drm/i915: Create page table allocators
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL (1 << 0x2)
144 #define RING_EXECLIST1_VALID (1 << 0x3)
145 #define RING_EXECLIST0_VALID (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156
157 #define CTX_LRI_HEADER_0 0x01
158 #define CTX_CONTEXT_CONTROL 0x02
159 #define CTX_RING_HEAD 0x04
160 #define CTX_RING_TAIL 0x06
161 #define CTX_RING_BUFFER_START 0x08
162 #define CTX_RING_BUFFER_CONTROL 0x0a
163 #define CTX_BB_HEAD_U 0x0c
164 #define CTX_BB_HEAD_L 0x0e
165 #define CTX_BB_STATE 0x10
166 #define CTX_SECOND_BB_HEAD_U 0x12
167 #define CTX_SECOND_BB_HEAD_L 0x14
168 #define CTX_SECOND_BB_STATE 0x16
169 #define CTX_BB_PER_CTX_PTR 0x18
170 #define CTX_RCS_INDIRECT_CTX 0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172 #define CTX_LRI_HEADER_1 0x21
173 #define CTX_CTX_TIMESTAMP 0x22
174 #define CTX_PDP3_UDW 0x24
175 #define CTX_PDP3_LDW 0x26
176 #define CTX_PDP2_UDW 0x28
177 #define CTX_PDP2_LDW 0x2a
178 #define CTX_PDP1_UDW 0x2c
179 #define CTX_PDP1_LDW 0x2e
180 #define CTX_PDP0_UDW 0x30
181 #define CTX_PDP0_LDW 0x32
182 #define CTX_LRI_HEADER_2 0x41
183 #define CTX_R_PWR_CLK_STATE 0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191 enum {
192 ADVANCED_CONTEXT = 0,
193 LEGACY_CONTEXT,
194 ADVANCED_AD_CONTEXT,
195 LEGACY_64B_CONTEXT
196 };
197 #define GEN8_CTX_MODE_SHIFT 3
198 enum {
199 FAULT_AND_HANG = 0,
200 FAULT_AND_HALT, /* Debug only */
201 FAULT_AND_STREAM,
202 FAULT_AND_CONTINUE /* Unsupported */
203 };
204 #define GEN8_CTX_ID_SHIFT 32
205
206 static int intel_lr_context_pin(struct intel_engine_cs *ring,
207 struct intel_context *ctx);
208
209 /**
210 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
211 * @dev: DRM device.
212 * @enable_execlists: value of i915.enable_execlists module parameter.
213 *
214 * Only certain platforms support Execlists (the prerequisites being
215 * support for Logical Ring Contexts and Aliasing PPGTT or better).
216 *
217 * Return: 1 if Execlists is supported and has to be enabled.
218 */
219 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
220 {
221 WARN_ON(i915.enable_ppgtt == -1);
222
223 if (INTEL_INFO(dev)->gen >= 9)
224 return 1;
225
226 if (enable_execlists == 0)
227 return 0;
228
229 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
230 i915.use_mmio_flip >= 0)
231 return 1;
232
233 return 0;
234 }
235
236 /**
237 * intel_execlists_ctx_id() - get the Execlists Context ID
238 * @ctx_obj: Logical Ring Context backing object.
239 *
240 * Do not confuse with ctx->id! Unfortunately we have a name overload
241 * here: the old context ID we pass to userspace as a handler so that
242 * they can refer to a context, and the new context ID we pass to the
243 * ELSP so that the GPU can inform us of the context status via
244 * interrupts.
245 *
246 * Return: 20-bits globally unique context ID.
247 */
248 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
249 {
250 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
251
252 /* LRCA is required to be 4K aligned so the more significant 20 bits
253 * are globally unique */
254 return lrca >> 12;
255 }
256
257 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
258 struct drm_i915_gem_object *ctx_obj)
259 {
260 struct drm_device *dev = ring->dev;
261 uint64_t desc;
262 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
263
264 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
265
266 desc = GEN8_CTX_VALID;
267 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
268 desc |= GEN8_CTX_L3LLC_COHERENT;
269 desc |= GEN8_CTX_PRIVILEGE;
270 desc |= lrca;
271 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
272
273 /* TODO: WaDisableLiteRestore when we start using semaphore
274 * signalling between Command Streamers */
275 /* desc |= GEN8_CTX_FORCE_RESTORE; */
276
277 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
278 if (IS_GEN9(dev) &&
279 INTEL_REVID(dev) <= SKL_REVID_B0 &&
280 (ring->id == BCS || ring->id == VCS ||
281 ring->id == VECS || ring->id == VCS2))
282 desc |= GEN8_CTX_FORCE_RESTORE;
283
284 return desc;
285 }
286
287 static void execlists_elsp_write(struct intel_engine_cs *ring,
288 struct drm_i915_gem_object *ctx_obj0,
289 struct drm_i915_gem_object *ctx_obj1)
290 {
291 struct drm_device *dev = ring->dev;
292 struct drm_i915_private *dev_priv = dev->dev_private;
293 uint64_t temp = 0;
294 uint32_t desc[4];
295
296 /* XXX: You must always write both descriptors in the order below. */
297 if (ctx_obj1)
298 temp = execlists_ctx_descriptor(ring, ctx_obj1);
299 else
300 temp = 0;
301 desc[1] = (u32)(temp >> 32);
302 desc[0] = (u32)temp;
303
304 temp = execlists_ctx_descriptor(ring, ctx_obj0);
305 desc[3] = (u32)(temp >> 32);
306 desc[2] = (u32)temp;
307
308 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
309 I915_WRITE(RING_ELSP(ring), desc[1]);
310 I915_WRITE(RING_ELSP(ring), desc[0]);
311 I915_WRITE(RING_ELSP(ring), desc[3]);
312
313 /* The context is automatically loaded after the following */
314 I915_WRITE(RING_ELSP(ring), desc[2]);
315
316 /* ELSP is a wo register, so use another nearby reg for posting instead */
317 POSTING_READ(RING_EXECLIST_STATUS(ring));
318 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
319 }
320
321 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
322 struct drm_i915_gem_object *ring_obj,
323 u32 tail)
324 {
325 struct page *page;
326 uint32_t *reg_state;
327
328 page = i915_gem_object_get_page(ctx_obj, 1);
329 reg_state = kmap_atomic(page);
330
331 reg_state[CTX_RING_TAIL+1] = tail;
332 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
333
334 kunmap_atomic(reg_state);
335
336 return 0;
337 }
338
339 static void execlists_submit_contexts(struct intel_engine_cs *ring,
340 struct intel_context *to0, u32 tail0,
341 struct intel_context *to1, u32 tail1)
342 {
343 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
344 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
345 struct drm_i915_gem_object *ctx_obj1 = NULL;
346 struct intel_ringbuffer *ringbuf1 = NULL;
347
348 BUG_ON(!ctx_obj0);
349 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
350 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
351
352 execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
353
354 if (to1) {
355 ringbuf1 = to1->engine[ring->id].ringbuf;
356 ctx_obj1 = to1->engine[ring->id].state;
357 BUG_ON(!ctx_obj1);
358 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
359 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
360
361 execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
362 }
363
364 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
365 }
366
367 static void execlists_context_unqueue(struct intel_engine_cs *ring)
368 {
369 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
370 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
371
372 assert_spin_locked(&ring->execlist_lock);
373
374 if (list_empty(&ring->execlist_queue))
375 return;
376
377 /* Try to read in pairs */
378 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
379 execlist_link) {
380 if (!req0) {
381 req0 = cursor;
382 } else if (req0->ctx == cursor->ctx) {
383 /* Same ctx: ignore first request, as second request
384 * will update tail past first request's workload */
385 cursor->elsp_submitted = req0->elsp_submitted;
386 list_del(&req0->execlist_link);
387 list_add_tail(&req0->execlist_link,
388 &ring->execlist_retired_req_list);
389 req0 = cursor;
390 } else {
391 req1 = cursor;
392 break;
393 }
394 }
395
396 WARN_ON(req1 && req1->elsp_submitted);
397
398 execlists_submit_contexts(ring, req0->ctx, req0->tail,
399 req1 ? req1->ctx : NULL,
400 req1 ? req1->tail : 0);
401
402 req0->elsp_submitted++;
403 if (req1)
404 req1->elsp_submitted++;
405 }
406
407 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
408 u32 request_id)
409 {
410 struct drm_i915_gem_request *head_req;
411
412 assert_spin_locked(&ring->execlist_lock);
413
414 head_req = list_first_entry_or_null(&ring->execlist_queue,
415 struct drm_i915_gem_request,
416 execlist_link);
417
418 if (head_req != NULL) {
419 struct drm_i915_gem_object *ctx_obj =
420 head_req->ctx->engine[ring->id].state;
421 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
422 WARN(head_req->elsp_submitted == 0,
423 "Never submitted head request\n");
424
425 if (--head_req->elsp_submitted <= 0) {
426 list_del(&head_req->execlist_link);
427 list_add_tail(&head_req->execlist_link,
428 &ring->execlist_retired_req_list);
429 return true;
430 }
431 }
432 }
433
434 return false;
435 }
436
437 /**
438 * intel_lrc_irq_handler() - handle Context Switch interrupts
439 * @ring: Engine Command Streamer to handle.
440 *
441 * Check the unread Context Status Buffers and manage the submission of new
442 * contexts to the ELSP accordingly.
443 */
444 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
445 {
446 struct drm_i915_private *dev_priv = ring->dev->dev_private;
447 u32 status_pointer;
448 u8 read_pointer;
449 u8 write_pointer;
450 u32 status;
451 u32 status_id;
452 u32 submit_contexts = 0;
453
454 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
455
456 read_pointer = ring->next_context_status_buffer;
457 write_pointer = status_pointer & 0x07;
458 if (read_pointer > write_pointer)
459 write_pointer += 6;
460
461 spin_lock(&ring->execlist_lock);
462
463 while (read_pointer < write_pointer) {
464 read_pointer++;
465 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
466 (read_pointer % 6) * 8);
467 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
468 (read_pointer % 6) * 8 + 4);
469
470 if (status & GEN8_CTX_STATUS_PREEMPTED) {
471 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
472 if (execlists_check_remove_request(ring, status_id))
473 WARN(1, "Lite Restored request removed from queue\n");
474 } else
475 WARN(1, "Preemption without Lite Restore\n");
476 }
477
478 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
479 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
480 if (execlists_check_remove_request(ring, status_id))
481 submit_contexts++;
482 }
483 }
484
485 if (submit_contexts != 0)
486 execlists_context_unqueue(ring);
487
488 spin_unlock(&ring->execlist_lock);
489
490 WARN(submit_contexts > 2, "More than two context complete events?\n");
491 ring->next_context_status_buffer = write_pointer % 6;
492
493 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
494 ((u32)ring->next_context_status_buffer & 0x07) << 8);
495 }
496
497 static int execlists_context_queue(struct intel_engine_cs *ring,
498 struct intel_context *to,
499 u32 tail,
500 struct drm_i915_gem_request *request)
501 {
502 struct drm_i915_gem_request *cursor;
503 struct drm_i915_private *dev_priv = ring->dev->dev_private;
504 unsigned long flags;
505 int num_elements = 0;
506
507 if (to != ring->default_context)
508 intel_lr_context_pin(ring, to);
509
510 if (!request) {
511 /*
512 * If there isn't a request associated with this submission,
513 * create one as a temporary holder.
514 */
515 WARN(1, "execlist context submission without request");
516 request = kzalloc(sizeof(*request), GFP_KERNEL);
517 if (request == NULL)
518 return -ENOMEM;
519 request->ring = ring;
520 request->ctx = to;
521 } else {
522 WARN_ON(to != request->ctx);
523 }
524 request->tail = tail;
525 i915_gem_request_reference(request);
526 i915_gem_context_reference(request->ctx);
527
528 intel_runtime_pm_get(dev_priv);
529
530 spin_lock_irqsave(&ring->execlist_lock, flags);
531
532 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
533 if (++num_elements > 2)
534 break;
535
536 if (num_elements > 2) {
537 struct drm_i915_gem_request *tail_req;
538
539 tail_req = list_last_entry(&ring->execlist_queue,
540 struct drm_i915_gem_request,
541 execlist_link);
542
543 if (to == tail_req->ctx) {
544 WARN(tail_req->elsp_submitted != 0,
545 "More than 2 already-submitted reqs queued\n");
546 list_del(&tail_req->execlist_link);
547 list_add_tail(&tail_req->execlist_link,
548 &ring->execlist_retired_req_list);
549 }
550 }
551
552 list_add_tail(&request->execlist_link, &ring->execlist_queue);
553 if (num_elements == 0)
554 execlists_context_unqueue(ring);
555
556 spin_unlock_irqrestore(&ring->execlist_lock, flags);
557
558 return 0;
559 }
560
561 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
562 struct intel_context *ctx)
563 {
564 struct intel_engine_cs *ring = ringbuf->ring;
565 uint32_t flush_domains;
566 int ret;
567
568 flush_domains = 0;
569 if (ring->gpu_caches_dirty)
570 flush_domains = I915_GEM_GPU_DOMAINS;
571
572 ret = ring->emit_flush(ringbuf, ctx,
573 I915_GEM_GPU_DOMAINS, flush_domains);
574 if (ret)
575 return ret;
576
577 ring->gpu_caches_dirty = false;
578 return 0;
579 }
580
581 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
582 struct intel_context *ctx,
583 struct list_head *vmas)
584 {
585 struct intel_engine_cs *ring = ringbuf->ring;
586 struct i915_vma *vma;
587 uint32_t flush_domains = 0;
588 bool flush_chipset = false;
589 int ret;
590
591 list_for_each_entry(vma, vmas, exec_list) {
592 struct drm_i915_gem_object *obj = vma->obj;
593
594 ret = i915_gem_object_sync(obj, ring);
595 if (ret)
596 return ret;
597
598 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
599 flush_chipset |= i915_gem_clflush_object(obj, false);
600
601 flush_domains |= obj->base.write_domain;
602 }
603
604 if (flush_domains & I915_GEM_DOMAIN_GTT)
605 wmb();
606
607 /* Unconditionally invalidate gpu caches and ensure that we do flush
608 * any residual writes from the previous batch.
609 */
610 return logical_ring_invalidate_all_caches(ringbuf, ctx);
611 }
612
613 /**
614 * execlists_submission() - submit a batchbuffer for execution, Execlists style
615 * @dev: DRM device.
616 * @file: DRM file.
617 * @ring: Engine Command Streamer to submit to.
618 * @ctx: Context to employ for this submission.
619 * @args: execbuffer call arguments.
620 * @vmas: list of vmas.
621 * @batch_obj: the batchbuffer to submit.
622 * @exec_start: batchbuffer start virtual address pointer.
623 * @flags: translated execbuffer call flags.
624 *
625 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
626 * away the submission details of the execbuffer ioctl call.
627 *
628 * Return: non-zero if the submission fails.
629 */
630 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
631 struct intel_engine_cs *ring,
632 struct intel_context *ctx,
633 struct drm_i915_gem_execbuffer2 *args,
634 struct list_head *vmas,
635 struct drm_i915_gem_object *batch_obj,
636 u64 exec_start, u32 flags)
637 {
638 struct drm_i915_private *dev_priv = dev->dev_private;
639 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
640 int instp_mode;
641 u32 instp_mask;
642 int ret;
643
644 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
645 instp_mask = I915_EXEC_CONSTANTS_MASK;
646 switch (instp_mode) {
647 case I915_EXEC_CONSTANTS_REL_GENERAL:
648 case I915_EXEC_CONSTANTS_ABSOLUTE:
649 case I915_EXEC_CONSTANTS_REL_SURFACE:
650 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
651 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
652 return -EINVAL;
653 }
654
655 if (instp_mode != dev_priv->relative_constants_mode) {
656 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
657 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
658 return -EINVAL;
659 }
660
661 /* The HW changed the meaning on this bit on gen6 */
662 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
663 }
664 break;
665 default:
666 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
667 return -EINVAL;
668 }
669
670 if (args->num_cliprects != 0) {
671 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
672 return -EINVAL;
673 } else {
674 if (args->DR4 == 0xffffffff) {
675 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
676 args->DR4 = 0;
677 }
678
679 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
680 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
681 return -EINVAL;
682 }
683 }
684
685 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
686 DRM_DEBUG("sol reset is gen7 only\n");
687 return -EINVAL;
688 }
689
690 ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
691 if (ret)
692 return ret;
693
694 if (ring == &dev_priv->ring[RCS] &&
695 instp_mode != dev_priv->relative_constants_mode) {
696 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
697 if (ret)
698 return ret;
699
700 intel_logical_ring_emit(ringbuf, MI_NOOP);
701 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
702 intel_logical_ring_emit(ringbuf, INSTPM);
703 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
704 intel_logical_ring_advance(ringbuf);
705
706 dev_priv->relative_constants_mode = instp_mode;
707 }
708
709 ret = ring->emit_bb_start(ringbuf, ctx, exec_start, flags);
710 if (ret)
711 return ret;
712
713 i915_gem_execbuffer_move_to_active(vmas, ring);
714 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
715
716 return 0;
717 }
718
719 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
720 {
721 struct drm_i915_gem_request *req, *tmp;
722 struct drm_i915_private *dev_priv = ring->dev->dev_private;
723 unsigned long flags;
724 struct list_head retired_list;
725
726 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
727 if (list_empty(&ring->execlist_retired_req_list))
728 return;
729
730 INIT_LIST_HEAD(&retired_list);
731 spin_lock_irqsave(&ring->execlist_lock, flags);
732 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
733 spin_unlock_irqrestore(&ring->execlist_lock, flags);
734
735 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
736 struct intel_context *ctx = req->ctx;
737 struct drm_i915_gem_object *ctx_obj =
738 ctx->engine[ring->id].state;
739
740 if (ctx_obj && (ctx != ring->default_context))
741 intel_lr_context_unpin(ring, ctx);
742 intel_runtime_pm_put(dev_priv);
743 i915_gem_context_unreference(ctx);
744 list_del(&req->execlist_link);
745 i915_gem_request_unreference(req);
746 }
747 }
748
749 void intel_logical_ring_stop(struct intel_engine_cs *ring)
750 {
751 struct drm_i915_private *dev_priv = ring->dev->dev_private;
752 int ret;
753
754 if (!intel_ring_initialized(ring))
755 return;
756
757 ret = intel_ring_idle(ring);
758 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
759 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
760 ring->name, ret);
761
762 /* TODO: Is this correct with Execlists enabled? */
763 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
764 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
765 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
766 return;
767 }
768 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
769 }
770
771 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
772 struct intel_context *ctx)
773 {
774 struct intel_engine_cs *ring = ringbuf->ring;
775 int ret;
776
777 if (!ring->gpu_caches_dirty)
778 return 0;
779
780 ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
781 if (ret)
782 return ret;
783
784 ring->gpu_caches_dirty = false;
785 return 0;
786 }
787
788 /*
789 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
790 * @ringbuf: Logical Ringbuffer to advance.
791 *
792 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
793 * really happens during submission is that the context and current tail will be placed
794 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
795 * point, the tail *inside* the context is updated and the ELSP written to.
796 */
797 static void
798 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
799 struct intel_context *ctx,
800 struct drm_i915_gem_request *request)
801 {
802 struct intel_engine_cs *ring = ringbuf->ring;
803
804 intel_logical_ring_advance(ringbuf);
805
806 if (intel_ring_stopped(ring))
807 return;
808
809 execlists_context_queue(ring, ctx, ringbuf->tail, request);
810 }
811
812 static int intel_lr_context_pin(struct intel_engine_cs *ring,
813 struct intel_context *ctx)
814 {
815 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
816 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
817 int ret = 0;
818
819 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
820 if (ctx->engine[ring->id].pin_count++ == 0) {
821 ret = i915_gem_obj_ggtt_pin(ctx_obj,
822 GEN8_LR_CONTEXT_ALIGN, 0);
823 if (ret)
824 goto reset_pin_count;
825
826 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
827 if (ret)
828 goto unpin_ctx_obj;
829 }
830
831 return ret;
832
833 unpin_ctx_obj:
834 i915_gem_object_ggtt_unpin(ctx_obj);
835 reset_pin_count:
836 ctx->engine[ring->id].pin_count = 0;
837
838 return ret;
839 }
840
841 void intel_lr_context_unpin(struct intel_engine_cs *ring,
842 struct intel_context *ctx)
843 {
844 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
845 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
846
847 if (ctx_obj) {
848 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
849 if (--ctx->engine[ring->id].pin_count == 0) {
850 intel_unpin_ringbuffer_obj(ringbuf);
851 i915_gem_object_ggtt_unpin(ctx_obj);
852 }
853 }
854 }
855
856 static int logical_ring_alloc_request(struct intel_engine_cs *ring,
857 struct intel_context *ctx)
858 {
859 struct drm_i915_gem_request *request;
860 struct drm_i915_private *dev_private = ring->dev->dev_private;
861 int ret;
862
863 if (ring->outstanding_lazy_request)
864 return 0;
865
866 request = kzalloc(sizeof(*request), GFP_KERNEL);
867 if (request == NULL)
868 return -ENOMEM;
869
870 if (ctx != ring->default_context) {
871 ret = intel_lr_context_pin(ring, ctx);
872 if (ret) {
873 kfree(request);
874 return ret;
875 }
876 }
877
878 kref_init(&request->ref);
879 request->ring = ring;
880 request->uniq = dev_private->request_uniq++;
881
882 ret = i915_gem_get_seqno(ring->dev, &request->seqno);
883 if (ret) {
884 intel_lr_context_unpin(ring, ctx);
885 kfree(request);
886 return ret;
887 }
888
889 /* Hold a reference to the context this request belongs to
890 * (we will need it when the time comes to emit/retire the
891 * request).
892 */
893 request->ctx = ctx;
894 i915_gem_context_reference(request->ctx);
895
896 ring->outstanding_lazy_request = request;
897 return 0;
898 }
899
900 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
901 int bytes)
902 {
903 struct intel_engine_cs *ring = ringbuf->ring;
904 struct drm_i915_gem_request *request;
905 int ret;
906
907 if (intel_ring_space(ringbuf) >= bytes)
908 return 0;
909
910 list_for_each_entry(request, &ring->request_list, list) {
911 /*
912 * The request queue is per-engine, so can contain requests
913 * from multiple ringbuffers. Here, we must ignore any that
914 * aren't from the ringbuffer we're considering.
915 */
916 struct intel_context *ctx = request->ctx;
917 if (ctx->engine[ring->id].ringbuf != ringbuf)
918 continue;
919
920 /* Would completion of this request free enough space? */
921 if (__intel_ring_space(request->tail, ringbuf->tail,
922 ringbuf->size) >= bytes) {
923 break;
924 }
925 }
926
927 if (&request->list == &ring->request_list)
928 return -ENOSPC;
929
930 ret = i915_wait_request(request);
931 if (ret)
932 return ret;
933
934 i915_gem_retire_requests_ring(ring);
935
936 return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
937 }
938
939 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
940 struct intel_context *ctx,
941 int bytes)
942 {
943 struct intel_engine_cs *ring = ringbuf->ring;
944 struct drm_device *dev = ring->dev;
945 struct drm_i915_private *dev_priv = dev->dev_private;
946 unsigned long end;
947 int ret;
948
949 ret = logical_ring_wait_request(ringbuf, bytes);
950 if (ret != -ENOSPC)
951 return ret;
952
953 /* Force the context submission in case we have been skipping it */
954 intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
955
956 /* With GEM the hangcheck timer should kick us out of the loop,
957 * leaving it early runs the risk of corrupting GEM state (due
958 * to running on almost untested codepaths). But on resume
959 * timers don't work yet, so prevent a complete hang in that
960 * case by choosing an insanely large timeout. */
961 end = jiffies + 60 * HZ;
962
963 ret = 0;
964 do {
965 if (intel_ring_space(ringbuf) >= bytes)
966 break;
967
968 msleep(1);
969
970 if (dev_priv->mm.interruptible && signal_pending(current)) {
971 ret = -ERESTARTSYS;
972 break;
973 }
974
975 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
976 dev_priv->mm.interruptible);
977 if (ret)
978 break;
979
980 if (time_after(jiffies, end)) {
981 ret = -EBUSY;
982 break;
983 }
984 } while (1);
985
986 return ret;
987 }
988
989 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
990 struct intel_context *ctx)
991 {
992 uint32_t __iomem *virt;
993 int rem = ringbuf->size - ringbuf->tail;
994
995 if (ringbuf->space < rem) {
996 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
997
998 if (ret)
999 return ret;
1000 }
1001
1002 virt = ringbuf->virtual_start + ringbuf->tail;
1003 rem /= 4;
1004 while (rem--)
1005 iowrite32(MI_NOOP, virt++);
1006
1007 ringbuf->tail = 0;
1008 intel_ring_update_space(ringbuf);
1009
1010 return 0;
1011 }
1012
1013 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
1014 struct intel_context *ctx, int bytes)
1015 {
1016 int ret;
1017
1018 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1019 ret = logical_ring_wrap_buffer(ringbuf, ctx);
1020 if (unlikely(ret))
1021 return ret;
1022 }
1023
1024 if (unlikely(ringbuf->space < bytes)) {
1025 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
1026 if (unlikely(ret))
1027 return ret;
1028 }
1029
1030 return 0;
1031 }
1032
1033 /**
1034 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1035 *
1036 * @ringbuf: Logical ringbuffer.
1037 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1038 *
1039 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1040 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1041 * and also preallocates a request (every workload submission is still mediated through
1042 * requests, same as it did with legacy ringbuffer submission).
1043 *
1044 * Return: non-zero if the ringbuffer is not ready to be written to.
1045 */
1046 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
1047 struct intel_context *ctx, int num_dwords)
1048 {
1049 struct intel_engine_cs *ring = ringbuf->ring;
1050 struct drm_device *dev = ring->dev;
1051 struct drm_i915_private *dev_priv = dev->dev_private;
1052 int ret;
1053
1054 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1055 dev_priv->mm.interruptible);
1056 if (ret)
1057 return ret;
1058
1059 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
1060 if (ret)
1061 return ret;
1062
1063 /* Preallocate the olr before touching the ring */
1064 ret = logical_ring_alloc_request(ring, ctx);
1065 if (ret)
1066 return ret;
1067
1068 ringbuf->space -= num_dwords * sizeof(uint32_t);
1069 return 0;
1070 }
1071
1072 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1073 struct intel_context *ctx)
1074 {
1075 int ret, i;
1076 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1077 struct drm_device *dev = ring->dev;
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 struct i915_workarounds *w = &dev_priv->workarounds;
1080
1081 if (WARN_ON_ONCE(w->count == 0))
1082 return 0;
1083
1084 ring->gpu_caches_dirty = true;
1085 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1086 if (ret)
1087 return ret;
1088
1089 ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1090 if (ret)
1091 return ret;
1092
1093 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1094 for (i = 0; i < w->count; i++) {
1095 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1096 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1097 }
1098 intel_logical_ring_emit(ringbuf, MI_NOOP);
1099
1100 intel_logical_ring_advance(ringbuf);
1101
1102 ring->gpu_caches_dirty = true;
1103 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1104 if (ret)
1105 return ret;
1106
1107 return 0;
1108 }
1109
1110 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1111 {
1112 struct drm_device *dev = ring->dev;
1113 struct drm_i915_private *dev_priv = dev->dev_private;
1114
1115 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1116 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1117
1118 I915_WRITE(RING_MODE_GEN7(ring),
1119 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1120 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1121 POSTING_READ(RING_MODE_GEN7(ring));
1122 ring->next_context_status_buffer = 0;
1123 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1124
1125 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1126
1127 return 0;
1128 }
1129
1130 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1131 {
1132 struct drm_device *dev = ring->dev;
1133 struct drm_i915_private *dev_priv = dev->dev_private;
1134 int ret;
1135
1136 ret = gen8_init_common_ring(ring);
1137 if (ret)
1138 return ret;
1139
1140 /* We need to disable the AsyncFlip performance optimisations in order
1141 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1142 * programmed to '1' on all products.
1143 *
1144 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1145 */
1146 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1147
1148 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1149
1150 return init_workarounds_ring(ring);
1151 }
1152
1153 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1154 {
1155 int ret;
1156
1157 ret = gen8_init_common_ring(ring);
1158 if (ret)
1159 return ret;
1160
1161 return init_workarounds_ring(ring);
1162 }
1163
1164 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1165 struct intel_context *ctx,
1166 u64 offset, unsigned flags)
1167 {
1168 bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1169 int ret;
1170
1171 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1172 if (ret)
1173 return ret;
1174
1175 /* FIXME(BDW): Address space and security selectors. */
1176 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1177 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1178 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1179 intel_logical_ring_emit(ringbuf, MI_NOOP);
1180 intel_logical_ring_advance(ringbuf);
1181
1182 return 0;
1183 }
1184
1185 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1186 {
1187 struct drm_device *dev = ring->dev;
1188 struct drm_i915_private *dev_priv = dev->dev_private;
1189 unsigned long flags;
1190
1191 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1192 return false;
1193
1194 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1195 if (ring->irq_refcount++ == 0) {
1196 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1197 POSTING_READ(RING_IMR(ring->mmio_base));
1198 }
1199 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1200
1201 return true;
1202 }
1203
1204 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1205 {
1206 struct drm_device *dev = ring->dev;
1207 struct drm_i915_private *dev_priv = dev->dev_private;
1208 unsigned long flags;
1209
1210 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1211 if (--ring->irq_refcount == 0) {
1212 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1213 POSTING_READ(RING_IMR(ring->mmio_base));
1214 }
1215 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1216 }
1217
1218 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1219 struct intel_context *ctx,
1220 u32 invalidate_domains,
1221 u32 unused)
1222 {
1223 struct intel_engine_cs *ring = ringbuf->ring;
1224 struct drm_device *dev = ring->dev;
1225 struct drm_i915_private *dev_priv = dev->dev_private;
1226 uint32_t cmd;
1227 int ret;
1228
1229 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1230 if (ret)
1231 return ret;
1232
1233 cmd = MI_FLUSH_DW + 1;
1234
1235 if (ring == &dev_priv->ring[VCS]) {
1236 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1237 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1238 MI_FLUSH_DW_STORE_INDEX |
1239 MI_FLUSH_DW_OP_STOREDW;
1240 } else {
1241 if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1242 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1243 MI_FLUSH_DW_OP_STOREDW;
1244 }
1245
1246 intel_logical_ring_emit(ringbuf, cmd);
1247 intel_logical_ring_emit(ringbuf,
1248 I915_GEM_HWS_SCRATCH_ADDR |
1249 MI_FLUSH_DW_USE_GTT);
1250 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1251 intel_logical_ring_emit(ringbuf, 0); /* value */
1252 intel_logical_ring_advance(ringbuf);
1253
1254 return 0;
1255 }
1256
1257 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1258 struct intel_context *ctx,
1259 u32 invalidate_domains,
1260 u32 flush_domains)
1261 {
1262 struct intel_engine_cs *ring = ringbuf->ring;
1263 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1264 u32 flags = 0;
1265 int ret;
1266
1267 flags |= PIPE_CONTROL_CS_STALL;
1268
1269 if (flush_domains) {
1270 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1271 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1272 }
1273
1274 if (invalidate_domains) {
1275 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1276 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1277 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1278 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1279 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1280 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1281 flags |= PIPE_CONTROL_QW_WRITE;
1282 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1283 }
1284
1285 ret = intel_logical_ring_begin(ringbuf, ctx, 6);
1286 if (ret)
1287 return ret;
1288
1289 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1290 intel_logical_ring_emit(ringbuf, flags);
1291 intel_logical_ring_emit(ringbuf, scratch_addr);
1292 intel_logical_ring_emit(ringbuf, 0);
1293 intel_logical_ring_emit(ringbuf, 0);
1294 intel_logical_ring_emit(ringbuf, 0);
1295 intel_logical_ring_advance(ringbuf);
1296
1297 return 0;
1298 }
1299
1300 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1301 {
1302 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1303 }
1304
1305 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1306 {
1307 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1308 }
1309
1310 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1311 struct drm_i915_gem_request *request)
1312 {
1313 struct intel_engine_cs *ring = ringbuf->ring;
1314 u32 cmd;
1315 int ret;
1316
1317 ret = intel_logical_ring_begin(ringbuf, request->ctx, 6);
1318 if (ret)
1319 return ret;
1320
1321 cmd = MI_STORE_DWORD_IMM_GEN4;
1322 cmd |= MI_GLOBAL_GTT;
1323
1324 intel_logical_ring_emit(ringbuf, cmd);
1325 intel_logical_ring_emit(ringbuf,
1326 (ring->status_page.gfx_addr +
1327 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1328 intel_logical_ring_emit(ringbuf, 0);
1329 intel_logical_ring_emit(ringbuf,
1330 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1331 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1332 intel_logical_ring_emit(ringbuf, MI_NOOP);
1333 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1334
1335 return 0;
1336 }
1337
1338 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1339 struct intel_context *ctx)
1340 {
1341 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1342 struct render_state so;
1343 struct drm_i915_file_private *file_priv = ctx->file_priv;
1344 struct drm_file *file = file_priv ? file_priv->file : NULL;
1345 int ret;
1346
1347 ret = i915_gem_render_state_prepare(ring, &so);
1348 if (ret)
1349 return ret;
1350
1351 if (so.rodata == NULL)
1352 return 0;
1353
1354 ret = ring->emit_bb_start(ringbuf,
1355 ctx,
1356 so.ggtt_offset,
1357 I915_DISPATCH_SECURE);
1358 if (ret)
1359 goto out;
1360
1361 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1362
1363 ret = __i915_add_request(ring, file, so.obj);
1364 /* intel_logical_ring_add_request moves object to inactive if it
1365 * fails */
1366 out:
1367 i915_gem_render_state_fini(&so);
1368 return ret;
1369 }
1370
1371 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1372 struct intel_context *ctx)
1373 {
1374 int ret;
1375
1376 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1377 if (ret)
1378 return ret;
1379
1380 return intel_lr_context_render_state_init(ring, ctx);
1381 }
1382
1383 /**
1384 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1385 *
1386 * @ring: Engine Command Streamer.
1387 *
1388 */
1389 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1390 {
1391 struct drm_i915_private *dev_priv;
1392
1393 if (!intel_ring_initialized(ring))
1394 return;
1395
1396 dev_priv = ring->dev->dev_private;
1397
1398 intel_logical_ring_stop(ring);
1399 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1400 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1401
1402 if (ring->cleanup)
1403 ring->cleanup(ring);
1404
1405 i915_cmd_parser_fini_ring(ring);
1406
1407 if (ring->status_page.obj) {
1408 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1409 ring->status_page.obj = NULL;
1410 }
1411 }
1412
1413 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1414 {
1415 int ret;
1416
1417 /* Intentionally left blank. */
1418 ring->buffer = NULL;
1419
1420 ring->dev = dev;
1421 INIT_LIST_HEAD(&ring->active_list);
1422 INIT_LIST_HEAD(&ring->request_list);
1423 init_waitqueue_head(&ring->irq_queue);
1424
1425 INIT_LIST_HEAD(&ring->execlist_queue);
1426 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1427 spin_lock_init(&ring->execlist_lock);
1428
1429 ret = i915_cmd_parser_init_ring(ring);
1430 if (ret)
1431 return ret;
1432
1433 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1434
1435 return ret;
1436 }
1437
1438 static int logical_render_ring_init(struct drm_device *dev)
1439 {
1440 struct drm_i915_private *dev_priv = dev->dev_private;
1441 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1442 int ret;
1443
1444 ring->name = "render ring";
1445 ring->id = RCS;
1446 ring->mmio_base = RENDER_RING_BASE;
1447 ring->irq_enable_mask =
1448 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1449 ring->irq_keep_mask =
1450 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1451 if (HAS_L3_DPF(dev))
1452 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1453
1454 if (INTEL_INFO(dev)->gen >= 9)
1455 ring->init_hw = gen9_init_render_ring;
1456 else
1457 ring->init_hw = gen8_init_render_ring;
1458 ring->init_context = gen8_init_rcs_context;
1459 ring->cleanup = intel_fini_pipe_control;
1460 ring->get_seqno = gen8_get_seqno;
1461 ring->set_seqno = gen8_set_seqno;
1462 ring->emit_request = gen8_emit_request;
1463 ring->emit_flush = gen8_emit_flush_render;
1464 ring->irq_get = gen8_logical_ring_get_irq;
1465 ring->irq_put = gen8_logical_ring_put_irq;
1466 ring->emit_bb_start = gen8_emit_bb_start;
1467
1468 ring->dev = dev;
1469 ret = logical_ring_init(dev, ring);
1470 if (ret)
1471 return ret;
1472
1473 return intel_init_pipe_control(ring);
1474 }
1475
1476 static int logical_bsd_ring_init(struct drm_device *dev)
1477 {
1478 struct drm_i915_private *dev_priv = dev->dev_private;
1479 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1480
1481 ring->name = "bsd ring";
1482 ring->id = VCS;
1483 ring->mmio_base = GEN6_BSD_RING_BASE;
1484 ring->irq_enable_mask =
1485 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1486 ring->irq_keep_mask =
1487 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1488
1489 ring->init_hw = gen8_init_common_ring;
1490 ring->get_seqno = gen8_get_seqno;
1491 ring->set_seqno = gen8_set_seqno;
1492 ring->emit_request = gen8_emit_request;
1493 ring->emit_flush = gen8_emit_flush;
1494 ring->irq_get = gen8_logical_ring_get_irq;
1495 ring->irq_put = gen8_logical_ring_put_irq;
1496 ring->emit_bb_start = gen8_emit_bb_start;
1497
1498 return logical_ring_init(dev, ring);
1499 }
1500
1501 static int logical_bsd2_ring_init(struct drm_device *dev)
1502 {
1503 struct drm_i915_private *dev_priv = dev->dev_private;
1504 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1505
1506 ring->name = "bds2 ring";
1507 ring->id = VCS2;
1508 ring->mmio_base = GEN8_BSD2_RING_BASE;
1509 ring->irq_enable_mask =
1510 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1511 ring->irq_keep_mask =
1512 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1513
1514 ring->init_hw = gen8_init_common_ring;
1515 ring->get_seqno = gen8_get_seqno;
1516 ring->set_seqno = gen8_set_seqno;
1517 ring->emit_request = gen8_emit_request;
1518 ring->emit_flush = gen8_emit_flush;
1519 ring->irq_get = gen8_logical_ring_get_irq;
1520 ring->irq_put = gen8_logical_ring_put_irq;
1521 ring->emit_bb_start = gen8_emit_bb_start;
1522
1523 return logical_ring_init(dev, ring);
1524 }
1525
1526 static int logical_blt_ring_init(struct drm_device *dev)
1527 {
1528 struct drm_i915_private *dev_priv = dev->dev_private;
1529 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1530
1531 ring->name = "blitter ring";
1532 ring->id = BCS;
1533 ring->mmio_base = BLT_RING_BASE;
1534 ring->irq_enable_mask =
1535 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1536 ring->irq_keep_mask =
1537 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1538
1539 ring->init_hw = gen8_init_common_ring;
1540 ring->get_seqno = gen8_get_seqno;
1541 ring->set_seqno = gen8_set_seqno;
1542 ring->emit_request = gen8_emit_request;
1543 ring->emit_flush = gen8_emit_flush;
1544 ring->irq_get = gen8_logical_ring_get_irq;
1545 ring->irq_put = gen8_logical_ring_put_irq;
1546 ring->emit_bb_start = gen8_emit_bb_start;
1547
1548 return logical_ring_init(dev, ring);
1549 }
1550
1551 static int logical_vebox_ring_init(struct drm_device *dev)
1552 {
1553 struct drm_i915_private *dev_priv = dev->dev_private;
1554 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1555
1556 ring->name = "video enhancement ring";
1557 ring->id = VECS;
1558 ring->mmio_base = VEBOX_RING_BASE;
1559 ring->irq_enable_mask =
1560 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1561 ring->irq_keep_mask =
1562 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1563
1564 ring->init_hw = gen8_init_common_ring;
1565 ring->get_seqno = gen8_get_seqno;
1566 ring->set_seqno = gen8_set_seqno;
1567 ring->emit_request = gen8_emit_request;
1568 ring->emit_flush = gen8_emit_flush;
1569 ring->irq_get = gen8_logical_ring_get_irq;
1570 ring->irq_put = gen8_logical_ring_put_irq;
1571 ring->emit_bb_start = gen8_emit_bb_start;
1572
1573 return logical_ring_init(dev, ring);
1574 }
1575
1576 /**
1577 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1578 * @dev: DRM device.
1579 *
1580 * This function inits the engines for an Execlists submission style (the equivalent in the
1581 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1582 * those engines that are present in the hardware.
1583 *
1584 * Return: non-zero if the initialization failed.
1585 */
1586 int intel_logical_rings_init(struct drm_device *dev)
1587 {
1588 struct drm_i915_private *dev_priv = dev->dev_private;
1589 int ret;
1590
1591 ret = logical_render_ring_init(dev);
1592 if (ret)
1593 return ret;
1594
1595 if (HAS_BSD(dev)) {
1596 ret = logical_bsd_ring_init(dev);
1597 if (ret)
1598 goto cleanup_render_ring;
1599 }
1600
1601 if (HAS_BLT(dev)) {
1602 ret = logical_blt_ring_init(dev);
1603 if (ret)
1604 goto cleanup_bsd_ring;
1605 }
1606
1607 if (HAS_VEBOX(dev)) {
1608 ret = logical_vebox_ring_init(dev);
1609 if (ret)
1610 goto cleanup_blt_ring;
1611 }
1612
1613 if (HAS_BSD2(dev)) {
1614 ret = logical_bsd2_ring_init(dev);
1615 if (ret)
1616 goto cleanup_vebox_ring;
1617 }
1618
1619 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1620 if (ret)
1621 goto cleanup_bsd2_ring;
1622
1623 return 0;
1624
1625 cleanup_bsd2_ring:
1626 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1627 cleanup_vebox_ring:
1628 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1629 cleanup_blt_ring:
1630 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1631 cleanup_bsd_ring:
1632 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1633 cleanup_render_ring:
1634 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1635
1636 return ret;
1637 }
1638
1639 static u32
1640 make_rpcs(struct drm_device *dev)
1641 {
1642 u32 rpcs = 0;
1643
1644 /*
1645 * No explicit RPCS request is needed to ensure full
1646 * slice/subslice/EU enablement prior to Gen9.
1647 */
1648 if (INTEL_INFO(dev)->gen < 9)
1649 return 0;
1650
1651 /*
1652 * Starting in Gen9, render power gating can leave
1653 * slice/subslice/EU in a partially enabled state. We
1654 * must make an explicit request through RPCS for full
1655 * enablement.
1656 */
1657 if (INTEL_INFO(dev)->has_slice_pg) {
1658 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1659 rpcs |= INTEL_INFO(dev)->slice_total <<
1660 GEN8_RPCS_S_CNT_SHIFT;
1661 rpcs |= GEN8_RPCS_ENABLE;
1662 }
1663
1664 if (INTEL_INFO(dev)->has_subslice_pg) {
1665 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1666 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1667 GEN8_RPCS_SS_CNT_SHIFT;
1668 rpcs |= GEN8_RPCS_ENABLE;
1669 }
1670
1671 if (INTEL_INFO(dev)->has_eu_pg) {
1672 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1673 GEN8_RPCS_EU_MIN_SHIFT;
1674 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1675 GEN8_RPCS_EU_MAX_SHIFT;
1676 rpcs |= GEN8_RPCS_ENABLE;
1677 }
1678
1679 return rpcs;
1680 }
1681
1682 static int
1683 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1684 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1685 {
1686 struct drm_device *dev = ring->dev;
1687 struct drm_i915_private *dev_priv = dev->dev_private;
1688 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1689 struct page *page;
1690 uint32_t *reg_state;
1691 int ret;
1692
1693 if (!ppgtt)
1694 ppgtt = dev_priv->mm.aliasing_ppgtt;
1695
1696 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1697 if (ret) {
1698 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1699 return ret;
1700 }
1701
1702 ret = i915_gem_object_get_pages(ctx_obj);
1703 if (ret) {
1704 DRM_DEBUG_DRIVER("Could not get object pages\n");
1705 return ret;
1706 }
1707
1708 i915_gem_object_pin_pages(ctx_obj);
1709
1710 /* The second page of the context object contains some fields which must
1711 * be set up prior to the first execution. */
1712 page = i915_gem_object_get_page(ctx_obj, 1);
1713 reg_state = kmap_atomic(page);
1714
1715 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1716 * commands followed by (reg, value) pairs. The values we are setting here are
1717 * only for the first context restore: on a subsequent save, the GPU will
1718 * recreate this batchbuffer with new values (including all the missing
1719 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1720 if (ring->id == RCS)
1721 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1722 else
1723 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1724 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1725 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1726 reg_state[CTX_CONTEXT_CONTROL+1] =
1727 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1728 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1729 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1730 reg_state[CTX_RING_HEAD+1] = 0;
1731 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1732 reg_state[CTX_RING_TAIL+1] = 0;
1733 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1734 /* Ring buffer start address is not known until the buffer is pinned.
1735 * It is written to the context image in execlists_update_context()
1736 */
1737 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1738 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1739 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1740 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1741 reg_state[CTX_BB_HEAD_U+1] = 0;
1742 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1743 reg_state[CTX_BB_HEAD_L+1] = 0;
1744 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1745 reg_state[CTX_BB_STATE+1] = (1<<5);
1746 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1747 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1748 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1749 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1750 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1751 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1752 if (ring->id == RCS) {
1753 /* TODO: according to BSpec, the register state context
1754 * for CHV does not have these. OTOH, these registers do
1755 * exist in CHV. I'm waiting for a clarification */
1756 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1757 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1758 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1759 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1760 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1761 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1762 }
1763 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1764 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1765 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1766 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1767 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1768 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1769 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1770 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1771 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1772 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1773 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1774 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1775 reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1776 reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1777 reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1778 reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1779 reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1780 reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1781 reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1782 reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1783 if (ring->id == RCS) {
1784 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1785 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1786 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1787 }
1788
1789 kunmap_atomic(reg_state);
1790
1791 ctx_obj->dirty = 1;
1792 set_page_dirty(page);
1793 i915_gem_object_unpin_pages(ctx_obj);
1794
1795 return 0;
1796 }
1797
1798 /**
1799 * intel_lr_context_free() - free the LRC specific bits of a context
1800 * @ctx: the LR context to free.
1801 *
1802 * The real context freeing is done in i915_gem_context_free: this only
1803 * takes care of the bits that are LRC related: the per-engine backing
1804 * objects and the logical ringbuffer.
1805 */
1806 void intel_lr_context_free(struct intel_context *ctx)
1807 {
1808 int i;
1809
1810 for (i = 0; i < I915_NUM_RINGS; i++) {
1811 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1812
1813 if (ctx_obj) {
1814 struct intel_ringbuffer *ringbuf =
1815 ctx->engine[i].ringbuf;
1816 struct intel_engine_cs *ring = ringbuf->ring;
1817
1818 if (ctx == ring->default_context) {
1819 intel_unpin_ringbuffer_obj(ringbuf);
1820 i915_gem_object_ggtt_unpin(ctx_obj);
1821 }
1822 WARN_ON(ctx->engine[ring->id].pin_count);
1823 intel_destroy_ringbuffer_obj(ringbuf);
1824 kfree(ringbuf);
1825 drm_gem_object_unreference(&ctx_obj->base);
1826 }
1827 }
1828 }
1829
1830 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1831 {
1832 int ret = 0;
1833
1834 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1835
1836 switch (ring->id) {
1837 case RCS:
1838 if (INTEL_INFO(ring->dev)->gen >= 9)
1839 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1840 else
1841 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1842 break;
1843 case VCS:
1844 case BCS:
1845 case VECS:
1846 case VCS2:
1847 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1848 break;
1849 }
1850
1851 return ret;
1852 }
1853
1854 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1855 struct drm_i915_gem_object *default_ctx_obj)
1856 {
1857 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1858
1859 /* The status page is offset 0 from the default context object
1860 * in LRC mode. */
1861 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1862 ring->status_page.page_addr =
1863 kmap(sg_page(default_ctx_obj->pages->sgl));
1864 ring->status_page.obj = default_ctx_obj;
1865
1866 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1867 (u32)ring->status_page.gfx_addr);
1868 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1869 }
1870
1871 /**
1872 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1873 * @ctx: LR context to create.
1874 * @ring: engine to be used with the context.
1875 *
1876 * This function can be called more than once, with different engines, if we plan
1877 * to use the context with them. The context backing objects and the ringbuffers
1878 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1879 * the creation is a deferred call: it's better to make sure first that we need to use
1880 * a given ring with the context.
1881 *
1882 * Return: non-zero on error.
1883 */
1884 int intel_lr_context_deferred_create(struct intel_context *ctx,
1885 struct intel_engine_cs *ring)
1886 {
1887 const bool is_global_default_ctx = (ctx == ring->default_context);
1888 struct drm_device *dev = ring->dev;
1889 struct drm_i915_gem_object *ctx_obj;
1890 uint32_t context_size;
1891 struct intel_ringbuffer *ringbuf;
1892 int ret;
1893
1894 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1895 WARN_ON(ctx->engine[ring->id].state);
1896
1897 context_size = round_up(get_lr_context_size(ring), 4096);
1898
1899 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1900 if (IS_ERR(ctx_obj)) {
1901 ret = PTR_ERR(ctx_obj);
1902 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1903 return ret;
1904 }
1905
1906 if (is_global_default_ctx) {
1907 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1908 if (ret) {
1909 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1910 ret);
1911 drm_gem_object_unreference(&ctx_obj->base);
1912 return ret;
1913 }
1914 }
1915
1916 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1917 if (!ringbuf) {
1918 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1919 ring->name);
1920 ret = -ENOMEM;
1921 goto error_unpin_ctx;
1922 }
1923
1924 ringbuf->ring = ring;
1925
1926 ringbuf->size = 32 * PAGE_SIZE;
1927 ringbuf->effective_size = ringbuf->size;
1928 ringbuf->head = 0;
1929 ringbuf->tail = 0;
1930 ringbuf->last_retired_head = -1;
1931 intel_ring_update_space(ringbuf);
1932
1933 if (ringbuf->obj == NULL) {
1934 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1935 if (ret) {
1936 DRM_DEBUG_DRIVER(
1937 "Failed to allocate ringbuffer obj %s: %d\n",
1938 ring->name, ret);
1939 goto error_free_rbuf;
1940 }
1941
1942 if (is_global_default_ctx) {
1943 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1944 if (ret) {
1945 DRM_ERROR(
1946 "Failed to pin and map ringbuffer %s: %d\n",
1947 ring->name, ret);
1948 goto error_destroy_rbuf;
1949 }
1950 }
1951
1952 }
1953
1954 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1955 if (ret) {
1956 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1957 goto error;
1958 }
1959
1960 ctx->engine[ring->id].ringbuf = ringbuf;
1961 ctx->engine[ring->id].state = ctx_obj;
1962
1963 if (ctx == ring->default_context)
1964 lrc_setup_hardware_status_page(ring, ctx_obj);
1965 else if (ring->id == RCS && !ctx->rcs_initialized) {
1966 if (ring->init_context) {
1967 ret = ring->init_context(ring, ctx);
1968 if (ret) {
1969 DRM_ERROR("ring init context: %d\n", ret);
1970 ctx->engine[ring->id].ringbuf = NULL;
1971 ctx->engine[ring->id].state = NULL;
1972 goto error;
1973 }
1974 }
1975
1976 ctx->rcs_initialized = true;
1977 }
1978
1979 return 0;
1980
1981 error:
1982 if (is_global_default_ctx)
1983 intel_unpin_ringbuffer_obj(ringbuf);
1984 error_destroy_rbuf:
1985 intel_destroy_ringbuffer_obj(ringbuf);
1986 error_free_rbuf:
1987 kfree(ringbuf);
1988 error_unpin_ctx:
1989 if (is_global_default_ctx)
1990 i915_gem_object_ggtt_unpin(ctx_obj);
1991 drm_gem_object_unreference(&ctx_obj->base);
1992 return ret;
1993 }
1994
1995 void intel_lr_context_reset(struct drm_device *dev,
1996 struct intel_context *ctx)
1997 {
1998 struct drm_i915_private *dev_priv = dev->dev_private;
1999 struct intel_engine_cs *ring;
2000 int i;
2001
2002 for_each_ring(ring, dev_priv, i) {
2003 struct drm_i915_gem_object *ctx_obj =
2004 ctx->engine[ring->id].state;
2005 struct intel_ringbuffer *ringbuf =
2006 ctx->engine[ring->id].ringbuf;
2007 uint32_t *reg_state;
2008 struct page *page;
2009
2010 if (!ctx_obj)
2011 continue;
2012
2013 if (i915_gem_object_get_pages(ctx_obj)) {
2014 WARN(1, "Failed get_pages for context obj\n");
2015 continue;
2016 }
2017 page = i915_gem_object_get_page(ctx_obj, 1);
2018 reg_state = kmap_atomic(page);
2019
2020 reg_state[CTX_RING_HEAD+1] = 0;
2021 reg_state[CTX_RING_TAIL+1] = 0;
2022
2023 kunmap_atomic(reg_state);
2024
2025 ringbuf->head = 0;
2026 ringbuf->tail = 0;
2027 }
2028 }
This page took 0.073261 seconds and 5 git commands to generate.