drm/i915: Remove 'outstanding_lazy_seqno'
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL (1 << 0x2)
144 #define RING_EXECLIST1_VALID (1 << 0x3)
145 #define RING_EXECLIST0_VALID (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156
157 #define CTX_LRI_HEADER_0 0x01
158 #define CTX_CONTEXT_CONTROL 0x02
159 #define CTX_RING_HEAD 0x04
160 #define CTX_RING_TAIL 0x06
161 #define CTX_RING_BUFFER_START 0x08
162 #define CTX_RING_BUFFER_CONTROL 0x0a
163 #define CTX_BB_HEAD_U 0x0c
164 #define CTX_BB_HEAD_L 0x0e
165 #define CTX_BB_STATE 0x10
166 #define CTX_SECOND_BB_HEAD_U 0x12
167 #define CTX_SECOND_BB_HEAD_L 0x14
168 #define CTX_SECOND_BB_STATE 0x16
169 #define CTX_BB_PER_CTX_PTR 0x18
170 #define CTX_RCS_INDIRECT_CTX 0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172 #define CTX_LRI_HEADER_1 0x21
173 #define CTX_CTX_TIMESTAMP 0x22
174 #define CTX_PDP3_UDW 0x24
175 #define CTX_PDP3_LDW 0x26
176 #define CTX_PDP2_UDW 0x28
177 #define CTX_PDP2_LDW 0x2a
178 #define CTX_PDP1_UDW 0x2c
179 #define CTX_PDP1_LDW 0x2e
180 #define CTX_PDP0_UDW 0x30
181 #define CTX_PDP0_LDW 0x32
182 #define CTX_LRI_HEADER_2 0x41
183 #define CTX_R_PWR_CLK_STATE 0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191 enum {
192 ADVANCED_CONTEXT = 0,
193 LEGACY_CONTEXT,
194 ADVANCED_AD_CONTEXT,
195 LEGACY_64B_CONTEXT
196 };
197 #define GEN8_CTX_MODE_SHIFT 3
198 enum {
199 FAULT_AND_HANG = 0,
200 FAULT_AND_HALT, /* Debug only */
201 FAULT_AND_STREAM,
202 FAULT_AND_CONTINUE /* Unsupported */
203 };
204 #define GEN8_CTX_ID_SHIFT 32
205
206 static int intel_lr_context_pin(struct intel_engine_cs *ring,
207 struct intel_context *ctx);
208
209 /**
210 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
211 * @dev: DRM device.
212 * @enable_execlists: value of i915.enable_execlists module parameter.
213 *
214 * Only certain platforms support Execlists (the prerequisites being
215 * support for Logical Ring Contexts and Aliasing PPGTT or better),
216 * and only when enabled via module parameter.
217 *
218 * Return: 1 if Execlists is supported and has to be enabled.
219 */
220 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
221 {
222 WARN_ON(i915.enable_ppgtt == -1);
223
224 if (INTEL_INFO(dev)->gen >= 9)
225 return 1;
226
227 if (enable_execlists == 0)
228 return 0;
229
230 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
231 i915.use_mmio_flip >= 0)
232 return 1;
233
234 return 0;
235 }
236
237 /**
238 * intel_execlists_ctx_id() - get the Execlists Context ID
239 * @ctx_obj: Logical Ring Context backing object.
240 *
241 * Do not confuse with ctx->id! Unfortunately we have a name overload
242 * here: the old context ID we pass to userspace as a handler so that
243 * they can refer to a context, and the new context ID we pass to the
244 * ELSP so that the GPU can inform us of the context status via
245 * interrupts.
246 *
247 * Return: 20-bits globally unique context ID.
248 */
249 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
250 {
251 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
252
253 /* LRCA is required to be 4K aligned so the more significant 20 bits
254 * are globally unique */
255 return lrca >> 12;
256 }
257
258 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
259 {
260 uint64_t desc;
261 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
262
263 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
264
265 desc = GEN8_CTX_VALID;
266 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
267 desc |= GEN8_CTX_L3LLC_COHERENT;
268 desc |= GEN8_CTX_PRIVILEGE;
269 desc |= lrca;
270 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
271
272 /* TODO: WaDisableLiteRestore when we start using semaphore
273 * signalling between Command Streamers */
274 /* desc |= GEN8_CTX_FORCE_RESTORE; */
275
276 return desc;
277 }
278
279 static void execlists_elsp_write(struct intel_engine_cs *ring,
280 struct drm_i915_gem_object *ctx_obj0,
281 struct drm_i915_gem_object *ctx_obj1)
282 {
283 struct drm_device *dev = ring->dev;
284 struct drm_i915_private *dev_priv = dev->dev_private;
285 uint64_t temp = 0;
286 uint32_t desc[4];
287 unsigned long flags;
288
289 /* XXX: You must always write both descriptors in the order below. */
290 if (ctx_obj1)
291 temp = execlists_ctx_descriptor(ctx_obj1);
292 else
293 temp = 0;
294 desc[1] = (u32)(temp >> 32);
295 desc[0] = (u32)temp;
296
297 temp = execlists_ctx_descriptor(ctx_obj0);
298 desc[3] = (u32)(temp >> 32);
299 desc[2] = (u32)temp;
300
301 /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
302 * are in progress.
303 *
304 * The other problem is that we can't just call gen6_gt_force_wake_get()
305 * because that function calls intel_runtime_pm_get(), which might sleep.
306 * Instead, we do the runtime_pm_get/put when creating/destroying requests.
307 */
308 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
309 if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
310 if (dev_priv->uncore.fw_rendercount++ == 0)
311 dev_priv->uncore.funcs.force_wake_get(dev_priv,
312 FORCEWAKE_RENDER);
313 if (dev_priv->uncore.fw_mediacount++ == 0)
314 dev_priv->uncore.funcs.force_wake_get(dev_priv,
315 FORCEWAKE_MEDIA);
316 if (INTEL_INFO(dev)->gen >= 9) {
317 if (dev_priv->uncore.fw_blittercount++ == 0)
318 dev_priv->uncore.funcs.force_wake_get(dev_priv,
319 FORCEWAKE_BLITTER);
320 }
321 } else {
322 if (dev_priv->uncore.forcewake_count++ == 0)
323 dev_priv->uncore.funcs.force_wake_get(dev_priv,
324 FORCEWAKE_ALL);
325 }
326 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
327
328 I915_WRITE(RING_ELSP(ring), desc[1]);
329 I915_WRITE(RING_ELSP(ring), desc[0]);
330 I915_WRITE(RING_ELSP(ring), desc[3]);
331 /* The context is automatically loaded after the following */
332 I915_WRITE(RING_ELSP(ring), desc[2]);
333
334 /* ELSP is a wo register, so use another nearby reg for posting instead */
335 POSTING_READ(RING_EXECLIST_STATUS(ring));
336
337 /* Release Force Wakeup (see the big comment above). */
338 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
339 if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
340 if (--dev_priv->uncore.fw_rendercount == 0)
341 dev_priv->uncore.funcs.force_wake_put(dev_priv,
342 FORCEWAKE_RENDER);
343 if (--dev_priv->uncore.fw_mediacount == 0)
344 dev_priv->uncore.funcs.force_wake_put(dev_priv,
345 FORCEWAKE_MEDIA);
346 if (INTEL_INFO(dev)->gen >= 9) {
347 if (--dev_priv->uncore.fw_blittercount == 0)
348 dev_priv->uncore.funcs.force_wake_put(dev_priv,
349 FORCEWAKE_BLITTER);
350 }
351 } else {
352 if (--dev_priv->uncore.forcewake_count == 0)
353 dev_priv->uncore.funcs.force_wake_put(dev_priv,
354 FORCEWAKE_ALL);
355 }
356
357 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
358 }
359
360 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
361 struct drm_i915_gem_object *ring_obj,
362 u32 tail)
363 {
364 struct page *page;
365 uint32_t *reg_state;
366
367 page = i915_gem_object_get_page(ctx_obj, 1);
368 reg_state = kmap_atomic(page);
369
370 reg_state[CTX_RING_TAIL+1] = tail;
371 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
372
373 kunmap_atomic(reg_state);
374
375 return 0;
376 }
377
378 static void execlists_submit_contexts(struct intel_engine_cs *ring,
379 struct intel_context *to0, u32 tail0,
380 struct intel_context *to1, u32 tail1)
381 {
382 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
383 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
384 struct drm_i915_gem_object *ctx_obj1 = NULL;
385 struct intel_ringbuffer *ringbuf1 = NULL;
386
387 BUG_ON(!ctx_obj0);
388 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
389 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
390
391 execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
392
393 if (to1) {
394 ringbuf1 = to1->engine[ring->id].ringbuf;
395 ctx_obj1 = to1->engine[ring->id].state;
396 BUG_ON(!ctx_obj1);
397 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
398 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
399
400 execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
401 }
402
403 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
404 }
405
406 static void execlists_context_unqueue(struct intel_engine_cs *ring)
407 {
408 struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
409 struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
410
411 assert_spin_locked(&ring->execlist_lock);
412
413 if (list_empty(&ring->execlist_queue))
414 return;
415
416 /* Try to read in pairs */
417 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
418 execlist_link) {
419 if (!req0) {
420 req0 = cursor;
421 } else if (req0->ctx == cursor->ctx) {
422 /* Same ctx: ignore first request, as second request
423 * will update tail past first request's workload */
424 cursor->elsp_submitted = req0->elsp_submitted;
425 list_del(&req0->execlist_link);
426 list_add_tail(&req0->execlist_link,
427 &ring->execlist_retired_req_list);
428 req0 = cursor;
429 } else {
430 req1 = cursor;
431 break;
432 }
433 }
434
435 WARN_ON(req1 && req1->elsp_submitted);
436
437 execlists_submit_contexts(ring, req0->ctx, req0->tail,
438 req1 ? req1->ctx : NULL,
439 req1 ? req1->tail : 0);
440
441 req0->elsp_submitted++;
442 if (req1)
443 req1->elsp_submitted++;
444 }
445
446 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
447 u32 request_id)
448 {
449 struct intel_ctx_submit_request *head_req;
450
451 assert_spin_locked(&ring->execlist_lock);
452
453 head_req = list_first_entry_or_null(&ring->execlist_queue,
454 struct intel_ctx_submit_request,
455 execlist_link);
456
457 if (head_req != NULL) {
458 struct drm_i915_gem_object *ctx_obj =
459 head_req->ctx->engine[ring->id].state;
460 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
461 WARN(head_req->elsp_submitted == 0,
462 "Never submitted head request\n");
463
464 if (--head_req->elsp_submitted <= 0) {
465 list_del(&head_req->execlist_link);
466 list_add_tail(&head_req->execlist_link,
467 &ring->execlist_retired_req_list);
468 return true;
469 }
470 }
471 }
472
473 return false;
474 }
475
476 /**
477 * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
478 * @ring: Engine Command Streamer to handle.
479 *
480 * Check the unread Context Status Buffers and manage the submission of new
481 * contexts to the ELSP accordingly.
482 */
483 void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
484 {
485 struct drm_i915_private *dev_priv = ring->dev->dev_private;
486 u32 status_pointer;
487 u8 read_pointer;
488 u8 write_pointer;
489 u32 status;
490 u32 status_id;
491 u32 submit_contexts = 0;
492
493 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
494
495 read_pointer = ring->next_context_status_buffer;
496 write_pointer = status_pointer & 0x07;
497 if (read_pointer > write_pointer)
498 write_pointer += 6;
499
500 spin_lock(&ring->execlist_lock);
501
502 while (read_pointer < write_pointer) {
503 read_pointer++;
504 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
505 (read_pointer % 6) * 8);
506 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
507 (read_pointer % 6) * 8 + 4);
508
509 if (status & GEN8_CTX_STATUS_PREEMPTED) {
510 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
511 if (execlists_check_remove_request(ring, status_id))
512 WARN(1, "Lite Restored request removed from queue\n");
513 } else
514 WARN(1, "Preemption without Lite Restore\n");
515 }
516
517 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
518 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
519 if (execlists_check_remove_request(ring, status_id))
520 submit_contexts++;
521 }
522 }
523
524 if (submit_contexts != 0)
525 execlists_context_unqueue(ring);
526
527 spin_unlock(&ring->execlist_lock);
528
529 WARN(submit_contexts > 2, "More than two context complete events?\n");
530 ring->next_context_status_buffer = write_pointer % 6;
531
532 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
533 ((u32)ring->next_context_status_buffer & 0x07) << 8);
534 }
535
536 static int execlists_context_queue(struct intel_engine_cs *ring,
537 struct intel_context *to,
538 u32 tail)
539 {
540 struct intel_ctx_submit_request *req = NULL, *cursor;
541 struct drm_i915_private *dev_priv = ring->dev->dev_private;
542 unsigned long flags;
543 int num_elements = 0;
544
545 req = kzalloc(sizeof(*req), GFP_KERNEL);
546 if (req == NULL)
547 return -ENOMEM;
548 req->ctx = to;
549 i915_gem_context_reference(req->ctx);
550
551 if (to != ring->default_context)
552 intel_lr_context_pin(ring, to);
553
554 req->ring = ring;
555 req->tail = tail;
556
557 intel_runtime_pm_get(dev_priv);
558
559 spin_lock_irqsave(&ring->execlist_lock, flags);
560
561 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
562 if (++num_elements > 2)
563 break;
564
565 if (num_elements > 2) {
566 struct intel_ctx_submit_request *tail_req;
567
568 tail_req = list_last_entry(&ring->execlist_queue,
569 struct intel_ctx_submit_request,
570 execlist_link);
571
572 if (to == tail_req->ctx) {
573 WARN(tail_req->elsp_submitted != 0,
574 "More than 2 already-submitted reqs queued\n");
575 list_del(&tail_req->execlist_link);
576 list_add_tail(&tail_req->execlist_link,
577 &ring->execlist_retired_req_list);
578 }
579 }
580
581 list_add_tail(&req->execlist_link, &ring->execlist_queue);
582 if (num_elements == 0)
583 execlists_context_unqueue(ring);
584
585 spin_unlock_irqrestore(&ring->execlist_lock, flags);
586
587 return 0;
588 }
589
590 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
591 {
592 struct intel_engine_cs *ring = ringbuf->ring;
593 uint32_t flush_domains;
594 int ret;
595
596 flush_domains = 0;
597 if (ring->gpu_caches_dirty)
598 flush_domains = I915_GEM_GPU_DOMAINS;
599
600 ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
601 if (ret)
602 return ret;
603
604 ring->gpu_caches_dirty = false;
605 return 0;
606 }
607
608 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
609 struct list_head *vmas)
610 {
611 struct intel_engine_cs *ring = ringbuf->ring;
612 struct i915_vma *vma;
613 uint32_t flush_domains = 0;
614 bool flush_chipset = false;
615 int ret;
616
617 list_for_each_entry(vma, vmas, exec_list) {
618 struct drm_i915_gem_object *obj = vma->obj;
619
620 ret = i915_gem_object_sync(obj, ring);
621 if (ret)
622 return ret;
623
624 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
625 flush_chipset |= i915_gem_clflush_object(obj, false);
626
627 flush_domains |= obj->base.write_domain;
628 }
629
630 if (flush_domains & I915_GEM_DOMAIN_GTT)
631 wmb();
632
633 /* Unconditionally invalidate gpu caches and ensure that we do flush
634 * any residual writes from the previous batch.
635 */
636 return logical_ring_invalidate_all_caches(ringbuf);
637 }
638
639 /**
640 * execlists_submission() - submit a batchbuffer for execution, Execlists style
641 * @dev: DRM device.
642 * @file: DRM file.
643 * @ring: Engine Command Streamer to submit to.
644 * @ctx: Context to employ for this submission.
645 * @args: execbuffer call arguments.
646 * @vmas: list of vmas.
647 * @batch_obj: the batchbuffer to submit.
648 * @exec_start: batchbuffer start virtual address pointer.
649 * @flags: translated execbuffer call flags.
650 *
651 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
652 * away the submission details of the execbuffer ioctl call.
653 *
654 * Return: non-zero if the submission fails.
655 */
656 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
657 struct intel_engine_cs *ring,
658 struct intel_context *ctx,
659 struct drm_i915_gem_execbuffer2 *args,
660 struct list_head *vmas,
661 struct drm_i915_gem_object *batch_obj,
662 u64 exec_start, u32 flags)
663 {
664 struct drm_i915_private *dev_priv = dev->dev_private;
665 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
666 int instp_mode;
667 u32 instp_mask;
668 int ret;
669
670 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
671 instp_mask = I915_EXEC_CONSTANTS_MASK;
672 switch (instp_mode) {
673 case I915_EXEC_CONSTANTS_REL_GENERAL:
674 case I915_EXEC_CONSTANTS_ABSOLUTE:
675 case I915_EXEC_CONSTANTS_REL_SURFACE:
676 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
677 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
678 return -EINVAL;
679 }
680
681 if (instp_mode != dev_priv->relative_constants_mode) {
682 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
683 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
684 return -EINVAL;
685 }
686
687 /* The HW changed the meaning on this bit on gen6 */
688 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
689 }
690 break;
691 default:
692 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
693 return -EINVAL;
694 }
695
696 if (args->num_cliprects != 0) {
697 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
698 return -EINVAL;
699 } else {
700 if (args->DR4 == 0xffffffff) {
701 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
702 args->DR4 = 0;
703 }
704
705 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
706 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
707 return -EINVAL;
708 }
709 }
710
711 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
712 DRM_DEBUG("sol reset is gen7 only\n");
713 return -EINVAL;
714 }
715
716 ret = execlists_move_to_gpu(ringbuf, vmas);
717 if (ret)
718 return ret;
719
720 if (ring == &dev_priv->ring[RCS] &&
721 instp_mode != dev_priv->relative_constants_mode) {
722 ret = intel_logical_ring_begin(ringbuf, 4);
723 if (ret)
724 return ret;
725
726 intel_logical_ring_emit(ringbuf, MI_NOOP);
727 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
728 intel_logical_ring_emit(ringbuf, INSTPM);
729 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
730 intel_logical_ring_advance(ringbuf);
731
732 dev_priv->relative_constants_mode = instp_mode;
733 }
734
735 ret = ring->emit_bb_start(ringbuf, exec_start, flags);
736 if (ret)
737 return ret;
738
739 i915_gem_execbuffer_move_to_active(vmas, ring);
740 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
741
742 return 0;
743 }
744
745 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
746 {
747 struct intel_ctx_submit_request *req, *tmp;
748 struct drm_i915_private *dev_priv = ring->dev->dev_private;
749 unsigned long flags;
750 struct list_head retired_list;
751
752 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
753 if (list_empty(&ring->execlist_retired_req_list))
754 return;
755
756 INIT_LIST_HEAD(&retired_list);
757 spin_lock_irqsave(&ring->execlist_lock, flags);
758 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
759 spin_unlock_irqrestore(&ring->execlist_lock, flags);
760
761 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
762 struct intel_context *ctx = req->ctx;
763 struct drm_i915_gem_object *ctx_obj =
764 ctx->engine[ring->id].state;
765
766 if (ctx_obj && (ctx != ring->default_context))
767 intel_lr_context_unpin(ring, ctx);
768 intel_runtime_pm_put(dev_priv);
769 i915_gem_context_unreference(req->ctx);
770 list_del(&req->execlist_link);
771 kfree(req);
772 }
773 }
774
775 void intel_logical_ring_stop(struct intel_engine_cs *ring)
776 {
777 struct drm_i915_private *dev_priv = ring->dev->dev_private;
778 int ret;
779
780 if (!intel_ring_initialized(ring))
781 return;
782
783 ret = intel_ring_idle(ring);
784 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
785 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
786 ring->name, ret);
787
788 /* TODO: Is this correct with Execlists enabled? */
789 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
790 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
791 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
792 return;
793 }
794 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
795 }
796
797 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
798 {
799 struct intel_engine_cs *ring = ringbuf->ring;
800 int ret;
801
802 if (!ring->gpu_caches_dirty)
803 return 0;
804
805 ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
806 if (ret)
807 return ret;
808
809 ring->gpu_caches_dirty = false;
810 return 0;
811 }
812
813 /**
814 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
815 * @ringbuf: Logical Ringbuffer to advance.
816 *
817 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
818 * really happens during submission is that the context and current tail will be placed
819 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
820 * point, the tail *inside* the context is updated and the ELSP written to.
821 */
822 void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
823 {
824 struct intel_engine_cs *ring = ringbuf->ring;
825 struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
826
827 intel_logical_ring_advance(ringbuf);
828
829 if (intel_ring_stopped(ring))
830 return;
831
832 execlists_context_queue(ring, ctx, ringbuf->tail);
833 }
834
835 static int intel_lr_context_pin(struct intel_engine_cs *ring,
836 struct intel_context *ctx)
837 {
838 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
839 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
840 int ret = 0;
841
842 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
843 if (ctx->engine[ring->id].unpin_count++ == 0) {
844 ret = i915_gem_obj_ggtt_pin(ctx_obj,
845 GEN8_LR_CONTEXT_ALIGN, 0);
846 if (ret)
847 goto reset_unpin_count;
848
849 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
850 if (ret)
851 goto unpin_ctx_obj;
852 }
853
854 return ret;
855
856 unpin_ctx_obj:
857 i915_gem_object_ggtt_unpin(ctx_obj);
858 reset_unpin_count:
859 ctx->engine[ring->id].unpin_count = 0;
860
861 return ret;
862 }
863
864 void intel_lr_context_unpin(struct intel_engine_cs *ring,
865 struct intel_context *ctx)
866 {
867 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
868 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
869
870 if (ctx_obj) {
871 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
872 if (--ctx->engine[ring->id].unpin_count == 0) {
873 intel_unpin_ringbuffer_obj(ringbuf);
874 i915_gem_object_ggtt_unpin(ctx_obj);
875 }
876 }
877 }
878
879 static int logical_ring_alloc_request(struct intel_engine_cs *ring,
880 struct intel_context *ctx)
881 {
882 struct drm_i915_gem_request *request;
883 int ret;
884
885 if (ring->outstanding_lazy_request)
886 return 0;
887
888 request = kmalloc(sizeof(*request), GFP_KERNEL);
889 if (request == NULL)
890 return -ENOMEM;
891
892 if (ctx != ring->default_context) {
893 ret = intel_lr_context_pin(ring, ctx);
894 if (ret) {
895 kfree(request);
896 return ret;
897 }
898 }
899
900 kref_init(&request->ref);
901
902 ret = i915_gem_get_seqno(ring->dev, &request->seqno);
903 if (ret) {
904 intel_lr_context_unpin(ring, ctx);
905 kfree(request);
906 return ret;
907 }
908
909 /* Hold a reference to the context this request belongs to
910 * (we will need it when the time comes to emit/retire the
911 * request).
912 */
913 request->ctx = ctx;
914 i915_gem_context_reference(request->ctx);
915
916 ring->outstanding_lazy_request = request;
917 return 0;
918 }
919
920 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
921 int bytes)
922 {
923 struct intel_engine_cs *ring = ringbuf->ring;
924 struct drm_i915_gem_request *request;
925 u32 seqno = 0;
926 int ret;
927
928 if (ringbuf->last_retired_head != -1) {
929 ringbuf->head = ringbuf->last_retired_head;
930 ringbuf->last_retired_head = -1;
931
932 ringbuf->space = intel_ring_space(ringbuf);
933 if (ringbuf->space >= bytes)
934 return 0;
935 }
936
937 list_for_each_entry(request, &ring->request_list, list) {
938 /*
939 * The request queue is per-engine, so can contain requests
940 * from multiple ringbuffers. Here, we must ignore any that
941 * aren't from the ringbuffer we're considering.
942 */
943 struct intel_context *ctx = request->ctx;
944 if (ctx->engine[ring->id].ringbuf != ringbuf)
945 continue;
946
947 /* Would completion of this request free enough space? */
948 if (__intel_ring_space(request->tail, ringbuf->tail,
949 ringbuf->size) >= bytes) {
950 seqno = request->seqno;
951 break;
952 }
953 }
954
955 if (seqno == 0)
956 return -ENOSPC;
957
958 ret = i915_wait_seqno(ring, seqno);
959 if (ret)
960 return ret;
961
962 i915_gem_retire_requests_ring(ring);
963 ringbuf->head = ringbuf->last_retired_head;
964 ringbuf->last_retired_head = -1;
965
966 ringbuf->space = intel_ring_space(ringbuf);
967 return 0;
968 }
969
970 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
971 int bytes)
972 {
973 struct intel_engine_cs *ring = ringbuf->ring;
974 struct drm_device *dev = ring->dev;
975 struct drm_i915_private *dev_priv = dev->dev_private;
976 unsigned long end;
977 int ret;
978
979 ret = logical_ring_wait_request(ringbuf, bytes);
980 if (ret != -ENOSPC)
981 return ret;
982
983 /* Force the context submission in case we have been skipping it */
984 intel_logical_ring_advance_and_submit(ringbuf);
985
986 /* With GEM the hangcheck timer should kick us out of the loop,
987 * leaving it early runs the risk of corrupting GEM state (due
988 * to running on almost untested codepaths). But on resume
989 * timers don't work yet, so prevent a complete hang in that
990 * case by choosing an insanely large timeout. */
991 end = jiffies + 60 * HZ;
992
993 do {
994 ringbuf->space = intel_ring_space(ringbuf);
995 if (ringbuf->space >= bytes) {
996 ret = 0;
997 break;
998 }
999
1000 msleep(1);
1001
1002 if (dev_priv->mm.interruptible && signal_pending(current)) {
1003 ret = -ERESTARTSYS;
1004 break;
1005 }
1006
1007 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1008 dev_priv->mm.interruptible);
1009 if (ret)
1010 break;
1011
1012 if (time_after(jiffies, end)) {
1013 ret = -EBUSY;
1014 break;
1015 }
1016 } while (1);
1017
1018 return ret;
1019 }
1020
1021 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
1022 {
1023 uint32_t __iomem *virt;
1024 int rem = ringbuf->size - ringbuf->tail;
1025
1026 if (ringbuf->space < rem) {
1027 int ret = logical_ring_wait_for_space(ringbuf, rem);
1028
1029 if (ret)
1030 return ret;
1031 }
1032
1033 virt = ringbuf->virtual_start + ringbuf->tail;
1034 rem /= 4;
1035 while (rem--)
1036 iowrite32(MI_NOOP, virt++);
1037
1038 ringbuf->tail = 0;
1039 ringbuf->space = intel_ring_space(ringbuf);
1040
1041 return 0;
1042 }
1043
1044 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
1045 {
1046 int ret;
1047
1048 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1049 ret = logical_ring_wrap_buffer(ringbuf);
1050 if (unlikely(ret))
1051 return ret;
1052 }
1053
1054 if (unlikely(ringbuf->space < bytes)) {
1055 ret = logical_ring_wait_for_space(ringbuf, bytes);
1056 if (unlikely(ret))
1057 return ret;
1058 }
1059
1060 return 0;
1061 }
1062
1063 /**
1064 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1065 *
1066 * @ringbuf: Logical ringbuffer.
1067 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1068 *
1069 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1070 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1071 * and also preallocates a request (every workload submission is still mediated through
1072 * requests, same as it did with legacy ringbuffer submission).
1073 *
1074 * Return: non-zero if the ringbuffer is not ready to be written to.
1075 */
1076 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
1077 {
1078 struct intel_engine_cs *ring = ringbuf->ring;
1079 struct drm_device *dev = ring->dev;
1080 struct drm_i915_private *dev_priv = dev->dev_private;
1081 int ret;
1082
1083 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1084 dev_priv->mm.interruptible);
1085 if (ret)
1086 return ret;
1087
1088 ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
1089 if (ret)
1090 return ret;
1091
1092 /* Preallocate the olr before touching the ring */
1093 ret = logical_ring_alloc_request(ring, ringbuf->FIXME_lrc_ctx);
1094 if (ret)
1095 return ret;
1096
1097 ringbuf->space -= num_dwords * sizeof(uint32_t);
1098 return 0;
1099 }
1100
1101 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1102 struct intel_context *ctx)
1103 {
1104 int ret, i;
1105 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1106 struct drm_device *dev = ring->dev;
1107 struct drm_i915_private *dev_priv = dev->dev_private;
1108 struct i915_workarounds *w = &dev_priv->workarounds;
1109
1110 if (WARN_ON(w->count == 0))
1111 return 0;
1112
1113 ring->gpu_caches_dirty = true;
1114 ret = logical_ring_flush_all_caches(ringbuf);
1115 if (ret)
1116 return ret;
1117
1118 ret = intel_logical_ring_begin(ringbuf, w->count * 2 + 2);
1119 if (ret)
1120 return ret;
1121
1122 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1123 for (i = 0; i < w->count; i++) {
1124 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1125 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1126 }
1127 intel_logical_ring_emit(ringbuf, MI_NOOP);
1128
1129 intel_logical_ring_advance(ringbuf);
1130
1131 ring->gpu_caches_dirty = true;
1132 ret = logical_ring_flush_all_caches(ringbuf);
1133 if (ret)
1134 return ret;
1135
1136 return 0;
1137 }
1138
1139 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1140 {
1141 struct drm_device *dev = ring->dev;
1142 struct drm_i915_private *dev_priv = dev->dev_private;
1143
1144 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1145 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1146
1147 I915_WRITE(RING_MODE_GEN7(ring),
1148 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1149 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1150 POSTING_READ(RING_MODE_GEN7(ring));
1151 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1152
1153 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1154
1155 return 0;
1156 }
1157
1158 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1159 {
1160 struct drm_device *dev = ring->dev;
1161 struct drm_i915_private *dev_priv = dev->dev_private;
1162 int ret;
1163
1164 ret = gen8_init_common_ring(ring);
1165 if (ret)
1166 return ret;
1167
1168 /* We need to disable the AsyncFlip performance optimisations in order
1169 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1170 * programmed to '1' on all products.
1171 *
1172 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1173 */
1174 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1175
1176 ret = intel_init_pipe_control(ring);
1177 if (ret)
1178 return ret;
1179
1180 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1181
1182 return init_workarounds_ring(ring);
1183 }
1184
1185 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1186 u64 offset, unsigned flags)
1187 {
1188 bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1189 int ret;
1190
1191 ret = intel_logical_ring_begin(ringbuf, 4);
1192 if (ret)
1193 return ret;
1194
1195 /* FIXME(BDW): Address space and security selectors. */
1196 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1197 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1198 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1199 intel_logical_ring_emit(ringbuf, MI_NOOP);
1200 intel_logical_ring_advance(ringbuf);
1201
1202 return 0;
1203 }
1204
1205 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1206 {
1207 struct drm_device *dev = ring->dev;
1208 struct drm_i915_private *dev_priv = dev->dev_private;
1209 unsigned long flags;
1210
1211 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1212 return false;
1213
1214 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1215 if (ring->irq_refcount++ == 0) {
1216 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1217 POSTING_READ(RING_IMR(ring->mmio_base));
1218 }
1219 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1220
1221 return true;
1222 }
1223
1224 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1225 {
1226 struct drm_device *dev = ring->dev;
1227 struct drm_i915_private *dev_priv = dev->dev_private;
1228 unsigned long flags;
1229
1230 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1231 if (--ring->irq_refcount == 0) {
1232 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1233 POSTING_READ(RING_IMR(ring->mmio_base));
1234 }
1235 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1236 }
1237
1238 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1239 u32 invalidate_domains,
1240 u32 unused)
1241 {
1242 struct intel_engine_cs *ring = ringbuf->ring;
1243 struct drm_device *dev = ring->dev;
1244 struct drm_i915_private *dev_priv = dev->dev_private;
1245 uint32_t cmd;
1246 int ret;
1247
1248 ret = intel_logical_ring_begin(ringbuf, 4);
1249 if (ret)
1250 return ret;
1251
1252 cmd = MI_FLUSH_DW + 1;
1253
1254 if (ring == &dev_priv->ring[VCS]) {
1255 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1256 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1257 MI_FLUSH_DW_STORE_INDEX |
1258 MI_FLUSH_DW_OP_STOREDW;
1259 } else {
1260 if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1261 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1262 MI_FLUSH_DW_OP_STOREDW;
1263 }
1264
1265 intel_logical_ring_emit(ringbuf, cmd);
1266 intel_logical_ring_emit(ringbuf,
1267 I915_GEM_HWS_SCRATCH_ADDR |
1268 MI_FLUSH_DW_USE_GTT);
1269 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1270 intel_logical_ring_emit(ringbuf, 0); /* value */
1271 intel_logical_ring_advance(ringbuf);
1272
1273 return 0;
1274 }
1275
1276 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1277 u32 invalidate_domains,
1278 u32 flush_domains)
1279 {
1280 struct intel_engine_cs *ring = ringbuf->ring;
1281 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1282 u32 flags = 0;
1283 int ret;
1284
1285 flags |= PIPE_CONTROL_CS_STALL;
1286
1287 if (flush_domains) {
1288 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1289 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1290 }
1291
1292 if (invalidate_domains) {
1293 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1294 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1295 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1296 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1297 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1298 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1299 flags |= PIPE_CONTROL_QW_WRITE;
1300 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1301 }
1302
1303 ret = intel_logical_ring_begin(ringbuf, 6);
1304 if (ret)
1305 return ret;
1306
1307 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1308 intel_logical_ring_emit(ringbuf, flags);
1309 intel_logical_ring_emit(ringbuf, scratch_addr);
1310 intel_logical_ring_emit(ringbuf, 0);
1311 intel_logical_ring_emit(ringbuf, 0);
1312 intel_logical_ring_emit(ringbuf, 0);
1313 intel_logical_ring_advance(ringbuf);
1314
1315 return 0;
1316 }
1317
1318 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1319 {
1320 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1321 }
1322
1323 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1324 {
1325 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1326 }
1327
1328 static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1329 {
1330 struct intel_engine_cs *ring = ringbuf->ring;
1331 u32 cmd;
1332 int ret;
1333
1334 ret = intel_logical_ring_begin(ringbuf, 6);
1335 if (ret)
1336 return ret;
1337
1338 cmd = MI_STORE_DWORD_IMM_GEN8;
1339 cmd |= MI_GLOBAL_GTT;
1340
1341 intel_logical_ring_emit(ringbuf, cmd);
1342 intel_logical_ring_emit(ringbuf,
1343 (ring->status_page.gfx_addr +
1344 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1345 intel_logical_ring_emit(ringbuf, 0);
1346 intel_logical_ring_emit(ringbuf,
1347 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1348 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1349 intel_logical_ring_emit(ringbuf, MI_NOOP);
1350 intel_logical_ring_advance_and_submit(ringbuf);
1351
1352 return 0;
1353 }
1354
1355 /**
1356 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1357 *
1358 * @ring: Engine Command Streamer.
1359 *
1360 */
1361 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1362 {
1363 struct drm_i915_private *dev_priv;
1364
1365 if (!intel_ring_initialized(ring))
1366 return;
1367
1368 dev_priv = ring->dev->dev_private;
1369
1370 intel_logical_ring_stop(ring);
1371 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1372 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1373
1374 if (ring->cleanup)
1375 ring->cleanup(ring);
1376
1377 i915_cmd_parser_fini_ring(ring);
1378
1379 if (ring->status_page.obj) {
1380 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1381 ring->status_page.obj = NULL;
1382 }
1383 }
1384
1385 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1386 {
1387 int ret;
1388
1389 /* Intentionally left blank. */
1390 ring->buffer = NULL;
1391
1392 ring->dev = dev;
1393 INIT_LIST_HEAD(&ring->active_list);
1394 INIT_LIST_HEAD(&ring->request_list);
1395 init_waitqueue_head(&ring->irq_queue);
1396
1397 INIT_LIST_HEAD(&ring->execlist_queue);
1398 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1399 spin_lock_init(&ring->execlist_lock);
1400 ring->next_context_status_buffer = 0;
1401
1402 ret = i915_cmd_parser_init_ring(ring);
1403 if (ret)
1404 return ret;
1405
1406 if (ring->init) {
1407 ret = ring->init(ring);
1408 if (ret)
1409 return ret;
1410 }
1411
1412 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1413
1414 return ret;
1415 }
1416
1417 static int logical_render_ring_init(struct drm_device *dev)
1418 {
1419 struct drm_i915_private *dev_priv = dev->dev_private;
1420 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1421
1422 ring->name = "render ring";
1423 ring->id = RCS;
1424 ring->mmio_base = RENDER_RING_BASE;
1425 ring->irq_enable_mask =
1426 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1427 ring->irq_keep_mask =
1428 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1429 if (HAS_L3_DPF(dev))
1430 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1431
1432 ring->init = gen8_init_render_ring;
1433 ring->init_context = intel_logical_ring_workarounds_emit;
1434 ring->cleanup = intel_fini_pipe_control;
1435 ring->get_seqno = gen8_get_seqno;
1436 ring->set_seqno = gen8_set_seqno;
1437 ring->emit_request = gen8_emit_request;
1438 ring->emit_flush = gen8_emit_flush_render;
1439 ring->irq_get = gen8_logical_ring_get_irq;
1440 ring->irq_put = gen8_logical_ring_put_irq;
1441 ring->emit_bb_start = gen8_emit_bb_start;
1442
1443 return logical_ring_init(dev, ring);
1444 }
1445
1446 static int logical_bsd_ring_init(struct drm_device *dev)
1447 {
1448 struct drm_i915_private *dev_priv = dev->dev_private;
1449 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1450
1451 ring->name = "bsd ring";
1452 ring->id = VCS;
1453 ring->mmio_base = GEN6_BSD_RING_BASE;
1454 ring->irq_enable_mask =
1455 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1456 ring->irq_keep_mask =
1457 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1458
1459 ring->init = gen8_init_common_ring;
1460 ring->get_seqno = gen8_get_seqno;
1461 ring->set_seqno = gen8_set_seqno;
1462 ring->emit_request = gen8_emit_request;
1463 ring->emit_flush = gen8_emit_flush;
1464 ring->irq_get = gen8_logical_ring_get_irq;
1465 ring->irq_put = gen8_logical_ring_put_irq;
1466 ring->emit_bb_start = gen8_emit_bb_start;
1467
1468 return logical_ring_init(dev, ring);
1469 }
1470
1471 static int logical_bsd2_ring_init(struct drm_device *dev)
1472 {
1473 struct drm_i915_private *dev_priv = dev->dev_private;
1474 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1475
1476 ring->name = "bds2 ring";
1477 ring->id = VCS2;
1478 ring->mmio_base = GEN8_BSD2_RING_BASE;
1479 ring->irq_enable_mask =
1480 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1481 ring->irq_keep_mask =
1482 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1483
1484 ring->init = gen8_init_common_ring;
1485 ring->get_seqno = gen8_get_seqno;
1486 ring->set_seqno = gen8_set_seqno;
1487 ring->emit_request = gen8_emit_request;
1488 ring->emit_flush = gen8_emit_flush;
1489 ring->irq_get = gen8_logical_ring_get_irq;
1490 ring->irq_put = gen8_logical_ring_put_irq;
1491 ring->emit_bb_start = gen8_emit_bb_start;
1492
1493 return logical_ring_init(dev, ring);
1494 }
1495
1496 static int logical_blt_ring_init(struct drm_device *dev)
1497 {
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1500
1501 ring->name = "blitter ring";
1502 ring->id = BCS;
1503 ring->mmio_base = BLT_RING_BASE;
1504 ring->irq_enable_mask =
1505 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1506 ring->irq_keep_mask =
1507 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1508
1509 ring->init = gen8_init_common_ring;
1510 ring->get_seqno = gen8_get_seqno;
1511 ring->set_seqno = gen8_set_seqno;
1512 ring->emit_request = gen8_emit_request;
1513 ring->emit_flush = gen8_emit_flush;
1514 ring->irq_get = gen8_logical_ring_get_irq;
1515 ring->irq_put = gen8_logical_ring_put_irq;
1516 ring->emit_bb_start = gen8_emit_bb_start;
1517
1518 return logical_ring_init(dev, ring);
1519 }
1520
1521 static int logical_vebox_ring_init(struct drm_device *dev)
1522 {
1523 struct drm_i915_private *dev_priv = dev->dev_private;
1524 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1525
1526 ring->name = "video enhancement ring";
1527 ring->id = VECS;
1528 ring->mmio_base = VEBOX_RING_BASE;
1529 ring->irq_enable_mask =
1530 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1531 ring->irq_keep_mask =
1532 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1533
1534 ring->init = gen8_init_common_ring;
1535 ring->get_seqno = gen8_get_seqno;
1536 ring->set_seqno = gen8_set_seqno;
1537 ring->emit_request = gen8_emit_request;
1538 ring->emit_flush = gen8_emit_flush;
1539 ring->irq_get = gen8_logical_ring_get_irq;
1540 ring->irq_put = gen8_logical_ring_put_irq;
1541 ring->emit_bb_start = gen8_emit_bb_start;
1542
1543 return logical_ring_init(dev, ring);
1544 }
1545
1546 /**
1547 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1548 * @dev: DRM device.
1549 *
1550 * This function inits the engines for an Execlists submission style (the equivalent in the
1551 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1552 * those engines that are present in the hardware.
1553 *
1554 * Return: non-zero if the initialization failed.
1555 */
1556 int intel_logical_rings_init(struct drm_device *dev)
1557 {
1558 struct drm_i915_private *dev_priv = dev->dev_private;
1559 int ret;
1560
1561 ret = logical_render_ring_init(dev);
1562 if (ret)
1563 return ret;
1564
1565 if (HAS_BSD(dev)) {
1566 ret = logical_bsd_ring_init(dev);
1567 if (ret)
1568 goto cleanup_render_ring;
1569 }
1570
1571 if (HAS_BLT(dev)) {
1572 ret = logical_blt_ring_init(dev);
1573 if (ret)
1574 goto cleanup_bsd_ring;
1575 }
1576
1577 if (HAS_VEBOX(dev)) {
1578 ret = logical_vebox_ring_init(dev);
1579 if (ret)
1580 goto cleanup_blt_ring;
1581 }
1582
1583 if (HAS_BSD2(dev)) {
1584 ret = logical_bsd2_ring_init(dev);
1585 if (ret)
1586 goto cleanup_vebox_ring;
1587 }
1588
1589 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1590 if (ret)
1591 goto cleanup_bsd2_ring;
1592
1593 return 0;
1594
1595 cleanup_bsd2_ring:
1596 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1597 cleanup_vebox_ring:
1598 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1599 cleanup_blt_ring:
1600 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1601 cleanup_bsd_ring:
1602 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1603 cleanup_render_ring:
1604 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1605
1606 return ret;
1607 }
1608
1609 int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1610 struct intel_context *ctx)
1611 {
1612 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1613 struct render_state so;
1614 struct drm_i915_file_private *file_priv = ctx->file_priv;
1615 struct drm_file *file = file_priv ? file_priv->file : NULL;
1616 int ret;
1617
1618 ret = i915_gem_render_state_prepare(ring, &so);
1619 if (ret)
1620 return ret;
1621
1622 if (so.rodata == NULL)
1623 return 0;
1624
1625 ret = ring->emit_bb_start(ringbuf,
1626 so.ggtt_offset,
1627 I915_DISPATCH_SECURE);
1628 if (ret)
1629 goto out;
1630
1631 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1632
1633 ret = __i915_add_request(ring, file, so.obj, NULL);
1634 /* intel_logical_ring_add_request moves object to inactive if it
1635 * fails */
1636 out:
1637 i915_gem_render_state_fini(&so);
1638 return ret;
1639 }
1640
1641 static int
1642 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1643 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1644 {
1645 struct drm_device *dev = ring->dev;
1646 struct drm_i915_private *dev_priv = dev->dev_private;
1647 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1648 struct page *page;
1649 uint32_t *reg_state;
1650 int ret;
1651
1652 if (!ppgtt)
1653 ppgtt = dev_priv->mm.aliasing_ppgtt;
1654
1655 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1656 if (ret) {
1657 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1658 return ret;
1659 }
1660
1661 ret = i915_gem_object_get_pages(ctx_obj);
1662 if (ret) {
1663 DRM_DEBUG_DRIVER("Could not get object pages\n");
1664 return ret;
1665 }
1666
1667 i915_gem_object_pin_pages(ctx_obj);
1668
1669 /* The second page of the context object contains some fields which must
1670 * be set up prior to the first execution. */
1671 page = i915_gem_object_get_page(ctx_obj, 1);
1672 reg_state = kmap_atomic(page);
1673
1674 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1675 * commands followed by (reg, value) pairs. The values we are setting here are
1676 * only for the first context restore: on a subsequent save, the GPU will
1677 * recreate this batchbuffer with new values (including all the missing
1678 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1679 if (ring->id == RCS)
1680 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1681 else
1682 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1683 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1684 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1685 reg_state[CTX_CONTEXT_CONTROL+1] =
1686 _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1687 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1688 reg_state[CTX_RING_HEAD+1] = 0;
1689 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1690 reg_state[CTX_RING_TAIL+1] = 0;
1691 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1692 /* Ring buffer start address is not known until the buffer is pinned.
1693 * It is written to the context image in execlists_update_context()
1694 */
1695 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1696 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1697 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1698 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1699 reg_state[CTX_BB_HEAD_U+1] = 0;
1700 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1701 reg_state[CTX_BB_HEAD_L+1] = 0;
1702 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1703 reg_state[CTX_BB_STATE+1] = (1<<5);
1704 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1705 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1706 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1707 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1708 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1709 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1710 if (ring->id == RCS) {
1711 /* TODO: according to BSpec, the register state context
1712 * for CHV does not have these. OTOH, these registers do
1713 * exist in CHV. I'm waiting for a clarification */
1714 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1715 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1716 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1717 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1718 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1719 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1720 }
1721 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1722 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1723 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1724 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1725 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1726 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1727 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1728 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1729 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1730 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1731 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1732 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1733 reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1734 reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1735 reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1736 reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1737 reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1738 reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1739 reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1740 reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1741 if (ring->id == RCS) {
1742 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1743 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1744 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1745 }
1746
1747 kunmap_atomic(reg_state);
1748
1749 ctx_obj->dirty = 1;
1750 set_page_dirty(page);
1751 i915_gem_object_unpin_pages(ctx_obj);
1752
1753 return 0;
1754 }
1755
1756 /**
1757 * intel_lr_context_free() - free the LRC specific bits of a context
1758 * @ctx: the LR context to free.
1759 *
1760 * The real context freeing is done in i915_gem_context_free: this only
1761 * takes care of the bits that are LRC related: the per-engine backing
1762 * objects and the logical ringbuffer.
1763 */
1764 void intel_lr_context_free(struct intel_context *ctx)
1765 {
1766 int i;
1767
1768 for (i = 0; i < I915_NUM_RINGS; i++) {
1769 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1770
1771 if (ctx_obj) {
1772 struct intel_ringbuffer *ringbuf =
1773 ctx->engine[i].ringbuf;
1774 struct intel_engine_cs *ring = ringbuf->ring;
1775
1776 if (ctx == ring->default_context) {
1777 intel_unpin_ringbuffer_obj(ringbuf);
1778 i915_gem_object_ggtt_unpin(ctx_obj);
1779 }
1780 intel_destroy_ringbuffer_obj(ringbuf);
1781 kfree(ringbuf);
1782 drm_gem_object_unreference(&ctx_obj->base);
1783 }
1784 }
1785 }
1786
1787 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1788 {
1789 int ret = 0;
1790
1791 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1792
1793 switch (ring->id) {
1794 case RCS:
1795 if (INTEL_INFO(ring->dev)->gen >= 9)
1796 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1797 else
1798 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1799 break;
1800 case VCS:
1801 case BCS:
1802 case VECS:
1803 case VCS2:
1804 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1805 break;
1806 }
1807
1808 return ret;
1809 }
1810
1811 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1812 struct drm_i915_gem_object *default_ctx_obj)
1813 {
1814 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1815
1816 /* The status page is offset 0 from the default context object
1817 * in LRC mode. */
1818 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1819 ring->status_page.page_addr =
1820 kmap(sg_page(default_ctx_obj->pages->sgl));
1821 ring->status_page.obj = default_ctx_obj;
1822
1823 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1824 (u32)ring->status_page.gfx_addr);
1825 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1826 }
1827
1828 /**
1829 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1830 * @ctx: LR context to create.
1831 * @ring: engine to be used with the context.
1832 *
1833 * This function can be called more than once, with different engines, if we plan
1834 * to use the context with them. The context backing objects and the ringbuffers
1835 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1836 * the creation is a deferred call: it's better to make sure first that we need to use
1837 * a given ring with the context.
1838 *
1839 * Return: non-zero on error.
1840 */
1841 int intel_lr_context_deferred_create(struct intel_context *ctx,
1842 struct intel_engine_cs *ring)
1843 {
1844 const bool is_global_default_ctx = (ctx == ring->default_context);
1845 struct drm_device *dev = ring->dev;
1846 struct drm_i915_gem_object *ctx_obj;
1847 uint32_t context_size;
1848 struct intel_ringbuffer *ringbuf;
1849 int ret;
1850
1851 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1852 if (ctx->engine[ring->id].state)
1853 return 0;
1854
1855 context_size = round_up(get_lr_context_size(ring), 4096);
1856
1857 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1858 if (IS_ERR(ctx_obj)) {
1859 ret = PTR_ERR(ctx_obj);
1860 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1861 return ret;
1862 }
1863
1864 if (is_global_default_ctx) {
1865 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1866 if (ret) {
1867 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1868 ret);
1869 drm_gem_object_unreference(&ctx_obj->base);
1870 return ret;
1871 }
1872 }
1873
1874 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1875 if (!ringbuf) {
1876 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1877 ring->name);
1878 ret = -ENOMEM;
1879 goto error_unpin_ctx;
1880 }
1881
1882 ringbuf->ring = ring;
1883 ringbuf->FIXME_lrc_ctx = ctx;
1884
1885 ringbuf->size = 32 * PAGE_SIZE;
1886 ringbuf->effective_size = ringbuf->size;
1887 ringbuf->head = 0;
1888 ringbuf->tail = 0;
1889 ringbuf->space = ringbuf->size;
1890 ringbuf->last_retired_head = -1;
1891
1892 if (ringbuf->obj == NULL) {
1893 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1894 if (ret) {
1895 DRM_DEBUG_DRIVER(
1896 "Failed to allocate ringbuffer obj %s: %d\n",
1897 ring->name, ret);
1898 goto error_free_rbuf;
1899 }
1900
1901 if (is_global_default_ctx) {
1902 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1903 if (ret) {
1904 DRM_ERROR(
1905 "Failed to pin and map ringbuffer %s: %d\n",
1906 ring->name, ret);
1907 goto error_destroy_rbuf;
1908 }
1909 }
1910
1911 }
1912
1913 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1914 if (ret) {
1915 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1916 goto error;
1917 }
1918
1919 ctx->engine[ring->id].ringbuf = ringbuf;
1920 ctx->engine[ring->id].state = ctx_obj;
1921
1922 if (ctx == ring->default_context)
1923 lrc_setup_hardware_status_page(ring, ctx_obj);
1924
1925 if (ring->id == RCS && !ctx->rcs_initialized) {
1926 if (ring->init_context) {
1927 ret = ring->init_context(ring, ctx);
1928 if (ret)
1929 DRM_ERROR("ring init context: %d\n", ret);
1930 }
1931
1932 ret = intel_lr_context_render_state_init(ring, ctx);
1933 if (ret) {
1934 DRM_ERROR("Init render state failed: %d\n", ret);
1935 ctx->engine[ring->id].ringbuf = NULL;
1936 ctx->engine[ring->id].state = NULL;
1937 goto error;
1938 }
1939 ctx->rcs_initialized = true;
1940 }
1941
1942 return 0;
1943
1944 error:
1945 if (is_global_default_ctx)
1946 intel_unpin_ringbuffer_obj(ringbuf);
1947 error_destroy_rbuf:
1948 intel_destroy_ringbuffer_obj(ringbuf);
1949 error_free_rbuf:
1950 kfree(ringbuf);
1951 error_unpin_ctx:
1952 if (is_global_default_ctx)
1953 i915_gem_object_ggtt_unpin(ctx_obj);
1954 drm_gem_object_unreference(&ctx_obj->base);
1955 return ret;
1956 }
This page took 0.088 seconds and 5 git commands to generate.