drm/i915/kbl: Add WaForGAMHang
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211 ADVANCED_CONTEXT = 0,
212 LEGACY_32B_CONTEXT,
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
220 enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
228 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
229
230 static int intel_lr_context_pin(struct intel_context *ctx,
231 struct intel_engine_cs *engine);
232
233 /**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245 WARN_ON(i915.enable_ppgtt == -1);
246
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
256 if (enable_execlists == 0)
257 return 0;
258
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
261 return 1;
262
263 return 0;
264 }
265
266 static void
267 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268 {
269 struct drm_device *dev = engine->dev;
270
271 if (IS_GEN8(dev) || IS_GEN9(dev))
272 engine->idle_lite_restore_wa = ~0;
273
274 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
275 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
276 (engine->id == VCS || engine->id == VCS2);
277
278 engine->ctx_desc_template = GEN8_CTX_VALID;
279 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
280 GEN8_CTX_ADDRESSING_MODE_SHIFT;
281 if (IS_GEN8(dev))
282 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
283 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
284
285 /* TODO: WaDisableLiteRestore when we start using semaphore
286 * signalling between Command Streamers */
287 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
288
289 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
290 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
291 if (engine->disable_lite_restore_wa)
292 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
293 }
294
295 /**
296 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
297 * descriptor for a pinned context
298 *
299 * @ctx: Context to work on
300 * @ring: Engine the descriptor will be used with
301 *
302 * The context descriptor encodes various attributes of a context,
303 * including its GTT address and some flags. Because it's fairly
304 * expensive to calculate, we'll just do it once and cache the result,
305 * which remains valid until the context is unpinned.
306 *
307 * This is what a descriptor looks like, from LSB to MSB:
308 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
309 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
310 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
311 * bits 52-63: reserved, may encode the engine ID (for GuC)
312 */
313 static void
314 intel_lr_context_descriptor_update(struct intel_context *ctx,
315 struct intel_engine_cs *engine)
316 {
317 uint64_t lrca, desc;
318
319 lrca = ctx->engine[engine->id].lrc_vma->node.start +
320 LRC_PPHWSP_PN * PAGE_SIZE;
321
322 desc = engine->ctx_desc_template; /* bits 0-11 */
323 desc |= lrca; /* bits 12-31 */
324 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
325
326 ctx->engine[engine->id].lrc_desc = desc;
327 }
328
329 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
330 struct intel_engine_cs *engine)
331 {
332 return ctx->engine[engine->id].lrc_desc;
333 }
334
335 /**
336 * intel_execlists_ctx_id() - get the Execlists Context ID
337 * @ctx: Context to get the ID for
338 * @ring: Engine to get the ID for
339 *
340 * Do not confuse with ctx->id! Unfortunately we have a name overload
341 * here: the old context ID we pass to userspace as a handler so that
342 * they can refer to a context, and the new context ID we pass to the
343 * ELSP so that the GPU can inform us of the context status via
344 * interrupts.
345 *
346 * The context ID is a portion of the context descriptor, so we can
347 * just extract the required part from the cached descriptor.
348 *
349 * Return: 20-bits globally unique context ID.
350 */
351 u32 intel_execlists_ctx_id(struct intel_context *ctx,
352 struct intel_engine_cs *engine)
353 {
354 return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
355 }
356
357 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
358 struct drm_i915_gem_request *rq1)
359 {
360
361 struct intel_engine_cs *engine = rq0->engine;
362 struct drm_device *dev = engine->dev;
363 struct drm_i915_private *dev_priv = dev->dev_private;
364 uint64_t desc[2];
365
366 if (rq1) {
367 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
368 rq1->elsp_submitted++;
369 } else {
370 desc[1] = 0;
371 }
372
373 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
374 rq0->elsp_submitted++;
375
376 /* You must always write both descriptors in the order below. */
377 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
378 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
379
380 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
381 /* The context is automatically loaded after the following */
382 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
383
384 /* ELSP is a wo register, use another nearby reg for posting */
385 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
386 }
387
388 static void
389 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
390 {
391 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
392 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
393 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
394 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
395 }
396
397 static void execlists_update_context(struct drm_i915_gem_request *rq)
398 {
399 struct intel_engine_cs *engine = rq->engine;
400 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
401 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
402
403 reg_state[CTX_RING_TAIL+1] = rq->tail;
404
405 /* True 32b PPGTT with dynamic page allocation: update PDP
406 * registers and point the unallocated PDPs to scratch page.
407 * PML4 is allocated during ppgtt init, so this is not needed
408 * in 48-bit mode.
409 */
410 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
411 execlists_update_context_pdps(ppgtt, reg_state);
412 }
413
414 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
415 struct drm_i915_gem_request *rq1)
416 {
417 struct drm_i915_private *dev_priv = rq0->i915;
418 unsigned int fw_domains = rq0->engine->fw_domains;
419
420 execlists_update_context(rq0);
421
422 if (rq1)
423 execlists_update_context(rq1);
424
425 spin_lock_irq(&dev_priv->uncore.lock);
426 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
427
428 execlists_elsp_write(rq0, rq1);
429
430 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
431 spin_unlock_irq(&dev_priv->uncore.lock);
432 }
433
434 static void execlists_context_unqueue(struct intel_engine_cs *engine)
435 {
436 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
437 struct drm_i915_gem_request *cursor, *tmp;
438
439 assert_spin_locked(&engine->execlist_lock);
440
441 /*
442 * If irqs are not active generate a warning as batches that finish
443 * without the irqs may get lost and a GPU Hang may occur.
444 */
445 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
446
447 /* Try to read in pairs */
448 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
449 execlist_link) {
450 if (!req0) {
451 req0 = cursor;
452 } else if (req0->ctx == cursor->ctx) {
453 /* Same ctx: ignore first request, as second request
454 * will update tail past first request's workload */
455 cursor->elsp_submitted = req0->elsp_submitted;
456 list_move_tail(&req0->execlist_link,
457 &engine->execlist_retired_req_list);
458 req0 = cursor;
459 } else {
460 req1 = cursor;
461 WARN_ON(req1->elsp_submitted);
462 break;
463 }
464 }
465
466 if (unlikely(!req0))
467 return;
468
469 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
470 /*
471 * WaIdleLiteRestore: make sure we never cause a lite restore
472 * with HEAD==TAIL.
473 *
474 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
475 * resubmit the request. See gen8_emit_request() for where we
476 * prepare the padding after the end of the request.
477 */
478 struct intel_ringbuffer *ringbuf;
479
480 ringbuf = req0->ctx->engine[engine->id].ringbuf;
481 req0->tail += 8;
482 req0->tail &= ringbuf->size - 1;
483 }
484
485 execlists_submit_requests(req0, req1);
486 }
487
488 static unsigned int
489 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
490 {
491 struct drm_i915_gem_request *head_req;
492
493 assert_spin_locked(&engine->execlist_lock);
494
495 head_req = list_first_entry_or_null(&engine->execlist_queue,
496 struct drm_i915_gem_request,
497 execlist_link);
498
499 if (!head_req)
500 return 0;
501
502 if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
503 return 0;
504
505 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
506
507 if (--head_req->elsp_submitted > 0)
508 return 0;
509
510 list_move_tail(&head_req->execlist_link,
511 &engine->execlist_retired_req_list);
512
513 return 1;
514 }
515
516 static u32
517 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
518 u32 *context_id)
519 {
520 struct drm_i915_private *dev_priv = engine->dev->dev_private;
521 u32 status;
522
523 read_pointer %= GEN8_CSB_ENTRIES;
524
525 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
526
527 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
528 return 0;
529
530 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
531 read_pointer));
532
533 return status;
534 }
535
536 /**
537 * intel_lrc_irq_handler() - handle Context Switch interrupts
538 * @engine: Engine Command Streamer to handle.
539 *
540 * Check the unread Context Status Buffers and manage the submission of new
541 * contexts to the ELSP accordingly.
542 */
543 static void intel_lrc_irq_handler(unsigned long data)
544 {
545 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546 struct drm_i915_private *dev_priv = engine->dev->dev_private;
547 u32 status_pointer;
548 unsigned int read_pointer, write_pointer;
549 u32 csb[GEN8_CSB_ENTRIES][2];
550 unsigned int csb_read = 0, i;
551 unsigned int submit_contexts = 0;
552
553 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554
555 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556
557 read_pointer = engine->next_context_status_buffer;
558 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559 if (read_pointer > write_pointer)
560 write_pointer += GEN8_CSB_ENTRIES;
561
562 while (read_pointer < write_pointer) {
563 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564 break;
565 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566 &csb[csb_read][1]);
567 csb_read++;
568 }
569
570 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571
572 /* Update the read pointer to the old write pointer. Manual ringbuffer
573 * management ftw </sarcasm> */
574 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576 engine->next_context_status_buffer << 8));
577
578 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579
580 spin_lock(&engine->execlist_lock);
581
582 for (i = 0; i < csb_read; i++) {
583 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585 if (execlists_check_remove_request(engine, csb[i][1]))
586 WARN(1, "Lite Restored request removed from queue\n");
587 } else
588 WARN(1, "Preemption without Lite Restore\n");
589 }
590
591 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592 GEN8_CTX_STATUS_ELEMENT_SWITCH))
593 submit_contexts +=
594 execlists_check_remove_request(engine, csb[i][1]);
595 }
596
597 if (submit_contexts) {
598 if (!engine->disable_lite_restore_wa ||
599 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
600 execlists_context_unqueue(engine);
601 }
602
603 spin_unlock(&engine->execlist_lock);
604
605 if (unlikely(submit_contexts > 2))
606 DRM_ERROR("More than two context complete events?\n");
607 }
608
609 static void execlists_context_queue(struct drm_i915_gem_request *request)
610 {
611 struct intel_engine_cs *engine = request->engine;
612 struct drm_i915_gem_request *cursor;
613 int num_elements = 0;
614
615 if (request->ctx != request->i915->kernel_context)
616 intel_lr_context_pin(request->ctx, engine);
617
618 i915_gem_request_reference(request);
619
620 spin_lock_bh(&engine->execlist_lock);
621
622 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
623 if (++num_elements > 2)
624 break;
625
626 if (num_elements > 2) {
627 struct drm_i915_gem_request *tail_req;
628
629 tail_req = list_last_entry(&engine->execlist_queue,
630 struct drm_i915_gem_request,
631 execlist_link);
632
633 if (request->ctx == tail_req->ctx) {
634 WARN(tail_req->elsp_submitted != 0,
635 "More than 2 already-submitted reqs queued\n");
636 list_move_tail(&tail_req->execlist_link,
637 &engine->execlist_retired_req_list);
638 }
639 }
640
641 list_add_tail(&request->execlist_link, &engine->execlist_queue);
642 if (num_elements == 0)
643 execlists_context_unqueue(engine);
644
645 spin_unlock_bh(&engine->execlist_lock);
646 }
647
648 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
649 {
650 struct intel_engine_cs *engine = req->engine;
651 uint32_t flush_domains;
652 int ret;
653
654 flush_domains = 0;
655 if (engine->gpu_caches_dirty)
656 flush_domains = I915_GEM_GPU_DOMAINS;
657
658 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
659 if (ret)
660 return ret;
661
662 engine->gpu_caches_dirty = false;
663 return 0;
664 }
665
666 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
667 struct list_head *vmas)
668 {
669 const unsigned other_rings = ~intel_engine_flag(req->engine);
670 struct i915_vma *vma;
671 uint32_t flush_domains = 0;
672 bool flush_chipset = false;
673 int ret;
674
675 list_for_each_entry(vma, vmas, exec_list) {
676 struct drm_i915_gem_object *obj = vma->obj;
677
678 if (obj->active & other_rings) {
679 ret = i915_gem_object_sync(obj, req->engine, &req);
680 if (ret)
681 return ret;
682 }
683
684 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
685 flush_chipset |= i915_gem_clflush_object(obj, false);
686
687 flush_domains |= obj->base.write_domain;
688 }
689
690 if (flush_domains & I915_GEM_DOMAIN_GTT)
691 wmb();
692
693 /* Unconditionally invalidate gpu caches and ensure that we do flush
694 * any residual writes from the previous batch.
695 */
696 return logical_ring_invalidate_all_caches(req);
697 }
698
699 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
700 {
701 int ret = 0;
702
703 request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
704
705 if (i915.enable_guc_submission) {
706 /*
707 * Check that the GuC has space for the request before
708 * going any further, as the i915_add_request() call
709 * later on mustn't fail ...
710 */
711 struct intel_guc *guc = &request->i915->guc;
712
713 ret = i915_guc_wq_check_space(guc->execbuf_client);
714 if (ret)
715 return ret;
716 }
717
718 if (request->ctx != request->i915->kernel_context)
719 ret = intel_lr_context_pin(request->ctx, request->engine);
720
721 return ret;
722 }
723
724 /*
725 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
726 * @request: Request to advance the logical ringbuffer of.
727 *
728 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
729 * really happens during submission is that the context and current tail will be placed
730 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
731 * point, the tail *inside* the context is updated and the ELSP written to.
732 */
733 static int
734 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
735 {
736 struct intel_ringbuffer *ringbuf = request->ringbuf;
737 struct drm_i915_private *dev_priv = request->i915;
738 struct intel_engine_cs *engine = request->engine;
739
740 intel_logical_ring_advance(ringbuf);
741 request->tail = ringbuf->tail;
742
743 /*
744 * Here we add two extra NOOPs as padding to avoid
745 * lite restore of a context with HEAD==TAIL.
746 *
747 * Caller must reserve WA_TAIL_DWORDS for us!
748 */
749 intel_logical_ring_emit(ringbuf, MI_NOOP);
750 intel_logical_ring_emit(ringbuf, MI_NOOP);
751 intel_logical_ring_advance(ringbuf);
752
753 if (intel_engine_stopped(engine))
754 return 0;
755
756 if (engine->last_context != request->ctx) {
757 if (engine->last_context)
758 intel_lr_context_unpin(engine->last_context, engine);
759 if (request->ctx != request->i915->kernel_context) {
760 intel_lr_context_pin(request->ctx, engine);
761 engine->last_context = request->ctx;
762 } else {
763 engine->last_context = NULL;
764 }
765 }
766
767 if (dev_priv->guc.execbuf_client)
768 i915_guc_submit(dev_priv->guc.execbuf_client, request);
769 else
770 execlists_context_queue(request);
771
772 return 0;
773 }
774
775 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
776 {
777 /*
778 * The first call merely notes the reserve request and is common for
779 * all back ends. The subsequent localised _begin() call actually
780 * ensures that the reservation is available. Without the begin, if
781 * the request creator immediately submitted the request without
782 * adding any commands to it then there might not actually be
783 * sufficient room for the submission commands.
784 */
785 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
786
787 return intel_ring_begin(request, 0);
788 }
789
790 /**
791 * execlists_submission() - submit a batchbuffer for execution, Execlists style
792 * @dev: DRM device.
793 * @file: DRM file.
794 * @ring: Engine Command Streamer to submit to.
795 * @ctx: Context to employ for this submission.
796 * @args: execbuffer call arguments.
797 * @vmas: list of vmas.
798 * @batch_obj: the batchbuffer to submit.
799 * @exec_start: batchbuffer start virtual address pointer.
800 * @dispatch_flags: translated execbuffer call flags.
801 *
802 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
803 * away the submission details of the execbuffer ioctl call.
804 *
805 * Return: non-zero if the submission fails.
806 */
807 int intel_execlists_submission(struct i915_execbuffer_params *params,
808 struct drm_i915_gem_execbuffer2 *args,
809 struct list_head *vmas)
810 {
811 struct drm_device *dev = params->dev;
812 struct intel_engine_cs *engine = params->engine;
813 struct drm_i915_private *dev_priv = dev->dev_private;
814 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
815 u64 exec_start;
816 int instp_mode;
817 u32 instp_mask;
818 int ret;
819
820 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
821 instp_mask = I915_EXEC_CONSTANTS_MASK;
822 switch (instp_mode) {
823 case I915_EXEC_CONSTANTS_REL_GENERAL:
824 case I915_EXEC_CONSTANTS_ABSOLUTE:
825 case I915_EXEC_CONSTANTS_REL_SURFACE:
826 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
827 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
828 return -EINVAL;
829 }
830
831 if (instp_mode != dev_priv->relative_constants_mode) {
832 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
833 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
834 return -EINVAL;
835 }
836
837 /* The HW changed the meaning on this bit on gen6 */
838 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
839 }
840 break;
841 default:
842 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
843 return -EINVAL;
844 }
845
846 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
847 DRM_DEBUG("sol reset is gen7 only\n");
848 return -EINVAL;
849 }
850
851 ret = execlists_move_to_gpu(params->request, vmas);
852 if (ret)
853 return ret;
854
855 if (engine == &dev_priv->engine[RCS] &&
856 instp_mode != dev_priv->relative_constants_mode) {
857 ret = intel_ring_begin(params->request, 4);
858 if (ret)
859 return ret;
860
861 intel_logical_ring_emit(ringbuf, MI_NOOP);
862 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
863 intel_logical_ring_emit_reg(ringbuf, INSTPM);
864 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
865 intel_logical_ring_advance(ringbuf);
866
867 dev_priv->relative_constants_mode = instp_mode;
868 }
869
870 exec_start = params->batch_obj_vm_offset +
871 args->batch_start_offset;
872
873 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
874 if (ret)
875 return ret;
876
877 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
878
879 i915_gem_execbuffer_move_to_active(vmas, params->request);
880
881 return 0;
882 }
883
884 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
885 {
886 struct drm_i915_gem_request *req, *tmp;
887 struct list_head retired_list;
888
889 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
890 if (list_empty(&engine->execlist_retired_req_list))
891 return;
892
893 INIT_LIST_HEAD(&retired_list);
894 spin_lock_bh(&engine->execlist_lock);
895 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
896 spin_unlock_bh(&engine->execlist_lock);
897
898 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
899 struct intel_context *ctx = req->ctx;
900 struct drm_i915_gem_object *ctx_obj =
901 ctx->engine[engine->id].state;
902
903 if (ctx_obj && (ctx != req->i915->kernel_context))
904 intel_lr_context_unpin(ctx, engine);
905
906 list_del(&req->execlist_link);
907 i915_gem_request_unreference(req);
908 }
909 }
910
911 void intel_logical_ring_stop(struct intel_engine_cs *engine)
912 {
913 struct drm_i915_private *dev_priv = engine->dev->dev_private;
914 int ret;
915
916 if (!intel_engine_initialized(engine))
917 return;
918
919 ret = intel_engine_idle(engine);
920 if (ret)
921 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
922 engine->name, ret);
923
924 /* TODO: Is this correct with Execlists enabled? */
925 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
926 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
927 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
928 return;
929 }
930 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
931 }
932
933 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
934 {
935 struct intel_engine_cs *engine = req->engine;
936 int ret;
937
938 if (!engine->gpu_caches_dirty)
939 return 0;
940
941 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
942 if (ret)
943 return ret;
944
945 engine->gpu_caches_dirty = false;
946 return 0;
947 }
948
949 static int intel_lr_context_do_pin(struct intel_context *ctx,
950 struct intel_engine_cs *engine)
951 {
952 struct drm_device *dev = engine->dev;
953 struct drm_i915_private *dev_priv = dev->dev_private;
954 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
955 struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
956 void *vaddr;
957 u32 *lrc_reg_state;
958 int ret;
959
960 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
961
962 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
963 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
964 if (ret)
965 return ret;
966
967 vaddr = i915_gem_object_pin_map(ctx_obj);
968 if (IS_ERR(vaddr)) {
969 ret = PTR_ERR(vaddr);
970 goto unpin_ctx_obj;
971 }
972
973 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
974
975 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
976 if (ret)
977 goto unpin_map;
978
979 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
980 intel_lr_context_descriptor_update(ctx, engine);
981 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
982 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
983 ctx_obj->dirty = true;
984
985 /* Invalidate GuC TLB. */
986 if (i915.enable_guc_submission)
987 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
988
989 return ret;
990
991 unpin_map:
992 i915_gem_object_unpin_map(ctx_obj);
993 unpin_ctx_obj:
994 i915_gem_object_ggtt_unpin(ctx_obj);
995
996 return ret;
997 }
998
999 static int intel_lr_context_pin(struct intel_context *ctx,
1000 struct intel_engine_cs *engine)
1001 {
1002 int ret = 0;
1003
1004 if (ctx->engine[engine->id].pin_count++ == 0) {
1005 ret = intel_lr_context_do_pin(ctx, engine);
1006 if (ret)
1007 goto reset_pin_count;
1008
1009 i915_gem_context_reference(ctx);
1010 }
1011 return ret;
1012
1013 reset_pin_count:
1014 ctx->engine[engine->id].pin_count = 0;
1015 return ret;
1016 }
1017
1018 void intel_lr_context_unpin(struct intel_context *ctx,
1019 struct intel_engine_cs *engine)
1020 {
1021 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1022
1023 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1024 if (--ctx->engine[engine->id].pin_count == 0) {
1025 i915_gem_object_unpin_map(ctx_obj);
1026 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1027 i915_gem_object_ggtt_unpin(ctx_obj);
1028 ctx->engine[engine->id].lrc_vma = NULL;
1029 ctx->engine[engine->id].lrc_desc = 0;
1030 ctx->engine[engine->id].lrc_reg_state = NULL;
1031
1032 i915_gem_context_unreference(ctx);
1033 }
1034 }
1035
1036 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1037 {
1038 int ret, i;
1039 struct intel_engine_cs *engine = req->engine;
1040 struct intel_ringbuffer *ringbuf = req->ringbuf;
1041 struct drm_device *dev = engine->dev;
1042 struct drm_i915_private *dev_priv = dev->dev_private;
1043 struct i915_workarounds *w = &dev_priv->workarounds;
1044
1045 if (w->count == 0)
1046 return 0;
1047
1048 engine->gpu_caches_dirty = true;
1049 ret = logical_ring_flush_all_caches(req);
1050 if (ret)
1051 return ret;
1052
1053 ret = intel_ring_begin(req, w->count * 2 + 2);
1054 if (ret)
1055 return ret;
1056
1057 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1058 for (i = 0; i < w->count; i++) {
1059 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1060 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1061 }
1062 intel_logical_ring_emit(ringbuf, MI_NOOP);
1063
1064 intel_logical_ring_advance(ringbuf);
1065
1066 engine->gpu_caches_dirty = true;
1067 ret = logical_ring_flush_all_caches(req);
1068 if (ret)
1069 return ret;
1070
1071 return 0;
1072 }
1073
1074 #define wa_ctx_emit(batch, index, cmd) \
1075 do { \
1076 int __index = (index)++; \
1077 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1078 return -ENOSPC; \
1079 } \
1080 batch[__index] = (cmd); \
1081 } while (0)
1082
1083 #define wa_ctx_emit_reg(batch, index, reg) \
1084 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1085
1086 /*
1087 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1088 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1089 * but there is a slight complication as this is applied in WA batch where the
1090 * values are only initialized once so we cannot take register value at the
1091 * beginning and reuse it further; hence we save its value to memory, upload a
1092 * constant value with bit21 set and then we restore it back with the saved value.
1093 * To simplify the WA, a constant value is formed by using the default value
1094 * of this register. This shouldn't be a problem because we are only modifying
1095 * it for a short period and this batch in non-premptible. We can ofcourse
1096 * use additional instructions that read the actual value of the register
1097 * at that time and set our bit of interest but it makes the WA complicated.
1098 *
1099 * This WA is also required for Gen9 so extracting as a function avoids
1100 * code duplication.
1101 */
1102 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1103 uint32_t *const batch,
1104 uint32_t index)
1105 {
1106 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1107 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1108
1109 /*
1110 * WaDisableLSQCROPERFforOCL:skl,kbl
1111 * This WA is implemented in skl_init_clock_gating() but since
1112 * this batch updates GEN8_L3SQCREG4 with default value we need to
1113 * set this bit here to retain the WA during flush.
1114 */
1115 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
1116 IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1117 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1118
1119 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1120 MI_SRM_LRM_GLOBAL_GTT));
1121 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1122 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1123 wa_ctx_emit(batch, index, 0);
1124
1125 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1126 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1127 wa_ctx_emit(batch, index, l3sqc4_flush);
1128
1129 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1130 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1131 PIPE_CONTROL_DC_FLUSH_ENABLE));
1132 wa_ctx_emit(batch, index, 0);
1133 wa_ctx_emit(batch, index, 0);
1134 wa_ctx_emit(batch, index, 0);
1135 wa_ctx_emit(batch, index, 0);
1136
1137 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1138 MI_SRM_LRM_GLOBAL_GTT));
1139 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1140 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1141 wa_ctx_emit(batch, index, 0);
1142
1143 return index;
1144 }
1145
1146 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1147 uint32_t offset,
1148 uint32_t start_alignment)
1149 {
1150 return wa_ctx->offset = ALIGN(offset, start_alignment);
1151 }
1152
1153 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1154 uint32_t offset,
1155 uint32_t size_alignment)
1156 {
1157 wa_ctx->size = offset - wa_ctx->offset;
1158
1159 WARN(wa_ctx->size % size_alignment,
1160 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1161 wa_ctx->size, size_alignment);
1162 return 0;
1163 }
1164
1165 /**
1166 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1167 *
1168 * @ring: only applicable for RCS
1169 * @wa_ctx: structure representing wa_ctx
1170 * offset: specifies start of the batch, should be cache-aligned. This is updated
1171 * with the offset value received as input.
1172 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1173 * @batch: page in which WA are loaded
1174 * @offset: This field specifies the start of the batch, it should be
1175 * cache-aligned otherwise it is adjusted accordingly.
1176 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1177 * initialized at the beginning and shared across all contexts but this field
1178 * helps us to have multiple batches at different offsets and select them based
1179 * on a criteria. At the moment this batch always start at the beginning of the page
1180 * and at this point we don't have multiple wa_ctx batch buffers.
1181 *
1182 * The number of WA applied are not known at the beginning; we use this field
1183 * to return the no of DWORDS written.
1184 *
1185 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1186 * so it adds NOOPs as padding to make it cacheline aligned.
1187 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1188 * makes a complete batch buffer.
1189 *
1190 * Return: non-zero if we exceed the PAGE_SIZE limit.
1191 */
1192
1193 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1194 struct i915_wa_ctx_bb *wa_ctx,
1195 uint32_t *const batch,
1196 uint32_t *offset)
1197 {
1198 uint32_t scratch_addr;
1199 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1200
1201 /* WaDisableCtxRestoreArbitration:bdw,chv */
1202 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1203
1204 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1205 if (IS_BROADWELL(engine->dev)) {
1206 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1207 if (rc < 0)
1208 return rc;
1209 index = rc;
1210 }
1211
1212 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1213 /* Actual scratch location is at 128 bytes offset */
1214 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1215
1216 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1217 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1218 PIPE_CONTROL_GLOBAL_GTT_IVB |
1219 PIPE_CONTROL_CS_STALL |
1220 PIPE_CONTROL_QW_WRITE));
1221 wa_ctx_emit(batch, index, scratch_addr);
1222 wa_ctx_emit(batch, index, 0);
1223 wa_ctx_emit(batch, index, 0);
1224 wa_ctx_emit(batch, index, 0);
1225
1226 /* Pad to end of cacheline */
1227 while (index % CACHELINE_DWORDS)
1228 wa_ctx_emit(batch, index, MI_NOOP);
1229
1230 /*
1231 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1232 * execution depends on the length specified in terms of cache lines
1233 * in the register CTX_RCS_INDIRECT_CTX
1234 */
1235
1236 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1237 }
1238
1239 /**
1240 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1241 *
1242 * @ring: only applicable for RCS
1243 * @wa_ctx: structure representing wa_ctx
1244 * offset: specifies start of the batch, should be cache-aligned.
1245 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1246 * @batch: page in which WA are loaded
1247 * @offset: This field specifies the start of this batch.
1248 * This batch is started immediately after indirect_ctx batch. Since we ensure
1249 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1250 *
1251 * The number of DWORDS written are returned using this field.
1252 *
1253 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1254 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1255 */
1256 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1257 struct i915_wa_ctx_bb *wa_ctx,
1258 uint32_t *const batch,
1259 uint32_t *offset)
1260 {
1261 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1262
1263 /* WaDisableCtxRestoreArbitration:bdw,chv */
1264 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1265
1266 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1267
1268 return wa_ctx_end(wa_ctx, *offset = index, 1);
1269 }
1270
1271 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1272 struct i915_wa_ctx_bb *wa_ctx,
1273 uint32_t *const batch,
1274 uint32_t *offset)
1275 {
1276 int ret;
1277 struct drm_device *dev = engine->dev;
1278 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1279
1280 /* WaDisableCtxRestoreArbitration:skl,bxt */
1281 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1282 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1283 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1284
1285 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1286 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1287 if (ret < 0)
1288 return ret;
1289 index = ret;
1290
1291 /* Pad to end of cacheline */
1292 while (index % CACHELINE_DWORDS)
1293 wa_ctx_emit(batch, index, MI_NOOP);
1294
1295 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1296 }
1297
1298 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1299 struct i915_wa_ctx_bb *wa_ctx,
1300 uint32_t *const batch,
1301 uint32_t *offset)
1302 {
1303 struct drm_device *dev = engine->dev;
1304 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1305
1306 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1307 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1308 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1309 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1310 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1311 wa_ctx_emit(batch, index,
1312 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1313 wa_ctx_emit(batch, index, MI_NOOP);
1314 }
1315
1316 /* WaClearTdlStateAckDirtyBits:bxt */
1317 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1318 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1319
1320 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1321 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1322
1323 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1324 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1325
1326 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1327 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1328
1329 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1330 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1331 wa_ctx_emit(batch, index, 0x0);
1332 wa_ctx_emit(batch, index, MI_NOOP);
1333 }
1334
1335 /* WaDisableCtxRestoreArbitration:skl,bxt */
1336 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1337 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1338 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1339
1340 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1341
1342 return wa_ctx_end(wa_ctx, *offset = index, 1);
1343 }
1344
1345 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1346 {
1347 int ret;
1348
1349 engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1350 PAGE_ALIGN(size));
1351 if (!engine->wa_ctx.obj) {
1352 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1353 return -ENOMEM;
1354 }
1355
1356 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1357 if (ret) {
1358 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1359 ret);
1360 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1361 return ret;
1362 }
1363
1364 return 0;
1365 }
1366
1367 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1368 {
1369 if (engine->wa_ctx.obj) {
1370 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1371 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1372 engine->wa_ctx.obj = NULL;
1373 }
1374 }
1375
1376 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1377 {
1378 int ret;
1379 uint32_t *batch;
1380 uint32_t offset;
1381 struct page *page;
1382 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1383
1384 WARN_ON(engine->id != RCS);
1385
1386 /* update this when WA for higher Gen are added */
1387 if (INTEL_INFO(engine->dev)->gen > 9) {
1388 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1389 INTEL_INFO(engine->dev)->gen);
1390 return 0;
1391 }
1392
1393 /* some WA perform writes to scratch page, ensure it is valid */
1394 if (engine->scratch.obj == NULL) {
1395 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1396 return -EINVAL;
1397 }
1398
1399 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1400 if (ret) {
1401 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1402 return ret;
1403 }
1404
1405 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1406 batch = kmap_atomic(page);
1407 offset = 0;
1408
1409 if (INTEL_INFO(engine->dev)->gen == 8) {
1410 ret = gen8_init_indirectctx_bb(engine,
1411 &wa_ctx->indirect_ctx,
1412 batch,
1413 &offset);
1414 if (ret)
1415 goto out;
1416
1417 ret = gen8_init_perctx_bb(engine,
1418 &wa_ctx->per_ctx,
1419 batch,
1420 &offset);
1421 if (ret)
1422 goto out;
1423 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1424 ret = gen9_init_indirectctx_bb(engine,
1425 &wa_ctx->indirect_ctx,
1426 batch,
1427 &offset);
1428 if (ret)
1429 goto out;
1430
1431 ret = gen9_init_perctx_bb(engine,
1432 &wa_ctx->per_ctx,
1433 batch,
1434 &offset);
1435 if (ret)
1436 goto out;
1437 }
1438
1439 out:
1440 kunmap_atomic(batch);
1441 if (ret)
1442 lrc_destroy_wa_ctx_obj(engine);
1443
1444 return ret;
1445 }
1446
1447 static void lrc_init_hws(struct intel_engine_cs *engine)
1448 {
1449 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1450
1451 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1452 (u32)engine->status_page.gfx_addr);
1453 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1454 }
1455
1456 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1457 {
1458 struct drm_device *dev = engine->dev;
1459 struct drm_i915_private *dev_priv = dev->dev_private;
1460 unsigned int next_context_status_buffer_hw;
1461
1462 lrc_init_hws(engine);
1463
1464 I915_WRITE_IMR(engine,
1465 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1466 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1467
1468 I915_WRITE(RING_MODE_GEN7(engine),
1469 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1470 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1471 POSTING_READ(RING_MODE_GEN7(engine));
1472
1473 /*
1474 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1475 * zero, we need to read the write pointer from hardware and use its
1476 * value because "this register is power context save restored".
1477 * Effectively, these states have been observed:
1478 *
1479 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1480 * BDW | CSB regs not reset | CSB regs reset |
1481 * CHT | CSB regs not reset | CSB regs not reset |
1482 * SKL | ? | ? |
1483 * BXT | ? | ? |
1484 */
1485 next_context_status_buffer_hw =
1486 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1487
1488 /*
1489 * When the CSB registers are reset (also after power-up / gpu reset),
1490 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1491 * this special case, so the first element read is CSB[0].
1492 */
1493 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1494 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1495
1496 engine->next_context_status_buffer = next_context_status_buffer_hw;
1497 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1498
1499 intel_engine_init_hangcheck(engine);
1500
1501 return intel_mocs_init_engine(engine);
1502 }
1503
1504 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1505 {
1506 struct drm_device *dev = engine->dev;
1507 struct drm_i915_private *dev_priv = dev->dev_private;
1508 int ret;
1509
1510 ret = gen8_init_common_ring(engine);
1511 if (ret)
1512 return ret;
1513
1514 /* We need to disable the AsyncFlip performance optimisations in order
1515 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1516 * programmed to '1' on all products.
1517 *
1518 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1519 */
1520 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1521
1522 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1523
1524 return init_workarounds_ring(engine);
1525 }
1526
1527 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1528 {
1529 int ret;
1530
1531 ret = gen8_init_common_ring(engine);
1532 if (ret)
1533 return ret;
1534
1535 return init_workarounds_ring(engine);
1536 }
1537
1538 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1539 {
1540 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1541 struct intel_engine_cs *engine = req->engine;
1542 struct intel_ringbuffer *ringbuf = req->ringbuf;
1543 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1544 int i, ret;
1545
1546 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1547 if (ret)
1548 return ret;
1549
1550 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1551 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1552 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1553
1554 intel_logical_ring_emit_reg(ringbuf,
1555 GEN8_RING_PDP_UDW(engine, i));
1556 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1557 intel_logical_ring_emit_reg(ringbuf,
1558 GEN8_RING_PDP_LDW(engine, i));
1559 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1560 }
1561
1562 intel_logical_ring_emit(ringbuf, MI_NOOP);
1563 intel_logical_ring_advance(ringbuf);
1564
1565 return 0;
1566 }
1567
1568 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1569 u64 offset, unsigned dispatch_flags)
1570 {
1571 struct intel_ringbuffer *ringbuf = req->ringbuf;
1572 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1573 int ret;
1574
1575 /* Don't rely in hw updating PDPs, specially in lite-restore.
1576 * Ideally, we should set Force PD Restore in ctx descriptor,
1577 * but we can't. Force Restore would be a second option, but
1578 * it is unsafe in case of lite-restore (because the ctx is
1579 * not idle). PML4 is allocated during ppgtt init so this is
1580 * not needed in 48-bit.*/
1581 if (req->ctx->ppgtt &&
1582 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1583 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1584 !intel_vgpu_active(req->i915->dev)) {
1585 ret = intel_logical_ring_emit_pdps(req);
1586 if (ret)
1587 return ret;
1588 }
1589
1590 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1591 }
1592
1593 ret = intel_ring_begin(req, 4);
1594 if (ret)
1595 return ret;
1596
1597 /* FIXME(BDW): Address space and security selectors. */
1598 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1599 (ppgtt<<8) |
1600 (dispatch_flags & I915_DISPATCH_RS ?
1601 MI_BATCH_RESOURCE_STREAMER : 0));
1602 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1603 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1604 intel_logical_ring_emit(ringbuf, MI_NOOP);
1605 intel_logical_ring_advance(ringbuf);
1606
1607 return 0;
1608 }
1609
1610 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1611 {
1612 struct drm_device *dev = engine->dev;
1613 struct drm_i915_private *dev_priv = dev->dev_private;
1614 unsigned long flags;
1615
1616 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1617 return false;
1618
1619 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1620 if (engine->irq_refcount++ == 0) {
1621 I915_WRITE_IMR(engine,
1622 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1623 POSTING_READ(RING_IMR(engine->mmio_base));
1624 }
1625 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1626
1627 return true;
1628 }
1629
1630 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1631 {
1632 struct drm_device *dev = engine->dev;
1633 struct drm_i915_private *dev_priv = dev->dev_private;
1634 unsigned long flags;
1635
1636 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1637 if (--engine->irq_refcount == 0) {
1638 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1639 POSTING_READ(RING_IMR(engine->mmio_base));
1640 }
1641 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1642 }
1643
1644 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1645 u32 invalidate_domains,
1646 u32 unused)
1647 {
1648 struct intel_ringbuffer *ringbuf = request->ringbuf;
1649 struct intel_engine_cs *engine = ringbuf->engine;
1650 struct drm_device *dev = engine->dev;
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1652 uint32_t cmd;
1653 int ret;
1654
1655 ret = intel_ring_begin(request, 4);
1656 if (ret)
1657 return ret;
1658
1659 cmd = MI_FLUSH_DW + 1;
1660
1661 /* We always require a command barrier so that subsequent
1662 * commands, such as breadcrumb interrupts, are strictly ordered
1663 * wrt the contents of the write cache being flushed to memory
1664 * (and thus being coherent from the CPU).
1665 */
1666 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1667
1668 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1669 cmd |= MI_INVALIDATE_TLB;
1670 if (engine == &dev_priv->engine[VCS])
1671 cmd |= MI_INVALIDATE_BSD;
1672 }
1673
1674 intel_logical_ring_emit(ringbuf, cmd);
1675 intel_logical_ring_emit(ringbuf,
1676 I915_GEM_HWS_SCRATCH_ADDR |
1677 MI_FLUSH_DW_USE_GTT);
1678 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1679 intel_logical_ring_emit(ringbuf, 0); /* value */
1680 intel_logical_ring_advance(ringbuf);
1681
1682 return 0;
1683 }
1684
1685 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1686 u32 invalidate_domains,
1687 u32 flush_domains)
1688 {
1689 struct intel_ringbuffer *ringbuf = request->ringbuf;
1690 struct intel_engine_cs *engine = ringbuf->engine;
1691 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1692 bool vf_flush_wa = false, dc_flush_wa = false;
1693 u32 flags = 0;
1694 int ret;
1695 int len;
1696
1697 flags |= PIPE_CONTROL_CS_STALL;
1698
1699 if (flush_domains) {
1700 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1701 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1702 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1703 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1704 }
1705
1706 if (invalidate_domains) {
1707 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1708 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1709 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1710 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1711 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1712 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1713 flags |= PIPE_CONTROL_QW_WRITE;
1714 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1715
1716 /*
1717 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1718 * pipe control.
1719 */
1720 if (IS_GEN9(engine->dev))
1721 vf_flush_wa = true;
1722
1723 /* WaForGAMHang:kbl */
1724 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1725 dc_flush_wa = true;
1726 }
1727
1728 len = 6;
1729
1730 if (vf_flush_wa)
1731 len += 6;
1732
1733 if (dc_flush_wa)
1734 len += 12;
1735
1736 ret = intel_ring_begin(request, len);
1737 if (ret)
1738 return ret;
1739
1740 if (vf_flush_wa) {
1741 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1742 intel_logical_ring_emit(ringbuf, 0);
1743 intel_logical_ring_emit(ringbuf, 0);
1744 intel_logical_ring_emit(ringbuf, 0);
1745 intel_logical_ring_emit(ringbuf, 0);
1746 intel_logical_ring_emit(ringbuf, 0);
1747 }
1748
1749 if (dc_flush_wa) {
1750 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1751 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
1752 intel_logical_ring_emit(ringbuf, 0);
1753 intel_logical_ring_emit(ringbuf, 0);
1754 intel_logical_ring_emit(ringbuf, 0);
1755 intel_logical_ring_emit(ringbuf, 0);
1756 }
1757
1758 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1759 intel_logical_ring_emit(ringbuf, flags);
1760 intel_logical_ring_emit(ringbuf, scratch_addr);
1761 intel_logical_ring_emit(ringbuf, 0);
1762 intel_logical_ring_emit(ringbuf, 0);
1763 intel_logical_ring_emit(ringbuf, 0);
1764
1765 if (dc_flush_wa) {
1766 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1767 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
1768 intel_logical_ring_emit(ringbuf, 0);
1769 intel_logical_ring_emit(ringbuf, 0);
1770 intel_logical_ring_emit(ringbuf, 0);
1771 intel_logical_ring_emit(ringbuf, 0);
1772 }
1773
1774 intel_logical_ring_advance(ringbuf);
1775
1776 return 0;
1777 }
1778
1779 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1780 {
1781 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1782 }
1783
1784 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1785 {
1786 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1787 }
1788
1789 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1790 {
1791 /*
1792 * On BXT A steppings there is a HW coherency issue whereby the
1793 * MI_STORE_DATA_IMM storing the completed request's seqno
1794 * occasionally doesn't invalidate the CPU cache. Work around this by
1795 * clflushing the corresponding cacheline whenever the caller wants
1796 * the coherency to be guaranteed. Note that this cacheline is known
1797 * to be clean at this point, since we only write it in
1798 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1799 * this clflush in practice becomes an invalidate operation.
1800 */
1801 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1802 }
1803
1804 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1805 {
1806 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1807
1808 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1809 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1810 }
1811
1812 /*
1813 * Reserve space for 2 NOOPs at the end of each request to be
1814 * used as a workaround for not being allowed to do lite
1815 * restore with HEAD==TAIL (WaIdleLiteRestore).
1816 */
1817 #define WA_TAIL_DWORDS 2
1818
1819 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1820 {
1821 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1822 }
1823
1824 static int gen8_emit_request(struct drm_i915_gem_request *request)
1825 {
1826 struct intel_ringbuffer *ringbuf = request->ringbuf;
1827 int ret;
1828
1829 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1830 if (ret)
1831 return ret;
1832
1833 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1834 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1835
1836 intel_logical_ring_emit(ringbuf,
1837 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1838 intel_logical_ring_emit(ringbuf,
1839 hws_seqno_address(request->engine) |
1840 MI_FLUSH_DW_USE_GTT);
1841 intel_logical_ring_emit(ringbuf, 0);
1842 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1843 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1844 intel_logical_ring_emit(ringbuf, MI_NOOP);
1845 return intel_logical_ring_advance_and_submit(request);
1846 }
1847
1848 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1849 {
1850 struct intel_ringbuffer *ringbuf = request->ringbuf;
1851 int ret;
1852
1853 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1854 if (ret)
1855 return ret;
1856
1857 /* We're using qword write, seqno should be aligned to 8 bytes. */
1858 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1859
1860 /* w/a for post sync ops following a GPGPU operation we
1861 * need a prior CS_STALL, which is emitted by the flush
1862 * following the batch.
1863 */
1864 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1865 intel_logical_ring_emit(ringbuf,
1866 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1867 PIPE_CONTROL_CS_STALL |
1868 PIPE_CONTROL_QW_WRITE));
1869 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1870 intel_logical_ring_emit(ringbuf, 0);
1871 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1872 /* We're thrashing one dword of HWS. */
1873 intel_logical_ring_emit(ringbuf, 0);
1874 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1875 intel_logical_ring_emit(ringbuf, MI_NOOP);
1876 return intel_logical_ring_advance_and_submit(request);
1877 }
1878
1879 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1880 {
1881 struct render_state so;
1882 int ret;
1883
1884 ret = i915_gem_render_state_prepare(req->engine, &so);
1885 if (ret)
1886 return ret;
1887
1888 if (so.rodata == NULL)
1889 return 0;
1890
1891 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1892 I915_DISPATCH_SECURE);
1893 if (ret)
1894 goto out;
1895
1896 ret = req->engine->emit_bb_start(req,
1897 (so.ggtt_offset + so.aux_batch_offset),
1898 I915_DISPATCH_SECURE);
1899 if (ret)
1900 goto out;
1901
1902 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1903
1904 out:
1905 i915_gem_render_state_fini(&so);
1906 return ret;
1907 }
1908
1909 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1910 {
1911 int ret;
1912
1913 ret = intel_logical_ring_workarounds_emit(req);
1914 if (ret)
1915 return ret;
1916
1917 ret = intel_rcs_context_init_mocs(req);
1918 /*
1919 * Failing to program the MOCS is non-fatal.The system will not
1920 * run at peak performance. So generate an error and carry on.
1921 */
1922 if (ret)
1923 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1924
1925 return intel_lr_context_render_state_init(req);
1926 }
1927
1928 /**
1929 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1930 *
1931 * @ring: Engine Command Streamer.
1932 *
1933 */
1934 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1935 {
1936 struct drm_i915_private *dev_priv;
1937
1938 if (!intel_engine_initialized(engine))
1939 return;
1940
1941 /*
1942 * Tasklet cannot be active at this point due intel_mark_active/idle
1943 * so this is just for documentation.
1944 */
1945 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1946 tasklet_kill(&engine->irq_tasklet);
1947
1948 dev_priv = engine->dev->dev_private;
1949
1950 if (engine->buffer) {
1951 intel_logical_ring_stop(engine);
1952 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1953 }
1954
1955 if (engine->cleanup)
1956 engine->cleanup(engine);
1957
1958 i915_cmd_parser_fini_ring(engine);
1959 i915_gem_batch_pool_fini(&engine->batch_pool);
1960
1961 if (engine->status_page.obj) {
1962 i915_gem_object_unpin_map(engine->status_page.obj);
1963 engine->status_page.obj = NULL;
1964 }
1965
1966 engine->idle_lite_restore_wa = 0;
1967 engine->disable_lite_restore_wa = false;
1968 engine->ctx_desc_template = 0;
1969
1970 lrc_destroy_wa_ctx_obj(engine);
1971 engine->dev = NULL;
1972 }
1973
1974 static void
1975 logical_ring_default_vfuncs(struct drm_device *dev,
1976 struct intel_engine_cs *engine)
1977 {
1978 /* Default vfuncs which can be overriden by each engine. */
1979 engine->init_hw = gen8_init_common_ring;
1980 engine->emit_request = gen8_emit_request;
1981 engine->emit_flush = gen8_emit_flush;
1982 engine->irq_get = gen8_logical_ring_get_irq;
1983 engine->irq_put = gen8_logical_ring_put_irq;
1984 engine->emit_bb_start = gen8_emit_bb_start;
1985 engine->get_seqno = gen8_get_seqno;
1986 engine->set_seqno = gen8_set_seqno;
1987 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1988 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1989 engine->set_seqno = bxt_a_set_seqno;
1990 }
1991 }
1992
1993 static inline void
1994 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1995 {
1996 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1997 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1998 }
1999
2000 static int
2001 lrc_setup_hws(struct intel_engine_cs *engine,
2002 struct drm_i915_gem_object *dctx_obj)
2003 {
2004 void *hws;
2005
2006 /* The HWSP is part of the default context object in LRC mode. */
2007 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
2008 LRC_PPHWSP_PN * PAGE_SIZE;
2009 hws = i915_gem_object_pin_map(dctx_obj);
2010 if (IS_ERR(hws))
2011 return PTR_ERR(hws);
2012 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2013 engine->status_page.obj = dctx_obj;
2014
2015 return 0;
2016 }
2017
2018 static int
2019 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2020 {
2021 struct drm_i915_private *dev_priv = to_i915(dev);
2022 struct intel_context *dctx = dev_priv->kernel_context;
2023 enum forcewake_domains fw_domains;
2024 int ret;
2025
2026 /* Intentionally left blank. */
2027 engine->buffer = NULL;
2028
2029 engine->dev = dev;
2030 INIT_LIST_HEAD(&engine->active_list);
2031 INIT_LIST_HEAD(&engine->request_list);
2032 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2033 init_waitqueue_head(&engine->irq_queue);
2034
2035 INIT_LIST_HEAD(&engine->buffers);
2036 INIT_LIST_HEAD(&engine->execlist_queue);
2037 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2038 spin_lock_init(&engine->execlist_lock);
2039
2040 tasklet_init(&engine->irq_tasklet,
2041 intel_lrc_irq_handler, (unsigned long)engine);
2042
2043 logical_ring_init_platform_invariants(engine);
2044
2045 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2046 RING_ELSP(engine),
2047 FW_REG_WRITE);
2048
2049 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2050 RING_CONTEXT_STATUS_PTR(engine),
2051 FW_REG_READ | FW_REG_WRITE);
2052
2053 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2054 RING_CONTEXT_STATUS_BUF_BASE(engine),
2055 FW_REG_READ);
2056
2057 engine->fw_domains = fw_domains;
2058
2059 ret = i915_cmd_parser_init_ring(engine);
2060 if (ret)
2061 goto error;
2062
2063 ret = intel_lr_context_deferred_alloc(dctx, engine);
2064 if (ret)
2065 goto error;
2066
2067 /* As this is the default context, always pin it */
2068 ret = intel_lr_context_do_pin(dctx, engine);
2069 if (ret) {
2070 DRM_ERROR(
2071 "Failed to pin and map ringbuffer %s: %d\n",
2072 engine->name, ret);
2073 goto error;
2074 }
2075
2076 /* And setup the hardware status page. */
2077 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2078 if (ret) {
2079 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2080 goto error;
2081 }
2082
2083 return 0;
2084
2085 error:
2086 intel_logical_ring_cleanup(engine);
2087 return ret;
2088 }
2089
2090 static int logical_render_ring_init(struct drm_device *dev)
2091 {
2092 struct drm_i915_private *dev_priv = dev->dev_private;
2093 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2094 int ret;
2095
2096 engine->name = "render ring";
2097 engine->id = RCS;
2098 engine->exec_id = I915_EXEC_RENDER;
2099 engine->guc_id = GUC_RENDER_ENGINE;
2100 engine->mmio_base = RENDER_RING_BASE;
2101
2102 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2103 if (HAS_L3_DPF(dev))
2104 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2105
2106 logical_ring_default_vfuncs(dev, engine);
2107
2108 /* Override some for render ring. */
2109 if (INTEL_INFO(dev)->gen >= 9)
2110 engine->init_hw = gen9_init_render_ring;
2111 else
2112 engine->init_hw = gen8_init_render_ring;
2113 engine->init_context = gen8_init_rcs_context;
2114 engine->cleanup = intel_fini_pipe_control;
2115 engine->emit_flush = gen8_emit_flush_render;
2116 engine->emit_request = gen8_emit_request_render;
2117
2118 engine->dev = dev;
2119
2120 ret = intel_init_pipe_control(engine);
2121 if (ret)
2122 return ret;
2123
2124 ret = intel_init_workaround_bb(engine);
2125 if (ret) {
2126 /*
2127 * We continue even if we fail to initialize WA batch
2128 * because we only expect rare glitches but nothing
2129 * critical to prevent us from using GPU
2130 */
2131 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2132 ret);
2133 }
2134
2135 ret = logical_ring_init(dev, engine);
2136 if (ret) {
2137 lrc_destroy_wa_ctx_obj(engine);
2138 }
2139
2140 return ret;
2141 }
2142
2143 static int logical_bsd_ring_init(struct drm_device *dev)
2144 {
2145 struct drm_i915_private *dev_priv = dev->dev_private;
2146 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2147
2148 engine->name = "bsd ring";
2149 engine->id = VCS;
2150 engine->exec_id = I915_EXEC_BSD;
2151 engine->guc_id = GUC_VIDEO_ENGINE;
2152 engine->mmio_base = GEN6_BSD_RING_BASE;
2153
2154 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2155 logical_ring_default_vfuncs(dev, engine);
2156
2157 return logical_ring_init(dev, engine);
2158 }
2159
2160 static int logical_bsd2_ring_init(struct drm_device *dev)
2161 {
2162 struct drm_i915_private *dev_priv = dev->dev_private;
2163 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2164
2165 engine->name = "bsd2 ring";
2166 engine->id = VCS2;
2167 engine->exec_id = I915_EXEC_BSD;
2168 engine->guc_id = GUC_VIDEO_ENGINE2;
2169 engine->mmio_base = GEN8_BSD2_RING_BASE;
2170
2171 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2172 logical_ring_default_vfuncs(dev, engine);
2173
2174 return logical_ring_init(dev, engine);
2175 }
2176
2177 static int logical_blt_ring_init(struct drm_device *dev)
2178 {
2179 struct drm_i915_private *dev_priv = dev->dev_private;
2180 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2181
2182 engine->name = "blitter ring";
2183 engine->id = BCS;
2184 engine->exec_id = I915_EXEC_BLT;
2185 engine->guc_id = GUC_BLITTER_ENGINE;
2186 engine->mmio_base = BLT_RING_BASE;
2187
2188 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2189 logical_ring_default_vfuncs(dev, engine);
2190
2191 return logical_ring_init(dev, engine);
2192 }
2193
2194 static int logical_vebox_ring_init(struct drm_device *dev)
2195 {
2196 struct drm_i915_private *dev_priv = dev->dev_private;
2197 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2198
2199 engine->name = "video enhancement ring";
2200 engine->id = VECS;
2201 engine->exec_id = I915_EXEC_VEBOX;
2202 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2203 engine->mmio_base = VEBOX_RING_BASE;
2204
2205 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2206 logical_ring_default_vfuncs(dev, engine);
2207
2208 return logical_ring_init(dev, engine);
2209 }
2210
2211 /**
2212 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2213 * @dev: DRM device.
2214 *
2215 * This function inits the engines for an Execlists submission style (the equivalent in the
2216 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2217 * those engines that are present in the hardware.
2218 *
2219 * Return: non-zero if the initialization failed.
2220 */
2221 int intel_logical_rings_init(struct drm_device *dev)
2222 {
2223 struct drm_i915_private *dev_priv = dev->dev_private;
2224 int ret;
2225
2226 ret = logical_render_ring_init(dev);
2227 if (ret)
2228 return ret;
2229
2230 if (HAS_BSD(dev)) {
2231 ret = logical_bsd_ring_init(dev);
2232 if (ret)
2233 goto cleanup_render_ring;
2234 }
2235
2236 if (HAS_BLT(dev)) {
2237 ret = logical_blt_ring_init(dev);
2238 if (ret)
2239 goto cleanup_bsd_ring;
2240 }
2241
2242 if (HAS_VEBOX(dev)) {
2243 ret = logical_vebox_ring_init(dev);
2244 if (ret)
2245 goto cleanup_blt_ring;
2246 }
2247
2248 if (HAS_BSD2(dev)) {
2249 ret = logical_bsd2_ring_init(dev);
2250 if (ret)
2251 goto cleanup_vebox_ring;
2252 }
2253
2254 return 0;
2255
2256 cleanup_vebox_ring:
2257 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2258 cleanup_blt_ring:
2259 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2260 cleanup_bsd_ring:
2261 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2262 cleanup_render_ring:
2263 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2264
2265 return ret;
2266 }
2267
2268 static u32
2269 make_rpcs(struct drm_device *dev)
2270 {
2271 u32 rpcs = 0;
2272
2273 /*
2274 * No explicit RPCS request is needed to ensure full
2275 * slice/subslice/EU enablement prior to Gen9.
2276 */
2277 if (INTEL_INFO(dev)->gen < 9)
2278 return 0;
2279
2280 /*
2281 * Starting in Gen9, render power gating can leave
2282 * slice/subslice/EU in a partially enabled state. We
2283 * must make an explicit request through RPCS for full
2284 * enablement.
2285 */
2286 if (INTEL_INFO(dev)->has_slice_pg) {
2287 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2288 rpcs |= INTEL_INFO(dev)->slice_total <<
2289 GEN8_RPCS_S_CNT_SHIFT;
2290 rpcs |= GEN8_RPCS_ENABLE;
2291 }
2292
2293 if (INTEL_INFO(dev)->has_subslice_pg) {
2294 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2295 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2296 GEN8_RPCS_SS_CNT_SHIFT;
2297 rpcs |= GEN8_RPCS_ENABLE;
2298 }
2299
2300 if (INTEL_INFO(dev)->has_eu_pg) {
2301 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2302 GEN8_RPCS_EU_MIN_SHIFT;
2303 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2304 GEN8_RPCS_EU_MAX_SHIFT;
2305 rpcs |= GEN8_RPCS_ENABLE;
2306 }
2307
2308 return rpcs;
2309 }
2310
2311 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2312 {
2313 u32 indirect_ctx_offset;
2314
2315 switch (INTEL_INFO(engine->dev)->gen) {
2316 default:
2317 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2318 /* fall through */
2319 case 9:
2320 indirect_ctx_offset =
2321 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2322 break;
2323 case 8:
2324 indirect_ctx_offset =
2325 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2326 break;
2327 }
2328
2329 return indirect_ctx_offset;
2330 }
2331
2332 static int
2333 populate_lr_context(struct intel_context *ctx,
2334 struct drm_i915_gem_object *ctx_obj,
2335 struct intel_engine_cs *engine,
2336 struct intel_ringbuffer *ringbuf)
2337 {
2338 struct drm_device *dev = engine->dev;
2339 struct drm_i915_private *dev_priv = dev->dev_private;
2340 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2341 void *vaddr;
2342 u32 *reg_state;
2343 int ret;
2344
2345 if (!ppgtt)
2346 ppgtt = dev_priv->mm.aliasing_ppgtt;
2347
2348 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2349 if (ret) {
2350 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2351 return ret;
2352 }
2353
2354 vaddr = i915_gem_object_pin_map(ctx_obj);
2355 if (IS_ERR(vaddr)) {
2356 ret = PTR_ERR(vaddr);
2357 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2358 return ret;
2359 }
2360 ctx_obj->dirty = true;
2361
2362 /* The second page of the context object contains some fields which must
2363 * be set up prior to the first execution. */
2364 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2365
2366 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2367 * commands followed by (reg, value) pairs. The values we are setting here are
2368 * only for the first context restore: on a subsequent save, the GPU will
2369 * recreate this batchbuffer with new values (including all the missing
2370 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2371 reg_state[CTX_LRI_HEADER_0] =
2372 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2373 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2374 RING_CONTEXT_CONTROL(engine),
2375 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2376 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2377 (HAS_RESOURCE_STREAMER(dev) ?
2378 CTX_CTRL_RS_CTX_ENABLE : 0)));
2379 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2380 0);
2381 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2382 0);
2383 /* Ring buffer start address is not known until the buffer is pinned.
2384 * It is written to the context image in execlists_update_context()
2385 */
2386 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2387 RING_START(engine->mmio_base), 0);
2388 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2389 RING_CTL(engine->mmio_base),
2390 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2391 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2392 RING_BBADDR_UDW(engine->mmio_base), 0);
2393 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2394 RING_BBADDR(engine->mmio_base), 0);
2395 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2396 RING_BBSTATE(engine->mmio_base),
2397 RING_BB_PPGTT);
2398 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2399 RING_SBBADDR_UDW(engine->mmio_base), 0);
2400 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2401 RING_SBBADDR(engine->mmio_base), 0);
2402 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2403 RING_SBBSTATE(engine->mmio_base), 0);
2404 if (engine->id == RCS) {
2405 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2406 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2407 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2408 RING_INDIRECT_CTX(engine->mmio_base), 0);
2409 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2410 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2411 if (engine->wa_ctx.obj) {
2412 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2413 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2414
2415 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2416 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2417 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2418
2419 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2420 intel_lr_indirect_ctx_offset(engine) << 6;
2421
2422 reg_state[CTX_BB_PER_CTX_PTR+1] =
2423 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2424 0x01;
2425 }
2426 }
2427 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2428 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2429 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2430 /* PDP values well be assigned later if needed */
2431 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2432 0);
2433 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2434 0);
2435 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2436 0);
2437 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2438 0);
2439 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2440 0);
2441 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2442 0);
2443 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2444 0);
2445 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2446 0);
2447
2448 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2449 /* 64b PPGTT (48bit canonical)
2450 * PDP0_DESCRIPTOR contains the base address to PML4 and
2451 * other PDP Descriptors are ignored.
2452 */
2453 ASSIGN_CTX_PML4(ppgtt, reg_state);
2454 } else {
2455 /* 32b PPGTT
2456 * PDP*_DESCRIPTOR contains the base address of space supported.
2457 * With dynamic page allocation, PDPs may not be allocated at
2458 * this point. Point the unallocated PDPs to the scratch page
2459 */
2460 execlists_update_context_pdps(ppgtt, reg_state);
2461 }
2462
2463 if (engine->id == RCS) {
2464 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2465 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2466 make_rpcs(dev));
2467 }
2468
2469 i915_gem_object_unpin_map(ctx_obj);
2470
2471 return 0;
2472 }
2473
2474 /**
2475 * intel_lr_context_free() - free the LRC specific bits of a context
2476 * @ctx: the LR context to free.
2477 *
2478 * The real context freeing is done in i915_gem_context_free: this only
2479 * takes care of the bits that are LRC related: the per-engine backing
2480 * objects and the logical ringbuffer.
2481 */
2482 void intel_lr_context_free(struct intel_context *ctx)
2483 {
2484 int i;
2485
2486 for (i = I915_NUM_ENGINES; --i >= 0; ) {
2487 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2488 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2489
2490 if (!ctx_obj)
2491 continue;
2492
2493 if (ctx == ctx->i915->kernel_context) {
2494 intel_unpin_ringbuffer_obj(ringbuf);
2495 i915_gem_object_ggtt_unpin(ctx_obj);
2496 i915_gem_object_unpin_map(ctx_obj);
2497 }
2498
2499 WARN_ON(ctx->engine[i].pin_count);
2500 intel_ringbuffer_free(ringbuf);
2501 drm_gem_object_unreference(&ctx_obj->base);
2502 }
2503 }
2504
2505 /**
2506 * intel_lr_context_size() - return the size of the context for an engine
2507 * @ring: which engine to find the context size for
2508 *
2509 * Each engine may require a different amount of space for a context image,
2510 * so when allocating (or copying) an image, this function can be used to
2511 * find the right size for the specific engine.
2512 *
2513 * Return: size (in bytes) of an engine-specific context image
2514 *
2515 * Note: this size includes the HWSP, which is part of the context image
2516 * in LRC mode, but does not include the "shared data page" used with
2517 * GuC submission. The caller should account for this if using the GuC.
2518 */
2519 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2520 {
2521 int ret = 0;
2522
2523 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2524
2525 switch (engine->id) {
2526 case RCS:
2527 if (INTEL_INFO(engine->dev)->gen >= 9)
2528 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2529 else
2530 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2531 break;
2532 case VCS:
2533 case BCS:
2534 case VECS:
2535 case VCS2:
2536 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2537 break;
2538 }
2539
2540 return ret;
2541 }
2542
2543 /**
2544 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2545 * @ctx: LR context to create.
2546 * @ring: engine to be used with the context.
2547 *
2548 * This function can be called more than once, with different engines, if we plan
2549 * to use the context with them. The context backing objects and the ringbuffers
2550 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2551 * the creation is a deferred call: it's better to make sure first that we need to use
2552 * a given ring with the context.
2553 *
2554 * Return: non-zero on error.
2555 */
2556
2557 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2558 struct intel_engine_cs *engine)
2559 {
2560 struct drm_device *dev = engine->dev;
2561 struct drm_i915_gem_object *ctx_obj;
2562 uint32_t context_size;
2563 struct intel_ringbuffer *ringbuf;
2564 int ret;
2565
2566 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2567 WARN_ON(ctx->engine[engine->id].state);
2568
2569 context_size = round_up(intel_lr_context_size(engine), 4096);
2570
2571 /* One extra page as the sharing data between driver and GuC */
2572 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2573
2574 ctx_obj = i915_gem_alloc_object(dev, context_size);
2575 if (!ctx_obj) {
2576 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2577 return -ENOMEM;
2578 }
2579
2580 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2581 if (IS_ERR(ringbuf)) {
2582 ret = PTR_ERR(ringbuf);
2583 goto error_deref_obj;
2584 }
2585
2586 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2587 if (ret) {
2588 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2589 goto error_ringbuf;
2590 }
2591
2592 ctx->engine[engine->id].ringbuf = ringbuf;
2593 ctx->engine[engine->id].state = ctx_obj;
2594
2595 if (ctx != ctx->i915->kernel_context && engine->init_context) {
2596 struct drm_i915_gem_request *req;
2597
2598 req = i915_gem_request_alloc(engine, ctx);
2599 if (IS_ERR(req)) {
2600 ret = PTR_ERR(req);
2601 DRM_ERROR("ring create req: %d\n", ret);
2602 goto error_ringbuf;
2603 }
2604
2605 ret = engine->init_context(req);
2606 i915_add_request_no_flush(req);
2607 if (ret) {
2608 DRM_ERROR("ring init context: %d\n",
2609 ret);
2610 goto error_ringbuf;
2611 }
2612 }
2613 return 0;
2614
2615 error_ringbuf:
2616 intel_ringbuffer_free(ringbuf);
2617 error_deref_obj:
2618 drm_gem_object_unreference(&ctx_obj->base);
2619 ctx->engine[engine->id].ringbuf = NULL;
2620 ctx->engine[engine->id].state = NULL;
2621 return ret;
2622 }
2623
2624 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2625 struct intel_context *ctx)
2626 {
2627 struct intel_engine_cs *engine;
2628
2629 for_each_engine(engine, dev_priv) {
2630 struct drm_i915_gem_object *ctx_obj =
2631 ctx->engine[engine->id].state;
2632 struct intel_ringbuffer *ringbuf =
2633 ctx->engine[engine->id].ringbuf;
2634 void *vaddr;
2635 uint32_t *reg_state;
2636
2637 if (!ctx_obj)
2638 continue;
2639
2640 vaddr = i915_gem_object_pin_map(ctx_obj);
2641 if (WARN_ON(IS_ERR(vaddr)))
2642 continue;
2643
2644 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2645 ctx_obj->dirty = true;
2646
2647 reg_state[CTX_RING_HEAD+1] = 0;
2648 reg_state[CTX_RING_TAIL+1] = 0;
2649
2650 i915_gem_object_unpin_map(ctx_obj);
2651
2652 ringbuf->head = 0;
2653 ringbuf->tail = 0;
2654 }
2655 }
This page took 0.111935 seconds and 5 git commands to generate.