drm/i915: Embed the io-mapping struct inside drm_i915_private
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211 FAULT_AND_HANG = 0,
212 FAULT_AND_HALT, /* Debug only */
213 FAULT_AND_STREAM,
214 FAULT_AND_CONTINUE /* Unsupported */
215 };
216 #define GEN8_CTX_ID_SHIFT 32
217 #define GEN8_CTX_ID_WIDTH 21
218 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
219 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
220
221 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
222 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223
224 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225 struct intel_engine_cs *engine);
226 static int intel_lr_context_pin(struct i915_gem_context *ctx,
227 struct intel_engine_cs *engine);
228
229 /**
230 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231 * @dev_priv: i915 device private
232 * @enable_execlists: value of i915.enable_execlists module parameter.
233 *
234 * Only certain platforms support Execlists (the prerequisites being
235 * support for Logical Ring Contexts and Aliasing PPGTT or better).
236 *
237 * Return: 1 if Execlists is supported and has to be enabled.
238 */
239 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240 {
241 /* On platforms with execlist available, vGPU will only
242 * support execlist mode, no ring buffer mode.
243 */
244 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 return 1;
246
247 if (INTEL_GEN(dev_priv) >= 9)
248 return 1;
249
250 if (enable_execlists == 0)
251 return 0;
252
253 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254 USES_PPGTT(dev_priv) &&
255 i915.use_mmio_flip >= 0)
256 return 1;
257
258 return 0;
259 }
260
261 static void
262 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263 {
264 struct drm_i915_private *dev_priv = engine->i915;
265
266 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267 engine->idle_lite_restore_wa = ~0;
268
269 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271 (engine->id == VCS || engine->id == VCS2);
272
273 engine->ctx_desc_template = GEN8_CTX_VALID;
274 if (IS_GEN8(dev_priv))
275 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277
278 /* TODO: WaDisableLiteRestore when we start using semaphore
279 * signalling between Command Streamers */
280 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281
282 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
283 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 if (engine->disable_lite_restore_wa)
285 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 }
287
288 /**
289 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290 * descriptor for a pinned context
291 * @ctx: Context to work on
292 * @engine: Engine the descriptor will be used with
293 *
294 * The context descriptor encodes various attributes of a context,
295 * including its GTT address and some flags. Because it's fairly
296 * expensive to calculate, we'll just do it once and cache the result,
297 * which remains valid until the context is unpinned.
298 *
299 * This is what a descriptor looks like, from LSB to MSB::
300 *
301 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
302 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
303 * bits 32-52: ctx ID, a globally unique tag
304 * bits 53-54: mbz, reserved for use by hardware
305 * bits 55-63: group ID, currently unused and set to 0
306 */
307 static void
308 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309 struct intel_engine_cs *engine)
310 {
311 struct intel_context *ce = &ctx->engine[engine->id];
312 u64 desc;
313
314 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315
316 desc = ctx->desc_template; /* bits 3-4 */
317 desc |= engine->ctx_desc_template; /* bits 0-11 */
318 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
319 /* bits 12-31 */
320 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
321
322 ce->lrc_desc = desc;
323 }
324
325 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326 struct intel_engine_cs *engine)
327 {
328 return ctx->engine[engine->id].lrc_desc;
329 }
330
331 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332 struct drm_i915_gem_request *rq1)
333 {
334
335 struct intel_engine_cs *engine = rq0->engine;
336 struct drm_i915_private *dev_priv = rq0->i915;
337 uint64_t desc[2];
338
339 if (rq1) {
340 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 rq1->elsp_submitted++;
342 } else {
343 desc[1] = 0;
344 }
345
346 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347 rq0->elsp_submitted++;
348
349 /* You must always write both descriptors in the order below. */
350 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352
353 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354 /* The context is automatically loaded after the following */
355 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356
357 /* ELSP is a wo register, use another nearby reg for posting */
358 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 }
360
361 static void
362 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363 {
364 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368 }
369
370 static void execlists_update_context(struct drm_i915_gem_request *rq)
371 {
372 struct intel_engine_cs *engine = rq->engine;
373 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375
376 reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
377
378 /* True 32b PPGTT with dynamic page allocation: update PDP
379 * registers and point the unallocated PDPs to scratch page.
380 * PML4 is allocated during ppgtt init, so this is not needed
381 * in 48-bit mode.
382 */
383 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384 execlists_update_context_pdps(ppgtt, reg_state);
385 }
386
387 static void execlists_elsp_submit_contexts(struct drm_i915_gem_request *rq0,
388 struct drm_i915_gem_request *rq1)
389 {
390 struct drm_i915_private *dev_priv = rq0->i915;
391 unsigned int fw_domains = rq0->engine->fw_domains;
392
393 execlists_update_context(rq0);
394
395 if (rq1)
396 execlists_update_context(rq1);
397
398 spin_lock_irq(&dev_priv->uncore.lock);
399 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400
401 execlists_elsp_write(rq0, rq1);
402
403 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404 spin_unlock_irq(&dev_priv->uncore.lock);
405 }
406
407 static inline void execlists_context_status_change(
408 struct drm_i915_gem_request *rq,
409 unsigned long status)
410 {
411 /*
412 * Only used when GVT-g is enabled now. When GVT-g is disabled,
413 * The compiler should eliminate this function as dead-code.
414 */
415 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416 return;
417
418 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
419 }
420
421 static void execlists_unqueue(struct intel_engine_cs *engine)
422 {
423 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424 struct drm_i915_gem_request *cursor, *tmp;
425
426 assert_spin_locked(&engine->execlist_lock);
427
428 /*
429 * If irqs are not active generate a warning as batches that finish
430 * without the irqs may get lost and a GPU Hang may occur.
431 */
432 WARN_ON(!intel_irqs_enabled(engine->i915));
433
434 /* Try to read in pairs */
435 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436 execlist_link) {
437 if (!req0) {
438 req0 = cursor;
439 } else if (req0->ctx == cursor->ctx) {
440 /* Same ctx: ignore first request, as second request
441 * will update tail past first request's workload */
442 cursor->elsp_submitted = req0->elsp_submitted;
443 list_del(&req0->execlist_link);
444 i915_gem_request_put(req0);
445 req0 = cursor;
446 } else {
447 if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
448 /*
449 * req0 (after merged) ctx requires single
450 * submission, stop picking
451 */
452 if (req0->ctx->execlists_force_single_submission)
453 break;
454 /*
455 * req0 ctx doesn't require single submission,
456 * but next req ctx requires, stop picking
457 */
458 if (cursor->ctx->execlists_force_single_submission)
459 break;
460 }
461 req1 = cursor;
462 WARN_ON(req1->elsp_submitted);
463 break;
464 }
465 }
466
467 if (unlikely(!req0))
468 return;
469
470 execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);
471
472 if (req1)
473 execlists_context_status_change(req1,
474 INTEL_CONTEXT_SCHEDULE_IN);
475
476 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477 /*
478 * WaIdleLiteRestore: make sure we never cause a lite restore
479 * with HEAD==TAIL.
480 *
481 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
482 * resubmit the request. See gen8_emit_request() for where we
483 * prepare the padding after the end of the request.
484 */
485 req0->tail += 8;
486 req0->tail &= req0->ring->size - 1;
487 }
488
489 execlists_elsp_submit_contexts(req0, req1);
490 }
491
492 static unsigned int
493 execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
494 {
495 struct drm_i915_gem_request *head_req;
496
497 assert_spin_locked(&engine->execlist_lock);
498
499 head_req = list_first_entry_or_null(&engine->execlist_queue,
500 struct drm_i915_gem_request,
501 execlist_link);
502
503 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
504 return 0;
505
506 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
507
508 if (--head_req->elsp_submitted > 0)
509 return 0;
510
511 execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);
512
513 list_del(&head_req->execlist_link);
514 i915_gem_request_put(head_req);
515
516 return 1;
517 }
518
519 static u32
520 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
521 u32 *context_id)
522 {
523 struct drm_i915_private *dev_priv = engine->i915;
524 u32 status;
525
526 read_pointer %= GEN8_CSB_ENTRIES;
527
528 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
529
530 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
531 return 0;
532
533 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
534 read_pointer));
535
536 return status;
537 }
538
539 /*
540 * Check the unread Context Status Buffers and manage the submission of new
541 * contexts to the ELSP accordingly.
542 */
543 static void intel_lrc_irq_handler(unsigned long data)
544 {
545 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546 struct drm_i915_private *dev_priv = engine->i915;
547 u32 status_pointer;
548 unsigned int read_pointer, write_pointer;
549 u32 csb[GEN8_CSB_ENTRIES][2];
550 unsigned int csb_read = 0, i;
551 unsigned int submit_contexts = 0;
552
553 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554
555 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556
557 read_pointer = engine->next_context_status_buffer;
558 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559 if (read_pointer > write_pointer)
560 write_pointer += GEN8_CSB_ENTRIES;
561
562 while (read_pointer < write_pointer) {
563 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564 break;
565 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566 &csb[csb_read][1]);
567 csb_read++;
568 }
569
570 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571
572 /* Update the read pointer to the old write pointer. Manual ringbuffer
573 * management ftw </sarcasm> */
574 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576 engine->next_context_status_buffer << 8));
577
578 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579
580 spin_lock(&engine->execlist_lock);
581
582 for (i = 0; i < csb_read; i++) {
583 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585 if (execlists_check_remove_request(engine, csb[i][1]))
586 WARN(1, "Lite Restored request removed from queue\n");
587 } else
588 WARN(1, "Preemption without Lite Restore\n");
589 }
590
591 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592 GEN8_CTX_STATUS_ELEMENT_SWITCH))
593 submit_contexts +=
594 execlists_check_remove_request(engine, csb[i][1]);
595 }
596
597 if (submit_contexts) {
598 if (!engine->disable_lite_restore_wa ||
599 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
600 execlists_unqueue(engine);
601 }
602
603 spin_unlock(&engine->execlist_lock);
604
605 if (unlikely(submit_contexts > 2))
606 DRM_ERROR("More than two context complete events?\n");
607 }
608
609 static void execlists_submit_request(struct drm_i915_gem_request *request)
610 {
611 struct intel_engine_cs *engine = request->engine;
612 struct drm_i915_gem_request *cursor;
613 int num_elements = 0;
614
615 spin_lock_bh(&engine->execlist_lock);
616
617 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
618 if (++num_elements > 2)
619 break;
620
621 if (num_elements > 2) {
622 struct drm_i915_gem_request *tail_req;
623
624 tail_req = list_last_entry(&engine->execlist_queue,
625 struct drm_i915_gem_request,
626 execlist_link);
627
628 if (request->ctx == tail_req->ctx) {
629 WARN(tail_req->elsp_submitted != 0,
630 "More than 2 already-submitted reqs queued\n");
631 list_del(&tail_req->execlist_link);
632 i915_gem_request_put(tail_req);
633 }
634 }
635
636 i915_gem_request_get(request);
637 list_add_tail(&request->execlist_link, &engine->execlist_queue);
638 request->ctx_hw_id = request->ctx->hw_id;
639 if (num_elements == 0)
640 execlists_unqueue(engine);
641
642 spin_unlock_bh(&engine->execlist_lock);
643 }
644
645 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
646 {
647 struct intel_engine_cs *engine = request->engine;
648 struct intel_context *ce = &request->ctx->engine[engine->id];
649 int ret;
650
651 /* Flush enough space to reduce the likelihood of waiting after
652 * we start building the request - in which case we will just
653 * have to repeat work.
654 */
655 request->reserved_space += EXECLISTS_REQUEST_SIZE;
656
657 if (!ce->state) {
658 ret = execlists_context_deferred_alloc(request->ctx, engine);
659 if (ret)
660 return ret;
661 }
662
663 request->ring = ce->ring;
664
665 if (i915.enable_guc_submission) {
666 /*
667 * Check that the GuC has space for the request before
668 * going any further, as the i915_add_request() call
669 * later on mustn't fail ...
670 */
671 ret = i915_guc_wq_check_space(request);
672 if (ret)
673 return ret;
674 }
675
676 ret = intel_lr_context_pin(request->ctx, engine);
677 if (ret)
678 return ret;
679
680 ret = intel_ring_begin(request, 0);
681 if (ret)
682 goto err_unpin;
683
684 if (!ce->initialised) {
685 ret = engine->init_context(request);
686 if (ret)
687 goto err_unpin;
688
689 ce->initialised = true;
690 }
691
692 /* Note that after this point, we have committed to using
693 * this request as it is being used to both track the
694 * state of engine initialisation and liveness of the
695 * golden renderstate above. Think twice before you try
696 * to cancel/unwind this request now.
697 */
698
699 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
700 return 0;
701
702 err_unpin:
703 intel_lr_context_unpin(request->ctx, engine);
704 return ret;
705 }
706
707 /*
708 * intel_logical_ring_advance() - advance the tail and prepare for submission
709 * @request: Request to advance the logical ringbuffer of.
710 *
711 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
712 * really happens during submission is that the context and current tail will be placed
713 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
714 * point, the tail *inside* the context is updated and the ELSP written to.
715 */
716 static int
717 intel_logical_ring_advance(struct drm_i915_gem_request *request)
718 {
719 struct intel_ring *ring = request->ring;
720 struct intel_engine_cs *engine = request->engine;
721
722 intel_ring_advance(ring);
723 request->tail = ring->tail;
724
725 /*
726 * Here we add two extra NOOPs as padding to avoid
727 * lite restore of a context with HEAD==TAIL.
728 *
729 * Caller must reserve WA_TAIL_DWORDS for us!
730 */
731 intel_ring_emit(ring, MI_NOOP);
732 intel_ring_emit(ring, MI_NOOP);
733 intel_ring_advance(ring);
734
735 /* We keep the previous context alive until we retire the following
736 * request. This ensures that any the context object is still pinned
737 * for any residual writes the HW makes into it on the context switch
738 * into the next object following the breadcrumb. Otherwise, we may
739 * retire the context too early.
740 */
741 request->previous_context = engine->last_context;
742 engine->last_context = request->ctx;
743 return 0;
744 }
745
746 void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
747 {
748 struct drm_i915_gem_request *req, *tmp;
749 LIST_HEAD(cancel_list);
750
751 WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
752
753 spin_lock_bh(&engine->execlist_lock);
754 list_replace_init(&engine->execlist_queue, &cancel_list);
755 spin_unlock_bh(&engine->execlist_lock);
756
757 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
758 list_del(&req->execlist_link);
759 i915_gem_request_put(req);
760 }
761 }
762
763 static int intel_lr_context_pin(struct i915_gem_context *ctx,
764 struct intel_engine_cs *engine)
765 {
766 struct intel_context *ce = &ctx->engine[engine->id];
767 void *vaddr;
768 u32 *lrc_reg_state;
769 int ret;
770
771 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
772
773 if (ce->pin_count++)
774 return 0;
775
776 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
777 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
778 if (ret)
779 goto err;
780
781 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
782 if (IS_ERR(vaddr)) {
783 ret = PTR_ERR(vaddr);
784 goto unpin_vma;
785 }
786
787 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
788
789 ret = intel_ring_pin(ce->ring);
790 if (ret)
791 goto unpin_map;
792
793 intel_lr_context_descriptor_update(ctx, engine);
794
795 lrc_reg_state[CTX_RING_BUFFER_START+1] =
796 i915_ggtt_offset(ce->ring->vma);
797 ce->lrc_reg_state = lrc_reg_state;
798 ce->state->obj->dirty = true;
799
800 /* Invalidate GuC TLB. */
801 if (i915.enable_guc_submission) {
802 struct drm_i915_private *dev_priv = ctx->i915;
803 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
804 }
805
806 i915_gem_context_get(ctx);
807 return 0;
808
809 unpin_map:
810 i915_gem_object_unpin_map(ce->state->obj);
811 unpin_vma:
812 __i915_vma_unpin(ce->state);
813 err:
814 ce->pin_count = 0;
815 return ret;
816 }
817
818 void intel_lr_context_unpin(struct i915_gem_context *ctx,
819 struct intel_engine_cs *engine)
820 {
821 struct intel_context *ce = &ctx->engine[engine->id];
822
823 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
824 GEM_BUG_ON(ce->pin_count == 0);
825
826 if (--ce->pin_count)
827 return;
828
829 intel_ring_unpin(ce->ring);
830
831 i915_gem_object_unpin_map(ce->state->obj);
832 i915_vma_unpin(ce->state);
833
834 i915_gem_context_put(ctx);
835 }
836
837 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
838 {
839 int ret, i;
840 struct intel_ring *ring = req->ring;
841 struct i915_workarounds *w = &req->i915->workarounds;
842
843 if (w->count == 0)
844 return 0;
845
846 ret = req->engine->emit_flush(req, EMIT_BARRIER);
847 if (ret)
848 return ret;
849
850 ret = intel_ring_begin(req, w->count * 2 + 2);
851 if (ret)
852 return ret;
853
854 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
855 for (i = 0; i < w->count; i++) {
856 intel_ring_emit_reg(ring, w->reg[i].addr);
857 intel_ring_emit(ring, w->reg[i].value);
858 }
859 intel_ring_emit(ring, MI_NOOP);
860
861 intel_ring_advance(ring);
862
863 ret = req->engine->emit_flush(req, EMIT_BARRIER);
864 if (ret)
865 return ret;
866
867 return 0;
868 }
869
870 #define wa_ctx_emit(batch, index, cmd) \
871 do { \
872 int __index = (index)++; \
873 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
874 return -ENOSPC; \
875 } \
876 batch[__index] = (cmd); \
877 } while (0)
878
879 #define wa_ctx_emit_reg(batch, index, reg) \
880 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
881
882 /*
883 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
884 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
885 * but there is a slight complication as this is applied in WA batch where the
886 * values are only initialized once so we cannot take register value at the
887 * beginning and reuse it further; hence we save its value to memory, upload a
888 * constant value with bit21 set and then we restore it back with the saved value.
889 * To simplify the WA, a constant value is formed by using the default value
890 * of this register. This shouldn't be a problem because we are only modifying
891 * it for a short period and this batch in non-premptible. We can ofcourse
892 * use additional instructions that read the actual value of the register
893 * at that time and set our bit of interest but it makes the WA complicated.
894 *
895 * This WA is also required for Gen9 so extracting as a function avoids
896 * code duplication.
897 */
898 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
899 uint32_t *batch,
900 uint32_t index)
901 {
902 struct drm_i915_private *dev_priv = engine->i915;
903 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
904
905 /*
906 * WaDisableLSQCROPERFforOCL:skl,kbl
907 * This WA is implemented in skl_init_clock_gating() but since
908 * this batch updates GEN8_L3SQCREG4 with default value we need to
909 * set this bit here to retain the WA during flush.
910 */
911 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
912 IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
913 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
914
915 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
916 MI_SRM_LRM_GLOBAL_GTT));
917 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
918 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
919 wa_ctx_emit(batch, index, 0);
920
921 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
922 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
923 wa_ctx_emit(batch, index, l3sqc4_flush);
924
925 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
926 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
927 PIPE_CONTROL_DC_FLUSH_ENABLE));
928 wa_ctx_emit(batch, index, 0);
929 wa_ctx_emit(batch, index, 0);
930 wa_ctx_emit(batch, index, 0);
931 wa_ctx_emit(batch, index, 0);
932
933 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
934 MI_SRM_LRM_GLOBAL_GTT));
935 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
936 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
937 wa_ctx_emit(batch, index, 0);
938
939 return index;
940 }
941
942 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
943 uint32_t offset,
944 uint32_t start_alignment)
945 {
946 return wa_ctx->offset = ALIGN(offset, start_alignment);
947 }
948
949 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
950 uint32_t offset,
951 uint32_t size_alignment)
952 {
953 wa_ctx->size = offset - wa_ctx->offset;
954
955 WARN(wa_ctx->size % size_alignment,
956 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
957 wa_ctx->size, size_alignment);
958 return 0;
959 }
960
961 /*
962 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
963 * initialized at the beginning and shared across all contexts but this field
964 * helps us to have multiple batches at different offsets and select them based
965 * on a criteria. At the moment this batch always start at the beginning of the page
966 * and at this point we don't have multiple wa_ctx batch buffers.
967 *
968 * The number of WA applied are not known at the beginning; we use this field
969 * to return the no of DWORDS written.
970 *
971 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
972 * so it adds NOOPs as padding to make it cacheline aligned.
973 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
974 * makes a complete batch buffer.
975 */
976 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
977 struct i915_wa_ctx_bb *wa_ctx,
978 uint32_t *batch,
979 uint32_t *offset)
980 {
981 uint32_t scratch_addr;
982 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
983
984 /* WaDisableCtxRestoreArbitration:bdw,chv */
985 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
986
987 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
988 if (IS_BROADWELL(engine->i915)) {
989 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
990 if (rc < 0)
991 return rc;
992 index = rc;
993 }
994
995 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
996 /* Actual scratch location is at 128 bytes offset */
997 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
998
999 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1000 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1001 PIPE_CONTROL_GLOBAL_GTT_IVB |
1002 PIPE_CONTROL_CS_STALL |
1003 PIPE_CONTROL_QW_WRITE));
1004 wa_ctx_emit(batch, index, scratch_addr);
1005 wa_ctx_emit(batch, index, 0);
1006 wa_ctx_emit(batch, index, 0);
1007 wa_ctx_emit(batch, index, 0);
1008
1009 /* Pad to end of cacheline */
1010 while (index % CACHELINE_DWORDS)
1011 wa_ctx_emit(batch, index, MI_NOOP);
1012
1013 /*
1014 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1015 * execution depends on the length specified in terms of cache lines
1016 * in the register CTX_RCS_INDIRECT_CTX
1017 */
1018
1019 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1020 }
1021
1022 /*
1023 * This batch is started immediately after indirect_ctx batch. Since we ensure
1024 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1025 *
1026 * The number of DWORDS written are returned using this field.
1027 *
1028 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1029 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1030 */
1031 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1032 struct i915_wa_ctx_bb *wa_ctx,
1033 uint32_t *batch,
1034 uint32_t *offset)
1035 {
1036 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1037
1038 /* WaDisableCtxRestoreArbitration:bdw,chv */
1039 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1040
1041 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1042
1043 return wa_ctx_end(wa_ctx, *offset = index, 1);
1044 }
1045
1046 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1047 struct i915_wa_ctx_bb *wa_ctx,
1048 uint32_t *batch,
1049 uint32_t *offset)
1050 {
1051 int ret;
1052 struct drm_i915_private *dev_priv = engine->i915;
1053 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1054
1055 /* WaDisableCtxRestoreArbitration:skl,bxt */
1056 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
1057 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1058 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1059
1060 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1061 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1062 if (ret < 0)
1063 return ret;
1064 index = ret;
1065
1066 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1067 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1068 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1069 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1070 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1071 wa_ctx_emit(batch, index, MI_NOOP);
1072
1073 /* WaClearSlmSpaceAtContextSwitch:kbl */
1074 /* Actual scratch location is at 128 bytes offset */
1075 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1076 u32 scratch_addr =
1077 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1078
1079 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1080 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1081 PIPE_CONTROL_GLOBAL_GTT_IVB |
1082 PIPE_CONTROL_CS_STALL |
1083 PIPE_CONTROL_QW_WRITE));
1084 wa_ctx_emit(batch, index, scratch_addr);
1085 wa_ctx_emit(batch, index, 0);
1086 wa_ctx_emit(batch, index, 0);
1087 wa_ctx_emit(batch, index, 0);
1088 }
1089
1090 /* WaMediaPoolStateCmdInWABB:bxt */
1091 if (HAS_POOLED_EU(engine->i915)) {
1092 /*
1093 * EU pool configuration is setup along with golden context
1094 * during context initialization. This value depends on
1095 * device type (2x6 or 3x6) and needs to be updated based
1096 * on which subslice is disabled especially for 2x6
1097 * devices, however it is safe to load default
1098 * configuration of 3x6 device instead of masking off
1099 * corresponding bits because HW ignores bits of a disabled
1100 * subslice and drops down to appropriate config. Please
1101 * see render_state_setup() in i915_gem_render_state.c for
1102 * possible configurations, to avoid duplication they are
1103 * not shown here again.
1104 */
1105 u32 eu_pool_config = 0x00777000;
1106 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1107 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1108 wa_ctx_emit(batch, index, eu_pool_config);
1109 wa_ctx_emit(batch, index, 0);
1110 wa_ctx_emit(batch, index, 0);
1111 wa_ctx_emit(batch, index, 0);
1112 }
1113
1114 /* Pad to end of cacheline */
1115 while (index % CACHELINE_DWORDS)
1116 wa_ctx_emit(batch, index, MI_NOOP);
1117
1118 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1119 }
1120
1121 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1122 struct i915_wa_ctx_bb *wa_ctx,
1123 uint32_t *batch,
1124 uint32_t *offset)
1125 {
1126 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1127
1128 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1129 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1130 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1131 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1132 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1133 wa_ctx_emit(batch, index,
1134 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1135 wa_ctx_emit(batch, index, MI_NOOP);
1136 }
1137
1138 /* WaClearTdlStateAckDirtyBits:bxt */
1139 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1140 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1141
1142 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1143 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1144
1145 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1146 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1147
1148 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1149 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1150
1151 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1152 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1153 wa_ctx_emit(batch, index, 0x0);
1154 wa_ctx_emit(batch, index, MI_NOOP);
1155 }
1156
1157 /* WaDisableCtxRestoreArbitration:skl,bxt */
1158 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1159 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1160 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1161
1162 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1163
1164 return wa_ctx_end(wa_ctx, *offset = index, 1);
1165 }
1166
1167 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1168 {
1169 struct drm_i915_gem_object *obj;
1170 struct i915_vma *vma;
1171 int err;
1172
1173 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1174 if (IS_ERR(obj))
1175 return PTR_ERR(obj);
1176
1177 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1178 if (IS_ERR(vma)) {
1179 err = PTR_ERR(vma);
1180 goto err;
1181 }
1182
1183 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1184 if (err)
1185 goto err;
1186
1187 engine->wa_ctx.vma = vma;
1188 return 0;
1189
1190 err:
1191 i915_gem_object_put(obj);
1192 return err;
1193 }
1194
1195 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1196 {
1197 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1198 }
1199
1200 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1201 {
1202 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1203 uint32_t *batch;
1204 uint32_t offset;
1205 struct page *page;
1206 int ret;
1207
1208 WARN_ON(engine->id != RCS);
1209
1210 /* update this when WA for higher Gen are added */
1211 if (INTEL_GEN(engine->i915) > 9) {
1212 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1213 INTEL_GEN(engine->i915));
1214 return 0;
1215 }
1216
1217 /* some WA perform writes to scratch page, ensure it is valid */
1218 if (!engine->scratch) {
1219 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1220 return -EINVAL;
1221 }
1222
1223 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1224 if (ret) {
1225 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1226 return ret;
1227 }
1228
1229 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1230 batch = kmap_atomic(page);
1231 offset = 0;
1232
1233 if (IS_GEN8(engine->i915)) {
1234 ret = gen8_init_indirectctx_bb(engine,
1235 &wa_ctx->indirect_ctx,
1236 batch,
1237 &offset);
1238 if (ret)
1239 goto out;
1240
1241 ret = gen8_init_perctx_bb(engine,
1242 &wa_ctx->per_ctx,
1243 batch,
1244 &offset);
1245 if (ret)
1246 goto out;
1247 } else if (IS_GEN9(engine->i915)) {
1248 ret = gen9_init_indirectctx_bb(engine,
1249 &wa_ctx->indirect_ctx,
1250 batch,
1251 &offset);
1252 if (ret)
1253 goto out;
1254
1255 ret = gen9_init_perctx_bb(engine,
1256 &wa_ctx->per_ctx,
1257 batch,
1258 &offset);
1259 if (ret)
1260 goto out;
1261 }
1262
1263 out:
1264 kunmap_atomic(batch);
1265 if (ret)
1266 lrc_destroy_wa_ctx_obj(engine);
1267
1268 return ret;
1269 }
1270
1271 static void lrc_init_hws(struct intel_engine_cs *engine)
1272 {
1273 struct drm_i915_private *dev_priv = engine->i915;
1274
1275 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1276 engine->status_page.ggtt_offset);
1277 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1278 }
1279
1280 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1281 {
1282 struct drm_i915_private *dev_priv = engine->i915;
1283 unsigned int next_context_status_buffer_hw;
1284
1285 lrc_init_hws(engine);
1286
1287 I915_WRITE_IMR(engine,
1288 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1289 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1290
1291 I915_WRITE(RING_MODE_GEN7(engine),
1292 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1293 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1294 POSTING_READ(RING_MODE_GEN7(engine));
1295
1296 /*
1297 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1298 * zero, we need to read the write pointer from hardware and use its
1299 * value because "this register is power context save restored".
1300 * Effectively, these states have been observed:
1301 *
1302 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1303 * BDW | CSB regs not reset | CSB regs reset |
1304 * CHT | CSB regs not reset | CSB regs not reset |
1305 * SKL | ? | ? |
1306 * BXT | ? | ? |
1307 */
1308 next_context_status_buffer_hw =
1309 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1310
1311 /*
1312 * When the CSB registers are reset (also after power-up / gpu reset),
1313 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1314 * this special case, so the first element read is CSB[0].
1315 */
1316 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1317 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1318
1319 engine->next_context_status_buffer = next_context_status_buffer_hw;
1320 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1321
1322 intel_engine_init_hangcheck(engine);
1323
1324 return intel_mocs_init_engine(engine);
1325 }
1326
1327 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1328 {
1329 struct drm_i915_private *dev_priv = engine->i915;
1330 int ret;
1331
1332 ret = gen8_init_common_ring(engine);
1333 if (ret)
1334 return ret;
1335
1336 /* We need to disable the AsyncFlip performance optimisations in order
1337 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1338 * programmed to '1' on all products.
1339 *
1340 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1341 */
1342 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1343
1344 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1345
1346 return init_workarounds_ring(engine);
1347 }
1348
1349 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1350 {
1351 int ret;
1352
1353 ret = gen8_init_common_ring(engine);
1354 if (ret)
1355 return ret;
1356
1357 return init_workarounds_ring(engine);
1358 }
1359
1360 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1361 {
1362 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1363 struct intel_ring *ring = req->ring;
1364 struct intel_engine_cs *engine = req->engine;
1365 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1366 int i, ret;
1367
1368 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1369 if (ret)
1370 return ret;
1371
1372 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1373 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1374 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1375
1376 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1377 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1378 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1379 intel_ring_emit(ring, lower_32_bits(pd_daddr));
1380 }
1381
1382 intel_ring_emit(ring, MI_NOOP);
1383 intel_ring_advance(ring);
1384
1385 return 0;
1386 }
1387
1388 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1389 u64 offset, u32 len,
1390 unsigned int dispatch_flags)
1391 {
1392 struct intel_ring *ring = req->ring;
1393 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1394 int ret;
1395
1396 /* Don't rely in hw updating PDPs, specially in lite-restore.
1397 * Ideally, we should set Force PD Restore in ctx descriptor,
1398 * but we can't. Force Restore would be a second option, but
1399 * it is unsafe in case of lite-restore (because the ctx is
1400 * not idle). PML4 is allocated during ppgtt init so this is
1401 * not needed in 48-bit.*/
1402 if (req->ctx->ppgtt &&
1403 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1404 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1405 !intel_vgpu_active(req->i915)) {
1406 ret = intel_logical_ring_emit_pdps(req);
1407 if (ret)
1408 return ret;
1409 }
1410
1411 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1412 }
1413
1414 ret = intel_ring_begin(req, 4);
1415 if (ret)
1416 return ret;
1417
1418 /* FIXME(BDW): Address space and security selectors. */
1419 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1420 (ppgtt<<8) |
1421 (dispatch_flags & I915_DISPATCH_RS ?
1422 MI_BATCH_RESOURCE_STREAMER : 0));
1423 intel_ring_emit(ring, lower_32_bits(offset));
1424 intel_ring_emit(ring, upper_32_bits(offset));
1425 intel_ring_emit(ring, MI_NOOP);
1426 intel_ring_advance(ring);
1427
1428 return 0;
1429 }
1430
1431 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1432 {
1433 struct drm_i915_private *dev_priv = engine->i915;
1434 I915_WRITE_IMR(engine,
1435 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1436 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1437 }
1438
1439 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1440 {
1441 struct drm_i915_private *dev_priv = engine->i915;
1442 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1443 }
1444
1445 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1446 {
1447 struct intel_ring *ring = request->ring;
1448 u32 cmd;
1449 int ret;
1450
1451 ret = intel_ring_begin(request, 4);
1452 if (ret)
1453 return ret;
1454
1455 cmd = MI_FLUSH_DW + 1;
1456
1457 /* We always require a command barrier so that subsequent
1458 * commands, such as breadcrumb interrupts, are strictly ordered
1459 * wrt the contents of the write cache being flushed to memory
1460 * (and thus being coherent from the CPU).
1461 */
1462 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1463
1464 if (mode & EMIT_INVALIDATE) {
1465 cmd |= MI_INVALIDATE_TLB;
1466 if (request->engine->id == VCS)
1467 cmd |= MI_INVALIDATE_BSD;
1468 }
1469
1470 intel_ring_emit(ring, cmd);
1471 intel_ring_emit(ring,
1472 I915_GEM_HWS_SCRATCH_ADDR |
1473 MI_FLUSH_DW_USE_GTT);
1474 intel_ring_emit(ring, 0); /* upper addr */
1475 intel_ring_emit(ring, 0); /* value */
1476 intel_ring_advance(ring);
1477
1478 return 0;
1479 }
1480
1481 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1482 u32 mode)
1483 {
1484 struct intel_ring *ring = request->ring;
1485 struct intel_engine_cs *engine = request->engine;
1486 u32 scratch_addr =
1487 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1488 bool vf_flush_wa = false, dc_flush_wa = false;
1489 u32 flags = 0;
1490 int ret;
1491 int len;
1492
1493 flags |= PIPE_CONTROL_CS_STALL;
1494
1495 if (mode & EMIT_FLUSH) {
1496 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1497 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1498 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1499 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1500 }
1501
1502 if (mode & EMIT_INVALIDATE) {
1503 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1504 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1505 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1506 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1507 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1508 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1509 flags |= PIPE_CONTROL_QW_WRITE;
1510 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1511
1512 /*
1513 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1514 * pipe control.
1515 */
1516 if (IS_GEN9(request->i915))
1517 vf_flush_wa = true;
1518
1519 /* WaForGAMHang:kbl */
1520 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1521 dc_flush_wa = true;
1522 }
1523
1524 len = 6;
1525
1526 if (vf_flush_wa)
1527 len += 6;
1528
1529 if (dc_flush_wa)
1530 len += 12;
1531
1532 ret = intel_ring_begin(request, len);
1533 if (ret)
1534 return ret;
1535
1536 if (vf_flush_wa) {
1537 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1538 intel_ring_emit(ring, 0);
1539 intel_ring_emit(ring, 0);
1540 intel_ring_emit(ring, 0);
1541 intel_ring_emit(ring, 0);
1542 intel_ring_emit(ring, 0);
1543 }
1544
1545 if (dc_flush_wa) {
1546 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1547 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1548 intel_ring_emit(ring, 0);
1549 intel_ring_emit(ring, 0);
1550 intel_ring_emit(ring, 0);
1551 intel_ring_emit(ring, 0);
1552 }
1553
1554 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1555 intel_ring_emit(ring, flags);
1556 intel_ring_emit(ring, scratch_addr);
1557 intel_ring_emit(ring, 0);
1558 intel_ring_emit(ring, 0);
1559 intel_ring_emit(ring, 0);
1560
1561 if (dc_flush_wa) {
1562 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1563 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1564 intel_ring_emit(ring, 0);
1565 intel_ring_emit(ring, 0);
1566 intel_ring_emit(ring, 0);
1567 intel_ring_emit(ring, 0);
1568 }
1569
1570 intel_ring_advance(ring);
1571
1572 return 0;
1573 }
1574
1575 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1576 {
1577 /*
1578 * On BXT A steppings there is a HW coherency issue whereby the
1579 * MI_STORE_DATA_IMM storing the completed request's seqno
1580 * occasionally doesn't invalidate the CPU cache. Work around this by
1581 * clflushing the corresponding cacheline whenever the caller wants
1582 * the coherency to be guaranteed. Note that this cacheline is known
1583 * to be clean at this point, since we only write it in
1584 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1585 * this clflush in practice becomes an invalidate operation.
1586 */
1587 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1588 }
1589
1590 /*
1591 * Reserve space for 2 NOOPs at the end of each request to be
1592 * used as a workaround for not being allowed to do lite
1593 * restore with HEAD==TAIL (WaIdleLiteRestore).
1594 */
1595 #define WA_TAIL_DWORDS 2
1596
1597 static int gen8_emit_request(struct drm_i915_gem_request *request)
1598 {
1599 struct intel_ring *ring = request->ring;
1600 int ret;
1601
1602 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1603 if (ret)
1604 return ret;
1605
1606 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1607 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1608
1609 intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1610 intel_ring_emit(ring,
1611 intel_hws_seqno_address(request->engine) |
1612 MI_FLUSH_DW_USE_GTT);
1613 intel_ring_emit(ring, 0);
1614 intel_ring_emit(ring, request->fence.seqno);
1615 intel_ring_emit(ring, MI_USER_INTERRUPT);
1616 intel_ring_emit(ring, MI_NOOP);
1617 return intel_logical_ring_advance(request);
1618 }
1619
1620 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1621 {
1622 struct intel_ring *ring = request->ring;
1623 int ret;
1624
1625 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1626 if (ret)
1627 return ret;
1628
1629 /* We're using qword write, seqno should be aligned to 8 bytes. */
1630 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1631
1632 /* w/a for post sync ops following a GPGPU operation we
1633 * need a prior CS_STALL, which is emitted by the flush
1634 * following the batch.
1635 */
1636 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1637 intel_ring_emit(ring,
1638 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1639 PIPE_CONTROL_CS_STALL |
1640 PIPE_CONTROL_QW_WRITE));
1641 intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1642 intel_ring_emit(ring, 0);
1643 intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1644 /* We're thrashing one dword of HWS. */
1645 intel_ring_emit(ring, 0);
1646 intel_ring_emit(ring, MI_USER_INTERRUPT);
1647 intel_ring_emit(ring, MI_NOOP);
1648 return intel_logical_ring_advance(request);
1649 }
1650
1651 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1652 {
1653 int ret;
1654
1655 ret = intel_logical_ring_workarounds_emit(req);
1656 if (ret)
1657 return ret;
1658
1659 ret = intel_rcs_context_init_mocs(req);
1660 /*
1661 * Failing to program the MOCS is non-fatal.The system will not
1662 * run at peak performance. So generate an error and carry on.
1663 */
1664 if (ret)
1665 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1666
1667 return i915_gem_render_state_init(req);
1668 }
1669
1670 /**
1671 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1672 * @engine: Engine Command Streamer.
1673 */
1674 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1675 {
1676 struct drm_i915_private *dev_priv;
1677
1678 if (!intel_engine_initialized(engine))
1679 return;
1680
1681 /*
1682 * Tasklet cannot be active at this point due intel_mark_active/idle
1683 * so this is just for documentation.
1684 */
1685 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1686 tasklet_kill(&engine->irq_tasklet);
1687
1688 dev_priv = engine->i915;
1689
1690 if (engine->buffer) {
1691 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1692 }
1693
1694 if (engine->cleanup)
1695 engine->cleanup(engine);
1696
1697 intel_engine_cleanup_common(engine);
1698
1699 if (engine->status_page.vma) {
1700 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1701 engine->status_page.vma = NULL;
1702 }
1703 intel_lr_context_unpin(dev_priv->kernel_context, engine);
1704
1705 engine->idle_lite_restore_wa = 0;
1706 engine->disable_lite_restore_wa = false;
1707 engine->ctx_desc_template = 0;
1708
1709 lrc_destroy_wa_ctx_obj(engine);
1710 engine->i915 = NULL;
1711 }
1712
1713 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1714 {
1715 struct intel_engine_cs *engine;
1716
1717 for_each_engine(engine, dev_priv)
1718 engine->submit_request = execlists_submit_request;
1719 }
1720
1721 static void
1722 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1723 {
1724 /* Default vfuncs which can be overriden by each engine. */
1725 engine->init_hw = gen8_init_common_ring;
1726 engine->emit_flush = gen8_emit_flush;
1727 engine->emit_request = gen8_emit_request;
1728 engine->submit_request = execlists_submit_request;
1729
1730 engine->irq_enable = gen8_logical_ring_enable_irq;
1731 engine->irq_disable = gen8_logical_ring_disable_irq;
1732 engine->emit_bb_start = gen8_emit_bb_start;
1733 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1734 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1735 }
1736
1737 static inline void
1738 logical_ring_default_irqs(struct intel_engine_cs *engine)
1739 {
1740 unsigned shift = engine->irq_shift;
1741 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1742 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1743 }
1744
1745 static int
1746 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1747 {
1748 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1749 void *hws;
1750
1751 /* The HWSP is part of the default context object in LRC mode. */
1752 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1753 if (IS_ERR(hws))
1754 return PTR_ERR(hws);
1755
1756 engine->status_page.page_addr = hws + hws_offset;
1757 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1758 engine->status_page.vma = vma;
1759
1760 return 0;
1761 }
1762
1763 static void
1764 logical_ring_setup(struct intel_engine_cs *engine)
1765 {
1766 struct drm_i915_private *dev_priv = engine->i915;
1767 enum forcewake_domains fw_domains;
1768
1769 intel_engine_setup_common(engine);
1770
1771 /* Intentionally left blank. */
1772 engine->buffer = NULL;
1773
1774 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1775 RING_ELSP(engine),
1776 FW_REG_WRITE);
1777
1778 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1779 RING_CONTEXT_STATUS_PTR(engine),
1780 FW_REG_READ | FW_REG_WRITE);
1781
1782 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1783 RING_CONTEXT_STATUS_BUF_BASE(engine),
1784 FW_REG_READ);
1785
1786 engine->fw_domains = fw_domains;
1787
1788 tasklet_init(&engine->irq_tasklet,
1789 intel_lrc_irq_handler, (unsigned long)engine);
1790
1791 logical_ring_init_platform_invariants(engine);
1792 logical_ring_default_vfuncs(engine);
1793 logical_ring_default_irqs(engine);
1794 }
1795
1796 static int
1797 logical_ring_init(struct intel_engine_cs *engine)
1798 {
1799 struct i915_gem_context *dctx = engine->i915->kernel_context;
1800 int ret;
1801
1802 ret = intel_engine_init_common(engine);
1803 if (ret)
1804 goto error;
1805
1806 ret = execlists_context_deferred_alloc(dctx, engine);
1807 if (ret)
1808 goto error;
1809
1810 /* As this is the default context, always pin it */
1811 ret = intel_lr_context_pin(dctx, engine);
1812 if (ret) {
1813 DRM_ERROR("Failed to pin context for %s: %d\n",
1814 engine->name, ret);
1815 goto error;
1816 }
1817
1818 /* And setup the hardware status page. */
1819 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1820 if (ret) {
1821 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1822 goto error;
1823 }
1824
1825 return 0;
1826
1827 error:
1828 intel_logical_ring_cleanup(engine);
1829 return ret;
1830 }
1831
1832 int logical_render_ring_init(struct intel_engine_cs *engine)
1833 {
1834 struct drm_i915_private *dev_priv = engine->i915;
1835 int ret;
1836
1837 logical_ring_setup(engine);
1838
1839 if (HAS_L3_DPF(dev_priv))
1840 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1841
1842 /* Override some for render ring. */
1843 if (INTEL_GEN(dev_priv) >= 9)
1844 engine->init_hw = gen9_init_render_ring;
1845 else
1846 engine->init_hw = gen8_init_render_ring;
1847 engine->init_context = gen8_init_rcs_context;
1848 engine->emit_flush = gen8_emit_flush_render;
1849 engine->emit_request = gen8_emit_request_render;
1850
1851 ret = intel_engine_create_scratch(engine, 4096);
1852 if (ret)
1853 return ret;
1854
1855 ret = intel_init_workaround_bb(engine);
1856 if (ret) {
1857 /*
1858 * We continue even if we fail to initialize WA batch
1859 * because we only expect rare glitches but nothing
1860 * critical to prevent us from using GPU
1861 */
1862 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1863 ret);
1864 }
1865
1866 ret = logical_ring_init(engine);
1867 if (ret) {
1868 lrc_destroy_wa_ctx_obj(engine);
1869 }
1870
1871 return ret;
1872 }
1873
1874 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1875 {
1876 logical_ring_setup(engine);
1877
1878 return logical_ring_init(engine);
1879 }
1880
1881 static u32
1882 make_rpcs(struct drm_i915_private *dev_priv)
1883 {
1884 u32 rpcs = 0;
1885
1886 /*
1887 * No explicit RPCS request is needed to ensure full
1888 * slice/subslice/EU enablement prior to Gen9.
1889 */
1890 if (INTEL_GEN(dev_priv) < 9)
1891 return 0;
1892
1893 /*
1894 * Starting in Gen9, render power gating can leave
1895 * slice/subslice/EU in a partially enabled state. We
1896 * must make an explicit request through RPCS for full
1897 * enablement.
1898 */
1899 if (INTEL_INFO(dev_priv)->has_slice_pg) {
1900 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1901 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
1902 GEN8_RPCS_S_CNT_SHIFT;
1903 rpcs |= GEN8_RPCS_ENABLE;
1904 }
1905
1906 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
1907 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1908 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
1909 GEN8_RPCS_SS_CNT_SHIFT;
1910 rpcs |= GEN8_RPCS_ENABLE;
1911 }
1912
1913 if (INTEL_INFO(dev_priv)->has_eu_pg) {
1914 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
1915 GEN8_RPCS_EU_MIN_SHIFT;
1916 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
1917 GEN8_RPCS_EU_MAX_SHIFT;
1918 rpcs |= GEN8_RPCS_ENABLE;
1919 }
1920
1921 return rpcs;
1922 }
1923
1924 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1925 {
1926 u32 indirect_ctx_offset;
1927
1928 switch (INTEL_GEN(engine->i915)) {
1929 default:
1930 MISSING_CASE(INTEL_GEN(engine->i915));
1931 /* fall through */
1932 case 9:
1933 indirect_ctx_offset =
1934 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1935 break;
1936 case 8:
1937 indirect_ctx_offset =
1938 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1939 break;
1940 }
1941
1942 return indirect_ctx_offset;
1943 }
1944
1945 static int
1946 populate_lr_context(struct i915_gem_context *ctx,
1947 struct drm_i915_gem_object *ctx_obj,
1948 struct intel_engine_cs *engine,
1949 struct intel_ring *ring)
1950 {
1951 struct drm_i915_private *dev_priv = ctx->i915;
1952 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1953 void *vaddr;
1954 u32 *reg_state;
1955 int ret;
1956
1957 if (!ppgtt)
1958 ppgtt = dev_priv->mm.aliasing_ppgtt;
1959
1960 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1961 if (ret) {
1962 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1963 return ret;
1964 }
1965
1966 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1967 if (IS_ERR(vaddr)) {
1968 ret = PTR_ERR(vaddr);
1969 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1970 return ret;
1971 }
1972 ctx_obj->dirty = true;
1973
1974 /* The second page of the context object contains some fields which must
1975 * be set up prior to the first execution. */
1976 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1977
1978 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1979 * commands followed by (reg, value) pairs. The values we are setting here are
1980 * only for the first context restore: on a subsequent save, the GPU will
1981 * recreate this batchbuffer with new values (including all the missing
1982 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1983 reg_state[CTX_LRI_HEADER_0] =
1984 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1985 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1986 RING_CONTEXT_CONTROL(engine),
1987 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1988 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1989 (HAS_RESOURCE_STREAMER(dev_priv) ?
1990 CTX_CTRL_RS_CTX_ENABLE : 0)));
1991 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1992 0);
1993 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1994 0);
1995 /* Ring buffer start address is not known until the buffer is pinned.
1996 * It is written to the context image in execlists_update_context()
1997 */
1998 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1999 RING_START(engine->mmio_base), 0);
2000 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2001 RING_CTL(engine->mmio_base),
2002 ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2003 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2004 RING_BBADDR_UDW(engine->mmio_base), 0);
2005 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2006 RING_BBADDR(engine->mmio_base), 0);
2007 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2008 RING_BBSTATE(engine->mmio_base),
2009 RING_BB_PPGTT);
2010 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2011 RING_SBBADDR_UDW(engine->mmio_base), 0);
2012 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2013 RING_SBBADDR(engine->mmio_base), 0);
2014 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2015 RING_SBBSTATE(engine->mmio_base), 0);
2016 if (engine->id == RCS) {
2017 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2018 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2019 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2020 RING_INDIRECT_CTX(engine->mmio_base), 0);
2021 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2022 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2023 if (engine->wa_ctx.vma) {
2024 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2025 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2026
2027 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2028 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2029 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2030
2031 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2032 intel_lr_indirect_ctx_offset(engine) << 6;
2033
2034 reg_state[CTX_BB_PER_CTX_PTR+1] =
2035 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2036 0x01;
2037 }
2038 }
2039 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2040 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2041 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2042 /* PDP values well be assigned later if needed */
2043 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2044 0);
2045 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2046 0);
2047 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2048 0);
2049 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2050 0);
2051 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2052 0);
2053 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2054 0);
2055 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2056 0);
2057 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2058 0);
2059
2060 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2061 /* 64b PPGTT (48bit canonical)
2062 * PDP0_DESCRIPTOR contains the base address to PML4 and
2063 * other PDP Descriptors are ignored.
2064 */
2065 ASSIGN_CTX_PML4(ppgtt, reg_state);
2066 } else {
2067 /* 32b PPGTT
2068 * PDP*_DESCRIPTOR contains the base address of space supported.
2069 * With dynamic page allocation, PDPs may not be allocated at
2070 * this point. Point the unallocated PDPs to the scratch page
2071 */
2072 execlists_update_context_pdps(ppgtt, reg_state);
2073 }
2074
2075 if (engine->id == RCS) {
2076 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2077 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2078 make_rpcs(dev_priv));
2079 }
2080
2081 i915_gem_object_unpin_map(ctx_obj);
2082
2083 return 0;
2084 }
2085
2086 /**
2087 * intel_lr_context_size() - return the size of the context for an engine
2088 * @engine: which engine to find the context size for
2089 *
2090 * Each engine may require a different amount of space for a context image,
2091 * so when allocating (or copying) an image, this function can be used to
2092 * find the right size for the specific engine.
2093 *
2094 * Return: size (in bytes) of an engine-specific context image
2095 *
2096 * Note: this size includes the HWSP, which is part of the context image
2097 * in LRC mode, but does not include the "shared data page" used with
2098 * GuC submission. The caller should account for this if using the GuC.
2099 */
2100 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2101 {
2102 int ret = 0;
2103
2104 WARN_ON(INTEL_GEN(engine->i915) < 8);
2105
2106 switch (engine->id) {
2107 case RCS:
2108 if (INTEL_GEN(engine->i915) >= 9)
2109 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2110 else
2111 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2112 break;
2113 case VCS:
2114 case BCS:
2115 case VECS:
2116 case VCS2:
2117 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2118 break;
2119 }
2120
2121 return ret;
2122 }
2123
2124 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2125 struct intel_engine_cs *engine)
2126 {
2127 struct drm_i915_gem_object *ctx_obj;
2128 struct intel_context *ce = &ctx->engine[engine->id];
2129 struct i915_vma *vma;
2130 uint32_t context_size;
2131 struct intel_ring *ring;
2132 int ret;
2133
2134 WARN_ON(ce->state);
2135
2136 context_size = round_up(intel_lr_context_size(engine), 4096);
2137
2138 /* One extra page as the sharing data between driver and GuC */
2139 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2140
2141 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2142 if (IS_ERR(ctx_obj)) {
2143 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2144 return PTR_ERR(ctx_obj);
2145 }
2146
2147 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2148 if (IS_ERR(vma)) {
2149 ret = PTR_ERR(vma);
2150 goto error_deref_obj;
2151 }
2152
2153 ring = intel_engine_create_ring(engine, ctx->ring_size);
2154 if (IS_ERR(ring)) {
2155 ret = PTR_ERR(ring);
2156 goto error_deref_obj;
2157 }
2158
2159 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2160 if (ret) {
2161 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2162 goto error_ring_free;
2163 }
2164
2165 ce->ring = ring;
2166 ce->state = vma;
2167 ce->initialised = engine->init_context == NULL;
2168
2169 return 0;
2170
2171 error_ring_free:
2172 intel_ring_free(ring);
2173 error_deref_obj:
2174 i915_gem_object_put(ctx_obj);
2175 return ret;
2176 }
2177
2178 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2179 struct i915_gem_context *ctx)
2180 {
2181 struct intel_engine_cs *engine;
2182
2183 for_each_engine(engine, dev_priv) {
2184 struct intel_context *ce = &ctx->engine[engine->id];
2185 void *vaddr;
2186 uint32_t *reg_state;
2187
2188 if (!ce->state)
2189 continue;
2190
2191 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
2192 if (WARN_ON(IS_ERR(vaddr)))
2193 continue;
2194
2195 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2196
2197 reg_state[CTX_RING_HEAD+1] = 0;
2198 reg_state[CTX_RING_TAIL+1] = 0;
2199
2200 ce->state->obj->dirty = true;
2201 i915_gem_object_unpin_map(ce->state->obj);
2202
2203 ce->ring->head = 0;
2204 ce->ring->tail = 0;
2205 }
2206 }
This page took 0.114386 seconds and 5 git commands to generate.