drm/i915: Introduce execlist context status change notification
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211 FAULT_AND_HANG = 0,
212 FAULT_AND_HALT, /* Debug only */
213 FAULT_AND_STREAM,
214 FAULT_AND_CONTINUE /* Unsupported */
215 };
216 #define GEN8_CTX_ID_SHIFT 32
217 #define GEN8_CTX_ID_WIDTH 21
218 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
219 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
220
221 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
222 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223
224 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225 struct intel_engine_cs *engine);
226 static int intel_lr_context_pin(struct i915_gem_context *ctx,
227 struct intel_engine_cs *engine);
228
229 /**
230 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231 * @dev_priv: i915 device private
232 * @enable_execlists: value of i915.enable_execlists module parameter.
233 *
234 * Only certain platforms support Execlists (the prerequisites being
235 * support for Logical Ring Contexts and Aliasing PPGTT or better).
236 *
237 * Return: 1 if Execlists is supported and has to be enabled.
238 */
239 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240 {
241 /* On platforms with execlist available, vGPU will only
242 * support execlist mode, no ring buffer mode.
243 */
244 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 return 1;
246
247 if (INTEL_GEN(dev_priv) >= 9)
248 return 1;
249
250 if (enable_execlists == 0)
251 return 0;
252
253 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254 USES_PPGTT(dev_priv) &&
255 i915.use_mmio_flip >= 0)
256 return 1;
257
258 return 0;
259 }
260
261 static void
262 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263 {
264 struct drm_i915_private *dev_priv = engine->i915;
265
266 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267 engine->idle_lite_restore_wa = ~0;
268
269 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271 (engine->id == VCS || engine->id == VCS2);
272
273 engine->ctx_desc_template = GEN8_CTX_VALID;
274 if (IS_GEN8(dev_priv))
275 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277
278 /* TODO: WaDisableLiteRestore when we start using semaphore
279 * signalling between Command Streamers */
280 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281
282 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
283 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 if (engine->disable_lite_restore_wa)
285 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 }
287
288 /**
289 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290 * descriptor for a pinned context
291 *
292 * @ctx: Context to work on
293 * @engine: Engine the descriptor will be used with
294 *
295 * The context descriptor encodes various attributes of a context,
296 * including its GTT address and some flags. Because it's fairly
297 * expensive to calculate, we'll just do it once and cache the result,
298 * which remains valid until the context is unpinned.
299 *
300 * This is what a descriptor looks like, from LSB to MSB:
301 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
302 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
303 * bits 32-52: ctx ID, a globally unique tag
304 * bits 53-54: mbz, reserved for use by hardware
305 * bits 55-63: group ID, currently unused and set to 0
306 */
307 static void
308 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309 struct intel_engine_cs *engine)
310 {
311 struct intel_context *ce = &ctx->engine[engine->id];
312 u64 desc;
313
314 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315
316 desc = ctx->desc_template; /* bits 3-4 */
317 desc |= engine->ctx_desc_template; /* bits 0-11 */
318 desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
319 /* bits 12-31 */
320 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
321
322 ce->lrc_desc = desc;
323 }
324
325 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326 struct intel_engine_cs *engine)
327 {
328 return ctx->engine[engine->id].lrc_desc;
329 }
330
331 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332 struct drm_i915_gem_request *rq1)
333 {
334
335 struct intel_engine_cs *engine = rq0->engine;
336 struct drm_i915_private *dev_priv = rq0->i915;
337 uint64_t desc[2];
338
339 if (rq1) {
340 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 rq1->elsp_submitted++;
342 } else {
343 desc[1] = 0;
344 }
345
346 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347 rq0->elsp_submitted++;
348
349 /* You must always write both descriptors in the order below. */
350 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352
353 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354 /* The context is automatically loaded after the following */
355 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356
357 /* ELSP is a wo register, use another nearby reg for posting */
358 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 }
360
361 static void
362 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363 {
364 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368 }
369
370 static void execlists_update_context(struct drm_i915_gem_request *rq)
371 {
372 struct intel_engine_cs *engine = rq->engine;
373 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375
376 reg_state[CTX_RING_TAIL+1] = rq->tail;
377
378 /* True 32b PPGTT with dynamic page allocation: update PDP
379 * registers and point the unallocated PDPs to scratch page.
380 * PML4 is allocated during ppgtt init, so this is not needed
381 * in 48-bit mode.
382 */
383 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384 execlists_update_context_pdps(ppgtt, reg_state);
385 }
386
387 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
388 struct drm_i915_gem_request *rq1)
389 {
390 struct drm_i915_private *dev_priv = rq0->i915;
391 unsigned int fw_domains = rq0->engine->fw_domains;
392
393 execlists_update_context(rq0);
394
395 if (rq1)
396 execlists_update_context(rq1);
397
398 spin_lock_irq(&dev_priv->uncore.lock);
399 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400
401 execlists_elsp_write(rq0, rq1);
402
403 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404 spin_unlock_irq(&dev_priv->uncore.lock);
405 }
406
407 static inline void execlists_context_status_change(
408 struct drm_i915_gem_request *rq,
409 unsigned long status)
410 {
411 /*
412 * Only used when GVT-g is enabled now. When GVT-g is disabled,
413 * The compiler should eliminate this function as dead-code.
414 */
415 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416 return;
417
418 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
419 }
420
421 static void execlists_context_unqueue(struct intel_engine_cs *engine)
422 {
423 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424 struct drm_i915_gem_request *cursor, *tmp;
425
426 assert_spin_locked(&engine->execlist_lock);
427
428 /*
429 * If irqs are not active generate a warning as batches that finish
430 * without the irqs may get lost and a GPU Hang may occur.
431 */
432 WARN_ON(!intel_irqs_enabled(engine->i915));
433
434 /* Try to read in pairs */
435 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436 execlist_link) {
437 if (!req0) {
438 req0 = cursor;
439 } else if (req0->ctx == cursor->ctx) {
440 /* Same ctx: ignore first request, as second request
441 * will update tail past first request's workload */
442 cursor->elsp_submitted = req0->elsp_submitted;
443 list_del(&req0->execlist_link);
444 i915_gem_request_unreference(req0);
445 req0 = cursor;
446 } else {
447 req1 = cursor;
448 WARN_ON(req1->elsp_submitted);
449 break;
450 }
451 }
452
453 if (unlikely(!req0))
454 return;
455
456 execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);
457
458 if (req1)
459 execlists_context_status_change(req1,
460 INTEL_CONTEXT_SCHEDULE_IN);
461
462 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
463 /*
464 * WaIdleLiteRestore: make sure we never cause a lite restore
465 * with HEAD==TAIL.
466 *
467 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
468 * resubmit the request. See gen8_emit_request() for where we
469 * prepare the padding after the end of the request.
470 */
471 struct intel_ringbuffer *ringbuf;
472
473 ringbuf = req0->ctx->engine[engine->id].ringbuf;
474 req0->tail += 8;
475 req0->tail &= ringbuf->size - 1;
476 }
477
478 execlists_submit_requests(req0, req1);
479 }
480
481 static unsigned int
482 execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
483 {
484 struct drm_i915_gem_request *head_req;
485
486 assert_spin_locked(&engine->execlist_lock);
487
488 head_req = list_first_entry_or_null(&engine->execlist_queue,
489 struct drm_i915_gem_request,
490 execlist_link);
491
492 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
493 return 0;
494
495 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
496
497 if (--head_req->elsp_submitted > 0)
498 return 0;
499
500 execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);
501
502 list_del(&head_req->execlist_link);
503 i915_gem_request_unreference(head_req);
504
505 return 1;
506 }
507
508 static u32
509 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
510 u32 *context_id)
511 {
512 struct drm_i915_private *dev_priv = engine->i915;
513 u32 status;
514
515 read_pointer %= GEN8_CSB_ENTRIES;
516
517 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
518
519 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
520 return 0;
521
522 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
523 read_pointer));
524
525 return status;
526 }
527
528 /**
529 * intel_lrc_irq_handler() - handle Context Switch interrupts
530 * @data: tasklet handler passed in unsigned long
531 *
532 * Check the unread Context Status Buffers and manage the submission of new
533 * contexts to the ELSP accordingly.
534 */
535 static void intel_lrc_irq_handler(unsigned long data)
536 {
537 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
538 struct drm_i915_private *dev_priv = engine->i915;
539 u32 status_pointer;
540 unsigned int read_pointer, write_pointer;
541 u32 csb[GEN8_CSB_ENTRIES][2];
542 unsigned int csb_read = 0, i;
543 unsigned int submit_contexts = 0;
544
545 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
546
547 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
548
549 read_pointer = engine->next_context_status_buffer;
550 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
551 if (read_pointer > write_pointer)
552 write_pointer += GEN8_CSB_ENTRIES;
553
554 while (read_pointer < write_pointer) {
555 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
556 break;
557 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
558 &csb[csb_read][1]);
559 csb_read++;
560 }
561
562 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
563
564 /* Update the read pointer to the old write pointer. Manual ringbuffer
565 * management ftw </sarcasm> */
566 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
567 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
568 engine->next_context_status_buffer << 8));
569
570 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
571
572 spin_lock(&engine->execlist_lock);
573
574 for (i = 0; i < csb_read; i++) {
575 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
576 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
577 if (execlists_check_remove_request(engine, csb[i][1]))
578 WARN(1, "Lite Restored request removed from queue\n");
579 } else
580 WARN(1, "Preemption without Lite Restore\n");
581 }
582
583 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
584 GEN8_CTX_STATUS_ELEMENT_SWITCH))
585 submit_contexts +=
586 execlists_check_remove_request(engine, csb[i][1]);
587 }
588
589 if (submit_contexts) {
590 if (!engine->disable_lite_restore_wa ||
591 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
592 execlists_context_unqueue(engine);
593 }
594
595 spin_unlock(&engine->execlist_lock);
596
597 if (unlikely(submit_contexts > 2))
598 DRM_ERROR("More than two context complete events?\n");
599 }
600
601 static void execlists_context_queue(struct drm_i915_gem_request *request)
602 {
603 struct intel_engine_cs *engine = request->engine;
604 struct drm_i915_gem_request *cursor;
605 int num_elements = 0;
606
607 spin_lock_bh(&engine->execlist_lock);
608
609 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
610 if (++num_elements > 2)
611 break;
612
613 if (num_elements > 2) {
614 struct drm_i915_gem_request *tail_req;
615
616 tail_req = list_last_entry(&engine->execlist_queue,
617 struct drm_i915_gem_request,
618 execlist_link);
619
620 if (request->ctx == tail_req->ctx) {
621 WARN(tail_req->elsp_submitted != 0,
622 "More than 2 already-submitted reqs queued\n");
623 list_del(&tail_req->execlist_link);
624 i915_gem_request_unreference(tail_req);
625 }
626 }
627
628 i915_gem_request_reference(request);
629 list_add_tail(&request->execlist_link, &engine->execlist_queue);
630 request->ctx_hw_id = request->ctx->hw_id;
631 if (num_elements == 0)
632 execlists_context_unqueue(engine);
633
634 spin_unlock_bh(&engine->execlist_lock);
635 }
636
637 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
638 {
639 struct intel_engine_cs *engine = req->engine;
640 uint32_t flush_domains;
641 int ret;
642
643 flush_domains = 0;
644 if (engine->gpu_caches_dirty)
645 flush_domains = I915_GEM_GPU_DOMAINS;
646
647 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
648 if (ret)
649 return ret;
650
651 engine->gpu_caches_dirty = false;
652 return 0;
653 }
654
655 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
656 struct list_head *vmas)
657 {
658 const unsigned other_rings = ~intel_engine_flag(req->engine);
659 struct i915_vma *vma;
660 uint32_t flush_domains = 0;
661 bool flush_chipset = false;
662 int ret;
663
664 list_for_each_entry(vma, vmas, exec_list) {
665 struct drm_i915_gem_object *obj = vma->obj;
666
667 if (obj->active & other_rings) {
668 ret = i915_gem_object_sync(obj, req->engine, &req);
669 if (ret)
670 return ret;
671 }
672
673 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
674 flush_chipset |= i915_gem_clflush_object(obj, false);
675
676 flush_domains |= obj->base.write_domain;
677 }
678
679 if (flush_domains & I915_GEM_DOMAIN_GTT)
680 wmb();
681
682 /* Unconditionally invalidate gpu caches and ensure that we do flush
683 * any residual writes from the previous batch.
684 */
685 return logical_ring_invalidate_all_caches(req);
686 }
687
688 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
689 {
690 struct intel_engine_cs *engine = request->engine;
691 struct intel_context *ce = &request->ctx->engine[engine->id];
692 int ret;
693
694 /* Flush enough space to reduce the likelihood of waiting after
695 * we start building the request - in which case we will just
696 * have to repeat work.
697 */
698 request->reserved_space += EXECLISTS_REQUEST_SIZE;
699
700 if (!ce->state) {
701 ret = execlists_context_deferred_alloc(request->ctx, engine);
702 if (ret)
703 return ret;
704 }
705
706 request->ringbuf = ce->ringbuf;
707
708 if (i915.enable_guc_submission) {
709 /*
710 * Check that the GuC has space for the request before
711 * going any further, as the i915_add_request() call
712 * later on mustn't fail ...
713 */
714 ret = i915_guc_wq_check_space(request);
715 if (ret)
716 return ret;
717 }
718
719 ret = intel_lr_context_pin(request->ctx, engine);
720 if (ret)
721 return ret;
722
723 ret = intel_ring_begin(request, 0);
724 if (ret)
725 goto err_unpin;
726
727 if (!ce->initialised) {
728 ret = engine->init_context(request);
729 if (ret)
730 goto err_unpin;
731
732 ce->initialised = true;
733 }
734
735 /* Note that after this point, we have committed to using
736 * this request as it is being used to both track the
737 * state of engine initialisation and liveness of the
738 * golden renderstate above. Think twice before you try
739 * to cancel/unwind this request now.
740 */
741
742 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
743 return 0;
744
745 err_unpin:
746 intel_lr_context_unpin(request->ctx, engine);
747 return ret;
748 }
749
750 /*
751 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
752 * @request: Request to advance the logical ringbuffer of.
753 *
754 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
755 * really happens during submission is that the context and current tail will be placed
756 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
757 * point, the tail *inside* the context is updated and the ELSP written to.
758 */
759 static int
760 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
761 {
762 struct intel_ringbuffer *ringbuf = request->ringbuf;
763 struct intel_engine_cs *engine = request->engine;
764
765 intel_logical_ring_advance(ringbuf);
766 request->tail = ringbuf->tail;
767
768 /*
769 * Here we add two extra NOOPs as padding to avoid
770 * lite restore of a context with HEAD==TAIL.
771 *
772 * Caller must reserve WA_TAIL_DWORDS for us!
773 */
774 intel_logical_ring_emit(ringbuf, MI_NOOP);
775 intel_logical_ring_emit(ringbuf, MI_NOOP);
776 intel_logical_ring_advance(ringbuf);
777
778 if (intel_engine_stopped(engine))
779 return 0;
780
781 /* We keep the previous context alive until we retire the following
782 * request. This ensures that any the context object is still pinned
783 * for any residual writes the HW makes into it on the context switch
784 * into the next object following the breadcrumb. Otherwise, we may
785 * retire the context too early.
786 */
787 request->previous_context = engine->last_context;
788 engine->last_context = request->ctx;
789
790 if (i915.enable_guc_submission)
791 i915_guc_submit(request);
792 else
793 execlists_context_queue(request);
794
795 return 0;
796 }
797
798 /**
799 * execlists_submission() - submit a batchbuffer for execution, Execlists style
800 * @params: execbuffer call parameters.
801 * @args: execbuffer call arguments.
802 * @vmas: list of vmas.
803 *
804 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
805 * away the submission details of the execbuffer ioctl call.
806 *
807 * Return: non-zero if the submission fails.
808 */
809 int intel_execlists_submission(struct i915_execbuffer_params *params,
810 struct drm_i915_gem_execbuffer2 *args,
811 struct list_head *vmas)
812 {
813 struct drm_device *dev = params->dev;
814 struct intel_engine_cs *engine = params->engine;
815 struct drm_i915_private *dev_priv = dev->dev_private;
816 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
817 u64 exec_start;
818 int instp_mode;
819 u32 instp_mask;
820 int ret;
821
822 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
823 instp_mask = I915_EXEC_CONSTANTS_MASK;
824 switch (instp_mode) {
825 case I915_EXEC_CONSTANTS_REL_GENERAL:
826 case I915_EXEC_CONSTANTS_ABSOLUTE:
827 case I915_EXEC_CONSTANTS_REL_SURFACE:
828 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
829 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
830 return -EINVAL;
831 }
832
833 if (instp_mode != dev_priv->relative_constants_mode) {
834 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
835 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
836 return -EINVAL;
837 }
838
839 /* The HW changed the meaning on this bit on gen6 */
840 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
841 }
842 break;
843 default:
844 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
845 return -EINVAL;
846 }
847
848 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
849 DRM_DEBUG("sol reset is gen7 only\n");
850 return -EINVAL;
851 }
852
853 ret = execlists_move_to_gpu(params->request, vmas);
854 if (ret)
855 return ret;
856
857 if (engine == &dev_priv->engine[RCS] &&
858 instp_mode != dev_priv->relative_constants_mode) {
859 ret = intel_ring_begin(params->request, 4);
860 if (ret)
861 return ret;
862
863 intel_logical_ring_emit(ringbuf, MI_NOOP);
864 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
865 intel_logical_ring_emit_reg(ringbuf, INSTPM);
866 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
867 intel_logical_ring_advance(ringbuf);
868
869 dev_priv->relative_constants_mode = instp_mode;
870 }
871
872 exec_start = params->batch_obj_vm_offset +
873 args->batch_start_offset;
874
875 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
876 if (ret)
877 return ret;
878
879 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
880
881 i915_gem_execbuffer_move_to_active(vmas, params->request);
882
883 return 0;
884 }
885
886 void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
887 {
888 struct drm_i915_gem_request *req, *tmp;
889 LIST_HEAD(cancel_list);
890
891 WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
892
893 spin_lock_bh(&engine->execlist_lock);
894 list_replace_init(&engine->execlist_queue, &cancel_list);
895 spin_unlock_bh(&engine->execlist_lock);
896
897 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
898 list_del(&req->execlist_link);
899 i915_gem_request_unreference(req);
900 }
901 }
902
903 void intel_logical_ring_stop(struct intel_engine_cs *engine)
904 {
905 struct drm_i915_private *dev_priv = engine->i915;
906 int ret;
907
908 if (!intel_engine_initialized(engine))
909 return;
910
911 ret = intel_engine_idle(engine);
912 if (ret)
913 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
914 engine->name, ret);
915
916 /* TODO: Is this correct with Execlists enabled? */
917 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
918 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
919 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
920 return;
921 }
922 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
923 }
924
925 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
926 {
927 struct intel_engine_cs *engine = req->engine;
928 int ret;
929
930 if (!engine->gpu_caches_dirty)
931 return 0;
932
933 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
934 if (ret)
935 return ret;
936
937 engine->gpu_caches_dirty = false;
938 return 0;
939 }
940
941 static int intel_lr_context_pin(struct i915_gem_context *ctx,
942 struct intel_engine_cs *engine)
943 {
944 struct drm_i915_private *dev_priv = ctx->i915;
945 struct intel_context *ce = &ctx->engine[engine->id];
946 void *vaddr;
947 u32 *lrc_reg_state;
948 int ret;
949
950 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
951
952 if (ce->pin_count++)
953 return 0;
954
955 ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
956 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
957 if (ret)
958 goto err;
959
960 vaddr = i915_gem_object_pin_map(ce->state);
961 if (IS_ERR(vaddr)) {
962 ret = PTR_ERR(vaddr);
963 goto unpin_ctx_obj;
964 }
965
966 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
967
968 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
969 if (ret)
970 goto unpin_map;
971
972 i915_gem_context_reference(ctx);
973 ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
974 intel_lr_context_descriptor_update(ctx, engine);
975
976 lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
977 ce->lrc_reg_state = lrc_reg_state;
978 ce->state->dirty = true;
979
980 /* Invalidate GuC TLB. */
981 if (i915.enable_guc_submission)
982 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
983
984 return 0;
985
986 unpin_map:
987 i915_gem_object_unpin_map(ce->state);
988 unpin_ctx_obj:
989 i915_gem_object_ggtt_unpin(ce->state);
990 err:
991 ce->pin_count = 0;
992 return ret;
993 }
994
995 void intel_lr_context_unpin(struct i915_gem_context *ctx,
996 struct intel_engine_cs *engine)
997 {
998 struct intel_context *ce = &ctx->engine[engine->id];
999
1000 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
1001 GEM_BUG_ON(ce->pin_count == 0);
1002
1003 if (--ce->pin_count)
1004 return;
1005
1006 intel_unpin_ringbuffer_obj(ce->ringbuf);
1007
1008 i915_gem_object_unpin_map(ce->state);
1009 i915_gem_object_ggtt_unpin(ce->state);
1010
1011 ce->lrc_vma = NULL;
1012 ce->lrc_desc = 0;
1013 ce->lrc_reg_state = NULL;
1014
1015 i915_gem_context_unreference(ctx);
1016 }
1017
1018 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1019 {
1020 int ret, i;
1021 struct intel_engine_cs *engine = req->engine;
1022 struct intel_ringbuffer *ringbuf = req->ringbuf;
1023 struct i915_workarounds *w = &req->i915->workarounds;
1024
1025 if (w->count == 0)
1026 return 0;
1027
1028 engine->gpu_caches_dirty = true;
1029 ret = logical_ring_flush_all_caches(req);
1030 if (ret)
1031 return ret;
1032
1033 ret = intel_ring_begin(req, w->count * 2 + 2);
1034 if (ret)
1035 return ret;
1036
1037 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1038 for (i = 0; i < w->count; i++) {
1039 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1040 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1041 }
1042 intel_logical_ring_emit(ringbuf, MI_NOOP);
1043
1044 intel_logical_ring_advance(ringbuf);
1045
1046 engine->gpu_caches_dirty = true;
1047 ret = logical_ring_flush_all_caches(req);
1048 if (ret)
1049 return ret;
1050
1051 return 0;
1052 }
1053
1054 #define wa_ctx_emit(batch, index, cmd) \
1055 do { \
1056 int __index = (index)++; \
1057 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1058 return -ENOSPC; \
1059 } \
1060 batch[__index] = (cmd); \
1061 } while (0)
1062
1063 #define wa_ctx_emit_reg(batch, index, reg) \
1064 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1065
1066 /*
1067 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1068 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1069 * but there is a slight complication as this is applied in WA batch where the
1070 * values are only initialized once so we cannot take register value at the
1071 * beginning and reuse it further; hence we save its value to memory, upload a
1072 * constant value with bit21 set and then we restore it back with the saved value.
1073 * To simplify the WA, a constant value is formed by using the default value
1074 * of this register. This shouldn't be a problem because we are only modifying
1075 * it for a short period and this batch in non-premptible. We can ofcourse
1076 * use additional instructions that read the actual value of the register
1077 * at that time and set our bit of interest but it makes the WA complicated.
1078 *
1079 * This WA is also required for Gen9 so extracting as a function avoids
1080 * code duplication.
1081 */
1082 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1083 uint32_t *const batch,
1084 uint32_t index)
1085 {
1086 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1087
1088 /*
1089 * WaDisableLSQCROPERFforOCL:skl,kbl
1090 * This WA is implemented in skl_init_clock_gating() but since
1091 * this batch updates GEN8_L3SQCREG4 with default value we need to
1092 * set this bit here to retain the WA during flush.
1093 */
1094 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
1095 IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1096 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1097
1098 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1099 MI_SRM_LRM_GLOBAL_GTT));
1100 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1101 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1102 wa_ctx_emit(batch, index, 0);
1103
1104 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1105 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1106 wa_ctx_emit(batch, index, l3sqc4_flush);
1107
1108 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1109 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1110 PIPE_CONTROL_DC_FLUSH_ENABLE));
1111 wa_ctx_emit(batch, index, 0);
1112 wa_ctx_emit(batch, index, 0);
1113 wa_ctx_emit(batch, index, 0);
1114 wa_ctx_emit(batch, index, 0);
1115
1116 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1117 MI_SRM_LRM_GLOBAL_GTT));
1118 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1119 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1120 wa_ctx_emit(batch, index, 0);
1121
1122 return index;
1123 }
1124
1125 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1126 uint32_t offset,
1127 uint32_t start_alignment)
1128 {
1129 return wa_ctx->offset = ALIGN(offset, start_alignment);
1130 }
1131
1132 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1133 uint32_t offset,
1134 uint32_t size_alignment)
1135 {
1136 wa_ctx->size = offset - wa_ctx->offset;
1137
1138 WARN(wa_ctx->size % size_alignment,
1139 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1140 wa_ctx->size, size_alignment);
1141 return 0;
1142 }
1143
1144 /**
1145 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1146 *
1147 * @engine: only applicable for RCS
1148 * @wa_ctx: structure representing wa_ctx
1149 * offset: specifies start of the batch, should be cache-aligned. This is updated
1150 * with the offset value received as input.
1151 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1152 * @batch: page in which WA are loaded
1153 * @offset: This field specifies the start of the batch, it should be
1154 * cache-aligned otherwise it is adjusted accordingly.
1155 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1156 * initialized at the beginning and shared across all contexts but this field
1157 * helps us to have multiple batches at different offsets and select them based
1158 * on a criteria. At the moment this batch always start at the beginning of the page
1159 * and at this point we don't have multiple wa_ctx batch buffers.
1160 *
1161 * The number of WA applied are not known at the beginning; we use this field
1162 * to return the no of DWORDS written.
1163 *
1164 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1165 * so it adds NOOPs as padding to make it cacheline aligned.
1166 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1167 * makes a complete batch buffer.
1168 *
1169 * Return: non-zero if we exceed the PAGE_SIZE limit.
1170 */
1171
1172 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1173 struct i915_wa_ctx_bb *wa_ctx,
1174 uint32_t *const batch,
1175 uint32_t *offset)
1176 {
1177 uint32_t scratch_addr;
1178 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1179
1180 /* WaDisableCtxRestoreArbitration:bdw,chv */
1181 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1182
1183 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1184 if (IS_BROADWELL(engine->i915)) {
1185 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1186 if (rc < 0)
1187 return rc;
1188 index = rc;
1189 }
1190
1191 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1192 /* Actual scratch location is at 128 bytes offset */
1193 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1194
1195 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1196 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1197 PIPE_CONTROL_GLOBAL_GTT_IVB |
1198 PIPE_CONTROL_CS_STALL |
1199 PIPE_CONTROL_QW_WRITE));
1200 wa_ctx_emit(batch, index, scratch_addr);
1201 wa_ctx_emit(batch, index, 0);
1202 wa_ctx_emit(batch, index, 0);
1203 wa_ctx_emit(batch, index, 0);
1204
1205 /* Pad to end of cacheline */
1206 while (index % CACHELINE_DWORDS)
1207 wa_ctx_emit(batch, index, MI_NOOP);
1208
1209 /*
1210 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1211 * execution depends on the length specified in terms of cache lines
1212 * in the register CTX_RCS_INDIRECT_CTX
1213 */
1214
1215 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1216 }
1217
1218 /**
1219 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1220 *
1221 * @engine: only applicable for RCS
1222 * @wa_ctx: structure representing wa_ctx
1223 * offset: specifies start of the batch, should be cache-aligned.
1224 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1225 * @batch: page in which WA are loaded
1226 * @offset: This field specifies the start of this batch.
1227 * This batch is started immediately after indirect_ctx batch. Since we ensure
1228 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1229 *
1230 * The number of DWORDS written are returned using this field.
1231 *
1232 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1233 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1234 */
1235 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1236 struct i915_wa_ctx_bb *wa_ctx,
1237 uint32_t *const batch,
1238 uint32_t *offset)
1239 {
1240 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1241
1242 /* WaDisableCtxRestoreArbitration:bdw,chv */
1243 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1244
1245 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1246
1247 return wa_ctx_end(wa_ctx, *offset = index, 1);
1248 }
1249
1250 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1251 struct i915_wa_ctx_bb *wa_ctx,
1252 uint32_t *const batch,
1253 uint32_t *offset)
1254 {
1255 int ret;
1256 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1257
1258 /* WaDisableCtxRestoreArbitration:skl,bxt */
1259 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1260 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1261 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1262
1263 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1264 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1265 if (ret < 0)
1266 return ret;
1267 index = ret;
1268
1269 /* WaClearSlmSpaceAtContextSwitch:kbl */
1270 /* Actual scratch location is at 128 bytes offset */
1271 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1272 uint32_t scratch_addr
1273 = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1274
1275 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1276 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1277 PIPE_CONTROL_GLOBAL_GTT_IVB |
1278 PIPE_CONTROL_CS_STALL |
1279 PIPE_CONTROL_QW_WRITE));
1280 wa_ctx_emit(batch, index, scratch_addr);
1281 wa_ctx_emit(batch, index, 0);
1282 wa_ctx_emit(batch, index, 0);
1283 wa_ctx_emit(batch, index, 0);
1284 }
1285 /* Pad to end of cacheline */
1286 while (index % CACHELINE_DWORDS)
1287 wa_ctx_emit(batch, index, MI_NOOP);
1288
1289 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1290 }
1291
1292 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1293 struct i915_wa_ctx_bb *wa_ctx,
1294 uint32_t *const batch,
1295 uint32_t *offset)
1296 {
1297 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1298
1299 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1300 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1301 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1302 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1303 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1304 wa_ctx_emit(batch, index,
1305 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1306 wa_ctx_emit(batch, index, MI_NOOP);
1307 }
1308
1309 /* WaClearTdlStateAckDirtyBits:bxt */
1310 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1311 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1312
1313 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1314 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1315
1316 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1317 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1318
1319 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1320 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1321
1322 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1323 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1324 wa_ctx_emit(batch, index, 0x0);
1325 wa_ctx_emit(batch, index, MI_NOOP);
1326 }
1327
1328 /* WaDisableCtxRestoreArbitration:skl,bxt */
1329 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1330 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1331 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1332
1333 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1334
1335 return wa_ctx_end(wa_ctx, *offset = index, 1);
1336 }
1337
1338 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1339 {
1340 int ret;
1341
1342 engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1343 PAGE_ALIGN(size));
1344 if (IS_ERR(engine->wa_ctx.obj)) {
1345 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1346 ret = PTR_ERR(engine->wa_ctx.obj);
1347 engine->wa_ctx.obj = NULL;
1348 return ret;
1349 }
1350
1351 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1352 if (ret) {
1353 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1354 ret);
1355 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1356 return ret;
1357 }
1358
1359 return 0;
1360 }
1361
1362 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1363 {
1364 if (engine->wa_ctx.obj) {
1365 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1366 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1367 engine->wa_ctx.obj = NULL;
1368 }
1369 }
1370
1371 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1372 {
1373 int ret;
1374 uint32_t *batch;
1375 uint32_t offset;
1376 struct page *page;
1377 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1378
1379 WARN_ON(engine->id != RCS);
1380
1381 /* update this when WA for higher Gen are added */
1382 if (INTEL_GEN(engine->i915) > 9) {
1383 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1384 INTEL_GEN(engine->i915));
1385 return 0;
1386 }
1387
1388 /* some WA perform writes to scratch page, ensure it is valid */
1389 if (engine->scratch.obj == NULL) {
1390 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1391 return -EINVAL;
1392 }
1393
1394 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1395 if (ret) {
1396 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1397 return ret;
1398 }
1399
1400 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1401 batch = kmap_atomic(page);
1402 offset = 0;
1403
1404 if (IS_GEN8(engine->i915)) {
1405 ret = gen8_init_indirectctx_bb(engine,
1406 &wa_ctx->indirect_ctx,
1407 batch,
1408 &offset);
1409 if (ret)
1410 goto out;
1411
1412 ret = gen8_init_perctx_bb(engine,
1413 &wa_ctx->per_ctx,
1414 batch,
1415 &offset);
1416 if (ret)
1417 goto out;
1418 } else if (IS_GEN9(engine->i915)) {
1419 ret = gen9_init_indirectctx_bb(engine,
1420 &wa_ctx->indirect_ctx,
1421 batch,
1422 &offset);
1423 if (ret)
1424 goto out;
1425
1426 ret = gen9_init_perctx_bb(engine,
1427 &wa_ctx->per_ctx,
1428 batch,
1429 &offset);
1430 if (ret)
1431 goto out;
1432 }
1433
1434 out:
1435 kunmap_atomic(batch);
1436 if (ret)
1437 lrc_destroy_wa_ctx_obj(engine);
1438
1439 return ret;
1440 }
1441
1442 static void lrc_init_hws(struct intel_engine_cs *engine)
1443 {
1444 struct drm_i915_private *dev_priv = engine->i915;
1445
1446 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1447 (u32)engine->status_page.gfx_addr);
1448 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1449 }
1450
1451 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1452 {
1453 struct drm_i915_private *dev_priv = engine->i915;
1454 unsigned int next_context_status_buffer_hw;
1455
1456 lrc_init_hws(engine);
1457
1458 I915_WRITE_IMR(engine,
1459 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1460 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1461
1462 I915_WRITE(RING_MODE_GEN7(engine),
1463 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1464 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1465 POSTING_READ(RING_MODE_GEN7(engine));
1466
1467 /*
1468 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1469 * zero, we need to read the write pointer from hardware and use its
1470 * value because "this register is power context save restored".
1471 * Effectively, these states have been observed:
1472 *
1473 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1474 * BDW | CSB regs not reset | CSB regs reset |
1475 * CHT | CSB regs not reset | CSB regs not reset |
1476 * SKL | ? | ? |
1477 * BXT | ? | ? |
1478 */
1479 next_context_status_buffer_hw =
1480 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1481
1482 /*
1483 * When the CSB registers are reset (also after power-up / gpu reset),
1484 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1485 * this special case, so the first element read is CSB[0].
1486 */
1487 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1488 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1489
1490 engine->next_context_status_buffer = next_context_status_buffer_hw;
1491 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1492
1493 intel_engine_init_hangcheck(engine);
1494
1495 return intel_mocs_init_engine(engine);
1496 }
1497
1498 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1499 {
1500 struct drm_i915_private *dev_priv = engine->i915;
1501 int ret;
1502
1503 ret = gen8_init_common_ring(engine);
1504 if (ret)
1505 return ret;
1506
1507 /* We need to disable the AsyncFlip performance optimisations in order
1508 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1509 * programmed to '1' on all products.
1510 *
1511 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1512 */
1513 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1514
1515 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1516
1517 return init_workarounds_ring(engine);
1518 }
1519
1520 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1521 {
1522 int ret;
1523
1524 ret = gen8_init_common_ring(engine);
1525 if (ret)
1526 return ret;
1527
1528 return init_workarounds_ring(engine);
1529 }
1530
1531 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1532 {
1533 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1534 struct intel_engine_cs *engine = req->engine;
1535 struct intel_ringbuffer *ringbuf = req->ringbuf;
1536 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1537 int i, ret;
1538
1539 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1540 if (ret)
1541 return ret;
1542
1543 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1544 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1545 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1546
1547 intel_logical_ring_emit_reg(ringbuf,
1548 GEN8_RING_PDP_UDW(engine, i));
1549 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1550 intel_logical_ring_emit_reg(ringbuf,
1551 GEN8_RING_PDP_LDW(engine, i));
1552 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1553 }
1554
1555 intel_logical_ring_emit(ringbuf, MI_NOOP);
1556 intel_logical_ring_advance(ringbuf);
1557
1558 return 0;
1559 }
1560
1561 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1562 u64 offset, unsigned dispatch_flags)
1563 {
1564 struct intel_ringbuffer *ringbuf = req->ringbuf;
1565 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1566 int ret;
1567
1568 /* Don't rely in hw updating PDPs, specially in lite-restore.
1569 * Ideally, we should set Force PD Restore in ctx descriptor,
1570 * but we can't. Force Restore would be a second option, but
1571 * it is unsafe in case of lite-restore (because the ctx is
1572 * not idle). PML4 is allocated during ppgtt init so this is
1573 * not needed in 48-bit.*/
1574 if (req->ctx->ppgtt &&
1575 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1576 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1577 !intel_vgpu_active(req->i915)) {
1578 ret = intel_logical_ring_emit_pdps(req);
1579 if (ret)
1580 return ret;
1581 }
1582
1583 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1584 }
1585
1586 ret = intel_ring_begin(req, 4);
1587 if (ret)
1588 return ret;
1589
1590 /* FIXME(BDW): Address space and security selectors. */
1591 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1592 (ppgtt<<8) |
1593 (dispatch_flags & I915_DISPATCH_RS ?
1594 MI_BATCH_RESOURCE_STREAMER : 0));
1595 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1596 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1597 intel_logical_ring_emit(ringbuf, MI_NOOP);
1598 intel_logical_ring_advance(ringbuf);
1599
1600 return 0;
1601 }
1602
1603 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1604 {
1605 struct drm_i915_private *dev_priv = engine->i915;
1606 unsigned long flags;
1607
1608 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1609 return false;
1610
1611 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1612 if (engine->irq_refcount++ == 0) {
1613 I915_WRITE_IMR(engine,
1614 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1615 POSTING_READ(RING_IMR(engine->mmio_base));
1616 }
1617 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1618
1619 return true;
1620 }
1621
1622 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1623 {
1624 struct drm_i915_private *dev_priv = engine->i915;
1625 unsigned long flags;
1626
1627 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1628 if (--engine->irq_refcount == 0) {
1629 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1630 POSTING_READ(RING_IMR(engine->mmio_base));
1631 }
1632 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1633 }
1634
1635 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1636 u32 invalidate_domains,
1637 u32 unused)
1638 {
1639 struct intel_ringbuffer *ringbuf = request->ringbuf;
1640 struct intel_engine_cs *engine = ringbuf->engine;
1641 struct drm_i915_private *dev_priv = request->i915;
1642 uint32_t cmd;
1643 int ret;
1644
1645 ret = intel_ring_begin(request, 4);
1646 if (ret)
1647 return ret;
1648
1649 cmd = MI_FLUSH_DW + 1;
1650
1651 /* We always require a command barrier so that subsequent
1652 * commands, such as breadcrumb interrupts, are strictly ordered
1653 * wrt the contents of the write cache being flushed to memory
1654 * (and thus being coherent from the CPU).
1655 */
1656 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1657
1658 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1659 cmd |= MI_INVALIDATE_TLB;
1660 if (engine == &dev_priv->engine[VCS])
1661 cmd |= MI_INVALIDATE_BSD;
1662 }
1663
1664 intel_logical_ring_emit(ringbuf, cmd);
1665 intel_logical_ring_emit(ringbuf,
1666 I915_GEM_HWS_SCRATCH_ADDR |
1667 MI_FLUSH_DW_USE_GTT);
1668 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1669 intel_logical_ring_emit(ringbuf, 0); /* value */
1670 intel_logical_ring_advance(ringbuf);
1671
1672 return 0;
1673 }
1674
1675 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1676 u32 invalidate_domains,
1677 u32 flush_domains)
1678 {
1679 struct intel_ringbuffer *ringbuf = request->ringbuf;
1680 struct intel_engine_cs *engine = ringbuf->engine;
1681 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1682 bool vf_flush_wa = false, dc_flush_wa = false;
1683 u32 flags = 0;
1684 int ret;
1685 int len;
1686
1687 flags |= PIPE_CONTROL_CS_STALL;
1688
1689 if (flush_domains) {
1690 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1691 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1692 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1693 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1694 }
1695
1696 if (invalidate_domains) {
1697 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1698 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1699 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1700 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1701 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1702 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1703 flags |= PIPE_CONTROL_QW_WRITE;
1704 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1705
1706 /*
1707 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1708 * pipe control.
1709 */
1710 if (IS_GEN9(request->i915))
1711 vf_flush_wa = true;
1712
1713 /* WaForGAMHang:kbl */
1714 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1715 dc_flush_wa = true;
1716 }
1717
1718 len = 6;
1719
1720 if (vf_flush_wa)
1721 len += 6;
1722
1723 if (dc_flush_wa)
1724 len += 12;
1725
1726 ret = intel_ring_begin(request, len);
1727 if (ret)
1728 return ret;
1729
1730 if (vf_flush_wa) {
1731 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1732 intel_logical_ring_emit(ringbuf, 0);
1733 intel_logical_ring_emit(ringbuf, 0);
1734 intel_logical_ring_emit(ringbuf, 0);
1735 intel_logical_ring_emit(ringbuf, 0);
1736 intel_logical_ring_emit(ringbuf, 0);
1737 }
1738
1739 if (dc_flush_wa) {
1740 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1741 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
1742 intel_logical_ring_emit(ringbuf, 0);
1743 intel_logical_ring_emit(ringbuf, 0);
1744 intel_logical_ring_emit(ringbuf, 0);
1745 intel_logical_ring_emit(ringbuf, 0);
1746 }
1747
1748 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1749 intel_logical_ring_emit(ringbuf, flags);
1750 intel_logical_ring_emit(ringbuf, scratch_addr);
1751 intel_logical_ring_emit(ringbuf, 0);
1752 intel_logical_ring_emit(ringbuf, 0);
1753 intel_logical_ring_emit(ringbuf, 0);
1754
1755 if (dc_flush_wa) {
1756 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1757 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
1758 intel_logical_ring_emit(ringbuf, 0);
1759 intel_logical_ring_emit(ringbuf, 0);
1760 intel_logical_ring_emit(ringbuf, 0);
1761 intel_logical_ring_emit(ringbuf, 0);
1762 }
1763
1764 intel_logical_ring_advance(ringbuf);
1765
1766 return 0;
1767 }
1768
1769 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1770 {
1771 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1772 }
1773
1774 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1775 {
1776 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1777 }
1778
1779 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1780 {
1781 /*
1782 * On BXT A steppings there is a HW coherency issue whereby the
1783 * MI_STORE_DATA_IMM storing the completed request's seqno
1784 * occasionally doesn't invalidate the CPU cache. Work around this by
1785 * clflushing the corresponding cacheline whenever the caller wants
1786 * the coherency to be guaranteed. Note that this cacheline is known
1787 * to be clean at this point, since we only write it in
1788 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1789 * this clflush in practice becomes an invalidate operation.
1790 */
1791 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1792 }
1793
1794 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1795 {
1796 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1797
1798 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1799 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1800 }
1801
1802 /*
1803 * Reserve space for 2 NOOPs at the end of each request to be
1804 * used as a workaround for not being allowed to do lite
1805 * restore with HEAD==TAIL (WaIdleLiteRestore).
1806 */
1807 #define WA_TAIL_DWORDS 2
1808
1809 static int gen8_emit_request(struct drm_i915_gem_request *request)
1810 {
1811 struct intel_ringbuffer *ringbuf = request->ringbuf;
1812 int ret;
1813
1814 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1815 if (ret)
1816 return ret;
1817
1818 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1819 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1820
1821 intel_logical_ring_emit(ringbuf,
1822 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1823 intel_logical_ring_emit(ringbuf,
1824 intel_hws_seqno_address(request->engine) |
1825 MI_FLUSH_DW_USE_GTT);
1826 intel_logical_ring_emit(ringbuf, 0);
1827 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1828 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1829 intel_logical_ring_emit(ringbuf, MI_NOOP);
1830 return intel_logical_ring_advance_and_submit(request);
1831 }
1832
1833 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1834 {
1835 struct intel_ringbuffer *ringbuf = request->ringbuf;
1836 int ret;
1837
1838 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1839 if (ret)
1840 return ret;
1841
1842 /* We're using qword write, seqno should be aligned to 8 bytes. */
1843 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1844
1845 /* w/a for post sync ops following a GPGPU operation we
1846 * need a prior CS_STALL, which is emitted by the flush
1847 * following the batch.
1848 */
1849 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1850 intel_logical_ring_emit(ringbuf,
1851 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1852 PIPE_CONTROL_CS_STALL |
1853 PIPE_CONTROL_QW_WRITE));
1854 intel_logical_ring_emit(ringbuf,
1855 intel_hws_seqno_address(request->engine));
1856 intel_logical_ring_emit(ringbuf, 0);
1857 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1858 /* We're thrashing one dword of HWS. */
1859 intel_logical_ring_emit(ringbuf, 0);
1860 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1861 intel_logical_ring_emit(ringbuf, MI_NOOP);
1862 return intel_logical_ring_advance_and_submit(request);
1863 }
1864
1865 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1866 {
1867 struct render_state so;
1868 int ret;
1869
1870 ret = i915_gem_render_state_prepare(req->engine, &so);
1871 if (ret)
1872 return ret;
1873
1874 if (so.rodata == NULL)
1875 return 0;
1876
1877 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1878 I915_DISPATCH_SECURE);
1879 if (ret)
1880 goto out;
1881
1882 ret = req->engine->emit_bb_start(req,
1883 (so.ggtt_offset + so.aux_batch_offset),
1884 I915_DISPATCH_SECURE);
1885 if (ret)
1886 goto out;
1887
1888 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1889
1890 out:
1891 i915_gem_render_state_fini(&so);
1892 return ret;
1893 }
1894
1895 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1896 {
1897 int ret;
1898
1899 ret = intel_logical_ring_workarounds_emit(req);
1900 if (ret)
1901 return ret;
1902
1903 ret = intel_rcs_context_init_mocs(req);
1904 /*
1905 * Failing to program the MOCS is non-fatal.The system will not
1906 * run at peak performance. So generate an error and carry on.
1907 */
1908 if (ret)
1909 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1910
1911 return intel_lr_context_render_state_init(req);
1912 }
1913
1914 /**
1915 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1916 *
1917 * @engine: Engine Command Streamer.
1918 *
1919 */
1920 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1921 {
1922 struct drm_i915_private *dev_priv;
1923
1924 if (!intel_engine_initialized(engine))
1925 return;
1926
1927 /*
1928 * Tasklet cannot be active at this point due intel_mark_active/idle
1929 * so this is just for documentation.
1930 */
1931 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1932 tasklet_kill(&engine->irq_tasklet);
1933
1934 dev_priv = engine->i915;
1935
1936 if (engine->buffer) {
1937 intel_logical_ring_stop(engine);
1938 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1939 }
1940
1941 if (engine->cleanup)
1942 engine->cleanup(engine);
1943
1944 i915_cmd_parser_fini_ring(engine);
1945 i915_gem_batch_pool_fini(&engine->batch_pool);
1946
1947 if (engine->status_page.obj) {
1948 i915_gem_object_unpin_map(engine->status_page.obj);
1949 engine->status_page.obj = NULL;
1950 }
1951 intel_lr_context_unpin(dev_priv->kernel_context, engine);
1952
1953 engine->idle_lite_restore_wa = 0;
1954 engine->disable_lite_restore_wa = false;
1955 engine->ctx_desc_template = 0;
1956
1957 lrc_destroy_wa_ctx_obj(engine);
1958 engine->i915 = NULL;
1959 }
1960
1961 static void
1962 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1963 {
1964 /* Default vfuncs which can be overriden by each engine. */
1965 engine->init_hw = gen8_init_common_ring;
1966 engine->emit_request = gen8_emit_request;
1967 engine->emit_flush = gen8_emit_flush;
1968 engine->irq_get = gen8_logical_ring_get_irq;
1969 engine->irq_put = gen8_logical_ring_put_irq;
1970 engine->emit_bb_start = gen8_emit_bb_start;
1971 engine->get_seqno = gen8_get_seqno;
1972 engine->set_seqno = gen8_set_seqno;
1973 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1974 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1975 engine->set_seqno = bxt_a_set_seqno;
1976 }
1977 }
1978
1979 static inline void
1980 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1981 {
1982 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1983 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1984 init_waitqueue_head(&engine->irq_queue);
1985 }
1986
1987 static int
1988 lrc_setup_hws(struct intel_engine_cs *engine,
1989 struct drm_i915_gem_object *dctx_obj)
1990 {
1991 void *hws;
1992
1993 /* The HWSP is part of the default context object in LRC mode. */
1994 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1995 LRC_PPHWSP_PN * PAGE_SIZE;
1996 hws = i915_gem_object_pin_map(dctx_obj);
1997 if (IS_ERR(hws))
1998 return PTR_ERR(hws);
1999 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2000 engine->status_page.obj = dctx_obj;
2001
2002 return 0;
2003 }
2004
2005 static const struct logical_ring_info {
2006 const char *name;
2007 unsigned exec_id;
2008 unsigned guc_id;
2009 u32 mmio_base;
2010 unsigned irq_shift;
2011 } logical_rings[] = {
2012 [RCS] = {
2013 .name = "render ring",
2014 .exec_id = I915_EXEC_RENDER,
2015 .guc_id = GUC_RENDER_ENGINE,
2016 .mmio_base = RENDER_RING_BASE,
2017 .irq_shift = GEN8_RCS_IRQ_SHIFT,
2018 },
2019 [BCS] = {
2020 .name = "blitter ring",
2021 .exec_id = I915_EXEC_BLT,
2022 .guc_id = GUC_BLITTER_ENGINE,
2023 .mmio_base = BLT_RING_BASE,
2024 .irq_shift = GEN8_BCS_IRQ_SHIFT,
2025 },
2026 [VCS] = {
2027 .name = "bsd ring",
2028 .exec_id = I915_EXEC_BSD,
2029 .guc_id = GUC_VIDEO_ENGINE,
2030 .mmio_base = GEN6_BSD_RING_BASE,
2031 .irq_shift = GEN8_VCS1_IRQ_SHIFT,
2032 },
2033 [VCS2] = {
2034 .name = "bsd2 ring",
2035 .exec_id = I915_EXEC_BSD,
2036 .guc_id = GUC_VIDEO_ENGINE2,
2037 .mmio_base = GEN8_BSD2_RING_BASE,
2038 .irq_shift = GEN8_VCS2_IRQ_SHIFT,
2039 },
2040 [VECS] = {
2041 .name = "video enhancement ring",
2042 .exec_id = I915_EXEC_VEBOX,
2043 .guc_id = GUC_VIDEOENHANCE_ENGINE,
2044 .mmio_base = VEBOX_RING_BASE,
2045 .irq_shift = GEN8_VECS_IRQ_SHIFT,
2046 },
2047 };
2048
2049 static struct intel_engine_cs *
2050 logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
2051 {
2052 const struct logical_ring_info *info = &logical_rings[id];
2053 struct drm_i915_private *dev_priv = to_i915(dev);
2054 struct intel_engine_cs *engine = &dev_priv->engine[id];
2055 enum forcewake_domains fw_domains;
2056
2057 engine->id = id;
2058 engine->name = info->name;
2059 engine->exec_id = info->exec_id;
2060 engine->guc_id = info->guc_id;
2061 engine->mmio_base = info->mmio_base;
2062
2063 engine->i915 = dev_priv;
2064
2065 /* Intentionally left blank. */
2066 engine->buffer = NULL;
2067
2068 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2069 RING_ELSP(engine),
2070 FW_REG_WRITE);
2071
2072 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2073 RING_CONTEXT_STATUS_PTR(engine),
2074 FW_REG_READ | FW_REG_WRITE);
2075
2076 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2077 RING_CONTEXT_STATUS_BUF_BASE(engine),
2078 FW_REG_READ);
2079
2080 engine->fw_domains = fw_domains;
2081
2082 INIT_LIST_HEAD(&engine->active_list);
2083 INIT_LIST_HEAD(&engine->request_list);
2084 INIT_LIST_HEAD(&engine->buffers);
2085 INIT_LIST_HEAD(&engine->execlist_queue);
2086 spin_lock_init(&engine->execlist_lock);
2087
2088 tasklet_init(&engine->irq_tasklet,
2089 intel_lrc_irq_handler, (unsigned long)engine);
2090
2091 logical_ring_init_platform_invariants(engine);
2092 logical_ring_default_vfuncs(engine);
2093 logical_ring_default_irqs(engine, info->irq_shift);
2094
2095 intel_engine_init_hangcheck(engine);
2096 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2097
2098 return engine;
2099 }
2100
2101 static int
2102 logical_ring_init(struct intel_engine_cs *engine)
2103 {
2104 struct i915_gem_context *dctx = engine->i915->kernel_context;
2105 int ret;
2106
2107 ret = i915_cmd_parser_init_ring(engine);
2108 if (ret)
2109 goto error;
2110
2111 ret = execlists_context_deferred_alloc(dctx, engine);
2112 if (ret)
2113 goto error;
2114
2115 /* As this is the default context, always pin it */
2116 ret = intel_lr_context_pin(dctx, engine);
2117 if (ret) {
2118 DRM_ERROR("Failed to pin context for %s: %d\n",
2119 engine->name, ret);
2120 goto error;
2121 }
2122
2123 /* And setup the hardware status page. */
2124 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2125 if (ret) {
2126 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2127 goto error;
2128 }
2129
2130 return 0;
2131
2132 error:
2133 intel_logical_ring_cleanup(engine);
2134 return ret;
2135 }
2136
2137 static int logical_render_ring_init(struct drm_device *dev)
2138 {
2139 struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
2140 int ret;
2141
2142 if (HAS_L3_DPF(dev))
2143 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2144
2145 /* Override some for render ring. */
2146 if (INTEL_INFO(dev)->gen >= 9)
2147 engine->init_hw = gen9_init_render_ring;
2148 else
2149 engine->init_hw = gen8_init_render_ring;
2150 engine->init_context = gen8_init_rcs_context;
2151 engine->cleanup = intel_fini_pipe_control;
2152 engine->emit_flush = gen8_emit_flush_render;
2153 engine->emit_request = gen8_emit_request_render;
2154
2155 ret = intel_init_pipe_control(engine);
2156 if (ret)
2157 return ret;
2158
2159 ret = intel_init_workaround_bb(engine);
2160 if (ret) {
2161 /*
2162 * We continue even if we fail to initialize WA batch
2163 * because we only expect rare glitches but nothing
2164 * critical to prevent us from using GPU
2165 */
2166 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2167 ret);
2168 }
2169
2170 ret = logical_ring_init(engine);
2171 if (ret) {
2172 lrc_destroy_wa_ctx_obj(engine);
2173 }
2174
2175 return ret;
2176 }
2177
2178 static int logical_bsd_ring_init(struct drm_device *dev)
2179 {
2180 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
2181
2182 return logical_ring_init(engine);
2183 }
2184
2185 static int logical_bsd2_ring_init(struct drm_device *dev)
2186 {
2187 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
2188
2189 return logical_ring_init(engine);
2190 }
2191
2192 static int logical_blt_ring_init(struct drm_device *dev)
2193 {
2194 struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
2195
2196 return logical_ring_init(engine);
2197 }
2198
2199 static int logical_vebox_ring_init(struct drm_device *dev)
2200 {
2201 struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
2202
2203 return logical_ring_init(engine);
2204 }
2205
2206 /**
2207 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2208 * @dev: DRM device.
2209 *
2210 * This function inits the engines for an Execlists submission style (the equivalent in the
2211 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2212 * those engines that are present in the hardware.
2213 *
2214 * Return: non-zero if the initialization failed.
2215 */
2216 int intel_logical_rings_init(struct drm_device *dev)
2217 {
2218 struct drm_i915_private *dev_priv = dev->dev_private;
2219 int ret;
2220
2221 ret = logical_render_ring_init(dev);
2222 if (ret)
2223 return ret;
2224
2225 if (HAS_BSD(dev)) {
2226 ret = logical_bsd_ring_init(dev);
2227 if (ret)
2228 goto cleanup_render_ring;
2229 }
2230
2231 if (HAS_BLT(dev)) {
2232 ret = logical_blt_ring_init(dev);
2233 if (ret)
2234 goto cleanup_bsd_ring;
2235 }
2236
2237 if (HAS_VEBOX(dev)) {
2238 ret = logical_vebox_ring_init(dev);
2239 if (ret)
2240 goto cleanup_blt_ring;
2241 }
2242
2243 if (HAS_BSD2(dev)) {
2244 ret = logical_bsd2_ring_init(dev);
2245 if (ret)
2246 goto cleanup_vebox_ring;
2247 }
2248
2249 return 0;
2250
2251 cleanup_vebox_ring:
2252 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2253 cleanup_blt_ring:
2254 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2255 cleanup_bsd_ring:
2256 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2257 cleanup_render_ring:
2258 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2259
2260 return ret;
2261 }
2262
2263 static u32
2264 make_rpcs(struct drm_i915_private *dev_priv)
2265 {
2266 u32 rpcs = 0;
2267
2268 /*
2269 * No explicit RPCS request is needed to ensure full
2270 * slice/subslice/EU enablement prior to Gen9.
2271 */
2272 if (INTEL_GEN(dev_priv) < 9)
2273 return 0;
2274
2275 /*
2276 * Starting in Gen9, render power gating can leave
2277 * slice/subslice/EU in a partially enabled state. We
2278 * must make an explicit request through RPCS for full
2279 * enablement.
2280 */
2281 if (INTEL_INFO(dev_priv)->has_slice_pg) {
2282 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2283 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2284 GEN8_RPCS_S_CNT_SHIFT;
2285 rpcs |= GEN8_RPCS_ENABLE;
2286 }
2287
2288 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2289 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2290 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2291 GEN8_RPCS_SS_CNT_SHIFT;
2292 rpcs |= GEN8_RPCS_ENABLE;
2293 }
2294
2295 if (INTEL_INFO(dev_priv)->has_eu_pg) {
2296 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2297 GEN8_RPCS_EU_MIN_SHIFT;
2298 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2299 GEN8_RPCS_EU_MAX_SHIFT;
2300 rpcs |= GEN8_RPCS_ENABLE;
2301 }
2302
2303 return rpcs;
2304 }
2305
2306 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2307 {
2308 u32 indirect_ctx_offset;
2309
2310 switch (INTEL_GEN(engine->i915)) {
2311 default:
2312 MISSING_CASE(INTEL_GEN(engine->i915));
2313 /* fall through */
2314 case 9:
2315 indirect_ctx_offset =
2316 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2317 break;
2318 case 8:
2319 indirect_ctx_offset =
2320 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2321 break;
2322 }
2323
2324 return indirect_ctx_offset;
2325 }
2326
2327 static int
2328 populate_lr_context(struct i915_gem_context *ctx,
2329 struct drm_i915_gem_object *ctx_obj,
2330 struct intel_engine_cs *engine,
2331 struct intel_ringbuffer *ringbuf)
2332 {
2333 struct drm_i915_private *dev_priv = ctx->i915;
2334 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2335 void *vaddr;
2336 u32 *reg_state;
2337 int ret;
2338
2339 if (!ppgtt)
2340 ppgtt = dev_priv->mm.aliasing_ppgtt;
2341
2342 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2343 if (ret) {
2344 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2345 return ret;
2346 }
2347
2348 vaddr = i915_gem_object_pin_map(ctx_obj);
2349 if (IS_ERR(vaddr)) {
2350 ret = PTR_ERR(vaddr);
2351 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2352 return ret;
2353 }
2354 ctx_obj->dirty = true;
2355
2356 /* The second page of the context object contains some fields which must
2357 * be set up prior to the first execution. */
2358 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2359
2360 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2361 * commands followed by (reg, value) pairs. The values we are setting here are
2362 * only for the first context restore: on a subsequent save, the GPU will
2363 * recreate this batchbuffer with new values (including all the missing
2364 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2365 reg_state[CTX_LRI_HEADER_0] =
2366 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2367 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2368 RING_CONTEXT_CONTROL(engine),
2369 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2370 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2371 (HAS_RESOURCE_STREAMER(dev_priv) ?
2372 CTX_CTRL_RS_CTX_ENABLE : 0)));
2373 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2374 0);
2375 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2376 0);
2377 /* Ring buffer start address is not known until the buffer is pinned.
2378 * It is written to the context image in execlists_update_context()
2379 */
2380 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2381 RING_START(engine->mmio_base), 0);
2382 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2383 RING_CTL(engine->mmio_base),
2384 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2385 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2386 RING_BBADDR_UDW(engine->mmio_base), 0);
2387 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2388 RING_BBADDR(engine->mmio_base), 0);
2389 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2390 RING_BBSTATE(engine->mmio_base),
2391 RING_BB_PPGTT);
2392 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2393 RING_SBBADDR_UDW(engine->mmio_base), 0);
2394 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2395 RING_SBBADDR(engine->mmio_base), 0);
2396 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2397 RING_SBBSTATE(engine->mmio_base), 0);
2398 if (engine->id == RCS) {
2399 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2400 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2401 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2402 RING_INDIRECT_CTX(engine->mmio_base), 0);
2403 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2404 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2405 if (engine->wa_ctx.obj) {
2406 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2407 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2408
2409 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2410 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2411 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2412
2413 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2414 intel_lr_indirect_ctx_offset(engine) << 6;
2415
2416 reg_state[CTX_BB_PER_CTX_PTR+1] =
2417 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2418 0x01;
2419 }
2420 }
2421 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2422 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2423 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2424 /* PDP values well be assigned later if needed */
2425 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2426 0);
2427 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2428 0);
2429 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2430 0);
2431 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2432 0);
2433 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2434 0);
2435 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2436 0);
2437 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2438 0);
2439 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2440 0);
2441
2442 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2443 /* 64b PPGTT (48bit canonical)
2444 * PDP0_DESCRIPTOR contains the base address to PML4 and
2445 * other PDP Descriptors are ignored.
2446 */
2447 ASSIGN_CTX_PML4(ppgtt, reg_state);
2448 } else {
2449 /* 32b PPGTT
2450 * PDP*_DESCRIPTOR contains the base address of space supported.
2451 * With dynamic page allocation, PDPs may not be allocated at
2452 * this point. Point the unallocated PDPs to the scratch page
2453 */
2454 execlists_update_context_pdps(ppgtt, reg_state);
2455 }
2456
2457 if (engine->id == RCS) {
2458 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2459 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2460 make_rpcs(dev_priv));
2461 }
2462
2463 i915_gem_object_unpin_map(ctx_obj);
2464
2465 return 0;
2466 }
2467
2468 /**
2469 * intel_lr_context_size() - return the size of the context for an engine
2470 * @engine: which engine to find the context size for
2471 *
2472 * Each engine may require a different amount of space for a context image,
2473 * so when allocating (or copying) an image, this function can be used to
2474 * find the right size for the specific engine.
2475 *
2476 * Return: size (in bytes) of an engine-specific context image
2477 *
2478 * Note: this size includes the HWSP, which is part of the context image
2479 * in LRC mode, but does not include the "shared data page" used with
2480 * GuC submission. The caller should account for this if using the GuC.
2481 */
2482 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2483 {
2484 int ret = 0;
2485
2486 WARN_ON(INTEL_GEN(engine->i915) < 8);
2487
2488 switch (engine->id) {
2489 case RCS:
2490 if (INTEL_GEN(engine->i915) >= 9)
2491 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2492 else
2493 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2494 break;
2495 case VCS:
2496 case BCS:
2497 case VECS:
2498 case VCS2:
2499 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2500 break;
2501 }
2502
2503 return ret;
2504 }
2505
2506 /**
2507 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2508 * @ctx: LR context to create.
2509 * @engine: engine to be used with the context.
2510 *
2511 * This function can be called more than once, with different engines, if we plan
2512 * to use the context with them. The context backing objects and the ringbuffers
2513 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2514 * the creation is a deferred call: it's better to make sure first that we need to use
2515 * a given ring with the context.
2516 *
2517 * Return: non-zero on error.
2518 */
2519 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2520 struct intel_engine_cs *engine)
2521 {
2522 struct drm_i915_gem_object *ctx_obj;
2523 struct intel_context *ce = &ctx->engine[engine->id];
2524 uint32_t context_size;
2525 struct intel_ringbuffer *ringbuf;
2526 int ret;
2527
2528 WARN_ON(ce->state);
2529
2530 context_size = round_up(intel_lr_context_size(engine), 4096);
2531
2532 /* One extra page as the sharing data between driver and GuC */
2533 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2534
2535 ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2536 if (IS_ERR(ctx_obj)) {
2537 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2538 return PTR_ERR(ctx_obj);
2539 }
2540
2541 ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
2542 if (IS_ERR(ringbuf)) {
2543 ret = PTR_ERR(ringbuf);
2544 goto error_deref_obj;
2545 }
2546
2547 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2548 if (ret) {
2549 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2550 goto error_ringbuf;
2551 }
2552
2553 ce->ringbuf = ringbuf;
2554 ce->state = ctx_obj;
2555 ce->initialised = engine->init_context == NULL;
2556
2557 return 0;
2558
2559 error_ringbuf:
2560 intel_ringbuffer_free(ringbuf);
2561 error_deref_obj:
2562 drm_gem_object_unreference(&ctx_obj->base);
2563 ce->ringbuf = NULL;
2564 ce->state = NULL;
2565 return ret;
2566 }
2567
2568 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2569 struct i915_gem_context *ctx)
2570 {
2571 struct intel_engine_cs *engine;
2572
2573 for_each_engine(engine, dev_priv) {
2574 struct intel_context *ce = &ctx->engine[engine->id];
2575 struct drm_i915_gem_object *ctx_obj = ce->state;
2576 void *vaddr;
2577 uint32_t *reg_state;
2578
2579 if (!ctx_obj)
2580 continue;
2581
2582 vaddr = i915_gem_object_pin_map(ctx_obj);
2583 if (WARN_ON(IS_ERR(vaddr)))
2584 continue;
2585
2586 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2587 ctx_obj->dirty = true;
2588
2589 reg_state[CTX_RING_HEAD+1] = 0;
2590 reg_state[CTX_RING_TAIL+1] = 0;
2591
2592 i915_gem_object_unpin_map(ctx_obj);
2593
2594 ce->ringbuf->head = 0;
2595 ce->ringbuf->tail = 0;
2596 }
2597 }
This page took 0.098559 seconds and 5 git commands to generate.