153
2154 logical_ring_default_vfuncs(dev, engine);
2155
2156 /* Override some for render ring. */
2157 if (INTEL_INFO(dev)->gen >= 9)
2158 engine->init_hw = gen9_init_render_ring;
2159 else
2160 engine->init_hw = gen8_init_render_ring;
2161 engine->init_context = gen8_init_rcs_context;
2162 engine->cleanup = intel_fini_pipe_control;
2163 engine->emit_flush = gen8_emit_flush_render;
2164 engine->emit_request = gen8_emit_request_render;
2165
2166 engine->dev = dev;
2167
2168 ret = intel_init_pipe_control(engine);
2169 if (ret)
2170 return ret;
2171
2172 ret = intel_init_workaround_bb(engine);
2173 if (ret) {
2174 /*
2175 * We continue even if we fail to initialize WA batch
2176 * because we only expect rare glitches but nothing
2177 * critical to prevent us from using GPU
2178 */
2179 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2180 ret);
2181 }
2182
2183 ret = logical_ring_init(dev, engine);
2184 if (ret) {
2185 lrc_destroy_wa_ctx_obj(engine);
2186 }
2187
2188 return ret;
2189 }
2190
2191 static int logical_bsd_ring_init(struct drm_device *dev)
2192 {
2193 struct drm_i915_private *dev_priv = dev->dev_private;
2194 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2195
2196 engine->name = "bsd ring";
2197 engine->id = VCS;
2198 engine->exec_id = I915_EXEC_BSD;
2199 engine->guc_id = GUC_VIDEO_ENGINE;
2200 engine->mmio_base = GEN6_BSD_RING_BASE;
2201
2202 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2203 logical_ring_default_vfuncs(dev, engine);
2204
2205 return logical_ring_init(dev, engine);
2206 }
2207
2208 static int logical_bsd2_ring_init(struct drm_device *dev)
2209 {
2210 struct drm_i915_private *dev_priv = dev->dev_private;
2211 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2212
2213 engine->name = "bsd2 ring";
2214 engine->id = VCS2;
2215 engine->exec_id = I915_EXEC_BSD;
2216 engine->guc_id = GUC_VIDEO_ENGINE2;
2217 engine->mmio_base = GEN8_BSD2_RING_BASE;
2218
2219 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2220 logical_ring_default_vfuncs(dev, engine);
2221
2222 return logical_ring_init(dev, engine);
2223 }
2224
2225 static int logical_blt_ring_init(struct drm_device *dev)
2226 {
2227 struct drm_i915_private *dev_priv = dev->dev_private;
2228 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2229
2230 engine->name = "blitter ring";
2231 engine->id = BCS;
2232 engine->exec_id = I915_EXEC_BLT;
2233 engine->guc_id = GUC_BLITTER_ENGINE;
2234 engine->mmio_base = BLT_RING_BASE;
2235
2236 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2237 logical_ring_default_vfuncs(dev, engine);
2238
2239 return logical_ring_init(dev, engine);
2240 }
2241
2242 static int logical_vebox_ring_init(struct drm_device *dev)
2243 {
2244 struct drm_i915_private *dev_priv = dev->dev_private;
2245 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2246
2247 engine->name = "video enhancement ring";
2248 engine->id = VECS;
2249 engine->exec_id = I915_EXEC_VEBOX;
2250 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2251 engine->mmio_base = VEBOX_RING_BASE;
2252
2253 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2254 logical_ring_default_vfuncs(dev, engine);
2255
2256 return logical_ring_init(dev, engine);
2257 }
2258
2259 /**
2260 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2261 * @dev: DRM device.
2262 *
2263 * This function inits the engines for an Execlists submission style (the equivalent in the
2264 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2265 * those engines that are present in the hardware.
2266 *
2267 * Return: non-zero if the initialization failed.
2268 */
2269 int intel_logical_rings_init(struct drm_device *dev)
2270 {
2271 struct drm_i915_private *dev_priv = dev->dev_private;
2272 int ret;
2273
2274 ret = logical_render_ring_init(dev);
2275 if (ret)
2276 return ret;
2277
2278 if (HAS_BSD(dev)) {
2279 ret = logical_bsd_ring_init(dev);
2280 if (ret)
2281 goto cleanup_render_ring;
2282 }
2283
2284 if (HAS_BLT(dev)) {
2285 ret = logical_blt_ring_init(dev);
2286 if (ret)
2287 goto cleanup_bsd_ring;
2288 }
2289
2290 if (HAS_VEBOX(dev)) {
2291 ret = logical_vebox_ring_init(dev);
2292 if (ret)
2293 goto cleanup_blt_ring;
2294 }
2295
2296 if (HAS_BSD2(dev)) {
2297 ret = logical_bsd2_ring_init(dev);
2298 if (ret)
2299 goto cleanup_vebox_ring;
2300 }
2301
2302 return 0;
2303
2304 cleanup_vebox_ring:
2305 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2306 cleanup_blt_ring:
2307 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2308 cleanup_bsd_ring:
2309 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2310 cleanup_render_ring:
2311 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2312
2313 return ret;
2314 }
2315
2316 static u32
2317 make_rpcs(struct drm_device *dev)
2318 {
2319 u32 rpcs = 0;
2320
2321 /*
2322 * No explicit RPCS request is needed to ensure full
2323 * slice/subslice/EU enablement prior to Gen9.
2324 */
2325 if (INTEL_INFO(dev)->gen < 9)
2326 return 0;
2327
2328 /*
2329 * Starting in Gen9, render power gating can leave
2330 * slice/subslice/EU in a partially enabled state. We
2331 * must make an explicit request through RPCS for full
2332 * enablement.
2333 */
2334 if (INTEL_INFO(dev)->has_slice_pg) {
2335 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2336 rpcs |= INTEL_INFO(dev)->slice_total <<
2337 GEN8_RPCS_S_CNT_SHIFT;
2338 rpcs |= GEN8_RPCS_ENABLE;
2339 }
2340
2341 if (INTEL_INFO(dev)->has_subslice_pg) {
2342 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2343 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2344 GEN8_RPCS_SS_CNT_SHIFT;
2345 rpcs |= GEN8_RPCS_ENABLE;
2346 }
2347
2348 if (INTEL_INFO(dev)->has_eu_pg) {
2349 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2350 GEN8_RPCS_EU_MIN_SHIFT;
2351 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2352 GEN8_RPCS_EU_MAX_SHIFT;
2353 rpcs |= GEN8_RPCS_ENABLE;
2354 }
2355
2356 return rpcs;
2357 }
2358
2359 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2360 {
2361 u32 indirect_ctx_offset;
2362
2363 switch (INTEL_INFO(engine->dev)->gen) {
2364 default:
2365 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2366 /* fall through */
2367 case 9:
2368 indirect_ctx_offset =
2369 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2370 break;
2371 case 8:
2372 indirect_ctx_offset =
2373 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2374 break;
2375 }
2376
2377 return indirect_ctx_offset;
2378 }
2379
2380 static int
2381 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2382 struct intel_engine_cs *engine,
2383 struct intel_ringbuffer *ringbuf)
2384 {
2385 struct drm_device *dev = engine->dev;
2386 struct drm_i915_private *dev_priv = dev->dev_private;
2387 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2388 struct page *page;
2389 uint32_t *reg_state;
2390 int ret;
2391
2392 if (!ppgtt)
2393 ppgtt = dev_priv->mm.aliasing_ppgtt;
2394
2395 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2396 if (ret) {
2397 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2398 return ret;
2399 }
2400
2401 ret = i915_gem_object_get_pages(ctx_obj);
2402 if (ret) {
2403 DRM_DEBUG_DRIVER("Could not get object pages\n");
2404 return ret;
2405 }
2406
2407 i915_gem_object_pin_pages(ctx_obj);
2408
2409 /* The second page of the context object contains some fields which must
2410 * be set up prior to the first execution. */
2411 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2412 reg_state = kmap_atomic(page);
2413
2414 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2415 * commands followed by (reg, value) pairs. The values we are setting here are
2416 * only for the first context restore: on a subsequent save, the GPU will
2417 * recreate this batchbuffer with new values (including all the missing
2418 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2419 reg_state[CTX_LRI_HEADER_0] =
2420 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2421 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2422 RING_CONTEXT_CONTROL(engine),
2423 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2424 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2425 (HAS_RESOURCE_STREAMER(dev) ?
2426 CTX_CTRL_RS_CTX_ENABLE : 0)));
2427 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2428 0);
2429 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2430 0);
2431 /* Ring buffer start address is not known until the buffer is pinned.
2432 * It is written to the context image in execlists_update_context()
2433 */
2434 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2435 RING_START(engine->mmio_base), 0);
2436 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2437 RING_CTL(engine->mmio_base),
2438 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2439 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2440 RING_BBADDR_UDW(engine->mmio_base), 0);
2441 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2442 RING_BBADDR(engine->mmio_base), 0);
2443 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2444 RING_BBSTATE(engine->mmio_base),
2445 RING_BB_PPGTT);
2446 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2447 RING_SBBADDR_UDW(engine->mmio_base), 0);
2448 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2449 RING_SBBADDR(engine->mmio_base), 0);
2450 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2451 RING_SBBSTATE(engine->mmio_base), 0);
2452 if (engine->id == RCS) {
2453 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2454 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2455 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2456 RING_INDIRECT_CTX(engine->mmio_base), 0);
2457 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2458 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2459 if (engine->wa_ctx.obj) {
2460 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2461 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2462
2463 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2464 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2465 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2466
2467 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2468 intel_lr_indirect_ctx_offset(engine) << 6;
2469
2470 reg_state[CTX_BB_PER_CTX_PTR+1] =
2471 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2472 0x01;
2473 }
2474 }
2475 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2476 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2477 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2478 /* PDP values well be assigned later if needed */
2479 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2480 0);
2481 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2482 0);
2483 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2484 0);
2485 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2486 0);
2487 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2488 0);
2489 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2490 0);
2491 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2492 0);
2493 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2494 0);
2495
2496 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2497 /* 64b PPGTT (48bit canonical)
2498 * PDP0_DESCRIPTOR contains the base address to PML4 and
2499 * other PDP Descriptors are ignored.
2500 */
2501 ASSIGN_CTX_PML4(ppgtt, reg_state);
2502 } else {
2503 /* 32b PPGTT
2504 * PDP*_DESCRIPTOR contains the base address of space supported.
2505 * With dynamic page allocation, PDPs may not be allocated at
2506 * this point. Point the unallocated PDPs to the scratch page
2507 */
2508 execlists_update_context_pdps(ppgtt, reg_state);
2509 }
2510
2511 if (engine->id == RCS) {
2512 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2513 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2514 make_rpcs(dev));
2515 }
2516
2517 kunmap_atomic(reg_state);
2518 i915_gem_object_unpin_pages(ctx_obj);
2519
2520 return 0;
2521 }
2522
2523 /**
2524 * intel_lr_context_free() - free the LRC specific bits of a context
2525 * @ctx: the LR context to free.
2526 *
2527 * The real context freeing is done in i915_gem_context_free: this only
2528 * takes care of the bits that are LRC related: the per-engine backing
2529 * objects and the logical ringbuffer.
2530 */
2531 void intel_lr_context_free(struct intel_context *ctx)
2532 {
2533 int i;
2534
2535 for (i = I915_NUM_ENGINES; --i >= 0; ) {
2536 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2537 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2538
2539 if (!ctx_obj)
2540 continue;
2541
2542 if (ctx == ctx->i915->kernel_context) {
2543 intel_unpin_ringbuffer_obj(ringbuf);
2544 i915_gem_object_ggtt_unpin(ctx_obj);
2545 }
2546
2547 WARN_ON(ctx->engine[i].pin_count);
2548 intel_ringbuffer_free(ringbuf);
2549 drm_gem_object_unreference(&ctx_obj->base);
2550 }
2551 }
2552
2553 /**
2554 * intel_lr_context_size() - return the size of the context for an engine
2555 * @ring: which engine to find the context size for
2556 *
2557 * Each engine may require a different amount of space for a context image,
2558 * so when allocating (or copying) an image, this function can be used to
2559 * find the right size for the specific engine.
2560 *
2561 * Return: size (in bytes) of an engine-specific context image
2562 *
2563 * Note: this size includes the HWSP, which is part of the context image
2564 * in LRC mode, but does not include the "shared data page" used with
2565 * GuC submission. The caller should account for this if using the GuC.
2566 */
2567 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2568 {
2569 int ret = 0;
2570
2571 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2572
2573 switch (engine->id) {
2574 case RCS:
2575 if (INTEL_INFO(engine->dev)->gen >= 9)
2576 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2577 else
2578 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2579 break;
2580 case VCS:
2581 case BCS:
2582 case VECS:
2583 case VCS2:
2584 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2585 break;
2586 }
2587
2588 return ret;
2589 }
2590
2591 static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
2592 struct drm_i915_gem_object *default_ctx_obj)
2593 {
2594 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2595 struct page *page;
2596
2597 /* The HWSP is part of the default context object in LRC mode. */
2598 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2599 + LRC_PPHWSP_PN * PAGE_SIZE;
2600 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2601 engine->status_page.page_addr = kmap(page);
2602 engine->status_page.obj = default_ctx_obj;
2603
2604 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
2605 (u32)engine->status_page.gfx_addr);
2606 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
2607 }
2608
2609 /**
2610 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2611 * @ctx: LR context to create.
2612 * @ring: engine to be used with the context.
2613 *
2614 * This function can be called more than once, with different engines, if we plan
2615 * to use the context with them. The context backing objects and the ringbuffers
2616 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2617 * the creation is a deferred call: it's better to make sure first that we need to use
2618 * a given ring with the context.
2619 *
2620 * Return: non-zero on error.
2621 */
2622
2623 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2624 struct intel_engine_cs *engine)
2625 {
2626 struct drm_device *dev = engine->dev;
2627 struct drm_i915_gem_object *ctx_obj;
2628 uint32_t context_size;
2629 struct intel_ringbuffer *ringbuf;
2630 int ret;
2631
2632 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2633 WARN_ON(ctx->engine[engine->id].state);
2634
2635 context_size = round_up(intel_lr_context_size(engine), 4096);
2636
2637 /* One extra page as the sharing data between driver and GuC */
2638 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2639
2640 ctx_obj = i915_gem_alloc_object(dev, context_size);
2641 if (!ctx_obj) {
2642 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2643 return -ENOMEM;
2644 }
2645
2646 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2647 if (IS_ERR(ringbuf)) {
2648 ret = PTR_ERR(ringbuf);
2649 goto error_deref_obj;
2650 }
2651
2652 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2653 if (ret) {
2654 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2655 goto error_ringbuf;
2656 }
2657
2658 ctx->engine[engine->id].ringbuf = ringbuf;
2659 ctx->engine[engine->id].state = ctx_obj;
2660
2661 if (ctx != ctx->i915->kernel_context && engine->init_context) {
2662 struct drm_i915_gem_request *req;
2663
2664 req = i915_gem_request_alloc(engine, ctx);
2665 if (IS_ERR(req)) {
2666 ret = PTR_ERR(req);
2667 DRM_ERROR("ring create req: %d\n", ret);
2668 goto error_ringbuf;
2669 }
2670
2671 ret = engine->init_context(req);
2672 if (ret) {
2673 DRM_ERROR("ring init context: %d\n",
2674 ret);
2675 i915_gem_request_cancel(req);
2676 goto error_ringbuf;
2677 }
2678 i915_add_request_no_flush(req);
2679 }
2680 return 0;
2681
2682 error_ringbuf:
2683 intel_ringbuffer_free(ringbuf);
2684 error_deref_obj:
2685 drm_gem_object_unreference(&ctx_obj->base);
2686 ctx->engine[engine->id].ringbuf = NULL;
2687 ctx->engine[engine->id].state = NULL;
2688 return ret;
2689 }
2690
2691 void intel_lr_context_reset(struct drm_device *dev,
2692 struct intel_context *ctx)
2693 {
2694 struct drm_i915_private *dev_priv = dev->dev_private;
2695 struct intel_engine_cs *engine;
2696
2697 for_each_engine(engine, dev_priv) {
2698 struct drm_i915_gem_object *ctx_obj =
2699 ctx->engine[engine->id].state;
2700 struct intel_ringbuffer *ringbuf =
2701 ctx->engine[engine->id].ringbuf;
2702 uint32_t *reg_state;
2703 struct page *page;
2704
2705 if (!ctx_obj)
2706 continue;
2707
2708 if (i915_gem_object_get_pages(ctx_obj)) {
2709 WARN(1, "Failed get_pages for context obj\n");
2710 continue;
2711 }
2712 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2713 reg_state = kmap_atomic(page);
2714
2715 reg_state[CTX_RING_HEAD+1] = 0;
2716 reg_state[CTX_RING_TAIL+1] = 0;
2717
2718 kunmap_atomic(reg_state);
2719
2720 ringbuf->head = 0;
2721 ringbuf->tail = 0;
2722 }
2723 }
This page took 0.131551 seconds and 5 git commands to generate.