drm/i915: Update i915_gem_object_sync() to take a request structure
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL (1 << 0x2)
144 #define RING_EXECLIST1_VALID (1 << 0x3)
145 #define RING_EXECLIST0_VALID (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156
157 #define CTX_LRI_HEADER_0 0x01
158 #define CTX_CONTEXT_CONTROL 0x02
159 #define CTX_RING_HEAD 0x04
160 #define CTX_RING_TAIL 0x06
161 #define CTX_RING_BUFFER_START 0x08
162 #define CTX_RING_BUFFER_CONTROL 0x0a
163 #define CTX_BB_HEAD_U 0x0c
164 #define CTX_BB_HEAD_L 0x0e
165 #define CTX_BB_STATE 0x10
166 #define CTX_SECOND_BB_HEAD_U 0x12
167 #define CTX_SECOND_BB_HEAD_L 0x14
168 #define CTX_SECOND_BB_STATE 0x16
169 #define CTX_BB_PER_CTX_PTR 0x18
170 #define CTX_RCS_INDIRECT_CTX 0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172 #define CTX_LRI_HEADER_1 0x21
173 #define CTX_CTX_TIMESTAMP 0x22
174 #define CTX_PDP3_UDW 0x24
175 #define CTX_PDP3_LDW 0x26
176 #define CTX_PDP2_UDW 0x28
177 #define CTX_PDP2_LDW 0x2a
178 #define CTX_PDP1_UDW 0x2c
179 #define CTX_PDP1_LDW 0x2e
180 #define CTX_PDP0_UDW 0x30
181 #define CTX_PDP0_LDW 0x32
182 #define CTX_LRI_HEADER_2 0x41
183 #define CTX_R_PWR_CLK_STATE 0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191
192 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193 const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194 ppgtt->pdp.page_directory[n]->daddr : \
195 ppgtt->scratch_pd->daddr; \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 enum {
201 ADVANCED_CONTEXT = 0,
202 LEGACY_CONTEXT,
203 ADVANCED_AD_CONTEXT,
204 LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208 FAULT_AND_HANG = 0,
209 FAULT_AND_HALT, /* Debug only */
210 FAULT_AND_STREAM,
211 FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
215
216 static int intel_lr_context_pin(struct intel_engine_cs *ring,
217 struct intel_context *ctx);
218
219 /**
220 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
221 * @dev: DRM device.
222 * @enable_execlists: value of i915.enable_execlists module parameter.
223 *
224 * Only certain platforms support Execlists (the prerequisites being
225 * support for Logical Ring Contexts and Aliasing PPGTT or better).
226 *
227 * Return: 1 if Execlists is supported and has to be enabled.
228 */
229 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
230 {
231 WARN_ON(i915.enable_ppgtt == -1);
232
233 if (INTEL_INFO(dev)->gen >= 9)
234 return 1;
235
236 if (enable_execlists == 0)
237 return 0;
238
239 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
240 i915.use_mmio_flip >= 0)
241 return 1;
242
243 return 0;
244 }
245
246 /**
247 * intel_execlists_ctx_id() - get the Execlists Context ID
248 * @ctx_obj: Logical Ring Context backing object.
249 *
250 * Do not confuse with ctx->id! Unfortunately we have a name overload
251 * here: the old context ID we pass to userspace as a handler so that
252 * they can refer to a context, and the new context ID we pass to the
253 * ELSP so that the GPU can inform us of the context status via
254 * interrupts.
255 *
256 * Return: 20-bits globally unique context ID.
257 */
258 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
259 {
260 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
261
262 /* LRCA is required to be 4K aligned so the more significant 20 bits
263 * are globally unique */
264 return lrca >> 12;
265 }
266
267 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
268 struct drm_i915_gem_object *ctx_obj)
269 {
270 struct drm_device *dev = ring->dev;
271 uint64_t desc;
272 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
273
274 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
275
276 desc = GEN8_CTX_VALID;
277 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
278 if (IS_GEN8(ctx_obj->base.dev))
279 desc |= GEN8_CTX_L3LLC_COHERENT;
280 desc |= GEN8_CTX_PRIVILEGE;
281 desc |= lrca;
282 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
283
284 /* TODO: WaDisableLiteRestore when we start using semaphore
285 * signalling between Command Streamers */
286 /* desc |= GEN8_CTX_FORCE_RESTORE; */
287
288 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289 if (IS_GEN9(dev) &&
290 INTEL_REVID(dev) <= SKL_REVID_B0 &&
291 (ring->id == BCS || ring->id == VCS ||
292 ring->id == VECS || ring->id == VCS2))
293 desc |= GEN8_CTX_FORCE_RESTORE;
294
295 return desc;
296 }
297
298 static void execlists_elsp_write(struct intel_engine_cs *ring,
299 struct drm_i915_gem_object *ctx_obj0,
300 struct drm_i915_gem_object *ctx_obj1)
301 {
302 struct drm_device *dev = ring->dev;
303 struct drm_i915_private *dev_priv = dev->dev_private;
304 uint64_t temp = 0;
305 uint32_t desc[4];
306
307 /* XXX: You must always write both descriptors in the order below. */
308 if (ctx_obj1)
309 temp = execlists_ctx_descriptor(ring, ctx_obj1);
310 else
311 temp = 0;
312 desc[1] = (u32)(temp >> 32);
313 desc[0] = (u32)temp;
314
315 temp = execlists_ctx_descriptor(ring, ctx_obj0);
316 desc[3] = (u32)(temp >> 32);
317 desc[2] = (u32)temp;
318
319 spin_lock(&dev_priv->uncore.lock);
320 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
321 I915_WRITE_FW(RING_ELSP(ring), desc[1]);
322 I915_WRITE_FW(RING_ELSP(ring), desc[0]);
323 I915_WRITE_FW(RING_ELSP(ring), desc[3]);
324
325 /* The context is automatically loaded after the following */
326 I915_WRITE_FW(RING_ELSP(ring), desc[2]);
327
328 /* ELSP is a wo register, so use another nearby reg for posting instead */
329 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
330 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
331 spin_unlock(&dev_priv->uncore.lock);
332 }
333
334 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
335 struct drm_i915_gem_object *ring_obj,
336 struct i915_hw_ppgtt *ppgtt,
337 u32 tail)
338 {
339 struct page *page;
340 uint32_t *reg_state;
341
342 page = i915_gem_object_get_page(ctx_obj, 1);
343 reg_state = kmap_atomic(page);
344
345 reg_state[CTX_RING_TAIL+1] = tail;
346 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
347
348 /* True PPGTT with dynamic page allocation: update PDP registers and
349 * point the unallocated PDPs to the scratch page
350 */
351 if (ppgtt) {
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
355 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
356 }
357
358 kunmap_atomic(reg_state);
359
360 return 0;
361 }
362
363 static void execlists_submit_contexts(struct intel_engine_cs *ring,
364 struct intel_context *to0, u32 tail0,
365 struct intel_context *to1, u32 tail1)
366 {
367 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
368 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
369 struct drm_i915_gem_object *ctx_obj1 = NULL;
370 struct intel_ringbuffer *ringbuf1 = NULL;
371
372 BUG_ON(!ctx_obj0);
373 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
374 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
375
376 execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
377
378 if (to1) {
379 ringbuf1 = to1->engine[ring->id].ringbuf;
380 ctx_obj1 = to1->engine[ring->id].state;
381 BUG_ON(!ctx_obj1);
382 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
383 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
384
385 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
386 }
387
388 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
389 }
390
391 static void execlists_context_unqueue(struct intel_engine_cs *ring)
392 {
393 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
394 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
395
396 assert_spin_locked(&ring->execlist_lock);
397
398 /*
399 * If irqs are not active generate a warning as batches that finish
400 * without the irqs may get lost and a GPU Hang may occur.
401 */
402 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
403
404 if (list_empty(&ring->execlist_queue))
405 return;
406
407 /* Try to read in pairs */
408 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
409 execlist_link) {
410 if (!req0) {
411 req0 = cursor;
412 } else if (req0->ctx == cursor->ctx) {
413 /* Same ctx: ignore first request, as second request
414 * will update tail past first request's workload */
415 cursor->elsp_submitted = req0->elsp_submitted;
416 list_del(&req0->execlist_link);
417 list_add_tail(&req0->execlist_link,
418 &ring->execlist_retired_req_list);
419 req0 = cursor;
420 } else {
421 req1 = cursor;
422 break;
423 }
424 }
425
426 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
427 /*
428 * WaIdleLiteRestore: make sure we never cause a lite
429 * restore with HEAD==TAIL
430 */
431 if (req0->elsp_submitted) {
432 /*
433 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
434 * as we resubmit the request. See gen8_emit_request()
435 * for where we prepare the padding after the end of the
436 * request.
437 */
438 struct intel_ringbuffer *ringbuf;
439
440 ringbuf = req0->ctx->engine[ring->id].ringbuf;
441 req0->tail += 8;
442 req0->tail &= ringbuf->size - 1;
443 }
444 }
445
446 WARN_ON(req1 && req1->elsp_submitted);
447
448 execlists_submit_contexts(ring, req0->ctx, req0->tail,
449 req1 ? req1->ctx : NULL,
450 req1 ? req1->tail : 0);
451
452 req0->elsp_submitted++;
453 if (req1)
454 req1->elsp_submitted++;
455 }
456
457 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
458 u32 request_id)
459 {
460 struct drm_i915_gem_request *head_req;
461
462 assert_spin_locked(&ring->execlist_lock);
463
464 head_req = list_first_entry_or_null(&ring->execlist_queue,
465 struct drm_i915_gem_request,
466 execlist_link);
467
468 if (head_req != NULL) {
469 struct drm_i915_gem_object *ctx_obj =
470 head_req->ctx->engine[ring->id].state;
471 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
472 WARN(head_req->elsp_submitted == 0,
473 "Never submitted head request\n");
474
475 if (--head_req->elsp_submitted <= 0) {
476 list_del(&head_req->execlist_link);
477 list_add_tail(&head_req->execlist_link,
478 &ring->execlist_retired_req_list);
479 return true;
480 }
481 }
482 }
483
484 return false;
485 }
486
487 /**
488 * intel_lrc_irq_handler() - handle Context Switch interrupts
489 * @ring: Engine Command Streamer to handle.
490 *
491 * Check the unread Context Status Buffers and manage the submission of new
492 * contexts to the ELSP accordingly.
493 */
494 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
495 {
496 struct drm_i915_private *dev_priv = ring->dev->dev_private;
497 u32 status_pointer;
498 u8 read_pointer;
499 u8 write_pointer;
500 u32 status;
501 u32 status_id;
502 u32 submit_contexts = 0;
503
504 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
505
506 read_pointer = ring->next_context_status_buffer;
507 write_pointer = status_pointer & 0x07;
508 if (read_pointer > write_pointer)
509 write_pointer += 6;
510
511 spin_lock(&ring->execlist_lock);
512
513 while (read_pointer < write_pointer) {
514 read_pointer++;
515 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
516 (read_pointer % 6) * 8);
517 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
518 (read_pointer % 6) * 8 + 4);
519
520 if (status & GEN8_CTX_STATUS_PREEMPTED) {
521 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
522 if (execlists_check_remove_request(ring, status_id))
523 WARN(1, "Lite Restored request removed from queue\n");
524 } else
525 WARN(1, "Preemption without Lite Restore\n");
526 }
527
528 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
529 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
530 if (execlists_check_remove_request(ring, status_id))
531 submit_contexts++;
532 }
533 }
534
535 if (submit_contexts != 0)
536 execlists_context_unqueue(ring);
537
538 spin_unlock(&ring->execlist_lock);
539
540 WARN(submit_contexts > 2, "More than two context complete events?\n");
541 ring->next_context_status_buffer = write_pointer % 6;
542
543 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
544 ((u32)ring->next_context_status_buffer & 0x07) << 8);
545 }
546
547 static int execlists_context_queue(struct intel_engine_cs *ring,
548 struct intel_context *to,
549 u32 tail,
550 struct drm_i915_gem_request *request)
551 {
552 struct drm_i915_gem_request *cursor;
553 int num_elements = 0;
554
555 if (to != ring->default_context)
556 intel_lr_context_pin(ring, to);
557
558 if (!request) {
559 /*
560 * If there isn't a request associated with this submission,
561 * create one as a temporary holder.
562 */
563 request = kzalloc(sizeof(*request), GFP_KERNEL);
564 if (request == NULL)
565 return -ENOMEM;
566 request->ring = ring;
567 request->ctx = to;
568 kref_init(&request->ref);
569 i915_gem_context_reference(request->ctx);
570 } else {
571 i915_gem_request_reference(request);
572 WARN_ON(to != request->ctx);
573 }
574 request->tail = tail;
575
576 spin_lock_irq(&ring->execlist_lock);
577
578 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
579 if (++num_elements > 2)
580 break;
581
582 if (num_elements > 2) {
583 struct drm_i915_gem_request *tail_req;
584
585 tail_req = list_last_entry(&ring->execlist_queue,
586 struct drm_i915_gem_request,
587 execlist_link);
588
589 if (to == tail_req->ctx) {
590 WARN(tail_req->elsp_submitted != 0,
591 "More than 2 already-submitted reqs queued\n");
592 list_del(&tail_req->execlist_link);
593 list_add_tail(&tail_req->execlist_link,
594 &ring->execlist_retired_req_list);
595 }
596 }
597
598 list_add_tail(&request->execlist_link, &ring->execlist_queue);
599 if (num_elements == 0)
600 execlists_context_unqueue(ring);
601
602 spin_unlock_irq(&ring->execlist_lock);
603
604 return 0;
605 }
606
607 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
608 struct intel_context *ctx)
609 {
610 struct intel_engine_cs *ring = ringbuf->ring;
611 uint32_t flush_domains;
612 int ret;
613
614 flush_domains = 0;
615 if (ring->gpu_caches_dirty)
616 flush_domains = I915_GEM_GPU_DOMAINS;
617
618 ret = ring->emit_flush(ringbuf, ctx,
619 I915_GEM_GPU_DOMAINS, flush_domains);
620 if (ret)
621 return ret;
622
623 ring->gpu_caches_dirty = false;
624 return 0;
625 }
626
627 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
628 struct list_head *vmas)
629 {
630 const unsigned other_rings = ~intel_ring_flag(req->ring);
631 struct i915_vma *vma;
632 uint32_t flush_domains = 0;
633 bool flush_chipset = false;
634 int ret;
635
636 list_for_each_entry(vma, vmas, exec_list) {
637 struct drm_i915_gem_object *obj = vma->obj;
638
639 if (obj->active & other_rings) {
640 ret = i915_gem_object_sync(obj, req->ring, &req);
641 if (ret)
642 return ret;
643 }
644
645 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
646 flush_chipset |= i915_gem_clflush_object(obj, false);
647
648 flush_domains |= obj->base.write_domain;
649 }
650
651 if (flush_domains & I915_GEM_DOMAIN_GTT)
652 wmb();
653
654 /* Unconditionally invalidate gpu caches and ensure that we do flush
655 * any residual writes from the previous batch.
656 */
657 return logical_ring_invalidate_all_caches(req->ringbuf, req->ctx);
658 }
659
660 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
661 {
662 int ret;
663
664 if (request->ctx != request->ring->default_context) {
665 ret = intel_lr_context_pin(request->ring, request->ctx);
666 if (ret)
667 return ret;
668 }
669
670 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
671
672 return 0;
673 }
674
675 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
676 struct intel_context *ctx,
677 int bytes)
678 {
679 struct intel_engine_cs *ring = ringbuf->ring;
680 struct drm_i915_gem_request *request;
681 unsigned space;
682 int ret;
683
684 /* The whole point of reserving space is to not wait! */
685 WARN_ON(ringbuf->reserved_in_use);
686
687 if (intel_ring_space(ringbuf) >= bytes)
688 return 0;
689
690 list_for_each_entry(request, &ring->request_list, list) {
691 /*
692 * The request queue is per-engine, so can contain requests
693 * from multiple ringbuffers. Here, we must ignore any that
694 * aren't from the ringbuffer we're considering.
695 */
696 if (request->ringbuf != ringbuf)
697 continue;
698
699 /* Would completion of this request free enough space? */
700 space = __intel_ring_space(request->postfix, ringbuf->tail,
701 ringbuf->size);
702 if (space >= bytes)
703 break;
704 }
705
706 if (WARN_ON(&request->list == &ring->request_list))
707 return -ENOSPC;
708
709 ret = i915_wait_request(request);
710 if (ret)
711 return ret;
712
713 ringbuf->space = space;
714 return 0;
715 }
716
717 /*
718 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
719 * @ringbuf: Logical Ringbuffer to advance.
720 *
721 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
722 * really happens during submission is that the context and current tail will be placed
723 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
724 * point, the tail *inside* the context is updated and the ELSP written to.
725 */
726 static void
727 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
728 struct intel_context *ctx,
729 struct drm_i915_gem_request *request)
730 {
731 struct intel_engine_cs *ring = ringbuf->ring;
732
733 intel_logical_ring_advance(ringbuf);
734
735 if (intel_ring_stopped(ring))
736 return;
737
738 execlists_context_queue(ring, ctx, ringbuf->tail, request);
739 }
740
741 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
742 struct intel_context *ctx)
743 {
744 uint32_t __iomem *virt;
745 int rem = ringbuf->size - ringbuf->tail;
746
747 /* Can't wrap if space has already been reserved! */
748 WARN_ON(ringbuf->reserved_in_use);
749
750 if (ringbuf->space < rem) {
751 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
752
753 if (ret)
754 return ret;
755 }
756
757 virt = ringbuf->virtual_start + ringbuf->tail;
758 rem /= 4;
759 while (rem--)
760 iowrite32(MI_NOOP, virt++);
761
762 ringbuf->tail = 0;
763 intel_ring_update_space(ringbuf);
764
765 return 0;
766 }
767
768 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
769 struct intel_context *ctx, int bytes)
770 {
771 int ret;
772
773 /*
774 * Add on the reserved size to the request to make sure that after
775 * the intended commands have been emitted, there is guaranteed to
776 * still be enough free space to send them to the hardware.
777 */
778 if (!ringbuf->reserved_in_use)
779 bytes += ringbuf->reserved_size;
780
781 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
782 ret = logical_ring_wrap_buffer(ringbuf, ctx);
783 if (unlikely(ret))
784 return ret;
785
786 if(ringbuf->reserved_size) {
787 uint32_t size = ringbuf->reserved_size;
788
789 intel_ring_reserved_space_cancel(ringbuf);
790 intel_ring_reserved_space_reserve(ringbuf, size);
791 }
792 }
793
794 if (unlikely(ringbuf->space < bytes)) {
795 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
796 if (unlikely(ret))
797 return ret;
798 }
799
800 return 0;
801 }
802
803 /**
804 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
805 *
806 * @ringbuf: Logical ringbuffer.
807 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
808 *
809 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
810 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
811 * and also preallocates a request (every workload submission is still mediated through
812 * requests, same as it did with legacy ringbuffer submission).
813 *
814 * Return: non-zero if the ringbuffer is not ready to be written to.
815 */
816 static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
817 struct intel_context *ctx, int num_dwords)
818 {
819 struct drm_i915_gem_request *req;
820 struct intel_engine_cs *ring = ringbuf->ring;
821 struct drm_device *dev = ring->dev;
822 struct drm_i915_private *dev_priv = dev->dev_private;
823 int ret;
824
825 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
826 dev_priv->mm.interruptible);
827 if (ret)
828 return ret;
829
830 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
831 if (ret)
832 return ret;
833
834 /* Preallocate the olr before touching the ring */
835 ret = i915_gem_request_alloc(ring, ctx, &req);
836 if (ret)
837 return ret;
838
839 ringbuf->space -= num_dwords * sizeof(uint32_t);
840 return 0;
841 }
842
843 /**
844 * execlists_submission() - submit a batchbuffer for execution, Execlists style
845 * @dev: DRM device.
846 * @file: DRM file.
847 * @ring: Engine Command Streamer to submit to.
848 * @ctx: Context to employ for this submission.
849 * @args: execbuffer call arguments.
850 * @vmas: list of vmas.
851 * @batch_obj: the batchbuffer to submit.
852 * @exec_start: batchbuffer start virtual address pointer.
853 * @dispatch_flags: translated execbuffer call flags.
854 *
855 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
856 * away the submission details of the execbuffer ioctl call.
857 *
858 * Return: non-zero if the submission fails.
859 */
860 int intel_execlists_submission(struct i915_execbuffer_params *params,
861 struct drm_i915_gem_execbuffer2 *args,
862 struct list_head *vmas)
863 {
864 struct drm_device *dev = params->dev;
865 struct intel_engine_cs *ring = params->ring;
866 struct drm_i915_private *dev_priv = dev->dev_private;
867 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
868 u64 exec_start;
869 int instp_mode;
870 u32 instp_mask;
871 int ret;
872
873 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
874 instp_mask = I915_EXEC_CONSTANTS_MASK;
875 switch (instp_mode) {
876 case I915_EXEC_CONSTANTS_REL_GENERAL:
877 case I915_EXEC_CONSTANTS_ABSOLUTE:
878 case I915_EXEC_CONSTANTS_REL_SURFACE:
879 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
880 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
881 return -EINVAL;
882 }
883
884 if (instp_mode != dev_priv->relative_constants_mode) {
885 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
886 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
887 return -EINVAL;
888 }
889
890 /* The HW changed the meaning on this bit on gen6 */
891 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
892 }
893 break;
894 default:
895 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
896 return -EINVAL;
897 }
898
899 if (args->num_cliprects != 0) {
900 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
901 return -EINVAL;
902 } else {
903 if (args->DR4 == 0xffffffff) {
904 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
905 args->DR4 = 0;
906 }
907
908 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
909 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
910 return -EINVAL;
911 }
912 }
913
914 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
915 DRM_DEBUG("sol reset is gen7 only\n");
916 return -EINVAL;
917 }
918
919 ret = execlists_move_to_gpu(params->request, vmas);
920 if (ret)
921 return ret;
922
923 if (ring == &dev_priv->ring[RCS] &&
924 instp_mode != dev_priv->relative_constants_mode) {
925 ret = intel_logical_ring_begin(ringbuf, params->ctx, 4);
926 if (ret)
927 return ret;
928
929 intel_logical_ring_emit(ringbuf, MI_NOOP);
930 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
931 intel_logical_ring_emit(ringbuf, INSTPM);
932 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
933 intel_logical_ring_advance(ringbuf);
934
935 dev_priv->relative_constants_mode = instp_mode;
936 }
937
938 exec_start = params->batch_obj_vm_offset +
939 args->batch_start_offset;
940
941 ret = ring->emit_bb_start(ringbuf, params->ctx, exec_start, params->dispatch_flags);
942 if (ret)
943 return ret;
944
945 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
946
947 i915_gem_execbuffer_move_to_active(vmas, params->request);
948 i915_gem_execbuffer_retire_commands(params);
949
950 return 0;
951 }
952
953 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
954 {
955 struct drm_i915_gem_request *req, *tmp;
956 struct list_head retired_list;
957
958 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
959 if (list_empty(&ring->execlist_retired_req_list))
960 return;
961
962 INIT_LIST_HEAD(&retired_list);
963 spin_lock_irq(&ring->execlist_lock);
964 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
965 spin_unlock_irq(&ring->execlist_lock);
966
967 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
968 struct intel_context *ctx = req->ctx;
969 struct drm_i915_gem_object *ctx_obj =
970 ctx->engine[ring->id].state;
971
972 if (ctx_obj && (ctx != ring->default_context))
973 intel_lr_context_unpin(ring, ctx);
974 list_del(&req->execlist_link);
975 i915_gem_request_unreference(req);
976 }
977 }
978
979 void intel_logical_ring_stop(struct intel_engine_cs *ring)
980 {
981 struct drm_i915_private *dev_priv = ring->dev->dev_private;
982 int ret;
983
984 if (!intel_ring_initialized(ring))
985 return;
986
987 ret = intel_ring_idle(ring);
988 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
989 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
990 ring->name, ret);
991
992 /* TODO: Is this correct with Execlists enabled? */
993 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
994 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
995 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
996 return;
997 }
998 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
999 }
1000
1001 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
1002 struct intel_context *ctx)
1003 {
1004 struct intel_engine_cs *ring = ringbuf->ring;
1005 int ret;
1006
1007 if (!ring->gpu_caches_dirty)
1008 return 0;
1009
1010 ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
1011 if (ret)
1012 return ret;
1013
1014 ring->gpu_caches_dirty = false;
1015 return 0;
1016 }
1017
1018 static int intel_lr_context_pin(struct intel_engine_cs *ring,
1019 struct intel_context *ctx)
1020 {
1021 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1022 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1023 int ret = 0;
1024
1025 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1026 if (ctx->engine[ring->id].pin_count++ == 0) {
1027 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1028 GEN8_LR_CONTEXT_ALIGN, 0);
1029 if (ret)
1030 goto reset_pin_count;
1031
1032 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1033 if (ret)
1034 goto unpin_ctx_obj;
1035 }
1036
1037 return ret;
1038
1039 unpin_ctx_obj:
1040 i915_gem_object_ggtt_unpin(ctx_obj);
1041 reset_pin_count:
1042 ctx->engine[ring->id].pin_count = 0;
1043
1044 return ret;
1045 }
1046
1047 void intel_lr_context_unpin(struct intel_engine_cs *ring,
1048 struct intel_context *ctx)
1049 {
1050 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1051 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1052
1053 if (ctx_obj) {
1054 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1055 if (--ctx->engine[ring->id].pin_count == 0) {
1056 intel_unpin_ringbuffer_obj(ringbuf);
1057 i915_gem_object_ggtt_unpin(ctx_obj);
1058 }
1059 }
1060 }
1061
1062 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1063 struct intel_context *ctx)
1064 {
1065 int ret, i;
1066 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1067 struct drm_device *dev = ring->dev;
1068 struct drm_i915_private *dev_priv = dev->dev_private;
1069 struct i915_workarounds *w = &dev_priv->workarounds;
1070
1071 if (WARN_ON_ONCE(w->count == 0))
1072 return 0;
1073
1074 ring->gpu_caches_dirty = true;
1075 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1076 if (ret)
1077 return ret;
1078
1079 ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1080 if (ret)
1081 return ret;
1082
1083 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1084 for (i = 0; i < w->count; i++) {
1085 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1086 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1087 }
1088 intel_logical_ring_emit(ringbuf, MI_NOOP);
1089
1090 intel_logical_ring_advance(ringbuf);
1091
1092 ring->gpu_caches_dirty = true;
1093 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1094 if (ret)
1095 return ret;
1096
1097 return 0;
1098 }
1099
1100 #define wa_ctx_emit(batch, cmd) \
1101 do { \
1102 if (WARN_ON(index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1103 return -ENOSPC; \
1104 } \
1105 batch[index++] = (cmd); \
1106 } while (0)
1107
1108 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1109 uint32_t offset,
1110 uint32_t start_alignment)
1111 {
1112 return wa_ctx->offset = ALIGN(offset, start_alignment);
1113 }
1114
1115 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1116 uint32_t offset,
1117 uint32_t size_alignment)
1118 {
1119 wa_ctx->size = offset - wa_ctx->offset;
1120
1121 WARN(wa_ctx->size % size_alignment,
1122 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1123 wa_ctx->size, size_alignment);
1124 return 0;
1125 }
1126
1127 /**
1128 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1129 *
1130 * @ring: only applicable for RCS
1131 * @wa_ctx: structure representing wa_ctx
1132 * offset: specifies start of the batch, should be cache-aligned. This is updated
1133 * with the offset value received as input.
1134 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1135 * @batch: page in which WA are loaded
1136 * @offset: This field specifies the start of the batch, it should be
1137 * cache-aligned otherwise it is adjusted accordingly.
1138 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1139 * initialized at the beginning and shared across all contexts but this field
1140 * helps us to have multiple batches at different offsets and select them based
1141 * on a criteria. At the moment this batch always start at the beginning of the page
1142 * and at this point we don't have multiple wa_ctx batch buffers.
1143 *
1144 * The number of WA applied are not known at the beginning; we use this field
1145 * to return the no of DWORDS written.
1146
1147 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1148 * so it adds NOOPs as padding to make it cacheline aligned.
1149 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1150 * makes a complete batch buffer.
1151 *
1152 * Return: non-zero if we exceed the PAGE_SIZE limit.
1153 */
1154
1155 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1156 struct i915_wa_ctx_bb *wa_ctx,
1157 uint32_t *const batch,
1158 uint32_t *offset)
1159 {
1160 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1161
1162 /* WaDisableCtxRestoreArbitration:bdw,chv */
1163 wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1164
1165 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1166 if (IS_BROADWELL(ring->dev)) {
1167 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1168 uint32_t l3sqc4_flush = (I915_READ(GEN8_L3SQCREG4) |
1169 GEN8_LQSC_FLUSH_COHERENT_LINES);
1170
1171 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1172 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1173 wa_ctx_emit(batch, l3sqc4_flush);
1174
1175 wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
1176 wa_ctx_emit(batch, (PIPE_CONTROL_CS_STALL |
1177 PIPE_CONTROL_DC_FLUSH_ENABLE));
1178 wa_ctx_emit(batch, 0);
1179 wa_ctx_emit(batch, 0);
1180 wa_ctx_emit(batch, 0);
1181 wa_ctx_emit(batch, 0);
1182
1183 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1184 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1185 wa_ctx_emit(batch, l3sqc4_flush & ~GEN8_LQSC_FLUSH_COHERENT_LINES);
1186 }
1187
1188 /* Pad to end of cacheline */
1189 while (index % CACHELINE_DWORDS)
1190 wa_ctx_emit(batch, MI_NOOP);
1191
1192 /*
1193 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1194 * execution depends on the length specified in terms of cache lines
1195 * in the register CTX_RCS_INDIRECT_CTX
1196 */
1197
1198 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1199 }
1200
1201 /**
1202 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1203 *
1204 * @ring: only applicable for RCS
1205 * @wa_ctx: structure representing wa_ctx
1206 * offset: specifies start of the batch, should be cache-aligned.
1207 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1208 * @offset: This field specifies the start of this batch.
1209 * This batch is started immediately after indirect_ctx batch. Since we ensure
1210 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1211 *
1212 * The number of DWORDS written are returned using this field.
1213 *
1214 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1215 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1216 */
1217 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1218 struct i915_wa_ctx_bb *wa_ctx,
1219 uint32_t *const batch,
1220 uint32_t *offset)
1221 {
1222 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1223
1224 /* WaDisableCtxRestoreArbitration:bdw,chv */
1225 wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1226
1227 wa_ctx_emit(batch, MI_BATCH_BUFFER_END);
1228
1229 return wa_ctx_end(wa_ctx, *offset = index, 1);
1230 }
1231
1232 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1233 {
1234 int ret;
1235
1236 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1237 if (!ring->wa_ctx.obj) {
1238 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1239 return -ENOMEM;
1240 }
1241
1242 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1243 if (ret) {
1244 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1245 ret);
1246 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1247 return ret;
1248 }
1249
1250 return 0;
1251 }
1252
1253 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1254 {
1255 if (ring->wa_ctx.obj) {
1256 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1257 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1258 ring->wa_ctx.obj = NULL;
1259 }
1260 }
1261
1262 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1263 {
1264 int ret;
1265 uint32_t *batch;
1266 uint32_t offset;
1267 struct page *page;
1268 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1269
1270 WARN_ON(ring->id != RCS);
1271
1272 /* some WA perform writes to scratch page, ensure it is valid */
1273 if (ring->scratch.obj == NULL) {
1274 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1275 return -EINVAL;
1276 }
1277
1278 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1279 if (ret) {
1280 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1281 return ret;
1282 }
1283
1284 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1285 batch = kmap_atomic(page);
1286 offset = 0;
1287
1288 if (INTEL_INFO(ring->dev)->gen == 8) {
1289 ret = gen8_init_indirectctx_bb(ring,
1290 &wa_ctx->indirect_ctx,
1291 batch,
1292 &offset);
1293 if (ret)
1294 goto out;
1295
1296 ret = gen8_init_perctx_bb(ring,
1297 &wa_ctx->per_ctx,
1298 batch,
1299 &offset);
1300 if (ret)
1301 goto out;
1302 } else {
1303 WARN(INTEL_INFO(ring->dev)->gen >= 8,
1304 "WA batch buffer is not initialized for Gen%d\n",
1305 INTEL_INFO(ring->dev)->gen);
1306 lrc_destroy_wa_ctx_obj(ring);
1307 }
1308
1309 out:
1310 kunmap_atomic(batch);
1311 if (ret)
1312 lrc_destroy_wa_ctx_obj(ring);
1313
1314 return ret;
1315 }
1316
1317 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1318 {
1319 struct drm_device *dev = ring->dev;
1320 struct drm_i915_private *dev_priv = dev->dev_private;
1321
1322 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1323 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1324
1325 I915_WRITE(RING_MODE_GEN7(ring),
1326 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1327 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1328 POSTING_READ(RING_MODE_GEN7(ring));
1329 ring->next_context_status_buffer = 0;
1330 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1331
1332 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1333
1334 return 0;
1335 }
1336
1337 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1338 {
1339 struct drm_device *dev = ring->dev;
1340 struct drm_i915_private *dev_priv = dev->dev_private;
1341 int ret;
1342
1343 ret = gen8_init_common_ring(ring);
1344 if (ret)
1345 return ret;
1346
1347 /* We need to disable the AsyncFlip performance optimisations in order
1348 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1349 * programmed to '1' on all products.
1350 *
1351 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1352 */
1353 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1354
1355 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1356
1357 return init_workarounds_ring(ring);
1358 }
1359
1360 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1361 {
1362 int ret;
1363
1364 ret = gen8_init_common_ring(ring);
1365 if (ret)
1366 return ret;
1367
1368 return init_workarounds_ring(ring);
1369 }
1370
1371 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1372 struct intel_context *ctx,
1373 u64 offset, unsigned dispatch_flags)
1374 {
1375 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1376 int ret;
1377
1378 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1379 if (ret)
1380 return ret;
1381
1382 /* FIXME(BDW): Address space and security selectors. */
1383 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1384 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1385 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1386 intel_logical_ring_emit(ringbuf, MI_NOOP);
1387 intel_logical_ring_advance(ringbuf);
1388
1389 return 0;
1390 }
1391
1392 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1393 {
1394 struct drm_device *dev = ring->dev;
1395 struct drm_i915_private *dev_priv = dev->dev_private;
1396 unsigned long flags;
1397
1398 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1399 return false;
1400
1401 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1402 if (ring->irq_refcount++ == 0) {
1403 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1404 POSTING_READ(RING_IMR(ring->mmio_base));
1405 }
1406 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1407
1408 return true;
1409 }
1410
1411 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1412 {
1413 struct drm_device *dev = ring->dev;
1414 struct drm_i915_private *dev_priv = dev->dev_private;
1415 unsigned long flags;
1416
1417 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1418 if (--ring->irq_refcount == 0) {
1419 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1420 POSTING_READ(RING_IMR(ring->mmio_base));
1421 }
1422 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1423 }
1424
1425 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1426 struct intel_context *ctx,
1427 u32 invalidate_domains,
1428 u32 unused)
1429 {
1430 struct intel_engine_cs *ring = ringbuf->ring;
1431 struct drm_device *dev = ring->dev;
1432 struct drm_i915_private *dev_priv = dev->dev_private;
1433 uint32_t cmd;
1434 int ret;
1435
1436 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1437 if (ret)
1438 return ret;
1439
1440 cmd = MI_FLUSH_DW + 1;
1441
1442 /* We always require a command barrier so that subsequent
1443 * commands, such as breadcrumb interrupts, are strictly ordered
1444 * wrt the contents of the write cache being flushed to memory
1445 * (and thus being coherent from the CPU).
1446 */
1447 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1448
1449 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1450 cmd |= MI_INVALIDATE_TLB;
1451 if (ring == &dev_priv->ring[VCS])
1452 cmd |= MI_INVALIDATE_BSD;
1453 }
1454
1455 intel_logical_ring_emit(ringbuf, cmd);
1456 intel_logical_ring_emit(ringbuf,
1457 I915_GEM_HWS_SCRATCH_ADDR |
1458 MI_FLUSH_DW_USE_GTT);
1459 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1460 intel_logical_ring_emit(ringbuf, 0); /* value */
1461 intel_logical_ring_advance(ringbuf);
1462
1463 return 0;
1464 }
1465
1466 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1467 struct intel_context *ctx,
1468 u32 invalidate_domains,
1469 u32 flush_domains)
1470 {
1471 struct intel_engine_cs *ring = ringbuf->ring;
1472 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1473 bool vf_flush_wa;
1474 u32 flags = 0;
1475 int ret;
1476
1477 flags |= PIPE_CONTROL_CS_STALL;
1478
1479 if (flush_domains) {
1480 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1481 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1482 }
1483
1484 if (invalidate_domains) {
1485 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1486 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1487 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1488 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1489 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1490 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1491 flags |= PIPE_CONTROL_QW_WRITE;
1492 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1493 }
1494
1495 /*
1496 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1497 * control.
1498 */
1499 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1500 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1501
1502 ret = intel_logical_ring_begin(ringbuf, ctx, vf_flush_wa ? 12 : 6);
1503 if (ret)
1504 return ret;
1505
1506 if (vf_flush_wa) {
1507 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1508 intel_logical_ring_emit(ringbuf, 0);
1509 intel_logical_ring_emit(ringbuf, 0);
1510 intel_logical_ring_emit(ringbuf, 0);
1511 intel_logical_ring_emit(ringbuf, 0);
1512 intel_logical_ring_emit(ringbuf, 0);
1513 }
1514
1515 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1516 intel_logical_ring_emit(ringbuf, flags);
1517 intel_logical_ring_emit(ringbuf, scratch_addr);
1518 intel_logical_ring_emit(ringbuf, 0);
1519 intel_logical_ring_emit(ringbuf, 0);
1520 intel_logical_ring_emit(ringbuf, 0);
1521 intel_logical_ring_advance(ringbuf);
1522
1523 return 0;
1524 }
1525
1526 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1527 {
1528 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1529 }
1530
1531 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1532 {
1533 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1534 }
1535
1536 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1537 struct drm_i915_gem_request *request)
1538 {
1539 struct intel_engine_cs *ring = ringbuf->ring;
1540 u32 cmd;
1541 int ret;
1542
1543 /*
1544 * Reserve space for 2 NOOPs at the end of each request to be
1545 * used as a workaround for not being allowed to do lite
1546 * restore with HEAD==TAIL (WaIdleLiteRestore).
1547 */
1548 ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1549 if (ret)
1550 return ret;
1551
1552 cmd = MI_STORE_DWORD_IMM_GEN4;
1553 cmd |= MI_GLOBAL_GTT;
1554
1555 intel_logical_ring_emit(ringbuf, cmd);
1556 intel_logical_ring_emit(ringbuf,
1557 (ring->status_page.gfx_addr +
1558 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1559 intel_logical_ring_emit(ringbuf, 0);
1560 intel_logical_ring_emit(ringbuf,
1561 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1562 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1563 intel_logical_ring_emit(ringbuf, MI_NOOP);
1564 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1565
1566 /*
1567 * Here we add two extra NOOPs as padding to avoid
1568 * lite restore of a context with HEAD==TAIL.
1569 */
1570 intel_logical_ring_emit(ringbuf, MI_NOOP);
1571 intel_logical_ring_emit(ringbuf, MI_NOOP);
1572 intel_logical_ring_advance(ringbuf);
1573
1574 return 0;
1575 }
1576
1577 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1578 {
1579 struct render_state so;
1580 int ret;
1581
1582 ret = i915_gem_render_state_prepare(req->ring, &so);
1583 if (ret)
1584 return ret;
1585
1586 if (so.rodata == NULL)
1587 return 0;
1588
1589 ret = req->ring->emit_bb_start(req->ringbuf,
1590 req->ctx,
1591 so.ggtt_offset,
1592 I915_DISPATCH_SECURE);
1593 if (ret)
1594 goto out;
1595
1596 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req->ring);
1597
1598 out:
1599 i915_gem_render_state_fini(&so);
1600 return ret;
1601 }
1602
1603 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1604 {
1605 int ret;
1606
1607 ret = intel_logical_ring_workarounds_emit(req->ring, req->ctx);
1608 if (ret)
1609 return ret;
1610
1611 return intel_lr_context_render_state_init(req);
1612 }
1613
1614 /**
1615 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1616 *
1617 * @ring: Engine Command Streamer.
1618 *
1619 */
1620 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1621 {
1622 struct drm_i915_private *dev_priv;
1623
1624 if (!intel_ring_initialized(ring))
1625 return;
1626
1627 dev_priv = ring->dev->dev_private;
1628
1629 intel_logical_ring_stop(ring);
1630 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1631 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1632
1633 if (ring->cleanup)
1634 ring->cleanup(ring);
1635
1636 i915_cmd_parser_fini_ring(ring);
1637 i915_gem_batch_pool_fini(&ring->batch_pool);
1638
1639 if (ring->status_page.obj) {
1640 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1641 ring->status_page.obj = NULL;
1642 }
1643
1644 lrc_destroy_wa_ctx_obj(ring);
1645 }
1646
1647 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1648 {
1649 int ret;
1650
1651 /* Intentionally left blank. */
1652 ring->buffer = NULL;
1653
1654 ring->dev = dev;
1655 INIT_LIST_HEAD(&ring->active_list);
1656 INIT_LIST_HEAD(&ring->request_list);
1657 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1658 init_waitqueue_head(&ring->irq_queue);
1659
1660 INIT_LIST_HEAD(&ring->execlist_queue);
1661 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1662 spin_lock_init(&ring->execlist_lock);
1663
1664 ret = i915_cmd_parser_init_ring(ring);
1665 if (ret)
1666 return ret;
1667
1668 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1669
1670 return ret;
1671 }
1672
1673 static int logical_render_ring_init(struct drm_device *dev)
1674 {
1675 struct drm_i915_private *dev_priv = dev->dev_private;
1676 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1677 int ret;
1678
1679 ring->name = "render ring";
1680 ring->id = RCS;
1681 ring->mmio_base = RENDER_RING_BASE;
1682 ring->irq_enable_mask =
1683 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1684 ring->irq_keep_mask =
1685 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1686 if (HAS_L3_DPF(dev))
1687 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1688
1689 if (INTEL_INFO(dev)->gen >= 9)
1690 ring->init_hw = gen9_init_render_ring;
1691 else
1692 ring->init_hw = gen8_init_render_ring;
1693 ring->init_context = gen8_init_rcs_context;
1694 ring->cleanup = intel_fini_pipe_control;
1695 ring->get_seqno = gen8_get_seqno;
1696 ring->set_seqno = gen8_set_seqno;
1697 ring->emit_request = gen8_emit_request;
1698 ring->emit_flush = gen8_emit_flush_render;
1699 ring->irq_get = gen8_logical_ring_get_irq;
1700 ring->irq_put = gen8_logical_ring_put_irq;
1701 ring->emit_bb_start = gen8_emit_bb_start;
1702
1703 ring->dev = dev;
1704
1705 ret = intel_init_pipe_control(ring);
1706 if (ret)
1707 return ret;
1708
1709 ret = intel_init_workaround_bb(ring);
1710 if (ret) {
1711 /*
1712 * We continue even if we fail to initialize WA batch
1713 * because we only expect rare glitches but nothing
1714 * critical to prevent us from using GPU
1715 */
1716 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1717 ret);
1718 }
1719
1720 ret = logical_ring_init(dev, ring);
1721 if (ret) {
1722 lrc_destroy_wa_ctx_obj(ring);
1723 }
1724
1725 return ret;
1726 }
1727
1728 static int logical_bsd_ring_init(struct drm_device *dev)
1729 {
1730 struct drm_i915_private *dev_priv = dev->dev_private;
1731 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1732
1733 ring->name = "bsd ring";
1734 ring->id = VCS;
1735 ring->mmio_base = GEN6_BSD_RING_BASE;
1736 ring->irq_enable_mask =
1737 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1738 ring->irq_keep_mask =
1739 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1740
1741 ring->init_hw = gen8_init_common_ring;
1742 ring->get_seqno = gen8_get_seqno;
1743 ring->set_seqno = gen8_set_seqno;
1744 ring->emit_request = gen8_emit_request;
1745 ring->emit_flush = gen8_emit_flush;
1746 ring->irq_get = gen8_logical_ring_get_irq;
1747 ring->irq_put = gen8_logical_ring_put_irq;
1748 ring->emit_bb_start = gen8_emit_bb_start;
1749
1750 return logical_ring_init(dev, ring);
1751 }
1752
1753 static int logical_bsd2_ring_init(struct drm_device *dev)
1754 {
1755 struct drm_i915_private *dev_priv = dev->dev_private;
1756 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1757
1758 ring->name = "bds2 ring";
1759 ring->id = VCS2;
1760 ring->mmio_base = GEN8_BSD2_RING_BASE;
1761 ring->irq_enable_mask =
1762 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1763 ring->irq_keep_mask =
1764 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1765
1766 ring->init_hw = gen8_init_common_ring;
1767 ring->get_seqno = gen8_get_seqno;
1768 ring->set_seqno = gen8_set_seqno;
1769 ring->emit_request = gen8_emit_request;
1770 ring->emit_flush = gen8_emit_flush;
1771 ring->irq_get = gen8_logical_ring_get_irq;
1772 ring->irq_put = gen8_logical_ring_put_irq;
1773 ring->emit_bb_start = gen8_emit_bb_start;
1774
1775 return logical_ring_init(dev, ring);
1776 }
1777
1778 static int logical_blt_ring_init(struct drm_device *dev)
1779 {
1780 struct drm_i915_private *dev_priv = dev->dev_private;
1781 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1782
1783 ring->name = "blitter ring";
1784 ring->id = BCS;
1785 ring->mmio_base = BLT_RING_BASE;
1786 ring->irq_enable_mask =
1787 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1788 ring->irq_keep_mask =
1789 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1790
1791 ring->init_hw = gen8_init_common_ring;
1792 ring->get_seqno = gen8_get_seqno;
1793 ring->set_seqno = gen8_set_seqno;
1794 ring->emit_request = gen8_emit_request;
1795 ring->emit_flush = gen8_emit_flush;
1796 ring->irq_get = gen8_logical_ring_get_irq;
1797 ring->irq_put = gen8_logical_ring_put_irq;
1798 ring->emit_bb_start = gen8_emit_bb_start;
1799
1800 return logical_ring_init(dev, ring);
1801 }
1802
1803 static int logical_vebox_ring_init(struct drm_device *dev)
1804 {
1805 struct drm_i915_private *dev_priv = dev->dev_private;
1806 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1807
1808 ring->name = "video enhancement ring";
1809 ring->id = VECS;
1810 ring->mmio_base = VEBOX_RING_BASE;
1811 ring->irq_enable_mask =
1812 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1813 ring->irq_keep_mask =
1814 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1815
1816 ring->init_hw = gen8_init_common_ring;
1817 ring->get_seqno = gen8_get_seqno;
1818 ring->set_seqno = gen8_set_seqno;
1819 ring->emit_request = gen8_emit_request;
1820 ring->emit_flush = gen8_emit_flush;
1821 ring->irq_get = gen8_logical_ring_get_irq;
1822 ring->irq_put = gen8_logical_ring_put_irq;
1823 ring->emit_bb_start = gen8_emit_bb_start;
1824
1825 return logical_ring_init(dev, ring);
1826 }
1827
1828 /**
1829 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1830 * @dev: DRM device.
1831 *
1832 * This function inits the engines for an Execlists submission style (the equivalent in the
1833 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1834 * those engines that are present in the hardware.
1835 *
1836 * Return: non-zero if the initialization failed.
1837 */
1838 int intel_logical_rings_init(struct drm_device *dev)
1839 {
1840 struct drm_i915_private *dev_priv = dev->dev_private;
1841 int ret;
1842
1843 ret = logical_render_ring_init(dev);
1844 if (ret)
1845 return ret;
1846
1847 if (HAS_BSD(dev)) {
1848 ret = logical_bsd_ring_init(dev);
1849 if (ret)
1850 goto cleanup_render_ring;
1851 }
1852
1853 if (HAS_BLT(dev)) {
1854 ret = logical_blt_ring_init(dev);
1855 if (ret)
1856 goto cleanup_bsd_ring;
1857 }
1858
1859 if (HAS_VEBOX(dev)) {
1860 ret = logical_vebox_ring_init(dev);
1861 if (ret)
1862 goto cleanup_blt_ring;
1863 }
1864
1865 if (HAS_BSD2(dev)) {
1866 ret = logical_bsd2_ring_init(dev);
1867 if (ret)
1868 goto cleanup_vebox_ring;
1869 }
1870
1871 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1872 if (ret)
1873 goto cleanup_bsd2_ring;
1874
1875 return 0;
1876
1877 cleanup_bsd2_ring:
1878 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1879 cleanup_vebox_ring:
1880 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1881 cleanup_blt_ring:
1882 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1883 cleanup_bsd_ring:
1884 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1885 cleanup_render_ring:
1886 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1887
1888 return ret;
1889 }
1890
1891 static u32
1892 make_rpcs(struct drm_device *dev)
1893 {
1894 u32 rpcs = 0;
1895
1896 /*
1897 * No explicit RPCS request is needed to ensure full
1898 * slice/subslice/EU enablement prior to Gen9.
1899 */
1900 if (INTEL_INFO(dev)->gen < 9)
1901 return 0;
1902
1903 /*
1904 * Starting in Gen9, render power gating can leave
1905 * slice/subslice/EU in a partially enabled state. We
1906 * must make an explicit request through RPCS for full
1907 * enablement.
1908 */
1909 if (INTEL_INFO(dev)->has_slice_pg) {
1910 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1911 rpcs |= INTEL_INFO(dev)->slice_total <<
1912 GEN8_RPCS_S_CNT_SHIFT;
1913 rpcs |= GEN8_RPCS_ENABLE;
1914 }
1915
1916 if (INTEL_INFO(dev)->has_subslice_pg) {
1917 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1918 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1919 GEN8_RPCS_SS_CNT_SHIFT;
1920 rpcs |= GEN8_RPCS_ENABLE;
1921 }
1922
1923 if (INTEL_INFO(dev)->has_eu_pg) {
1924 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1925 GEN8_RPCS_EU_MIN_SHIFT;
1926 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1927 GEN8_RPCS_EU_MAX_SHIFT;
1928 rpcs |= GEN8_RPCS_ENABLE;
1929 }
1930
1931 return rpcs;
1932 }
1933
1934 static int
1935 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1936 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1937 {
1938 struct drm_device *dev = ring->dev;
1939 struct drm_i915_private *dev_priv = dev->dev_private;
1940 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1941 struct page *page;
1942 uint32_t *reg_state;
1943 int ret;
1944
1945 if (!ppgtt)
1946 ppgtt = dev_priv->mm.aliasing_ppgtt;
1947
1948 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1949 if (ret) {
1950 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1951 return ret;
1952 }
1953
1954 ret = i915_gem_object_get_pages(ctx_obj);
1955 if (ret) {
1956 DRM_DEBUG_DRIVER("Could not get object pages\n");
1957 return ret;
1958 }
1959
1960 i915_gem_object_pin_pages(ctx_obj);
1961
1962 /* The second page of the context object contains some fields which must
1963 * be set up prior to the first execution. */
1964 page = i915_gem_object_get_page(ctx_obj, 1);
1965 reg_state = kmap_atomic(page);
1966
1967 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1968 * commands followed by (reg, value) pairs. The values we are setting here are
1969 * only for the first context restore: on a subsequent save, the GPU will
1970 * recreate this batchbuffer with new values (including all the missing
1971 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1972 if (ring->id == RCS)
1973 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1974 else
1975 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1976 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1977 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1978 reg_state[CTX_CONTEXT_CONTROL+1] =
1979 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1980 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1981 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1982 reg_state[CTX_RING_HEAD+1] = 0;
1983 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1984 reg_state[CTX_RING_TAIL+1] = 0;
1985 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1986 /* Ring buffer start address is not known until the buffer is pinned.
1987 * It is written to the context image in execlists_update_context()
1988 */
1989 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1990 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1991 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1992 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1993 reg_state[CTX_BB_HEAD_U+1] = 0;
1994 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1995 reg_state[CTX_BB_HEAD_L+1] = 0;
1996 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1997 reg_state[CTX_BB_STATE+1] = (1<<5);
1998 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1999 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2000 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2001 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2002 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2003 reg_state[CTX_SECOND_BB_STATE+1] = 0;
2004 if (ring->id == RCS) {
2005 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2006 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2007 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2008 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2009 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2010 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2011 if (ring->wa_ctx.obj) {
2012 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2013 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2014
2015 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2016 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2017 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2018
2019 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2020 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2021
2022 reg_state[CTX_BB_PER_CTX_PTR+1] =
2023 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2024 0x01;
2025 }
2026 }
2027 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2028 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2029 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2030 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2031 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2032 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2033 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2034 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2035 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2036 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2037 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2038 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2039
2040 /* With dynamic page allocation, PDPs may not be allocated at this point,
2041 * Point the unallocated PDPs to the scratch page
2042 */
2043 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2044 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2045 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2046 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2047 if (ring->id == RCS) {
2048 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2049 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2050 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2051 }
2052
2053 kunmap_atomic(reg_state);
2054
2055 ctx_obj->dirty = 1;
2056 set_page_dirty(page);
2057 i915_gem_object_unpin_pages(ctx_obj);
2058
2059 return 0;
2060 }
2061
2062 /**
2063 * intel_lr_context_free() - free the LRC specific bits of a context
2064 * @ctx: the LR context to free.
2065 *
2066 * The real context freeing is done in i915_gem_context_free: this only
2067 * takes care of the bits that are LRC related: the per-engine backing
2068 * objects and the logical ringbuffer.
2069 */
2070 void intel_lr_context_free(struct intel_context *ctx)
2071 {
2072 int i;
2073
2074 for (i = 0; i < I915_NUM_RINGS; i++) {
2075 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2076
2077 if (ctx_obj) {
2078 struct intel_ringbuffer *ringbuf =
2079 ctx->engine[i].ringbuf;
2080 struct intel_engine_cs *ring = ringbuf->ring;
2081
2082 if (ctx == ring->default_context) {
2083 intel_unpin_ringbuffer_obj(ringbuf);
2084 i915_gem_object_ggtt_unpin(ctx_obj);
2085 }
2086 WARN_ON(ctx->engine[ring->id].pin_count);
2087 intel_destroy_ringbuffer_obj(ringbuf);
2088 kfree(ringbuf);
2089 drm_gem_object_unreference(&ctx_obj->base);
2090 }
2091 }
2092 }
2093
2094 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2095 {
2096 int ret = 0;
2097
2098 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2099
2100 switch (ring->id) {
2101 case RCS:
2102 if (INTEL_INFO(ring->dev)->gen >= 9)
2103 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2104 else
2105 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2106 break;
2107 case VCS:
2108 case BCS:
2109 case VECS:
2110 case VCS2:
2111 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2112 break;
2113 }
2114
2115 return ret;
2116 }
2117
2118 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2119 struct drm_i915_gem_object *default_ctx_obj)
2120 {
2121 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2122
2123 /* The status page is offset 0 from the default context object
2124 * in LRC mode. */
2125 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2126 ring->status_page.page_addr =
2127 kmap(sg_page(default_ctx_obj->pages->sgl));
2128 ring->status_page.obj = default_ctx_obj;
2129
2130 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2131 (u32)ring->status_page.gfx_addr);
2132 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2133 }
2134
2135 /**
2136 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2137 * @ctx: LR context to create.
2138 * @ring: engine to be used with the context.
2139 *
2140 * This function can be called more than once, with different engines, if we plan
2141 * to use the context with them. The context backing objects and the ringbuffers
2142 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2143 * the creation is a deferred call: it's better to make sure first that we need to use
2144 * a given ring with the context.
2145 *
2146 * Return: non-zero on error.
2147 */
2148 int intel_lr_context_deferred_create(struct intel_context *ctx,
2149 struct intel_engine_cs *ring)
2150 {
2151 const bool is_global_default_ctx = (ctx == ring->default_context);
2152 struct drm_device *dev = ring->dev;
2153 struct drm_i915_gem_object *ctx_obj;
2154 uint32_t context_size;
2155 struct intel_ringbuffer *ringbuf;
2156 int ret;
2157
2158 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2159 WARN_ON(ctx->engine[ring->id].state);
2160
2161 context_size = round_up(get_lr_context_size(ring), 4096);
2162
2163 ctx_obj = i915_gem_alloc_object(dev, context_size);
2164 if (!ctx_obj) {
2165 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2166 return -ENOMEM;
2167 }
2168
2169 if (is_global_default_ctx) {
2170 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2171 if (ret) {
2172 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2173 ret);
2174 drm_gem_object_unreference(&ctx_obj->base);
2175 return ret;
2176 }
2177 }
2178
2179 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2180 if (!ringbuf) {
2181 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2182 ring->name);
2183 ret = -ENOMEM;
2184 goto error_unpin_ctx;
2185 }
2186
2187 ringbuf->ring = ring;
2188
2189 ringbuf->size = 32 * PAGE_SIZE;
2190 ringbuf->effective_size = ringbuf->size;
2191 ringbuf->head = 0;
2192 ringbuf->tail = 0;
2193 ringbuf->last_retired_head = -1;
2194 intel_ring_update_space(ringbuf);
2195
2196 if (ringbuf->obj == NULL) {
2197 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2198 if (ret) {
2199 DRM_DEBUG_DRIVER(
2200 "Failed to allocate ringbuffer obj %s: %d\n",
2201 ring->name, ret);
2202 goto error_free_rbuf;
2203 }
2204
2205 if (is_global_default_ctx) {
2206 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2207 if (ret) {
2208 DRM_ERROR(
2209 "Failed to pin and map ringbuffer %s: %d\n",
2210 ring->name, ret);
2211 goto error_destroy_rbuf;
2212 }
2213 }
2214
2215 }
2216
2217 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2218 if (ret) {
2219 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2220 goto error;
2221 }
2222
2223 ctx->engine[ring->id].ringbuf = ringbuf;
2224 ctx->engine[ring->id].state = ctx_obj;
2225
2226 if (ctx == ring->default_context)
2227 lrc_setup_hardware_status_page(ring, ctx_obj);
2228 else if (ring->id == RCS && !ctx->rcs_initialized) {
2229 if (ring->init_context) {
2230 struct drm_i915_gem_request *req;
2231
2232 ret = i915_gem_request_alloc(ring, ctx, &req);
2233 if (ret)
2234 return ret;
2235
2236 ret = ring->init_context(req);
2237 if (ret) {
2238 DRM_ERROR("ring init context: %d\n", ret);
2239 i915_gem_request_cancel(req);
2240 ctx->engine[ring->id].ringbuf = NULL;
2241 ctx->engine[ring->id].state = NULL;
2242 goto error;
2243 }
2244
2245 i915_add_request_no_flush(req->ring);
2246 }
2247
2248 ctx->rcs_initialized = true;
2249 }
2250
2251 return 0;
2252
2253 error:
2254 if (is_global_default_ctx)
2255 intel_unpin_ringbuffer_obj(ringbuf);
2256 error_destroy_rbuf:
2257 intel_destroy_ringbuffer_obj(ringbuf);
2258 error_free_rbuf:
2259 kfree(ringbuf);
2260 error_unpin_ctx:
2261 if (is_global_default_ctx)
2262 i915_gem_object_ggtt_unpin(ctx_obj);
2263 drm_gem_object_unreference(&ctx_obj->base);
2264 return ret;
2265 }
2266
2267 void intel_lr_context_reset(struct drm_device *dev,
2268 struct intel_context *ctx)
2269 {
2270 struct drm_i915_private *dev_priv = dev->dev_private;
2271 struct intel_engine_cs *ring;
2272 int i;
2273
2274 for_each_ring(ring, dev_priv, i) {
2275 struct drm_i915_gem_object *ctx_obj =
2276 ctx->engine[ring->id].state;
2277 struct intel_ringbuffer *ringbuf =
2278 ctx->engine[ring->id].ringbuf;
2279 uint32_t *reg_state;
2280 struct page *page;
2281
2282 if (!ctx_obj)
2283 continue;
2284
2285 if (i915_gem_object_get_pages(ctx_obj)) {
2286 WARN(1, "Failed get_pages for context obj\n");
2287 continue;
2288 }
2289 page = i915_gem_object_get_page(ctx_obj, 1);
2290 reg_state = kmap_atomic(page);
2291
2292 reg_state[CTX_RING_HEAD+1] = 0;
2293 reg_state[CTX_RING_TAIL+1] = 0;
2294
2295 kunmap_atomic(reg_state);
2296
2297 ringbuf->head = 0;
2298 ringbuf->tail = 0;
2299 }
2300 }
This page took 0.08119 seconds and 5 git commands to generate.