drm/i915: add helpers for platform specific revision id range checks
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL (1 << 0x2)
145 #define RING_EXECLIST1_VALID (1 << 0x3)
146 #define RING_EXECLIST0_VALID (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
157
158 #define CTX_LRI_HEADER_0 0x01
159 #define CTX_CONTEXT_CONTROL 0x02
160 #define CTX_RING_HEAD 0x04
161 #define CTX_RING_TAIL 0x06
162 #define CTX_RING_BUFFER_START 0x08
163 #define CTX_RING_BUFFER_CONTROL 0x0a
164 #define CTX_BB_HEAD_U 0x0c
165 #define CTX_BB_HEAD_L 0x0e
166 #define CTX_BB_STATE 0x10
167 #define CTX_SECOND_BB_HEAD_U 0x12
168 #define CTX_SECOND_BB_HEAD_L 0x14
169 #define CTX_SECOND_BB_STATE 0x16
170 #define CTX_BB_PER_CTX_PTR 0x18
171 #define CTX_RCS_INDIRECT_CTX 0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173 #define CTX_LRI_HEADER_1 0x21
174 #define CTX_CTX_TIMESTAMP 0x22
175 #define CTX_PDP3_UDW 0x24
176 #define CTX_PDP3_LDW 0x26
177 #define CTX_PDP2_UDW 0x28
178 #define CTX_PDP2_LDW 0x2a
179 #define CTX_PDP1_UDW 0x2c
180 #define CTX_PDP1_LDW 0x2e
181 #define CTX_PDP0_UDW 0x30
182 #define CTX_PDP0_LDW 0x32
183 #define CTX_LRI_HEADER_2 0x41
184 #define CTX_R_PWR_CLK_STATE 0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
195 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197 }
198
199 #define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
200 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202 }
203
204 enum {
205 ADVANCED_CONTEXT = 0,
206 LEGACY_32B_CONTEXT,
207 ADVANCED_AD_CONTEXT,
208 LEGACY_64B_CONTEXT
209 };
210 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
211 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
212 LEGACY_64B_CONTEXT :\
213 LEGACY_32B_CONTEXT)
214 enum {
215 FAULT_AND_HANG = 0,
216 FAULT_AND_HALT, /* Debug only */
217 FAULT_AND_STREAM,
218 FAULT_AND_CONTINUE /* Unsupported */
219 };
220 #define GEN8_CTX_ID_SHIFT 32
221 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
222
223 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
224 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
225 struct drm_i915_gem_object *default_ctx_obj);
226
227
228 /**
229 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
230 * @dev: DRM device.
231 * @enable_execlists: value of i915.enable_execlists module parameter.
232 *
233 * Only certain platforms support Execlists (the prerequisites being
234 * support for Logical Ring Contexts and Aliasing PPGTT or better).
235 *
236 * Return: 1 if Execlists is supported and has to be enabled.
237 */
238 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
239 {
240 WARN_ON(i915.enable_ppgtt == -1);
241
242 /* On platforms with execlist available, vGPU will only
243 * support execlist mode, no ring buffer mode.
244 */
245 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
246 return 1;
247
248 if (INTEL_INFO(dev)->gen >= 9)
249 return 1;
250
251 if (enable_execlists == 0)
252 return 0;
253
254 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
255 i915.use_mmio_flip >= 0)
256 return 1;
257
258 return 0;
259 }
260
261 /**
262 * intel_execlists_ctx_id() - get the Execlists Context ID
263 * @ctx_obj: Logical Ring Context backing object.
264 *
265 * Do not confuse with ctx->id! Unfortunately we have a name overload
266 * here: the old context ID we pass to userspace as a handler so that
267 * they can refer to a context, and the new context ID we pass to the
268 * ELSP so that the GPU can inform us of the context status via
269 * interrupts.
270 *
271 * Return: 20-bits globally unique context ID.
272 */
273 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
274 {
275 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
276 LRC_PPHWSP_PN * PAGE_SIZE;
277
278 /* LRCA is required to be 4K aligned so the more significant 20 bits
279 * are globally unique */
280 return lrca >> 12;
281 }
282
283 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
284 {
285 struct drm_device *dev = ring->dev;
286
287 return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
288 IS_BXT_REVID(dev, 0, BXT_REVID_A0)) &&
289 (ring->id == VCS || ring->id == VCS2);
290 }
291
292 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
293 struct intel_engine_cs *ring)
294 {
295 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
296 uint64_t desc;
297 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
298 LRC_PPHWSP_PN * PAGE_SIZE;
299
300 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
301
302 desc = GEN8_CTX_VALID;
303 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
304 if (IS_GEN8(ctx_obj->base.dev))
305 desc |= GEN8_CTX_L3LLC_COHERENT;
306 desc |= GEN8_CTX_PRIVILEGE;
307 desc |= lrca;
308 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
309
310 /* TODO: WaDisableLiteRestore when we start using semaphore
311 * signalling between Command Streamers */
312 /* desc |= GEN8_CTX_FORCE_RESTORE; */
313
314 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
315 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
316 if (disable_lite_restore_wa(ring))
317 desc |= GEN8_CTX_FORCE_RESTORE;
318
319 return desc;
320 }
321
322 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
323 struct drm_i915_gem_request *rq1)
324 {
325
326 struct intel_engine_cs *ring = rq0->ring;
327 struct drm_device *dev = ring->dev;
328 struct drm_i915_private *dev_priv = dev->dev_private;
329 uint64_t desc[2];
330
331 if (rq1) {
332 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
333 rq1->elsp_submitted++;
334 } else {
335 desc[1] = 0;
336 }
337
338 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
339 rq0->elsp_submitted++;
340
341 /* You must always write both descriptors in the order below. */
342 spin_lock(&dev_priv->uncore.lock);
343 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
344 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
345 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
346
347 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
348 /* The context is automatically loaded after the following */
349 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
350
351 /* ELSP is a wo register, use another nearby reg for posting */
352 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
353 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
354 spin_unlock(&dev_priv->uncore.lock);
355 }
356
357 static int execlists_update_context(struct drm_i915_gem_request *rq)
358 {
359 struct intel_engine_cs *ring = rq->ring;
360 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
361 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
362 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
363 struct page *page;
364 uint32_t *reg_state;
365
366 BUG_ON(!ctx_obj);
367 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
368 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
369
370 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
371 reg_state = kmap_atomic(page);
372
373 reg_state[CTX_RING_TAIL+1] = rq->tail;
374 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
375
376 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
377 /* True 32b PPGTT with dynamic page allocation: update PDP
378 * registers and point the unallocated PDPs to scratch page.
379 * PML4 is allocated during ppgtt init, so this is not needed
380 * in 48-bit mode.
381 */
382 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
383 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
384 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
385 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
386 }
387
388 kunmap_atomic(reg_state);
389
390 return 0;
391 }
392
393 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
394 struct drm_i915_gem_request *rq1)
395 {
396 execlists_update_context(rq0);
397
398 if (rq1)
399 execlists_update_context(rq1);
400
401 execlists_elsp_write(rq0, rq1);
402 }
403
404 static void execlists_context_unqueue(struct intel_engine_cs *ring)
405 {
406 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
407 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
408
409 assert_spin_locked(&ring->execlist_lock);
410
411 /*
412 * If irqs are not active generate a warning as batches that finish
413 * without the irqs may get lost and a GPU Hang may occur.
414 */
415 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
416
417 if (list_empty(&ring->execlist_queue))
418 return;
419
420 /* Try to read in pairs */
421 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
422 execlist_link) {
423 if (!req0) {
424 req0 = cursor;
425 } else if (req0->ctx == cursor->ctx) {
426 /* Same ctx: ignore first request, as second request
427 * will update tail past first request's workload */
428 cursor->elsp_submitted = req0->elsp_submitted;
429 list_del(&req0->execlist_link);
430 list_add_tail(&req0->execlist_link,
431 &ring->execlist_retired_req_list);
432 req0 = cursor;
433 } else {
434 req1 = cursor;
435 break;
436 }
437 }
438
439 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
440 /*
441 * WaIdleLiteRestore: make sure we never cause a lite
442 * restore with HEAD==TAIL
443 */
444 if (req0->elsp_submitted) {
445 /*
446 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
447 * as we resubmit the request. See gen8_emit_request()
448 * for where we prepare the padding after the end of the
449 * request.
450 */
451 struct intel_ringbuffer *ringbuf;
452
453 ringbuf = req0->ctx->engine[ring->id].ringbuf;
454 req0->tail += 8;
455 req0->tail &= ringbuf->size - 1;
456 }
457 }
458
459 WARN_ON(req1 && req1->elsp_submitted);
460
461 execlists_submit_requests(req0, req1);
462 }
463
464 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
465 u32 request_id)
466 {
467 struct drm_i915_gem_request *head_req;
468
469 assert_spin_locked(&ring->execlist_lock);
470
471 head_req = list_first_entry_or_null(&ring->execlist_queue,
472 struct drm_i915_gem_request,
473 execlist_link);
474
475 if (head_req != NULL) {
476 struct drm_i915_gem_object *ctx_obj =
477 head_req->ctx->engine[ring->id].state;
478 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
479 WARN(head_req->elsp_submitted == 0,
480 "Never submitted head request\n");
481
482 if (--head_req->elsp_submitted <= 0) {
483 list_del(&head_req->execlist_link);
484 list_add_tail(&head_req->execlist_link,
485 &ring->execlist_retired_req_list);
486 return true;
487 }
488 }
489 }
490
491 return false;
492 }
493
494 /**
495 * intel_lrc_irq_handler() - handle Context Switch interrupts
496 * @ring: Engine Command Streamer to handle.
497 *
498 * Check the unread Context Status Buffers and manage the submission of new
499 * contexts to the ELSP accordingly.
500 */
501 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
502 {
503 struct drm_i915_private *dev_priv = ring->dev->dev_private;
504 u32 status_pointer;
505 u8 read_pointer;
506 u8 write_pointer;
507 u32 status = 0;
508 u32 status_id;
509 u32 submit_contexts = 0;
510
511 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
512
513 read_pointer = ring->next_context_status_buffer;
514 write_pointer = status_pointer & 0x07;
515 if (read_pointer > write_pointer)
516 write_pointer += 6;
517
518 spin_lock(&ring->execlist_lock);
519
520 while (read_pointer < write_pointer) {
521 read_pointer++;
522 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % 6));
523 status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % 6));
524
525 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
526 continue;
527
528 if (status & GEN8_CTX_STATUS_PREEMPTED) {
529 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
530 if (execlists_check_remove_request(ring, status_id))
531 WARN(1, "Lite Restored request removed from queue\n");
532 } else
533 WARN(1, "Preemption without Lite Restore\n");
534 }
535
536 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
537 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
538 if (execlists_check_remove_request(ring, status_id))
539 submit_contexts++;
540 }
541 }
542
543 if (disable_lite_restore_wa(ring)) {
544 /* Prevent a ctx to preempt itself */
545 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
546 (submit_contexts != 0))
547 execlists_context_unqueue(ring);
548 } else if (submit_contexts != 0) {
549 execlists_context_unqueue(ring);
550 }
551
552 spin_unlock(&ring->execlist_lock);
553
554 WARN(submit_contexts > 2, "More than two context complete events?\n");
555 ring->next_context_status_buffer = write_pointer % 6;
556
557 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
558 _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
559 }
560
561 static int execlists_context_queue(struct drm_i915_gem_request *request)
562 {
563 struct intel_engine_cs *ring = request->ring;
564 struct drm_i915_gem_request *cursor;
565 int num_elements = 0;
566
567 if (request->ctx != ring->default_context)
568 intel_lr_context_pin(request);
569
570 i915_gem_request_reference(request);
571
572 spin_lock_irq(&ring->execlist_lock);
573
574 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
575 if (++num_elements > 2)
576 break;
577
578 if (num_elements > 2) {
579 struct drm_i915_gem_request *tail_req;
580
581 tail_req = list_last_entry(&ring->execlist_queue,
582 struct drm_i915_gem_request,
583 execlist_link);
584
585 if (request->ctx == tail_req->ctx) {
586 WARN(tail_req->elsp_submitted != 0,
587 "More than 2 already-submitted reqs queued\n");
588 list_del(&tail_req->execlist_link);
589 list_add_tail(&tail_req->execlist_link,
590 &ring->execlist_retired_req_list);
591 }
592 }
593
594 list_add_tail(&request->execlist_link, &ring->execlist_queue);
595 if (num_elements == 0)
596 execlists_context_unqueue(ring);
597
598 spin_unlock_irq(&ring->execlist_lock);
599
600 return 0;
601 }
602
603 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
604 {
605 struct intel_engine_cs *ring = req->ring;
606 uint32_t flush_domains;
607 int ret;
608
609 flush_domains = 0;
610 if (ring->gpu_caches_dirty)
611 flush_domains = I915_GEM_GPU_DOMAINS;
612
613 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
614 if (ret)
615 return ret;
616
617 ring->gpu_caches_dirty = false;
618 return 0;
619 }
620
621 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
622 struct list_head *vmas)
623 {
624 const unsigned other_rings = ~intel_ring_flag(req->ring);
625 struct i915_vma *vma;
626 uint32_t flush_domains = 0;
627 bool flush_chipset = false;
628 int ret;
629
630 list_for_each_entry(vma, vmas, exec_list) {
631 struct drm_i915_gem_object *obj = vma->obj;
632
633 if (obj->active & other_rings) {
634 ret = i915_gem_object_sync(obj, req->ring, &req);
635 if (ret)
636 return ret;
637 }
638
639 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
640 flush_chipset |= i915_gem_clflush_object(obj, false);
641
642 flush_domains |= obj->base.write_domain;
643 }
644
645 if (flush_domains & I915_GEM_DOMAIN_GTT)
646 wmb();
647
648 /* Unconditionally invalidate gpu caches and ensure that we do flush
649 * any residual writes from the previous batch.
650 */
651 return logical_ring_invalidate_all_caches(req);
652 }
653
654 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
655 {
656 int ret;
657
658 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
659
660 if (request->ctx != request->ring->default_context) {
661 ret = intel_lr_context_pin(request);
662 if (ret)
663 return ret;
664 }
665
666 return 0;
667 }
668
669 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
670 int bytes)
671 {
672 struct intel_ringbuffer *ringbuf = req->ringbuf;
673 struct intel_engine_cs *ring = req->ring;
674 struct drm_i915_gem_request *target;
675 unsigned space;
676 int ret;
677
678 if (intel_ring_space(ringbuf) >= bytes)
679 return 0;
680
681 /* The whole point of reserving space is to not wait! */
682 WARN_ON(ringbuf->reserved_in_use);
683
684 list_for_each_entry(target, &ring->request_list, list) {
685 /*
686 * The request queue is per-engine, so can contain requests
687 * from multiple ringbuffers. Here, we must ignore any that
688 * aren't from the ringbuffer we're considering.
689 */
690 if (target->ringbuf != ringbuf)
691 continue;
692
693 /* Would completion of this request free enough space? */
694 space = __intel_ring_space(target->postfix, ringbuf->tail,
695 ringbuf->size);
696 if (space >= bytes)
697 break;
698 }
699
700 if (WARN_ON(&target->list == &ring->request_list))
701 return -ENOSPC;
702
703 ret = i915_wait_request(target);
704 if (ret)
705 return ret;
706
707 ringbuf->space = space;
708 return 0;
709 }
710
711 /*
712 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
713 * @request: Request to advance the logical ringbuffer of.
714 *
715 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
716 * really happens during submission is that the context and current tail will be placed
717 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
718 * point, the tail *inside* the context is updated and the ELSP written to.
719 */
720 static void
721 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
722 {
723 struct intel_engine_cs *ring = request->ring;
724 struct drm_i915_private *dev_priv = request->i915;
725
726 intel_logical_ring_advance(request->ringbuf);
727
728 request->tail = request->ringbuf->tail;
729
730 if (intel_ring_stopped(ring))
731 return;
732
733 if (dev_priv->guc.execbuf_client)
734 i915_guc_submit(dev_priv->guc.execbuf_client, request);
735 else
736 execlists_context_queue(request);
737 }
738
739 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
740 {
741 uint32_t __iomem *virt;
742 int rem = ringbuf->size - ringbuf->tail;
743
744 virt = ringbuf->virtual_start + ringbuf->tail;
745 rem /= 4;
746 while (rem--)
747 iowrite32(MI_NOOP, virt++);
748
749 ringbuf->tail = 0;
750 intel_ring_update_space(ringbuf);
751 }
752
753 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
754 {
755 struct intel_ringbuffer *ringbuf = req->ringbuf;
756 int remain_usable = ringbuf->effective_size - ringbuf->tail;
757 int remain_actual = ringbuf->size - ringbuf->tail;
758 int ret, total_bytes, wait_bytes = 0;
759 bool need_wrap = false;
760
761 if (ringbuf->reserved_in_use)
762 total_bytes = bytes;
763 else
764 total_bytes = bytes + ringbuf->reserved_size;
765
766 if (unlikely(bytes > remain_usable)) {
767 /*
768 * Not enough space for the basic request. So need to flush
769 * out the remainder and then wait for base + reserved.
770 */
771 wait_bytes = remain_actual + total_bytes;
772 need_wrap = true;
773 } else {
774 if (unlikely(total_bytes > remain_usable)) {
775 /*
776 * The base request will fit but the reserved space
777 * falls off the end. So only need to to wait for the
778 * reserved size after flushing out the remainder.
779 */
780 wait_bytes = remain_actual + ringbuf->reserved_size;
781 need_wrap = true;
782 } else if (total_bytes > ringbuf->space) {
783 /* No wrapping required, just waiting. */
784 wait_bytes = total_bytes;
785 }
786 }
787
788 if (wait_bytes) {
789 ret = logical_ring_wait_for_space(req, wait_bytes);
790 if (unlikely(ret))
791 return ret;
792
793 if (need_wrap)
794 __wrap_ring_buffer(ringbuf);
795 }
796
797 return 0;
798 }
799
800 /**
801 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
802 *
803 * @req: The request to start some new work for
804 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
805 *
806 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
807 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
808 * and also preallocates a request (every workload submission is still mediated through
809 * requests, same as it did with legacy ringbuffer submission).
810 *
811 * Return: non-zero if the ringbuffer is not ready to be written to.
812 */
813 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
814 {
815 struct drm_i915_private *dev_priv;
816 int ret;
817
818 WARN_ON(req == NULL);
819 dev_priv = req->ring->dev->dev_private;
820
821 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
822 dev_priv->mm.interruptible);
823 if (ret)
824 return ret;
825
826 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
827 if (ret)
828 return ret;
829
830 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
831 return 0;
832 }
833
834 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
835 {
836 /*
837 * The first call merely notes the reserve request and is common for
838 * all back ends. The subsequent localised _begin() call actually
839 * ensures that the reservation is available. Without the begin, if
840 * the request creator immediately submitted the request without
841 * adding any commands to it then there might not actually be
842 * sufficient room for the submission commands.
843 */
844 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
845
846 return intel_logical_ring_begin(request, 0);
847 }
848
849 /**
850 * execlists_submission() - submit a batchbuffer for execution, Execlists style
851 * @dev: DRM device.
852 * @file: DRM file.
853 * @ring: Engine Command Streamer to submit to.
854 * @ctx: Context to employ for this submission.
855 * @args: execbuffer call arguments.
856 * @vmas: list of vmas.
857 * @batch_obj: the batchbuffer to submit.
858 * @exec_start: batchbuffer start virtual address pointer.
859 * @dispatch_flags: translated execbuffer call flags.
860 *
861 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
862 * away the submission details of the execbuffer ioctl call.
863 *
864 * Return: non-zero if the submission fails.
865 */
866 int intel_execlists_submission(struct i915_execbuffer_params *params,
867 struct drm_i915_gem_execbuffer2 *args,
868 struct list_head *vmas)
869 {
870 struct drm_device *dev = params->dev;
871 struct intel_engine_cs *ring = params->ring;
872 struct drm_i915_private *dev_priv = dev->dev_private;
873 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
874 u64 exec_start;
875 int instp_mode;
876 u32 instp_mask;
877 int ret;
878
879 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
880 instp_mask = I915_EXEC_CONSTANTS_MASK;
881 switch (instp_mode) {
882 case I915_EXEC_CONSTANTS_REL_GENERAL:
883 case I915_EXEC_CONSTANTS_ABSOLUTE:
884 case I915_EXEC_CONSTANTS_REL_SURFACE:
885 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
886 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
887 return -EINVAL;
888 }
889
890 if (instp_mode != dev_priv->relative_constants_mode) {
891 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
892 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
893 return -EINVAL;
894 }
895
896 /* The HW changed the meaning on this bit on gen6 */
897 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
898 }
899 break;
900 default:
901 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
902 return -EINVAL;
903 }
904
905 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
906 DRM_DEBUG("sol reset is gen7 only\n");
907 return -EINVAL;
908 }
909
910 ret = execlists_move_to_gpu(params->request, vmas);
911 if (ret)
912 return ret;
913
914 if (ring == &dev_priv->ring[RCS] &&
915 instp_mode != dev_priv->relative_constants_mode) {
916 ret = intel_logical_ring_begin(params->request, 4);
917 if (ret)
918 return ret;
919
920 intel_logical_ring_emit(ringbuf, MI_NOOP);
921 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
922 intel_logical_ring_emit(ringbuf, INSTPM);
923 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
924 intel_logical_ring_advance(ringbuf);
925
926 dev_priv->relative_constants_mode = instp_mode;
927 }
928
929 exec_start = params->batch_obj_vm_offset +
930 args->batch_start_offset;
931
932 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
933 if (ret)
934 return ret;
935
936 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
937
938 i915_gem_execbuffer_move_to_active(vmas, params->request);
939 i915_gem_execbuffer_retire_commands(params);
940
941 return 0;
942 }
943
944 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
945 {
946 struct drm_i915_gem_request *req, *tmp;
947 struct list_head retired_list;
948
949 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
950 if (list_empty(&ring->execlist_retired_req_list))
951 return;
952
953 INIT_LIST_HEAD(&retired_list);
954 spin_lock_irq(&ring->execlist_lock);
955 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
956 spin_unlock_irq(&ring->execlist_lock);
957
958 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
959 struct intel_context *ctx = req->ctx;
960 struct drm_i915_gem_object *ctx_obj =
961 ctx->engine[ring->id].state;
962
963 if (ctx_obj && (ctx != ring->default_context))
964 intel_lr_context_unpin(req);
965 list_del(&req->execlist_link);
966 i915_gem_request_unreference(req);
967 }
968 }
969
970 void intel_logical_ring_stop(struct intel_engine_cs *ring)
971 {
972 struct drm_i915_private *dev_priv = ring->dev->dev_private;
973 int ret;
974
975 if (!intel_ring_initialized(ring))
976 return;
977
978 ret = intel_ring_idle(ring);
979 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
980 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
981 ring->name, ret);
982
983 /* TODO: Is this correct with Execlists enabled? */
984 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
985 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
986 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
987 return;
988 }
989 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
990 }
991
992 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
993 {
994 struct intel_engine_cs *ring = req->ring;
995 int ret;
996
997 if (!ring->gpu_caches_dirty)
998 return 0;
999
1000 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1001 if (ret)
1002 return ret;
1003
1004 ring->gpu_caches_dirty = false;
1005 return 0;
1006 }
1007
1008 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1009 struct drm_i915_gem_object *ctx_obj,
1010 struct intel_ringbuffer *ringbuf)
1011 {
1012 struct drm_device *dev = ring->dev;
1013 struct drm_i915_private *dev_priv = dev->dev_private;
1014 int ret = 0;
1015
1016 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1017 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1018 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1019 if (ret)
1020 return ret;
1021
1022 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1023 if (ret)
1024 goto unpin_ctx_obj;
1025
1026 ctx_obj->dirty = true;
1027
1028 /* Invalidate GuC TLB. */
1029 if (i915.enable_guc_submission)
1030 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1031
1032 return ret;
1033
1034 unpin_ctx_obj:
1035 i915_gem_object_ggtt_unpin(ctx_obj);
1036
1037 return ret;
1038 }
1039
1040 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1041 {
1042 int ret = 0;
1043 struct intel_engine_cs *ring = rq->ring;
1044 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1045 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1046
1047 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1048 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1049 if (ret)
1050 goto reset_pin_count;
1051 }
1052 return ret;
1053
1054 reset_pin_count:
1055 rq->ctx->engine[ring->id].pin_count = 0;
1056 return ret;
1057 }
1058
1059 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1060 {
1061 struct intel_engine_cs *ring = rq->ring;
1062 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1063 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1064
1065 if (ctx_obj) {
1066 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1067 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1068 intel_unpin_ringbuffer_obj(ringbuf);
1069 i915_gem_object_ggtt_unpin(ctx_obj);
1070 }
1071 }
1072 }
1073
1074 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1075 {
1076 int ret, i;
1077 struct intel_engine_cs *ring = req->ring;
1078 struct intel_ringbuffer *ringbuf = req->ringbuf;
1079 struct drm_device *dev = ring->dev;
1080 struct drm_i915_private *dev_priv = dev->dev_private;
1081 struct i915_workarounds *w = &dev_priv->workarounds;
1082
1083 if (WARN_ON_ONCE(w->count == 0))
1084 return 0;
1085
1086 ring->gpu_caches_dirty = true;
1087 ret = logical_ring_flush_all_caches(req);
1088 if (ret)
1089 return ret;
1090
1091 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1092 if (ret)
1093 return ret;
1094
1095 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1096 for (i = 0; i < w->count; i++) {
1097 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1098 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1099 }
1100 intel_logical_ring_emit(ringbuf, MI_NOOP);
1101
1102 intel_logical_ring_advance(ringbuf);
1103
1104 ring->gpu_caches_dirty = true;
1105 ret = logical_ring_flush_all_caches(req);
1106 if (ret)
1107 return ret;
1108
1109 return 0;
1110 }
1111
1112 #define wa_ctx_emit(batch, index, cmd) \
1113 do { \
1114 int __index = (index)++; \
1115 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1116 return -ENOSPC; \
1117 } \
1118 batch[__index] = (cmd); \
1119 } while (0)
1120
1121
1122 /*
1123 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1124 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1125 * but there is a slight complication as this is applied in WA batch where the
1126 * values are only initialized once so we cannot take register value at the
1127 * beginning and reuse it further; hence we save its value to memory, upload a
1128 * constant value with bit21 set and then we restore it back with the saved value.
1129 * To simplify the WA, a constant value is formed by using the default value
1130 * of this register. This shouldn't be a problem because we are only modifying
1131 * it for a short period and this batch in non-premptible. We can ofcourse
1132 * use additional instructions that read the actual value of the register
1133 * at that time and set our bit of interest but it makes the WA complicated.
1134 *
1135 * This WA is also required for Gen9 so extracting as a function avoids
1136 * code duplication.
1137 */
1138 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1139 uint32_t *const batch,
1140 uint32_t index)
1141 {
1142 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1143
1144 /*
1145 * WaDisableLSQCROPERFforOCL:skl
1146 * This WA is implemented in skl_init_clock_gating() but since
1147 * this batch updates GEN8_L3SQCREG4 with default value we need to
1148 * set this bit here to retain the WA during flush.
1149 */
1150 if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1151 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1152
1153 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1154 MI_SRM_LRM_GLOBAL_GTT));
1155 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1156 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1157 wa_ctx_emit(batch, index, 0);
1158
1159 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1160 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1161 wa_ctx_emit(batch, index, l3sqc4_flush);
1162
1163 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1164 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1165 PIPE_CONTROL_DC_FLUSH_ENABLE));
1166 wa_ctx_emit(batch, index, 0);
1167 wa_ctx_emit(batch, index, 0);
1168 wa_ctx_emit(batch, index, 0);
1169 wa_ctx_emit(batch, index, 0);
1170
1171 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1172 MI_SRM_LRM_GLOBAL_GTT));
1173 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1174 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1175 wa_ctx_emit(batch, index, 0);
1176
1177 return index;
1178 }
1179
1180 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1181 uint32_t offset,
1182 uint32_t start_alignment)
1183 {
1184 return wa_ctx->offset = ALIGN(offset, start_alignment);
1185 }
1186
1187 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1188 uint32_t offset,
1189 uint32_t size_alignment)
1190 {
1191 wa_ctx->size = offset - wa_ctx->offset;
1192
1193 WARN(wa_ctx->size % size_alignment,
1194 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1195 wa_ctx->size, size_alignment);
1196 return 0;
1197 }
1198
1199 /**
1200 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1201 *
1202 * @ring: only applicable for RCS
1203 * @wa_ctx: structure representing wa_ctx
1204 * offset: specifies start of the batch, should be cache-aligned. This is updated
1205 * with the offset value received as input.
1206 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1207 * @batch: page in which WA are loaded
1208 * @offset: This field specifies the start of the batch, it should be
1209 * cache-aligned otherwise it is adjusted accordingly.
1210 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1211 * initialized at the beginning and shared across all contexts but this field
1212 * helps us to have multiple batches at different offsets and select them based
1213 * on a criteria. At the moment this batch always start at the beginning of the page
1214 * and at this point we don't have multiple wa_ctx batch buffers.
1215 *
1216 * The number of WA applied are not known at the beginning; we use this field
1217 * to return the no of DWORDS written.
1218 *
1219 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1220 * so it adds NOOPs as padding to make it cacheline aligned.
1221 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1222 * makes a complete batch buffer.
1223 *
1224 * Return: non-zero if we exceed the PAGE_SIZE limit.
1225 */
1226
1227 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1228 struct i915_wa_ctx_bb *wa_ctx,
1229 uint32_t *const batch,
1230 uint32_t *offset)
1231 {
1232 uint32_t scratch_addr;
1233 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1234
1235 /* WaDisableCtxRestoreArbitration:bdw,chv */
1236 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1237
1238 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1239 if (IS_BROADWELL(ring->dev)) {
1240 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1241 if (rc < 0)
1242 return rc;
1243 index = rc;
1244 }
1245
1246 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1247 /* Actual scratch location is at 128 bytes offset */
1248 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1249
1250 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1251 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1252 PIPE_CONTROL_GLOBAL_GTT_IVB |
1253 PIPE_CONTROL_CS_STALL |
1254 PIPE_CONTROL_QW_WRITE));
1255 wa_ctx_emit(batch, index, scratch_addr);
1256 wa_ctx_emit(batch, index, 0);
1257 wa_ctx_emit(batch, index, 0);
1258 wa_ctx_emit(batch, index, 0);
1259
1260 /* Pad to end of cacheline */
1261 while (index % CACHELINE_DWORDS)
1262 wa_ctx_emit(batch, index, MI_NOOP);
1263
1264 /*
1265 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1266 * execution depends on the length specified in terms of cache lines
1267 * in the register CTX_RCS_INDIRECT_CTX
1268 */
1269
1270 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1271 }
1272
1273 /**
1274 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1275 *
1276 * @ring: only applicable for RCS
1277 * @wa_ctx: structure representing wa_ctx
1278 * offset: specifies start of the batch, should be cache-aligned.
1279 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1280 * @batch: page in which WA are loaded
1281 * @offset: This field specifies the start of this batch.
1282 * This batch is started immediately after indirect_ctx batch. Since we ensure
1283 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1284 *
1285 * The number of DWORDS written are returned using this field.
1286 *
1287 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1288 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1289 */
1290 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1291 struct i915_wa_ctx_bb *wa_ctx,
1292 uint32_t *const batch,
1293 uint32_t *offset)
1294 {
1295 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1296
1297 /* WaDisableCtxRestoreArbitration:bdw,chv */
1298 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1299
1300 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1301
1302 return wa_ctx_end(wa_ctx, *offset = index, 1);
1303 }
1304
1305 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1306 struct i915_wa_ctx_bb *wa_ctx,
1307 uint32_t *const batch,
1308 uint32_t *offset)
1309 {
1310 int ret;
1311 struct drm_device *dev = ring->dev;
1312 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1313
1314 /* WaDisableCtxRestoreArbitration:skl,bxt */
1315 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1316 IS_BXT_REVID(dev, 0, BXT_REVID_A0))
1317 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1318
1319 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1320 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1321 if (ret < 0)
1322 return ret;
1323 index = ret;
1324
1325 /* Pad to end of cacheline */
1326 while (index % CACHELINE_DWORDS)
1327 wa_ctx_emit(batch, index, MI_NOOP);
1328
1329 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1330 }
1331
1332 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1333 struct i915_wa_ctx_bb *wa_ctx,
1334 uint32_t *const batch,
1335 uint32_t *offset)
1336 {
1337 struct drm_device *dev = ring->dev;
1338 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1339
1340 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1341 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1342 IS_BXT_REVID(dev, 0, BXT_REVID_A0)) {
1343 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1344 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1345 wa_ctx_emit(batch, index,
1346 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1347 wa_ctx_emit(batch, index, MI_NOOP);
1348 }
1349
1350 /* WaDisableCtxRestoreArbitration:skl,bxt */
1351 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1352 IS_BXT_REVID(dev, 0, BXT_REVID_A0))
1353 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1354
1355 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1356
1357 return wa_ctx_end(wa_ctx, *offset = index, 1);
1358 }
1359
1360 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1361 {
1362 int ret;
1363
1364 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1365 if (!ring->wa_ctx.obj) {
1366 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1367 return -ENOMEM;
1368 }
1369
1370 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1371 if (ret) {
1372 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1373 ret);
1374 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1375 return ret;
1376 }
1377
1378 return 0;
1379 }
1380
1381 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1382 {
1383 if (ring->wa_ctx.obj) {
1384 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1385 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1386 ring->wa_ctx.obj = NULL;
1387 }
1388 }
1389
1390 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1391 {
1392 int ret;
1393 uint32_t *batch;
1394 uint32_t offset;
1395 struct page *page;
1396 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1397
1398 WARN_ON(ring->id != RCS);
1399
1400 /* update this when WA for higher Gen are added */
1401 if (INTEL_INFO(ring->dev)->gen > 9) {
1402 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1403 INTEL_INFO(ring->dev)->gen);
1404 return 0;
1405 }
1406
1407 /* some WA perform writes to scratch page, ensure it is valid */
1408 if (ring->scratch.obj == NULL) {
1409 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1410 return -EINVAL;
1411 }
1412
1413 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1414 if (ret) {
1415 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1416 return ret;
1417 }
1418
1419 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1420 batch = kmap_atomic(page);
1421 offset = 0;
1422
1423 if (INTEL_INFO(ring->dev)->gen == 8) {
1424 ret = gen8_init_indirectctx_bb(ring,
1425 &wa_ctx->indirect_ctx,
1426 batch,
1427 &offset);
1428 if (ret)
1429 goto out;
1430
1431 ret = gen8_init_perctx_bb(ring,
1432 &wa_ctx->per_ctx,
1433 batch,
1434 &offset);
1435 if (ret)
1436 goto out;
1437 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1438 ret = gen9_init_indirectctx_bb(ring,
1439 &wa_ctx->indirect_ctx,
1440 batch,
1441 &offset);
1442 if (ret)
1443 goto out;
1444
1445 ret = gen9_init_perctx_bb(ring,
1446 &wa_ctx->per_ctx,
1447 batch,
1448 &offset);
1449 if (ret)
1450 goto out;
1451 }
1452
1453 out:
1454 kunmap_atomic(batch);
1455 if (ret)
1456 lrc_destroy_wa_ctx_obj(ring);
1457
1458 return ret;
1459 }
1460
1461 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1462 {
1463 struct drm_device *dev = ring->dev;
1464 struct drm_i915_private *dev_priv = dev->dev_private;
1465
1466 lrc_setup_hardware_status_page(ring,
1467 ring->default_context->engine[ring->id].state);
1468
1469 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1470 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1471
1472 if (ring->status_page.obj) {
1473 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1474 (u32)ring->status_page.gfx_addr);
1475 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1476 }
1477
1478 I915_WRITE(RING_MODE_GEN7(ring),
1479 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1480 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1481 POSTING_READ(RING_MODE_GEN7(ring));
1482 ring->next_context_status_buffer = 0;
1483 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1484
1485 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1486
1487 return 0;
1488 }
1489
1490 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1491 {
1492 struct drm_device *dev = ring->dev;
1493 struct drm_i915_private *dev_priv = dev->dev_private;
1494 int ret;
1495
1496 ret = gen8_init_common_ring(ring);
1497 if (ret)
1498 return ret;
1499
1500 /* We need to disable the AsyncFlip performance optimisations in order
1501 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1502 * programmed to '1' on all products.
1503 *
1504 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1505 */
1506 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1507
1508 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1509
1510 return init_workarounds_ring(ring);
1511 }
1512
1513 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1514 {
1515 int ret;
1516
1517 ret = gen8_init_common_ring(ring);
1518 if (ret)
1519 return ret;
1520
1521 return init_workarounds_ring(ring);
1522 }
1523
1524 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1525 {
1526 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1527 struct intel_engine_cs *ring = req->ring;
1528 struct intel_ringbuffer *ringbuf = req->ringbuf;
1529 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1530 int i, ret;
1531
1532 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1533 if (ret)
1534 return ret;
1535
1536 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1537 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1538 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1539
1540 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1541 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1542 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1543 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1544 }
1545
1546 intel_logical_ring_emit(ringbuf, MI_NOOP);
1547 intel_logical_ring_advance(ringbuf);
1548
1549 return 0;
1550 }
1551
1552 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1553 u64 offset, unsigned dispatch_flags)
1554 {
1555 struct intel_ringbuffer *ringbuf = req->ringbuf;
1556 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1557 int ret;
1558
1559 /* Don't rely in hw updating PDPs, specially in lite-restore.
1560 * Ideally, we should set Force PD Restore in ctx descriptor,
1561 * but we can't. Force Restore would be a second option, but
1562 * it is unsafe in case of lite-restore (because the ctx is
1563 * not idle). PML4 is allocated during ppgtt init so this is
1564 * not needed in 48-bit.*/
1565 if (req->ctx->ppgtt &&
1566 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1567 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1568 !intel_vgpu_active(req->i915->dev)) {
1569 ret = intel_logical_ring_emit_pdps(req);
1570 if (ret)
1571 return ret;
1572 }
1573
1574 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1575 }
1576
1577 ret = intel_logical_ring_begin(req, 4);
1578 if (ret)
1579 return ret;
1580
1581 /* FIXME(BDW): Address space and security selectors. */
1582 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1583 (ppgtt<<8) |
1584 (dispatch_flags & I915_DISPATCH_RS ?
1585 MI_BATCH_RESOURCE_STREAMER : 0));
1586 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1587 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1588 intel_logical_ring_emit(ringbuf, MI_NOOP);
1589 intel_logical_ring_advance(ringbuf);
1590
1591 return 0;
1592 }
1593
1594 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1595 {
1596 struct drm_device *dev = ring->dev;
1597 struct drm_i915_private *dev_priv = dev->dev_private;
1598 unsigned long flags;
1599
1600 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1601 return false;
1602
1603 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1604 if (ring->irq_refcount++ == 0) {
1605 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1606 POSTING_READ(RING_IMR(ring->mmio_base));
1607 }
1608 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1609
1610 return true;
1611 }
1612
1613 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1614 {
1615 struct drm_device *dev = ring->dev;
1616 struct drm_i915_private *dev_priv = dev->dev_private;
1617 unsigned long flags;
1618
1619 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1620 if (--ring->irq_refcount == 0) {
1621 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1622 POSTING_READ(RING_IMR(ring->mmio_base));
1623 }
1624 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1625 }
1626
1627 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1628 u32 invalidate_domains,
1629 u32 unused)
1630 {
1631 struct intel_ringbuffer *ringbuf = request->ringbuf;
1632 struct intel_engine_cs *ring = ringbuf->ring;
1633 struct drm_device *dev = ring->dev;
1634 struct drm_i915_private *dev_priv = dev->dev_private;
1635 uint32_t cmd;
1636 int ret;
1637
1638 ret = intel_logical_ring_begin(request, 4);
1639 if (ret)
1640 return ret;
1641
1642 cmd = MI_FLUSH_DW + 1;
1643
1644 /* We always require a command barrier so that subsequent
1645 * commands, such as breadcrumb interrupts, are strictly ordered
1646 * wrt the contents of the write cache being flushed to memory
1647 * (and thus being coherent from the CPU).
1648 */
1649 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1650
1651 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1652 cmd |= MI_INVALIDATE_TLB;
1653 if (ring == &dev_priv->ring[VCS])
1654 cmd |= MI_INVALIDATE_BSD;
1655 }
1656
1657 intel_logical_ring_emit(ringbuf, cmd);
1658 intel_logical_ring_emit(ringbuf,
1659 I915_GEM_HWS_SCRATCH_ADDR |
1660 MI_FLUSH_DW_USE_GTT);
1661 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1662 intel_logical_ring_emit(ringbuf, 0); /* value */
1663 intel_logical_ring_advance(ringbuf);
1664
1665 return 0;
1666 }
1667
1668 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1669 u32 invalidate_domains,
1670 u32 flush_domains)
1671 {
1672 struct intel_ringbuffer *ringbuf = request->ringbuf;
1673 struct intel_engine_cs *ring = ringbuf->ring;
1674 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1675 bool vf_flush_wa;
1676 u32 flags = 0;
1677 int ret;
1678
1679 flags |= PIPE_CONTROL_CS_STALL;
1680
1681 if (flush_domains) {
1682 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1683 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1684 }
1685
1686 if (invalidate_domains) {
1687 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1688 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1689 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1690 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1691 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1692 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1693 flags |= PIPE_CONTROL_QW_WRITE;
1694 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1695 }
1696
1697 /*
1698 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1699 * control.
1700 */
1701 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1702 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1703
1704 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1705 if (ret)
1706 return ret;
1707
1708 if (vf_flush_wa) {
1709 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1710 intel_logical_ring_emit(ringbuf, 0);
1711 intel_logical_ring_emit(ringbuf, 0);
1712 intel_logical_ring_emit(ringbuf, 0);
1713 intel_logical_ring_emit(ringbuf, 0);
1714 intel_logical_ring_emit(ringbuf, 0);
1715 }
1716
1717 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1718 intel_logical_ring_emit(ringbuf, flags);
1719 intel_logical_ring_emit(ringbuf, scratch_addr);
1720 intel_logical_ring_emit(ringbuf, 0);
1721 intel_logical_ring_emit(ringbuf, 0);
1722 intel_logical_ring_emit(ringbuf, 0);
1723 intel_logical_ring_advance(ringbuf);
1724
1725 return 0;
1726 }
1727
1728 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1729 {
1730 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1731 }
1732
1733 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1734 {
1735 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1736 }
1737
1738 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1739 {
1740
1741 /*
1742 * On BXT A steppings there is a HW coherency issue whereby the
1743 * MI_STORE_DATA_IMM storing the completed request's seqno
1744 * occasionally doesn't invalidate the CPU cache. Work around this by
1745 * clflushing the corresponding cacheline whenever the caller wants
1746 * the coherency to be guaranteed. Note that this cacheline is known
1747 * to be clean at this point, since we only write it in
1748 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1749 * this clflush in practice becomes an invalidate operation.
1750 */
1751
1752 if (!lazy_coherency)
1753 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1754
1755 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1756 }
1757
1758 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1759 {
1760 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1761
1762 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1763 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1764 }
1765
1766 static int gen8_emit_request(struct drm_i915_gem_request *request)
1767 {
1768 struct intel_ringbuffer *ringbuf = request->ringbuf;
1769 struct intel_engine_cs *ring = ringbuf->ring;
1770 u32 cmd;
1771 int ret;
1772
1773 /*
1774 * Reserve space for 2 NOOPs at the end of each request to be
1775 * used as a workaround for not being allowed to do lite
1776 * restore with HEAD==TAIL (WaIdleLiteRestore).
1777 */
1778 ret = intel_logical_ring_begin(request, 8);
1779 if (ret)
1780 return ret;
1781
1782 cmd = MI_STORE_DWORD_IMM_GEN4;
1783 cmd |= MI_GLOBAL_GTT;
1784
1785 intel_logical_ring_emit(ringbuf, cmd);
1786 intel_logical_ring_emit(ringbuf,
1787 (ring->status_page.gfx_addr +
1788 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1789 intel_logical_ring_emit(ringbuf, 0);
1790 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1791 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1792 intel_logical_ring_emit(ringbuf, MI_NOOP);
1793 intel_logical_ring_advance_and_submit(request);
1794
1795 /*
1796 * Here we add two extra NOOPs as padding to avoid
1797 * lite restore of a context with HEAD==TAIL.
1798 */
1799 intel_logical_ring_emit(ringbuf, MI_NOOP);
1800 intel_logical_ring_emit(ringbuf, MI_NOOP);
1801 intel_logical_ring_advance(ringbuf);
1802
1803 return 0;
1804 }
1805
1806 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1807 {
1808 struct render_state so;
1809 int ret;
1810
1811 ret = i915_gem_render_state_prepare(req->ring, &so);
1812 if (ret)
1813 return ret;
1814
1815 if (so.rodata == NULL)
1816 return 0;
1817
1818 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1819 I915_DISPATCH_SECURE);
1820 if (ret)
1821 goto out;
1822
1823 ret = req->ring->emit_bb_start(req,
1824 (so.ggtt_offset + so.aux_batch_offset),
1825 I915_DISPATCH_SECURE);
1826 if (ret)
1827 goto out;
1828
1829 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1830
1831 out:
1832 i915_gem_render_state_fini(&so);
1833 return ret;
1834 }
1835
1836 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1837 {
1838 int ret;
1839
1840 ret = intel_logical_ring_workarounds_emit(req);
1841 if (ret)
1842 return ret;
1843
1844 ret = intel_rcs_context_init_mocs(req);
1845 /*
1846 * Failing to program the MOCS is non-fatal.The system will not
1847 * run at peak performance. So generate an error and carry on.
1848 */
1849 if (ret)
1850 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1851
1852 return intel_lr_context_render_state_init(req);
1853 }
1854
1855 /**
1856 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1857 *
1858 * @ring: Engine Command Streamer.
1859 *
1860 */
1861 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1862 {
1863 struct drm_i915_private *dev_priv;
1864
1865 if (!intel_ring_initialized(ring))
1866 return;
1867
1868 dev_priv = ring->dev->dev_private;
1869
1870 intel_logical_ring_stop(ring);
1871 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1872
1873 if (ring->cleanup)
1874 ring->cleanup(ring);
1875
1876 i915_cmd_parser_fini_ring(ring);
1877 i915_gem_batch_pool_fini(&ring->batch_pool);
1878
1879 if (ring->status_page.obj) {
1880 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1881 ring->status_page.obj = NULL;
1882 }
1883
1884 lrc_destroy_wa_ctx_obj(ring);
1885 }
1886
1887 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1888 {
1889 int ret;
1890
1891 /* Intentionally left blank. */
1892 ring->buffer = NULL;
1893
1894 ring->dev = dev;
1895 INIT_LIST_HEAD(&ring->active_list);
1896 INIT_LIST_HEAD(&ring->request_list);
1897 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1898 init_waitqueue_head(&ring->irq_queue);
1899
1900 INIT_LIST_HEAD(&ring->execlist_queue);
1901 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1902 spin_lock_init(&ring->execlist_lock);
1903
1904 ret = i915_cmd_parser_init_ring(ring);
1905 if (ret)
1906 return ret;
1907
1908 ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1909 if (ret)
1910 return ret;
1911
1912 /* As this is the default context, always pin it */
1913 ret = intel_lr_context_do_pin(
1914 ring,
1915 ring->default_context->engine[ring->id].state,
1916 ring->default_context->engine[ring->id].ringbuf);
1917 if (ret) {
1918 DRM_ERROR(
1919 "Failed to pin and map ringbuffer %s: %d\n",
1920 ring->name, ret);
1921 return ret;
1922 }
1923
1924 return ret;
1925 }
1926
1927 static int logical_render_ring_init(struct drm_device *dev)
1928 {
1929 struct drm_i915_private *dev_priv = dev->dev_private;
1930 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1931 int ret;
1932
1933 ring->name = "render ring";
1934 ring->id = RCS;
1935 ring->mmio_base = RENDER_RING_BASE;
1936 ring->irq_enable_mask =
1937 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1938 ring->irq_keep_mask =
1939 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1940 if (HAS_L3_DPF(dev))
1941 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1942
1943 if (INTEL_INFO(dev)->gen >= 9)
1944 ring->init_hw = gen9_init_render_ring;
1945 else
1946 ring->init_hw = gen8_init_render_ring;
1947 ring->init_context = gen8_init_rcs_context;
1948 ring->cleanup = intel_fini_pipe_control;
1949 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1950 ring->get_seqno = bxt_a_get_seqno;
1951 ring->set_seqno = bxt_a_set_seqno;
1952 } else {
1953 ring->get_seqno = gen8_get_seqno;
1954 ring->set_seqno = gen8_set_seqno;
1955 }
1956 ring->emit_request = gen8_emit_request;
1957 ring->emit_flush = gen8_emit_flush_render;
1958 ring->irq_get = gen8_logical_ring_get_irq;
1959 ring->irq_put = gen8_logical_ring_put_irq;
1960 ring->emit_bb_start = gen8_emit_bb_start;
1961
1962 ring->dev = dev;
1963
1964 ret = intel_init_pipe_control(ring);
1965 if (ret)
1966 return ret;
1967
1968 ret = intel_init_workaround_bb(ring);
1969 if (ret) {
1970 /*
1971 * We continue even if we fail to initialize WA batch
1972 * because we only expect rare glitches but nothing
1973 * critical to prevent us from using GPU
1974 */
1975 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1976 ret);
1977 }
1978
1979 ret = logical_ring_init(dev, ring);
1980 if (ret) {
1981 lrc_destroy_wa_ctx_obj(ring);
1982 }
1983
1984 return ret;
1985 }
1986
1987 static int logical_bsd_ring_init(struct drm_device *dev)
1988 {
1989 struct drm_i915_private *dev_priv = dev->dev_private;
1990 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1991
1992 ring->name = "bsd ring";
1993 ring->id = VCS;
1994 ring->mmio_base = GEN6_BSD_RING_BASE;
1995 ring->irq_enable_mask =
1996 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1997 ring->irq_keep_mask =
1998 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1999
2000 ring->init_hw = gen8_init_common_ring;
2001 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2002 ring->get_seqno = bxt_a_get_seqno;
2003 ring->set_seqno = bxt_a_set_seqno;
2004 } else {
2005 ring->get_seqno = gen8_get_seqno;
2006 ring->set_seqno = gen8_set_seqno;
2007 }
2008 ring->emit_request = gen8_emit_request;
2009 ring->emit_flush = gen8_emit_flush;
2010 ring->irq_get = gen8_logical_ring_get_irq;
2011 ring->irq_put = gen8_logical_ring_put_irq;
2012 ring->emit_bb_start = gen8_emit_bb_start;
2013
2014 return logical_ring_init(dev, ring);
2015 }
2016
2017 static int logical_bsd2_ring_init(struct drm_device *dev)
2018 {
2019 struct drm_i915_private *dev_priv = dev->dev_private;
2020 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2021
2022 ring->name = "bds2 ring";
2023 ring->id = VCS2;
2024 ring->mmio_base = GEN8_BSD2_RING_BASE;
2025 ring->irq_enable_mask =
2026 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2027 ring->irq_keep_mask =
2028 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2029
2030 ring->init_hw = gen8_init_common_ring;
2031 ring->get_seqno = gen8_get_seqno;
2032 ring->set_seqno = gen8_set_seqno;
2033 ring->emit_request = gen8_emit_request;
2034 ring->emit_flush = gen8_emit_flush;
2035 ring->irq_get = gen8_logical_ring_get_irq;
2036 ring->irq_put = gen8_logical_ring_put_irq;
2037 ring->emit_bb_start = gen8_emit_bb_start;
2038
2039 return logical_ring_init(dev, ring);
2040 }
2041
2042 static int logical_blt_ring_init(struct drm_device *dev)
2043 {
2044 struct drm_i915_private *dev_priv = dev->dev_private;
2045 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2046
2047 ring->name = "blitter ring";
2048 ring->id = BCS;
2049 ring->mmio_base = BLT_RING_BASE;
2050 ring->irq_enable_mask =
2051 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2052 ring->irq_keep_mask =
2053 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2054
2055 ring->init_hw = gen8_init_common_ring;
2056 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2057 ring->get_seqno = bxt_a_get_seqno;
2058 ring->set_seqno = bxt_a_set_seqno;
2059 } else {
2060 ring->get_seqno = gen8_get_seqno;
2061 ring->set_seqno = gen8_set_seqno;
2062 }
2063 ring->emit_request = gen8_emit_request;
2064 ring->emit_flush = gen8_emit_flush;
2065 ring->irq_get = gen8_logical_ring_get_irq;
2066 ring->irq_put = gen8_logical_ring_put_irq;
2067 ring->emit_bb_start = gen8_emit_bb_start;
2068
2069 return logical_ring_init(dev, ring);
2070 }
2071
2072 static int logical_vebox_ring_init(struct drm_device *dev)
2073 {
2074 struct drm_i915_private *dev_priv = dev->dev_private;
2075 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2076
2077 ring->name = "video enhancement ring";
2078 ring->id = VECS;
2079 ring->mmio_base = VEBOX_RING_BASE;
2080 ring->irq_enable_mask =
2081 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2082 ring->irq_keep_mask =
2083 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2084
2085 ring->init_hw = gen8_init_common_ring;
2086 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2087 ring->get_seqno = bxt_a_get_seqno;
2088 ring->set_seqno = bxt_a_set_seqno;
2089 } else {
2090 ring->get_seqno = gen8_get_seqno;
2091 ring->set_seqno = gen8_set_seqno;
2092 }
2093 ring->emit_request = gen8_emit_request;
2094 ring->emit_flush = gen8_emit_flush;
2095 ring->irq_get = gen8_logical_ring_get_irq;
2096 ring->irq_put = gen8_logical_ring_put_irq;
2097 ring->emit_bb_start = gen8_emit_bb_start;
2098
2099 return logical_ring_init(dev, ring);
2100 }
2101
2102 /**
2103 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2104 * @dev: DRM device.
2105 *
2106 * This function inits the engines for an Execlists submission style (the equivalent in the
2107 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2108 * those engines that are present in the hardware.
2109 *
2110 * Return: non-zero if the initialization failed.
2111 */
2112 int intel_logical_rings_init(struct drm_device *dev)
2113 {
2114 struct drm_i915_private *dev_priv = dev->dev_private;
2115 int ret;
2116
2117 ret = logical_render_ring_init(dev);
2118 if (ret)
2119 return ret;
2120
2121 if (HAS_BSD(dev)) {
2122 ret = logical_bsd_ring_init(dev);
2123 if (ret)
2124 goto cleanup_render_ring;
2125 }
2126
2127 if (HAS_BLT(dev)) {
2128 ret = logical_blt_ring_init(dev);
2129 if (ret)
2130 goto cleanup_bsd_ring;
2131 }
2132
2133 if (HAS_VEBOX(dev)) {
2134 ret = logical_vebox_ring_init(dev);
2135 if (ret)
2136 goto cleanup_blt_ring;
2137 }
2138
2139 if (HAS_BSD2(dev)) {
2140 ret = logical_bsd2_ring_init(dev);
2141 if (ret)
2142 goto cleanup_vebox_ring;
2143 }
2144
2145 return 0;
2146
2147 cleanup_vebox_ring:
2148 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2149 cleanup_blt_ring:
2150 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2151 cleanup_bsd_ring:
2152 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2153 cleanup_render_ring:
2154 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2155
2156 return ret;
2157 }
2158
2159 static u32
2160 make_rpcs(struct drm_device *dev)
2161 {
2162 u32 rpcs = 0;
2163
2164 /*
2165 * No explicit RPCS request is needed to ensure full
2166 * slice/subslice/EU enablement prior to Gen9.
2167 */
2168 if (INTEL_INFO(dev)->gen < 9)
2169 return 0;
2170
2171 /*
2172 * Starting in Gen9, render power gating can leave
2173 * slice/subslice/EU in a partially enabled state. We
2174 * must make an explicit request through RPCS for full
2175 * enablement.
2176 */
2177 if (INTEL_INFO(dev)->has_slice_pg) {
2178 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2179 rpcs |= INTEL_INFO(dev)->slice_total <<
2180 GEN8_RPCS_S_CNT_SHIFT;
2181 rpcs |= GEN8_RPCS_ENABLE;
2182 }
2183
2184 if (INTEL_INFO(dev)->has_subslice_pg) {
2185 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2186 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2187 GEN8_RPCS_SS_CNT_SHIFT;
2188 rpcs |= GEN8_RPCS_ENABLE;
2189 }
2190
2191 if (INTEL_INFO(dev)->has_eu_pg) {
2192 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2193 GEN8_RPCS_EU_MIN_SHIFT;
2194 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2195 GEN8_RPCS_EU_MAX_SHIFT;
2196 rpcs |= GEN8_RPCS_ENABLE;
2197 }
2198
2199 return rpcs;
2200 }
2201
2202 static int
2203 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2204 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2205 {
2206 struct drm_device *dev = ring->dev;
2207 struct drm_i915_private *dev_priv = dev->dev_private;
2208 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2209 struct page *page;
2210 uint32_t *reg_state;
2211 int ret;
2212
2213 if (!ppgtt)
2214 ppgtt = dev_priv->mm.aliasing_ppgtt;
2215
2216 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2217 if (ret) {
2218 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2219 return ret;
2220 }
2221
2222 ret = i915_gem_object_get_pages(ctx_obj);
2223 if (ret) {
2224 DRM_DEBUG_DRIVER("Could not get object pages\n");
2225 return ret;
2226 }
2227
2228 i915_gem_object_pin_pages(ctx_obj);
2229
2230 /* The second page of the context object contains some fields which must
2231 * be set up prior to the first execution. */
2232 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2233 reg_state = kmap_atomic(page);
2234
2235 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2236 * commands followed by (reg, value) pairs. The values we are setting here are
2237 * only for the first context restore: on a subsequent save, the GPU will
2238 * recreate this batchbuffer with new values (including all the missing
2239 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2240 if (ring->id == RCS)
2241 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2242 else
2243 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2244 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2245 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2246 reg_state[CTX_CONTEXT_CONTROL+1] =
2247 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2248 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2249 CTX_CTRL_RS_CTX_ENABLE);
2250 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2251 reg_state[CTX_RING_HEAD+1] = 0;
2252 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2253 reg_state[CTX_RING_TAIL+1] = 0;
2254 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2255 /* Ring buffer start address is not known until the buffer is pinned.
2256 * It is written to the context image in execlists_update_context()
2257 */
2258 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2259 reg_state[CTX_RING_BUFFER_CONTROL+1] =
2260 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2261 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2262 reg_state[CTX_BB_HEAD_U+1] = 0;
2263 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2264 reg_state[CTX_BB_HEAD_L+1] = 0;
2265 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2266 reg_state[CTX_BB_STATE+1] = (1<<5);
2267 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2268 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2269 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2270 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2271 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2272 reg_state[CTX_SECOND_BB_STATE+1] = 0;
2273 if (ring->id == RCS) {
2274 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2275 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2276 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2277 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2278 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2279 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2280 if (ring->wa_ctx.obj) {
2281 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2282 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2283
2284 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2285 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2286 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2287
2288 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2289 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2290
2291 reg_state[CTX_BB_PER_CTX_PTR+1] =
2292 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2293 0x01;
2294 }
2295 }
2296 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2297 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2298 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2299 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2300 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2301 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2302 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2303 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2304 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2305 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2306 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2307 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2308
2309 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2310 /* 64b PPGTT (48bit canonical)
2311 * PDP0_DESCRIPTOR contains the base address to PML4 and
2312 * other PDP Descriptors are ignored.
2313 */
2314 ASSIGN_CTX_PML4(ppgtt, reg_state);
2315 } else {
2316 /* 32b PPGTT
2317 * PDP*_DESCRIPTOR contains the base address of space supported.
2318 * With dynamic page allocation, PDPs may not be allocated at
2319 * this point. Point the unallocated PDPs to the scratch page
2320 */
2321 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2322 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2323 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2324 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2325 }
2326
2327 if (ring->id == RCS) {
2328 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2329 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2330 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2331 }
2332
2333 kunmap_atomic(reg_state);
2334
2335 ctx_obj->dirty = 1;
2336 set_page_dirty(page);
2337 i915_gem_object_unpin_pages(ctx_obj);
2338
2339 return 0;
2340 }
2341
2342 /**
2343 * intel_lr_context_free() - free the LRC specific bits of a context
2344 * @ctx: the LR context to free.
2345 *
2346 * The real context freeing is done in i915_gem_context_free: this only
2347 * takes care of the bits that are LRC related: the per-engine backing
2348 * objects and the logical ringbuffer.
2349 */
2350 void intel_lr_context_free(struct intel_context *ctx)
2351 {
2352 int i;
2353
2354 for (i = 0; i < I915_NUM_RINGS; i++) {
2355 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2356
2357 if (ctx_obj) {
2358 struct intel_ringbuffer *ringbuf =
2359 ctx->engine[i].ringbuf;
2360 struct intel_engine_cs *ring = ringbuf->ring;
2361
2362 if (ctx == ring->default_context) {
2363 intel_unpin_ringbuffer_obj(ringbuf);
2364 i915_gem_object_ggtt_unpin(ctx_obj);
2365 }
2366 WARN_ON(ctx->engine[ring->id].pin_count);
2367 intel_ringbuffer_free(ringbuf);
2368 drm_gem_object_unreference(&ctx_obj->base);
2369 }
2370 }
2371 }
2372
2373 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2374 {
2375 int ret = 0;
2376
2377 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2378
2379 switch (ring->id) {
2380 case RCS:
2381 if (INTEL_INFO(ring->dev)->gen >= 9)
2382 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2383 else
2384 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2385 break;
2386 case VCS:
2387 case BCS:
2388 case VECS:
2389 case VCS2:
2390 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2391 break;
2392 }
2393
2394 return ret;
2395 }
2396
2397 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2398 struct drm_i915_gem_object *default_ctx_obj)
2399 {
2400 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2401 struct page *page;
2402
2403 /* The HWSP is part of the default context object in LRC mode. */
2404 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2405 + LRC_PPHWSP_PN * PAGE_SIZE;
2406 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2407 ring->status_page.page_addr = kmap(page);
2408 ring->status_page.obj = default_ctx_obj;
2409
2410 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2411 (u32)ring->status_page.gfx_addr);
2412 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2413 }
2414
2415 /**
2416 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2417 * @ctx: LR context to create.
2418 * @ring: engine to be used with the context.
2419 *
2420 * This function can be called more than once, with different engines, if we plan
2421 * to use the context with them. The context backing objects and the ringbuffers
2422 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2423 * the creation is a deferred call: it's better to make sure first that we need to use
2424 * a given ring with the context.
2425 *
2426 * Return: non-zero on error.
2427 */
2428
2429 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2430 struct intel_engine_cs *ring)
2431 {
2432 struct drm_device *dev = ring->dev;
2433 struct drm_i915_gem_object *ctx_obj;
2434 uint32_t context_size;
2435 struct intel_ringbuffer *ringbuf;
2436 int ret;
2437
2438 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2439 WARN_ON(ctx->engine[ring->id].state);
2440
2441 context_size = round_up(get_lr_context_size(ring), 4096);
2442
2443 /* One extra page as the sharing data between driver and GuC */
2444 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2445
2446 ctx_obj = i915_gem_alloc_object(dev, context_size);
2447 if (!ctx_obj) {
2448 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2449 return -ENOMEM;
2450 }
2451
2452 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2453 if (IS_ERR(ringbuf)) {
2454 ret = PTR_ERR(ringbuf);
2455 goto error_deref_obj;
2456 }
2457
2458 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2459 if (ret) {
2460 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2461 goto error_ringbuf;
2462 }
2463
2464 ctx->engine[ring->id].ringbuf = ringbuf;
2465 ctx->engine[ring->id].state = ctx_obj;
2466
2467 if (ctx != ring->default_context && ring->init_context) {
2468 struct drm_i915_gem_request *req;
2469
2470 ret = i915_gem_request_alloc(ring,
2471 ctx, &req);
2472 if (ret) {
2473 DRM_ERROR("ring create req: %d\n",
2474 ret);
2475 goto error_ringbuf;
2476 }
2477
2478 ret = ring->init_context(req);
2479 if (ret) {
2480 DRM_ERROR("ring init context: %d\n",
2481 ret);
2482 i915_gem_request_cancel(req);
2483 goto error_ringbuf;
2484 }
2485 i915_add_request_no_flush(req);
2486 }
2487 return 0;
2488
2489 error_ringbuf:
2490 intel_ringbuffer_free(ringbuf);
2491 error_deref_obj:
2492 drm_gem_object_unreference(&ctx_obj->base);
2493 ctx->engine[ring->id].ringbuf = NULL;
2494 ctx->engine[ring->id].state = NULL;
2495 return ret;
2496 }
2497
2498 void intel_lr_context_reset(struct drm_device *dev,
2499 struct intel_context *ctx)
2500 {
2501 struct drm_i915_private *dev_priv = dev->dev_private;
2502 struct intel_engine_cs *ring;
2503 int i;
2504
2505 for_each_ring(ring, dev_priv, i) {
2506 struct drm_i915_gem_object *ctx_obj =
2507 ctx->engine[ring->id].state;
2508 struct intel_ringbuffer *ringbuf =
2509 ctx->engine[ring->id].ringbuf;
2510 uint32_t *reg_state;
2511 struct page *page;
2512
2513 if (!ctx_obj)
2514 continue;
2515
2516 if (i915_gem_object_get_pages(ctx_obj)) {
2517 WARN(1, "Failed get_pages for context obj\n");
2518 continue;
2519 }
2520 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2521 reg_state = kmap_atomic(page);
2522
2523 reg_state[CTX_RING_HEAD+1] = 0;
2524 reg_state[CTX_RING_TAIL+1] = 0;
2525
2526 kunmap_atomic(reg_state);
2527
2528 ringbuf->head = 0;
2529 ringbuf->tail = 0;
2530 }
2531 }
This page took 0.085114 seconds and 5 git commands to generate.