drm/i915/kbl: Add WaClearSlmSpaceAtContextSwitch
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211 ADVANCED_CONTEXT = 0,
212 LEGACY_32B_CONTEXT,
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
220 enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_ID_WIDTH 21
228 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
229 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
230
231 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
232 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
233
234 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
235 struct intel_engine_cs *engine);
236 static int intel_lr_context_pin(struct i915_gem_context *ctx,
237 struct intel_engine_cs *engine);
238
239 /**
240 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
241 * @dev_priv: i915 device private
242 * @enable_execlists: value of i915.enable_execlists module parameter.
243 *
244 * Only certain platforms support Execlists (the prerequisites being
245 * support for Logical Ring Contexts and Aliasing PPGTT or better).
246 *
247 * Return: 1 if Execlists is supported and has to be enabled.
248 */
249 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
250 {
251 /* On platforms with execlist available, vGPU will only
252 * support execlist mode, no ring buffer mode.
253 */
254 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
255 return 1;
256
257 if (INTEL_GEN(dev_priv) >= 9)
258 return 1;
259
260 if (enable_execlists == 0)
261 return 0;
262
263 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
264 USES_PPGTT(dev_priv) &&
265 i915.use_mmio_flip >= 0)
266 return 1;
267
268 return 0;
269 }
270
271 static void
272 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
273 {
274 struct drm_i915_private *dev_priv = engine->i915;
275
276 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
277 engine->idle_lite_restore_wa = ~0;
278
279 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
280 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
281 (engine->id == VCS || engine->id == VCS2);
282
283 engine->ctx_desc_template = GEN8_CTX_VALID;
284 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev_priv) <<
285 GEN8_CTX_ADDRESSING_MODE_SHIFT;
286 if (IS_GEN8(dev_priv))
287 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
288 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
289
290 /* TODO: WaDisableLiteRestore when we start using semaphore
291 * signalling between Command Streamers */
292 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
293
294 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
295 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
296 if (engine->disable_lite_restore_wa)
297 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
298 }
299
300 /**
301 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
302 * descriptor for a pinned context
303 *
304 * @ctx: Context to work on
305 * @engine: Engine the descriptor will be used with
306 *
307 * The context descriptor encodes various attributes of a context,
308 * including its GTT address and some flags. Because it's fairly
309 * expensive to calculate, we'll just do it once and cache the result,
310 * which remains valid until the context is unpinned.
311 *
312 * This is what a descriptor looks like, from LSB to MSB:
313 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
314 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
315 * bits 32-52: ctx ID, a globally unique tag
316 * bits 53-54: mbz, reserved for use by hardware
317 * bits 55-63: group ID, currently unused and set to 0
318 */
319 static void
320 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
321 struct intel_engine_cs *engine)
322 {
323 struct intel_context *ce = &ctx->engine[engine->id];
324 u64 desc;
325
326 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
327
328 desc = engine->ctx_desc_template; /* bits 0-11 */
329 desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
330 /* bits 12-31 */
331 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
332
333 ce->lrc_desc = desc;
334 }
335
336 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
337 struct intel_engine_cs *engine)
338 {
339 return ctx->engine[engine->id].lrc_desc;
340 }
341
342 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
343 struct drm_i915_gem_request *rq1)
344 {
345
346 struct intel_engine_cs *engine = rq0->engine;
347 struct drm_i915_private *dev_priv = rq0->i915;
348 uint64_t desc[2];
349
350 if (rq1) {
351 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
352 rq1->elsp_submitted++;
353 } else {
354 desc[1] = 0;
355 }
356
357 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
358 rq0->elsp_submitted++;
359
360 /* You must always write both descriptors in the order below. */
361 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
362 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
363
364 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
365 /* The context is automatically loaded after the following */
366 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
367
368 /* ELSP is a wo register, use another nearby reg for posting */
369 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
370 }
371
372 static void
373 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
374 {
375 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
376 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
377 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
378 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
379 }
380
381 static void execlists_update_context(struct drm_i915_gem_request *rq)
382 {
383 struct intel_engine_cs *engine = rq->engine;
384 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
385 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
386
387 reg_state[CTX_RING_TAIL+1] = rq->tail;
388
389 /* True 32b PPGTT with dynamic page allocation: update PDP
390 * registers and point the unallocated PDPs to scratch page.
391 * PML4 is allocated during ppgtt init, so this is not needed
392 * in 48-bit mode.
393 */
394 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
395 execlists_update_context_pdps(ppgtt, reg_state);
396 }
397
398 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
399 struct drm_i915_gem_request *rq1)
400 {
401 struct drm_i915_private *dev_priv = rq0->i915;
402 unsigned int fw_domains = rq0->engine->fw_domains;
403
404 execlists_update_context(rq0);
405
406 if (rq1)
407 execlists_update_context(rq1);
408
409 spin_lock_irq(&dev_priv->uncore.lock);
410 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
411
412 execlists_elsp_write(rq0, rq1);
413
414 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
415 spin_unlock_irq(&dev_priv->uncore.lock);
416 }
417
418 static void execlists_context_unqueue(struct intel_engine_cs *engine)
419 {
420 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
421 struct drm_i915_gem_request *cursor, *tmp;
422
423 assert_spin_locked(&engine->execlist_lock);
424
425 /*
426 * If irqs are not active generate a warning as batches that finish
427 * without the irqs may get lost and a GPU Hang may occur.
428 */
429 WARN_ON(!intel_irqs_enabled(engine->i915));
430
431 /* Try to read in pairs */
432 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
433 execlist_link) {
434 if (!req0) {
435 req0 = cursor;
436 } else if (req0->ctx == cursor->ctx) {
437 /* Same ctx: ignore first request, as second request
438 * will update tail past first request's workload */
439 cursor->elsp_submitted = req0->elsp_submitted;
440 list_del(&req0->execlist_link);
441 i915_gem_request_unreference(req0);
442 req0 = cursor;
443 } else {
444 req1 = cursor;
445 WARN_ON(req1->elsp_submitted);
446 break;
447 }
448 }
449
450 if (unlikely(!req0))
451 return;
452
453 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
454 /*
455 * WaIdleLiteRestore: make sure we never cause a lite restore
456 * with HEAD==TAIL.
457 *
458 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
459 * resubmit the request. See gen8_emit_request() for where we
460 * prepare the padding after the end of the request.
461 */
462 struct intel_ringbuffer *ringbuf;
463
464 ringbuf = req0->ctx->engine[engine->id].ringbuf;
465 req0->tail += 8;
466 req0->tail &= ringbuf->size - 1;
467 }
468
469 execlists_submit_requests(req0, req1);
470 }
471
472 static unsigned int
473 execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
474 {
475 struct drm_i915_gem_request *head_req;
476
477 assert_spin_locked(&engine->execlist_lock);
478
479 head_req = list_first_entry_or_null(&engine->execlist_queue,
480 struct drm_i915_gem_request,
481 execlist_link);
482
483 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
484 return 0;
485
486 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
487
488 if (--head_req->elsp_submitted > 0)
489 return 0;
490
491 list_del(&head_req->execlist_link);
492 i915_gem_request_unreference(head_req);
493
494 return 1;
495 }
496
497 static u32
498 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
499 u32 *context_id)
500 {
501 struct drm_i915_private *dev_priv = engine->i915;
502 u32 status;
503
504 read_pointer %= GEN8_CSB_ENTRIES;
505
506 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
507
508 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
509 return 0;
510
511 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
512 read_pointer));
513
514 return status;
515 }
516
517 /**
518 * intel_lrc_irq_handler() - handle Context Switch interrupts
519 * @data: tasklet handler passed in unsigned long
520 *
521 * Check the unread Context Status Buffers and manage the submission of new
522 * contexts to the ELSP accordingly.
523 */
524 static void intel_lrc_irq_handler(unsigned long data)
525 {
526 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
527 struct drm_i915_private *dev_priv = engine->i915;
528 u32 status_pointer;
529 unsigned int read_pointer, write_pointer;
530 u32 csb[GEN8_CSB_ENTRIES][2];
531 unsigned int csb_read = 0, i;
532 unsigned int submit_contexts = 0;
533
534 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
535
536 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
537
538 read_pointer = engine->next_context_status_buffer;
539 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
540 if (read_pointer > write_pointer)
541 write_pointer += GEN8_CSB_ENTRIES;
542
543 while (read_pointer < write_pointer) {
544 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
545 break;
546 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
547 &csb[csb_read][1]);
548 csb_read++;
549 }
550
551 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
552
553 /* Update the read pointer to the old write pointer. Manual ringbuffer
554 * management ftw </sarcasm> */
555 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
556 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
557 engine->next_context_status_buffer << 8));
558
559 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
560
561 spin_lock(&engine->execlist_lock);
562
563 for (i = 0; i < csb_read; i++) {
564 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
565 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
566 if (execlists_check_remove_request(engine, csb[i][1]))
567 WARN(1, "Lite Restored request removed from queue\n");
568 } else
569 WARN(1, "Preemption without Lite Restore\n");
570 }
571
572 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
573 GEN8_CTX_STATUS_ELEMENT_SWITCH))
574 submit_contexts +=
575 execlists_check_remove_request(engine, csb[i][1]);
576 }
577
578 if (submit_contexts) {
579 if (!engine->disable_lite_restore_wa ||
580 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
581 execlists_context_unqueue(engine);
582 }
583
584 spin_unlock(&engine->execlist_lock);
585
586 if (unlikely(submit_contexts > 2))
587 DRM_ERROR("More than two context complete events?\n");
588 }
589
590 static void execlists_context_queue(struct drm_i915_gem_request *request)
591 {
592 struct intel_engine_cs *engine = request->engine;
593 struct drm_i915_gem_request *cursor;
594 int num_elements = 0;
595
596 spin_lock_bh(&engine->execlist_lock);
597
598 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
599 if (++num_elements > 2)
600 break;
601
602 if (num_elements > 2) {
603 struct drm_i915_gem_request *tail_req;
604
605 tail_req = list_last_entry(&engine->execlist_queue,
606 struct drm_i915_gem_request,
607 execlist_link);
608
609 if (request->ctx == tail_req->ctx) {
610 WARN(tail_req->elsp_submitted != 0,
611 "More than 2 already-submitted reqs queued\n");
612 list_del(&tail_req->execlist_link);
613 i915_gem_request_unreference(tail_req);
614 }
615 }
616
617 i915_gem_request_reference(request);
618 list_add_tail(&request->execlist_link, &engine->execlist_queue);
619 request->ctx_hw_id = request->ctx->hw_id;
620 if (num_elements == 0)
621 execlists_context_unqueue(engine);
622
623 spin_unlock_bh(&engine->execlist_lock);
624 }
625
626 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
627 {
628 struct intel_engine_cs *engine = req->engine;
629 uint32_t flush_domains;
630 int ret;
631
632 flush_domains = 0;
633 if (engine->gpu_caches_dirty)
634 flush_domains = I915_GEM_GPU_DOMAINS;
635
636 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
637 if (ret)
638 return ret;
639
640 engine->gpu_caches_dirty = false;
641 return 0;
642 }
643
644 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
645 struct list_head *vmas)
646 {
647 const unsigned other_rings = ~intel_engine_flag(req->engine);
648 struct i915_vma *vma;
649 uint32_t flush_domains = 0;
650 bool flush_chipset = false;
651 int ret;
652
653 list_for_each_entry(vma, vmas, exec_list) {
654 struct drm_i915_gem_object *obj = vma->obj;
655
656 if (obj->active & other_rings) {
657 ret = i915_gem_object_sync(obj, req->engine, &req);
658 if (ret)
659 return ret;
660 }
661
662 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
663 flush_chipset |= i915_gem_clflush_object(obj, false);
664
665 flush_domains |= obj->base.write_domain;
666 }
667
668 if (flush_domains & I915_GEM_DOMAIN_GTT)
669 wmb();
670
671 /* Unconditionally invalidate gpu caches and ensure that we do flush
672 * any residual writes from the previous batch.
673 */
674 return logical_ring_invalidate_all_caches(req);
675 }
676
677 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
678 {
679 struct intel_engine_cs *engine = request->engine;
680 struct intel_context *ce = &request->ctx->engine[engine->id];
681 int ret;
682
683 /* Flush enough space to reduce the likelihood of waiting after
684 * we start building the request - in which case we will just
685 * have to repeat work.
686 */
687 request->reserved_space += EXECLISTS_REQUEST_SIZE;
688
689 if (!ce->state) {
690 ret = execlists_context_deferred_alloc(request->ctx, engine);
691 if (ret)
692 return ret;
693 }
694
695 request->ringbuf = ce->ringbuf;
696
697 if (i915.enable_guc_submission) {
698 /*
699 * Check that the GuC has space for the request before
700 * going any further, as the i915_add_request() call
701 * later on mustn't fail ...
702 */
703 ret = i915_guc_wq_check_space(request);
704 if (ret)
705 return ret;
706 }
707
708 ret = intel_lr_context_pin(request->ctx, engine);
709 if (ret)
710 return ret;
711
712 ret = intel_ring_begin(request, 0);
713 if (ret)
714 goto err_unpin;
715
716 if (!ce->initialised) {
717 ret = engine->init_context(request);
718 if (ret)
719 goto err_unpin;
720
721 ce->initialised = true;
722 }
723
724 /* Note that after this point, we have committed to using
725 * this request as it is being used to both track the
726 * state of engine initialisation and liveness of the
727 * golden renderstate above. Think twice before you try
728 * to cancel/unwind this request now.
729 */
730
731 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
732 return 0;
733
734 err_unpin:
735 intel_lr_context_unpin(request->ctx, engine);
736 return ret;
737 }
738
739 /*
740 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
741 * @request: Request to advance the logical ringbuffer of.
742 *
743 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
744 * really happens during submission is that the context and current tail will be placed
745 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
746 * point, the tail *inside* the context is updated and the ELSP written to.
747 */
748 static int
749 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
750 {
751 struct intel_ringbuffer *ringbuf = request->ringbuf;
752 struct intel_engine_cs *engine = request->engine;
753
754 intel_logical_ring_advance(ringbuf);
755 request->tail = ringbuf->tail;
756
757 /*
758 * Here we add two extra NOOPs as padding to avoid
759 * lite restore of a context with HEAD==TAIL.
760 *
761 * Caller must reserve WA_TAIL_DWORDS for us!
762 */
763 intel_logical_ring_emit(ringbuf, MI_NOOP);
764 intel_logical_ring_emit(ringbuf, MI_NOOP);
765 intel_logical_ring_advance(ringbuf);
766
767 if (intel_engine_stopped(engine))
768 return 0;
769
770 /* We keep the previous context alive until we retire the following
771 * request. This ensures that any the context object is still pinned
772 * for any residual writes the HW makes into it on the context switch
773 * into the next object following the breadcrumb. Otherwise, we may
774 * retire the context too early.
775 */
776 request->previous_context = engine->last_context;
777 engine->last_context = request->ctx;
778
779 if (i915.enable_guc_submission)
780 i915_guc_submit(request);
781 else
782 execlists_context_queue(request);
783
784 return 0;
785 }
786
787 /**
788 * execlists_submission() - submit a batchbuffer for execution, Execlists style
789 * @params: execbuffer call parameters.
790 * @args: execbuffer call arguments.
791 * @vmas: list of vmas.
792 *
793 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
794 * away the submission details of the execbuffer ioctl call.
795 *
796 * Return: non-zero if the submission fails.
797 */
798 int intel_execlists_submission(struct i915_execbuffer_params *params,
799 struct drm_i915_gem_execbuffer2 *args,
800 struct list_head *vmas)
801 {
802 struct drm_device *dev = params->dev;
803 struct intel_engine_cs *engine = params->engine;
804 struct drm_i915_private *dev_priv = dev->dev_private;
805 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
806 u64 exec_start;
807 int instp_mode;
808 u32 instp_mask;
809 int ret;
810
811 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
812 instp_mask = I915_EXEC_CONSTANTS_MASK;
813 switch (instp_mode) {
814 case I915_EXEC_CONSTANTS_REL_GENERAL:
815 case I915_EXEC_CONSTANTS_ABSOLUTE:
816 case I915_EXEC_CONSTANTS_REL_SURFACE:
817 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
818 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
819 return -EINVAL;
820 }
821
822 if (instp_mode != dev_priv->relative_constants_mode) {
823 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
824 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
825 return -EINVAL;
826 }
827
828 /* The HW changed the meaning on this bit on gen6 */
829 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
830 }
831 break;
832 default:
833 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
834 return -EINVAL;
835 }
836
837 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
838 DRM_DEBUG("sol reset is gen7 only\n");
839 return -EINVAL;
840 }
841
842 ret = execlists_move_to_gpu(params->request, vmas);
843 if (ret)
844 return ret;
845
846 if (engine == &dev_priv->engine[RCS] &&
847 instp_mode != dev_priv->relative_constants_mode) {
848 ret = intel_ring_begin(params->request, 4);
849 if (ret)
850 return ret;
851
852 intel_logical_ring_emit(ringbuf, MI_NOOP);
853 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
854 intel_logical_ring_emit_reg(ringbuf, INSTPM);
855 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
856 intel_logical_ring_advance(ringbuf);
857
858 dev_priv->relative_constants_mode = instp_mode;
859 }
860
861 exec_start = params->batch_obj_vm_offset +
862 args->batch_start_offset;
863
864 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
865 if (ret)
866 return ret;
867
868 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
869
870 i915_gem_execbuffer_move_to_active(vmas, params->request);
871
872 return 0;
873 }
874
875 void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
876 {
877 struct drm_i915_gem_request *req, *tmp;
878 LIST_HEAD(cancel_list);
879
880 WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
881
882 spin_lock_bh(&engine->execlist_lock);
883 list_replace_init(&engine->execlist_queue, &cancel_list);
884 spin_unlock_bh(&engine->execlist_lock);
885
886 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
887 list_del(&req->execlist_link);
888 i915_gem_request_unreference(req);
889 }
890 }
891
892 void intel_logical_ring_stop(struct intel_engine_cs *engine)
893 {
894 struct drm_i915_private *dev_priv = engine->i915;
895 int ret;
896
897 if (!intel_engine_initialized(engine))
898 return;
899
900 ret = intel_engine_idle(engine);
901 if (ret)
902 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
903 engine->name, ret);
904
905 /* TODO: Is this correct with Execlists enabled? */
906 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
907 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
908 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
909 return;
910 }
911 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
912 }
913
914 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
915 {
916 struct intel_engine_cs *engine = req->engine;
917 int ret;
918
919 if (!engine->gpu_caches_dirty)
920 return 0;
921
922 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
923 if (ret)
924 return ret;
925
926 engine->gpu_caches_dirty = false;
927 return 0;
928 }
929
930 static int intel_lr_context_pin(struct i915_gem_context *ctx,
931 struct intel_engine_cs *engine)
932 {
933 struct drm_i915_private *dev_priv = ctx->i915;
934 struct intel_context *ce = &ctx->engine[engine->id];
935 void *vaddr;
936 u32 *lrc_reg_state;
937 int ret;
938
939 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
940
941 if (ce->pin_count++)
942 return 0;
943
944 ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
945 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
946 if (ret)
947 goto err;
948
949 vaddr = i915_gem_object_pin_map(ce->state);
950 if (IS_ERR(vaddr)) {
951 ret = PTR_ERR(vaddr);
952 goto unpin_ctx_obj;
953 }
954
955 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
956
957 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
958 if (ret)
959 goto unpin_map;
960
961 i915_gem_context_reference(ctx);
962 ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
963 intel_lr_context_descriptor_update(ctx, engine);
964
965 lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
966 ce->lrc_reg_state = lrc_reg_state;
967 ce->state->dirty = true;
968
969 /* Invalidate GuC TLB. */
970 if (i915.enable_guc_submission)
971 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
972
973 return 0;
974
975 unpin_map:
976 i915_gem_object_unpin_map(ce->state);
977 unpin_ctx_obj:
978 i915_gem_object_ggtt_unpin(ce->state);
979 err:
980 ce->pin_count = 0;
981 return ret;
982 }
983
984 void intel_lr_context_unpin(struct i915_gem_context *ctx,
985 struct intel_engine_cs *engine)
986 {
987 struct intel_context *ce = &ctx->engine[engine->id];
988
989 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
990 GEM_BUG_ON(ce->pin_count == 0);
991
992 if (--ce->pin_count)
993 return;
994
995 intel_unpin_ringbuffer_obj(ce->ringbuf);
996
997 i915_gem_object_unpin_map(ce->state);
998 i915_gem_object_ggtt_unpin(ce->state);
999
1000 ce->lrc_vma = NULL;
1001 ce->lrc_desc = 0;
1002 ce->lrc_reg_state = NULL;
1003
1004 i915_gem_context_unreference(ctx);
1005 }
1006
1007 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1008 {
1009 int ret, i;
1010 struct intel_engine_cs *engine = req->engine;
1011 struct intel_ringbuffer *ringbuf = req->ringbuf;
1012 struct i915_workarounds *w = &req->i915->workarounds;
1013
1014 if (w->count == 0)
1015 return 0;
1016
1017 engine->gpu_caches_dirty = true;
1018 ret = logical_ring_flush_all_caches(req);
1019 if (ret)
1020 return ret;
1021
1022 ret = intel_ring_begin(req, w->count * 2 + 2);
1023 if (ret)
1024 return ret;
1025
1026 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1027 for (i = 0; i < w->count; i++) {
1028 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1029 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1030 }
1031 intel_logical_ring_emit(ringbuf, MI_NOOP);
1032
1033 intel_logical_ring_advance(ringbuf);
1034
1035 engine->gpu_caches_dirty = true;
1036 ret = logical_ring_flush_all_caches(req);
1037 if (ret)
1038 return ret;
1039
1040 return 0;
1041 }
1042
1043 #define wa_ctx_emit(batch, index, cmd) \
1044 do { \
1045 int __index = (index)++; \
1046 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1047 return -ENOSPC; \
1048 } \
1049 batch[__index] = (cmd); \
1050 } while (0)
1051
1052 #define wa_ctx_emit_reg(batch, index, reg) \
1053 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1054
1055 /*
1056 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1057 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1058 * but there is a slight complication as this is applied in WA batch where the
1059 * values are only initialized once so we cannot take register value at the
1060 * beginning and reuse it further; hence we save its value to memory, upload a
1061 * constant value with bit21 set and then we restore it back with the saved value.
1062 * To simplify the WA, a constant value is formed by using the default value
1063 * of this register. This shouldn't be a problem because we are only modifying
1064 * it for a short period and this batch in non-premptible. We can ofcourse
1065 * use additional instructions that read the actual value of the register
1066 * at that time and set our bit of interest but it makes the WA complicated.
1067 *
1068 * This WA is also required for Gen9 so extracting as a function avoids
1069 * code duplication.
1070 */
1071 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1072 uint32_t *const batch,
1073 uint32_t index)
1074 {
1075 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1076
1077 /*
1078 * WaDisableLSQCROPERFforOCL:skl,kbl
1079 * This WA is implemented in skl_init_clock_gating() but since
1080 * this batch updates GEN8_L3SQCREG4 with default value we need to
1081 * set this bit here to retain the WA during flush.
1082 */
1083 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
1084 IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1085 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1086
1087 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1088 MI_SRM_LRM_GLOBAL_GTT));
1089 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1090 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1091 wa_ctx_emit(batch, index, 0);
1092
1093 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1094 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1095 wa_ctx_emit(batch, index, l3sqc4_flush);
1096
1097 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1098 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1099 PIPE_CONTROL_DC_FLUSH_ENABLE));
1100 wa_ctx_emit(batch, index, 0);
1101 wa_ctx_emit(batch, index, 0);
1102 wa_ctx_emit(batch, index, 0);
1103 wa_ctx_emit(batch, index, 0);
1104
1105 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1106 MI_SRM_LRM_GLOBAL_GTT));
1107 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1108 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1109 wa_ctx_emit(batch, index, 0);
1110
1111 return index;
1112 }
1113
1114 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1115 uint32_t offset,
1116 uint32_t start_alignment)
1117 {
1118 return wa_ctx->offset = ALIGN(offset, start_alignment);
1119 }
1120
1121 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1122 uint32_t offset,
1123 uint32_t size_alignment)
1124 {
1125 wa_ctx->size = offset - wa_ctx->offset;
1126
1127 WARN(wa_ctx->size % size_alignment,
1128 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1129 wa_ctx->size, size_alignment);
1130 return 0;
1131 }
1132
1133 /**
1134 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1135 *
1136 * @engine: only applicable for RCS
1137 * @wa_ctx: structure representing wa_ctx
1138 * offset: specifies start of the batch, should be cache-aligned. This is updated
1139 * with the offset value received as input.
1140 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1141 * @batch: page in which WA are loaded
1142 * @offset: This field specifies the start of the batch, it should be
1143 * cache-aligned otherwise it is adjusted accordingly.
1144 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1145 * initialized at the beginning and shared across all contexts but this field
1146 * helps us to have multiple batches at different offsets and select them based
1147 * on a criteria. At the moment this batch always start at the beginning of the page
1148 * and at this point we don't have multiple wa_ctx batch buffers.
1149 *
1150 * The number of WA applied are not known at the beginning; we use this field
1151 * to return the no of DWORDS written.
1152 *
1153 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1154 * so it adds NOOPs as padding to make it cacheline aligned.
1155 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1156 * makes a complete batch buffer.
1157 *
1158 * Return: non-zero if we exceed the PAGE_SIZE limit.
1159 */
1160
1161 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1162 struct i915_wa_ctx_bb *wa_ctx,
1163 uint32_t *const batch,
1164 uint32_t *offset)
1165 {
1166 uint32_t scratch_addr;
1167 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1168
1169 /* WaDisableCtxRestoreArbitration:bdw,chv */
1170 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1171
1172 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1173 if (IS_BROADWELL(engine->i915)) {
1174 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1175 if (rc < 0)
1176 return rc;
1177 index = rc;
1178 }
1179
1180 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1181 /* Actual scratch location is at 128 bytes offset */
1182 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1183
1184 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1185 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1186 PIPE_CONTROL_GLOBAL_GTT_IVB |
1187 PIPE_CONTROL_CS_STALL |
1188 PIPE_CONTROL_QW_WRITE));
1189 wa_ctx_emit(batch, index, scratch_addr);
1190 wa_ctx_emit(batch, index, 0);
1191 wa_ctx_emit(batch, index, 0);
1192 wa_ctx_emit(batch, index, 0);
1193
1194 /* Pad to end of cacheline */
1195 while (index % CACHELINE_DWORDS)
1196 wa_ctx_emit(batch, index, MI_NOOP);
1197
1198 /*
1199 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1200 * execution depends on the length specified in terms of cache lines
1201 * in the register CTX_RCS_INDIRECT_CTX
1202 */
1203
1204 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1205 }
1206
1207 /**
1208 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1209 *
1210 * @engine: only applicable for RCS
1211 * @wa_ctx: structure representing wa_ctx
1212 * offset: specifies start of the batch, should be cache-aligned.
1213 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1214 * @batch: page in which WA are loaded
1215 * @offset: This field specifies the start of this batch.
1216 * This batch is started immediately after indirect_ctx batch. Since we ensure
1217 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1218 *
1219 * The number of DWORDS written are returned using this field.
1220 *
1221 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1222 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1223 */
1224 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1225 struct i915_wa_ctx_bb *wa_ctx,
1226 uint32_t *const batch,
1227 uint32_t *offset)
1228 {
1229 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1230
1231 /* WaDisableCtxRestoreArbitration:bdw,chv */
1232 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1233
1234 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1235
1236 return wa_ctx_end(wa_ctx, *offset = index, 1);
1237 }
1238
1239 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1240 struct i915_wa_ctx_bb *wa_ctx,
1241 uint32_t *const batch,
1242 uint32_t *offset)
1243 {
1244 int ret;
1245 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1246
1247 /* WaDisableCtxRestoreArbitration:skl,bxt */
1248 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1249 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1250 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1251
1252 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1253 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1254 if (ret < 0)
1255 return ret;
1256 index = ret;
1257
1258 /* WaClearSlmSpaceAtContextSwitch:kbl */
1259 /* Actual scratch location is at 128 bytes offset */
1260 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1261 uint32_t scratch_addr
1262 = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1263
1264 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1265 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1266 PIPE_CONTROL_GLOBAL_GTT_IVB |
1267 PIPE_CONTROL_CS_STALL |
1268 PIPE_CONTROL_QW_WRITE));
1269 wa_ctx_emit(batch, index, scratch_addr);
1270 wa_ctx_emit(batch, index, 0);
1271 wa_ctx_emit(batch, index, 0);
1272 wa_ctx_emit(batch, index, 0);
1273 }
1274 /* Pad to end of cacheline */
1275 while (index % CACHELINE_DWORDS)
1276 wa_ctx_emit(batch, index, MI_NOOP);
1277
1278 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1279 }
1280
1281 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1282 struct i915_wa_ctx_bb *wa_ctx,
1283 uint32_t *const batch,
1284 uint32_t *offset)
1285 {
1286 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1287
1288 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1289 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1290 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1291 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1292 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1293 wa_ctx_emit(batch, index,
1294 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1295 wa_ctx_emit(batch, index, MI_NOOP);
1296 }
1297
1298 /* WaClearTdlStateAckDirtyBits:bxt */
1299 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1300 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1301
1302 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1303 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1304
1305 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1306 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1307
1308 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1309 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1310
1311 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1312 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1313 wa_ctx_emit(batch, index, 0x0);
1314 wa_ctx_emit(batch, index, MI_NOOP);
1315 }
1316
1317 /* WaDisableCtxRestoreArbitration:skl,bxt */
1318 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1319 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1320 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1321
1322 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1323
1324 return wa_ctx_end(wa_ctx, *offset = index, 1);
1325 }
1326
1327 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1328 {
1329 int ret;
1330
1331 engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1332 PAGE_ALIGN(size));
1333 if (IS_ERR(engine->wa_ctx.obj)) {
1334 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1335 ret = PTR_ERR(engine->wa_ctx.obj);
1336 engine->wa_ctx.obj = NULL;
1337 return ret;
1338 }
1339
1340 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1341 if (ret) {
1342 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1343 ret);
1344 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1345 return ret;
1346 }
1347
1348 return 0;
1349 }
1350
1351 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1352 {
1353 if (engine->wa_ctx.obj) {
1354 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1355 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1356 engine->wa_ctx.obj = NULL;
1357 }
1358 }
1359
1360 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1361 {
1362 int ret;
1363 uint32_t *batch;
1364 uint32_t offset;
1365 struct page *page;
1366 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1367
1368 WARN_ON(engine->id != RCS);
1369
1370 /* update this when WA for higher Gen are added */
1371 if (INTEL_GEN(engine->i915) > 9) {
1372 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1373 INTEL_GEN(engine->i915));
1374 return 0;
1375 }
1376
1377 /* some WA perform writes to scratch page, ensure it is valid */
1378 if (engine->scratch.obj == NULL) {
1379 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1380 return -EINVAL;
1381 }
1382
1383 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1384 if (ret) {
1385 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1386 return ret;
1387 }
1388
1389 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1390 batch = kmap_atomic(page);
1391 offset = 0;
1392
1393 if (IS_GEN8(engine->i915)) {
1394 ret = gen8_init_indirectctx_bb(engine,
1395 &wa_ctx->indirect_ctx,
1396 batch,
1397 &offset);
1398 if (ret)
1399 goto out;
1400
1401 ret = gen8_init_perctx_bb(engine,
1402 &wa_ctx->per_ctx,
1403 batch,
1404 &offset);
1405 if (ret)
1406 goto out;
1407 } else if (IS_GEN9(engine->i915)) {
1408 ret = gen9_init_indirectctx_bb(engine,
1409 &wa_ctx->indirect_ctx,
1410 batch,
1411 &offset);
1412 if (ret)
1413 goto out;
1414
1415 ret = gen9_init_perctx_bb(engine,
1416 &wa_ctx->per_ctx,
1417 batch,
1418 &offset);
1419 if (ret)
1420 goto out;
1421 }
1422
1423 out:
1424 kunmap_atomic(batch);
1425 if (ret)
1426 lrc_destroy_wa_ctx_obj(engine);
1427
1428 return ret;
1429 }
1430
1431 static void lrc_init_hws(struct intel_engine_cs *engine)
1432 {
1433 struct drm_i915_private *dev_priv = engine->i915;
1434
1435 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1436 (u32)engine->status_page.gfx_addr);
1437 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1438 }
1439
1440 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1441 {
1442 struct drm_i915_private *dev_priv = engine->i915;
1443 unsigned int next_context_status_buffer_hw;
1444
1445 lrc_init_hws(engine);
1446
1447 I915_WRITE_IMR(engine,
1448 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1449 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1450
1451 I915_WRITE(RING_MODE_GEN7(engine),
1452 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1453 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1454 POSTING_READ(RING_MODE_GEN7(engine));
1455
1456 /*
1457 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1458 * zero, we need to read the write pointer from hardware and use its
1459 * value because "this register is power context save restored".
1460 * Effectively, these states have been observed:
1461 *
1462 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1463 * BDW | CSB regs not reset | CSB regs reset |
1464 * CHT | CSB regs not reset | CSB regs not reset |
1465 * SKL | ? | ? |
1466 * BXT | ? | ? |
1467 */
1468 next_context_status_buffer_hw =
1469 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1470
1471 /*
1472 * When the CSB registers are reset (also after power-up / gpu reset),
1473 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1474 * this special case, so the first element read is CSB[0].
1475 */
1476 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1477 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1478
1479 engine->next_context_status_buffer = next_context_status_buffer_hw;
1480 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1481
1482 intel_engine_init_hangcheck(engine);
1483
1484 return intel_mocs_init_engine(engine);
1485 }
1486
1487 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1488 {
1489 struct drm_i915_private *dev_priv = engine->i915;
1490 int ret;
1491
1492 ret = gen8_init_common_ring(engine);
1493 if (ret)
1494 return ret;
1495
1496 /* We need to disable the AsyncFlip performance optimisations in order
1497 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1498 * programmed to '1' on all products.
1499 *
1500 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1501 */
1502 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1503
1504 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1505
1506 return init_workarounds_ring(engine);
1507 }
1508
1509 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1510 {
1511 int ret;
1512
1513 ret = gen8_init_common_ring(engine);
1514 if (ret)
1515 return ret;
1516
1517 return init_workarounds_ring(engine);
1518 }
1519
1520 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1521 {
1522 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1523 struct intel_engine_cs *engine = req->engine;
1524 struct intel_ringbuffer *ringbuf = req->ringbuf;
1525 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1526 int i, ret;
1527
1528 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1529 if (ret)
1530 return ret;
1531
1532 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1533 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1534 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1535
1536 intel_logical_ring_emit_reg(ringbuf,
1537 GEN8_RING_PDP_UDW(engine, i));
1538 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1539 intel_logical_ring_emit_reg(ringbuf,
1540 GEN8_RING_PDP_LDW(engine, i));
1541 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1542 }
1543
1544 intel_logical_ring_emit(ringbuf, MI_NOOP);
1545 intel_logical_ring_advance(ringbuf);
1546
1547 return 0;
1548 }
1549
1550 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1551 u64 offset, unsigned dispatch_flags)
1552 {
1553 struct intel_ringbuffer *ringbuf = req->ringbuf;
1554 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1555 int ret;
1556
1557 /* Don't rely in hw updating PDPs, specially in lite-restore.
1558 * Ideally, we should set Force PD Restore in ctx descriptor,
1559 * but we can't. Force Restore would be a second option, but
1560 * it is unsafe in case of lite-restore (because the ctx is
1561 * not idle). PML4 is allocated during ppgtt init so this is
1562 * not needed in 48-bit.*/
1563 if (req->ctx->ppgtt &&
1564 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1565 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1566 !intel_vgpu_active(req->i915)) {
1567 ret = intel_logical_ring_emit_pdps(req);
1568 if (ret)
1569 return ret;
1570 }
1571
1572 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1573 }
1574
1575 ret = intel_ring_begin(req, 4);
1576 if (ret)
1577 return ret;
1578
1579 /* FIXME(BDW): Address space and security selectors. */
1580 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1581 (ppgtt<<8) |
1582 (dispatch_flags & I915_DISPATCH_RS ?
1583 MI_BATCH_RESOURCE_STREAMER : 0));
1584 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1585 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1586 intel_logical_ring_emit(ringbuf, MI_NOOP);
1587 intel_logical_ring_advance(ringbuf);
1588
1589 return 0;
1590 }
1591
1592 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1593 {
1594 struct drm_i915_private *dev_priv = engine->i915;
1595 unsigned long flags;
1596
1597 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1598 return false;
1599
1600 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1601 if (engine->irq_refcount++ == 0) {
1602 I915_WRITE_IMR(engine,
1603 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1604 POSTING_READ(RING_IMR(engine->mmio_base));
1605 }
1606 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1607
1608 return true;
1609 }
1610
1611 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1612 {
1613 struct drm_i915_private *dev_priv = engine->i915;
1614 unsigned long flags;
1615
1616 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1617 if (--engine->irq_refcount == 0) {
1618 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1619 POSTING_READ(RING_IMR(engine->mmio_base));
1620 }
1621 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1622 }
1623
1624 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1625 u32 invalidate_domains,
1626 u32 unused)
1627 {
1628 struct intel_ringbuffer *ringbuf = request->ringbuf;
1629 struct intel_engine_cs *engine = ringbuf->engine;
1630 struct drm_i915_private *dev_priv = request->i915;
1631 uint32_t cmd;
1632 int ret;
1633
1634 ret = intel_ring_begin(request, 4);
1635 if (ret)
1636 return ret;
1637
1638 cmd = MI_FLUSH_DW + 1;
1639
1640 /* We always require a command barrier so that subsequent
1641 * commands, such as breadcrumb interrupts, are strictly ordered
1642 * wrt the contents of the write cache being flushed to memory
1643 * (and thus being coherent from the CPU).
1644 */
1645 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1646
1647 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1648 cmd |= MI_INVALIDATE_TLB;
1649 if (engine == &dev_priv->engine[VCS])
1650 cmd |= MI_INVALIDATE_BSD;
1651 }
1652
1653 intel_logical_ring_emit(ringbuf, cmd);
1654 intel_logical_ring_emit(ringbuf,
1655 I915_GEM_HWS_SCRATCH_ADDR |
1656 MI_FLUSH_DW_USE_GTT);
1657 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1658 intel_logical_ring_emit(ringbuf, 0); /* value */
1659 intel_logical_ring_advance(ringbuf);
1660
1661 return 0;
1662 }
1663
1664 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1665 u32 invalidate_domains,
1666 u32 flush_domains)
1667 {
1668 struct intel_ringbuffer *ringbuf = request->ringbuf;
1669 struct intel_engine_cs *engine = ringbuf->engine;
1670 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1671 bool vf_flush_wa = false, dc_flush_wa = false;
1672 u32 flags = 0;
1673 int ret;
1674 int len;
1675
1676 flags |= PIPE_CONTROL_CS_STALL;
1677
1678 if (flush_domains) {
1679 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1680 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1681 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1682 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1683 }
1684
1685 if (invalidate_domains) {
1686 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1687 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1688 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1689 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1690 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1691 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1692 flags |= PIPE_CONTROL_QW_WRITE;
1693 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1694
1695 /*
1696 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1697 * pipe control.
1698 */
1699 if (IS_GEN9(request->i915))
1700 vf_flush_wa = true;
1701
1702 /* WaForGAMHang:kbl */
1703 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1704 dc_flush_wa = true;
1705 }
1706
1707 len = 6;
1708
1709 if (vf_flush_wa)
1710 len += 6;
1711
1712 if (dc_flush_wa)
1713 len += 12;
1714
1715 ret = intel_ring_begin(request, len);
1716 if (ret)
1717 return ret;
1718
1719 if (vf_flush_wa) {
1720 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1721 intel_logical_ring_emit(ringbuf, 0);
1722 intel_logical_ring_emit(ringbuf, 0);
1723 intel_logical_ring_emit(ringbuf, 0);
1724 intel_logical_ring_emit(ringbuf, 0);
1725 intel_logical_ring_emit(ringbuf, 0);
1726 }
1727
1728 if (dc_flush_wa) {
1729 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1730 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
1731 intel_logical_ring_emit(ringbuf, 0);
1732 intel_logical_ring_emit(ringbuf, 0);
1733 intel_logical_ring_emit(ringbuf, 0);
1734 intel_logical_ring_emit(ringbuf, 0);
1735 }
1736
1737 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1738 intel_logical_ring_emit(ringbuf, flags);
1739 intel_logical_ring_emit(ringbuf, scratch_addr);
1740 intel_logical_ring_emit(ringbuf, 0);
1741 intel_logical_ring_emit(ringbuf, 0);
1742 intel_logical_ring_emit(ringbuf, 0);
1743
1744 if (dc_flush_wa) {
1745 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1746 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
1747 intel_logical_ring_emit(ringbuf, 0);
1748 intel_logical_ring_emit(ringbuf, 0);
1749 intel_logical_ring_emit(ringbuf, 0);
1750 intel_logical_ring_emit(ringbuf, 0);
1751 }
1752
1753 intel_logical_ring_advance(ringbuf);
1754
1755 return 0;
1756 }
1757
1758 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1759 {
1760 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1761 }
1762
1763 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1764 {
1765 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1766 }
1767
1768 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1769 {
1770 /*
1771 * On BXT A steppings there is a HW coherency issue whereby the
1772 * MI_STORE_DATA_IMM storing the completed request's seqno
1773 * occasionally doesn't invalidate the CPU cache. Work around this by
1774 * clflushing the corresponding cacheline whenever the caller wants
1775 * the coherency to be guaranteed. Note that this cacheline is known
1776 * to be clean at this point, since we only write it in
1777 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1778 * this clflush in practice becomes an invalidate operation.
1779 */
1780 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1781 }
1782
1783 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1784 {
1785 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1786
1787 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1788 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1789 }
1790
1791 /*
1792 * Reserve space for 2 NOOPs at the end of each request to be
1793 * used as a workaround for not being allowed to do lite
1794 * restore with HEAD==TAIL (WaIdleLiteRestore).
1795 */
1796 #define WA_TAIL_DWORDS 2
1797
1798 static int gen8_emit_request(struct drm_i915_gem_request *request)
1799 {
1800 struct intel_ringbuffer *ringbuf = request->ringbuf;
1801 int ret;
1802
1803 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1804 if (ret)
1805 return ret;
1806
1807 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1808 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1809
1810 intel_logical_ring_emit(ringbuf,
1811 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1812 intel_logical_ring_emit(ringbuf,
1813 intel_hws_seqno_address(request->engine) |
1814 MI_FLUSH_DW_USE_GTT);
1815 intel_logical_ring_emit(ringbuf, 0);
1816 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1817 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1818 intel_logical_ring_emit(ringbuf, MI_NOOP);
1819 return intel_logical_ring_advance_and_submit(request);
1820 }
1821
1822 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1823 {
1824 struct intel_ringbuffer *ringbuf = request->ringbuf;
1825 int ret;
1826
1827 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1828 if (ret)
1829 return ret;
1830
1831 /* We're using qword write, seqno should be aligned to 8 bytes. */
1832 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1833
1834 /* w/a for post sync ops following a GPGPU operation we
1835 * need a prior CS_STALL, which is emitted by the flush
1836 * following the batch.
1837 */
1838 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1839 intel_logical_ring_emit(ringbuf,
1840 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1841 PIPE_CONTROL_CS_STALL |
1842 PIPE_CONTROL_QW_WRITE));
1843 intel_logical_ring_emit(ringbuf,
1844 intel_hws_seqno_address(request->engine));
1845 intel_logical_ring_emit(ringbuf, 0);
1846 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1847 /* We're thrashing one dword of HWS. */
1848 intel_logical_ring_emit(ringbuf, 0);
1849 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1850 intel_logical_ring_emit(ringbuf, MI_NOOP);
1851 return intel_logical_ring_advance_and_submit(request);
1852 }
1853
1854 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1855 {
1856 struct render_state so;
1857 int ret;
1858
1859 ret = i915_gem_render_state_prepare(req->engine, &so);
1860 if (ret)
1861 return ret;
1862
1863 if (so.rodata == NULL)
1864 return 0;
1865
1866 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1867 I915_DISPATCH_SECURE);
1868 if (ret)
1869 goto out;
1870
1871 ret = req->engine->emit_bb_start(req,
1872 (so.ggtt_offset + so.aux_batch_offset),
1873 I915_DISPATCH_SECURE);
1874 if (ret)
1875 goto out;
1876
1877 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1878
1879 out:
1880 i915_gem_render_state_fini(&so);
1881 return ret;
1882 }
1883
1884 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1885 {
1886 int ret;
1887
1888 ret = intel_logical_ring_workarounds_emit(req);
1889 if (ret)
1890 return ret;
1891
1892 ret = intel_rcs_context_init_mocs(req);
1893 /*
1894 * Failing to program the MOCS is non-fatal.The system will not
1895 * run at peak performance. So generate an error and carry on.
1896 */
1897 if (ret)
1898 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1899
1900 return intel_lr_context_render_state_init(req);
1901 }
1902
1903 /**
1904 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1905 *
1906 * @engine: Engine Command Streamer.
1907 *
1908 */
1909 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1910 {
1911 struct drm_i915_private *dev_priv;
1912
1913 if (!intel_engine_initialized(engine))
1914 return;
1915
1916 /*
1917 * Tasklet cannot be active at this point due intel_mark_active/idle
1918 * so this is just for documentation.
1919 */
1920 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1921 tasklet_kill(&engine->irq_tasklet);
1922
1923 dev_priv = engine->i915;
1924
1925 if (engine->buffer) {
1926 intel_logical_ring_stop(engine);
1927 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1928 }
1929
1930 if (engine->cleanup)
1931 engine->cleanup(engine);
1932
1933 i915_cmd_parser_fini_ring(engine);
1934 i915_gem_batch_pool_fini(&engine->batch_pool);
1935
1936 if (engine->status_page.obj) {
1937 i915_gem_object_unpin_map(engine->status_page.obj);
1938 engine->status_page.obj = NULL;
1939 }
1940 intel_lr_context_unpin(dev_priv->kernel_context, engine);
1941
1942 engine->idle_lite_restore_wa = 0;
1943 engine->disable_lite_restore_wa = false;
1944 engine->ctx_desc_template = 0;
1945
1946 lrc_destroy_wa_ctx_obj(engine);
1947 engine->i915 = NULL;
1948 }
1949
1950 static void
1951 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1952 {
1953 /* Default vfuncs which can be overriden by each engine. */
1954 engine->init_hw = gen8_init_common_ring;
1955 engine->emit_request = gen8_emit_request;
1956 engine->emit_flush = gen8_emit_flush;
1957 engine->irq_get = gen8_logical_ring_get_irq;
1958 engine->irq_put = gen8_logical_ring_put_irq;
1959 engine->emit_bb_start = gen8_emit_bb_start;
1960 engine->get_seqno = gen8_get_seqno;
1961 engine->set_seqno = gen8_set_seqno;
1962 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1963 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1964 engine->set_seqno = bxt_a_set_seqno;
1965 }
1966 }
1967
1968 static inline void
1969 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1970 {
1971 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1972 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1973 init_waitqueue_head(&engine->irq_queue);
1974 }
1975
1976 static int
1977 lrc_setup_hws(struct intel_engine_cs *engine,
1978 struct drm_i915_gem_object *dctx_obj)
1979 {
1980 void *hws;
1981
1982 /* The HWSP is part of the default context object in LRC mode. */
1983 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1984 LRC_PPHWSP_PN * PAGE_SIZE;
1985 hws = i915_gem_object_pin_map(dctx_obj);
1986 if (IS_ERR(hws))
1987 return PTR_ERR(hws);
1988 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1989 engine->status_page.obj = dctx_obj;
1990
1991 return 0;
1992 }
1993
1994 static const struct logical_ring_info {
1995 const char *name;
1996 unsigned exec_id;
1997 unsigned guc_id;
1998 u32 mmio_base;
1999 unsigned irq_shift;
2000 } logical_rings[] = {
2001 [RCS] = {
2002 .name = "render ring",
2003 .exec_id = I915_EXEC_RENDER,
2004 .guc_id = GUC_RENDER_ENGINE,
2005 .mmio_base = RENDER_RING_BASE,
2006 .irq_shift = GEN8_RCS_IRQ_SHIFT,
2007 },
2008 [BCS] = {
2009 .name = "blitter ring",
2010 .exec_id = I915_EXEC_BLT,
2011 .guc_id = GUC_BLITTER_ENGINE,
2012 .mmio_base = BLT_RING_BASE,
2013 .irq_shift = GEN8_BCS_IRQ_SHIFT,
2014 },
2015 [VCS] = {
2016 .name = "bsd ring",
2017 .exec_id = I915_EXEC_BSD,
2018 .guc_id = GUC_VIDEO_ENGINE,
2019 .mmio_base = GEN6_BSD_RING_BASE,
2020 .irq_shift = GEN8_VCS1_IRQ_SHIFT,
2021 },
2022 [VCS2] = {
2023 .name = "bsd2 ring",
2024 .exec_id = I915_EXEC_BSD,
2025 .guc_id = GUC_VIDEO_ENGINE2,
2026 .mmio_base = GEN8_BSD2_RING_BASE,
2027 .irq_shift = GEN8_VCS2_IRQ_SHIFT,
2028 },
2029 [VECS] = {
2030 .name = "video enhancement ring",
2031 .exec_id = I915_EXEC_VEBOX,
2032 .guc_id = GUC_VIDEOENHANCE_ENGINE,
2033 .mmio_base = VEBOX_RING_BASE,
2034 .irq_shift = GEN8_VECS_IRQ_SHIFT,
2035 },
2036 };
2037
2038 static struct intel_engine_cs *
2039 logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
2040 {
2041 const struct logical_ring_info *info = &logical_rings[id];
2042 struct drm_i915_private *dev_priv = to_i915(dev);
2043 struct intel_engine_cs *engine = &dev_priv->engine[id];
2044 enum forcewake_domains fw_domains;
2045
2046 engine->id = id;
2047 engine->name = info->name;
2048 engine->exec_id = info->exec_id;
2049 engine->guc_id = info->guc_id;
2050 engine->mmio_base = info->mmio_base;
2051
2052 engine->i915 = dev_priv;
2053
2054 /* Intentionally left blank. */
2055 engine->buffer = NULL;
2056
2057 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2058 RING_ELSP(engine),
2059 FW_REG_WRITE);
2060
2061 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2062 RING_CONTEXT_STATUS_PTR(engine),
2063 FW_REG_READ | FW_REG_WRITE);
2064
2065 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2066 RING_CONTEXT_STATUS_BUF_BASE(engine),
2067 FW_REG_READ);
2068
2069 engine->fw_domains = fw_domains;
2070
2071 INIT_LIST_HEAD(&engine->active_list);
2072 INIT_LIST_HEAD(&engine->request_list);
2073 INIT_LIST_HEAD(&engine->buffers);
2074 INIT_LIST_HEAD(&engine->execlist_queue);
2075 spin_lock_init(&engine->execlist_lock);
2076
2077 tasklet_init(&engine->irq_tasklet,
2078 intel_lrc_irq_handler, (unsigned long)engine);
2079
2080 logical_ring_init_platform_invariants(engine);
2081 logical_ring_default_vfuncs(engine);
2082 logical_ring_default_irqs(engine, info->irq_shift);
2083
2084 intel_engine_init_hangcheck(engine);
2085 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2086
2087 return engine;
2088 }
2089
2090 static int
2091 logical_ring_init(struct intel_engine_cs *engine)
2092 {
2093 struct i915_gem_context *dctx = engine->i915->kernel_context;
2094 int ret;
2095
2096 ret = i915_cmd_parser_init_ring(engine);
2097 if (ret)
2098 goto error;
2099
2100 ret = execlists_context_deferred_alloc(dctx, engine);
2101 if (ret)
2102 goto error;
2103
2104 /* As this is the default context, always pin it */
2105 ret = intel_lr_context_pin(dctx, engine);
2106 if (ret) {
2107 DRM_ERROR("Failed to pin context for %s: %d\n",
2108 engine->name, ret);
2109 goto error;
2110 }
2111
2112 /* And setup the hardware status page. */
2113 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2114 if (ret) {
2115 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2116 goto error;
2117 }
2118
2119 return 0;
2120
2121 error:
2122 intel_logical_ring_cleanup(engine);
2123 return ret;
2124 }
2125
2126 static int logical_render_ring_init(struct drm_device *dev)
2127 {
2128 struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
2129 int ret;
2130
2131 if (HAS_L3_DPF(dev))
2132 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2133
2134 /* Override some for render ring. */
2135 if (INTEL_INFO(dev)->gen >= 9)
2136 engine->init_hw = gen9_init_render_ring;
2137 else
2138 engine->init_hw = gen8_init_render_ring;
2139 engine->init_context = gen8_init_rcs_context;
2140 engine->cleanup = intel_fini_pipe_control;
2141 engine->emit_flush = gen8_emit_flush_render;
2142 engine->emit_request = gen8_emit_request_render;
2143
2144 ret = intel_init_pipe_control(engine);
2145 if (ret)
2146 return ret;
2147
2148 ret = intel_init_workaround_bb(engine);
2149 if (ret) {
2150 /*
2151 * We continue even if we fail to initialize WA batch
2152 * because we only expect rare glitches but nothing
2153 * critical to prevent us from using GPU
2154 */
2155 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2156 ret);
2157 }
2158
2159 ret = logical_ring_init(engine);
2160 if (ret) {
2161 lrc_destroy_wa_ctx_obj(engine);
2162 }
2163
2164 return ret;
2165 }
2166
2167 static int logical_bsd_ring_init(struct drm_device *dev)
2168 {
2169 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
2170
2171 return logical_ring_init(engine);
2172 }
2173
2174 static int logical_bsd2_ring_init(struct drm_device *dev)
2175 {
2176 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
2177
2178 return logical_ring_init(engine);
2179 }
2180
2181 static int logical_blt_ring_init(struct drm_device *dev)
2182 {
2183 struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
2184
2185 return logical_ring_init(engine);
2186 }
2187
2188 static int logical_vebox_ring_init(struct drm_device *dev)
2189 {
2190 struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
2191
2192 return logical_ring_init(engine);
2193 }
2194
2195 /**
2196 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2197 * @dev: DRM device.
2198 *
2199 * This function inits the engines for an Execlists submission style (the equivalent in the
2200 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2201 * those engines that are present in the hardware.
2202 *
2203 * Return: non-zero if the initialization failed.
2204 */
2205 int intel_logical_rings_init(struct drm_device *dev)
2206 {
2207 struct drm_i915_private *dev_priv = dev->dev_private;
2208 int ret;
2209
2210 ret = logical_render_ring_init(dev);
2211 if (ret)
2212 return ret;
2213
2214 if (HAS_BSD(dev)) {
2215 ret = logical_bsd_ring_init(dev);
2216 if (ret)
2217 goto cleanup_render_ring;
2218 }
2219
2220 if (HAS_BLT(dev)) {
2221 ret = logical_blt_ring_init(dev);
2222 if (ret)
2223 goto cleanup_bsd_ring;
2224 }
2225
2226 if (HAS_VEBOX(dev)) {
2227 ret = logical_vebox_ring_init(dev);
2228 if (ret)
2229 goto cleanup_blt_ring;
2230 }
2231
2232 if (HAS_BSD2(dev)) {
2233 ret = logical_bsd2_ring_init(dev);
2234 if (ret)
2235 goto cleanup_vebox_ring;
2236 }
2237
2238 return 0;
2239
2240 cleanup_vebox_ring:
2241 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2242 cleanup_blt_ring:
2243 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2244 cleanup_bsd_ring:
2245 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2246 cleanup_render_ring:
2247 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2248
2249 return ret;
2250 }
2251
2252 static u32
2253 make_rpcs(struct drm_i915_private *dev_priv)
2254 {
2255 u32 rpcs = 0;
2256
2257 /*
2258 * No explicit RPCS request is needed to ensure full
2259 * slice/subslice/EU enablement prior to Gen9.
2260 */
2261 if (INTEL_GEN(dev_priv) < 9)
2262 return 0;
2263
2264 /*
2265 * Starting in Gen9, render power gating can leave
2266 * slice/subslice/EU in a partially enabled state. We
2267 * must make an explicit request through RPCS for full
2268 * enablement.
2269 */
2270 if (INTEL_INFO(dev_priv)->has_slice_pg) {
2271 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2272 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2273 GEN8_RPCS_S_CNT_SHIFT;
2274 rpcs |= GEN8_RPCS_ENABLE;
2275 }
2276
2277 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2278 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2279 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2280 GEN8_RPCS_SS_CNT_SHIFT;
2281 rpcs |= GEN8_RPCS_ENABLE;
2282 }
2283
2284 if (INTEL_INFO(dev_priv)->has_eu_pg) {
2285 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2286 GEN8_RPCS_EU_MIN_SHIFT;
2287 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2288 GEN8_RPCS_EU_MAX_SHIFT;
2289 rpcs |= GEN8_RPCS_ENABLE;
2290 }
2291
2292 return rpcs;
2293 }
2294
2295 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2296 {
2297 u32 indirect_ctx_offset;
2298
2299 switch (INTEL_GEN(engine->i915)) {
2300 default:
2301 MISSING_CASE(INTEL_GEN(engine->i915));
2302 /* fall through */
2303 case 9:
2304 indirect_ctx_offset =
2305 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2306 break;
2307 case 8:
2308 indirect_ctx_offset =
2309 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2310 break;
2311 }
2312
2313 return indirect_ctx_offset;
2314 }
2315
2316 static int
2317 populate_lr_context(struct i915_gem_context *ctx,
2318 struct drm_i915_gem_object *ctx_obj,
2319 struct intel_engine_cs *engine,
2320 struct intel_ringbuffer *ringbuf)
2321 {
2322 struct drm_i915_private *dev_priv = ctx->i915;
2323 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2324 void *vaddr;
2325 u32 *reg_state;
2326 int ret;
2327
2328 if (!ppgtt)
2329 ppgtt = dev_priv->mm.aliasing_ppgtt;
2330
2331 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2332 if (ret) {
2333 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2334 return ret;
2335 }
2336
2337 vaddr = i915_gem_object_pin_map(ctx_obj);
2338 if (IS_ERR(vaddr)) {
2339 ret = PTR_ERR(vaddr);
2340 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2341 return ret;
2342 }
2343 ctx_obj->dirty = true;
2344
2345 /* The second page of the context object contains some fields which must
2346 * be set up prior to the first execution. */
2347 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2348
2349 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2350 * commands followed by (reg, value) pairs. The values we are setting here are
2351 * only for the first context restore: on a subsequent save, the GPU will
2352 * recreate this batchbuffer with new values (including all the missing
2353 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2354 reg_state[CTX_LRI_HEADER_0] =
2355 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2356 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2357 RING_CONTEXT_CONTROL(engine),
2358 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2359 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2360 (HAS_RESOURCE_STREAMER(dev_priv) ?
2361 CTX_CTRL_RS_CTX_ENABLE : 0)));
2362 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2363 0);
2364 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2365 0);
2366 /* Ring buffer start address is not known until the buffer is pinned.
2367 * It is written to the context image in execlists_update_context()
2368 */
2369 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2370 RING_START(engine->mmio_base), 0);
2371 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2372 RING_CTL(engine->mmio_base),
2373 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2374 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2375 RING_BBADDR_UDW(engine->mmio_base), 0);
2376 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2377 RING_BBADDR(engine->mmio_base), 0);
2378 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2379 RING_BBSTATE(engine->mmio_base),
2380 RING_BB_PPGTT);
2381 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2382 RING_SBBADDR_UDW(engine->mmio_base), 0);
2383 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2384 RING_SBBADDR(engine->mmio_base), 0);
2385 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2386 RING_SBBSTATE(engine->mmio_base), 0);
2387 if (engine->id == RCS) {
2388 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2389 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2390 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2391 RING_INDIRECT_CTX(engine->mmio_base), 0);
2392 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2393 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2394 if (engine->wa_ctx.obj) {
2395 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2396 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2397
2398 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2399 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2400 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2401
2402 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2403 intel_lr_indirect_ctx_offset(engine) << 6;
2404
2405 reg_state[CTX_BB_PER_CTX_PTR+1] =
2406 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2407 0x01;
2408 }
2409 }
2410 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2411 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2412 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2413 /* PDP values well be assigned later if needed */
2414 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2415 0);
2416 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2417 0);
2418 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2419 0);
2420 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2421 0);
2422 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2423 0);
2424 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2425 0);
2426 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2427 0);
2428 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2429 0);
2430
2431 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2432 /* 64b PPGTT (48bit canonical)
2433 * PDP0_DESCRIPTOR contains the base address to PML4 and
2434 * other PDP Descriptors are ignored.
2435 */
2436 ASSIGN_CTX_PML4(ppgtt, reg_state);
2437 } else {
2438 /* 32b PPGTT
2439 * PDP*_DESCRIPTOR contains the base address of space supported.
2440 * With dynamic page allocation, PDPs may not be allocated at
2441 * this point. Point the unallocated PDPs to the scratch page
2442 */
2443 execlists_update_context_pdps(ppgtt, reg_state);
2444 }
2445
2446 if (engine->id == RCS) {
2447 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2448 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2449 make_rpcs(dev_priv));
2450 }
2451
2452 i915_gem_object_unpin_map(ctx_obj);
2453
2454 return 0;
2455 }
2456
2457 /**
2458 * intel_lr_context_size() - return the size of the context for an engine
2459 * @engine: which engine to find the context size for
2460 *
2461 * Each engine may require a different amount of space for a context image,
2462 * so when allocating (or copying) an image, this function can be used to
2463 * find the right size for the specific engine.
2464 *
2465 * Return: size (in bytes) of an engine-specific context image
2466 *
2467 * Note: this size includes the HWSP, which is part of the context image
2468 * in LRC mode, but does not include the "shared data page" used with
2469 * GuC submission. The caller should account for this if using the GuC.
2470 */
2471 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2472 {
2473 int ret = 0;
2474
2475 WARN_ON(INTEL_GEN(engine->i915) < 8);
2476
2477 switch (engine->id) {
2478 case RCS:
2479 if (INTEL_GEN(engine->i915) >= 9)
2480 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2481 else
2482 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2483 break;
2484 case VCS:
2485 case BCS:
2486 case VECS:
2487 case VCS2:
2488 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2489 break;
2490 }
2491
2492 return ret;
2493 }
2494
2495 /**
2496 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2497 * @ctx: LR context to create.
2498 * @engine: engine to be used with the context.
2499 *
2500 * This function can be called more than once, with different engines, if we plan
2501 * to use the context with them. The context backing objects and the ringbuffers
2502 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2503 * the creation is a deferred call: it's better to make sure first that we need to use
2504 * a given ring with the context.
2505 *
2506 * Return: non-zero on error.
2507 */
2508 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2509 struct intel_engine_cs *engine)
2510 {
2511 struct drm_i915_gem_object *ctx_obj;
2512 struct intel_context *ce = &ctx->engine[engine->id];
2513 uint32_t context_size;
2514 struct intel_ringbuffer *ringbuf;
2515 int ret;
2516
2517 WARN_ON(ce->state);
2518
2519 context_size = round_up(intel_lr_context_size(engine), 4096);
2520
2521 /* One extra page as the sharing data between driver and GuC */
2522 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2523
2524 ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2525 if (IS_ERR(ctx_obj)) {
2526 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2527 return PTR_ERR(ctx_obj);
2528 }
2529
2530 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2531 if (IS_ERR(ringbuf)) {
2532 ret = PTR_ERR(ringbuf);
2533 goto error_deref_obj;
2534 }
2535
2536 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2537 if (ret) {
2538 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2539 goto error_ringbuf;
2540 }
2541
2542 ce->ringbuf = ringbuf;
2543 ce->state = ctx_obj;
2544 ce->initialised = engine->init_context == NULL;
2545
2546 return 0;
2547
2548 error_ringbuf:
2549 intel_ringbuffer_free(ringbuf);
2550 error_deref_obj:
2551 drm_gem_object_unreference(&ctx_obj->base);
2552 ce->ringbuf = NULL;
2553 ce->state = NULL;
2554 return ret;
2555 }
2556
2557 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2558 struct i915_gem_context *ctx)
2559 {
2560 struct intel_engine_cs *engine;
2561
2562 for_each_engine(engine, dev_priv) {
2563 struct intel_context *ce = &ctx->engine[engine->id];
2564 struct drm_i915_gem_object *ctx_obj = ce->state;
2565 void *vaddr;
2566 uint32_t *reg_state;
2567
2568 if (!ctx_obj)
2569 continue;
2570
2571 vaddr = i915_gem_object_pin_map(ctx_obj);
2572 if (WARN_ON(IS_ERR(vaddr)))
2573 continue;
2574
2575 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2576 ctx_obj->dirty = true;
2577
2578 reg_state[CTX_RING_HEAD+1] = 0;
2579 reg_state[CTX_RING_TAIL+1] = 0;
2580
2581 i915_gem_object_unpin_map(ctx_obj);
2582
2583 ce->ringbuf->head = 0;
2584 ce->ringbuf->tail = 0;
2585 }
2586 }
This page took 0.132411 seconds and 5 git commands to generate.