drm/i915: Replace the pinned context address with its unique ID
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211 ADVANCED_CONTEXT = 0,
212 LEGACY_32B_CONTEXT,
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
220 enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_ID_WIDTH 21
228 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
229 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
230
231 static int intel_lr_context_pin(struct intel_context *ctx,
232 struct intel_engine_cs *engine);
233
234 /**
235 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
236 * @dev: DRM device.
237 * @enable_execlists: value of i915.enable_execlists module parameter.
238 *
239 * Only certain platforms support Execlists (the prerequisites being
240 * support for Logical Ring Contexts and Aliasing PPGTT or better).
241 *
242 * Return: 1 if Execlists is supported and has to be enabled.
243 */
244 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
245 {
246 WARN_ON(i915.enable_ppgtt == -1);
247
248 /* On platforms with execlist available, vGPU will only
249 * support execlist mode, no ring buffer mode.
250 */
251 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
252 return 1;
253
254 if (INTEL_INFO(dev)->gen >= 9)
255 return 1;
256
257 if (enable_execlists == 0)
258 return 0;
259
260 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
261 i915.use_mmio_flip >= 0)
262 return 1;
263
264 return 0;
265 }
266
267 static void
268 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
269 {
270 struct drm_device *dev = engine->dev;
271
272 if (IS_GEN8(dev) || IS_GEN9(dev))
273 engine->idle_lite_restore_wa = ~0;
274
275 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
276 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
277 (engine->id == VCS || engine->id == VCS2);
278
279 engine->ctx_desc_template = GEN8_CTX_VALID;
280 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
281 GEN8_CTX_ADDRESSING_MODE_SHIFT;
282 if (IS_GEN8(dev))
283 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
284 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
285
286 /* TODO: WaDisableLiteRestore when we start using semaphore
287 * signalling between Command Streamers */
288 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
289
290 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
291 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
292 if (engine->disable_lite_restore_wa)
293 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
294 }
295
296 /**
297 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
298 * descriptor for a pinned context
299 *
300 * @ctx: Context to work on
301 * @ring: Engine the descriptor will be used with
302 *
303 * The context descriptor encodes various attributes of a context,
304 * including its GTT address and some flags. Because it's fairly
305 * expensive to calculate, we'll just do it once and cache the result,
306 * which remains valid until the context is unpinned.
307 *
308 * This is what a descriptor looks like, from LSB to MSB:
309 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
310 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
311 * bits 32-52: ctx ID, a globally unique tag
312 * bits 53-54: mbz, reserved for use by hardware
313 * bits 55-63: group ID, currently unused and set to 0
314 */
315 static void
316 intel_lr_context_descriptor_update(struct intel_context *ctx,
317 struct intel_engine_cs *engine)
318 {
319 u64 desc;
320
321 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
322
323 desc = engine->ctx_desc_template; /* bits 0-11 */
324 desc |= ctx->engine[engine->id].lrc_vma->node.start + /* bits 12-31 */
325 LRC_PPHWSP_PN * PAGE_SIZE;
326 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
327
328 ctx->engine[engine->id].lrc_desc = desc;
329 }
330
331 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
332 struct intel_engine_cs *engine)
333 {
334 return ctx->engine[engine->id].lrc_desc;
335 }
336
337 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
338 struct drm_i915_gem_request *rq1)
339 {
340
341 struct intel_engine_cs *engine = rq0->engine;
342 struct drm_device *dev = engine->dev;
343 struct drm_i915_private *dev_priv = dev->dev_private;
344 uint64_t desc[2];
345
346 if (rq1) {
347 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
348 rq1->elsp_submitted++;
349 } else {
350 desc[1] = 0;
351 }
352
353 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
354 rq0->elsp_submitted++;
355
356 /* You must always write both descriptors in the order below. */
357 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
358 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
359
360 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
361 /* The context is automatically loaded after the following */
362 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
363
364 /* ELSP is a wo register, use another nearby reg for posting */
365 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
366 }
367
368 static void
369 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
370 {
371 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
372 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
373 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
374 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
375 }
376
377 static void execlists_update_context(struct drm_i915_gem_request *rq)
378 {
379 struct intel_engine_cs *engine = rq->engine;
380 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
381 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
382
383 reg_state[CTX_RING_TAIL+1] = rq->tail;
384
385 /* True 32b PPGTT with dynamic page allocation: update PDP
386 * registers and point the unallocated PDPs to scratch page.
387 * PML4 is allocated during ppgtt init, so this is not needed
388 * in 48-bit mode.
389 */
390 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
391 execlists_update_context_pdps(ppgtt, reg_state);
392 }
393
394 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
395 struct drm_i915_gem_request *rq1)
396 {
397 struct drm_i915_private *dev_priv = rq0->i915;
398 unsigned int fw_domains = rq0->engine->fw_domains;
399
400 execlists_update_context(rq0);
401
402 if (rq1)
403 execlists_update_context(rq1);
404
405 spin_lock_irq(&dev_priv->uncore.lock);
406 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
407
408 execlists_elsp_write(rq0, rq1);
409
410 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
411 spin_unlock_irq(&dev_priv->uncore.lock);
412 }
413
414 static void execlists_context_unqueue(struct intel_engine_cs *engine)
415 {
416 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
417 struct drm_i915_gem_request *cursor, *tmp;
418
419 assert_spin_locked(&engine->execlist_lock);
420
421 /*
422 * If irqs are not active generate a warning as batches that finish
423 * without the irqs may get lost and a GPU Hang may occur.
424 */
425 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
426
427 /* Try to read in pairs */
428 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
429 execlist_link) {
430 if (!req0) {
431 req0 = cursor;
432 } else if (req0->ctx == cursor->ctx) {
433 /* Same ctx: ignore first request, as second request
434 * will update tail past first request's workload */
435 cursor->elsp_submitted = req0->elsp_submitted;
436 list_move_tail(&req0->execlist_link,
437 &engine->execlist_retired_req_list);
438 req0 = cursor;
439 } else {
440 req1 = cursor;
441 WARN_ON(req1->elsp_submitted);
442 break;
443 }
444 }
445
446 if (unlikely(!req0))
447 return;
448
449 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
450 /*
451 * WaIdleLiteRestore: make sure we never cause a lite restore
452 * with HEAD==TAIL.
453 *
454 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
455 * resubmit the request. See gen8_emit_request() for where we
456 * prepare the padding after the end of the request.
457 */
458 struct intel_ringbuffer *ringbuf;
459
460 ringbuf = req0->ctx->engine[engine->id].ringbuf;
461 req0->tail += 8;
462 req0->tail &= ringbuf->size - 1;
463 }
464
465 execlists_submit_requests(req0, req1);
466 }
467
468 static unsigned int
469 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
470 {
471 struct drm_i915_gem_request *head_req;
472
473 assert_spin_locked(&engine->execlist_lock);
474
475 head_req = list_first_entry_or_null(&engine->execlist_queue,
476 struct drm_i915_gem_request,
477 execlist_link);
478
479 if (!head_req)
480 return 0;
481
482 if (unlikely(head_req->ctx->hw_id != request_id))
483 return 0;
484
485 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
486
487 if (--head_req->elsp_submitted > 0)
488 return 0;
489
490 list_move_tail(&head_req->execlist_link,
491 &engine->execlist_retired_req_list);
492
493 return 1;
494 }
495
496 static u32
497 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
498 u32 *context_id)
499 {
500 struct drm_i915_private *dev_priv = engine->dev->dev_private;
501 u32 status;
502
503 read_pointer %= GEN8_CSB_ENTRIES;
504
505 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
506
507 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
508 return 0;
509
510 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
511 read_pointer));
512
513 return status;
514 }
515
516 /**
517 * intel_lrc_irq_handler() - handle Context Switch interrupts
518 * @engine: Engine Command Streamer to handle.
519 *
520 * Check the unread Context Status Buffers and manage the submission of new
521 * contexts to the ELSP accordingly.
522 */
523 static void intel_lrc_irq_handler(unsigned long data)
524 {
525 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
526 struct drm_i915_private *dev_priv = engine->dev->dev_private;
527 u32 status_pointer;
528 unsigned int read_pointer, write_pointer;
529 u32 csb[GEN8_CSB_ENTRIES][2];
530 unsigned int csb_read = 0, i;
531 unsigned int submit_contexts = 0;
532
533 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
534
535 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
536
537 read_pointer = engine->next_context_status_buffer;
538 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
539 if (read_pointer > write_pointer)
540 write_pointer += GEN8_CSB_ENTRIES;
541
542 while (read_pointer < write_pointer) {
543 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
544 break;
545 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
546 &csb[csb_read][1]);
547 csb_read++;
548 }
549
550 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
551
552 /* Update the read pointer to the old write pointer. Manual ringbuffer
553 * management ftw </sarcasm> */
554 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
555 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
556 engine->next_context_status_buffer << 8));
557
558 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
559
560 spin_lock(&engine->execlist_lock);
561
562 for (i = 0; i < csb_read; i++) {
563 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
564 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
565 if (execlists_check_remove_request(engine, csb[i][1]))
566 WARN(1, "Lite Restored request removed from queue\n");
567 } else
568 WARN(1, "Preemption without Lite Restore\n");
569 }
570
571 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
572 GEN8_CTX_STATUS_ELEMENT_SWITCH))
573 submit_contexts +=
574 execlists_check_remove_request(engine, csb[i][1]);
575 }
576
577 if (submit_contexts) {
578 if (!engine->disable_lite_restore_wa ||
579 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
580 execlists_context_unqueue(engine);
581 }
582
583 spin_unlock(&engine->execlist_lock);
584
585 if (unlikely(submit_contexts > 2))
586 DRM_ERROR("More than two context complete events?\n");
587 }
588
589 static void execlists_context_queue(struct drm_i915_gem_request *request)
590 {
591 struct intel_engine_cs *engine = request->engine;
592 struct drm_i915_gem_request *cursor;
593 int num_elements = 0;
594
595 if (request->ctx != request->i915->kernel_context)
596 intel_lr_context_pin(request->ctx, engine);
597
598 i915_gem_request_reference(request);
599
600 spin_lock_bh(&engine->execlist_lock);
601
602 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
603 if (++num_elements > 2)
604 break;
605
606 if (num_elements > 2) {
607 struct drm_i915_gem_request *tail_req;
608
609 tail_req = list_last_entry(&engine->execlist_queue,
610 struct drm_i915_gem_request,
611 execlist_link);
612
613 if (request->ctx == tail_req->ctx) {
614 WARN(tail_req->elsp_submitted != 0,
615 "More than 2 already-submitted reqs queued\n");
616 list_move_tail(&tail_req->execlist_link,
617 &engine->execlist_retired_req_list);
618 }
619 }
620
621 list_add_tail(&request->execlist_link, &engine->execlist_queue);
622 if (num_elements == 0)
623 execlists_context_unqueue(engine);
624
625 spin_unlock_bh(&engine->execlist_lock);
626 }
627
628 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
629 {
630 struct intel_engine_cs *engine = req->engine;
631 uint32_t flush_domains;
632 int ret;
633
634 flush_domains = 0;
635 if (engine->gpu_caches_dirty)
636 flush_domains = I915_GEM_GPU_DOMAINS;
637
638 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
639 if (ret)
640 return ret;
641
642 engine->gpu_caches_dirty = false;
643 return 0;
644 }
645
646 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
647 struct list_head *vmas)
648 {
649 const unsigned other_rings = ~intel_engine_flag(req->engine);
650 struct i915_vma *vma;
651 uint32_t flush_domains = 0;
652 bool flush_chipset = false;
653 int ret;
654
655 list_for_each_entry(vma, vmas, exec_list) {
656 struct drm_i915_gem_object *obj = vma->obj;
657
658 if (obj->active & other_rings) {
659 ret = i915_gem_object_sync(obj, req->engine, &req);
660 if (ret)
661 return ret;
662 }
663
664 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
665 flush_chipset |= i915_gem_clflush_object(obj, false);
666
667 flush_domains |= obj->base.write_domain;
668 }
669
670 if (flush_domains & I915_GEM_DOMAIN_GTT)
671 wmb();
672
673 /* Unconditionally invalidate gpu caches and ensure that we do flush
674 * any residual writes from the previous batch.
675 */
676 return logical_ring_invalidate_all_caches(req);
677 }
678
679 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
680 {
681 int ret;
682
683 /* Flush enough space to reduce the likelihood of waiting after
684 * we start building the request - in which case we will just
685 * have to repeat work.
686 */
687 request->reserved_space += MIN_SPACE_FOR_ADD_REQUEST;
688
689 request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
690
691 if (i915.enable_guc_submission) {
692 /*
693 * Check that the GuC has space for the request before
694 * going any further, as the i915_add_request() call
695 * later on mustn't fail ...
696 */
697 struct intel_guc *guc = &request->i915->guc;
698
699 ret = i915_guc_wq_check_space(guc->execbuf_client);
700 if (ret)
701 return ret;
702 }
703
704 if (request->ctx != request->i915->kernel_context) {
705 ret = intel_lr_context_pin(request->ctx, request->engine);
706 if (ret)
707 return ret;
708 }
709
710 ret = intel_ring_begin(request, 0);
711 if (ret)
712 goto err_unpin;
713
714 request->reserved_space -= MIN_SPACE_FOR_ADD_REQUEST;
715 return 0;
716
717 err_unpin:
718 if (request->ctx != request->i915->kernel_context)
719 intel_lr_context_unpin(request->ctx, request->engine);
720 return ret;
721 }
722
723 /*
724 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
725 * @request: Request to advance the logical ringbuffer of.
726 *
727 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
728 * really happens during submission is that the context and current tail will be placed
729 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
730 * point, the tail *inside* the context is updated and the ELSP written to.
731 */
732 static int
733 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
734 {
735 struct intel_ringbuffer *ringbuf = request->ringbuf;
736 struct drm_i915_private *dev_priv = request->i915;
737 struct intel_engine_cs *engine = request->engine;
738
739 intel_logical_ring_advance(ringbuf);
740 request->tail = ringbuf->tail;
741
742 /*
743 * Here we add two extra NOOPs as padding to avoid
744 * lite restore of a context with HEAD==TAIL.
745 *
746 * Caller must reserve WA_TAIL_DWORDS for us!
747 */
748 intel_logical_ring_emit(ringbuf, MI_NOOP);
749 intel_logical_ring_emit(ringbuf, MI_NOOP);
750 intel_logical_ring_advance(ringbuf);
751
752 if (intel_engine_stopped(engine))
753 return 0;
754
755 if (engine->last_context != request->ctx) {
756 if (engine->last_context)
757 intel_lr_context_unpin(engine->last_context, engine);
758 if (request->ctx != request->i915->kernel_context) {
759 intel_lr_context_pin(request->ctx, engine);
760 engine->last_context = request->ctx;
761 } else {
762 engine->last_context = NULL;
763 }
764 }
765
766 if (dev_priv->guc.execbuf_client)
767 i915_guc_submit(dev_priv->guc.execbuf_client, request);
768 else
769 execlists_context_queue(request);
770
771 return 0;
772 }
773
774 /**
775 * execlists_submission() - submit a batchbuffer for execution, Execlists style
776 * @dev: DRM device.
777 * @file: DRM file.
778 * @ring: Engine Command Streamer to submit to.
779 * @ctx: Context to employ for this submission.
780 * @args: execbuffer call arguments.
781 * @vmas: list of vmas.
782 * @batch_obj: the batchbuffer to submit.
783 * @exec_start: batchbuffer start virtual address pointer.
784 * @dispatch_flags: translated execbuffer call flags.
785 *
786 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
787 * away the submission details of the execbuffer ioctl call.
788 *
789 * Return: non-zero if the submission fails.
790 */
791 int intel_execlists_submission(struct i915_execbuffer_params *params,
792 struct drm_i915_gem_execbuffer2 *args,
793 struct list_head *vmas)
794 {
795 struct drm_device *dev = params->dev;
796 struct intel_engine_cs *engine = params->engine;
797 struct drm_i915_private *dev_priv = dev->dev_private;
798 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
799 u64 exec_start;
800 int instp_mode;
801 u32 instp_mask;
802 int ret;
803
804 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
805 instp_mask = I915_EXEC_CONSTANTS_MASK;
806 switch (instp_mode) {
807 case I915_EXEC_CONSTANTS_REL_GENERAL:
808 case I915_EXEC_CONSTANTS_ABSOLUTE:
809 case I915_EXEC_CONSTANTS_REL_SURFACE:
810 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
811 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
812 return -EINVAL;
813 }
814
815 if (instp_mode != dev_priv->relative_constants_mode) {
816 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
817 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
818 return -EINVAL;
819 }
820
821 /* The HW changed the meaning on this bit on gen6 */
822 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
823 }
824 break;
825 default:
826 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
827 return -EINVAL;
828 }
829
830 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
831 DRM_DEBUG("sol reset is gen7 only\n");
832 return -EINVAL;
833 }
834
835 ret = execlists_move_to_gpu(params->request, vmas);
836 if (ret)
837 return ret;
838
839 if (engine == &dev_priv->engine[RCS] &&
840 instp_mode != dev_priv->relative_constants_mode) {
841 ret = intel_ring_begin(params->request, 4);
842 if (ret)
843 return ret;
844
845 intel_logical_ring_emit(ringbuf, MI_NOOP);
846 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
847 intel_logical_ring_emit_reg(ringbuf, INSTPM);
848 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
849 intel_logical_ring_advance(ringbuf);
850
851 dev_priv->relative_constants_mode = instp_mode;
852 }
853
854 exec_start = params->batch_obj_vm_offset +
855 args->batch_start_offset;
856
857 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
858 if (ret)
859 return ret;
860
861 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
862
863 i915_gem_execbuffer_move_to_active(vmas, params->request);
864
865 return 0;
866 }
867
868 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
869 {
870 struct drm_i915_gem_request *req, *tmp;
871 struct list_head retired_list;
872
873 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
874 if (list_empty(&engine->execlist_retired_req_list))
875 return;
876
877 INIT_LIST_HEAD(&retired_list);
878 spin_lock_bh(&engine->execlist_lock);
879 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
880 spin_unlock_bh(&engine->execlist_lock);
881
882 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
883 struct intel_context *ctx = req->ctx;
884 struct drm_i915_gem_object *ctx_obj =
885 ctx->engine[engine->id].state;
886
887 if (ctx_obj && (ctx != req->i915->kernel_context))
888 intel_lr_context_unpin(ctx, engine);
889
890 list_del(&req->execlist_link);
891 i915_gem_request_unreference(req);
892 }
893 }
894
895 void intel_logical_ring_stop(struct intel_engine_cs *engine)
896 {
897 struct drm_i915_private *dev_priv = engine->dev->dev_private;
898 int ret;
899
900 if (!intel_engine_initialized(engine))
901 return;
902
903 ret = intel_engine_idle(engine);
904 if (ret)
905 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
906 engine->name, ret);
907
908 /* TODO: Is this correct with Execlists enabled? */
909 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
910 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
911 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
912 return;
913 }
914 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
915 }
916
917 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
918 {
919 struct intel_engine_cs *engine = req->engine;
920 int ret;
921
922 if (!engine->gpu_caches_dirty)
923 return 0;
924
925 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
926 if (ret)
927 return ret;
928
929 engine->gpu_caches_dirty = false;
930 return 0;
931 }
932
933 static int intel_lr_context_do_pin(struct intel_context *ctx,
934 struct intel_engine_cs *engine)
935 {
936 struct drm_device *dev = engine->dev;
937 struct drm_i915_private *dev_priv = dev->dev_private;
938 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
939 struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
940 void *vaddr;
941 u32 *lrc_reg_state;
942 int ret;
943
944 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
945
946 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
947 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
948 if (ret)
949 return ret;
950
951 vaddr = i915_gem_object_pin_map(ctx_obj);
952 if (IS_ERR(vaddr)) {
953 ret = PTR_ERR(vaddr);
954 goto unpin_ctx_obj;
955 }
956
957 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
958
959 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
960 if (ret)
961 goto unpin_map;
962
963 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
964 intel_lr_context_descriptor_update(ctx, engine);
965 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
966 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
967 ctx_obj->dirty = true;
968
969 /* Invalidate GuC TLB. */
970 if (i915.enable_guc_submission)
971 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
972
973 return ret;
974
975 unpin_map:
976 i915_gem_object_unpin_map(ctx_obj);
977 unpin_ctx_obj:
978 i915_gem_object_ggtt_unpin(ctx_obj);
979
980 return ret;
981 }
982
983 static int intel_lr_context_pin(struct intel_context *ctx,
984 struct intel_engine_cs *engine)
985 {
986 int ret = 0;
987
988 if (ctx->engine[engine->id].pin_count++ == 0) {
989 ret = intel_lr_context_do_pin(ctx, engine);
990 if (ret)
991 goto reset_pin_count;
992
993 i915_gem_context_reference(ctx);
994 }
995 return ret;
996
997 reset_pin_count:
998 ctx->engine[engine->id].pin_count = 0;
999 return ret;
1000 }
1001
1002 void intel_lr_context_unpin(struct intel_context *ctx,
1003 struct intel_engine_cs *engine)
1004 {
1005 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1006
1007 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1008 if (--ctx->engine[engine->id].pin_count == 0) {
1009 i915_gem_object_unpin_map(ctx_obj);
1010 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1011 i915_gem_object_ggtt_unpin(ctx_obj);
1012 ctx->engine[engine->id].lrc_vma = NULL;
1013 ctx->engine[engine->id].lrc_desc = 0;
1014 ctx->engine[engine->id].lrc_reg_state = NULL;
1015
1016 i915_gem_context_unreference(ctx);
1017 }
1018 }
1019
1020 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1021 {
1022 int ret, i;
1023 struct intel_engine_cs *engine = req->engine;
1024 struct intel_ringbuffer *ringbuf = req->ringbuf;
1025 struct drm_device *dev = engine->dev;
1026 struct drm_i915_private *dev_priv = dev->dev_private;
1027 struct i915_workarounds *w = &dev_priv->workarounds;
1028
1029 if (w->count == 0)
1030 return 0;
1031
1032 engine->gpu_caches_dirty = true;
1033 ret = logical_ring_flush_all_caches(req);
1034 if (ret)
1035 return ret;
1036
1037 ret = intel_ring_begin(req, w->count * 2 + 2);
1038 if (ret)
1039 return ret;
1040
1041 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1042 for (i = 0; i < w->count; i++) {
1043 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1044 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1045 }
1046 intel_logical_ring_emit(ringbuf, MI_NOOP);
1047
1048 intel_logical_ring_advance(ringbuf);
1049
1050 engine->gpu_caches_dirty = true;
1051 ret = logical_ring_flush_all_caches(req);
1052 if (ret)
1053 return ret;
1054
1055 return 0;
1056 }
1057
1058 #define wa_ctx_emit(batch, index, cmd) \
1059 do { \
1060 int __index = (index)++; \
1061 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1062 return -ENOSPC; \
1063 } \
1064 batch[__index] = (cmd); \
1065 } while (0)
1066
1067 #define wa_ctx_emit_reg(batch, index, reg) \
1068 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1069
1070 /*
1071 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1072 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1073 * but there is a slight complication as this is applied in WA batch where the
1074 * values are only initialized once so we cannot take register value at the
1075 * beginning and reuse it further; hence we save its value to memory, upload a
1076 * constant value with bit21 set and then we restore it back with the saved value.
1077 * To simplify the WA, a constant value is formed by using the default value
1078 * of this register. This shouldn't be a problem because we are only modifying
1079 * it for a short period and this batch in non-premptible. We can ofcourse
1080 * use additional instructions that read the actual value of the register
1081 * at that time and set our bit of interest but it makes the WA complicated.
1082 *
1083 * This WA is also required for Gen9 so extracting as a function avoids
1084 * code duplication.
1085 */
1086 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1087 uint32_t *const batch,
1088 uint32_t index)
1089 {
1090 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1091
1092 /*
1093 * WaDisableLSQCROPERFforOCL:skl
1094 * This WA is implemented in skl_init_clock_gating() but since
1095 * this batch updates GEN8_L3SQCREG4 with default value we need to
1096 * set this bit here to retain the WA during flush.
1097 */
1098 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1099 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1100
1101 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1102 MI_SRM_LRM_GLOBAL_GTT));
1103 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1104 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1105 wa_ctx_emit(batch, index, 0);
1106
1107 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1108 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1109 wa_ctx_emit(batch, index, l3sqc4_flush);
1110
1111 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1112 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1113 PIPE_CONTROL_DC_FLUSH_ENABLE));
1114 wa_ctx_emit(batch, index, 0);
1115 wa_ctx_emit(batch, index, 0);
1116 wa_ctx_emit(batch, index, 0);
1117 wa_ctx_emit(batch, index, 0);
1118
1119 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1120 MI_SRM_LRM_GLOBAL_GTT));
1121 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1122 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1123 wa_ctx_emit(batch, index, 0);
1124
1125 return index;
1126 }
1127
1128 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1129 uint32_t offset,
1130 uint32_t start_alignment)
1131 {
1132 return wa_ctx->offset = ALIGN(offset, start_alignment);
1133 }
1134
1135 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1136 uint32_t offset,
1137 uint32_t size_alignment)
1138 {
1139 wa_ctx->size = offset - wa_ctx->offset;
1140
1141 WARN(wa_ctx->size % size_alignment,
1142 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1143 wa_ctx->size, size_alignment);
1144 return 0;
1145 }
1146
1147 /**
1148 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1149 *
1150 * @ring: only applicable for RCS
1151 * @wa_ctx: structure representing wa_ctx
1152 * offset: specifies start of the batch, should be cache-aligned. This is updated
1153 * with the offset value received as input.
1154 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1155 * @batch: page in which WA are loaded
1156 * @offset: This field specifies the start of the batch, it should be
1157 * cache-aligned otherwise it is adjusted accordingly.
1158 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1159 * initialized at the beginning and shared across all contexts but this field
1160 * helps us to have multiple batches at different offsets and select them based
1161 * on a criteria. At the moment this batch always start at the beginning of the page
1162 * and at this point we don't have multiple wa_ctx batch buffers.
1163 *
1164 * The number of WA applied are not known at the beginning; we use this field
1165 * to return the no of DWORDS written.
1166 *
1167 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1168 * so it adds NOOPs as padding to make it cacheline aligned.
1169 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1170 * makes a complete batch buffer.
1171 *
1172 * Return: non-zero if we exceed the PAGE_SIZE limit.
1173 */
1174
1175 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1176 struct i915_wa_ctx_bb *wa_ctx,
1177 uint32_t *const batch,
1178 uint32_t *offset)
1179 {
1180 uint32_t scratch_addr;
1181 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1182
1183 /* WaDisableCtxRestoreArbitration:bdw,chv */
1184 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1185
1186 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1187 if (IS_BROADWELL(engine->dev)) {
1188 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1189 if (rc < 0)
1190 return rc;
1191 index = rc;
1192 }
1193
1194 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1195 /* Actual scratch location is at 128 bytes offset */
1196 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1197
1198 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1199 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1200 PIPE_CONTROL_GLOBAL_GTT_IVB |
1201 PIPE_CONTROL_CS_STALL |
1202 PIPE_CONTROL_QW_WRITE));
1203 wa_ctx_emit(batch, index, scratch_addr);
1204 wa_ctx_emit(batch, index, 0);
1205 wa_ctx_emit(batch, index, 0);
1206 wa_ctx_emit(batch, index, 0);
1207
1208 /* Pad to end of cacheline */
1209 while (index % CACHELINE_DWORDS)
1210 wa_ctx_emit(batch, index, MI_NOOP);
1211
1212 /*
1213 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1214 * execution depends on the length specified in terms of cache lines
1215 * in the register CTX_RCS_INDIRECT_CTX
1216 */
1217
1218 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1219 }
1220
1221 /**
1222 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1223 *
1224 * @ring: only applicable for RCS
1225 * @wa_ctx: structure representing wa_ctx
1226 * offset: specifies start of the batch, should be cache-aligned.
1227 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1228 * @batch: page in which WA are loaded
1229 * @offset: This field specifies the start of this batch.
1230 * This batch is started immediately after indirect_ctx batch. Since we ensure
1231 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1232 *
1233 * The number of DWORDS written are returned using this field.
1234 *
1235 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1236 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1237 */
1238 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1239 struct i915_wa_ctx_bb *wa_ctx,
1240 uint32_t *const batch,
1241 uint32_t *offset)
1242 {
1243 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1244
1245 /* WaDisableCtxRestoreArbitration:bdw,chv */
1246 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1247
1248 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1249
1250 return wa_ctx_end(wa_ctx, *offset = index, 1);
1251 }
1252
1253 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1254 struct i915_wa_ctx_bb *wa_ctx,
1255 uint32_t *const batch,
1256 uint32_t *offset)
1257 {
1258 int ret;
1259 struct drm_device *dev = engine->dev;
1260 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1261
1262 /* WaDisableCtxRestoreArbitration:skl,bxt */
1263 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1264 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1265 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1266
1267 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1268 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1269 if (ret < 0)
1270 return ret;
1271 index = ret;
1272
1273 /* Pad to end of cacheline */
1274 while (index % CACHELINE_DWORDS)
1275 wa_ctx_emit(batch, index, MI_NOOP);
1276
1277 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1278 }
1279
1280 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1281 struct i915_wa_ctx_bb *wa_ctx,
1282 uint32_t *const batch,
1283 uint32_t *offset)
1284 {
1285 struct drm_device *dev = engine->dev;
1286 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1287
1288 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1289 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1290 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1291 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1292 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1293 wa_ctx_emit(batch, index,
1294 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1295 wa_ctx_emit(batch, index, MI_NOOP);
1296 }
1297
1298 /* WaClearTdlStateAckDirtyBits:bxt */
1299 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1300 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1301
1302 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1303 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1304
1305 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1306 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1307
1308 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1309 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1310
1311 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1312 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1313 wa_ctx_emit(batch, index, 0x0);
1314 wa_ctx_emit(batch, index, MI_NOOP);
1315 }
1316
1317 /* WaDisableCtxRestoreArbitration:skl,bxt */
1318 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1319 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1320 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1321
1322 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1323
1324 return wa_ctx_end(wa_ctx, *offset = index, 1);
1325 }
1326
1327 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1328 {
1329 int ret;
1330
1331 engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
1332 PAGE_ALIGN(size));
1333 if (IS_ERR(engine->wa_ctx.obj)) {
1334 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1335 ret = PTR_ERR(engine->wa_ctx.obj);
1336 engine->wa_ctx.obj = NULL;
1337 return ret;
1338 }
1339
1340 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1341 if (ret) {
1342 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1343 ret);
1344 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1345 return ret;
1346 }
1347
1348 return 0;
1349 }
1350
1351 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1352 {
1353 if (engine->wa_ctx.obj) {
1354 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1355 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1356 engine->wa_ctx.obj = NULL;
1357 }
1358 }
1359
1360 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1361 {
1362 int ret;
1363 uint32_t *batch;
1364 uint32_t offset;
1365 struct page *page;
1366 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1367
1368 WARN_ON(engine->id != RCS);
1369
1370 /* update this when WA for higher Gen are added */
1371 if (INTEL_INFO(engine->dev)->gen > 9) {
1372 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1373 INTEL_INFO(engine->dev)->gen);
1374 return 0;
1375 }
1376
1377 /* some WA perform writes to scratch page, ensure it is valid */
1378 if (engine->scratch.obj == NULL) {
1379 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1380 return -EINVAL;
1381 }
1382
1383 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1384 if (ret) {
1385 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1386 return ret;
1387 }
1388
1389 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1390 batch = kmap_atomic(page);
1391 offset = 0;
1392
1393 if (INTEL_INFO(engine->dev)->gen == 8) {
1394 ret = gen8_init_indirectctx_bb(engine,
1395 &wa_ctx->indirect_ctx,
1396 batch,
1397 &offset);
1398 if (ret)
1399 goto out;
1400
1401 ret = gen8_init_perctx_bb(engine,
1402 &wa_ctx->per_ctx,
1403 batch,
1404 &offset);
1405 if (ret)
1406 goto out;
1407 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1408 ret = gen9_init_indirectctx_bb(engine,
1409 &wa_ctx->indirect_ctx,
1410 batch,
1411 &offset);
1412 if (ret)
1413 goto out;
1414
1415 ret = gen9_init_perctx_bb(engine,
1416 &wa_ctx->per_ctx,
1417 batch,
1418 &offset);
1419 if (ret)
1420 goto out;
1421 }
1422
1423 out:
1424 kunmap_atomic(batch);
1425 if (ret)
1426 lrc_destroy_wa_ctx_obj(engine);
1427
1428 return ret;
1429 }
1430
1431 static void lrc_init_hws(struct intel_engine_cs *engine)
1432 {
1433 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1434
1435 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1436 (u32)engine->status_page.gfx_addr);
1437 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1438 }
1439
1440 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1441 {
1442 struct drm_device *dev = engine->dev;
1443 struct drm_i915_private *dev_priv = dev->dev_private;
1444 unsigned int next_context_status_buffer_hw;
1445
1446 lrc_init_hws(engine);
1447
1448 I915_WRITE_IMR(engine,
1449 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1450 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1451
1452 I915_WRITE(RING_MODE_GEN7(engine),
1453 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1454 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1455 POSTING_READ(RING_MODE_GEN7(engine));
1456
1457 /*
1458 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1459 * zero, we need to read the write pointer from hardware and use its
1460 * value because "this register is power context save restored".
1461 * Effectively, these states have been observed:
1462 *
1463 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1464 * BDW | CSB regs not reset | CSB regs reset |
1465 * CHT | CSB regs not reset | CSB regs not reset |
1466 * SKL | ? | ? |
1467 * BXT | ? | ? |
1468 */
1469 next_context_status_buffer_hw =
1470 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1471
1472 /*
1473 * When the CSB registers are reset (also after power-up / gpu reset),
1474 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1475 * this special case, so the first element read is CSB[0].
1476 */
1477 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1478 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1479
1480 engine->next_context_status_buffer = next_context_status_buffer_hw;
1481 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1482
1483 intel_engine_init_hangcheck(engine);
1484
1485 return intel_mocs_init_engine(engine);
1486 }
1487
1488 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1489 {
1490 struct drm_device *dev = engine->dev;
1491 struct drm_i915_private *dev_priv = dev->dev_private;
1492 int ret;
1493
1494 ret = gen8_init_common_ring(engine);
1495 if (ret)
1496 return ret;
1497
1498 /* We need to disable the AsyncFlip performance optimisations in order
1499 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1500 * programmed to '1' on all products.
1501 *
1502 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1503 */
1504 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1505
1506 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1507
1508 return init_workarounds_ring(engine);
1509 }
1510
1511 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1512 {
1513 int ret;
1514
1515 ret = gen8_init_common_ring(engine);
1516 if (ret)
1517 return ret;
1518
1519 return init_workarounds_ring(engine);
1520 }
1521
1522 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1523 {
1524 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1525 struct intel_engine_cs *engine = req->engine;
1526 struct intel_ringbuffer *ringbuf = req->ringbuf;
1527 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1528 int i, ret;
1529
1530 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1531 if (ret)
1532 return ret;
1533
1534 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1535 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1536 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1537
1538 intel_logical_ring_emit_reg(ringbuf,
1539 GEN8_RING_PDP_UDW(engine, i));
1540 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1541 intel_logical_ring_emit_reg(ringbuf,
1542 GEN8_RING_PDP_LDW(engine, i));
1543 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1544 }
1545
1546 intel_logical_ring_emit(ringbuf, MI_NOOP);
1547 intel_logical_ring_advance(ringbuf);
1548
1549 return 0;
1550 }
1551
1552 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1553 u64 offset, unsigned dispatch_flags)
1554 {
1555 struct intel_ringbuffer *ringbuf = req->ringbuf;
1556 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1557 int ret;
1558
1559 /* Don't rely in hw updating PDPs, specially in lite-restore.
1560 * Ideally, we should set Force PD Restore in ctx descriptor,
1561 * but we can't. Force Restore would be a second option, but
1562 * it is unsafe in case of lite-restore (because the ctx is
1563 * not idle). PML4 is allocated during ppgtt init so this is
1564 * not needed in 48-bit.*/
1565 if (req->ctx->ppgtt &&
1566 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1567 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1568 !intel_vgpu_active(req->i915->dev)) {
1569 ret = intel_logical_ring_emit_pdps(req);
1570 if (ret)
1571 return ret;
1572 }
1573
1574 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1575 }
1576
1577 ret = intel_ring_begin(req, 4);
1578 if (ret)
1579 return ret;
1580
1581 /* FIXME(BDW): Address space and security selectors. */
1582 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1583 (ppgtt<<8) |
1584 (dispatch_flags & I915_DISPATCH_RS ?
1585 MI_BATCH_RESOURCE_STREAMER : 0));
1586 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1587 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1588 intel_logical_ring_emit(ringbuf, MI_NOOP);
1589 intel_logical_ring_advance(ringbuf);
1590
1591 return 0;
1592 }
1593
1594 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1595 {
1596 struct drm_device *dev = engine->dev;
1597 struct drm_i915_private *dev_priv = dev->dev_private;
1598 unsigned long flags;
1599
1600 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1601 return false;
1602
1603 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1604 if (engine->irq_refcount++ == 0) {
1605 I915_WRITE_IMR(engine,
1606 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1607 POSTING_READ(RING_IMR(engine->mmio_base));
1608 }
1609 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1610
1611 return true;
1612 }
1613
1614 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1615 {
1616 struct drm_device *dev = engine->dev;
1617 struct drm_i915_private *dev_priv = dev->dev_private;
1618 unsigned long flags;
1619
1620 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1621 if (--engine->irq_refcount == 0) {
1622 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1623 POSTING_READ(RING_IMR(engine->mmio_base));
1624 }
1625 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1626 }
1627
1628 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1629 u32 invalidate_domains,
1630 u32 unused)
1631 {
1632 struct intel_ringbuffer *ringbuf = request->ringbuf;
1633 struct intel_engine_cs *engine = ringbuf->engine;
1634 struct drm_device *dev = engine->dev;
1635 struct drm_i915_private *dev_priv = dev->dev_private;
1636 uint32_t cmd;
1637 int ret;
1638
1639 ret = intel_ring_begin(request, 4);
1640 if (ret)
1641 return ret;
1642
1643 cmd = MI_FLUSH_DW + 1;
1644
1645 /* We always require a command barrier so that subsequent
1646 * commands, such as breadcrumb interrupts, are strictly ordered
1647 * wrt the contents of the write cache being flushed to memory
1648 * (and thus being coherent from the CPU).
1649 */
1650 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1651
1652 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1653 cmd |= MI_INVALIDATE_TLB;
1654 if (engine == &dev_priv->engine[VCS])
1655 cmd |= MI_INVALIDATE_BSD;
1656 }
1657
1658 intel_logical_ring_emit(ringbuf, cmd);
1659 intel_logical_ring_emit(ringbuf,
1660 I915_GEM_HWS_SCRATCH_ADDR |
1661 MI_FLUSH_DW_USE_GTT);
1662 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1663 intel_logical_ring_emit(ringbuf, 0); /* value */
1664 intel_logical_ring_advance(ringbuf);
1665
1666 return 0;
1667 }
1668
1669 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1670 u32 invalidate_domains,
1671 u32 flush_domains)
1672 {
1673 struct intel_ringbuffer *ringbuf = request->ringbuf;
1674 struct intel_engine_cs *engine = ringbuf->engine;
1675 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1676 bool vf_flush_wa = false;
1677 u32 flags = 0;
1678 int ret;
1679
1680 flags |= PIPE_CONTROL_CS_STALL;
1681
1682 if (flush_domains) {
1683 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1684 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1685 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1686 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1687 }
1688
1689 if (invalidate_domains) {
1690 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1691 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1692 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1693 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1694 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1695 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1696 flags |= PIPE_CONTROL_QW_WRITE;
1697 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1698
1699 /*
1700 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1701 * pipe control.
1702 */
1703 if (IS_GEN9(engine->dev))
1704 vf_flush_wa = true;
1705 }
1706
1707 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1708 if (ret)
1709 return ret;
1710
1711 if (vf_flush_wa) {
1712 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1713 intel_logical_ring_emit(ringbuf, 0);
1714 intel_logical_ring_emit(ringbuf, 0);
1715 intel_logical_ring_emit(ringbuf, 0);
1716 intel_logical_ring_emit(ringbuf, 0);
1717 intel_logical_ring_emit(ringbuf, 0);
1718 }
1719
1720 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1721 intel_logical_ring_emit(ringbuf, flags);
1722 intel_logical_ring_emit(ringbuf, scratch_addr);
1723 intel_logical_ring_emit(ringbuf, 0);
1724 intel_logical_ring_emit(ringbuf, 0);
1725 intel_logical_ring_emit(ringbuf, 0);
1726 intel_logical_ring_advance(ringbuf);
1727
1728 return 0;
1729 }
1730
1731 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1732 {
1733 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1734 }
1735
1736 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1737 {
1738 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1739 }
1740
1741 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1742 {
1743 /*
1744 * On BXT A steppings there is a HW coherency issue whereby the
1745 * MI_STORE_DATA_IMM storing the completed request's seqno
1746 * occasionally doesn't invalidate the CPU cache. Work around this by
1747 * clflushing the corresponding cacheline whenever the caller wants
1748 * the coherency to be guaranteed. Note that this cacheline is known
1749 * to be clean at this point, since we only write it in
1750 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1751 * this clflush in practice becomes an invalidate operation.
1752 */
1753 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1754 }
1755
1756 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1757 {
1758 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1759
1760 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1761 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1762 }
1763
1764 /*
1765 * Reserve space for 2 NOOPs at the end of each request to be
1766 * used as a workaround for not being allowed to do lite
1767 * restore with HEAD==TAIL (WaIdleLiteRestore).
1768 */
1769 #define WA_TAIL_DWORDS 2
1770
1771 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1772 {
1773 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1774 }
1775
1776 static int gen8_emit_request(struct drm_i915_gem_request *request)
1777 {
1778 struct intel_ringbuffer *ringbuf = request->ringbuf;
1779 int ret;
1780
1781 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1782 if (ret)
1783 return ret;
1784
1785 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1786 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1787
1788 intel_logical_ring_emit(ringbuf,
1789 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1790 intel_logical_ring_emit(ringbuf,
1791 hws_seqno_address(request->engine) |
1792 MI_FLUSH_DW_USE_GTT);
1793 intel_logical_ring_emit(ringbuf, 0);
1794 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1795 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1796 intel_logical_ring_emit(ringbuf, MI_NOOP);
1797 return intel_logical_ring_advance_and_submit(request);
1798 }
1799
1800 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1801 {
1802 struct intel_ringbuffer *ringbuf = request->ringbuf;
1803 int ret;
1804
1805 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1806 if (ret)
1807 return ret;
1808
1809 /* We're using qword write, seqno should be aligned to 8 bytes. */
1810 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1811
1812 /* w/a for post sync ops following a GPGPU operation we
1813 * need a prior CS_STALL, which is emitted by the flush
1814 * following the batch.
1815 */
1816 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1817 intel_logical_ring_emit(ringbuf,
1818 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1819 PIPE_CONTROL_CS_STALL |
1820 PIPE_CONTROL_QW_WRITE));
1821 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1822 intel_logical_ring_emit(ringbuf, 0);
1823 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1824 /* We're thrashing one dword of HWS. */
1825 intel_logical_ring_emit(ringbuf, 0);
1826 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1827 intel_logical_ring_emit(ringbuf, MI_NOOP);
1828 return intel_logical_ring_advance_and_submit(request);
1829 }
1830
1831 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1832 {
1833 struct render_state so;
1834 int ret;
1835
1836 ret = i915_gem_render_state_prepare(req->engine, &so);
1837 if (ret)
1838 return ret;
1839
1840 if (so.rodata == NULL)
1841 return 0;
1842
1843 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1844 I915_DISPATCH_SECURE);
1845 if (ret)
1846 goto out;
1847
1848 ret = req->engine->emit_bb_start(req,
1849 (so.ggtt_offset + so.aux_batch_offset),
1850 I915_DISPATCH_SECURE);
1851 if (ret)
1852 goto out;
1853
1854 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1855
1856 out:
1857 i915_gem_render_state_fini(&so);
1858 return ret;
1859 }
1860
1861 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1862 {
1863 int ret;
1864
1865 ret = intel_logical_ring_workarounds_emit(req);
1866 if (ret)
1867 return ret;
1868
1869 ret = intel_rcs_context_init_mocs(req);
1870 /*
1871 * Failing to program the MOCS is non-fatal.The system will not
1872 * run at peak performance. So generate an error and carry on.
1873 */
1874 if (ret)
1875 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1876
1877 return intel_lr_context_render_state_init(req);
1878 }
1879
1880 /**
1881 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1882 *
1883 * @ring: Engine Command Streamer.
1884 *
1885 */
1886 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1887 {
1888 struct drm_i915_private *dev_priv;
1889
1890 if (!intel_engine_initialized(engine))
1891 return;
1892
1893 /*
1894 * Tasklet cannot be active at this point due intel_mark_active/idle
1895 * so this is just for documentation.
1896 */
1897 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1898 tasklet_kill(&engine->irq_tasklet);
1899
1900 dev_priv = engine->dev->dev_private;
1901
1902 if (engine->buffer) {
1903 intel_logical_ring_stop(engine);
1904 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1905 }
1906
1907 if (engine->cleanup)
1908 engine->cleanup(engine);
1909
1910 i915_cmd_parser_fini_ring(engine);
1911 i915_gem_batch_pool_fini(&engine->batch_pool);
1912
1913 if (engine->status_page.obj) {
1914 i915_gem_object_unpin_map(engine->status_page.obj);
1915 engine->status_page.obj = NULL;
1916 }
1917
1918 engine->idle_lite_restore_wa = 0;
1919 engine->disable_lite_restore_wa = false;
1920 engine->ctx_desc_template = 0;
1921
1922 lrc_destroy_wa_ctx_obj(engine);
1923 engine->dev = NULL;
1924 }
1925
1926 static void
1927 logical_ring_default_vfuncs(struct drm_device *dev,
1928 struct intel_engine_cs *engine)
1929 {
1930 /* Default vfuncs which can be overriden by each engine. */
1931 engine->init_hw = gen8_init_common_ring;
1932 engine->emit_request = gen8_emit_request;
1933 engine->emit_flush = gen8_emit_flush;
1934 engine->irq_get = gen8_logical_ring_get_irq;
1935 engine->irq_put = gen8_logical_ring_put_irq;
1936 engine->emit_bb_start = gen8_emit_bb_start;
1937 engine->get_seqno = gen8_get_seqno;
1938 engine->set_seqno = gen8_set_seqno;
1939 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1940 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1941 engine->set_seqno = bxt_a_set_seqno;
1942 }
1943 }
1944
1945 static inline void
1946 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1947 {
1948 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1949 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1950 }
1951
1952 static int
1953 lrc_setup_hws(struct intel_engine_cs *engine,
1954 struct drm_i915_gem_object *dctx_obj)
1955 {
1956 void *hws;
1957
1958 /* The HWSP is part of the default context object in LRC mode. */
1959 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1960 LRC_PPHWSP_PN * PAGE_SIZE;
1961 hws = i915_gem_object_pin_map(dctx_obj);
1962 if (IS_ERR(hws))
1963 return PTR_ERR(hws);
1964 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1965 engine->status_page.obj = dctx_obj;
1966
1967 return 0;
1968 }
1969
1970 static int
1971 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
1972 {
1973 struct drm_i915_private *dev_priv = to_i915(dev);
1974 struct intel_context *dctx = dev_priv->kernel_context;
1975 enum forcewake_domains fw_domains;
1976 int ret;
1977
1978 /* Intentionally left blank. */
1979 engine->buffer = NULL;
1980
1981 engine->dev = dev;
1982 INIT_LIST_HEAD(&engine->active_list);
1983 INIT_LIST_HEAD(&engine->request_list);
1984 i915_gem_batch_pool_init(dev, &engine->batch_pool);
1985 init_waitqueue_head(&engine->irq_queue);
1986
1987 INIT_LIST_HEAD(&engine->buffers);
1988 INIT_LIST_HEAD(&engine->execlist_queue);
1989 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
1990 spin_lock_init(&engine->execlist_lock);
1991
1992 tasklet_init(&engine->irq_tasklet,
1993 intel_lrc_irq_handler, (unsigned long)engine);
1994
1995 logical_ring_init_platform_invariants(engine);
1996
1997 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1998 RING_ELSP(engine),
1999 FW_REG_WRITE);
2000
2001 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2002 RING_CONTEXT_STATUS_PTR(engine),
2003 FW_REG_READ | FW_REG_WRITE);
2004
2005 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2006 RING_CONTEXT_STATUS_BUF_BASE(engine),
2007 FW_REG_READ);
2008
2009 engine->fw_domains = fw_domains;
2010
2011 ret = i915_cmd_parser_init_ring(engine);
2012 if (ret)
2013 goto error;
2014
2015 ret = intel_lr_context_deferred_alloc(dctx, engine);
2016 if (ret)
2017 goto error;
2018
2019 /* As this is the default context, always pin it */
2020 ret = intel_lr_context_do_pin(dctx, engine);
2021 if (ret) {
2022 DRM_ERROR(
2023 "Failed to pin and map ringbuffer %s: %d\n",
2024 engine->name, ret);
2025 goto error;
2026 }
2027
2028 /* And setup the hardware status page. */
2029 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2030 if (ret) {
2031 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2032 goto error;
2033 }
2034
2035 return 0;
2036
2037 error:
2038 intel_logical_ring_cleanup(engine);
2039 return ret;
2040 }
2041
2042 static int logical_render_ring_init(struct drm_device *dev)
2043 {
2044 struct drm_i915_private *dev_priv = dev->dev_private;
2045 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2046 int ret;
2047
2048 engine->name = "render ring";
2049 engine->id = RCS;
2050 engine->exec_id = I915_EXEC_RENDER;
2051 engine->guc_id = GUC_RENDER_ENGINE;
2052 engine->mmio_base = RENDER_RING_BASE;
2053
2054 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2055 if (HAS_L3_DPF(dev))
2056 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2057
2058 logical_ring_default_vfuncs(dev, engine);
2059
2060 /* Override some for render ring. */
2061 if (INTEL_INFO(dev)->gen >= 9)
2062 engine->init_hw = gen9_init_render_ring;
2063 else
2064 engine->init_hw = gen8_init_render_ring;
2065 engine->init_context = gen8_init_rcs_context;
2066 engine->cleanup = intel_fini_pipe_control;
2067 engine->emit_flush = gen8_emit_flush_render;
2068 engine->emit_request = gen8_emit_request_render;
2069
2070 engine->dev = dev;
2071
2072 ret = intel_init_pipe_control(engine);
2073 if (ret)
2074 return ret;
2075
2076 ret = intel_init_workaround_bb(engine);
2077 if (ret) {
2078 /*
2079 * We continue even if we fail to initialize WA batch
2080 * because we only expect rare glitches but nothing
2081 * critical to prevent us from using GPU
2082 */
2083 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2084 ret);
2085 }
2086
2087 ret = logical_ring_init(dev, engine);
2088 if (ret) {
2089 lrc_destroy_wa_ctx_obj(engine);
2090 }
2091
2092 return ret;
2093 }
2094
2095 static int logical_bsd_ring_init(struct drm_device *dev)
2096 {
2097 struct drm_i915_private *dev_priv = dev->dev_private;
2098 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2099
2100 engine->name = "bsd ring";
2101 engine->id = VCS;
2102 engine->exec_id = I915_EXEC_BSD;
2103 engine->guc_id = GUC_VIDEO_ENGINE;
2104 engine->mmio_base = GEN6_BSD_RING_BASE;
2105
2106 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2107 logical_ring_default_vfuncs(dev, engine);
2108
2109 return logical_ring_init(dev, engine);
2110 }
2111
2112 static int logical_bsd2_ring_init(struct drm_device *dev)
2113 {
2114 struct drm_i915_private *dev_priv = dev->dev_private;
2115 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2116
2117 engine->name = "bsd2 ring";
2118 engine->id = VCS2;
2119 engine->exec_id = I915_EXEC_BSD;
2120 engine->guc_id = GUC_VIDEO_ENGINE2;
2121 engine->mmio_base = GEN8_BSD2_RING_BASE;
2122
2123 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2124 logical_ring_default_vfuncs(dev, engine);
2125
2126 return logical_ring_init(dev, engine);
2127 }
2128
2129 static int logical_blt_ring_init(struct drm_device *dev)
2130 {
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2133
2134 engine->name = "blitter ring";
2135 engine->id = BCS;
2136 engine->exec_id = I915_EXEC_BLT;
2137 engine->guc_id = GUC_BLITTER_ENGINE;
2138 engine->mmio_base = BLT_RING_BASE;
2139
2140 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2141 logical_ring_default_vfuncs(dev, engine);
2142
2143 return logical_ring_init(dev, engine);
2144 }
2145
2146 static int logical_vebox_ring_init(struct drm_device *dev)
2147 {
2148 struct drm_i915_private *dev_priv = dev->dev_private;
2149 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2150
2151 engine->name = "video enhancement ring";
2152 engine->id = VECS;
2153 engine->exec_id = I915_EXEC_VEBOX;
2154 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2155 engine->mmio_base = VEBOX_RING_BASE;
2156
2157 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2158 logical_ring_default_vfuncs(dev, engine);
2159
2160 return logical_ring_init(dev, engine);
2161 }
2162
2163 /**
2164 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2165 * @dev: DRM device.
2166 *
2167 * This function inits the engines for an Execlists submission style (the equivalent in the
2168 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2169 * those engines that are present in the hardware.
2170 *
2171 * Return: non-zero if the initialization failed.
2172 */
2173 int intel_logical_rings_init(struct drm_device *dev)
2174 {
2175 struct drm_i915_private *dev_priv = dev->dev_private;
2176 int ret;
2177
2178 ret = logical_render_ring_init(dev);
2179 if (ret)
2180 return ret;
2181
2182 if (HAS_BSD(dev)) {
2183 ret = logical_bsd_ring_init(dev);
2184 if (ret)
2185 goto cleanup_render_ring;
2186 }
2187
2188 if (HAS_BLT(dev)) {
2189 ret = logical_blt_ring_init(dev);
2190 if (ret)
2191 goto cleanup_bsd_ring;
2192 }
2193
2194 if (HAS_VEBOX(dev)) {
2195 ret = logical_vebox_ring_init(dev);
2196 if (ret)
2197 goto cleanup_blt_ring;
2198 }
2199
2200 if (HAS_BSD2(dev)) {
2201 ret = logical_bsd2_ring_init(dev);
2202 if (ret)
2203 goto cleanup_vebox_ring;
2204 }
2205
2206 return 0;
2207
2208 cleanup_vebox_ring:
2209 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2210 cleanup_blt_ring:
2211 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2212 cleanup_bsd_ring:
2213 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2214 cleanup_render_ring:
2215 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2216
2217 return ret;
2218 }
2219
2220 static u32
2221 make_rpcs(struct drm_device *dev)
2222 {
2223 u32 rpcs = 0;
2224
2225 /*
2226 * No explicit RPCS request is needed to ensure full
2227 * slice/subslice/EU enablement prior to Gen9.
2228 */
2229 if (INTEL_INFO(dev)->gen < 9)
2230 return 0;
2231
2232 /*
2233 * Starting in Gen9, render power gating can leave
2234 * slice/subslice/EU in a partially enabled state. We
2235 * must make an explicit request through RPCS for full
2236 * enablement.
2237 */
2238 if (INTEL_INFO(dev)->has_slice_pg) {
2239 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2240 rpcs |= INTEL_INFO(dev)->slice_total <<
2241 GEN8_RPCS_S_CNT_SHIFT;
2242 rpcs |= GEN8_RPCS_ENABLE;
2243 }
2244
2245 if (INTEL_INFO(dev)->has_subslice_pg) {
2246 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2247 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2248 GEN8_RPCS_SS_CNT_SHIFT;
2249 rpcs |= GEN8_RPCS_ENABLE;
2250 }
2251
2252 if (INTEL_INFO(dev)->has_eu_pg) {
2253 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2254 GEN8_RPCS_EU_MIN_SHIFT;
2255 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2256 GEN8_RPCS_EU_MAX_SHIFT;
2257 rpcs |= GEN8_RPCS_ENABLE;
2258 }
2259
2260 return rpcs;
2261 }
2262
2263 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2264 {
2265 u32 indirect_ctx_offset;
2266
2267 switch (INTEL_INFO(engine->dev)->gen) {
2268 default:
2269 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2270 /* fall through */
2271 case 9:
2272 indirect_ctx_offset =
2273 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2274 break;
2275 case 8:
2276 indirect_ctx_offset =
2277 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2278 break;
2279 }
2280
2281 return indirect_ctx_offset;
2282 }
2283
2284 static int
2285 populate_lr_context(struct intel_context *ctx,
2286 struct drm_i915_gem_object *ctx_obj,
2287 struct intel_engine_cs *engine,
2288 struct intel_ringbuffer *ringbuf)
2289 {
2290 struct drm_device *dev = engine->dev;
2291 struct drm_i915_private *dev_priv = dev->dev_private;
2292 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2293 void *vaddr;
2294 u32 *reg_state;
2295 int ret;
2296
2297 if (!ppgtt)
2298 ppgtt = dev_priv->mm.aliasing_ppgtt;
2299
2300 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2301 if (ret) {
2302 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2303 return ret;
2304 }
2305
2306 vaddr = i915_gem_object_pin_map(ctx_obj);
2307 if (IS_ERR(vaddr)) {
2308 ret = PTR_ERR(vaddr);
2309 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2310 return ret;
2311 }
2312 ctx_obj->dirty = true;
2313
2314 /* The second page of the context object contains some fields which must
2315 * be set up prior to the first execution. */
2316 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2317
2318 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2319 * commands followed by (reg, value) pairs. The values we are setting here are
2320 * only for the first context restore: on a subsequent save, the GPU will
2321 * recreate this batchbuffer with new values (including all the missing
2322 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2323 reg_state[CTX_LRI_HEADER_0] =
2324 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2325 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2326 RING_CONTEXT_CONTROL(engine),
2327 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2328 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2329 (HAS_RESOURCE_STREAMER(dev) ?
2330 CTX_CTRL_RS_CTX_ENABLE : 0)));
2331 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2332 0);
2333 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2334 0);
2335 /* Ring buffer start address is not known until the buffer is pinned.
2336 * It is written to the context image in execlists_update_context()
2337 */
2338 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2339 RING_START(engine->mmio_base), 0);
2340 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2341 RING_CTL(engine->mmio_base),
2342 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2343 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2344 RING_BBADDR_UDW(engine->mmio_base), 0);
2345 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2346 RING_BBADDR(engine->mmio_base), 0);
2347 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2348 RING_BBSTATE(engine->mmio_base),
2349 RING_BB_PPGTT);
2350 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2351 RING_SBBADDR_UDW(engine->mmio_base), 0);
2352 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2353 RING_SBBADDR(engine->mmio_base), 0);
2354 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2355 RING_SBBSTATE(engine->mmio_base), 0);
2356 if (engine->id == RCS) {
2357 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2358 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2359 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2360 RING_INDIRECT_CTX(engine->mmio_base), 0);
2361 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2362 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2363 if (engine->wa_ctx.obj) {
2364 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2365 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2366
2367 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2368 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2369 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2370
2371 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2372 intel_lr_indirect_ctx_offset(engine) << 6;
2373
2374 reg_state[CTX_BB_PER_CTX_PTR+1] =
2375 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2376 0x01;
2377 }
2378 }
2379 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2380 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2381 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2382 /* PDP values well be assigned later if needed */
2383 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2384 0);
2385 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2386 0);
2387 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2388 0);
2389 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2390 0);
2391 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2392 0);
2393 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2394 0);
2395 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2396 0);
2397 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2398 0);
2399
2400 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2401 /* 64b PPGTT (48bit canonical)
2402 * PDP0_DESCRIPTOR contains the base address to PML4 and
2403 * other PDP Descriptors are ignored.
2404 */
2405 ASSIGN_CTX_PML4(ppgtt, reg_state);
2406 } else {
2407 /* 32b PPGTT
2408 * PDP*_DESCRIPTOR contains the base address of space supported.
2409 * With dynamic page allocation, PDPs may not be allocated at
2410 * this point. Point the unallocated PDPs to the scratch page
2411 */
2412 execlists_update_context_pdps(ppgtt, reg_state);
2413 }
2414
2415 if (engine->id == RCS) {
2416 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2417 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2418 make_rpcs(dev));
2419 }
2420
2421 i915_gem_object_unpin_map(ctx_obj);
2422
2423 return 0;
2424 }
2425
2426 /**
2427 * intel_lr_context_free() - free the LRC specific bits of a context
2428 * @ctx: the LR context to free.
2429 *
2430 * The real context freeing is done in i915_gem_context_free: this only
2431 * takes care of the bits that are LRC related: the per-engine backing
2432 * objects and the logical ringbuffer.
2433 */
2434 void intel_lr_context_free(struct intel_context *ctx)
2435 {
2436 int i;
2437
2438 for (i = I915_NUM_ENGINES; --i >= 0; ) {
2439 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2440 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2441
2442 if (!ctx_obj)
2443 continue;
2444
2445 if (ctx == ctx->i915->kernel_context) {
2446 intel_unpin_ringbuffer_obj(ringbuf);
2447 i915_gem_object_ggtt_unpin(ctx_obj);
2448 i915_gem_object_unpin_map(ctx_obj);
2449 }
2450
2451 WARN_ON(ctx->engine[i].pin_count);
2452 intel_ringbuffer_free(ringbuf);
2453 drm_gem_object_unreference(&ctx_obj->base);
2454 }
2455 }
2456
2457 /**
2458 * intel_lr_context_size() - return the size of the context for an engine
2459 * @ring: which engine to find the context size for
2460 *
2461 * Each engine may require a different amount of space for a context image,
2462 * so when allocating (or copying) an image, this function can be used to
2463 * find the right size for the specific engine.
2464 *
2465 * Return: size (in bytes) of an engine-specific context image
2466 *
2467 * Note: this size includes the HWSP, which is part of the context image
2468 * in LRC mode, but does not include the "shared data page" used with
2469 * GuC submission. The caller should account for this if using the GuC.
2470 */
2471 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2472 {
2473 int ret = 0;
2474
2475 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2476
2477 switch (engine->id) {
2478 case RCS:
2479 if (INTEL_INFO(engine->dev)->gen >= 9)
2480 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2481 else
2482 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2483 break;
2484 case VCS:
2485 case BCS:
2486 case VECS:
2487 case VCS2:
2488 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2489 break;
2490 }
2491
2492 return ret;
2493 }
2494
2495 /**
2496 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2497 * @ctx: LR context to create.
2498 * @ring: engine to be used with the context.
2499 *
2500 * This function can be called more than once, with different engines, if we plan
2501 * to use the context with them. The context backing objects and the ringbuffers
2502 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2503 * the creation is a deferred call: it's better to make sure first that we need to use
2504 * a given ring with the context.
2505 *
2506 * Return: non-zero on error.
2507 */
2508
2509 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2510 struct intel_engine_cs *engine)
2511 {
2512 struct drm_device *dev = engine->dev;
2513 struct drm_i915_gem_object *ctx_obj;
2514 uint32_t context_size;
2515 struct intel_ringbuffer *ringbuf;
2516 int ret;
2517
2518 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2519 WARN_ON(ctx->engine[engine->id].state);
2520
2521 context_size = round_up(intel_lr_context_size(engine), 4096);
2522
2523 /* One extra page as the sharing data between driver and GuC */
2524 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2525
2526 ctx_obj = i915_gem_object_create(dev, context_size);
2527 if (IS_ERR(ctx_obj)) {
2528 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2529 return PTR_ERR(ctx_obj);
2530 }
2531
2532 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2533 if (IS_ERR(ringbuf)) {
2534 ret = PTR_ERR(ringbuf);
2535 goto error_deref_obj;
2536 }
2537
2538 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2539 if (ret) {
2540 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2541 goto error_ringbuf;
2542 }
2543
2544 ctx->engine[engine->id].ringbuf = ringbuf;
2545 ctx->engine[engine->id].state = ctx_obj;
2546
2547 if (ctx != ctx->i915->kernel_context && engine->init_context) {
2548 struct drm_i915_gem_request *req;
2549
2550 req = i915_gem_request_alloc(engine, ctx);
2551 if (IS_ERR(req)) {
2552 ret = PTR_ERR(req);
2553 DRM_ERROR("ring create req: %d\n", ret);
2554 goto error_ringbuf;
2555 }
2556
2557 ret = engine->init_context(req);
2558 i915_add_request_no_flush(req);
2559 if (ret) {
2560 DRM_ERROR("ring init context: %d\n",
2561 ret);
2562 goto error_ringbuf;
2563 }
2564 }
2565 return 0;
2566
2567 error_ringbuf:
2568 intel_ringbuffer_free(ringbuf);
2569 error_deref_obj:
2570 drm_gem_object_unreference(&ctx_obj->base);
2571 ctx->engine[engine->id].ringbuf = NULL;
2572 ctx->engine[engine->id].state = NULL;
2573 return ret;
2574 }
2575
2576 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2577 struct intel_context *ctx)
2578 {
2579 struct intel_engine_cs *engine;
2580
2581 for_each_engine(engine, dev_priv) {
2582 struct drm_i915_gem_object *ctx_obj =
2583 ctx->engine[engine->id].state;
2584 struct intel_ringbuffer *ringbuf =
2585 ctx->engine[engine->id].ringbuf;
2586 void *vaddr;
2587 uint32_t *reg_state;
2588
2589 if (!ctx_obj)
2590 continue;
2591
2592 vaddr = i915_gem_object_pin_map(ctx_obj);
2593 if (WARN_ON(IS_ERR(vaddr)))
2594 continue;
2595
2596 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2597 ctx_obj->dirty = true;
2598
2599 reg_state[CTX_RING_HEAD+1] = 0;
2600 reg_state[CTX_RING_TAIL+1] = 0;
2601
2602 i915_gem_object_unpin_map(ctx_obj);
2603
2604 ringbuf->head = 0;
2605 ringbuf->tail = 0;
2606 }
2607 }
This page took 0.090067 seconds and 5 git commands to generate.