drm/i915: Implement inter-engine read-read optimisations
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL (1 << 0x2)
144 #define RING_EXECLIST1_VALID (1 << 0x3)
145 #define RING_EXECLIST0_VALID (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156
157 #define CTX_LRI_HEADER_0 0x01
158 #define CTX_CONTEXT_CONTROL 0x02
159 #define CTX_RING_HEAD 0x04
160 #define CTX_RING_TAIL 0x06
161 #define CTX_RING_BUFFER_START 0x08
162 #define CTX_RING_BUFFER_CONTROL 0x0a
163 #define CTX_BB_HEAD_U 0x0c
164 #define CTX_BB_HEAD_L 0x0e
165 #define CTX_BB_STATE 0x10
166 #define CTX_SECOND_BB_HEAD_U 0x12
167 #define CTX_SECOND_BB_HEAD_L 0x14
168 #define CTX_SECOND_BB_STATE 0x16
169 #define CTX_BB_PER_CTX_PTR 0x18
170 #define CTX_RCS_INDIRECT_CTX 0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172 #define CTX_LRI_HEADER_1 0x21
173 #define CTX_CTX_TIMESTAMP 0x22
174 #define CTX_PDP3_UDW 0x24
175 #define CTX_PDP3_LDW 0x26
176 #define CTX_PDP2_UDW 0x28
177 #define CTX_PDP2_LDW 0x2a
178 #define CTX_PDP1_UDW 0x2c
179 #define CTX_PDP1_LDW 0x2e
180 #define CTX_PDP0_UDW 0x30
181 #define CTX_PDP0_LDW 0x32
182 #define CTX_LRI_HEADER_2 0x41
183 #define CTX_R_PWR_CLK_STATE 0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191
192 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193 const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194 ppgtt->pdp.page_directory[n]->daddr : \
195 ppgtt->scratch_pd->daddr; \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 enum {
201 ADVANCED_CONTEXT = 0,
202 LEGACY_CONTEXT,
203 ADVANCED_AD_CONTEXT,
204 LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208 FAULT_AND_HANG = 0,
209 FAULT_AND_HALT, /* Debug only */
210 FAULT_AND_STREAM,
211 FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214
215 static int intel_lr_context_pin(struct intel_engine_cs *ring,
216 struct intel_context *ctx);
217
218 /**
219 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
220 * @dev: DRM device.
221 * @enable_execlists: value of i915.enable_execlists module parameter.
222 *
223 * Only certain platforms support Execlists (the prerequisites being
224 * support for Logical Ring Contexts and Aliasing PPGTT or better).
225 *
226 * Return: 1 if Execlists is supported and has to be enabled.
227 */
228 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
229 {
230 WARN_ON(i915.enable_ppgtt == -1);
231
232 if (INTEL_INFO(dev)->gen >= 9)
233 return 1;
234
235 if (enable_execlists == 0)
236 return 0;
237
238 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
239 i915.use_mmio_flip >= 0)
240 return 1;
241
242 return 0;
243 }
244
245 /**
246 * intel_execlists_ctx_id() - get the Execlists Context ID
247 * @ctx_obj: Logical Ring Context backing object.
248 *
249 * Do not confuse with ctx->id! Unfortunately we have a name overload
250 * here: the old context ID we pass to userspace as a handler so that
251 * they can refer to a context, and the new context ID we pass to the
252 * ELSP so that the GPU can inform us of the context status via
253 * interrupts.
254 *
255 * Return: 20-bits globally unique context ID.
256 */
257 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
258 {
259 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
260
261 /* LRCA is required to be 4K aligned so the more significant 20 bits
262 * are globally unique */
263 return lrca >> 12;
264 }
265
266 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
267 struct drm_i915_gem_object *ctx_obj)
268 {
269 struct drm_device *dev = ring->dev;
270 uint64_t desc;
271 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
272
273 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
274
275 desc = GEN8_CTX_VALID;
276 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
277 if (IS_GEN8(ctx_obj->base.dev))
278 desc |= GEN8_CTX_L3LLC_COHERENT;
279 desc |= GEN8_CTX_PRIVILEGE;
280 desc |= lrca;
281 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
282
283 /* TODO: WaDisableLiteRestore when we start using semaphore
284 * signalling between Command Streamers */
285 /* desc |= GEN8_CTX_FORCE_RESTORE; */
286
287 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
288 if (IS_GEN9(dev) &&
289 INTEL_REVID(dev) <= SKL_REVID_B0 &&
290 (ring->id == BCS || ring->id == VCS ||
291 ring->id == VECS || ring->id == VCS2))
292 desc |= GEN8_CTX_FORCE_RESTORE;
293
294 return desc;
295 }
296
297 static void execlists_elsp_write(struct intel_engine_cs *ring,
298 struct drm_i915_gem_object *ctx_obj0,
299 struct drm_i915_gem_object *ctx_obj1)
300 {
301 struct drm_device *dev = ring->dev;
302 struct drm_i915_private *dev_priv = dev->dev_private;
303 uint64_t temp = 0;
304 uint32_t desc[4];
305
306 /* XXX: You must always write both descriptors in the order below. */
307 if (ctx_obj1)
308 temp = execlists_ctx_descriptor(ring, ctx_obj1);
309 else
310 temp = 0;
311 desc[1] = (u32)(temp >> 32);
312 desc[0] = (u32)temp;
313
314 temp = execlists_ctx_descriptor(ring, ctx_obj0);
315 desc[3] = (u32)(temp >> 32);
316 desc[2] = (u32)temp;
317
318 spin_lock(&dev_priv->uncore.lock);
319 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
320 I915_WRITE_FW(RING_ELSP(ring), desc[1]);
321 I915_WRITE_FW(RING_ELSP(ring), desc[0]);
322 I915_WRITE_FW(RING_ELSP(ring), desc[3]);
323
324 /* The context is automatically loaded after the following */
325 I915_WRITE_FW(RING_ELSP(ring), desc[2]);
326
327 /* ELSP is a wo register, so use another nearby reg for posting instead */
328 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
329 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
330 spin_unlock(&dev_priv->uncore.lock);
331 }
332
333 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
334 struct drm_i915_gem_object *ring_obj,
335 struct i915_hw_ppgtt *ppgtt,
336 u32 tail)
337 {
338 struct page *page;
339 uint32_t *reg_state;
340
341 page = i915_gem_object_get_page(ctx_obj, 1);
342 reg_state = kmap_atomic(page);
343
344 reg_state[CTX_RING_TAIL+1] = tail;
345 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
346
347 /* True PPGTT with dynamic page allocation: update PDP registers and
348 * point the unallocated PDPs to the scratch page
349 */
350 if (ppgtt) {
351 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
355 }
356
357 kunmap_atomic(reg_state);
358
359 return 0;
360 }
361
362 static void execlists_submit_contexts(struct intel_engine_cs *ring,
363 struct intel_context *to0, u32 tail0,
364 struct intel_context *to1, u32 tail1)
365 {
366 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
367 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
368 struct drm_i915_gem_object *ctx_obj1 = NULL;
369 struct intel_ringbuffer *ringbuf1 = NULL;
370
371 BUG_ON(!ctx_obj0);
372 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
373 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
374
375 execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
376
377 if (to1) {
378 ringbuf1 = to1->engine[ring->id].ringbuf;
379 ctx_obj1 = to1->engine[ring->id].state;
380 BUG_ON(!ctx_obj1);
381 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
382 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
383
384 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
385 }
386
387 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
388 }
389
390 static void execlists_context_unqueue(struct intel_engine_cs *ring)
391 {
392 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
393 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
394
395 assert_spin_locked(&ring->execlist_lock);
396
397 /*
398 * If irqs are not active generate a warning as batches that finish
399 * without the irqs may get lost and a GPU Hang may occur.
400 */
401 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
402
403 if (list_empty(&ring->execlist_queue))
404 return;
405
406 /* Try to read in pairs */
407 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
408 execlist_link) {
409 if (!req0) {
410 req0 = cursor;
411 } else if (req0->ctx == cursor->ctx) {
412 /* Same ctx: ignore first request, as second request
413 * will update tail past first request's workload */
414 cursor->elsp_submitted = req0->elsp_submitted;
415 list_del(&req0->execlist_link);
416 list_add_tail(&req0->execlist_link,
417 &ring->execlist_retired_req_list);
418 req0 = cursor;
419 } else {
420 req1 = cursor;
421 break;
422 }
423 }
424
425 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
426 /*
427 * WaIdleLiteRestore: make sure we never cause a lite
428 * restore with HEAD==TAIL
429 */
430 if (req0 && req0->elsp_submitted) {
431 /*
432 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
433 * as we resubmit the request. See gen8_emit_request()
434 * for where we prepare the padding after the end of the
435 * request.
436 */
437 struct intel_ringbuffer *ringbuf;
438
439 ringbuf = req0->ctx->engine[ring->id].ringbuf;
440 req0->tail += 8;
441 req0->tail &= ringbuf->size - 1;
442 }
443 }
444
445 WARN_ON(req1 && req1->elsp_submitted);
446
447 execlists_submit_contexts(ring, req0->ctx, req0->tail,
448 req1 ? req1->ctx : NULL,
449 req1 ? req1->tail : 0);
450
451 req0->elsp_submitted++;
452 if (req1)
453 req1->elsp_submitted++;
454 }
455
456 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
457 u32 request_id)
458 {
459 struct drm_i915_gem_request *head_req;
460
461 assert_spin_locked(&ring->execlist_lock);
462
463 head_req = list_first_entry_or_null(&ring->execlist_queue,
464 struct drm_i915_gem_request,
465 execlist_link);
466
467 if (head_req != NULL) {
468 struct drm_i915_gem_object *ctx_obj =
469 head_req->ctx->engine[ring->id].state;
470 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
471 WARN(head_req->elsp_submitted == 0,
472 "Never submitted head request\n");
473
474 if (--head_req->elsp_submitted <= 0) {
475 list_del(&head_req->execlist_link);
476 list_add_tail(&head_req->execlist_link,
477 &ring->execlist_retired_req_list);
478 return true;
479 }
480 }
481 }
482
483 return false;
484 }
485
486 /**
487 * intel_lrc_irq_handler() - handle Context Switch interrupts
488 * @ring: Engine Command Streamer to handle.
489 *
490 * Check the unread Context Status Buffers and manage the submission of new
491 * contexts to the ELSP accordingly.
492 */
493 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
494 {
495 struct drm_i915_private *dev_priv = ring->dev->dev_private;
496 u32 status_pointer;
497 u8 read_pointer;
498 u8 write_pointer;
499 u32 status;
500 u32 status_id;
501 u32 submit_contexts = 0;
502
503 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
504
505 read_pointer = ring->next_context_status_buffer;
506 write_pointer = status_pointer & 0x07;
507 if (read_pointer > write_pointer)
508 write_pointer += 6;
509
510 spin_lock(&ring->execlist_lock);
511
512 while (read_pointer < write_pointer) {
513 read_pointer++;
514 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
515 (read_pointer % 6) * 8);
516 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
517 (read_pointer % 6) * 8 + 4);
518
519 if (status & GEN8_CTX_STATUS_PREEMPTED) {
520 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
521 if (execlists_check_remove_request(ring, status_id))
522 WARN(1, "Lite Restored request removed from queue\n");
523 } else
524 WARN(1, "Preemption without Lite Restore\n");
525 }
526
527 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
528 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
529 if (execlists_check_remove_request(ring, status_id))
530 submit_contexts++;
531 }
532 }
533
534 if (submit_contexts != 0)
535 execlists_context_unqueue(ring);
536
537 spin_unlock(&ring->execlist_lock);
538
539 WARN(submit_contexts > 2, "More than two context complete events?\n");
540 ring->next_context_status_buffer = write_pointer % 6;
541
542 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
543 ((u32)ring->next_context_status_buffer & 0x07) << 8);
544 }
545
546 static int execlists_context_queue(struct intel_engine_cs *ring,
547 struct intel_context *to,
548 u32 tail,
549 struct drm_i915_gem_request *request)
550 {
551 struct drm_i915_gem_request *cursor;
552 int num_elements = 0;
553
554 if (to != ring->default_context)
555 intel_lr_context_pin(ring, to);
556
557 if (!request) {
558 /*
559 * If there isn't a request associated with this submission,
560 * create one as a temporary holder.
561 */
562 request = kzalloc(sizeof(*request), GFP_KERNEL);
563 if (request == NULL)
564 return -ENOMEM;
565 request->ring = ring;
566 request->ctx = to;
567 kref_init(&request->ref);
568 i915_gem_context_reference(request->ctx);
569 } else {
570 i915_gem_request_reference(request);
571 WARN_ON(to != request->ctx);
572 }
573 request->tail = tail;
574
575 spin_lock_irq(&ring->execlist_lock);
576
577 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
578 if (++num_elements > 2)
579 break;
580
581 if (num_elements > 2) {
582 struct drm_i915_gem_request *tail_req;
583
584 tail_req = list_last_entry(&ring->execlist_queue,
585 struct drm_i915_gem_request,
586 execlist_link);
587
588 if (to == tail_req->ctx) {
589 WARN(tail_req->elsp_submitted != 0,
590 "More than 2 already-submitted reqs queued\n");
591 list_del(&tail_req->execlist_link);
592 list_add_tail(&tail_req->execlist_link,
593 &ring->execlist_retired_req_list);
594 }
595 }
596
597 list_add_tail(&request->execlist_link, &ring->execlist_queue);
598 if (num_elements == 0)
599 execlists_context_unqueue(ring);
600
601 spin_unlock_irq(&ring->execlist_lock);
602
603 return 0;
604 }
605
606 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
607 struct intel_context *ctx)
608 {
609 struct intel_engine_cs *ring = ringbuf->ring;
610 uint32_t flush_domains;
611 int ret;
612
613 flush_domains = 0;
614 if (ring->gpu_caches_dirty)
615 flush_domains = I915_GEM_GPU_DOMAINS;
616
617 ret = ring->emit_flush(ringbuf, ctx,
618 I915_GEM_GPU_DOMAINS, flush_domains);
619 if (ret)
620 return ret;
621
622 ring->gpu_caches_dirty = false;
623 return 0;
624 }
625
626 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
627 struct intel_context *ctx,
628 struct list_head *vmas)
629 {
630 struct intel_engine_cs *ring = ringbuf->ring;
631 struct i915_vma *vma;
632 uint32_t flush_domains = 0;
633 bool flush_chipset = false;
634 int ret;
635
636 list_for_each_entry(vma, vmas, exec_list) {
637 struct drm_i915_gem_object *obj = vma->obj;
638
639 ret = i915_gem_object_sync(obj, ring);
640 if (ret)
641 return ret;
642
643 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
644 flush_chipset |= i915_gem_clflush_object(obj, false);
645
646 flush_domains |= obj->base.write_domain;
647 }
648
649 if (flush_domains & I915_GEM_DOMAIN_GTT)
650 wmb();
651
652 /* Unconditionally invalidate gpu caches and ensure that we do flush
653 * any residual writes from the previous batch.
654 */
655 return logical_ring_invalidate_all_caches(ringbuf, ctx);
656 }
657
658 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request,
659 struct intel_context *ctx)
660 {
661 int ret;
662
663 if (ctx != request->ring->default_context) {
664 ret = intel_lr_context_pin(request->ring, ctx);
665 if (ret)
666 return ret;
667 }
668
669 request->ringbuf = ctx->engine[request->ring->id].ringbuf;
670 request->ctx = ctx;
671 i915_gem_context_reference(request->ctx);
672
673 return 0;
674 }
675
676 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
677 struct intel_context *ctx,
678 int bytes)
679 {
680 struct intel_engine_cs *ring = ringbuf->ring;
681 struct drm_i915_gem_request *request;
682 unsigned space;
683 int ret;
684
685 if (intel_ring_space(ringbuf) >= bytes)
686 return 0;
687
688 list_for_each_entry(request, &ring->request_list, list) {
689 /*
690 * The request queue is per-engine, so can contain requests
691 * from multiple ringbuffers. Here, we must ignore any that
692 * aren't from the ringbuffer we're considering.
693 */
694 if (request->ringbuf != ringbuf)
695 continue;
696
697 /* Would completion of this request free enough space? */
698 space = __intel_ring_space(request->postfix, ringbuf->tail,
699 ringbuf->size);
700 if (space >= bytes)
701 break;
702 }
703
704 if (WARN_ON(&request->list == &ring->request_list))
705 return -ENOSPC;
706
707 ret = i915_wait_request(request);
708 if (ret)
709 return ret;
710
711 ringbuf->space = space;
712 return 0;
713 }
714
715 /*
716 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
717 * @ringbuf: Logical Ringbuffer to advance.
718 *
719 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
720 * really happens during submission is that the context and current tail will be placed
721 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
722 * point, the tail *inside* the context is updated and the ELSP written to.
723 */
724 static void
725 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
726 struct intel_context *ctx,
727 struct drm_i915_gem_request *request)
728 {
729 struct intel_engine_cs *ring = ringbuf->ring;
730
731 intel_logical_ring_advance(ringbuf);
732
733 if (intel_ring_stopped(ring))
734 return;
735
736 execlists_context_queue(ring, ctx, ringbuf->tail, request);
737 }
738
739 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
740 struct intel_context *ctx)
741 {
742 uint32_t __iomem *virt;
743 int rem = ringbuf->size - ringbuf->tail;
744
745 if (ringbuf->space < rem) {
746 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
747
748 if (ret)
749 return ret;
750 }
751
752 virt = ringbuf->virtual_start + ringbuf->tail;
753 rem /= 4;
754 while (rem--)
755 iowrite32(MI_NOOP, virt++);
756
757 ringbuf->tail = 0;
758 intel_ring_update_space(ringbuf);
759
760 return 0;
761 }
762
763 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
764 struct intel_context *ctx, int bytes)
765 {
766 int ret;
767
768 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
769 ret = logical_ring_wrap_buffer(ringbuf, ctx);
770 if (unlikely(ret))
771 return ret;
772 }
773
774 if (unlikely(ringbuf->space < bytes)) {
775 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
776 if (unlikely(ret))
777 return ret;
778 }
779
780 return 0;
781 }
782
783 /**
784 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
785 *
786 * @ringbuf: Logical ringbuffer.
787 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
788 *
789 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
790 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
791 * and also preallocates a request (every workload submission is still mediated through
792 * requests, same as it did with legacy ringbuffer submission).
793 *
794 * Return: non-zero if the ringbuffer is not ready to be written to.
795 */
796 static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
797 struct intel_context *ctx, int num_dwords)
798 {
799 struct intel_engine_cs *ring = ringbuf->ring;
800 struct drm_device *dev = ring->dev;
801 struct drm_i915_private *dev_priv = dev->dev_private;
802 int ret;
803
804 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
805 dev_priv->mm.interruptible);
806 if (ret)
807 return ret;
808
809 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
810 if (ret)
811 return ret;
812
813 /* Preallocate the olr before touching the ring */
814 ret = i915_gem_request_alloc(ring, ctx);
815 if (ret)
816 return ret;
817
818 ringbuf->space -= num_dwords * sizeof(uint32_t);
819 return 0;
820 }
821
822 /**
823 * execlists_submission() - submit a batchbuffer for execution, Execlists style
824 * @dev: DRM device.
825 * @file: DRM file.
826 * @ring: Engine Command Streamer to submit to.
827 * @ctx: Context to employ for this submission.
828 * @args: execbuffer call arguments.
829 * @vmas: list of vmas.
830 * @batch_obj: the batchbuffer to submit.
831 * @exec_start: batchbuffer start virtual address pointer.
832 * @dispatch_flags: translated execbuffer call flags.
833 *
834 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
835 * away the submission details of the execbuffer ioctl call.
836 *
837 * Return: non-zero if the submission fails.
838 */
839 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
840 struct intel_engine_cs *ring,
841 struct intel_context *ctx,
842 struct drm_i915_gem_execbuffer2 *args,
843 struct list_head *vmas,
844 struct drm_i915_gem_object *batch_obj,
845 u64 exec_start, u32 dispatch_flags)
846 {
847 struct drm_i915_private *dev_priv = dev->dev_private;
848 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
849 int instp_mode;
850 u32 instp_mask;
851 int ret;
852
853 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
854 instp_mask = I915_EXEC_CONSTANTS_MASK;
855 switch (instp_mode) {
856 case I915_EXEC_CONSTANTS_REL_GENERAL:
857 case I915_EXEC_CONSTANTS_ABSOLUTE:
858 case I915_EXEC_CONSTANTS_REL_SURFACE:
859 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
860 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
861 return -EINVAL;
862 }
863
864 if (instp_mode != dev_priv->relative_constants_mode) {
865 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
866 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
867 return -EINVAL;
868 }
869
870 /* The HW changed the meaning on this bit on gen6 */
871 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
872 }
873 break;
874 default:
875 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
876 return -EINVAL;
877 }
878
879 if (args->num_cliprects != 0) {
880 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
881 return -EINVAL;
882 } else {
883 if (args->DR4 == 0xffffffff) {
884 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
885 args->DR4 = 0;
886 }
887
888 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
889 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
890 return -EINVAL;
891 }
892 }
893
894 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
895 DRM_DEBUG("sol reset is gen7 only\n");
896 return -EINVAL;
897 }
898
899 ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
900 if (ret)
901 return ret;
902
903 if (ring == &dev_priv->ring[RCS] &&
904 instp_mode != dev_priv->relative_constants_mode) {
905 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
906 if (ret)
907 return ret;
908
909 intel_logical_ring_emit(ringbuf, MI_NOOP);
910 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
911 intel_logical_ring_emit(ringbuf, INSTPM);
912 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
913 intel_logical_ring_advance(ringbuf);
914
915 dev_priv->relative_constants_mode = instp_mode;
916 }
917
918 ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
919 if (ret)
920 return ret;
921
922 trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
923
924 i915_gem_execbuffer_move_to_active(vmas, ring);
925 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
926
927 return 0;
928 }
929
930 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
931 {
932 struct drm_i915_gem_request *req, *tmp;
933 struct list_head retired_list;
934
935 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
936 if (list_empty(&ring->execlist_retired_req_list))
937 return;
938
939 INIT_LIST_HEAD(&retired_list);
940 spin_lock_irq(&ring->execlist_lock);
941 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
942 spin_unlock_irq(&ring->execlist_lock);
943
944 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
945 struct intel_context *ctx = req->ctx;
946 struct drm_i915_gem_object *ctx_obj =
947 ctx->engine[ring->id].state;
948
949 if (ctx_obj && (ctx != ring->default_context))
950 intel_lr_context_unpin(ring, ctx);
951 list_del(&req->execlist_link);
952 i915_gem_request_unreference(req);
953 }
954 }
955
956 void intel_logical_ring_stop(struct intel_engine_cs *ring)
957 {
958 struct drm_i915_private *dev_priv = ring->dev->dev_private;
959 int ret;
960
961 if (!intel_ring_initialized(ring))
962 return;
963
964 ret = intel_ring_idle(ring);
965 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
966 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
967 ring->name, ret);
968
969 /* TODO: Is this correct with Execlists enabled? */
970 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
971 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
972 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
973 return;
974 }
975 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
976 }
977
978 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
979 struct intel_context *ctx)
980 {
981 struct intel_engine_cs *ring = ringbuf->ring;
982 int ret;
983
984 if (!ring->gpu_caches_dirty)
985 return 0;
986
987 ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
988 if (ret)
989 return ret;
990
991 ring->gpu_caches_dirty = false;
992 return 0;
993 }
994
995 static int intel_lr_context_pin(struct intel_engine_cs *ring,
996 struct intel_context *ctx)
997 {
998 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
999 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1000 int ret = 0;
1001
1002 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1003 if (ctx->engine[ring->id].pin_count++ == 0) {
1004 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1005 GEN8_LR_CONTEXT_ALIGN, 0);
1006 if (ret)
1007 goto reset_pin_count;
1008
1009 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1010 if (ret)
1011 goto unpin_ctx_obj;
1012 }
1013
1014 return ret;
1015
1016 unpin_ctx_obj:
1017 i915_gem_object_ggtt_unpin(ctx_obj);
1018 reset_pin_count:
1019 ctx->engine[ring->id].pin_count = 0;
1020
1021 return ret;
1022 }
1023
1024 void intel_lr_context_unpin(struct intel_engine_cs *ring,
1025 struct intel_context *ctx)
1026 {
1027 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1028 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1029
1030 if (ctx_obj) {
1031 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1032 if (--ctx->engine[ring->id].pin_count == 0) {
1033 intel_unpin_ringbuffer_obj(ringbuf);
1034 i915_gem_object_ggtt_unpin(ctx_obj);
1035 }
1036 }
1037 }
1038
1039 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1040 struct intel_context *ctx)
1041 {
1042 int ret, i;
1043 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1044 struct drm_device *dev = ring->dev;
1045 struct drm_i915_private *dev_priv = dev->dev_private;
1046 struct i915_workarounds *w = &dev_priv->workarounds;
1047
1048 if (WARN_ON_ONCE(w->count == 0))
1049 return 0;
1050
1051 ring->gpu_caches_dirty = true;
1052 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1053 if (ret)
1054 return ret;
1055
1056 ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1057 if (ret)
1058 return ret;
1059
1060 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1061 for (i = 0; i < w->count; i++) {
1062 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1063 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1064 }
1065 intel_logical_ring_emit(ringbuf, MI_NOOP);
1066
1067 intel_logical_ring_advance(ringbuf);
1068
1069 ring->gpu_caches_dirty = true;
1070 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1071 if (ret)
1072 return ret;
1073
1074 return 0;
1075 }
1076
1077 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1078 {
1079 struct drm_device *dev = ring->dev;
1080 struct drm_i915_private *dev_priv = dev->dev_private;
1081
1082 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1083 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1084
1085 I915_WRITE(RING_MODE_GEN7(ring),
1086 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1087 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1088 POSTING_READ(RING_MODE_GEN7(ring));
1089 ring->next_context_status_buffer = 0;
1090 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1091
1092 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1093
1094 return 0;
1095 }
1096
1097 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1098 {
1099 struct drm_device *dev = ring->dev;
1100 struct drm_i915_private *dev_priv = dev->dev_private;
1101 int ret;
1102
1103 ret = gen8_init_common_ring(ring);
1104 if (ret)
1105 return ret;
1106
1107 /* We need to disable the AsyncFlip performance optimisations in order
1108 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1109 * programmed to '1' on all products.
1110 *
1111 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1112 */
1113 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1114
1115 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1116
1117 return init_workarounds_ring(ring);
1118 }
1119
1120 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1121 {
1122 int ret;
1123
1124 ret = gen8_init_common_ring(ring);
1125 if (ret)
1126 return ret;
1127
1128 return init_workarounds_ring(ring);
1129 }
1130
1131 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1132 struct intel_context *ctx,
1133 u64 offset, unsigned dispatch_flags)
1134 {
1135 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1136 int ret;
1137
1138 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1139 if (ret)
1140 return ret;
1141
1142 /* FIXME(BDW): Address space and security selectors. */
1143 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1144 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1145 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1146 intel_logical_ring_emit(ringbuf, MI_NOOP);
1147 intel_logical_ring_advance(ringbuf);
1148
1149 return 0;
1150 }
1151
1152 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1153 {
1154 struct drm_device *dev = ring->dev;
1155 struct drm_i915_private *dev_priv = dev->dev_private;
1156 unsigned long flags;
1157
1158 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1159 return false;
1160
1161 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1162 if (ring->irq_refcount++ == 0) {
1163 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1164 POSTING_READ(RING_IMR(ring->mmio_base));
1165 }
1166 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1167
1168 return true;
1169 }
1170
1171 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1172 {
1173 struct drm_device *dev = ring->dev;
1174 struct drm_i915_private *dev_priv = dev->dev_private;
1175 unsigned long flags;
1176
1177 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1178 if (--ring->irq_refcount == 0) {
1179 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1180 POSTING_READ(RING_IMR(ring->mmio_base));
1181 }
1182 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1183 }
1184
1185 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1186 struct intel_context *ctx,
1187 u32 invalidate_domains,
1188 u32 unused)
1189 {
1190 struct intel_engine_cs *ring = ringbuf->ring;
1191 struct drm_device *dev = ring->dev;
1192 struct drm_i915_private *dev_priv = dev->dev_private;
1193 uint32_t cmd;
1194 int ret;
1195
1196 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1197 if (ret)
1198 return ret;
1199
1200 cmd = MI_FLUSH_DW + 1;
1201
1202 /* We always require a command barrier so that subsequent
1203 * commands, such as breadcrumb interrupts, are strictly ordered
1204 * wrt the contents of the write cache being flushed to memory
1205 * (and thus being coherent from the CPU).
1206 */
1207 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1208
1209 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1210 cmd |= MI_INVALIDATE_TLB;
1211 if (ring == &dev_priv->ring[VCS])
1212 cmd |= MI_INVALIDATE_BSD;
1213 }
1214
1215 intel_logical_ring_emit(ringbuf, cmd);
1216 intel_logical_ring_emit(ringbuf,
1217 I915_GEM_HWS_SCRATCH_ADDR |
1218 MI_FLUSH_DW_USE_GTT);
1219 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1220 intel_logical_ring_emit(ringbuf, 0); /* value */
1221 intel_logical_ring_advance(ringbuf);
1222
1223 return 0;
1224 }
1225
1226 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1227 struct intel_context *ctx,
1228 u32 invalidate_domains,
1229 u32 flush_domains)
1230 {
1231 struct intel_engine_cs *ring = ringbuf->ring;
1232 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1233 bool vf_flush_wa;
1234 u32 flags = 0;
1235 int ret;
1236
1237 flags |= PIPE_CONTROL_CS_STALL;
1238
1239 if (flush_domains) {
1240 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1241 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1242 }
1243
1244 if (invalidate_domains) {
1245 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1246 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1247 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1248 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1249 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1250 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1251 flags |= PIPE_CONTROL_QW_WRITE;
1252 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1253 }
1254
1255 /*
1256 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1257 * control.
1258 */
1259 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1260 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1261
1262 ret = intel_logical_ring_begin(ringbuf, ctx, vf_flush_wa ? 12 : 6);
1263 if (ret)
1264 return ret;
1265
1266 if (vf_flush_wa) {
1267 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1268 intel_logical_ring_emit(ringbuf, 0);
1269 intel_logical_ring_emit(ringbuf, 0);
1270 intel_logical_ring_emit(ringbuf, 0);
1271 intel_logical_ring_emit(ringbuf, 0);
1272 intel_logical_ring_emit(ringbuf, 0);
1273 }
1274
1275 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1276 intel_logical_ring_emit(ringbuf, flags);
1277 intel_logical_ring_emit(ringbuf, scratch_addr);
1278 intel_logical_ring_emit(ringbuf, 0);
1279 intel_logical_ring_emit(ringbuf, 0);
1280 intel_logical_ring_emit(ringbuf, 0);
1281 intel_logical_ring_advance(ringbuf);
1282
1283 return 0;
1284 }
1285
1286 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1287 {
1288 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1289 }
1290
1291 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1292 {
1293 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1294 }
1295
1296 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1297 struct drm_i915_gem_request *request)
1298 {
1299 struct intel_engine_cs *ring = ringbuf->ring;
1300 u32 cmd;
1301 int ret;
1302
1303 /*
1304 * Reserve space for 2 NOOPs at the end of each request to be
1305 * used as a workaround for not being allowed to do lite
1306 * restore with HEAD==TAIL (WaIdleLiteRestore).
1307 */
1308 ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1309 if (ret)
1310 return ret;
1311
1312 cmd = MI_STORE_DWORD_IMM_GEN4;
1313 cmd |= MI_GLOBAL_GTT;
1314
1315 intel_logical_ring_emit(ringbuf, cmd);
1316 intel_logical_ring_emit(ringbuf,
1317 (ring->status_page.gfx_addr +
1318 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1319 intel_logical_ring_emit(ringbuf, 0);
1320 intel_logical_ring_emit(ringbuf,
1321 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1322 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1323 intel_logical_ring_emit(ringbuf, MI_NOOP);
1324 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1325
1326 /*
1327 * Here we add two extra NOOPs as padding to avoid
1328 * lite restore of a context with HEAD==TAIL.
1329 */
1330 intel_logical_ring_emit(ringbuf, MI_NOOP);
1331 intel_logical_ring_emit(ringbuf, MI_NOOP);
1332 intel_logical_ring_advance(ringbuf);
1333
1334 return 0;
1335 }
1336
1337 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1338 struct intel_context *ctx)
1339 {
1340 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1341 struct render_state so;
1342 struct drm_i915_file_private *file_priv = ctx->file_priv;
1343 struct drm_file *file = file_priv ? file_priv->file : NULL;
1344 int ret;
1345
1346 ret = i915_gem_render_state_prepare(ring, &so);
1347 if (ret)
1348 return ret;
1349
1350 if (so.rodata == NULL)
1351 return 0;
1352
1353 ret = ring->emit_bb_start(ringbuf,
1354 ctx,
1355 so.ggtt_offset,
1356 I915_DISPATCH_SECURE);
1357 if (ret)
1358 goto out;
1359
1360 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1361
1362 ret = __i915_add_request(ring, file, so.obj);
1363 /* intel_logical_ring_add_request moves object to inactive if it
1364 * fails */
1365 out:
1366 i915_gem_render_state_fini(&so);
1367 return ret;
1368 }
1369
1370 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1371 struct intel_context *ctx)
1372 {
1373 int ret;
1374
1375 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1376 if (ret)
1377 return ret;
1378
1379 return intel_lr_context_render_state_init(ring, ctx);
1380 }
1381
1382 /**
1383 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1384 *
1385 * @ring: Engine Command Streamer.
1386 *
1387 */
1388 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1389 {
1390 struct drm_i915_private *dev_priv;
1391
1392 if (!intel_ring_initialized(ring))
1393 return;
1394
1395 dev_priv = ring->dev->dev_private;
1396
1397 intel_logical_ring_stop(ring);
1398 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1399 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1400
1401 if (ring->cleanup)
1402 ring->cleanup(ring);
1403
1404 i915_cmd_parser_fini_ring(ring);
1405 i915_gem_batch_pool_fini(&ring->batch_pool);
1406
1407 if (ring->status_page.obj) {
1408 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1409 ring->status_page.obj = NULL;
1410 }
1411 }
1412
1413 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1414 {
1415 int ret;
1416
1417 /* Intentionally left blank. */
1418 ring->buffer = NULL;
1419
1420 ring->dev = dev;
1421 INIT_LIST_HEAD(&ring->active_list);
1422 INIT_LIST_HEAD(&ring->request_list);
1423 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1424 init_waitqueue_head(&ring->irq_queue);
1425
1426 INIT_LIST_HEAD(&ring->execlist_queue);
1427 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1428 spin_lock_init(&ring->execlist_lock);
1429
1430 ret = i915_cmd_parser_init_ring(ring);
1431 if (ret)
1432 return ret;
1433
1434 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1435
1436 return ret;
1437 }
1438
1439 static int logical_render_ring_init(struct drm_device *dev)
1440 {
1441 struct drm_i915_private *dev_priv = dev->dev_private;
1442 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1443 int ret;
1444
1445 ring->name = "render ring";
1446 ring->id = RCS;
1447 ring->mmio_base = RENDER_RING_BASE;
1448 ring->irq_enable_mask =
1449 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1450 ring->irq_keep_mask =
1451 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1452 if (HAS_L3_DPF(dev))
1453 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1454
1455 if (INTEL_INFO(dev)->gen >= 9)
1456 ring->init_hw = gen9_init_render_ring;
1457 else
1458 ring->init_hw = gen8_init_render_ring;
1459 ring->init_context = gen8_init_rcs_context;
1460 ring->cleanup = intel_fini_pipe_control;
1461 ring->get_seqno = gen8_get_seqno;
1462 ring->set_seqno = gen8_set_seqno;
1463 ring->emit_request = gen8_emit_request;
1464 ring->emit_flush = gen8_emit_flush_render;
1465 ring->irq_get = gen8_logical_ring_get_irq;
1466 ring->irq_put = gen8_logical_ring_put_irq;
1467 ring->emit_bb_start = gen8_emit_bb_start;
1468
1469 ring->dev = dev;
1470 ret = logical_ring_init(dev, ring);
1471 if (ret)
1472 return ret;
1473
1474 return intel_init_pipe_control(ring);
1475 }
1476
1477 static int logical_bsd_ring_init(struct drm_device *dev)
1478 {
1479 struct drm_i915_private *dev_priv = dev->dev_private;
1480 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1481
1482 ring->name = "bsd ring";
1483 ring->id = VCS;
1484 ring->mmio_base = GEN6_BSD_RING_BASE;
1485 ring->irq_enable_mask =
1486 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1487 ring->irq_keep_mask =
1488 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1489
1490 ring->init_hw = gen8_init_common_ring;
1491 ring->get_seqno = gen8_get_seqno;
1492 ring->set_seqno = gen8_set_seqno;
1493 ring->emit_request = gen8_emit_request;
1494 ring->emit_flush = gen8_emit_flush;
1495 ring->irq_get = gen8_logical_ring_get_irq;
1496 ring->irq_put = gen8_logical_ring_put_irq;
1497 ring->emit_bb_start = gen8_emit_bb_start;
1498
1499 return logical_ring_init(dev, ring);
1500 }
1501
1502 static int logical_bsd2_ring_init(struct drm_device *dev)
1503 {
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1506
1507 ring->name = "bds2 ring";
1508 ring->id = VCS2;
1509 ring->mmio_base = GEN8_BSD2_RING_BASE;
1510 ring->irq_enable_mask =
1511 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1512 ring->irq_keep_mask =
1513 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1514
1515 ring->init_hw = gen8_init_common_ring;
1516 ring->get_seqno = gen8_get_seqno;
1517 ring->set_seqno = gen8_set_seqno;
1518 ring->emit_request = gen8_emit_request;
1519 ring->emit_flush = gen8_emit_flush;
1520 ring->irq_get = gen8_logical_ring_get_irq;
1521 ring->irq_put = gen8_logical_ring_put_irq;
1522 ring->emit_bb_start = gen8_emit_bb_start;
1523
1524 return logical_ring_init(dev, ring);
1525 }
1526
1527 static int logical_blt_ring_init(struct drm_device *dev)
1528 {
1529 struct drm_i915_private *dev_priv = dev->dev_private;
1530 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1531
1532 ring->name = "blitter ring";
1533 ring->id = BCS;
1534 ring->mmio_base = BLT_RING_BASE;
1535 ring->irq_enable_mask =
1536 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1537 ring->irq_keep_mask =
1538 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1539
1540 ring->init_hw = gen8_init_common_ring;
1541 ring->get_seqno = gen8_get_seqno;
1542 ring->set_seqno = gen8_set_seqno;
1543 ring->emit_request = gen8_emit_request;
1544 ring->emit_flush = gen8_emit_flush;
1545 ring->irq_get = gen8_logical_ring_get_irq;
1546 ring->irq_put = gen8_logical_ring_put_irq;
1547 ring->emit_bb_start = gen8_emit_bb_start;
1548
1549 return logical_ring_init(dev, ring);
1550 }
1551
1552 static int logical_vebox_ring_init(struct drm_device *dev)
1553 {
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1556
1557 ring->name = "video enhancement ring";
1558 ring->id = VECS;
1559 ring->mmio_base = VEBOX_RING_BASE;
1560 ring->irq_enable_mask =
1561 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1562 ring->irq_keep_mask =
1563 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1564
1565 ring->init_hw = gen8_init_common_ring;
1566 ring->get_seqno = gen8_get_seqno;
1567 ring->set_seqno = gen8_set_seqno;
1568 ring->emit_request = gen8_emit_request;
1569 ring->emit_flush = gen8_emit_flush;
1570 ring->irq_get = gen8_logical_ring_get_irq;
1571 ring->irq_put = gen8_logical_ring_put_irq;
1572 ring->emit_bb_start = gen8_emit_bb_start;
1573
1574 return logical_ring_init(dev, ring);
1575 }
1576
1577 /**
1578 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1579 * @dev: DRM device.
1580 *
1581 * This function inits the engines for an Execlists submission style (the equivalent in the
1582 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1583 * those engines that are present in the hardware.
1584 *
1585 * Return: non-zero if the initialization failed.
1586 */
1587 int intel_logical_rings_init(struct drm_device *dev)
1588 {
1589 struct drm_i915_private *dev_priv = dev->dev_private;
1590 int ret;
1591
1592 ret = logical_render_ring_init(dev);
1593 if (ret)
1594 return ret;
1595
1596 if (HAS_BSD(dev)) {
1597 ret = logical_bsd_ring_init(dev);
1598 if (ret)
1599 goto cleanup_render_ring;
1600 }
1601
1602 if (HAS_BLT(dev)) {
1603 ret = logical_blt_ring_init(dev);
1604 if (ret)
1605 goto cleanup_bsd_ring;
1606 }
1607
1608 if (HAS_VEBOX(dev)) {
1609 ret = logical_vebox_ring_init(dev);
1610 if (ret)
1611 goto cleanup_blt_ring;
1612 }
1613
1614 if (HAS_BSD2(dev)) {
1615 ret = logical_bsd2_ring_init(dev);
1616 if (ret)
1617 goto cleanup_vebox_ring;
1618 }
1619
1620 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1621 if (ret)
1622 goto cleanup_bsd2_ring;
1623
1624 return 0;
1625
1626 cleanup_bsd2_ring:
1627 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1628 cleanup_vebox_ring:
1629 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1630 cleanup_blt_ring:
1631 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1632 cleanup_bsd_ring:
1633 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1634 cleanup_render_ring:
1635 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1636
1637 return ret;
1638 }
1639
1640 static u32
1641 make_rpcs(struct drm_device *dev)
1642 {
1643 u32 rpcs = 0;
1644
1645 /*
1646 * No explicit RPCS request is needed to ensure full
1647 * slice/subslice/EU enablement prior to Gen9.
1648 */
1649 if (INTEL_INFO(dev)->gen < 9)
1650 return 0;
1651
1652 /*
1653 * Starting in Gen9, render power gating can leave
1654 * slice/subslice/EU in a partially enabled state. We
1655 * must make an explicit request through RPCS for full
1656 * enablement.
1657 */
1658 if (INTEL_INFO(dev)->has_slice_pg) {
1659 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1660 rpcs |= INTEL_INFO(dev)->slice_total <<
1661 GEN8_RPCS_S_CNT_SHIFT;
1662 rpcs |= GEN8_RPCS_ENABLE;
1663 }
1664
1665 if (INTEL_INFO(dev)->has_subslice_pg) {
1666 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1667 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1668 GEN8_RPCS_SS_CNT_SHIFT;
1669 rpcs |= GEN8_RPCS_ENABLE;
1670 }
1671
1672 if (INTEL_INFO(dev)->has_eu_pg) {
1673 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1674 GEN8_RPCS_EU_MIN_SHIFT;
1675 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1676 GEN8_RPCS_EU_MAX_SHIFT;
1677 rpcs |= GEN8_RPCS_ENABLE;
1678 }
1679
1680 return rpcs;
1681 }
1682
1683 static int
1684 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1685 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1686 {
1687 struct drm_device *dev = ring->dev;
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1689 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1690 struct page *page;
1691 uint32_t *reg_state;
1692 int ret;
1693
1694 if (!ppgtt)
1695 ppgtt = dev_priv->mm.aliasing_ppgtt;
1696
1697 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1698 if (ret) {
1699 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1700 return ret;
1701 }
1702
1703 ret = i915_gem_object_get_pages(ctx_obj);
1704 if (ret) {
1705 DRM_DEBUG_DRIVER("Could not get object pages\n");
1706 return ret;
1707 }
1708
1709 i915_gem_object_pin_pages(ctx_obj);
1710
1711 /* The second page of the context object contains some fields which must
1712 * be set up prior to the first execution. */
1713 page = i915_gem_object_get_page(ctx_obj, 1);
1714 reg_state = kmap_atomic(page);
1715
1716 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1717 * commands followed by (reg, value) pairs. The values we are setting here are
1718 * only for the first context restore: on a subsequent save, the GPU will
1719 * recreate this batchbuffer with new values (including all the missing
1720 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1721 if (ring->id == RCS)
1722 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1723 else
1724 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1725 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1726 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1727 reg_state[CTX_CONTEXT_CONTROL+1] =
1728 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1729 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1730 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1731 reg_state[CTX_RING_HEAD+1] = 0;
1732 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1733 reg_state[CTX_RING_TAIL+1] = 0;
1734 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1735 /* Ring buffer start address is not known until the buffer is pinned.
1736 * It is written to the context image in execlists_update_context()
1737 */
1738 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1739 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1740 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1741 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1742 reg_state[CTX_BB_HEAD_U+1] = 0;
1743 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1744 reg_state[CTX_BB_HEAD_L+1] = 0;
1745 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1746 reg_state[CTX_BB_STATE+1] = (1<<5);
1747 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1748 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1749 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1750 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1751 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1752 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1753 if (ring->id == RCS) {
1754 /* TODO: according to BSpec, the register state context
1755 * for CHV does not have these. OTOH, these registers do
1756 * exist in CHV. I'm waiting for a clarification */
1757 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1758 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1759 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1760 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1761 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1762 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1763 }
1764 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1765 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1766 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1767 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1768 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1769 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1770 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1771 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1772 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1773 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1774 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1775 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1776
1777 /* With dynamic page allocation, PDPs may not be allocated at this point,
1778 * Point the unallocated PDPs to the scratch page
1779 */
1780 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
1781 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
1782 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
1783 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
1784 if (ring->id == RCS) {
1785 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1786 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1787 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1788 }
1789
1790 kunmap_atomic(reg_state);
1791
1792 ctx_obj->dirty = 1;
1793 set_page_dirty(page);
1794 i915_gem_object_unpin_pages(ctx_obj);
1795
1796 return 0;
1797 }
1798
1799 /**
1800 * intel_lr_context_free() - free the LRC specific bits of a context
1801 * @ctx: the LR context to free.
1802 *
1803 * The real context freeing is done in i915_gem_context_free: this only
1804 * takes care of the bits that are LRC related: the per-engine backing
1805 * objects and the logical ringbuffer.
1806 */
1807 void intel_lr_context_free(struct intel_context *ctx)
1808 {
1809 int i;
1810
1811 for (i = 0; i < I915_NUM_RINGS; i++) {
1812 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1813
1814 if (ctx_obj) {
1815 struct intel_ringbuffer *ringbuf =
1816 ctx->engine[i].ringbuf;
1817 struct intel_engine_cs *ring = ringbuf->ring;
1818
1819 if (ctx == ring->default_context) {
1820 intel_unpin_ringbuffer_obj(ringbuf);
1821 i915_gem_object_ggtt_unpin(ctx_obj);
1822 }
1823 WARN_ON(ctx->engine[ring->id].pin_count);
1824 intel_destroy_ringbuffer_obj(ringbuf);
1825 kfree(ringbuf);
1826 drm_gem_object_unreference(&ctx_obj->base);
1827 }
1828 }
1829 }
1830
1831 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1832 {
1833 int ret = 0;
1834
1835 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1836
1837 switch (ring->id) {
1838 case RCS:
1839 if (INTEL_INFO(ring->dev)->gen >= 9)
1840 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1841 else
1842 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1843 break;
1844 case VCS:
1845 case BCS:
1846 case VECS:
1847 case VCS2:
1848 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1849 break;
1850 }
1851
1852 return ret;
1853 }
1854
1855 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1856 struct drm_i915_gem_object *default_ctx_obj)
1857 {
1858 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1859
1860 /* The status page is offset 0 from the default context object
1861 * in LRC mode. */
1862 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1863 ring->status_page.page_addr =
1864 kmap(sg_page(default_ctx_obj->pages->sgl));
1865 ring->status_page.obj = default_ctx_obj;
1866
1867 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1868 (u32)ring->status_page.gfx_addr);
1869 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1870 }
1871
1872 /**
1873 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1874 * @ctx: LR context to create.
1875 * @ring: engine to be used with the context.
1876 *
1877 * This function can be called more than once, with different engines, if we plan
1878 * to use the context with them. The context backing objects and the ringbuffers
1879 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1880 * the creation is a deferred call: it's better to make sure first that we need to use
1881 * a given ring with the context.
1882 *
1883 * Return: non-zero on error.
1884 */
1885 int intel_lr_context_deferred_create(struct intel_context *ctx,
1886 struct intel_engine_cs *ring)
1887 {
1888 const bool is_global_default_ctx = (ctx == ring->default_context);
1889 struct drm_device *dev = ring->dev;
1890 struct drm_i915_gem_object *ctx_obj;
1891 uint32_t context_size;
1892 struct intel_ringbuffer *ringbuf;
1893 int ret;
1894
1895 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1896 WARN_ON(ctx->engine[ring->id].state);
1897
1898 context_size = round_up(get_lr_context_size(ring), 4096);
1899
1900 ctx_obj = i915_gem_alloc_object(dev, context_size);
1901 if (!ctx_obj) {
1902 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1903 return -ENOMEM;
1904 }
1905
1906 if (is_global_default_ctx) {
1907 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1908 if (ret) {
1909 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1910 ret);
1911 drm_gem_object_unreference(&ctx_obj->base);
1912 return ret;
1913 }
1914 }
1915
1916 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1917 if (!ringbuf) {
1918 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1919 ring->name);
1920 ret = -ENOMEM;
1921 goto error_unpin_ctx;
1922 }
1923
1924 ringbuf->ring = ring;
1925
1926 ringbuf->size = 32 * PAGE_SIZE;
1927 ringbuf->effective_size = ringbuf->size;
1928 ringbuf->head = 0;
1929 ringbuf->tail = 0;
1930 ringbuf->last_retired_head = -1;
1931 intel_ring_update_space(ringbuf);
1932
1933 if (ringbuf->obj == NULL) {
1934 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1935 if (ret) {
1936 DRM_DEBUG_DRIVER(
1937 "Failed to allocate ringbuffer obj %s: %d\n",
1938 ring->name, ret);
1939 goto error_free_rbuf;
1940 }
1941
1942 if (is_global_default_ctx) {
1943 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1944 if (ret) {
1945 DRM_ERROR(
1946 "Failed to pin and map ringbuffer %s: %d\n",
1947 ring->name, ret);
1948 goto error_destroy_rbuf;
1949 }
1950 }
1951
1952 }
1953
1954 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1955 if (ret) {
1956 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1957 goto error;
1958 }
1959
1960 ctx->engine[ring->id].ringbuf = ringbuf;
1961 ctx->engine[ring->id].state = ctx_obj;
1962
1963 if (ctx == ring->default_context)
1964 lrc_setup_hardware_status_page(ring, ctx_obj);
1965 else if (ring->id == RCS && !ctx->rcs_initialized) {
1966 if (ring->init_context) {
1967 ret = ring->init_context(ring, ctx);
1968 if (ret) {
1969 DRM_ERROR("ring init context: %d\n", ret);
1970 ctx->engine[ring->id].ringbuf = NULL;
1971 ctx->engine[ring->id].state = NULL;
1972 goto error;
1973 }
1974 }
1975
1976 ctx->rcs_initialized = true;
1977 }
1978
1979 return 0;
1980
1981 error:
1982 if (is_global_default_ctx)
1983 intel_unpin_ringbuffer_obj(ringbuf);
1984 error_destroy_rbuf:
1985 intel_destroy_ringbuffer_obj(ringbuf);
1986 error_free_rbuf:
1987 kfree(ringbuf);
1988 error_unpin_ctx:
1989 if (is_global_default_ctx)
1990 i915_gem_object_ggtt_unpin(ctx_obj);
1991 drm_gem_object_unreference(&ctx_obj->base);
1992 return ret;
1993 }
1994
1995 void intel_lr_context_reset(struct drm_device *dev,
1996 struct intel_context *ctx)
1997 {
1998 struct drm_i915_private *dev_priv = dev->dev_private;
1999 struct intel_engine_cs *ring;
2000 int i;
2001
2002 for_each_ring(ring, dev_priv, i) {
2003 struct drm_i915_gem_object *ctx_obj =
2004 ctx->engine[ring->id].state;
2005 struct intel_ringbuffer *ringbuf =
2006 ctx->engine[ring->id].ringbuf;
2007 uint32_t *reg_state;
2008 struct page *page;
2009
2010 if (!ctx_obj)
2011 continue;
2012
2013 if (i915_gem_object_get_pages(ctx_obj)) {
2014 WARN(1, "Failed get_pages for context obj\n");
2015 continue;
2016 }
2017 page = i915_gem_object_get_page(ctx_obj, 1);
2018 reg_state = kmap_atomic(page);
2019
2020 reg_state[CTX_RING_HEAD+1] = 0;
2021 reg_state[CTX_RING_TAIL+1] = 0;
2022
2023 kunmap_atomic(reg_state);
2024
2025 ringbuf->head = 0;
2026 ringbuf->tail = 0;
2027 }
2028 }
This page took 0.083274 seconds and 5 git commands to generate.