drm/i915: Cleanup some of the CSB handling
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL (1 << 0x2)
145 #define RING_EXECLIST1_VALID (1 << 0x3)
146 #define RING_EXECLIST0_VALID (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
157
158 #define CTX_LRI_HEADER_0 0x01
159 #define CTX_CONTEXT_CONTROL 0x02
160 #define CTX_RING_HEAD 0x04
161 #define CTX_RING_TAIL 0x06
162 #define CTX_RING_BUFFER_START 0x08
163 #define CTX_RING_BUFFER_CONTROL 0x0a
164 #define CTX_BB_HEAD_U 0x0c
165 #define CTX_BB_HEAD_L 0x0e
166 #define CTX_BB_STATE 0x10
167 #define CTX_SECOND_BB_HEAD_U 0x12
168 #define CTX_SECOND_BB_HEAD_L 0x14
169 #define CTX_SECOND_BB_STATE 0x16
170 #define CTX_BB_PER_CTX_PTR 0x18
171 #define CTX_RCS_INDIRECT_CTX 0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173 #define CTX_LRI_HEADER_1 0x21
174 #define CTX_CTX_TIMESTAMP 0x22
175 #define CTX_PDP3_UDW 0x24
176 #define CTX_PDP3_LDW 0x26
177 #define CTX_PDP2_UDW 0x28
178 #define CTX_PDP2_LDW 0x2a
179 #define CTX_PDP1_UDW 0x2c
180 #define CTX_PDP1_LDW 0x2e
181 #define CTX_PDP0_UDW 0x30
182 #define CTX_PDP0_LDW 0x32
183 #define CTX_LRI_HEADER_2 0x41
184 #define CTX_R_PWR_CLK_STATE 0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 enum {
210 ADVANCED_CONTEXT = 0,
211 LEGACY_32B_CONTEXT,
212 ADVANCED_AD_CONTEXT,
213 LEGACY_64B_CONTEXT
214 };
215 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
217 LEGACY_64B_CONTEXT :\
218 LEGACY_32B_CONTEXT)
219 enum {
220 FAULT_AND_HANG = 0,
221 FAULT_AND_HALT, /* Debug only */
222 FAULT_AND_STREAM,
223 FAULT_AND_CONTINUE /* Unsupported */
224 };
225 #define GEN8_CTX_ID_SHIFT 32
226 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
227
228 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
229 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
230 struct drm_i915_gem_object *default_ctx_obj);
231
232
233 /**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245 WARN_ON(i915.enable_ppgtt == -1);
246
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
256 if (enable_execlists == 0)
257 return 0;
258
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
261 return 1;
262
263 return 0;
264 }
265
266 /**
267 * intel_execlists_ctx_id() - get the Execlists Context ID
268 * @ctx_obj: Logical Ring Context backing object.
269 *
270 * Do not confuse with ctx->id! Unfortunately we have a name overload
271 * here: the old context ID we pass to userspace as a handler so that
272 * they can refer to a context, and the new context ID we pass to the
273 * ELSP so that the GPU can inform us of the context status via
274 * interrupts.
275 *
276 * Return: 20-bits globally unique context ID.
277 */
278 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
279 {
280 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
281 LRC_PPHWSP_PN * PAGE_SIZE;
282
283 /* LRCA is required to be 4K aligned so the more significant 20 bits
284 * are globally unique */
285 return lrca >> 12;
286 }
287
288 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
289 {
290 struct drm_device *dev = ring->dev;
291
292 return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
293 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
294 (ring->id == VCS || ring->id == VCS2);
295 }
296
297 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
298 struct intel_engine_cs *ring)
299 {
300 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
301 uint64_t desc;
302 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
303 LRC_PPHWSP_PN * PAGE_SIZE;
304
305 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
306
307 desc = GEN8_CTX_VALID;
308 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
309 if (IS_GEN8(ctx_obj->base.dev))
310 desc |= GEN8_CTX_L3LLC_COHERENT;
311 desc |= GEN8_CTX_PRIVILEGE;
312 desc |= lrca;
313 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
314
315 /* TODO: WaDisableLiteRestore when we start using semaphore
316 * signalling between Command Streamers */
317 /* desc |= GEN8_CTX_FORCE_RESTORE; */
318
319 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
320 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
321 if (disable_lite_restore_wa(ring))
322 desc |= GEN8_CTX_FORCE_RESTORE;
323
324 return desc;
325 }
326
327 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
328 struct drm_i915_gem_request *rq1)
329 {
330
331 struct intel_engine_cs *ring = rq0->ring;
332 struct drm_device *dev = ring->dev;
333 struct drm_i915_private *dev_priv = dev->dev_private;
334 uint64_t desc[2];
335
336 if (rq1) {
337 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
338 rq1->elsp_submitted++;
339 } else {
340 desc[1] = 0;
341 }
342
343 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
344 rq0->elsp_submitted++;
345
346 /* You must always write both descriptors in the order below. */
347 spin_lock(&dev_priv->uncore.lock);
348 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
349 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
350 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
351
352 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
353 /* The context is automatically loaded after the following */
354 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
355
356 /* ELSP is a wo register, use another nearby reg for posting */
357 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
358 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
359 spin_unlock(&dev_priv->uncore.lock);
360 }
361
362 static int execlists_update_context(struct drm_i915_gem_request *rq)
363 {
364 struct intel_engine_cs *ring = rq->ring;
365 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
367 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
368 struct page *page;
369 uint32_t *reg_state;
370
371 BUG_ON(!ctx_obj);
372 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
373 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
374
375 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
376 reg_state = kmap_atomic(page);
377
378 reg_state[CTX_RING_TAIL+1] = rq->tail;
379 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
380
381 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
382 /* True 32b PPGTT with dynamic page allocation: update PDP
383 * registers and point the unallocated PDPs to scratch page.
384 * PML4 is allocated during ppgtt init, so this is not needed
385 * in 48-bit mode.
386 */
387 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
388 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
389 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
390 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
391 }
392
393 kunmap_atomic(reg_state);
394
395 return 0;
396 }
397
398 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
399 struct drm_i915_gem_request *rq1)
400 {
401 execlists_update_context(rq0);
402
403 if (rq1)
404 execlists_update_context(rq1);
405
406 execlists_elsp_write(rq0, rq1);
407 }
408
409 static void execlists_context_unqueue(struct intel_engine_cs *ring)
410 {
411 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
412 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
413
414 assert_spin_locked(&ring->execlist_lock);
415
416 /*
417 * If irqs are not active generate a warning as batches that finish
418 * without the irqs may get lost and a GPU Hang may occur.
419 */
420 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
421
422 if (list_empty(&ring->execlist_queue))
423 return;
424
425 /* Try to read in pairs */
426 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
427 execlist_link) {
428 if (!req0) {
429 req0 = cursor;
430 } else if (req0->ctx == cursor->ctx) {
431 /* Same ctx: ignore first request, as second request
432 * will update tail past first request's workload */
433 cursor->elsp_submitted = req0->elsp_submitted;
434 list_del(&req0->execlist_link);
435 list_add_tail(&req0->execlist_link,
436 &ring->execlist_retired_req_list);
437 req0 = cursor;
438 } else {
439 req1 = cursor;
440 break;
441 }
442 }
443
444 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
445 /*
446 * WaIdleLiteRestore: make sure we never cause a lite
447 * restore with HEAD==TAIL
448 */
449 if (req0->elsp_submitted) {
450 /*
451 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
452 * as we resubmit the request. See gen8_emit_request()
453 * for where we prepare the padding after the end of the
454 * request.
455 */
456 struct intel_ringbuffer *ringbuf;
457
458 ringbuf = req0->ctx->engine[ring->id].ringbuf;
459 req0->tail += 8;
460 req0->tail &= ringbuf->size - 1;
461 }
462 }
463
464 WARN_ON(req1 && req1->elsp_submitted);
465
466 execlists_submit_requests(req0, req1);
467 }
468
469 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
470 u32 request_id)
471 {
472 struct drm_i915_gem_request *head_req;
473
474 assert_spin_locked(&ring->execlist_lock);
475
476 head_req = list_first_entry_or_null(&ring->execlist_queue,
477 struct drm_i915_gem_request,
478 execlist_link);
479
480 if (head_req != NULL) {
481 struct drm_i915_gem_object *ctx_obj =
482 head_req->ctx->engine[ring->id].state;
483 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
484 WARN(head_req->elsp_submitted == 0,
485 "Never submitted head request\n");
486
487 if (--head_req->elsp_submitted <= 0) {
488 list_del(&head_req->execlist_link);
489 list_add_tail(&head_req->execlist_link,
490 &ring->execlist_retired_req_list);
491 return true;
492 }
493 }
494 }
495
496 return false;
497 }
498
499 /**
500 * intel_lrc_irq_handler() - handle Context Switch interrupts
501 * @ring: Engine Command Streamer to handle.
502 *
503 * Check the unread Context Status Buffers and manage the submission of new
504 * contexts to the ELSP accordingly.
505 */
506 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
507 {
508 struct drm_i915_private *dev_priv = ring->dev->dev_private;
509 u32 status_pointer;
510 u8 read_pointer;
511 u8 write_pointer;
512 u32 status = 0;
513 u32 status_id;
514 u32 submit_contexts = 0;
515
516 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
517
518 read_pointer = ring->next_context_status_buffer;
519 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
520 if (read_pointer > write_pointer)
521 write_pointer += GEN8_CSB_ENTRIES;
522
523 spin_lock(&ring->execlist_lock);
524
525 while (read_pointer < write_pointer) {
526 read_pointer++;
527 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % GEN8_CSB_ENTRIES));
528 status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % GEN8_CSB_ENTRIES));
529
530 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
531 continue;
532
533 if (status & GEN8_CTX_STATUS_PREEMPTED) {
534 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
535 if (execlists_check_remove_request(ring, status_id))
536 WARN(1, "Lite Restored request removed from queue\n");
537 } else
538 WARN(1, "Preemption without Lite Restore\n");
539 }
540
541 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
542 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
543 if (execlists_check_remove_request(ring, status_id))
544 submit_contexts++;
545 }
546 }
547
548 if (disable_lite_restore_wa(ring)) {
549 /* Prevent a ctx to preempt itself */
550 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
551 (submit_contexts != 0))
552 execlists_context_unqueue(ring);
553 } else if (submit_contexts != 0) {
554 execlists_context_unqueue(ring);
555 }
556
557 spin_unlock(&ring->execlist_lock);
558
559 WARN(submit_contexts > 2, "More than two context complete events?\n");
560 ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
561
562 /* Update the read pointer to the old write pointer. Manual ringbuffer
563 * management ftw </sarcasm> */
564 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
565 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
566 ring->next_context_status_buffer << 8));
567 }
568
569 static int execlists_context_queue(struct drm_i915_gem_request *request)
570 {
571 struct intel_engine_cs *ring = request->ring;
572 struct drm_i915_gem_request *cursor;
573 int num_elements = 0;
574
575 if (request->ctx != ring->default_context)
576 intel_lr_context_pin(request);
577
578 i915_gem_request_reference(request);
579
580 spin_lock_irq(&ring->execlist_lock);
581
582 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
583 if (++num_elements > 2)
584 break;
585
586 if (num_elements > 2) {
587 struct drm_i915_gem_request *tail_req;
588
589 tail_req = list_last_entry(&ring->execlist_queue,
590 struct drm_i915_gem_request,
591 execlist_link);
592
593 if (request->ctx == tail_req->ctx) {
594 WARN(tail_req->elsp_submitted != 0,
595 "More than 2 already-submitted reqs queued\n");
596 list_del(&tail_req->execlist_link);
597 list_add_tail(&tail_req->execlist_link,
598 &ring->execlist_retired_req_list);
599 }
600 }
601
602 list_add_tail(&request->execlist_link, &ring->execlist_queue);
603 if (num_elements == 0)
604 execlists_context_unqueue(ring);
605
606 spin_unlock_irq(&ring->execlist_lock);
607
608 return 0;
609 }
610
611 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
612 {
613 struct intel_engine_cs *ring = req->ring;
614 uint32_t flush_domains;
615 int ret;
616
617 flush_domains = 0;
618 if (ring->gpu_caches_dirty)
619 flush_domains = I915_GEM_GPU_DOMAINS;
620
621 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
622 if (ret)
623 return ret;
624
625 ring->gpu_caches_dirty = false;
626 return 0;
627 }
628
629 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
630 struct list_head *vmas)
631 {
632 const unsigned other_rings = ~intel_ring_flag(req->ring);
633 struct i915_vma *vma;
634 uint32_t flush_domains = 0;
635 bool flush_chipset = false;
636 int ret;
637
638 list_for_each_entry(vma, vmas, exec_list) {
639 struct drm_i915_gem_object *obj = vma->obj;
640
641 if (obj->active & other_rings) {
642 ret = i915_gem_object_sync(obj, req->ring, &req);
643 if (ret)
644 return ret;
645 }
646
647 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
648 flush_chipset |= i915_gem_clflush_object(obj, false);
649
650 flush_domains |= obj->base.write_domain;
651 }
652
653 if (flush_domains & I915_GEM_DOMAIN_GTT)
654 wmb();
655
656 /* Unconditionally invalidate gpu caches and ensure that we do flush
657 * any residual writes from the previous batch.
658 */
659 return logical_ring_invalidate_all_caches(req);
660 }
661
662 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
663 {
664 int ret;
665
666 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
667
668 if (request->ctx != request->ring->default_context) {
669 ret = intel_lr_context_pin(request);
670 if (ret)
671 return ret;
672 }
673
674 if (i915.enable_guc_submission) {
675 /*
676 * Check that the GuC has space for the request before
677 * going any further, as the i915_add_request() call
678 * later on mustn't fail ...
679 */
680 struct intel_guc *guc = &request->i915->guc;
681
682 ret = i915_guc_wq_check_space(guc->execbuf_client);
683 if (ret)
684 return ret;
685 }
686
687 return 0;
688 }
689
690 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
691 int bytes)
692 {
693 struct intel_ringbuffer *ringbuf = req->ringbuf;
694 struct intel_engine_cs *ring = req->ring;
695 struct drm_i915_gem_request *target;
696 unsigned space;
697 int ret;
698
699 if (intel_ring_space(ringbuf) >= bytes)
700 return 0;
701
702 /* The whole point of reserving space is to not wait! */
703 WARN_ON(ringbuf->reserved_in_use);
704
705 list_for_each_entry(target, &ring->request_list, list) {
706 /*
707 * The request queue is per-engine, so can contain requests
708 * from multiple ringbuffers. Here, we must ignore any that
709 * aren't from the ringbuffer we're considering.
710 */
711 if (target->ringbuf != ringbuf)
712 continue;
713
714 /* Would completion of this request free enough space? */
715 space = __intel_ring_space(target->postfix, ringbuf->tail,
716 ringbuf->size);
717 if (space >= bytes)
718 break;
719 }
720
721 if (WARN_ON(&target->list == &ring->request_list))
722 return -ENOSPC;
723
724 ret = i915_wait_request(target);
725 if (ret)
726 return ret;
727
728 ringbuf->space = space;
729 return 0;
730 }
731
732 /*
733 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
734 * @request: Request to advance the logical ringbuffer of.
735 *
736 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
737 * really happens during submission is that the context and current tail will be placed
738 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
739 * point, the tail *inside* the context is updated and the ELSP written to.
740 */
741 static void
742 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
743 {
744 struct intel_engine_cs *ring = request->ring;
745 struct drm_i915_private *dev_priv = request->i915;
746
747 intel_logical_ring_advance(request->ringbuf);
748
749 request->tail = request->ringbuf->tail;
750
751 if (intel_ring_stopped(ring))
752 return;
753
754 if (dev_priv->guc.execbuf_client)
755 i915_guc_submit(dev_priv->guc.execbuf_client, request);
756 else
757 execlists_context_queue(request);
758 }
759
760 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
761 {
762 uint32_t __iomem *virt;
763 int rem = ringbuf->size - ringbuf->tail;
764
765 virt = ringbuf->virtual_start + ringbuf->tail;
766 rem /= 4;
767 while (rem--)
768 iowrite32(MI_NOOP, virt++);
769
770 ringbuf->tail = 0;
771 intel_ring_update_space(ringbuf);
772 }
773
774 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
775 {
776 struct intel_ringbuffer *ringbuf = req->ringbuf;
777 int remain_usable = ringbuf->effective_size - ringbuf->tail;
778 int remain_actual = ringbuf->size - ringbuf->tail;
779 int ret, total_bytes, wait_bytes = 0;
780 bool need_wrap = false;
781
782 if (ringbuf->reserved_in_use)
783 total_bytes = bytes;
784 else
785 total_bytes = bytes + ringbuf->reserved_size;
786
787 if (unlikely(bytes > remain_usable)) {
788 /*
789 * Not enough space for the basic request. So need to flush
790 * out the remainder and then wait for base + reserved.
791 */
792 wait_bytes = remain_actual + total_bytes;
793 need_wrap = true;
794 } else {
795 if (unlikely(total_bytes > remain_usable)) {
796 /*
797 * The base request will fit but the reserved space
798 * falls off the end. So only need to to wait for the
799 * reserved size after flushing out the remainder.
800 */
801 wait_bytes = remain_actual + ringbuf->reserved_size;
802 need_wrap = true;
803 } else if (total_bytes > ringbuf->space) {
804 /* No wrapping required, just waiting. */
805 wait_bytes = total_bytes;
806 }
807 }
808
809 if (wait_bytes) {
810 ret = logical_ring_wait_for_space(req, wait_bytes);
811 if (unlikely(ret))
812 return ret;
813
814 if (need_wrap)
815 __wrap_ring_buffer(ringbuf);
816 }
817
818 return 0;
819 }
820
821 /**
822 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
823 *
824 * @req: The request to start some new work for
825 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
826 *
827 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
828 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
829 * and also preallocates a request (every workload submission is still mediated through
830 * requests, same as it did with legacy ringbuffer submission).
831 *
832 * Return: non-zero if the ringbuffer is not ready to be written to.
833 */
834 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
835 {
836 struct drm_i915_private *dev_priv;
837 int ret;
838
839 WARN_ON(req == NULL);
840 dev_priv = req->ring->dev->dev_private;
841
842 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
843 dev_priv->mm.interruptible);
844 if (ret)
845 return ret;
846
847 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
848 if (ret)
849 return ret;
850
851 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
852 return 0;
853 }
854
855 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
856 {
857 /*
858 * The first call merely notes the reserve request and is common for
859 * all back ends. The subsequent localised _begin() call actually
860 * ensures that the reservation is available. Without the begin, if
861 * the request creator immediately submitted the request without
862 * adding any commands to it then there might not actually be
863 * sufficient room for the submission commands.
864 */
865 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
866
867 return intel_logical_ring_begin(request, 0);
868 }
869
870 /**
871 * execlists_submission() - submit a batchbuffer for execution, Execlists style
872 * @dev: DRM device.
873 * @file: DRM file.
874 * @ring: Engine Command Streamer to submit to.
875 * @ctx: Context to employ for this submission.
876 * @args: execbuffer call arguments.
877 * @vmas: list of vmas.
878 * @batch_obj: the batchbuffer to submit.
879 * @exec_start: batchbuffer start virtual address pointer.
880 * @dispatch_flags: translated execbuffer call flags.
881 *
882 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
883 * away the submission details of the execbuffer ioctl call.
884 *
885 * Return: non-zero if the submission fails.
886 */
887 int intel_execlists_submission(struct i915_execbuffer_params *params,
888 struct drm_i915_gem_execbuffer2 *args,
889 struct list_head *vmas)
890 {
891 struct drm_device *dev = params->dev;
892 struct intel_engine_cs *ring = params->ring;
893 struct drm_i915_private *dev_priv = dev->dev_private;
894 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
895 u64 exec_start;
896 int instp_mode;
897 u32 instp_mask;
898 int ret;
899
900 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
901 instp_mask = I915_EXEC_CONSTANTS_MASK;
902 switch (instp_mode) {
903 case I915_EXEC_CONSTANTS_REL_GENERAL:
904 case I915_EXEC_CONSTANTS_ABSOLUTE:
905 case I915_EXEC_CONSTANTS_REL_SURFACE:
906 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
907 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
908 return -EINVAL;
909 }
910
911 if (instp_mode != dev_priv->relative_constants_mode) {
912 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
913 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
914 return -EINVAL;
915 }
916
917 /* The HW changed the meaning on this bit on gen6 */
918 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
919 }
920 break;
921 default:
922 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
923 return -EINVAL;
924 }
925
926 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
927 DRM_DEBUG("sol reset is gen7 only\n");
928 return -EINVAL;
929 }
930
931 ret = execlists_move_to_gpu(params->request, vmas);
932 if (ret)
933 return ret;
934
935 if (ring == &dev_priv->ring[RCS] &&
936 instp_mode != dev_priv->relative_constants_mode) {
937 ret = intel_logical_ring_begin(params->request, 4);
938 if (ret)
939 return ret;
940
941 intel_logical_ring_emit(ringbuf, MI_NOOP);
942 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
943 intel_logical_ring_emit_reg(ringbuf, INSTPM);
944 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
945 intel_logical_ring_advance(ringbuf);
946
947 dev_priv->relative_constants_mode = instp_mode;
948 }
949
950 exec_start = params->batch_obj_vm_offset +
951 args->batch_start_offset;
952
953 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
954 if (ret)
955 return ret;
956
957 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
958
959 i915_gem_execbuffer_move_to_active(vmas, params->request);
960 i915_gem_execbuffer_retire_commands(params);
961
962 return 0;
963 }
964
965 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
966 {
967 struct drm_i915_gem_request *req, *tmp;
968 struct list_head retired_list;
969
970 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
971 if (list_empty(&ring->execlist_retired_req_list))
972 return;
973
974 INIT_LIST_HEAD(&retired_list);
975 spin_lock_irq(&ring->execlist_lock);
976 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
977 spin_unlock_irq(&ring->execlist_lock);
978
979 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
980 struct intel_context *ctx = req->ctx;
981 struct drm_i915_gem_object *ctx_obj =
982 ctx->engine[ring->id].state;
983
984 if (ctx_obj && (ctx != ring->default_context))
985 intel_lr_context_unpin(req);
986 list_del(&req->execlist_link);
987 i915_gem_request_unreference(req);
988 }
989 }
990
991 void intel_logical_ring_stop(struct intel_engine_cs *ring)
992 {
993 struct drm_i915_private *dev_priv = ring->dev->dev_private;
994 int ret;
995
996 if (!intel_ring_initialized(ring))
997 return;
998
999 ret = intel_ring_idle(ring);
1000 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1001 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1002 ring->name, ret);
1003
1004 /* TODO: Is this correct with Execlists enabled? */
1005 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1006 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1007 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1008 return;
1009 }
1010 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1011 }
1012
1013 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1014 {
1015 struct intel_engine_cs *ring = req->ring;
1016 int ret;
1017
1018 if (!ring->gpu_caches_dirty)
1019 return 0;
1020
1021 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1022 if (ret)
1023 return ret;
1024
1025 ring->gpu_caches_dirty = false;
1026 return 0;
1027 }
1028
1029 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1030 struct drm_i915_gem_object *ctx_obj,
1031 struct intel_ringbuffer *ringbuf)
1032 {
1033 struct drm_device *dev = ring->dev;
1034 struct drm_i915_private *dev_priv = dev->dev_private;
1035 int ret = 0;
1036
1037 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1038 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1039 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1040 if (ret)
1041 return ret;
1042
1043 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1044 if (ret)
1045 goto unpin_ctx_obj;
1046
1047 ctx_obj->dirty = true;
1048
1049 /* Invalidate GuC TLB. */
1050 if (i915.enable_guc_submission)
1051 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1052
1053 return ret;
1054
1055 unpin_ctx_obj:
1056 i915_gem_object_ggtt_unpin(ctx_obj);
1057
1058 return ret;
1059 }
1060
1061 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1062 {
1063 int ret = 0;
1064 struct intel_engine_cs *ring = rq->ring;
1065 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1066 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1067
1068 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1069 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1070 if (ret)
1071 goto reset_pin_count;
1072 }
1073 return ret;
1074
1075 reset_pin_count:
1076 rq->ctx->engine[ring->id].pin_count = 0;
1077 return ret;
1078 }
1079
1080 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1081 {
1082 struct intel_engine_cs *ring = rq->ring;
1083 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1084 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1085
1086 if (ctx_obj) {
1087 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1088 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1089 intel_unpin_ringbuffer_obj(ringbuf);
1090 i915_gem_object_ggtt_unpin(ctx_obj);
1091 }
1092 }
1093 }
1094
1095 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1096 {
1097 int ret, i;
1098 struct intel_engine_cs *ring = req->ring;
1099 struct intel_ringbuffer *ringbuf = req->ringbuf;
1100 struct drm_device *dev = ring->dev;
1101 struct drm_i915_private *dev_priv = dev->dev_private;
1102 struct i915_workarounds *w = &dev_priv->workarounds;
1103
1104 if (WARN_ON_ONCE(w->count == 0))
1105 return 0;
1106
1107 ring->gpu_caches_dirty = true;
1108 ret = logical_ring_flush_all_caches(req);
1109 if (ret)
1110 return ret;
1111
1112 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1113 if (ret)
1114 return ret;
1115
1116 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1117 for (i = 0; i < w->count; i++) {
1118 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1119 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1120 }
1121 intel_logical_ring_emit(ringbuf, MI_NOOP);
1122
1123 intel_logical_ring_advance(ringbuf);
1124
1125 ring->gpu_caches_dirty = true;
1126 ret = logical_ring_flush_all_caches(req);
1127 if (ret)
1128 return ret;
1129
1130 return 0;
1131 }
1132
1133 #define wa_ctx_emit(batch, index, cmd) \
1134 do { \
1135 int __index = (index)++; \
1136 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1137 return -ENOSPC; \
1138 } \
1139 batch[__index] = (cmd); \
1140 } while (0)
1141
1142 #define wa_ctx_emit_reg(batch, index, reg) \
1143 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1144
1145 /*
1146 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1147 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1148 * but there is a slight complication as this is applied in WA batch where the
1149 * values are only initialized once so we cannot take register value at the
1150 * beginning and reuse it further; hence we save its value to memory, upload a
1151 * constant value with bit21 set and then we restore it back with the saved value.
1152 * To simplify the WA, a constant value is formed by using the default value
1153 * of this register. This shouldn't be a problem because we are only modifying
1154 * it for a short period and this batch in non-premptible. We can ofcourse
1155 * use additional instructions that read the actual value of the register
1156 * at that time and set our bit of interest but it makes the WA complicated.
1157 *
1158 * This WA is also required for Gen9 so extracting as a function avoids
1159 * code duplication.
1160 */
1161 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1162 uint32_t *const batch,
1163 uint32_t index)
1164 {
1165 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1166
1167 /*
1168 * WaDisableLSQCROPERFforOCL:skl
1169 * This WA is implemented in skl_init_clock_gating() but since
1170 * this batch updates GEN8_L3SQCREG4 with default value we need to
1171 * set this bit here to retain the WA during flush.
1172 */
1173 if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1174 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1175
1176 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1177 MI_SRM_LRM_GLOBAL_GTT));
1178 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1179 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1180 wa_ctx_emit(batch, index, 0);
1181
1182 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1183 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1184 wa_ctx_emit(batch, index, l3sqc4_flush);
1185
1186 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1187 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1188 PIPE_CONTROL_DC_FLUSH_ENABLE));
1189 wa_ctx_emit(batch, index, 0);
1190 wa_ctx_emit(batch, index, 0);
1191 wa_ctx_emit(batch, index, 0);
1192 wa_ctx_emit(batch, index, 0);
1193
1194 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1195 MI_SRM_LRM_GLOBAL_GTT));
1196 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1197 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1198 wa_ctx_emit(batch, index, 0);
1199
1200 return index;
1201 }
1202
1203 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1204 uint32_t offset,
1205 uint32_t start_alignment)
1206 {
1207 return wa_ctx->offset = ALIGN(offset, start_alignment);
1208 }
1209
1210 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1211 uint32_t offset,
1212 uint32_t size_alignment)
1213 {
1214 wa_ctx->size = offset - wa_ctx->offset;
1215
1216 WARN(wa_ctx->size % size_alignment,
1217 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1218 wa_ctx->size, size_alignment);
1219 return 0;
1220 }
1221
1222 /**
1223 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1224 *
1225 * @ring: only applicable for RCS
1226 * @wa_ctx: structure representing wa_ctx
1227 * offset: specifies start of the batch, should be cache-aligned. This is updated
1228 * with the offset value received as input.
1229 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1230 * @batch: page in which WA are loaded
1231 * @offset: This field specifies the start of the batch, it should be
1232 * cache-aligned otherwise it is adjusted accordingly.
1233 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1234 * initialized at the beginning and shared across all contexts but this field
1235 * helps us to have multiple batches at different offsets and select them based
1236 * on a criteria. At the moment this batch always start at the beginning of the page
1237 * and at this point we don't have multiple wa_ctx batch buffers.
1238 *
1239 * The number of WA applied are not known at the beginning; we use this field
1240 * to return the no of DWORDS written.
1241 *
1242 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1243 * so it adds NOOPs as padding to make it cacheline aligned.
1244 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1245 * makes a complete batch buffer.
1246 *
1247 * Return: non-zero if we exceed the PAGE_SIZE limit.
1248 */
1249
1250 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1251 struct i915_wa_ctx_bb *wa_ctx,
1252 uint32_t *const batch,
1253 uint32_t *offset)
1254 {
1255 uint32_t scratch_addr;
1256 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1257
1258 /* WaDisableCtxRestoreArbitration:bdw,chv */
1259 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1260
1261 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1262 if (IS_BROADWELL(ring->dev)) {
1263 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1264 if (rc < 0)
1265 return rc;
1266 index = rc;
1267 }
1268
1269 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1270 /* Actual scratch location is at 128 bytes offset */
1271 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1272
1273 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1274 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1275 PIPE_CONTROL_GLOBAL_GTT_IVB |
1276 PIPE_CONTROL_CS_STALL |
1277 PIPE_CONTROL_QW_WRITE));
1278 wa_ctx_emit(batch, index, scratch_addr);
1279 wa_ctx_emit(batch, index, 0);
1280 wa_ctx_emit(batch, index, 0);
1281 wa_ctx_emit(batch, index, 0);
1282
1283 /* Pad to end of cacheline */
1284 while (index % CACHELINE_DWORDS)
1285 wa_ctx_emit(batch, index, MI_NOOP);
1286
1287 /*
1288 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1289 * execution depends on the length specified in terms of cache lines
1290 * in the register CTX_RCS_INDIRECT_CTX
1291 */
1292
1293 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1294 }
1295
1296 /**
1297 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1298 *
1299 * @ring: only applicable for RCS
1300 * @wa_ctx: structure representing wa_ctx
1301 * offset: specifies start of the batch, should be cache-aligned.
1302 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1303 * @batch: page in which WA are loaded
1304 * @offset: This field specifies the start of this batch.
1305 * This batch is started immediately after indirect_ctx batch. Since we ensure
1306 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1307 *
1308 * The number of DWORDS written are returned using this field.
1309 *
1310 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1311 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1312 */
1313 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1314 struct i915_wa_ctx_bb *wa_ctx,
1315 uint32_t *const batch,
1316 uint32_t *offset)
1317 {
1318 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1319
1320 /* WaDisableCtxRestoreArbitration:bdw,chv */
1321 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1322
1323 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1324
1325 return wa_ctx_end(wa_ctx, *offset = index, 1);
1326 }
1327
1328 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1329 struct i915_wa_ctx_bb *wa_ctx,
1330 uint32_t *const batch,
1331 uint32_t *offset)
1332 {
1333 int ret;
1334 struct drm_device *dev = ring->dev;
1335 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1336
1337 /* WaDisableCtxRestoreArbitration:skl,bxt */
1338 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1339 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1340 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1341
1342 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1343 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1344 if (ret < 0)
1345 return ret;
1346 index = ret;
1347
1348 /* Pad to end of cacheline */
1349 while (index % CACHELINE_DWORDS)
1350 wa_ctx_emit(batch, index, MI_NOOP);
1351
1352 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1353 }
1354
1355 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1356 struct i915_wa_ctx_bb *wa_ctx,
1357 uint32_t *const batch,
1358 uint32_t *offset)
1359 {
1360 struct drm_device *dev = ring->dev;
1361 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1362
1363 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1364 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1365 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1366 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1367 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1368 wa_ctx_emit(batch, index,
1369 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1370 wa_ctx_emit(batch, index, MI_NOOP);
1371 }
1372
1373 /* WaDisableCtxRestoreArbitration:skl,bxt */
1374 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1375 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1376 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1377
1378 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1379
1380 return wa_ctx_end(wa_ctx, *offset = index, 1);
1381 }
1382
1383 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1384 {
1385 int ret;
1386
1387 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1388 if (!ring->wa_ctx.obj) {
1389 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1390 return -ENOMEM;
1391 }
1392
1393 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1394 if (ret) {
1395 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1396 ret);
1397 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1398 return ret;
1399 }
1400
1401 return 0;
1402 }
1403
1404 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1405 {
1406 if (ring->wa_ctx.obj) {
1407 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1408 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1409 ring->wa_ctx.obj = NULL;
1410 }
1411 }
1412
1413 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1414 {
1415 int ret;
1416 uint32_t *batch;
1417 uint32_t offset;
1418 struct page *page;
1419 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1420
1421 WARN_ON(ring->id != RCS);
1422
1423 /* update this when WA for higher Gen are added */
1424 if (INTEL_INFO(ring->dev)->gen > 9) {
1425 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1426 INTEL_INFO(ring->dev)->gen);
1427 return 0;
1428 }
1429
1430 /* some WA perform writes to scratch page, ensure it is valid */
1431 if (ring->scratch.obj == NULL) {
1432 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1433 return -EINVAL;
1434 }
1435
1436 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1437 if (ret) {
1438 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1439 return ret;
1440 }
1441
1442 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1443 batch = kmap_atomic(page);
1444 offset = 0;
1445
1446 if (INTEL_INFO(ring->dev)->gen == 8) {
1447 ret = gen8_init_indirectctx_bb(ring,
1448 &wa_ctx->indirect_ctx,
1449 batch,
1450 &offset);
1451 if (ret)
1452 goto out;
1453
1454 ret = gen8_init_perctx_bb(ring,
1455 &wa_ctx->per_ctx,
1456 batch,
1457 &offset);
1458 if (ret)
1459 goto out;
1460 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1461 ret = gen9_init_indirectctx_bb(ring,
1462 &wa_ctx->indirect_ctx,
1463 batch,
1464 &offset);
1465 if (ret)
1466 goto out;
1467
1468 ret = gen9_init_perctx_bb(ring,
1469 &wa_ctx->per_ctx,
1470 batch,
1471 &offset);
1472 if (ret)
1473 goto out;
1474 }
1475
1476 out:
1477 kunmap_atomic(batch);
1478 if (ret)
1479 lrc_destroy_wa_ctx_obj(ring);
1480
1481 return ret;
1482 }
1483
1484 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1485 {
1486 struct drm_device *dev = ring->dev;
1487 struct drm_i915_private *dev_priv = dev->dev_private;
1488 u8 next_context_status_buffer_hw;
1489
1490 lrc_setup_hardware_status_page(ring,
1491 ring->default_context->engine[ring->id].state);
1492
1493 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1494 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1495
1496 I915_WRITE(RING_MODE_GEN7(ring),
1497 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1498 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1499 POSTING_READ(RING_MODE_GEN7(ring));
1500
1501 /*
1502 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1503 * zero, we need to read the write pointer from hardware and use its
1504 * value because "this register is power context save restored".
1505 * Effectively, these states have been observed:
1506 *
1507 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1508 * BDW | CSB regs not reset | CSB regs reset |
1509 * CHT | CSB regs not reset | CSB regs not reset |
1510 * SKL | ? | ? |
1511 * BXT | ? | ? |
1512 */
1513 next_context_status_buffer_hw =
1514 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
1515
1516 /*
1517 * When the CSB registers are reset (also after power-up / gpu reset),
1518 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1519 * this special case, so the first element read is CSB[0].
1520 */
1521 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1522 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1523
1524 ring->next_context_status_buffer = next_context_status_buffer_hw;
1525 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1526
1527 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1528
1529 return 0;
1530 }
1531
1532 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1533 {
1534 struct drm_device *dev = ring->dev;
1535 struct drm_i915_private *dev_priv = dev->dev_private;
1536 int ret;
1537
1538 ret = gen8_init_common_ring(ring);
1539 if (ret)
1540 return ret;
1541
1542 /* We need to disable the AsyncFlip performance optimisations in order
1543 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1544 * programmed to '1' on all products.
1545 *
1546 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1547 */
1548 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1549
1550 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1551
1552 return init_workarounds_ring(ring);
1553 }
1554
1555 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1556 {
1557 int ret;
1558
1559 ret = gen8_init_common_ring(ring);
1560 if (ret)
1561 return ret;
1562
1563 return init_workarounds_ring(ring);
1564 }
1565
1566 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1567 {
1568 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1569 struct intel_engine_cs *ring = req->ring;
1570 struct intel_ringbuffer *ringbuf = req->ringbuf;
1571 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1572 int i, ret;
1573
1574 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1575 if (ret)
1576 return ret;
1577
1578 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1579 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1580 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1581
1582 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1583 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1584 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1585 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1586 }
1587
1588 intel_logical_ring_emit(ringbuf, MI_NOOP);
1589 intel_logical_ring_advance(ringbuf);
1590
1591 return 0;
1592 }
1593
1594 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1595 u64 offset, unsigned dispatch_flags)
1596 {
1597 struct intel_ringbuffer *ringbuf = req->ringbuf;
1598 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1599 int ret;
1600
1601 /* Don't rely in hw updating PDPs, specially in lite-restore.
1602 * Ideally, we should set Force PD Restore in ctx descriptor,
1603 * but we can't. Force Restore would be a second option, but
1604 * it is unsafe in case of lite-restore (because the ctx is
1605 * not idle). PML4 is allocated during ppgtt init so this is
1606 * not needed in 48-bit.*/
1607 if (req->ctx->ppgtt &&
1608 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1609 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1610 !intel_vgpu_active(req->i915->dev)) {
1611 ret = intel_logical_ring_emit_pdps(req);
1612 if (ret)
1613 return ret;
1614 }
1615
1616 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1617 }
1618
1619 ret = intel_logical_ring_begin(req, 4);
1620 if (ret)
1621 return ret;
1622
1623 /* FIXME(BDW): Address space and security selectors. */
1624 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1625 (ppgtt<<8) |
1626 (dispatch_flags & I915_DISPATCH_RS ?
1627 MI_BATCH_RESOURCE_STREAMER : 0));
1628 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1629 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1630 intel_logical_ring_emit(ringbuf, MI_NOOP);
1631 intel_logical_ring_advance(ringbuf);
1632
1633 return 0;
1634 }
1635
1636 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1637 {
1638 struct drm_device *dev = ring->dev;
1639 struct drm_i915_private *dev_priv = dev->dev_private;
1640 unsigned long flags;
1641
1642 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1643 return false;
1644
1645 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1646 if (ring->irq_refcount++ == 0) {
1647 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1648 POSTING_READ(RING_IMR(ring->mmio_base));
1649 }
1650 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1651
1652 return true;
1653 }
1654
1655 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1656 {
1657 struct drm_device *dev = ring->dev;
1658 struct drm_i915_private *dev_priv = dev->dev_private;
1659 unsigned long flags;
1660
1661 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1662 if (--ring->irq_refcount == 0) {
1663 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1664 POSTING_READ(RING_IMR(ring->mmio_base));
1665 }
1666 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1667 }
1668
1669 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1670 u32 invalidate_domains,
1671 u32 unused)
1672 {
1673 struct intel_ringbuffer *ringbuf = request->ringbuf;
1674 struct intel_engine_cs *ring = ringbuf->ring;
1675 struct drm_device *dev = ring->dev;
1676 struct drm_i915_private *dev_priv = dev->dev_private;
1677 uint32_t cmd;
1678 int ret;
1679
1680 ret = intel_logical_ring_begin(request, 4);
1681 if (ret)
1682 return ret;
1683
1684 cmd = MI_FLUSH_DW + 1;
1685
1686 /* We always require a command barrier so that subsequent
1687 * commands, such as breadcrumb interrupts, are strictly ordered
1688 * wrt the contents of the write cache being flushed to memory
1689 * (and thus being coherent from the CPU).
1690 */
1691 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1692
1693 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1694 cmd |= MI_INVALIDATE_TLB;
1695 if (ring == &dev_priv->ring[VCS])
1696 cmd |= MI_INVALIDATE_BSD;
1697 }
1698
1699 intel_logical_ring_emit(ringbuf, cmd);
1700 intel_logical_ring_emit(ringbuf,
1701 I915_GEM_HWS_SCRATCH_ADDR |
1702 MI_FLUSH_DW_USE_GTT);
1703 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1704 intel_logical_ring_emit(ringbuf, 0); /* value */
1705 intel_logical_ring_advance(ringbuf);
1706
1707 return 0;
1708 }
1709
1710 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1711 u32 invalidate_domains,
1712 u32 flush_domains)
1713 {
1714 struct intel_ringbuffer *ringbuf = request->ringbuf;
1715 struct intel_engine_cs *ring = ringbuf->ring;
1716 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1717 bool vf_flush_wa = false;
1718 u32 flags = 0;
1719 int ret;
1720
1721 flags |= PIPE_CONTROL_CS_STALL;
1722
1723 if (flush_domains) {
1724 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1725 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1726 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1727 }
1728
1729 if (invalidate_domains) {
1730 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1731 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1732 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1733 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1734 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1735 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1736 flags |= PIPE_CONTROL_QW_WRITE;
1737 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1738
1739 /*
1740 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1741 * pipe control.
1742 */
1743 if (IS_GEN9(ring->dev))
1744 vf_flush_wa = true;
1745 }
1746
1747 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1748 if (ret)
1749 return ret;
1750
1751 if (vf_flush_wa) {
1752 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1753 intel_logical_ring_emit(ringbuf, 0);
1754 intel_logical_ring_emit(ringbuf, 0);
1755 intel_logical_ring_emit(ringbuf, 0);
1756 intel_logical_ring_emit(ringbuf, 0);
1757 intel_logical_ring_emit(ringbuf, 0);
1758 }
1759
1760 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1761 intel_logical_ring_emit(ringbuf, flags);
1762 intel_logical_ring_emit(ringbuf, scratch_addr);
1763 intel_logical_ring_emit(ringbuf, 0);
1764 intel_logical_ring_emit(ringbuf, 0);
1765 intel_logical_ring_emit(ringbuf, 0);
1766 intel_logical_ring_advance(ringbuf);
1767
1768 return 0;
1769 }
1770
1771 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1772 {
1773 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1774 }
1775
1776 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1777 {
1778 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1779 }
1780
1781 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1782 {
1783
1784 /*
1785 * On BXT A steppings there is a HW coherency issue whereby the
1786 * MI_STORE_DATA_IMM storing the completed request's seqno
1787 * occasionally doesn't invalidate the CPU cache. Work around this by
1788 * clflushing the corresponding cacheline whenever the caller wants
1789 * the coherency to be guaranteed. Note that this cacheline is known
1790 * to be clean at this point, since we only write it in
1791 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1792 * this clflush in practice becomes an invalidate operation.
1793 */
1794
1795 if (!lazy_coherency)
1796 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1797
1798 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1799 }
1800
1801 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1802 {
1803 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1804
1805 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1806 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1807 }
1808
1809 static int gen8_emit_request(struct drm_i915_gem_request *request)
1810 {
1811 struct intel_ringbuffer *ringbuf = request->ringbuf;
1812 struct intel_engine_cs *ring = ringbuf->ring;
1813 u32 cmd;
1814 int ret;
1815
1816 /*
1817 * Reserve space for 2 NOOPs at the end of each request to be
1818 * used as a workaround for not being allowed to do lite
1819 * restore with HEAD==TAIL (WaIdleLiteRestore).
1820 */
1821 ret = intel_logical_ring_begin(request, 8);
1822 if (ret)
1823 return ret;
1824
1825 cmd = MI_STORE_DWORD_IMM_GEN4;
1826 cmd |= MI_GLOBAL_GTT;
1827
1828 intel_logical_ring_emit(ringbuf, cmd);
1829 intel_logical_ring_emit(ringbuf,
1830 (ring->status_page.gfx_addr +
1831 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1832 intel_logical_ring_emit(ringbuf, 0);
1833 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1834 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1835 intel_logical_ring_emit(ringbuf, MI_NOOP);
1836 intel_logical_ring_advance_and_submit(request);
1837
1838 /*
1839 * Here we add two extra NOOPs as padding to avoid
1840 * lite restore of a context with HEAD==TAIL.
1841 */
1842 intel_logical_ring_emit(ringbuf, MI_NOOP);
1843 intel_logical_ring_emit(ringbuf, MI_NOOP);
1844 intel_logical_ring_advance(ringbuf);
1845
1846 return 0;
1847 }
1848
1849 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1850 {
1851 struct render_state so;
1852 int ret;
1853
1854 ret = i915_gem_render_state_prepare(req->ring, &so);
1855 if (ret)
1856 return ret;
1857
1858 if (so.rodata == NULL)
1859 return 0;
1860
1861 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1862 I915_DISPATCH_SECURE);
1863 if (ret)
1864 goto out;
1865
1866 ret = req->ring->emit_bb_start(req,
1867 (so.ggtt_offset + so.aux_batch_offset),
1868 I915_DISPATCH_SECURE);
1869 if (ret)
1870 goto out;
1871
1872 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1873
1874 out:
1875 i915_gem_render_state_fini(&so);
1876 return ret;
1877 }
1878
1879 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1880 {
1881 int ret;
1882
1883 ret = intel_logical_ring_workarounds_emit(req);
1884 if (ret)
1885 return ret;
1886
1887 ret = intel_rcs_context_init_mocs(req);
1888 /*
1889 * Failing to program the MOCS is non-fatal.The system will not
1890 * run at peak performance. So generate an error and carry on.
1891 */
1892 if (ret)
1893 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1894
1895 return intel_lr_context_render_state_init(req);
1896 }
1897
1898 /**
1899 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1900 *
1901 * @ring: Engine Command Streamer.
1902 *
1903 */
1904 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1905 {
1906 struct drm_i915_private *dev_priv;
1907
1908 if (!intel_ring_initialized(ring))
1909 return;
1910
1911 dev_priv = ring->dev->dev_private;
1912
1913 if (ring->buffer) {
1914 intel_logical_ring_stop(ring);
1915 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1916 }
1917
1918 if (ring->cleanup)
1919 ring->cleanup(ring);
1920
1921 i915_cmd_parser_fini_ring(ring);
1922 i915_gem_batch_pool_fini(&ring->batch_pool);
1923
1924 if (ring->status_page.obj) {
1925 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1926 ring->status_page.obj = NULL;
1927 }
1928
1929 lrc_destroy_wa_ctx_obj(ring);
1930 ring->dev = NULL;
1931 }
1932
1933 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1934 {
1935 int ret;
1936
1937 /* Intentionally left blank. */
1938 ring->buffer = NULL;
1939
1940 ring->dev = dev;
1941 INIT_LIST_HEAD(&ring->active_list);
1942 INIT_LIST_HEAD(&ring->request_list);
1943 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1944 init_waitqueue_head(&ring->irq_queue);
1945
1946 INIT_LIST_HEAD(&ring->buffers);
1947 INIT_LIST_HEAD(&ring->execlist_queue);
1948 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1949 spin_lock_init(&ring->execlist_lock);
1950
1951 ret = i915_cmd_parser_init_ring(ring);
1952 if (ret)
1953 goto error;
1954
1955 ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1956 if (ret)
1957 goto error;
1958
1959 /* As this is the default context, always pin it */
1960 ret = intel_lr_context_do_pin(
1961 ring,
1962 ring->default_context->engine[ring->id].state,
1963 ring->default_context->engine[ring->id].ringbuf);
1964 if (ret) {
1965 DRM_ERROR(
1966 "Failed to pin and map ringbuffer %s: %d\n",
1967 ring->name, ret);
1968 goto error;
1969 }
1970
1971 return 0;
1972
1973 error:
1974 intel_logical_ring_cleanup(ring);
1975 return ret;
1976 }
1977
1978 static int logical_render_ring_init(struct drm_device *dev)
1979 {
1980 struct drm_i915_private *dev_priv = dev->dev_private;
1981 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1982 int ret;
1983
1984 ring->name = "render ring";
1985 ring->id = RCS;
1986 ring->mmio_base = RENDER_RING_BASE;
1987 ring->irq_enable_mask =
1988 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1989 ring->irq_keep_mask =
1990 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1991 if (HAS_L3_DPF(dev))
1992 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1993
1994 if (INTEL_INFO(dev)->gen >= 9)
1995 ring->init_hw = gen9_init_render_ring;
1996 else
1997 ring->init_hw = gen8_init_render_ring;
1998 ring->init_context = gen8_init_rcs_context;
1999 ring->cleanup = intel_fini_pipe_control;
2000 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2001 ring->get_seqno = bxt_a_get_seqno;
2002 ring->set_seqno = bxt_a_set_seqno;
2003 } else {
2004 ring->get_seqno = gen8_get_seqno;
2005 ring->set_seqno = gen8_set_seqno;
2006 }
2007 ring->emit_request = gen8_emit_request;
2008 ring->emit_flush = gen8_emit_flush_render;
2009 ring->irq_get = gen8_logical_ring_get_irq;
2010 ring->irq_put = gen8_logical_ring_put_irq;
2011 ring->emit_bb_start = gen8_emit_bb_start;
2012
2013 ring->dev = dev;
2014
2015 ret = intel_init_pipe_control(ring);
2016 if (ret)
2017 return ret;
2018
2019 ret = intel_init_workaround_bb(ring);
2020 if (ret) {
2021 /*
2022 * We continue even if we fail to initialize WA batch
2023 * because we only expect rare glitches but nothing
2024 * critical to prevent us from using GPU
2025 */
2026 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2027 ret);
2028 }
2029
2030 ret = logical_ring_init(dev, ring);
2031 if (ret) {
2032 lrc_destroy_wa_ctx_obj(ring);
2033 }
2034
2035 return ret;
2036 }
2037
2038 static int logical_bsd_ring_init(struct drm_device *dev)
2039 {
2040 struct drm_i915_private *dev_priv = dev->dev_private;
2041 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2042
2043 ring->name = "bsd ring";
2044 ring->id = VCS;
2045 ring->mmio_base = GEN6_BSD_RING_BASE;
2046 ring->irq_enable_mask =
2047 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2048 ring->irq_keep_mask =
2049 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2050
2051 ring->init_hw = gen8_init_common_ring;
2052 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2053 ring->get_seqno = bxt_a_get_seqno;
2054 ring->set_seqno = bxt_a_set_seqno;
2055 } else {
2056 ring->get_seqno = gen8_get_seqno;
2057 ring->set_seqno = gen8_set_seqno;
2058 }
2059 ring->emit_request = gen8_emit_request;
2060 ring->emit_flush = gen8_emit_flush;
2061 ring->irq_get = gen8_logical_ring_get_irq;
2062 ring->irq_put = gen8_logical_ring_put_irq;
2063 ring->emit_bb_start = gen8_emit_bb_start;
2064
2065 return logical_ring_init(dev, ring);
2066 }
2067
2068 static int logical_bsd2_ring_init(struct drm_device *dev)
2069 {
2070 struct drm_i915_private *dev_priv = dev->dev_private;
2071 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2072
2073 ring->name = "bds2 ring";
2074 ring->id = VCS2;
2075 ring->mmio_base = GEN8_BSD2_RING_BASE;
2076 ring->irq_enable_mask =
2077 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2078 ring->irq_keep_mask =
2079 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2080
2081 ring->init_hw = gen8_init_common_ring;
2082 ring->get_seqno = gen8_get_seqno;
2083 ring->set_seqno = gen8_set_seqno;
2084 ring->emit_request = gen8_emit_request;
2085 ring->emit_flush = gen8_emit_flush;
2086 ring->irq_get = gen8_logical_ring_get_irq;
2087 ring->irq_put = gen8_logical_ring_put_irq;
2088 ring->emit_bb_start = gen8_emit_bb_start;
2089
2090 return logical_ring_init(dev, ring);
2091 }
2092
2093 static int logical_blt_ring_init(struct drm_device *dev)
2094 {
2095 struct drm_i915_private *dev_priv = dev->dev_private;
2096 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2097
2098 ring->name = "blitter ring";
2099 ring->id = BCS;
2100 ring->mmio_base = BLT_RING_BASE;
2101 ring->irq_enable_mask =
2102 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2103 ring->irq_keep_mask =
2104 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2105
2106 ring->init_hw = gen8_init_common_ring;
2107 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2108 ring->get_seqno = bxt_a_get_seqno;
2109 ring->set_seqno = bxt_a_set_seqno;
2110 } else {
2111 ring->get_seqno = gen8_get_seqno;
2112 ring->set_seqno = gen8_set_seqno;
2113 }
2114 ring->emit_request = gen8_emit_request;
2115 ring->emit_flush = gen8_emit_flush;
2116 ring->irq_get = gen8_logical_ring_get_irq;
2117 ring->irq_put = gen8_logical_ring_put_irq;
2118 ring->emit_bb_start = gen8_emit_bb_start;
2119
2120 return logical_ring_init(dev, ring);
2121 }
2122
2123 static int logical_vebox_ring_init(struct drm_device *dev)
2124 {
2125 struct drm_i915_private *dev_priv = dev->dev_private;
2126 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2127
2128 ring->name = "video enhancement ring";
2129 ring->id = VECS;
2130 ring->mmio_base = VEBOX_RING_BASE;
2131 ring->irq_enable_mask =
2132 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2133 ring->irq_keep_mask =
2134 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2135
2136 ring->init_hw = gen8_init_common_ring;
2137 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2138 ring->get_seqno = bxt_a_get_seqno;
2139 ring->set_seqno = bxt_a_set_seqno;
2140 } else {
2141 ring->get_seqno = gen8_get_seqno;
2142 ring->set_seqno = gen8_set_seqno;
2143 }
2144 ring->emit_request = gen8_emit_request;
2145 ring->emit_flush = gen8_emit_flush;
2146 ring->irq_get = gen8_logical_ring_get_irq;
2147 ring->irq_put = gen8_logical_ring_put_irq;
2148 ring->emit_bb_start = gen8_emit_bb_start;
2149
2150 return logical_ring_init(dev, ring);
2151 }
2152
2153 /**
2154 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2155 * @dev: DRM device.
2156 *
2157 * This function inits the engines for an Execlists submission style (the equivalent in the
2158 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2159 * those engines that are present in the hardware.
2160 *
2161 * Return: non-zero if the initialization failed.
2162 */
2163 int intel_logical_rings_init(struct drm_device *dev)
2164 {
2165 struct drm_i915_private *dev_priv = dev->dev_private;
2166 int ret;
2167
2168 ret = logical_render_ring_init(dev);
2169 if (ret)
2170 return ret;
2171
2172 if (HAS_BSD(dev)) {
2173 ret = logical_bsd_ring_init(dev);
2174 if (ret)
2175 goto cleanup_render_ring;
2176 }
2177
2178 if (HAS_BLT(dev)) {
2179 ret = logical_blt_ring_init(dev);
2180 if (ret)
2181 goto cleanup_bsd_ring;
2182 }
2183
2184 if (HAS_VEBOX(dev)) {
2185 ret = logical_vebox_ring_init(dev);
2186 if (ret)
2187 goto cleanup_blt_ring;
2188 }
2189
2190 if (HAS_BSD2(dev)) {
2191 ret = logical_bsd2_ring_init(dev);
2192 if (ret)
2193 goto cleanup_vebox_ring;
2194 }
2195
2196 return 0;
2197
2198 cleanup_vebox_ring:
2199 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2200 cleanup_blt_ring:
2201 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2202 cleanup_bsd_ring:
2203 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2204 cleanup_render_ring:
2205 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2206
2207 return ret;
2208 }
2209
2210 static u32
2211 make_rpcs(struct drm_device *dev)
2212 {
2213 u32 rpcs = 0;
2214
2215 /*
2216 * No explicit RPCS request is needed to ensure full
2217 * slice/subslice/EU enablement prior to Gen9.
2218 */
2219 if (INTEL_INFO(dev)->gen < 9)
2220 return 0;
2221
2222 /*
2223 * Starting in Gen9, render power gating can leave
2224 * slice/subslice/EU in a partially enabled state. We
2225 * must make an explicit request through RPCS for full
2226 * enablement.
2227 */
2228 if (INTEL_INFO(dev)->has_slice_pg) {
2229 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2230 rpcs |= INTEL_INFO(dev)->slice_total <<
2231 GEN8_RPCS_S_CNT_SHIFT;
2232 rpcs |= GEN8_RPCS_ENABLE;
2233 }
2234
2235 if (INTEL_INFO(dev)->has_subslice_pg) {
2236 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2237 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2238 GEN8_RPCS_SS_CNT_SHIFT;
2239 rpcs |= GEN8_RPCS_ENABLE;
2240 }
2241
2242 if (INTEL_INFO(dev)->has_eu_pg) {
2243 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2244 GEN8_RPCS_EU_MIN_SHIFT;
2245 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2246 GEN8_RPCS_EU_MAX_SHIFT;
2247 rpcs |= GEN8_RPCS_ENABLE;
2248 }
2249
2250 return rpcs;
2251 }
2252
2253 static int
2254 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2255 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2256 {
2257 struct drm_device *dev = ring->dev;
2258 struct drm_i915_private *dev_priv = dev->dev_private;
2259 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2260 struct page *page;
2261 uint32_t *reg_state;
2262 int ret;
2263
2264 if (!ppgtt)
2265 ppgtt = dev_priv->mm.aliasing_ppgtt;
2266
2267 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2268 if (ret) {
2269 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2270 return ret;
2271 }
2272
2273 ret = i915_gem_object_get_pages(ctx_obj);
2274 if (ret) {
2275 DRM_DEBUG_DRIVER("Could not get object pages\n");
2276 return ret;
2277 }
2278
2279 i915_gem_object_pin_pages(ctx_obj);
2280
2281 /* The second page of the context object contains some fields which must
2282 * be set up prior to the first execution. */
2283 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2284 reg_state = kmap_atomic(page);
2285
2286 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2287 * commands followed by (reg, value) pairs. The values we are setting here are
2288 * only for the first context restore: on a subsequent save, the GPU will
2289 * recreate this batchbuffer with new values (including all the missing
2290 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2291 reg_state[CTX_LRI_HEADER_0] =
2292 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2293 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2294 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2295 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2296 CTX_CTRL_RS_CTX_ENABLE));
2297 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2298 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2299 /* Ring buffer start address is not known until the buffer is pinned.
2300 * It is written to the context image in execlists_update_context()
2301 */
2302 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2303 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2304 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2305 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2306 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2307 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2308 RING_BB_PPGTT);
2309 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2310 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2311 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2312 if (ring->id == RCS) {
2313 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2314 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2315 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2316 if (ring->wa_ctx.obj) {
2317 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2318 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2319
2320 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2321 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2322 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2323
2324 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2325 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2326
2327 reg_state[CTX_BB_PER_CTX_PTR+1] =
2328 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2329 0x01;
2330 }
2331 }
2332 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2333 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2334 /* PDP values well be assigned later if needed */
2335 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2336 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2337 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2338 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2339 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2340 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2341 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2342 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2343
2344 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2345 /* 64b PPGTT (48bit canonical)
2346 * PDP0_DESCRIPTOR contains the base address to PML4 and
2347 * other PDP Descriptors are ignored.
2348 */
2349 ASSIGN_CTX_PML4(ppgtt, reg_state);
2350 } else {
2351 /* 32b PPGTT
2352 * PDP*_DESCRIPTOR contains the base address of space supported.
2353 * With dynamic page allocation, PDPs may not be allocated at
2354 * this point. Point the unallocated PDPs to the scratch page
2355 */
2356 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2357 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2358 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2359 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2360 }
2361
2362 if (ring->id == RCS) {
2363 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2364 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2365 make_rpcs(dev));
2366 }
2367
2368 kunmap_atomic(reg_state);
2369 i915_gem_object_unpin_pages(ctx_obj);
2370
2371 return 0;
2372 }
2373
2374 /**
2375 * intel_lr_context_free() - free the LRC specific bits of a context
2376 * @ctx: the LR context to free.
2377 *
2378 * The real context freeing is done in i915_gem_context_free: this only
2379 * takes care of the bits that are LRC related: the per-engine backing
2380 * objects and the logical ringbuffer.
2381 */
2382 void intel_lr_context_free(struct intel_context *ctx)
2383 {
2384 int i;
2385
2386 for (i = 0; i < I915_NUM_RINGS; i++) {
2387 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2388
2389 if (ctx_obj) {
2390 struct intel_ringbuffer *ringbuf =
2391 ctx->engine[i].ringbuf;
2392 struct intel_engine_cs *ring = ringbuf->ring;
2393
2394 if (ctx == ring->default_context) {
2395 intel_unpin_ringbuffer_obj(ringbuf);
2396 i915_gem_object_ggtt_unpin(ctx_obj);
2397 }
2398 WARN_ON(ctx->engine[ring->id].pin_count);
2399 intel_ringbuffer_free(ringbuf);
2400 drm_gem_object_unreference(&ctx_obj->base);
2401 }
2402 }
2403 }
2404
2405 /**
2406 * intel_lr_context_size() - return the size of the context for an engine
2407 * @ring: which engine to find the context size for
2408 *
2409 * Each engine may require a different amount of space for a context image,
2410 * so when allocating (or copying) an image, this function can be used to
2411 * find the right size for the specific engine.
2412 *
2413 * Return: size (in bytes) of an engine-specific context image
2414 *
2415 * Note: this size includes the HWSP, which is part of the context image
2416 * in LRC mode, but does not include the "shared data page" used with
2417 * GuC submission. The caller should account for this if using the GuC.
2418 */
2419 uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
2420 {
2421 int ret = 0;
2422
2423 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2424
2425 switch (ring->id) {
2426 case RCS:
2427 if (INTEL_INFO(ring->dev)->gen >= 9)
2428 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2429 else
2430 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2431 break;
2432 case VCS:
2433 case BCS:
2434 case VECS:
2435 case VCS2:
2436 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2437 break;
2438 }
2439
2440 return ret;
2441 }
2442
2443 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2444 struct drm_i915_gem_object *default_ctx_obj)
2445 {
2446 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2447 struct page *page;
2448
2449 /* The HWSP is part of the default context object in LRC mode. */
2450 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2451 + LRC_PPHWSP_PN * PAGE_SIZE;
2452 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2453 ring->status_page.page_addr = kmap(page);
2454 ring->status_page.obj = default_ctx_obj;
2455
2456 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2457 (u32)ring->status_page.gfx_addr);
2458 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2459 }
2460
2461 /**
2462 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2463 * @ctx: LR context to create.
2464 * @ring: engine to be used with the context.
2465 *
2466 * This function can be called more than once, with different engines, if we plan
2467 * to use the context with them. The context backing objects and the ringbuffers
2468 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2469 * the creation is a deferred call: it's better to make sure first that we need to use
2470 * a given ring with the context.
2471 *
2472 * Return: non-zero on error.
2473 */
2474
2475 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2476 struct intel_engine_cs *ring)
2477 {
2478 struct drm_device *dev = ring->dev;
2479 struct drm_i915_gem_object *ctx_obj;
2480 uint32_t context_size;
2481 struct intel_ringbuffer *ringbuf;
2482 int ret;
2483
2484 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2485 WARN_ON(ctx->engine[ring->id].state);
2486
2487 context_size = round_up(intel_lr_context_size(ring), 4096);
2488
2489 /* One extra page as the sharing data between driver and GuC */
2490 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2491
2492 ctx_obj = i915_gem_alloc_object(dev, context_size);
2493 if (!ctx_obj) {
2494 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2495 return -ENOMEM;
2496 }
2497
2498 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2499 if (IS_ERR(ringbuf)) {
2500 ret = PTR_ERR(ringbuf);
2501 goto error_deref_obj;
2502 }
2503
2504 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2505 if (ret) {
2506 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2507 goto error_ringbuf;
2508 }
2509
2510 ctx->engine[ring->id].ringbuf = ringbuf;
2511 ctx->engine[ring->id].state = ctx_obj;
2512
2513 if (ctx != ring->default_context && ring->init_context) {
2514 struct drm_i915_gem_request *req;
2515
2516 ret = i915_gem_request_alloc(ring,
2517 ctx, &req);
2518 if (ret) {
2519 DRM_ERROR("ring create req: %d\n",
2520 ret);
2521 goto error_ringbuf;
2522 }
2523
2524 ret = ring->init_context(req);
2525 if (ret) {
2526 DRM_ERROR("ring init context: %d\n",
2527 ret);
2528 i915_gem_request_cancel(req);
2529 goto error_ringbuf;
2530 }
2531 i915_add_request_no_flush(req);
2532 }
2533 return 0;
2534
2535 error_ringbuf:
2536 intel_ringbuffer_free(ringbuf);
2537 error_deref_obj:
2538 drm_gem_object_unreference(&ctx_obj->base);
2539 ctx->engine[ring->id].ringbuf = NULL;
2540 ctx->engine[ring->id].state = NULL;
2541 return ret;
2542 }
2543
2544 void intel_lr_context_reset(struct drm_device *dev,
2545 struct intel_context *ctx)
2546 {
2547 struct drm_i915_private *dev_priv = dev->dev_private;
2548 struct intel_engine_cs *ring;
2549 int i;
2550
2551 for_each_ring(ring, dev_priv, i) {
2552 struct drm_i915_gem_object *ctx_obj =
2553 ctx->engine[ring->id].state;
2554 struct intel_ringbuffer *ringbuf =
2555 ctx->engine[ring->id].ringbuf;
2556 uint32_t *reg_state;
2557 struct page *page;
2558
2559 if (!ctx_obj)
2560 continue;
2561
2562 if (i915_gem_object_get_pages(ctx_obj)) {
2563 WARN(1, "Failed get_pages for context obj\n");
2564 continue;
2565 }
2566 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2567 reg_state = kmap_atomic(page);
2568
2569 reg_state[CTX_RING_HEAD+1] = 0;
2570 reg_state[CTX_RING_TAIL+1] = 0;
2571
2572 kunmap_atomic(reg_state);
2573
2574 ringbuf->head = 0;
2575 ringbuf->tail = 0;
2576 }
2577 }
This page took 0.087282 seconds and 5 git commands to generate.