drm/i915: Make LRC (un)pinning work on context and engine
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL (1 << 0x2)
145 #define RING_EXECLIST1_VALID (1 << 0x3)
146 #define RING_EXECLIST0_VALID (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
157
158 #define CTX_LRI_HEADER_0 0x01
159 #define CTX_CONTEXT_CONTROL 0x02
160 #define CTX_RING_HEAD 0x04
161 #define CTX_RING_TAIL 0x06
162 #define CTX_RING_BUFFER_START 0x08
163 #define CTX_RING_BUFFER_CONTROL 0x0a
164 #define CTX_BB_HEAD_U 0x0c
165 #define CTX_BB_HEAD_L 0x0e
166 #define CTX_BB_STATE 0x10
167 #define CTX_SECOND_BB_HEAD_U 0x12
168 #define CTX_SECOND_BB_HEAD_L 0x14
169 #define CTX_SECOND_BB_STATE 0x16
170 #define CTX_BB_PER_CTX_PTR 0x18
171 #define CTX_RCS_INDIRECT_CTX 0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173 #define CTX_LRI_HEADER_1 0x21
174 #define CTX_CTX_TIMESTAMP 0x22
175 #define CTX_PDP3_UDW 0x24
176 #define CTX_PDP3_LDW 0x26
177 #define CTX_PDP2_UDW 0x28
178 #define CTX_PDP2_LDW 0x2a
179 #define CTX_PDP1_UDW 0x2c
180 #define CTX_PDP1_LDW 0x2e
181 #define CTX_PDP0_UDW 0x30
182 #define CTX_PDP0_LDW 0x32
183 #define CTX_LRI_HEADER_2 0x41
184 #define CTX_R_PWR_CLK_STATE 0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 enum {
210 ADVANCED_CONTEXT = 0,
211 LEGACY_32B_CONTEXT,
212 ADVANCED_AD_CONTEXT,
213 LEGACY_64B_CONTEXT
214 };
215 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
217 LEGACY_64B_CONTEXT :\
218 LEGACY_32B_CONTEXT)
219 enum {
220 FAULT_AND_HANG = 0,
221 FAULT_AND_HALT, /* Debug only */
222 FAULT_AND_STREAM,
223 FAULT_AND_CONTINUE /* Unsupported */
224 };
225 #define GEN8_CTX_ID_SHIFT 32
226 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
227
228 static int intel_lr_context_pin(struct intel_context *ctx,
229 struct intel_engine_cs *engine);
230 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
231 struct drm_i915_gem_object *default_ctx_obj);
232
233
234 /**
235 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
236 * @dev: DRM device.
237 * @enable_execlists: value of i915.enable_execlists module parameter.
238 *
239 * Only certain platforms support Execlists (the prerequisites being
240 * support for Logical Ring Contexts and Aliasing PPGTT or better).
241 *
242 * Return: 1 if Execlists is supported and has to be enabled.
243 */
244 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
245 {
246 WARN_ON(i915.enable_ppgtt == -1);
247
248 /* On platforms with execlist available, vGPU will only
249 * support execlist mode, no ring buffer mode.
250 */
251 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
252 return 1;
253
254 if (INTEL_INFO(dev)->gen >= 9)
255 return 1;
256
257 if (enable_execlists == 0)
258 return 0;
259
260 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
261 i915.use_mmio_flip >= 0)
262 return 1;
263
264 return 0;
265 }
266
267 static void
268 logical_ring_init_platform_invariants(struct intel_engine_cs *ring)
269 {
270 struct drm_device *dev = ring->dev;
271
272 ring->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
273 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
274 (ring->id == VCS || ring->id == VCS2);
275
276 ring->ctx_desc_template = GEN8_CTX_VALID;
277 ring->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
278 GEN8_CTX_ADDRESSING_MODE_SHIFT;
279 if (IS_GEN8(dev))
280 ring->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
281 ring->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
282
283 /* TODO: WaDisableLiteRestore when we start using semaphore
284 * signalling between Command Streamers */
285 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
286
287 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
288 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
289 if (ring->disable_lite_restore_wa)
290 ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
291 }
292
293 /**
294 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
295 * descriptor for a pinned context
296 *
297 * @ctx: Context to work on
298 * @ring: Engine the descriptor will be used with
299 *
300 * The context descriptor encodes various attributes of a context,
301 * including its GTT address and some flags. Because it's fairly
302 * expensive to calculate, we'll just do it once and cache the result,
303 * which remains valid until the context is unpinned.
304 *
305 * This is what a descriptor looks like, from LSB to MSB:
306 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
307 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
308 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
309 * bits 52-63: reserved, may encode the engine ID (for GuC)
310 */
311 static void
312 intel_lr_context_descriptor_update(struct intel_context *ctx,
313 struct intel_engine_cs *ring)
314 {
315 uint64_t lrca, desc;
316
317 lrca = ctx->engine[ring->id].lrc_vma->node.start +
318 LRC_PPHWSP_PN * PAGE_SIZE;
319
320 desc = ring->ctx_desc_template; /* bits 0-11 */
321 desc |= lrca; /* bits 12-31 */
322 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
323
324 ctx->engine[ring->id].lrc_desc = desc;
325 }
326
327 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
328 struct intel_engine_cs *ring)
329 {
330 return ctx->engine[ring->id].lrc_desc;
331 }
332
333 /**
334 * intel_execlists_ctx_id() - get the Execlists Context ID
335 * @ctx: Context to get the ID for
336 * @ring: Engine to get the ID for
337 *
338 * Do not confuse with ctx->id! Unfortunately we have a name overload
339 * here: the old context ID we pass to userspace as a handler so that
340 * they can refer to a context, and the new context ID we pass to the
341 * ELSP so that the GPU can inform us of the context status via
342 * interrupts.
343 *
344 * The context ID is a portion of the context descriptor, so we can
345 * just extract the required part from the cached descriptor.
346 *
347 * Return: 20-bits globally unique context ID.
348 */
349 u32 intel_execlists_ctx_id(struct intel_context *ctx,
350 struct intel_engine_cs *ring)
351 {
352 return intel_lr_context_descriptor(ctx, ring) >> GEN8_CTX_ID_SHIFT;
353 }
354
355 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
356 struct drm_i915_gem_request *rq1)
357 {
358
359 struct intel_engine_cs *ring = rq0->ring;
360 struct drm_device *dev = ring->dev;
361 struct drm_i915_private *dev_priv = dev->dev_private;
362 uint64_t desc[2];
363
364 if (rq1) {
365 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
366 rq1->elsp_submitted++;
367 } else {
368 desc[1] = 0;
369 }
370
371 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
372 rq0->elsp_submitted++;
373
374 /* You must always write both descriptors in the order below. */
375 spin_lock(&dev_priv->uncore.lock);
376 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
377 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
378 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
379
380 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
381 /* The context is automatically loaded after the following */
382 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
383
384 /* ELSP is a wo register, use another nearby reg for posting */
385 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
386 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
387 spin_unlock(&dev_priv->uncore.lock);
388 }
389
390 static int execlists_update_context(struct drm_i915_gem_request *rq)
391 {
392 struct intel_engine_cs *ring = rq->ring;
393 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
394 uint32_t *reg_state = rq->ctx->engine[ring->id].lrc_reg_state;
395
396 reg_state[CTX_RING_TAIL+1] = rq->tail;
397
398 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
399 /* True 32b PPGTT with dynamic page allocation: update PDP
400 * registers and point the unallocated PDPs to scratch page.
401 * PML4 is allocated during ppgtt init, so this is not needed
402 * in 48-bit mode.
403 */
404 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
405 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
406 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
407 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
408 }
409
410 return 0;
411 }
412
413 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
414 struct drm_i915_gem_request *rq1)
415 {
416 execlists_update_context(rq0);
417
418 if (rq1)
419 execlists_update_context(rq1);
420
421 execlists_elsp_write(rq0, rq1);
422 }
423
424 static void execlists_context_unqueue(struct intel_engine_cs *ring)
425 {
426 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
427 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
428
429 assert_spin_locked(&ring->execlist_lock);
430
431 /*
432 * If irqs are not active generate a warning as batches that finish
433 * without the irqs may get lost and a GPU Hang may occur.
434 */
435 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
436
437 if (list_empty(&ring->execlist_queue))
438 return;
439
440 /* Try to read in pairs */
441 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
442 execlist_link) {
443 if (!req0) {
444 req0 = cursor;
445 } else if (req0->ctx == cursor->ctx) {
446 /* Same ctx: ignore first request, as second request
447 * will update tail past first request's workload */
448 cursor->elsp_submitted = req0->elsp_submitted;
449 list_move_tail(&req0->execlist_link,
450 &ring->execlist_retired_req_list);
451 req0 = cursor;
452 } else {
453 req1 = cursor;
454 break;
455 }
456 }
457
458 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
459 /*
460 * WaIdleLiteRestore: make sure we never cause a lite
461 * restore with HEAD==TAIL
462 */
463 if (req0->elsp_submitted) {
464 /*
465 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
466 * as we resubmit the request. See gen8_emit_request()
467 * for where we prepare the padding after the end of the
468 * request.
469 */
470 struct intel_ringbuffer *ringbuf;
471
472 ringbuf = req0->ctx->engine[ring->id].ringbuf;
473 req0->tail += 8;
474 req0->tail &= ringbuf->size - 1;
475 }
476 }
477
478 WARN_ON(req1 && req1->elsp_submitted);
479
480 execlists_submit_requests(req0, req1);
481 }
482
483 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
484 u32 request_id)
485 {
486 struct drm_i915_gem_request *head_req;
487
488 assert_spin_locked(&ring->execlist_lock);
489
490 head_req = list_first_entry_or_null(&ring->execlist_queue,
491 struct drm_i915_gem_request,
492 execlist_link);
493
494 if (head_req != NULL) {
495 if (intel_execlists_ctx_id(head_req->ctx, ring) == request_id) {
496 WARN(head_req->elsp_submitted == 0,
497 "Never submitted head request\n");
498
499 if (--head_req->elsp_submitted <= 0) {
500 list_move_tail(&head_req->execlist_link,
501 &ring->execlist_retired_req_list);
502 return true;
503 }
504 }
505 }
506
507 return false;
508 }
509
510 static void get_context_status(struct intel_engine_cs *ring,
511 u8 read_pointer,
512 u32 *status, u32 *context_id)
513 {
514 struct drm_i915_private *dev_priv = ring->dev->dev_private;
515
516 if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
517 return;
518
519 *status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
520 *context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
521 }
522
523 /**
524 * intel_lrc_irq_handler() - handle Context Switch interrupts
525 * @ring: Engine Command Streamer to handle.
526 *
527 * Check the unread Context Status Buffers and manage the submission of new
528 * contexts to the ELSP accordingly.
529 */
530 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
531 {
532 struct drm_i915_private *dev_priv = ring->dev->dev_private;
533 u32 status_pointer;
534 u8 read_pointer;
535 u8 write_pointer;
536 u32 status = 0;
537 u32 status_id;
538 u32 submit_contexts = 0;
539
540 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
541
542 read_pointer = ring->next_context_status_buffer;
543 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
544 if (read_pointer > write_pointer)
545 write_pointer += GEN8_CSB_ENTRIES;
546
547 spin_lock(&ring->execlist_lock);
548
549 while (read_pointer < write_pointer) {
550
551 get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
552 &status, &status_id);
553
554 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
555 continue;
556
557 if (status & GEN8_CTX_STATUS_PREEMPTED) {
558 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
559 if (execlists_check_remove_request(ring, status_id))
560 WARN(1, "Lite Restored request removed from queue\n");
561 } else
562 WARN(1, "Preemption without Lite Restore\n");
563 }
564
565 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
566 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
567 if (execlists_check_remove_request(ring, status_id))
568 submit_contexts++;
569 }
570 }
571
572 if (ring->disable_lite_restore_wa) {
573 /* Prevent a ctx to preempt itself */
574 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
575 (submit_contexts != 0))
576 execlists_context_unqueue(ring);
577 } else if (submit_contexts != 0) {
578 execlists_context_unqueue(ring);
579 }
580
581 spin_unlock(&ring->execlist_lock);
582
583 if (unlikely(submit_contexts > 2))
584 DRM_ERROR("More than two context complete events?\n");
585
586 ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
587
588 /* Update the read pointer to the old write pointer. Manual ringbuffer
589 * management ftw </sarcasm> */
590 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
591 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
592 ring->next_context_status_buffer << 8));
593 }
594
595 static int execlists_context_queue(struct drm_i915_gem_request *request)
596 {
597 struct intel_engine_cs *ring = request->ring;
598 struct drm_i915_gem_request *cursor;
599 int num_elements = 0;
600
601 if (request->ctx != request->i915->kernel_context)
602 intel_lr_context_pin(request->ctx, ring);
603
604 i915_gem_request_reference(request);
605
606 spin_lock_irq(&ring->execlist_lock);
607
608 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
609 if (++num_elements > 2)
610 break;
611
612 if (num_elements > 2) {
613 struct drm_i915_gem_request *tail_req;
614
615 tail_req = list_last_entry(&ring->execlist_queue,
616 struct drm_i915_gem_request,
617 execlist_link);
618
619 if (request->ctx == tail_req->ctx) {
620 WARN(tail_req->elsp_submitted != 0,
621 "More than 2 already-submitted reqs queued\n");
622 list_move_tail(&tail_req->execlist_link,
623 &ring->execlist_retired_req_list);
624 }
625 }
626
627 list_add_tail(&request->execlist_link, &ring->execlist_queue);
628 if (num_elements == 0)
629 execlists_context_unqueue(ring);
630
631 spin_unlock_irq(&ring->execlist_lock);
632
633 return 0;
634 }
635
636 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
637 {
638 struct intel_engine_cs *ring = req->ring;
639 uint32_t flush_domains;
640 int ret;
641
642 flush_domains = 0;
643 if (ring->gpu_caches_dirty)
644 flush_domains = I915_GEM_GPU_DOMAINS;
645
646 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
647 if (ret)
648 return ret;
649
650 ring->gpu_caches_dirty = false;
651 return 0;
652 }
653
654 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
655 struct list_head *vmas)
656 {
657 const unsigned other_rings = ~intel_ring_flag(req->ring);
658 struct i915_vma *vma;
659 uint32_t flush_domains = 0;
660 bool flush_chipset = false;
661 int ret;
662
663 list_for_each_entry(vma, vmas, exec_list) {
664 struct drm_i915_gem_object *obj = vma->obj;
665
666 if (obj->active & other_rings) {
667 ret = i915_gem_object_sync(obj, req->ring, &req);
668 if (ret)
669 return ret;
670 }
671
672 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
673 flush_chipset |= i915_gem_clflush_object(obj, false);
674
675 flush_domains |= obj->base.write_domain;
676 }
677
678 if (flush_domains & I915_GEM_DOMAIN_GTT)
679 wmb();
680
681 /* Unconditionally invalidate gpu caches and ensure that we do flush
682 * any residual writes from the previous batch.
683 */
684 return logical_ring_invalidate_all_caches(req);
685 }
686
687 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
688 {
689 int ret = 0;
690
691 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
692
693 if (i915.enable_guc_submission) {
694 /*
695 * Check that the GuC has space for the request before
696 * going any further, as the i915_add_request() call
697 * later on mustn't fail ...
698 */
699 struct intel_guc *guc = &request->i915->guc;
700
701 ret = i915_guc_wq_check_space(guc->execbuf_client);
702 if (ret)
703 return ret;
704 }
705
706 if (request->ctx != request->i915->kernel_context)
707 ret = intel_lr_context_pin(request->ctx, request->ring);
708
709 return ret;
710 }
711
712 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
713 int bytes)
714 {
715 struct intel_ringbuffer *ringbuf = req->ringbuf;
716 struct intel_engine_cs *ring = req->ring;
717 struct drm_i915_gem_request *target;
718 unsigned space;
719 int ret;
720
721 if (intel_ring_space(ringbuf) >= bytes)
722 return 0;
723
724 /* The whole point of reserving space is to not wait! */
725 WARN_ON(ringbuf->reserved_in_use);
726
727 list_for_each_entry(target, &ring->request_list, list) {
728 /*
729 * The request queue is per-engine, so can contain requests
730 * from multiple ringbuffers. Here, we must ignore any that
731 * aren't from the ringbuffer we're considering.
732 */
733 if (target->ringbuf != ringbuf)
734 continue;
735
736 /* Would completion of this request free enough space? */
737 space = __intel_ring_space(target->postfix, ringbuf->tail,
738 ringbuf->size);
739 if (space >= bytes)
740 break;
741 }
742
743 if (WARN_ON(&target->list == &ring->request_list))
744 return -ENOSPC;
745
746 ret = i915_wait_request(target);
747 if (ret)
748 return ret;
749
750 ringbuf->space = space;
751 return 0;
752 }
753
754 /*
755 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
756 * @request: Request to advance the logical ringbuffer of.
757 *
758 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
759 * really happens during submission is that the context and current tail will be placed
760 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
761 * point, the tail *inside* the context is updated and the ELSP written to.
762 */
763 static int
764 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
765 {
766 struct intel_ringbuffer *ringbuf = request->ringbuf;
767 struct drm_i915_private *dev_priv = request->i915;
768
769 intel_logical_ring_advance(ringbuf);
770 request->tail = ringbuf->tail;
771
772 /*
773 * Here we add two extra NOOPs as padding to avoid
774 * lite restore of a context with HEAD==TAIL.
775 *
776 * Caller must reserve WA_TAIL_DWORDS for us!
777 */
778 intel_logical_ring_emit(ringbuf, MI_NOOP);
779 intel_logical_ring_emit(ringbuf, MI_NOOP);
780 intel_logical_ring_advance(ringbuf);
781
782 if (intel_ring_stopped(request->ring))
783 return 0;
784
785 if (dev_priv->guc.execbuf_client)
786 i915_guc_submit(dev_priv->guc.execbuf_client, request);
787 else
788 execlists_context_queue(request);
789
790 return 0;
791 }
792
793 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
794 {
795 uint32_t __iomem *virt;
796 int rem = ringbuf->size - ringbuf->tail;
797
798 virt = ringbuf->virtual_start + ringbuf->tail;
799 rem /= 4;
800 while (rem--)
801 iowrite32(MI_NOOP, virt++);
802
803 ringbuf->tail = 0;
804 intel_ring_update_space(ringbuf);
805 }
806
807 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
808 {
809 struct intel_ringbuffer *ringbuf = req->ringbuf;
810 int remain_usable = ringbuf->effective_size - ringbuf->tail;
811 int remain_actual = ringbuf->size - ringbuf->tail;
812 int ret, total_bytes, wait_bytes = 0;
813 bool need_wrap = false;
814
815 if (ringbuf->reserved_in_use)
816 total_bytes = bytes;
817 else
818 total_bytes = bytes + ringbuf->reserved_size;
819
820 if (unlikely(bytes > remain_usable)) {
821 /*
822 * Not enough space for the basic request. So need to flush
823 * out the remainder and then wait for base + reserved.
824 */
825 wait_bytes = remain_actual + total_bytes;
826 need_wrap = true;
827 } else {
828 if (unlikely(total_bytes > remain_usable)) {
829 /*
830 * The base request will fit but the reserved space
831 * falls off the end. So only need to to wait for the
832 * reserved size after flushing out the remainder.
833 */
834 wait_bytes = remain_actual + ringbuf->reserved_size;
835 need_wrap = true;
836 } else if (total_bytes > ringbuf->space) {
837 /* No wrapping required, just waiting. */
838 wait_bytes = total_bytes;
839 }
840 }
841
842 if (wait_bytes) {
843 ret = logical_ring_wait_for_space(req, wait_bytes);
844 if (unlikely(ret))
845 return ret;
846
847 if (need_wrap)
848 __wrap_ring_buffer(ringbuf);
849 }
850
851 return 0;
852 }
853
854 /**
855 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
856 *
857 * @req: The request to start some new work for
858 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
859 *
860 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
861 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
862 * and also preallocates a request (every workload submission is still mediated through
863 * requests, same as it did with legacy ringbuffer submission).
864 *
865 * Return: non-zero if the ringbuffer is not ready to be written to.
866 */
867 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
868 {
869 struct drm_i915_private *dev_priv;
870 int ret;
871
872 WARN_ON(req == NULL);
873 dev_priv = req->ring->dev->dev_private;
874
875 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
876 dev_priv->mm.interruptible);
877 if (ret)
878 return ret;
879
880 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
881 if (ret)
882 return ret;
883
884 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
885 return 0;
886 }
887
888 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
889 {
890 /*
891 * The first call merely notes the reserve request and is common for
892 * all back ends. The subsequent localised _begin() call actually
893 * ensures that the reservation is available. Without the begin, if
894 * the request creator immediately submitted the request without
895 * adding any commands to it then there might not actually be
896 * sufficient room for the submission commands.
897 */
898 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
899
900 return intel_logical_ring_begin(request, 0);
901 }
902
903 /**
904 * execlists_submission() - submit a batchbuffer for execution, Execlists style
905 * @dev: DRM device.
906 * @file: DRM file.
907 * @ring: Engine Command Streamer to submit to.
908 * @ctx: Context to employ for this submission.
909 * @args: execbuffer call arguments.
910 * @vmas: list of vmas.
911 * @batch_obj: the batchbuffer to submit.
912 * @exec_start: batchbuffer start virtual address pointer.
913 * @dispatch_flags: translated execbuffer call flags.
914 *
915 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
916 * away the submission details of the execbuffer ioctl call.
917 *
918 * Return: non-zero if the submission fails.
919 */
920 int intel_execlists_submission(struct i915_execbuffer_params *params,
921 struct drm_i915_gem_execbuffer2 *args,
922 struct list_head *vmas)
923 {
924 struct drm_device *dev = params->dev;
925 struct intel_engine_cs *ring = params->ring;
926 struct drm_i915_private *dev_priv = dev->dev_private;
927 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
928 u64 exec_start;
929 int instp_mode;
930 u32 instp_mask;
931 int ret;
932
933 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
934 instp_mask = I915_EXEC_CONSTANTS_MASK;
935 switch (instp_mode) {
936 case I915_EXEC_CONSTANTS_REL_GENERAL:
937 case I915_EXEC_CONSTANTS_ABSOLUTE:
938 case I915_EXEC_CONSTANTS_REL_SURFACE:
939 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
940 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
941 return -EINVAL;
942 }
943
944 if (instp_mode != dev_priv->relative_constants_mode) {
945 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
946 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
947 return -EINVAL;
948 }
949
950 /* The HW changed the meaning on this bit on gen6 */
951 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
952 }
953 break;
954 default:
955 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
956 return -EINVAL;
957 }
958
959 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
960 DRM_DEBUG("sol reset is gen7 only\n");
961 return -EINVAL;
962 }
963
964 ret = execlists_move_to_gpu(params->request, vmas);
965 if (ret)
966 return ret;
967
968 if (ring == &dev_priv->ring[RCS] &&
969 instp_mode != dev_priv->relative_constants_mode) {
970 ret = intel_logical_ring_begin(params->request, 4);
971 if (ret)
972 return ret;
973
974 intel_logical_ring_emit(ringbuf, MI_NOOP);
975 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
976 intel_logical_ring_emit_reg(ringbuf, INSTPM);
977 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
978 intel_logical_ring_advance(ringbuf);
979
980 dev_priv->relative_constants_mode = instp_mode;
981 }
982
983 exec_start = params->batch_obj_vm_offset +
984 args->batch_start_offset;
985
986 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
987 if (ret)
988 return ret;
989
990 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
991
992 i915_gem_execbuffer_move_to_active(vmas, params->request);
993 i915_gem_execbuffer_retire_commands(params);
994
995 return 0;
996 }
997
998 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
999 {
1000 struct drm_i915_gem_request *req, *tmp;
1001 struct list_head retired_list;
1002
1003 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1004 if (list_empty(&ring->execlist_retired_req_list))
1005 return;
1006
1007 INIT_LIST_HEAD(&retired_list);
1008 spin_lock_irq(&ring->execlist_lock);
1009 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
1010 spin_unlock_irq(&ring->execlist_lock);
1011
1012 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1013 struct intel_context *ctx = req->ctx;
1014 struct drm_i915_gem_object *ctx_obj =
1015 ctx->engine[ring->id].state;
1016
1017 if (ctx_obj && (ctx != req->i915->kernel_context))
1018 intel_lr_context_unpin(ctx, ring);
1019
1020 list_del(&req->execlist_link);
1021 i915_gem_request_unreference(req);
1022 }
1023 }
1024
1025 void intel_logical_ring_stop(struct intel_engine_cs *ring)
1026 {
1027 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1028 int ret;
1029
1030 if (!intel_ring_initialized(ring))
1031 return;
1032
1033 ret = intel_ring_idle(ring);
1034 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1035 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1036 ring->name, ret);
1037
1038 /* TODO: Is this correct with Execlists enabled? */
1039 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1040 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1041 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1042 return;
1043 }
1044 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1045 }
1046
1047 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1048 {
1049 struct intel_engine_cs *ring = req->ring;
1050 int ret;
1051
1052 if (!ring->gpu_caches_dirty)
1053 return 0;
1054
1055 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1056 if (ret)
1057 return ret;
1058
1059 ring->gpu_caches_dirty = false;
1060 return 0;
1061 }
1062
1063 static int intel_lr_context_do_pin(struct intel_context *ctx,
1064 struct intel_engine_cs *ring)
1065 {
1066 struct drm_device *dev = ring->dev;
1067 struct drm_i915_private *dev_priv = dev->dev_private;
1068 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1069 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1070 struct page *lrc_state_page;
1071 uint32_t *lrc_reg_state;
1072 int ret;
1073
1074 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1075
1076 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1077 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1078 if (ret)
1079 return ret;
1080
1081 lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1082 if (WARN_ON(!lrc_state_page)) {
1083 ret = -ENODEV;
1084 goto unpin_ctx_obj;
1085 }
1086
1087 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1088 if (ret)
1089 goto unpin_ctx_obj;
1090
1091 ctx->engine[ring->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1092 intel_lr_context_descriptor_update(ctx, ring);
1093 lrc_reg_state = kmap(lrc_state_page);
1094 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1095 ctx->engine[ring->id].lrc_reg_state = lrc_reg_state;
1096 ctx_obj->dirty = true;
1097
1098 /* Invalidate GuC TLB. */
1099 if (i915.enable_guc_submission)
1100 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1101
1102 return ret;
1103
1104 unpin_ctx_obj:
1105 i915_gem_object_ggtt_unpin(ctx_obj);
1106
1107 return ret;
1108 }
1109
1110 static int intel_lr_context_pin(struct intel_context *ctx,
1111 struct intel_engine_cs *engine)
1112 {
1113 int ret = 0;
1114
1115 if (ctx->engine[engine->id].pin_count++ == 0) {
1116 ret = intel_lr_context_do_pin(ctx, engine);
1117 if (ret)
1118 goto reset_pin_count;
1119 }
1120 return ret;
1121
1122 reset_pin_count:
1123 ctx->engine[engine->id].pin_count = 0;
1124 return ret;
1125 }
1126
1127 void intel_lr_context_unpin(struct intel_context *ctx,
1128 struct intel_engine_cs *engine)
1129 {
1130 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1131
1132 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1133
1134 if (WARN_ON_ONCE(!ctx_obj))
1135 return;
1136
1137 if (--ctx->engine[engine->id].pin_count == 0) {
1138 kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
1139 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1140 i915_gem_object_ggtt_unpin(ctx_obj);
1141 ctx->engine[engine->id].lrc_vma = NULL;
1142 ctx->engine[engine->id].lrc_desc = 0;
1143 ctx->engine[engine->id].lrc_reg_state = NULL;
1144 }
1145 }
1146
1147 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1148 {
1149 int ret, i;
1150 struct intel_engine_cs *ring = req->ring;
1151 struct intel_ringbuffer *ringbuf = req->ringbuf;
1152 struct drm_device *dev = ring->dev;
1153 struct drm_i915_private *dev_priv = dev->dev_private;
1154 struct i915_workarounds *w = &dev_priv->workarounds;
1155
1156 if (w->count == 0)
1157 return 0;
1158
1159 ring->gpu_caches_dirty = true;
1160 ret = logical_ring_flush_all_caches(req);
1161 if (ret)
1162 return ret;
1163
1164 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1165 if (ret)
1166 return ret;
1167
1168 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1169 for (i = 0; i < w->count; i++) {
1170 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1171 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1172 }
1173 intel_logical_ring_emit(ringbuf, MI_NOOP);
1174
1175 intel_logical_ring_advance(ringbuf);
1176
1177 ring->gpu_caches_dirty = true;
1178 ret = logical_ring_flush_all_caches(req);
1179 if (ret)
1180 return ret;
1181
1182 return 0;
1183 }
1184
1185 #define wa_ctx_emit(batch, index, cmd) \
1186 do { \
1187 int __index = (index)++; \
1188 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1189 return -ENOSPC; \
1190 } \
1191 batch[__index] = (cmd); \
1192 } while (0)
1193
1194 #define wa_ctx_emit_reg(batch, index, reg) \
1195 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1196
1197 /*
1198 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1199 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1200 * but there is a slight complication as this is applied in WA batch where the
1201 * values are only initialized once so we cannot take register value at the
1202 * beginning and reuse it further; hence we save its value to memory, upload a
1203 * constant value with bit21 set and then we restore it back with the saved value.
1204 * To simplify the WA, a constant value is formed by using the default value
1205 * of this register. This shouldn't be a problem because we are only modifying
1206 * it for a short period and this batch in non-premptible. We can ofcourse
1207 * use additional instructions that read the actual value of the register
1208 * at that time and set our bit of interest but it makes the WA complicated.
1209 *
1210 * This WA is also required for Gen9 so extracting as a function avoids
1211 * code duplication.
1212 */
1213 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1214 uint32_t *const batch,
1215 uint32_t index)
1216 {
1217 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1218
1219 /*
1220 * WaDisableLSQCROPERFforOCL:skl
1221 * This WA is implemented in skl_init_clock_gating() but since
1222 * this batch updates GEN8_L3SQCREG4 with default value we need to
1223 * set this bit here to retain the WA during flush.
1224 */
1225 if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1226 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1227
1228 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1229 MI_SRM_LRM_GLOBAL_GTT));
1230 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1231 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1232 wa_ctx_emit(batch, index, 0);
1233
1234 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1235 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1236 wa_ctx_emit(batch, index, l3sqc4_flush);
1237
1238 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1239 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1240 PIPE_CONTROL_DC_FLUSH_ENABLE));
1241 wa_ctx_emit(batch, index, 0);
1242 wa_ctx_emit(batch, index, 0);
1243 wa_ctx_emit(batch, index, 0);
1244 wa_ctx_emit(batch, index, 0);
1245
1246 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1247 MI_SRM_LRM_GLOBAL_GTT));
1248 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1249 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1250 wa_ctx_emit(batch, index, 0);
1251
1252 return index;
1253 }
1254
1255 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1256 uint32_t offset,
1257 uint32_t start_alignment)
1258 {
1259 return wa_ctx->offset = ALIGN(offset, start_alignment);
1260 }
1261
1262 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1263 uint32_t offset,
1264 uint32_t size_alignment)
1265 {
1266 wa_ctx->size = offset - wa_ctx->offset;
1267
1268 WARN(wa_ctx->size % size_alignment,
1269 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1270 wa_ctx->size, size_alignment);
1271 return 0;
1272 }
1273
1274 /**
1275 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1276 *
1277 * @ring: only applicable for RCS
1278 * @wa_ctx: structure representing wa_ctx
1279 * offset: specifies start of the batch, should be cache-aligned. This is updated
1280 * with the offset value received as input.
1281 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1282 * @batch: page in which WA are loaded
1283 * @offset: This field specifies the start of the batch, it should be
1284 * cache-aligned otherwise it is adjusted accordingly.
1285 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1286 * initialized at the beginning and shared across all contexts but this field
1287 * helps us to have multiple batches at different offsets and select them based
1288 * on a criteria. At the moment this batch always start at the beginning of the page
1289 * and at this point we don't have multiple wa_ctx batch buffers.
1290 *
1291 * The number of WA applied are not known at the beginning; we use this field
1292 * to return the no of DWORDS written.
1293 *
1294 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1295 * so it adds NOOPs as padding to make it cacheline aligned.
1296 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1297 * makes a complete batch buffer.
1298 *
1299 * Return: non-zero if we exceed the PAGE_SIZE limit.
1300 */
1301
1302 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1303 struct i915_wa_ctx_bb *wa_ctx,
1304 uint32_t *const batch,
1305 uint32_t *offset)
1306 {
1307 uint32_t scratch_addr;
1308 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1309
1310 /* WaDisableCtxRestoreArbitration:bdw,chv */
1311 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1312
1313 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1314 if (IS_BROADWELL(ring->dev)) {
1315 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1316 if (rc < 0)
1317 return rc;
1318 index = rc;
1319 }
1320
1321 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1322 /* Actual scratch location is at 128 bytes offset */
1323 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1324
1325 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1326 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1327 PIPE_CONTROL_GLOBAL_GTT_IVB |
1328 PIPE_CONTROL_CS_STALL |
1329 PIPE_CONTROL_QW_WRITE));
1330 wa_ctx_emit(batch, index, scratch_addr);
1331 wa_ctx_emit(batch, index, 0);
1332 wa_ctx_emit(batch, index, 0);
1333 wa_ctx_emit(batch, index, 0);
1334
1335 /* Pad to end of cacheline */
1336 while (index % CACHELINE_DWORDS)
1337 wa_ctx_emit(batch, index, MI_NOOP);
1338
1339 /*
1340 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1341 * execution depends on the length specified in terms of cache lines
1342 * in the register CTX_RCS_INDIRECT_CTX
1343 */
1344
1345 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1346 }
1347
1348 /**
1349 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1350 *
1351 * @ring: only applicable for RCS
1352 * @wa_ctx: structure representing wa_ctx
1353 * offset: specifies start of the batch, should be cache-aligned.
1354 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1355 * @batch: page in which WA are loaded
1356 * @offset: This field specifies the start of this batch.
1357 * This batch is started immediately after indirect_ctx batch. Since we ensure
1358 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1359 *
1360 * The number of DWORDS written are returned using this field.
1361 *
1362 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1363 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1364 */
1365 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1366 struct i915_wa_ctx_bb *wa_ctx,
1367 uint32_t *const batch,
1368 uint32_t *offset)
1369 {
1370 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1371
1372 /* WaDisableCtxRestoreArbitration:bdw,chv */
1373 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1374
1375 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1376
1377 return wa_ctx_end(wa_ctx, *offset = index, 1);
1378 }
1379
1380 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1381 struct i915_wa_ctx_bb *wa_ctx,
1382 uint32_t *const batch,
1383 uint32_t *offset)
1384 {
1385 int ret;
1386 struct drm_device *dev = ring->dev;
1387 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1388
1389 /* WaDisableCtxRestoreArbitration:skl,bxt */
1390 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1391 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1392 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1393
1394 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1395 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1396 if (ret < 0)
1397 return ret;
1398 index = ret;
1399
1400 /* Pad to end of cacheline */
1401 while (index % CACHELINE_DWORDS)
1402 wa_ctx_emit(batch, index, MI_NOOP);
1403
1404 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1405 }
1406
1407 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1408 struct i915_wa_ctx_bb *wa_ctx,
1409 uint32_t *const batch,
1410 uint32_t *offset)
1411 {
1412 struct drm_device *dev = ring->dev;
1413 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1414
1415 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1416 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1417 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1418 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1419 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1420 wa_ctx_emit(batch, index,
1421 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1422 wa_ctx_emit(batch, index, MI_NOOP);
1423 }
1424
1425 /* WaDisableCtxRestoreArbitration:skl,bxt */
1426 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1427 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1428 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1429
1430 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1431
1432 return wa_ctx_end(wa_ctx, *offset = index, 1);
1433 }
1434
1435 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1436 {
1437 int ret;
1438
1439 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1440 if (!ring->wa_ctx.obj) {
1441 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1442 return -ENOMEM;
1443 }
1444
1445 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1446 if (ret) {
1447 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1448 ret);
1449 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1450 return ret;
1451 }
1452
1453 return 0;
1454 }
1455
1456 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1457 {
1458 if (ring->wa_ctx.obj) {
1459 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1460 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1461 ring->wa_ctx.obj = NULL;
1462 }
1463 }
1464
1465 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1466 {
1467 int ret;
1468 uint32_t *batch;
1469 uint32_t offset;
1470 struct page *page;
1471 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1472
1473 WARN_ON(ring->id != RCS);
1474
1475 /* update this when WA for higher Gen are added */
1476 if (INTEL_INFO(ring->dev)->gen > 9) {
1477 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1478 INTEL_INFO(ring->dev)->gen);
1479 return 0;
1480 }
1481
1482 /* some WA perform writes to scratch page, ensure it is valid */
1483 if (ring->scratch.obj == NULL) {
1484 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1485 return -EINVAL;
1486 }
1487
1488 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1489 if (ret) {
1490 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1491 return ret;
1492 }
1493
1494 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1495 batch = kmap_atomic(page);
1496 offset = 0;
1497
1498 if (INTEL_INFO(ring->dev)->gen == 8) {
1499 ret = gen8_init_indirectctx_bb(ring,
1500 &wa_ctx->indirect_ctx,
1501 batch,
1502 &offset);
1503 if (ret)
1504 goto out;
1505
1506 ret = gen8_init_perctx_bb(ring,
1507 &wa_ctx->per_ctx,
1508 batch,
1509 &offset);
1510 if (ret)
1511 goto out;
1512 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1513 ret = gen9_init_indirectctx_bb(ring,
1514 &wa_ctx->indirect_ctx,
1515 batch,
1516 &offset);
1517 if (ret)
1518 goto out;
1519
1520 ret = gen9_init_perctx_bb(ring,
1521 &wa_ctx->per_ctx,
1522 batch,
1523 &offset);
1524 if (ret)
1525 goto out;
1526 }
1527
1528 out:
1529 kunmap_atomic(batch);
1530 if (ret)
1531 lrc_destroy_wa_ctx_obj(ring);
1532
1533 return ret;
1534 }
1535
1536 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1537 {
1538 struct drm_device *dev = ring->dev;
1539 struct drm_i915_private *dev_priv = dev->dev_private;
1540 u8 next_context_status_buffer_hw;
1541
1542 lrc_setup_hardware_status_page(ring,
1543 dev_priv->kernel_context->engine[ring->id].state);
1544
1545 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1546 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1547
1548 I915_WRITE(RING_MODE_GEN7(ring),
1549 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1550 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1551 POSTING_READ(RING_MODE_GEN7(ring));
1552
1553 /*
1554 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1555 * zero, we need to read the write pointer from hardware and use its
1556 * value because "this register is power context save restored".
1557 * Effectively, these states have been observed:
1558 *
1559 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1560 * BDW | CSB regs not reset | CSB regs reset |
1561 * CHT | CSB regs not reset | CSB regs not reset |
1562 * SKL | ? | ? |
1563 * BXT | ? | ? |
1564 */
1565 next_context_status_buffer_hw =
1566 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
1567
1568 /*
1569 * When the CSB registers are reset (also after power-up / gpu reset),
1570 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1571 * this special case, so the first element read is CSB[0].
1572 */
1573 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1574 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1575
1576 ring->next_context_status_buffer = next_context_status_buffer_hw;
1577 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1578
1579 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1580
1581 return 0;
1582 }
1583
1584 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1585 {
1586 struct drm_device *dev = ring->dev;
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588 int ret;
1589
1590 ret = gen8_init_common_ring(ring);
1591 if (ret)
1592 return ret;
1593
1594 /* We need to disable the AsyncFlip performance optimisations in order
1595 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1596 * programmed to '1' on all products.
1597 *
1598 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1599 */
1600 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1601
1602 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1603
1604 return init_workarounds_ring(ring);
1605 }
1606
1607 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1608 {
1609 int ret;
1610
1611 ret = gen8_init_common_ring(ring);
1612 if (ret)
1613 return ret;
1614
1615 return init_workarounds_ring(ring);
1616 }
1617
1618 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1619 {
1620 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1621 struct intel_engine_cs *ring = req->ring;
1622 struct intel_ringbuffer *ringbuf = req->ringbuf;
1623 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1624 int i, ret;
1625
1626 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1627 if (ret)
1628 return ret;
1629
1630 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1631 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1632 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1633
1634 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1635 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1636 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1637 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1638 }
1639
1640 intel_logical_ring_emit(ringbuf, MI_NOOP);
1641 intel_logical_ring_advance(ringbuf);
1642
1643 return 0;
1644 }
1645
1646 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1647 u64 offset, unsigned dispatch_flags)
1648 {
1649 struct intel_ringbuffer *ringbuf = req->ringbuf;
1650 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1651 int ret;
1652
1653 /* Don't rely in hw updating PDPs, specially in lite-restore.
1654 * Ideally, we should set Force PD Restore in ctx descriptor,
1655 * but we can't. Force Restore would be a second option, but
1656 * it is unsafe in case of lite-restore (because the ctx is
1657 * not idle). PML4 is allocated during ppgtt init so this is
1658 * not needed in 48-bit.*/
1659 if (req->ctx->ppgtt &&
1660 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1661 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1662 !intel_vgpu_active(req->i915->dev)) {
1663 ret = intel_logical_ring_emit_pdps(req);
1664 if (ret)
1665 return ret;
1666 }
1667
1668 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1669 }
1670
1671 ret = intel_logical_ring_begin(req, 4);
1672 if (ret)
1673 return ret;
1674
1675 /* FIXME(BDW): Address space and security selectors. */
1676 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1677 (ppgtt<<8) |
1678 (dispatch_flags & I915_DISPATCH_RS ?
1679 MI_BATCH_RESOURCE_STREAMER : 0));
1680 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1681 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1682 intel_logical_ring_emit(ringbuf, MI_NOOP);
1683 intel_logical_ring_advance(ringbuf);
1684
1685 return 0;
1686 }
1687
1688 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1689 {
1690 struct drm_device *dev = ring->dev;
1691 struct drm_i915_private *dev_priv = dev->dev_private;
1692 unsigned long flags;
1693
1694 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1695 return false;
1696
1697 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1698 if (ring->irq_refcount++ == 0) {
1699 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1700 POSTING_READ(RING_IMR(ring->mmio_base));
1701 }
1702 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1703
1704 return true;
1705 }
1706
1707 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1708 {
1709 struct drm_device *dev = ring->dev;
1710 struct drm_i915_private *dev_priv = dev->dev_private;
1711 unsigned long flags;
1712
1713 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1714 if (--ring->irq_refcount == 0) {
1715 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1716 POSTING_READ(RING_IMR(ring->mmio_base));
1717 }
1718 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1719 }
1720
1721 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1722 u32 invalidate_domains,
1723 u32 unused)
1724 {
1725 struct intel_ringbuffer *ringbuf = request->ringbuf;
1726 struct intel_engine_cs *ring = ringbuf->ring;
1727 struct drm_device *dev = ring->dev;
1728 struct drm_i915_private *dev_priv = dev->dev_private;
1729 uint32_t cmd;
1730 int ret;
1731
1732 ret = intel_logical_ring_begin(request, 4);
1733 if (ret)
1734 return ret;
1735
1736 cmd = MI_FLUSH_DW + 1;
1737
1738 /* We always require a command barrier so that subsequent
1739 * commands, such as breadcrumb interrupts, are strictly ordered
1740 * wrt the contents of the write cache being flushed to memory
1741 * (and thus being coherent from the CPU).
1742 */
1743 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1744
1745 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1746 cmd |= MI_INVALIDATE_TLB;
1747 if (ring == &dev_priv->ring[VCS])
1748 cmd |= MI_INVALIDATE_BSD;
1749 }
1750
1751 intel_logical_ring_emit(ringbuf, cmd);
1752 intel_logical_ring_emit(ringbuf,
1753 I915_GEM_HWS_SCRATCH_ADDR |
1754 MI_FLUSH_DW_USE_GTT);
1755 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1756 intel_logical_ring_emit(ringbuf, 0); /* value */
1757 intel_logical_ring_advance(ringbuf);
1758
1759 return 0;
1760 }
1761
1762 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1763 u32 invalidate_domains,
1764 u32 flush_domains)
1765 {
1766 struct intel_ringbuffer *ringbuf = request->ringbuf;
1767 struct intel_engine_cs *ring = ringbuf->ring;
1768 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1769 bool vf_flush_wa = false;
1770 u32 flags = 0;
1771 int ret;
1772
1773 flags |= PIPE_CONTROL_CS_STALL;
1774
1775 if (flush_domains) {
1776 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1777 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1778 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1779 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1780 }
1781
1782 if (invalidate_domains) {
1783 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1784 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1785 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1786 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1787 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1788 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1789 flags |= PIPE_CONTROL_QW_WRITE;
1790 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1791
1792 /*
1793 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1794 * pipe control.
1795 */
1796 if (IS_GEN9(ring->dev))
1797 vf_flush_wa = true;
1798 }
1799
1800 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1801 if (ret)
1802 return ret;
1803
1804 if (vf_flush_wa) {
1805 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1806 intel_logical_ring_emit(ringbuf, 0);
1807 intel_logical_ring_emit(ringbuf, 0);
1808 intel_logical_ring_emit(ringbuf, 0);
1809 intel_logical_ring_emit(ringbuf, 0);
1810 intel_logical_ring_emit(ringbuf, 0);
1811 }
1812
1813 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1814 intel_logical_ring_emit(ringbuf, flags);
1815 intel_logical_ring_emit(ringbuf, scratch_addr);
1816 intel_logical_ring_emit(ringbuf, 0);
1817 intel_logical_ring_emit(ringbuf, 0);
1818 intel_logical_ring_emit(ringbuf, 0);
1819 intel_logical_ring_advance(ringbuf);
1820
1821 return 0;
1822 }
1823
1824 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1825 {
1826 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1827 }
1828
1829 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1830 {
1831 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1832 }
1833
1834 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1835 {
1836
1837 /*
1838 * On BXT A steppings there is a HW coherency issue whereby the
1839 * MI_STORE_DATA_IMM storing the completed request's seqno
1840 * occasionally doesn't invalidate the CPU cache. Work around this by
1841 * clflushing the corresponding cacheline whenever the caller wants
1842 * the coherency to be guaranteed. Note that this cacheline is known
1843 * to be clean at this point, since we only write it in
1844 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1845 * this clflush in practice becomes an invalidate operation.
1846 */
1847
1848 if (!lazy_coherency)
1849 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1850
1851 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1852 }
1853
1854 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1855 {
1856 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1857
1858 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1859 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1860 }
1861
1862 /*
1863 * Reserve space for 2 NOOPs at the end of each request to be
1864 * used as a workaround for not being allowed to do lite
1865 * restore with HEAD==TAIL (WaIdleLiteRestore).
1866 */
1867 #define WA_TAIL_DWORDS 2
1868
1869 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1870 {
1871 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1872 }
1873
1874 static int gen8_emit_request(struct drm_i915_gem_request *request)
1875 {
1876 struct intel_ringbuffer *ringbuf = request->ringbuf;
1877 int ret;
1878
1879 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1880 if (ret)
1881 return ret;
1882
1883 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1884 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1885
1886 intel_logical_ring_emit(ringbuf,
1887 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1888 intel_logical_ring_emit(ringbuf,
1889 hws_seqno_address(request->ring) |
1890 MI_FLUSH_DW_USE_GTT);
1891 intel_logical_ring_emit(ringbuf, 0);
1892 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1893 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1894 intel_logical_ring_emit(ringbuf, MI_NOOP);
1895 return intel_logical_ring_advance_and_submit(request);
1896 }
1897
1898 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1899 {
1900 struct intel_ringbuffer *ringbuf = request->ringbuf;
1901 int ret;
1902
1903 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1904 if (ret)
1905 return ret;
1906
1907 /* w/a for post sync ops following a GPGPU operation we
1908 * need a prior CS_STALL, which is emitted by the flush
1909 * following the batch.
1910 */
1911 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
1912 intel_logical_ring_emit(ringbuf,
1913 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1914 PIPE_CONTROL_CS_STALL |
1915 PIPE_CONTROL_QW_WRITE));
1916 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->ring));
1917 intel_logical_ring_emit(ringbuf, 0);
1918 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1919 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1920 return intel_logical_ring_advance_and_submit(request);
1921 }
1922
1923 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1924 {
1925 struct render_state so;
1926 int ret;
1927
1928 ret = i915_gem_render_state_prepare(req->ring, &so);
1929 if (ret)
1930 return ret;
1931
1932 if (so.rodata == NULL)
1933 return 0;
1934
1935 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1936 I915_DISPATCH_SECURE);
1937 if (ret)
1938 goto out;
1939
1940 ret = req->ring->emit_bb_start(req,
1941 (so.ggtt_offset + so.aux_batch_offset),
1942 I915_DISPATCH_SECURE);
1943 if (ret)
1944 goto out;
1945
1946 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1947
1948 out:
1949 i915_gem_render_state_fini(&so);
1950 return ret;
1951 }
1952
1953 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1954 {
1955 int ret;
1956
1957 ret = intel_logical_ring_workarounds_emit(req);
1958 if (ret)
1959 return ret;
1960
1961 ret = intel_rcs_context_init_mocs(req);
1962 /*
1963 * Failing to program the MOCS is non-fatal.The system will not
1964 * run at peak performance. So generate an error and carry on.
1965 */
1966 if (ret)
1967 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1968
1969 return intel_lr_context_render_state_init(req);
1970 }
1971
1972 /**
1973 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1974 *
1975 * @ring: Engine Command Streamer.
1976 *
1977 */
1978 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1979 {
1980 struct drm_i915_private *dev_priv;
1981
1982 if (!intel_ring_initialized(ring))
1983 return;
1984
1985 dev_priv = ring->dev->dev_private;
1986
1987 if (ring->buffer) {
1988 intel_logical_ring_stop(ring);
1989 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1990 }
1991
1992 if (ring->cleanup)
1993 ring->cleanup(ring);
1994
1995 i915_cmd_parser_fini_ring(ring);
1996 i915_gem_batch_pool_fini(&ring->batch_pool);
1997
1998 if (ring->status_page.obj) {
1999 kunmap(sg_page(ring->status_page.obj->pages->sgl));
2000 ring->status_page.obj = NULL;
2001 }
2002
2003 ring->disable_lite_restore_wa = false;
2004 ring->ctx_desc_template = 0;
2005
2006 lrc_destroy_wa_ctx_obj(ring);
2007 ring->dev = NULL;
2008 }
2009
2010 static void
2011 logical_ring_default_vfuncs(struct drm_device *dev,
2012 struct intel_engine_cs *ring)
2013 {
2014 /* Default vfuncs which can be overriden by each engine. */
2015 ring->init_hw = gen8_init_common_ring;
2016 ring->emit_request = gen8_emit_request;
2017 ring->emit_flush = gen8_emit_flush;
2018 ring->irq_get = gen8_logical_ring_get_irq;
2019 ring->irq_put = gen8_logical_ring_put_irq;
2020 ring->emit_bb_start = gen8_emit_bb_start;
2021 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2022 ring->get_seqno = bxt_a_get_seqno;
2023 ring->set_seqno = bxt_a_set_seqno;
2024 } else {
2025 ring->get_seqno = gen8_get_seqno;
2026 ring->set_seqno = gen8_set_seqno;
2027 }
2028 }
2029
2030 static inline void
2031 logical_ring_default_irqs(struct intel_engine_cs *ring, unsigned shift)
2032 {
2033 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2034 ring->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2035 }
2036
2037 static int
2038 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
2039 {
2040 struct intel_context *dctx = to_i915(dev)->kernel_context;
2041 int ret;
2042
2043 /* Intentionally left blank. */
2044 ring->buffer = NULL;
2045
2046 ring->dev = dev;
2047 INIT_LIST_HEAD(&ring->active_list);
2048 INIT_LIST_HEAD(&ring->request_list);
2049 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2050 init_waitqueue_head(&ring->irq_queue);
2051
2052 INIT_LIST_HEAD(&ring->buffers);
2053 INIT_LIST_HEAD(&ring->execlist_queue);
2054 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
2055 spin_lock_init(&ring->execlist_lock);
2056
2057 logical_ring_init_platform_invariants(ring);
2058
2059 ret = i915_cmd_parser_init_ring(ring);
2060 if (ret)
2061 goto error;
2062
2063 ret = intel_lr_context_deferred_alloc(dctx, ring);
2064 if (ret)
2065 goto error;
2066
2067 /* As this is the default context, always pin it */
2068 ret = intel_lr_context_do_pin(dctx, ring);
2069 if (ret) {
2070 DRM_ERROR(
2071 "Failed to pin and map ringbuffer %s: %d\n",
2072 ring->name, ret);
2073 goto error;
2074 }
2075
2076 return 0;
2077
2078 error:
2079 intel_logical_ring_cleanup(ring);
2080 return ret;
2081 }
2082
2083 static int logical_render_ring_init(struct drm_device *dev)
2084 {
2085 struct drm_i915_private *dev_priv = dev->dev_private;
2086 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2087 int ret;
2088
2089 ring->name = "render ring";
2090 ring->id = RCS;
2091 ring->exec_id = I915_EXEC_RENDER;
2092 ring->guc_id = GUC_RENDER_ENGINE;
2093 ring->mmio_base = RENDER_RING_BASE;
2094
2095 logical_ring_default_irqs(ring, GEN8_RCS_IRQ_SHIFT);
2096 if (HAS_L3_DPF(dev))
2097 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2098
2099 logical_ring_default_vfuncs(dev, ring);
2100
2101 /* Override some for render ring. */
2102 if (INTEL_INFO(dev)->gen >= 9)
2103 ring->init_hw = gen9_init_render_ring;
2104 else
2105 ring->init_hw = gen8_init_render_ring;
2106 ring->init_context = gen8_init_rcs_context;
2107 ring->cleanup = intel_fini_pipe_control;
2108 ring->emit_flush = gen8_emit_flush_render;
2109 ring->emit_request = gen8_emit_request_render;
2110
2111 ring->dev = dev;
2112
2113 ret = intel_init_pipe_control(ring);
2114 if (ret)
2115 return ret;
2116
2117 ret = intel_init_workaround_bb(ring);
2118 if (ret) {
2119 /*
2120 * We continue even if we fail to initialize WA batch
2121 * because we only expect rare glitches but nothing
2122 * critical to prevent us from using GPU
2123 */
2124 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2125 ret);
2126 }
2127
2128 ret = logical_ring_init(dev, ring);
2129 if (ret) {
2130 lrc_destroy_wa_ctx_obj(ring);
2131 }
2132
2133 return ret;
2134 }
2135
2136 static int logical_bsd_ring_init(struct drm_device *dev)
2137 {
2138 struct drm_i915_private *dev_priv = dev->dev_private;
2139 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2140
2141 ring->name = "bsd ring";
2142 ring->id = VCS;
2143 ring->exec_id = I915_EXEC_BSD;
2144 ring->guc_id = GUC_VIDEO_ENGINE;
2145 ring->mmio_base = GEN6_BSD_RING_BASE;
2146
2147 logical_ring_default_irqs(ring, GEN8_VCS1_IRQ_SHIFT);
2148 logical_ring_default_vfuncs(dev, ring);
2149
2150 return logical_ring_init(dev, ring);
2151 }
2152
2153 static int logical_bsd2_ring_init(struct drm_device *dev)
2154 {
2155 struct drm_i915_private *dev_priv = dev->dev_private;
2156 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2157
2158 ring->name = "bsd2 ring";
2159 ring->id = VCS2;
2160 ring->exec_id = I915_EXEC_BSD;
2161 ring->guc_id = GUC_VIDEO_ENGINE2;
2162 ring->mmio_base = GEN8_BSD2_RING_BASE;
2163
2164 logical_ring_default_irqs(ring, GEN8_VCS2_IRQ_SHIFT);
2165 logical_ring_default_vfuncs(dev, ring);
2166
2167 return logical_ring_init(dev, ring);
2168 }
2169
2170 static int logical_blt_ring_init(struct drm_device *dev)
2171 {
2172 struct drm_i915_private *dev_priv = dev->dev_private;
2173 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2174
2175 ring->name = "blitter ring";
2176 ring->id = BCS;
2177 ring->exec_id = I915_EXEC_BLT;
2178 ring->guc_id = GUC_BLITTER_ENGINE;
2179 ring->mmio_base = BLT_RING_BASE;
2180
2181 logical_ring_default_irqs(ring, GEN8_BCS_IRQ_SHIFT);
2182 logical_ring_default_vfuncs(dev, ring);
2183
2184 return logical_ring_init(dev, ring);
2185 }
2186
2187 static int logical_vebox_ring_init(struct drm_device *dev)
2188 {
2189 struct drm_i915_private *dev_priv = dev->dev_private;
2190 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2191
2192 ring->name = "video enhancement ring";
2193 ring->id = VECS;
2194 ring->exec_id = I915_EXEC_VEBOX;
2195 ring->guc_id = GUC_VIDEOENHANCE_ENGINE;
2196 ring->mmio_base = VEBOX_RING_BASE;
2197
2198 logical_ring_default_irqs(ring, GEN8_VECS_IRQ_SHIFT);
2199 logical_ring_default_vfuncs(dev, ring);
2200
2201 return logical_ring_init(dev, ring);
2202 }
2203
2204 /**
2205 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2206 * @dev: DRM device.
2207 *
2208 * This function inits the engines for an Execlists submission style (the equivalent in the
2209 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2210 * those engines that are present in the hardware.
2211 *
2212 * Return: non-zero if the initialization failed.
2213 */
2214 int intel_logical_rings_init(struct drm_device *dev)
2215 {
2216 struct drm_i915_private *dev_priv = dev->dev_private;
2217 int ret;
2218
2219 ret = logical_render_ring_init(dev);
2220 if (ret)
2221 return ret;
2222
2223 if (HAS_BSD(dev)) {
2224 ret = logical_bsd_ring_init(dev);
2225 if (ret)
2226 goto cleanup_render_ring;
2227 }
2228
2229 if (HAS_BLT(dev)) {
2230 ret = logical_blt_ring_init(dev);
2231 if (ret)
2232 goto cleanup_bsd_ring;
2233 }
2234
2235 if (HAS_VEBOX(dev)) {
2236 ret = logical_vebox_ring_init(dev);
2237 if (ret)
2238 goto cleanup_blt_ring;
2239 }
2240
2241 if (HAS_BSD2(dev)) {
2242 ret = logical_bsd2_ring_init(dev);
2243 if (ret)
2244 goto cleanup_vebox_ring;
2245 }
2246
2247 return 0;
2248
2249 cleanup_vebox_ring:
2250 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2251 cleanup_blt_ring:
2252 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2253 cleanup_bsd_ring:
2254 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2255 cleanup_render_ring:
2256 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2257
2258 return ret;
2259 }
2260
2261 static u32
2262 make_rpcs(struct drm_device *dev)
2263 {
2264 u32 rpcs = 0;
2265
2266 /*
2267 * No explicit RPCS request is needed to ensure full
2268 * slice/subslice/EU enablement prior to Gen9.
2269 */
2270 if (INTEL_INFO(dev)->gen < 9)
2271 return 0;
2272
2273 /*
2274 * Starting in Gen9, render power gating can leave
2275 * slice/subslice/EU in a partially enabled state. We
2276 * must make an explicit request through RPCS for full
2277 * enablement.
2278 */
2279 if (INTEL_INFO(dev)->has_slice_pg) {
2280 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2281 rpcs |= INTEL_INFO(dev)->slice_total <<
2282 GEN8_RPCS_S_CNT_SHIFT;
2283 rpcs |= GEN8_RPCS_ENABLE;
2284 }
2285
2286 if (INTEL_INFO(dev)->has_subslice_pg) {
2287 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2288 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2289 GEN8_RPCS_SS_CNT_SHIFT;
2290 rpcs |= GEN8_RPCS_ENABLE;
2291 }
2292
2293 if (INTEL_INFO(dev)->has_eu_pg) {
2294 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2295 GEN8_RPCS_EU_MIN_SHIFT;
2296 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2297 GEN8_RPCS_EU_MAX_SHIFT;
2298 rpcs |= GEN8_RPCS_ENABLE;
2299 }
2300
2301 return rpcs;
2302 }
2303
2304 static int
2305 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2306 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2307 {
2308 struct drm_device *dev = ring->dev;
2309 struct drm_i915_private *dev_priv = dev->dev_private;
2310 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2311 struct page *page;
2312 uint32_t *reg_state;
2313 int ret;
2314
2315 if (!ppgtt)
2316 ppgtt = dev_priv->mm.aliasing_ppgtt;
2317
2318 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2319 if (ret) {
2320 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2321 return ret;
2322 }
2323
2324 ret = i915_gem_object_get_pages(ctx_obj);
2325 if (ret) {
2326 DRM_DEBUG_DRIVER("Could not get object pages\n");
2327 return ret;
2328 }
2329
2330 i915_gem_object_pin_pages(ctx_obj);
2331
2332 /* The second page of the context object contains some fields which must
2333 * be set up prior to the first execution. */
2334 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2335 reg_state = kmap_atomic(page);
2336
2337 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2338 * commands followed by (reg, value) pairs. The values we are setting here are
2339 * only for the first context restore: on a subsequent save, the GPU will
2340 * recreate this batchbuffer with new values (including all the missing
2341 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2342 reg_state[CTX_LRI_HEADER_0] =
2343 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2344 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2345 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2346 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2347 CTX_CTRL_RS_CTX_ENABLE));
2348 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2349 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2350 /* Ring buffer start address is not known until the buffer is pinned.
2351 * It is written to the context image in execlists_update_context()
2352 */
2353 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2354 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2355 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2356 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2357 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2358 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2359 RING_BB_PPGTT);
2360 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2361 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2362 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2363 if (ring->id == RCS) {
2364 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2365 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2366 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2367 if (ring->wa_ctx.obj) {
2368 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2369 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2370
2371 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2372 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2373 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2374
2375 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2376 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2377
2378 reg_state[CTX_BB_PER_CTX_PTR+1] =
2379 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2380 0x01;
2381 }
2382 }
2383 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2384 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2385 /* PDP values well be assigned later if needed */
2386 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2387 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2388 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2389 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2390 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2391 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2392 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2393 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2394
2395 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2396 /* 64b PPGTT (48bit canonical)
2397 * PDP0_DESCRIPTOR contains the base address to PML4 and
2398 * other PDP Descriptors are ignored.
2399 */
2400 ASSIGN_CTX_PML4(ppgtt, reg_state);
2401 } else {
2402 /* 32b PPGTT
2403 * PDP*_DESCRIPTOR contains the base address of space supported.
2404 * With dynamic page allocation, PDPs may not be allocated at
2405 * this point. Point the unallocated PDPs to the scratch page
2406 */
2407 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2408 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2409 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2410 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2411 }
2412
2413 if (ring->id == RCS) {
2414 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2415 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2416 make_rpcs(dev));
2417 }
2418
2419 kunmap_atomic(reg_state);
2420 i915_gem_object_unpin_pages(ctx_obj);
2421
2422 return 0;
2423 }
2424
2425 /**
2426 * intel_lr_context_free() - free the LRC specific bits of a context
2427 * @ctx: the LR context to free.
2428 *
2429 * The real context freeing is done in i915_gem_context_free: this only
2430 * takes care of the bits that are LRC related: the per-engine backing
2431 * objects and the logical ringbuffer.
2432 */
2433 void intel_lr_context_free(struct intel_context *ctx)
2434 {
2435 int i;
2436
2437 for (i = I915_NUM_RINGS; --i >= 0; ) {
2438 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2439 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2440
2441 if (!ctx_obj)
2442 continue;
2443
2444 if (ctx == ctx->i915->kernel_context) {
2445 intel_unpin_ringbuffer_obj(ringbuf);
2446 i915_gem_object_ggtt_unpin(ctx_obj);
2447 }
2448
2449 WARN_ON(ctx->engine[i].pin_count);
2450 intel_ringbuffer_free(ringbuf);
2451 drm_gem_object_unreference(&ctx_obj->base);
2452 }
2453 }
2454
2455 /**
2456 * intel_lr_context_size() - return the size of the context for an engine
2457 * @ring: which engine to find the context size for
2458 *
2459 * Each engine may require a different amount of space for a context image,
2460 * so when allocating (or copying) an image, this function can be used to
2461 * find the right size for the specific engine.
2462 *
2463 * Return: size (in bytes) of an engine-specific context image
2464 *
2465 * Note: this size includes the HWSP, which is part of the context image
2466 * in LRC mode, but does not include the "shared data page" used with
2467 * GuC submission. The caller should account for this if using the GuC.
2468 */
2469 uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
2470 {
2471 int ret = 0;
2472
2473 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2474
2475 switch (ring->id) {
2476 case RCS:
2477 if (INTEL_INFO(ring->dev)->gen >= 9)
2478 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2479 else
2480 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2481 break;
2482 case VCS:
2483 case BCS:
2484 case VECS:
2485 case VCS2:
2486 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2487 break;
2488 }
2489
2490 return ret;
2491 }
2492
2493 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2494 struct drm_i915_gem_object *default_ctx_obj)
2495 {
2496 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2497 struct page *page;
2498
2499 /* The HWSP is part of the default context object in LRC mode. */
2500 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2501 + LRC_PPHWSP_PN * PAGE_SIZE;
2502 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2503 ring->status_page.page_addr = kmap(page);
2504 ring->status_page.obj = default_ctx_obj;
2505
2506 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2507 (u32)ring->status_page.gfx_addr);
2508 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2509 }
2510
2511 /**
2512 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2513 * @ctx: LR context to create.
2514 * @ring: engine to be used with the context.
2515 *
2516 * This function can be called more than once, with different engines, if we plan
2517 * to use the context with them. The context backing objects and the ringbuffers
2518 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2519 * the creation is a deferred call: it's better to make sure first that we need to use
2520 * a given ring with the context.
2521 *
2522 * Return: non-zero on error.
2523 */
2524
2525 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2526 struct intel_engine_cs *ring)
2527 {
2528 struct drm_device *dev = ring->dev;
2529 struct drm_i915_gem_object *ctx_obj;
2530 uint32_t context_size;
2531 struct intel_ringbuffer *ringbuf;
2532 int ret;
2533
2534 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2535 WARN_ON(ctx->engine[ring->id].state);
2536
2537 context_size = round_up(intel_lr_context_size(ring), 4096);
2538
2539 /* One extra page as the sharing data between driver and GuC */
2540 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2541
2542 ctx_obj = i915_gem_alloc_object(dev, context_size);
2543 if (!ctx_obj) {
2544 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2545 return -ENOMEM;
2546 }
2547
2548 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2549 if (IS_ERR(ringbuf)) {
2550 ret = PTR_ERR(ringbuf);
2551 goto error_deref_obj;
2552 }
2553
2554 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2555 if (ret) {
2556 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2557 goto error_ringbuf;
2558 }
2559
2560 ctx->engine[ring->id].ringbuf = ringbuf;
2561 ctx->engine[ring->id].state = ctx_obj;
2562
2563 if (ctx != ctx->i915->kernel_context && ring->init_context) {
2564 struct drm_i915_gem_request *req;
2565
2566 req = i915_gem_request_alloc(ring, ctx);
2567 if (IS_ERR(req)) {
2568 ret = PTR_ERR(req);
2569 DRM_ERROR("ring create req: %d\n", ret);
2570 goto error_ringbuf;
2571 }
2572
2573 ret = ring->init_context(req);
2574 if (ret) {
2575 DRM_ERROR("ring init context: %d\n",
2576 ret);
2577 i915_gem_request_cancel(req);
2578 goto error_ringbuf;
2579 }
2580 i915_add_request_no_flush(req);
2581 }
2582 return 0;
2583
2584 error_ringbuf:
2585 intel_ringbuffer_free(ringbuf);
2586 error_deref_obj:
2587 drm_gem_object_unreference(&ctx_obj->base);
2588 ctx->engine[ring->id].ringbuf = NULL;
2589 ctx->engine[ring->id].state = NULL;
2590 return ret;
2591 }
2592
2593 void intel_lr_context_reset(struct drm_device *dev,
2594 struct intel_context *ctx)
2595 {
2596 struct drm_i915_private *dev_priv = dev->dev_private;
2597 struct intel_engine_cs *ring;
2598 int i;
2599
2600 for_each_ring(ring, dev_priv, i) {
2601 struct drm_i915_gem_object *ctx_obj =
2602 ctx->engine[ring->id].state;
2603 struct intel_ringbuffer *ringbuf =
2604 ctx->engine[ring->id].ringbuf;
2605 uint32_t *reg_state;
2606 struct page *page;
2607
2608 if (!ctx_obj)
2609 continue;
2610
2611 if (i915_gem_object_get_pages(ctx_obj)) {
2612 WARN(1, "Failed get_pages for context obj\n");
2613 continue;
2614 }
2615 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2616 reg_state = kmap_atomic(page);
2617
2618 reg_state[CTX_RING_HEAD+1] = 0;
2619 reg_state[CTX_RING_TAIL+1] = 0;
2620
2621 kunmap_atomic(reg_state);
2622
2623 ringbuf->head = 0;
2624 ringbuf->tail = 0;
2625 }
2626 }
This page took 0.087764 seconds and 5 git commands to generate.