b6af635e3a0fc4f0f52054baef2dae0aa2ec52d3
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211 FAULT_AND_HANG = 0,
212 FAULT_AND_HALT, /* Debug only */
213 FAULT_AND_STREAM,
214 FAULT_AND_CONTINUE /* Unsupported */
215 };
216 #define GEN8_CTX_ID_SHIFT 32
217 #define GEN8_CTX_ID_WIDTH 21
218 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
219 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
220
221 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
222 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223
224 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225 struct intel_engine_cs *engine);
226 static int intel_lr_context_pin(struct i915_gem_context *ctx,
227 struct intel_engine_cs *engine);
228
229 /**
230 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231 * @dev_priv: i915 device private
232 * @enable_execlists: value of i915.enable_execlists module parameter.
233 *
234 * Only certain platforms support Execlists (the prerequisites being
235 * support for Logical Ring Contexts and Aliasing PPGTT or better).
236 *
237 * Return: 1 if Execlists is supported and has to be enabled.
238 */
239 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240 {
241 /* On platforms with execlist available, vGPU will only
242 * support execlist mode, no ring buffer mode.
243 */
244 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 return 1;
246
247 if (INTEL_GEN(dev_priv) >= 9)
248 return 1;
249
250 if (enable_execlists == 0)
251 return 0;
252
253 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254 USES_PPGTT(dev_priv) &&
255 i915.use_mmio_flip >= 0)
256 return 1;
257
258 return 0;
259 }
260
261 static void
262 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263 {
264 struct drm_i915_private *dev_priv = engine->i915;
265
266 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267 engine->idle_lite_restore_wa = ~0;
268
269 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271 (engine->id == VCS || engine->id == VCS2);
272
273 engine->ctx_desc_template = GEN8_CTX_VALID;
274 if (IS_GEN8(dev_priv))
275 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277
278 /* TODO: WaDisableLiteRestore when we start using semaphore
279 * signalling between Command Streamers */
280 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281
282 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
283 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 if (engine->disable_lite_restore_wa)
285 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 }
287
288 /**
289 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290 * descriptor for a pinned context
291 *
292 * @ctx: Context to work on
293 * @engine: Engine the descriptor will be used with
294 *
295 * The context descriptor encodes various attributes of a context,
296 * including its GTT address and some flags. Because it's fairly
297 * expensive to calculate, we'll just do it once and cache the result,
298 * which remains valid until the context is unpinned.
299 *
300 * This is what a descriptor looks like, from LSB to MSB:
301 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
302 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
303 * bits 32-52: ctx ID, a globally unique tag
304 * bits 53-54: mbz, reserved for use by hardware
305 * bits 55-63: group ID, currently unused and set to 0
306 */
307 static void
308 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309 struct intel_engine_cs *engine)
310 {
311 struct intel_context *ce = &ctx->engine[engine->id];
312 u64 desc;
313
314 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315
316 desc = ctx->desc_template; /* bits 3-4 */
317 desc |= engine->ctx_desc_template; /* bits 0-11 */
318 desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
319 /* bits 12-31 */
320 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
321
322 ce->lrc_desc = desc;
323 }
324
325 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326 struct intel_engine_cs *engine)
327 {
328 return ctx->engine[engine->id].lrc_desc;
329 }
330
331 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332 struct drm_i915_gem_request *rq1)
333 {
334
335 struct intel_engine_cs *engine = rq0->engine;
336 struct drm_i915_private *dev_priv = rq0->i915;
337 uint64_t desc[2];
338
339 if (rq1) {
340 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 rq1->elsp_submitted++;
342 } else {
343 desc[1] = 0;
344 }
345
346 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347 rq0->elsp_submitted++;
348
349 /* You must always write both descriptors in the order below. */
350 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352
353 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354 /* The context is automatically loaded after the following */
355 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356
357 /* ELSP is a wo register, use another nearby reg for posting */
358 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 }
360
361 static void
362 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363 {
364 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368 }
369
370 static void execlists_update_context(struct drm_i915_gem_request *rq)
371 {
372 struct intel_engine_cs *engine = rq->engine;
373 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375
376 reg_state[CTX_RING_TAIL+1] = rq->tail;
377
378 /* True 32b PPGTT with dynamic page allocation: update PDP
379 * registers and point the unallocated PDPs to scratch page.
380 * PML4 is allocated during ppgtt init, so this is not needed
381 * in 48-bit mode.
382 */
383 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384 execlists_update_context_pdps(ppgtt, reg_state);
385 }
386
387 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
388 struct drm_i915_gem_request *rq1)
389 {
390 struct drm_i915_private *dev_priv = rq0->i915;
391 unsigned int fw_domains = rq0->engine->fw_domains;
392
393 execlists_update_context(rq0);
394
395 if (rq1)
396 execlists_update_context(rq1);
397
398 spin_lock_irq(&dev_priv->uncore.lock);
399 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400
401 execlists_elsp_write(rq0, rq1);
402
403 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404 spin_unlock_irq(&dev_priv->uncore.lock);
405 }
406
407 static inline void execlists_context_status_change(
408 struct drm_i915_gem_request *rq,
409 unsigned long status)
410 {
411 /*
412 * Only used when GVT-g is enabled now. When GVT-g is disabled,
413 * The compiler should eliminate this function as dead-code.
414 */
415 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416 return;
417
418 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
419 }
420
421 static void execlists_context_unqueue(struct intel_engine_cs *engine)
422 {
423 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424 struct drm_i915_gem_request *cursor, *tmp;
425
426 assert_spin_locked(&engine->execlist_lock);
427
428 /*
429 * If irqs are not active generate a warning as batches that finish
430 * without the irqs may get lost and a GPU Hang may occur.
431 */
432 WARN_ON(!intel_irqs_enabled(engine->i915));
433
434 /* Try to read in pairs */
435 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436 execlist_link) {
437 if (!req0) {
438 req0 = cursor;
439 } else if (req0->ctx == cursor->ctx) {
440 /* Same ctx: ignore first request, as second request
441 * will update tail past first request's workload */
442 cursor->elsp_submitted = req0->elsp_submitted;
443 list_del(&req0->execlist_link);
444 i915_gem_request_unreference(req0);
445 req0 = cursor;
446 } else {
447 if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
448 /*
449 * req0 (after merged) ctx requires single
450 * submission, stop picking
451 */
452 if (req0->ctx->execlists_force_single_submission)
453 break;
454 /*
455 * req0 ctx doesn't require single submission,
456 * but next req ctx requires, stop picking
457 */
458 if (cursor->ctx->execlists_force_single_submission)
459 break;
460 }
461 req1 = cursor;
462 WARN_ON(req1->elsp_submitted);
463 break;
464 }
465 }
466
467 if (unlikely(!req0))
468 return;
469
470 execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);
471
472 if (req1)
473 execlists_context_status_change(req1,
474 INTEL_CONTEXT_SCHEDULE_IN);
475
476 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477 /*
478 * WaIdleLiteRestore: make sure we never cause a lite restore
479 * with HEAD==TAIL.
480 *
481 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
482 * resubmit the request. See gen8_emit_request() for where we
483 * prepare the padding after the end of the request.
484 */
485 struct intel_ringbuffer *ringbuf;
486
487 ringbuf = req0->ctx->engine[engine->id].ringbuf;
488 req0->tail += 8;
489 req0->tail &= ringbuf->size - 1;
490 }
491
492 execlists_submit_requests(req0, req1);
493 }
494
495 static unsigned int
496 execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
497 {
498 struct drm_i915_gem_request *head_req;
499
500 assert_spin_locked(&engine->execlist_lock);
501
502 head_req = list_first_entry_or_null(&engine->execlist_queue,
503 struct drm_i915_gem_request,
504 execlist_link);
505
506 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
507 return 0;
508
509 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
510
511 if (--head_req->elsp_submitted > 0)
512 return 0;
513
514 execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);
515
516 list_del(&head_req->execlist_link);
517 i915_gem_request_unreference(head_req);
518
519 return 1;
520 }
521
522 static u32
523 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
524 u32 *context_id)
525 {
526 struct drm_i915_private *dev_priv = engine->i915;
527 u32 status;
528
529 read_pointer %= GEN8_CSB_ENTRIES;
530
531 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
532
533 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
534 return 0;
535
536 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
537 read_pointer));
538
539 return status;
540 }
541
542 /**
543 * intel_lrc_irq_handler() - handle Context Switch interrupts
544 * @data: tasklet handler passed in unsigned long
545 *
546 * Check the unread Context Status Buffers and manage the submission of new
547 * contexts to the ELSP accordingly.
548 */
549 static void intel_lrc_irq_handler(unsigned long data)
550 {
551 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
552 struct drm_i915_private *dev_priv = engine->i915;
553 u32 status_pointer;
554 unsigned int read_pointer, write_pointer;
555 u32 csb[GEN8_CSB_ENTRIES][2];
556 unsigned int csb_read = 0, i;
557 unsigned int submit_contexts = 0;
558
559 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
560
561 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
562
563 read_pointer = engine->next_context_status_buffer;
564 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
565 if (read_pointer > write_pointer)
566 write_pointer += GEN8_CSB_ENTRIES;
567
568 while (read_pointer < write_pointer) {
569 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
570 break;
571 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
572 &csb[csb_read][1]);
573 csb_read++;
574 }
575
576 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
577
578 /* Update the read pointer to the old write pointer. Manual ringbuffer
579 * management ftw </sarcasm> */
580 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
581 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
582 engine->next_context_status_buffer << 8));
583
584 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
585
586 spin_lock(&engine->execlist_lock);
587
588 for (i = 0; i < csb_read; i++) {
589 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
590 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
591 if (execlists_check_remove_request(engine, csb[i][1]))
592 WARN(1, "Lite Restored request removed from queue\n");
593 } else
594 WARN(1, "Preemption without Lite Restore\n");
595 }
596
597 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
598 GEN8_CTX_STATUS_ELEMENT_SWITCH))
599 submit_contexts +=
600 execlists_check_remove_request(engine, csb[i][1]);
601 }
602
603 if (submit_contexts) {
604 if (!engine->disable_lite_restore_wa ||
605 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
606 execlists_context_unqueue(engine);
607 }
608
609 spin_unlock(&engine->execlist_lock);
610
611 if (unlikely(submit_contexts > 2))
612 DRM_ERROR("More than two context complete events?\n");
613 }
614
615 static void execlists_context_queue(struct drm_i915_gem_request *request)
616 {
617 struct intel_engine_cs *engine = request->engine;
618 struct drm_i915_gem_request *cursor;
619 int num_elements = 0;
620
621 spin_lock_bh(&engine->execlist_lock);
622
623 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
624 if (++num_elements > 2)
625 break;
626
627 if (num_elements > 2) {
628 struct drm_i915_gem_request *tail_req;
629
630 tail_req = list_last_entry(&engine->execlist_queue,
631 struct drm_i915_gem_request,
632 execlist_link);
633
634 if (request->ctx == tail_req->ctx) {
635 WARN(tail_req->elsp_submitted != 0,
636 "More than 2 already-submitted reqs queued\n");
637 list_del(&tail_req->execlist_link);
638 i915_gem_request_unreference(tail_req);
639 }
640 }
641
642 i915_gem_request_reference(request);
643 list_add_tail(&request->execlist_link, &engine->execlist_queue);
644 request->ctx_hw_id = request->ctx->hw_id;
645 if (num_elements == 0)
646 execlists_context_unqueue(engine);
647
648 spin_unlock_bh(&engine->execlist_lock);
649 }
650
651 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
652 {
653 struct intel_engine_cs *engine = req->engine;
654 uint32_t flush_domains;
655 int ret;
656
657 flush_domains = 0;
658 if (engine->gpu_caches_dirty)
659 flush_domains = I915_GEM_GPU_DOMAINS;
660
661 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
662 if (ret)
663 return ret;
664
665 engine->gpu_caches_dirty = false;
666 return 0;
667 }
668
669 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
670 struct list_head *vmas)
671 {
672 const unsigned other_rings = ~intel_engine_flag(req->engine);
673 struct i915_vma *vma;
674 uint32_t flush_domains = 0;
675 bool flush_chipset = false;
676 int ret;
677
678 list_for_each_entry(vma, vmas, exec_list) {
679 struct drm_i915_gem_object *obj = vma->obj;
680
681 if (obj->active & other_rings) {
682 ret = i915_gem_object_sync(obj, req->engine, &req);
683 if (ret)
684 return ret;
685 }
686
687 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
688 flush_chipset |= i915_gem_clflush_object(obj, false);
689
690 flush_domains |= obj->base.write_domain;
691 }
692
693 if (flush_domains & I915_GEM_DOMAIN_GTT)
694 wmb();
695
696 /* Unconditionally invalidate gpu caches and ensure that we do flush
697 * any residual writes from the previous batch.
698 */
699 return logical_ring_invalidate_all_caches(req);
700 }
701
702 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
703 {
704 struct intel_engine_cs *engine = request->engine;
705 struct intel_context *ce = &request->ctx->engine[engine->id];
706 int ret;
707
708 /* Flush enough space to reduce the likelihood of waiting after
709 * we start building the request - in which case we will just
710 * have to repeat work.
711 */
712 request->reserved_space += EXECLISTS_REQUEST_SIZE;
713
714 if (!ce->state) {
715 ret = execlists_context_deferred_alloc(request->ctx, engine);
716 if (ret)
717 return ret;
718 }
719
720 request->ringbuf = ce->ringbuf;
721
722 if (i915.enable_guc_submission) {
723 /*
724 * Check that the GuC has space for the request before
725 * going any further, as the i915_add_request() call
726 * later on mustn't fail ...
727 */
728 ret = i915_guc_wq_check_space(request);
729 if (ret)
730 return ret;
731 }
732
733 ret = intel_lr_context_pin(request->ctx, engine);
734 if (ret)
735 return ret;
736
737 ret = intel_ring_begin(request, 0);
738 if (ret)
739 goto err_unpin;
740
741 if (!ce->initialised) {
742 ret = engine->init_context(request);
743 if (ret)
744 goto err_unpin;
745
746 ce->initialised = true;
747 }
748
749 /* Note that after this point, we have committed to using
750 * this request as it is being used to both track the
751 * state of engine initialisation and liveness of the
752 * golden renderstate above. Think twice before you try
753 * to cancel/unwind this request now.
754 */
755
756 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
757 return 0;
758
759 err_unpin:
760 intel_lr_context_unpin(request->ctx, engine);
761 return ret;
762 }
763
764 /*
765 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
766 * @request: Request to advance the logical ringbuffer of.
767 *
768 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
769 * really happens during submission is that the context and current tail will be placed
770 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
771 * point, the tail *inside* the context is updated and the ELSP written to.
772 */
773 static int
774 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
775 {
776 struct intel_ringbuffer *ringbuf = request->ringbuf;
777 struct intel_engine_cs *engine = request->engine;
778
779 intel_logical_ring_advance(ringbuf);
780 request->tail = ringbuf->tail;
781
782 /*
783 * Here we add two extra NOOPs as padding to avoid
784 * lite restore of a context with HEAD==TAIL.
785 *
786 * Caller must reserve WA_TAIL_DWORDS for us!
787 */
788 intel_logical_ring_emit(ringbuf, MI_NOOP);
789 intel_logical_ring_emit(ringbuf, MI_NOOP);
790 intel_logical_ring_advance(ringbuf);
791
792 /* We keep the previous context alive until we retire the following
793 * request. This ensures that any the context object is still pinned
794 * for any residual writes the HW makes into it on the context switch
795 * into the next object following the breadcrumb. Otherwise, we may
796 * retire the context too early.
797 */
798 request->previous_context = engine->last_context;
799 engine->last_context = request->ctx;
800
801 if (i915.enable_guc_submission)
802 i915_guc_submit(request);
803 else
804 execlists_context_queue(request);
805
806 return 0;
807 }
808
809 /**
810 * execlists_submission() - submit a batchbuffer for execution, Execlists style
811 * @params: execbuffer call parameters.
812 * @args: execbuffer call arguments.
813 * @vmas: list of vmas.
814 *
815 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
816 * away the submission details of the execbuffer ioctl call.
817 *
818 * Return: non-zero if the submission fails.
819 */
820 int intel_execlists_submission(struct i915_execbuffer_params *params,
821 struct drm_i915_gem_execbuffer2 *args,
822 struct list_head *vmas)
823 {
824 struct drm_device *dev = params->dev;
825 struct intel_engine_cs *engine = params->engine;
826 struct drm_i915_private *dev_priv = to_i915(dev);
827 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
828 u64 exec_start;
829 int instp_mode;
830 u32 instp_mask;
831 int ret;
832
833 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
834 instp_mask = I915_EXEC_CONSTANTS_MASK;
835 switch (instp_mode) {
836 case I915_EXEC_CONSTANTS_REL_GENERAL:
837 case I915_EXEC_CONSTANTS_ABSOLUTE:
838 case I915_EXEC_CONSTANTS_REL_SURFACE:
839 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
840 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
841 return -EINVAL;
842 }
843
844 if (instp_mode != dev_priv->relative_constants_mode) {
845 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
846 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
847 return -EINVAL;
848 }
849
850 /* The HW changed the meaning on this bit on gen6 */
851 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
852 }
853 break;
854 default:
855 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
856 return -EINVAL;
857 }
858
859 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
860 DRM_DEBUG("sol reset is gen7 only\n");
861 return -EINVAL;
862 }
863
864 ret = execlists_move_to_gpu(params->request, vmas);
865 if (ret)
866 return ret;
867
868 if (engine == &dev_priv->engine[RCS] &&
869 instp_mode != dev_priv->relative_constants_mode) {
870 ret = intel_ring_begin(params->request, 4);
871 if (ret)
872 return ret;
873
874 intel_logical_ring_emit(ringbuf, MI_NOOP);
875 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
876 intel_logical_ring_emit_reg(ringbuf, INSTPM);
877 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
878 intel_logical_ring_advance(ringbuf);
879
880 dev_priv->relative_constants_mode = instp_mode;
881 }
882
883 exec_start = params->batch_obj_vm_offset +
884 args->batch_start_offset;
885
886 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
887 if (ret)
888 return ret;
889
890 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
891
892 i915_gem_execbuffer_move_to_active(vmas, params->request);
893
894 return 0;
895 }
896
897 void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
898 {
899 struct drm_i915_gem_request *req, *tmp;
900 LIST_HEAD(cancel_list);
901
902 WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
903
904 spin_lock_bh(&engine->execlist_lock);
905 list_replace_init(&engine->execlist_queue, &cancel_list);
906 spin_unlock_bh(&engine->execlist_lock);
907
908 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
909 list_del(&req->execlist_link);
910 i915_gem_request_unreference(req);
911 }
912 }
913
914 void intel_logical_ring_stop(struct intel_engine_cs *engine)
915 {
916 struct drm_i915_private *dev_priv = engine->i915;
917 int ret;
918
919 if (!intel_engine_initialized(engine))
920 return;
921
922 ret = intel_engine_idle(engine);
923 if (ret)
924 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
925 engine->name, ret);
926
927 /* TODO: Is this correct with Execlists enabled? */
928 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
929 if (intel_wait_for_register(dev_priv,
930 RING_MI_MODE(engine->mmio_base),
931 MODE_IDLE, MODE_IDLE,
932 1000)) {
933 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
934 return;
935 }
936 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
937 }
938
939 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
940 {
941 struct intel_engine_cs *engine = req->engine;
942 int ret;
943
944 if (!engine->gpu_caches_dirty)
945 return 0;
946
947 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
948 if (ret)
949 return ret;
950
951 engine->gpu_caches_dirty = false;
952 return 0;
953 }
954
955 static int intel_lr_context_pin(struct i915_gem_context *ctx,
956 struct intel_engine_cs *engine)
957 {
958 struct drm_i915_private *dev_priv = ctx->i915;
959 struct intel_context *ce = &ctx->engine[engine->id];
960 void *vaddr;
961 u32 *lrc_reg_state;
962 int ret;
963
964 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
965
966 if (ce->pin_count++)
967 return 0;
968
969 ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
970 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
971 if (ret)
972 goto err;
973
974 vaddr = i915_gem_object_pin_map(ce->state);
975 if (IS_ERR(vaddr)) {
976 ret = PTR_ERR(vaddr);
977 goto unpin_ctx_obj;
978 }
979
980 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
981
982 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
983 if (ret)
984 goto unpin_map;
985
986 i915_gem_context_reference(ctx);
987 ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
988 intel_lr_context_descriptor_update(ctx, engine);
989
990 lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
991 ce->lrc_reg_state = lrc_reg_state;
992 ce->state->dirty = true;
993
994 /* Invalidate GuC TLB. */
995 if (i915.enable_guc_submission)
996 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
997
998 return 0;
999
1000 unpin_map:
1001 i915_gem_object_unpin_map(ce->state);
1002 unpin_ctx_obj:
1003 i915_gem_object_ggtt_unpin(ce->state);
1004 err:
1005 ce->pin_count = 0;
1006 return ret;
1007 }
1008
1009 void intel_lr_context_unpin(struct i915_gem_context *ctx,
1010 struct intel_engine_cs *engine)
1011 {
1012 struct intel_context *ce = &ctx->engine[engine->id];
1013
1014 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1015 GEM_BUG_ON(ce->pin_count == 0);
1016
1017 if (--ce->pin_count)
1018 return;
1019
1020 intel_unpin_ringbuffer_obj(ce->ringbuf);
1021
1022 i915_gem_object_unpin_map(ce->state);
1023 i915_gem_object_ggtt_unpin(ce->state);
1024
1025 ce->lrc_vma = NULL;
1026 ce->lrc_desc = 0;
1027 ce->lrc_reg_state = NULL;
1028
1029 i915_gem_context_unreference(ctx);
1030 }
1031
1032 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1033 {
1034 int ret, i;
1035 struct intel_engine_cs *engine = req->engine;
1036 struct intel_ringbuffer *ringbuf = req->ringbuf;
1037 struct i915_workarounds *w = &req->i915->workarounds;
1038
1039 if (w->count == 0)
1040 return 0;
1041
1042 engine->gpu_caches_dirty = true;
1043 ret = logical_ring_flush_all_caches(req);
1044 if (ret)
1045 return ret;
1046
1047 ret = intel_ring_begin(req, w->count * 2 + 2);
1048 if (ret)
1049 return ret;
1050
1051 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1052 for (i = 0; i < w->count; i++) {
1053 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1054 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1055 }
1056 intel_logical_ring_emit(ringbuf, MI_NOOP);
1057
1058 intel_logical_ring_advance(ringbuf);
1059
1060 engine->gpu_caches_dirty = true;
1061 ret = logical_ring_flush_all_caches(req);
1062 if (ret)
1063 return ret;
1064
1065 return 0;
1066 }
1067
1068 #define wa_ctx_emit(batch, index, cmd) \
1069 do { \
1070 int __index = (index)++; \
1071 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1072 return -ENOSPC; \
1073 } \
1074 batch[__index] = (cmd); \
1075 } while (0)
1076
1077 #define wa_ctx_emit_reg(batch, index, reg) \
1078 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1079
1080 /*
1081 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1082 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1083 * but there is a slight complication as this is applied in WA batch where the
1084 * values are only initialized once so we cannot take register value at the
1085 * beginning and reuse it further; hence we save its value to memory, upload a
1086 * constant value with bit21 set and then we restore it back with the saved value.
1087 * To simplify the WA, a constant value is formed by using the default value
1088 * of this register. This shouldn't be a problem because we are only modifying
1089 * it for a short period and this batch in non-premptible. We can ofcourse
1090 * use additional instructions that read the actual value of the register
1091 * at that time and set our bit of interest but it makes the WA complicated.
1092 *
1093 * This WA is also required for Gen9 so extracting as a function avoids
1094 * code duplication.
1095 */
1096 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1097 uint32_t *const batch,
1098 uint32_t index)
1099 {
1100 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1101
1102 /*
1103 * WaDisableLSQCROPERFforOCL:skl,kbl
1104 * This WA is implemented in skl_init_clock_gating() but since
1105 * this batch updates GEN8_L3SQCREG4 with default value we need to
1106 * set this bit here to retain the WA during flush.
1107 */
1108 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
1109 IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1110 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1111
1112 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1113 MI_SRM_LRM_GLOBAL_GTT));
1114 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1115 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1116 wa_ctx_emit(batch, index, 0);
1117
1118 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1119 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1120 wa_ctx_emit(batch, index, l3sqc4_flush);
1121
1122 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1123 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1124 PIPE_CONTROL_DC_FLUSH_ENABLE));
1125 wa_ctx_emit(batch, index, 0);
1126 wa_ctx_emit(batch, index, 0);
1127 wa_ctx_emit(batch, index, 0);
1128 wa_ctx_emit(batch, index, 0);
1129
1130 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1131 MI_SRM_LRM_GLOBAL_GTT));
1132 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1133 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1134 wa_ctx_emit(batch, index, 0);
1135
1136 return index;
1137 }
1138
1139 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1140 uint32_t offset,
1141 uint32_t start_alignment)
1142 {
1143 return wa_ctx->offset = ALIGN(offset, start_alignment);
1144 }
1145
1146 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1147 uint32_t offset,
1148 uint32_t size_alignment)
1149 {
1150 wa_ctx->size = offset - wa_ctx->offset;
1151
1152 WARN(wa_ctx->size % size_alignment,
1153 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1154 wa_ctx->size, size_alignment);
1155 return 0;
1156 }
1157
1158 /**
1159 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1160 *
1161 * @engine: only applicable for RCS
1162 * @wa_ctx: structure representing wa_ctx
1163 * offset: specifies start of the batch, should be cache-aligned. This is updated
1164 * with the offset value received as input.
1165 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1166 * @batch: page in which WA are loaded
1167 * @offset: This field specifies the start of the batch, it should be
1168 * cache-aligned otherwise it is adjusted accordingly.
1169 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1170 * initialized at the beginning and shared across all contexts but this field
1171 * helps us to have multiple batches at different offsets and select them based
1172 * on a criteria. At the moment this batch always start at the beginning of the page
1173 * and at this point we don't have multiple wa_ctx batch buffers.
1174 *
1175 * The number of WA applied are not known at the beginning; we use this field
1176 * to return the no of DWORDS written.
1177 *
1178 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1179 * so it adds NOOPs as padding to make it cacheline aligned.
1180 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1181 * makes a complete batch buffer.
1182 *
1183 * Return: non-zero if we exceed the PAGE_SIZE limit.
1184 */
1185
1186 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1187 struct i915_wa_ctx_bb *wa_ctx,
1188 uint32_t *const batch,
1189 uint32_t *offset)
1190 {
1191 uint32_t scratch_addr;
1192 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1193
1194 /* WaDisableCtxRestoreArbitration:bdw,chv */
1195 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1196
1197 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1198 if (IS_BROADWELL(engine->i915)) {
1199 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1200 if (rc < 0)
1201 return rc;
1202 index = rc;
1203 }
1204
1205 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1206 /* Actual scratch location is at 128 bytes offset */
1207 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1208
1209 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1210 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1211 PIPE_CONTROL_GLOBAL_GTT_IVB |
1212 PIPE_CONTROL_CS_STALL |
1213 PIPE_CONTROL_QW_WRITE));
1214 wa_ctx_emit(batch, index, scratch_addr);
1215 wa_ctx_emit(batch, index, 0);
1216 wa_ctx_emit(batch, index, 0);
1217 wa_ctx_emit(batch, index, 0);
1218
1219 /* Pad to end of cacheline */
1220 while (index % CACHELINE_DWORDS)
1221 wa_ctx_emit(batch, index, MI_NOOP);
1222
1223 /*
1224 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1225 * execution depends on the length specified in terms of cache lines
1226 * in the register CTX_RCS_INDIRECT_CTX
1227 */
1228
1229 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1230 }
1231
1232 /**
1233 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1234 *
1235 * @engine: only applicable for RCS
1236 * @wa_ctx: structure representing wa_ctx
1237 * offset: specifies start of the batch, should be cache-aligned.
1238 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1239 * @batch: page in which WA are loaded
1240 * @offset: This field specifies the start of this batch.
1241 * This batch is started immediately after indirect_ctx batch. Since we ensure
1242 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1243 *
1244 * The number of DWORDS written are returned using this field.
1245 *
1246 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1247 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1248 */
1249 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1250 struct i915_wa_ctx_bb *wa_ctx,
1251 uint32_t *const batch,
1252 uint32_t *offset)
1253 {
1254 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1255
1256 /* WaDisableCtxRestoreArbitration:bdw,chv */
1257 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1258
1259 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1260
1261 return wa_ctx_end(wa_ctx, *offset = index, 1);
1262 }
1263
1264 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1265 struct i915_wa_ctx_bb *wa_ctx,
1266 uint32_t *const batch,
1267 uint32_t *offset)
1268 {
1269 int ret;
1270 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1271
1272 /* WaDisableCtxRestoreArbitration:skl,bxt */
1273 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1274 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1275 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1276
1277 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1278 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1279 if (ret < 0)
1280 return ret;
1281 index = ret;
1282
1283 /* WaClearSlmSpaceAtContextSwitch:kbl */
1284 /* Actual scratch location is at 128 bytes offset */
1285 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1286 uint32_t scratch_addr
1287 = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1288
1289 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1290 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1291 PIPE_CONTROL_GLOBAL_GTT_IVB |
1292 PIPE_CONTROL_CS_STALL |
1293 PIPE_CONTROL_QW_WRITE));
1294 wa_ctx_emit(batch, index, scratch_addr);
1295 wa_ctx_emit(batch, index, 0);
1296 wa_ctx_emit(batch, index, 0);
1297 wa_ctx_emit(batch, index, 0);
1298 }
1299
1300 /* WaMediaPoolStateCmdInWABB:bxt */
1301 if (HAS_POOLED_EU(engine->i915)) {
1302 /*
1303 * EU pool configuration is setup along with golden context
1304 * during context initialization. This value depends on
1305 * device type (2x6 or 3x6) and needs to be updated based
1306 * on which subslice is disabled especially for 2x6
1307 * devices, however it is safe to load default
1308 * configuration of 3x6 device instead of masking off
1309 * corresponding bits because HW ignores bits of a disabled
1310 * subslice and drops down to appropriate config. Please
1311 * see render_state_setup() in i915_gem_render_state.c for
1312 * possible configurations, to avoid duplication they are
1313 * not shown here again.
1314 */
1315 u32 eu_pool_config = 0x00777000;
1316 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1317 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1318 wa_ctx_emit(batch, index, eu_pool_config);
1319 wa_ctx_emit(batch, index, 0);
1320 wa_ctx_emit(batch, index, 0);
1321 wa_ctx_emit(batch, index, 0);
1322 }
1323
1324 /* Pad to end of cacheline */
1325 while (index % CACHELINE_DWORDS)
1326 wa_ctx_emit(batch, index, MI_NOOP);
1327
1328 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1329 }
1330
1331 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1332 struct i915_wa_ctx_bb *wa_ctx,
1333 uint32_t *const batch,
1334 uint32_t *offset)
1335 {
1336 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1337
1338 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1339 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1340 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1341 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1342 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1343 wa_ctx_emit(batch, index,
1344 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1345 wa_ctx_emit(batch, index, MI_NOOP);
1346 }
1347
1348 /* WaClearTdlStateAckDirtyBits:bxt */
1349 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1350 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1351
1352 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1353 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1354
1355 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1356 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1357
1358 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1359 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1360
1361 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1362 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1363 wa_ctx_emit(batch, index, 0x0);
1364 wa_ctx_emit(batch, index, MI_NOOP);
1365 }
1366
1367 /* WaDisableCtxRestoreArbitration:skl,bxt */
1368 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1369 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1370 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1371
1372 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1373
1374 return wa_ctx_end(wa_ctx, *offset = index, 1);
1375 }
1376
1377 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1378 {
1379 int ret;
1380
1381 engine->wa_ctx.obj = i915_gem_object_create(&engine->i915->drm,
1382 PAGE_ALIGN(size));
1383 if (IS_ERR(engine->wa_ctx.obj)) {
1384 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1385 ret = PTR_ERR(engine->wa_ctx.obj);
1386 engine->wa_ctx.obj = NULL;
1387 return ret;
1388 }
1389
1390 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1391 if (ret) {
1392 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1393 ret);
1394 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1395 return ret;
1396 }
1397
1398 return 0;
1399 }
1400
1401 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1402 {
1403 if (engine->wa_ctx.obj) {
1404 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1405 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1406 engine->wa_ctx.obj = NULL;
1407 }
1408 }
1409
1410 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1411 {
1412 int ret;
1413 uint32_t *batch;
1414 uint32_t offset;
1415 struct page *page;
1416 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1417
1418 WARN_ON(engine->id != RCS);
1419
1420 /* update this when WA for higher Gen are added */
1421 if (INTEL_GEN(engine->i915) > 9) {
1422 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1423 INTEL_GEN(engine->i915));
1424 return 0;
1425 }
1426
1427 /* some WA perform writes to scratch page, ensure it is valid */
1428 if (engine->scratch.obj == NULL) {
1429 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1430 return -EINVAL;
1431 }
1432
1433 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1434 if (ret) {
1435 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1436 return ret;
1437 }
1438
1439 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1440 batch = kmap_atomic(page);
1441 offset = 0;
1442
1443 if (IS_GEN8(engine->i915)) {
1444 ret = gen8_init_indirectctx_bb(engine,
1445 &wa_ctx->indirect_ctx,
1446 batch,
1447 &offset);
1448 if (ret)
1449 goto out;
1450
1451 ret = gen8_init_perctx_bb(engine,
1452 &wa_ctx->per_ctx,
1453 batch,
1454 &offset);
1455 if (ret)
1456 goto out;
1457 } else if (IS_GEN9(engine->i915)) {
1458 ret = gen9_init_indirectctx_bb(engine,
1459 &wa_ctx->indirect_ctx,
1460 batch,
1461 &offset);
1462 if (ret)
1463 goto out;
1464
1465 ret = gen9_init_perctx_bb(engine,
1466 &wa_ctx->per_ctx,
1467 batch,
1468 &offset);
1469 if (ret)
1470 goto out;
1471 }
1472
1473 out:
1474 kunmap_atomic(batch);
1475 if (ret)
1476 lrc_destroy_wa_ctx_obj(engine);
1477
1478 return ret;
1479 }
1480
1481 static void lrc_init_hws(struct intel_engine_cs *engine)
1482 {
1483 struct drm_i915_private *dev_priv = engine->i915;
1484
1485 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1486 (u32)engine->status_page.gfx_addr);
1487 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1488 }
1489
1490 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1491 {
1492 struct drm_i915_private *dev_priv = engine->i915;
1493 unsigned int next_context_status_buffer_hw;
1494
1495 lrc_init_hws(engine);
1496
1497 I915_WRITE_IMR(engine,
1498 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1499 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1500
1501 I915_WRITE(RING_MODE_GEN7(engine),
1502 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1503 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1504 POSTING_READ(RING_MODE_GEN7(engine));
1505
1506 /*
1507 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1508 * zero, we need to read the write pointer from hardware and use its
1509 * value because "this register is power context save restored".
1510 * Effectively, these states have been observed:
1511 *
1512 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1513 * BDW | CSB regs not reset | CSB regs reset |
1514 * CHT | CSB regs not reset | CSB regs not reset |
1515 * SKL | ? | ? |
1516 * BXT | ? | ? |
1517 */
1518 next_context_status_buffer_hw =
1519 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1520
1521 /*
1522 * When the CSB registers are reset (also after power-up / gpu reset),
1523 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1524 * this special case, so the first element read is CSB[0].
1525 */
1526 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1527 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1528
1529 engine->next_context_status_buffer = next_context_status_buffer_hw;
1530 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1531
1532 intel_engine_init_hangcheck(engine);
1533
1534 return intel_mocs_init_engine(engine);
1535 }
1536
1537 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1538 {
1539 struct drm_i915_private *dev_priv = engine->i915;
1540 int ret;
1541
1542 ret = gen8_init_common_ring(engine);
1543 if (ret)
1544 return ret;
1545
1546 /* We need to disable the AsyncFlip performance optimisations in order
1547 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1548 * programmed to '1' on all products.
1549 *
1550 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1551 */
1552 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1553
1554 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1555
1556 return init_workarounds_ring(engine);
1557 }
1558
1559 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1560 {
1561 int ret;
1562
1563 ret = gen8_init_common_ring(engine);
1564 if (ret)
1565 return ret;
1566
1567 return init_workarounds_ring(engine);
1568 }
1569
1570 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1571 {
1572 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1573 struct intel_engine_cs *engine = req->engine;
1574 struct intel_ringbuffer *ringbuf = req->ringbuf;
1575 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1576 int i, ret;
1577
1578 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1579 if (ret)
1580 return ret;
1581
1582 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1583 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1584 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1585
1586 intel_logical_ring_emit_reg(ringbuf,
1587 GEN8_RING_PDP_UDW(engine, i));
1588 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1589 intel_logical_ring_emit_reg(ringbuf,
1590 GEN8_RING_PDP_LDW(engine, i));
1591 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1592 }
1593
1594 intel_logical_ring_emit(ringbuf, MI_NOOP);
1595 intel_logical_ring_advance(ringbuf);
1596
1597 return 0;
1598 }
1599
1600 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1601 u64 offset, unsigned dispatch_flags)
1602 {
1603 struct intel_ringbuffer *ringbuf = req->ringbuf;
1604 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1605 int ret;
1606
1607 /* Don't rely in hw updating PDPs, specially in lite-restore.
1608 * Ideally, we should set Force PD Restore in ctx descriptor,
1609 * but we can't. Force Restore would be a second option, but
1610 * it is unsafe in case of lite-restore (because the ctx is
1611 * not idle). PML4 is allocated during ppgtt init so this is
1612 * not needed in 48-bit.*/
1613 if (req->ctx->ppgtt &&
1614 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1615 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1616 !intel_vgpu_active(req->i915)) {
1617 ret = intel_logical_ring_emit_pdps(req);
1618 if (ret)
1619 return ret;
1620 }
1621
1622 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1623 }
1624
1625 ret = intel_ring_begin(req, 4);
1626 if (ret)
1627 return ret;
1628
1629 /* FIXME(BDW): Address space and security selectors. */
1630 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1631 (ppgtt<<8) |
1632 (dispatch_flags & I915_DISPATCH_RS ?
1633 MI_BATCH_RESOURCE_STREAMER : 0));
1634 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1635 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1636 intel_logical_ring_emit(ringbuf, MI_NOOP);
1637 intel_logical_ring_advance(ringbuf);
1638
1639 return 0;
1640 }
1641
1642 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1643 {
1644 struct drm_i915_private *dev_priv = engine->i915;
1645 I915_WRITE_IMR(engine,
1646 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1647 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1648 }
1649
1650 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1651 {
1652 struct drm_i915_private *dev_priv = engine->i915;
1653 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1654 }
1655
1656 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1657 u32 invalidate_domains,
1658 u32 unused)
1659 {
1660 struct intel_ringbuffer *ringbuf = request->ringbuf;
1661 struct intel_engine_cs *engine = ringbuf->engine;
1662 struct drm_i915_private *dev_priv = request->i915;
1663 uint32_t cmd;
1664 int ret;
1665
1666 ret = intel_ring_begin(request, 4);
1667 if (ret)
1668 return ret;
1669
1670 cmd = MI_FLUSH_DW + 1;
1671
1672 /* We always require a command barrier so that subsequent
1673 * commands, such as breadcrumb interrupts, are strictly ordered
1674 * wrt the contents of the write cache being flushed to memory
1675 * (and thus being coherent from the CPU).
1676 */
1677 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1678
1679 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1680 cmd |= MI_INVALIDATE_TLB;
1681 if (engine == &dev_priv->engine[VCS])
1682 cmd |= MI_INVALIDATE_BSD;
1683 }
1684
1685 intel_logical_ring_emit(ringbuf, cmd);
1686 intel_logical_ring_emit(ringbuf,
1687 I915_GEM_HWS_SCRATCH_ADDR |
1688 MI_FLUSH_DW_USE_GTT);
1689 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1690 intel_logical_ring_emit(ringbuf, 0); /* value */
1691 intel_logical_ring_advance(ringbuf);
1692
1693 return 0;
1694 }
1695
1696 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1697 u32 invalidate_domains,
1698 u32 flush_domains)
1699 {
1700 struct intel_ringbuffer *ringbuf = request->ringbuf;
1701 struct intel_engine_cs *engine = ringbuf->engine;
1702 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1703 bool vf_flush_wa = false, dc_flush_wa = false;
1704 u32 flags = 0;
1705 int ret;
1706 int len;
1707
1708 flags |= PIPE_CONTROL_CS_STALL;
1709
1710 if (flush_domains) {
1711 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1712 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1713 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1714 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1715 }
1716
1717 if (invalidate_domains) {
1718 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1719 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1720 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1721 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1722 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1723 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1724 flags |= PIPE_CONTROL_QW_WRITE;
1725 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1726
1727 /*
1728 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1729 * pipe control.
1730 */
1731 if (IS_GEN9(request->i915))
1732 vf_flush_wa = true;
1733
1734 /* WaForGAMHang:kbl */
1735 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1736 dc_flush_wa = true;
1737 }
1738
1739 len = 6;
1740
1741 if (vf_flush_wa)
1742 len += 6;
1743
1744 if (dc_flush_wa)
1745 len += 12;
1746
1747 ret = intel_ring_begin(request, len);
1748 if (ret)
1749 return ret;
1750
1751 if (vf_flush_wa) {
1752 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1753 intel_logical_ring_emit(ringbuf, 0);
1754 intel_logical_ring_emit(ringbuf, 0);
1755 intel_logical_ring_emit(ringbuf, 0);
1756 intel_logical_ring_emit(ringbuf, 0);
1757 intel_logical_ring_emit(ringbuf, 0);
1758 }
1759
1760 if (dc_flush_wa) {
1761 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1762 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
1763 intel_logical_ring_emit(ringbuf, 0);
1764 intel_logical_ring_emit(ringbuf, 0);
1765 intel_logical_ring_emit(ringbuf, 0);
1766 intel_logical_ring_emit(ringbuf, 0);
1767 }
1768
1769 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1770 intel_logical_ring_emit(ringbuf, flags);
1771 intel_logical_ring_emit(ringbuf, scratch_addr);
1772 intel_logical_ring_emit(ringbuf, 0);
1773 intel_logical_ring_emit(ringbuf, 0);
1774 intel_logical_ring_emit(ringbuf, 0);
1775
1776 if (dc_flush_wa) {
1777 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1778 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
1779 intel_logical_ring_emit(ringbuf, 0);
1780 intel_logical_ring_emit(ringbuf, 0);
1781 intel_logical_ring_emit(ringbuf, 0);
1782 intel_logical_ring_emit(ringbuf, 0);
1783 }
1784
1785 intel_logical_ring_advance(ringbuf);
1786
1787 return 0;
1788 }
1789
1790 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1791 {
1792 /*
1793 * On BXT A steppings there is a HW coherency issue whereby the
1794 * MI_STORE_DATA_IMM storing the completed request's seqno
1795 * occasionally doesn't invalidate the CPU cache. Work around this by
1796 * clflushing the corresponding cacheline whenever the caller wants
1797 * the coherency to be guaranteed. Note that this cacheline is known
1798 * to be clean at this point, since we only write it in
1799 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1800 * this clflush in practice becomes an invalidate operation.
1801 */
1802 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1803 }
1804
1805 /*
1806 * Reserve space for 2 NOOPs at the end of each request to be
1807 * used as a workaround for not being allowed to do lite
1808 * restore with HEAD==TAIL (WaIdleLiteRestore).
1809 */
1810 #define WA_TAIL_DWORDS 2
1811
1812 static int gen8_emit_request(struct drm_i915_gem_request *request)
1813 {
1814 struct intel_ringbuffer *ringbuf = request->ringbuf;
1815 int ret;
1816
1817 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1818 if (ret)
1819 return ret;
1820
1821 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1822 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1823
1824 intel_logical_ring_emit(ringbuf,
1825 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1826 intel_logical_ring_emit(ringbuf,
1827 intel_hws_seqno_address(request->engine) |
1828 MI_FLUSH_DW_USE_GTT);
1829 intel_logical_ring_emit(ringbuf, 0);
1830 intel_logical_ring_emit(ringbuf, request->seqno);
1831 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1832 intel_logical_ring_emit(ringbuf, MI_NOOP);
1833 return intel_logical_ring_advance_and_submit(request);
1834 }
1835
1836 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1837 {
1838 struct intel_ringbuffer *ringbuf = request->ringbuf;
1839 int ret;
1840
1841 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1842 if (ret)
1843 return ret;
1844
1845 /* We're using qword write, seqno should be aligned to 8 bytes. */
1846 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1847
1848 /* w/a for post sync ops following a GPGPU operation we
1849 * need a prior CS_STALL, which is emitted by the flush
1850 * following the batch.
1851 */
1852 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1853 intel_logical_ring_emit(ringbuf,
1854 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1855 PIPE_CONTROL_CS_STALL |
1856 PIPE_CONTROL_QW_WRITE));
1857 intel_logical_ring_emit(ringbuf,
1858 intel_hws_seqno_address(request->engine));
1859 intel_logical_ring_emit(ringbuf, 0);
1860 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1861 /* We're thrashing one dword of HWS. */
1862 intel_logical_ring_emit(ringbuf, 0);
1863 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1864 intel_logical_ring_emit(ringbuf, MI_NOOP);
1865 return intel_logical_ring_advance_and_submit(request);
1866 }
1867
1868 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1869 {
1870 struct render_state so;
1871 int ret;
1872
1873 ret = i915_gem_render_state_prepare(req->engine, &so);
1874 if (ret)
1875 return ret;
1876
1877 if (so.rodata == NULL)
1878 return 0;
1879
1880 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1881 I915_DISPATCH_SECURE);
1882 if (ret)
1883 goto out;
1884
1885 ret = req->engine->emit_bb_start(req,
1886 (so.ggtt_offset + so.aux_batch_offset),
1887 I915_DISPATCH_SECURE);
1888 if (ret)
1889 goto out;
1890
1891 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1892
1893 out:
1894 i915_gem_render_state_fini(&so);
1895 return ret;
1896 }
1897
1898 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1899 {
1900 int ret;
1901
1902 ret = intel_logical_ring_workarounds_emit(req);
1903 if (ret)
1904 return ret;
1905
1906 ret = intel_rcs_context_init_mocs(req);
1907 /*
1908 * Failing to program the MOCS is non-fatal.The system will not
1909 * run at peak performance. So generate an error and carry on.
1910 */
1911 if (ret)
1912 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1913
1914 return intel_lr_context_render_state_init(req);
1915 }
1916
1917 /**
1918 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1919 *
1920 * @engine: Engine Command Streamer.
1921 *
1922 */
1923 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1924 {
1925 struct drm_i915_private *dev_priv;
1926
1927 if (!intel_engine_initialized(engine))
1928 return;
1929
1930 /*
1931 * Tasklet cannot be active at this point due intel_mark_active/idle
1932 * so this is just for documentation.
1933 */
1934 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1935 tasklet_kill(&engine->irq_tasklet);
1936
1937 dev_priv = engine->i915;
1938
1939 if (engine->buffer) {
1940 intel_logical_ring_stop(engine);
1941 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1942 }
1943
1944 if (engine->cleanup)
1945 engine->cleanup(engine);
1946
1947 i915_cmd_parser_fini_ring(engine);
1948 i915_gem_batch_pool_fini(&engine->batch_pool);
1949
1950 intel_engine_fini_breadcrumbs(engine);
1951
1952 if (engine->status_page.obj) {
1953 i915_gem_object_unpin_map(engine->status_page.obj);
1954 engine->status_page.obj = NULL;
1955 }
1956 intel_lr_context_unpin(dev_priv->kernel_context, engine);
1957
1958 engine->idle_lite_restore_wa = 0;
1959 engine->disable_lite_restore_wa = false;
1960 engine->ctx_desc_template = 0;
1961
1962 lrc_destroy_wa_ctx_obj(engine);
1963 engine->i915 = NULL;
1964 }
1965
1966 static void
1967 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1968 {
1969 /* Default vfuncs which can be overriden by each engine. */
1970 engine->init_hw = gen8_init_common_ring;
1971 engine->emit_request = gen8_emit_request;
1972 engine->emit_flush = gen8_emit_flush;
1973 engine->irq_enable = gen8_logical_ring_enable_irq;
1974 engine->irq_disable = gen8_logical_ring_disable_irq;
1975 engine->emit_bb_start = gen8_emit_bb_start;
1976 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1977 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1978 }
1979
1980 static inline void
1981 logical_ring_default_irqs(struct intel_engine_cs *engine)
1982 {
1983 unsigned shift = engine->irq_shift;
1984 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1985 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1986 }
1987
1988 static int
1989 lrc_setup_hws(struct intel_engine_cs *engine,
1990 struct drm_i915_gem_object *dctx_obj)
1991 {
1992 void *hws;
1993
1994 /* The HWSP is part of the default context object in LRC mode. */
1995 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1996 LRC_PPHWSP_PN * PAGE_SIZE;
1997 hws = i915_gem_object_pin_map(dctx_obj);
1998 if (IS_ERR(hws))
1999 return PTR_ERR(hws);
2000 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2001 engine->status_page.obj = dctx_obj;
2002
2003 return 0;
2004 }
2005
2006 static void
2007 logical_ring_setup(struct intel_engine_cs *engine)
2008 {
2009 struct drm_i915_private *dev_priv = engine->i915;
2010 enum forcewake_domains fw_domains;
2011
2012 intel_engine_setup_common(engine);
2013
2014 /* Intentionally left blank. */
2015 engine->buffer = NULL;
2016
2017 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2018 RING_ELSP(engine),
2019 FW_REG_WRITE);
2020
2021 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2022 RING_CONTEXT_STATUS_PTR(engine),
2023 FW_REG_READ | FW_REG_WRITE);
2024
2025 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2026 RING_CONTEXT_STATUS_BUF_BASE(engine),
2027 FW_REG_READ);
2028
2029 engine->fw_domains = fw_domains;
2030
2031 tasklet_init(&engine->irq_tasklet,
2032 intel_lrc_irq_handler, (unsigned long)engine);
2033
2034 logical_ring_init_platform_invariants(engine);
2035 logical_ring_default_vfuncs(engine);
2036 logical_ring_default_irqs(engine);
2037 }
2038
2039 static int
2040 logical_ring_init(struct intel_engine_cs *engine)
2041 {
2042 struct i915_gem_context *dctx = engine->i915->kernel_context;
2043 int ret;
2044
2045 ret = intel_engine_init_common(engine);
2046 if (ret)
2047 goto error;
2048
2049 ret = execlists_context_deferred_alloc(dctx, engine);
2050 if (ret)
2051 goto error;
2052
2053 /* As this is the default context, always pin it */
2054 ret = intel_lr_context_pin(dctx, engine);
2055 if (ret) {
2056 DRM_ERROR("Failed to pin context for %s: %d\n",
2057 engine->name, ret);
2058 goto error;
2059 }
2060
2061 /* And setup the hardware status page. */
2062 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2063 if (ret) {
2064 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2065 goto error;
2066 }
2067
2068 return 0;
2069
2070 error:
2071 intel_logical_ring_cleanup(engine);
2072 return ret;
2073 }
2074
2075 int logical_render_ring_init(struct intel_engine_cs *engine)
2076 {
2077 struct drm_i915_private *dev_priv = engine->i915;
2078 int ret;
2079
2080 logical_ring_setup(engine);
2081
2082 if (HAS_L3_DPF(dev_priv))
2083 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2084
2085 /* Override some for render ring. */
2086 if (INTEL_GEN(dev_priv) >= 9)
2087 engine->init_hw = gen9_init_render_ring;
2088 else
2089 engine->init_hw = gen8_init_render_ring;
2090 engine->init_context = gen8_init_rcs_context;
2091 engine->cleanup = intel_fini_pipe_control;
2092 engine->emit_flush = gen8_emit_flush_render;
2093 engine->emit_request = gen8_emit_request_render;
2094
2095 ret = intel_init_pipe_control(engine, 4096);
2096 if (ret)
2097 return ret;
2098
2099 ret = intel_init_workaround_bb(engine);
2100 if (ret) {
2101 /*
2102 * We continue even if we fail to initialize WA batch
2103 * because we only expect rare glitches but nothing
2104 * critical to prevent us from using GPU
2105 */
2106 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2107 ret);
2108 }
2109
2110 ret = logical_ring_init(engine);
2111 if (ret) {
2112 lrc_destroy_wa_ctx_obj(engine);
2113 }
2114
2115 return ret;
2116 }
2117
2118 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2119 {
2120 logical_ring_setup(engine);
2121
2122 return logical_ring_init(engine);
2123 }
2124
2125 static u32
2126 make_rpcs(struct drm_i915_private *dev_priv)
2127 {
2128 u32 rpcs = 0;
2129
2130 /*
2131 * No explicit RPCS request is needed to ensure full
2132 * slice/subslice/EU enablement prior to Gen9.
2133 */
2134 if (INTEL_GEN(dev_priv) < 9)
2135 return 0;
2136
2137 /*
2138 * Starting in Gen9, render power gating can leave
2139 * slice/subslice/EU in a partially enabled state. We
2140 * must make an explicit request through RPCS for full
2141 * enablement.
2142 */
2143 if (INTEL_INFO(dev_priv)->has_slice_pg) {
2144 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2145 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2146 GEN8_RPCS_S_CNT_SHIFT;
2147 rpcs |= GEN8_RPCS_ENABLE;
2148 }
2149
2150 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2151 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2152 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2153 GEN8_RPCS_SS_CNT_SHIFT;
2154 rpcs |= GEN8_RPCS_ENABLE;
2155 }
2156
2157 if (INTEL_INFO(dev_priv)->has_eu_pg) {
2158 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2159 GEN8_RPCS_EU_MIN_SHIFT;
2160 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2161 GEN8_RPCS_EU_MAX_SHIFT;
2162 rpcs |= GEN8_RPCS_ENABLE;
2163 }
2164
2165 return rpcs;
2166 }
2167
2168 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2169 {
2170 u32 indirect_ctx_offset;
2171
2172 switch (INTEL_GEN(engine->i915)) {
2173 default:
2174 MISSING_CASE(INTEL_GEN(engine->i915));
2175 /* fall through */
2176 case 9:
2177 indirect_ctx_offset =
2178 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2179 break;
2180 case 8:
2181 indirect_ctx_offset =
2182 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2183 break;
2184 }
2185
2186 return indirect_ctx_offset;
2187 }
2188
2189 static int
2190 populate_lr_context(struct i915_gem_context *ctx,
2191 struct drm_i915_gem_object *ctx_obj,
2192 struct intel_engine_cs *engine,
2193 struct intel_ringbuffer *ringbuf)
2194 {
2195 struct drm_i915_private *dev_priv = ctx->i915;
2196 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2197 void *vaddr;
2198 u32 *reg_state;
2199 int ret;
2200
2201 if (!ppgtt)
2202 ppgtt = dev_priv->mm.aliasing_ppgtt;
2203
2204 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2205 if (ret) {
2206 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2207 return ret;
2208 }
2209
2210 vaddr = i915_gem_object_pin_map(ctx_obj);
2211 if (IS_ERR(vaddr)) {
2212 ret = PTR_ERR(vaddr);
2213 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2214 return ret;
2215 }
2216 ctx_obj->dirty = true;
2217
2218 /* The second page of the context object contains some fields which must
2219 * be set up prior to the first execution. */
2220 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2221
2222 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2223 * commands followed by (reg, value) pairs. The values we are setting here are
2224 * only for the first context restore: on a subsequent save, the GPU will
2225 * recreate this batchbuffer with new values (including all the missing
2226 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2227 reg_state[CTX_LRI_HEADER_0] =
2228 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2229 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2230 RING_CONTEXT_CONTROL(engine),
2231 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2232 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2233 (HAS_RESOURCE_STREAMER(dev_priv) ?
2234 CTX_CTRL_RS_CTX_ENABLE : 0)));
2235 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2236 0);
2237 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2238 0);
2239 /* Ring buffer start address is not known until the buffer is pinned.
2240 * It is written to the context image in execlists_update_context()
2241 */
2242 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2243 RING_START(engine->mmio_base), 0);
2244 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2245 RING_CTL(engine->mmio_base),
2246 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2247 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2248 RING_BBADDR_UDW(engine->mmio_base), 0);
2249 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2250 RING_BBADDR(engine->mmio_base), 0);
2251 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2252 RING_BBSTATE(engine->mmio_base),
2253 RING_BB_PPGTT);
2254 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2255 RING_SBBADDR_UDW(engine->mmio_base), 0);
2256 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2257 RING_SBBADDR(engine->mmio_base), 0);
2258 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2259 RING_SBBSTATE(engine->mmio_base), 0);
2260 if (engine->id == RCS) {
2261 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2262 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2263 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2264 RING_INDIRECT_CTX(engine->mmio_base), 0);
2265 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2266 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2267 if (engine->wa_ctx.obj) {
2268 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2269 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2270
2271 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2272 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2273 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2274
2275 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2276 intel_lr_indirect_ctx_offset(engine) << 6;
2277
2278 reg_state[CTX_BB_PER_CTX_PTR+1] =
2279 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2280 0x01;
2281 }
2282 }
2283 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2284 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2285 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2286 /* PDP values well be assigned later if needed */
2287 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2288 0);
2289 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2290 0);
2291 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2292 0);
2293 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2294 0);
2295 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2296 0);
2297 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2298 0);
2299 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2300 0);
2301 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2302 0);
2303
2304 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2305 /* 64b PPGTT (48bit canonical)
2306 * PDP0_DESCRIPTOR contains the base address to PML4 and
2307 * other PDP Descriptors are ignored.
2308 */
2309 ASSIGN_CTX_PML4(ppgtt, reg_state);
2310 } else {
2311 /* 32b PPGTT
2312 * PDP*_DESCRIPTOR contains the base address of space supported.
2313 * With dynamic page allocation, PDPs may not be allocated at
2314 * this point. Point the unallocated PDPs to the scratch page
2315 */
2316 execlists_update_context_pdps(ppgtt, reg_state);
2317 }
2318
2319 if (engine->id == RCS) {
2320 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2321 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2322 make_rpcs(dev_priv));
2323 }
2324
2325 i915_gem_object_unpin_map(ctx_obj);
2326
2327 return 0;
2328 }
2329
2330 /**
2331 * intel_lr_context_size() - return the size of the context for an engine
2332 * @engine: which engine to find the context size for
2333 *
2334 * Each engine may require a different amount of space for a context image,
2335 * so when allocating (or copying) an image, this function can be used to
2336 * find the right size for the specific engine.
2337 *
2338 * Return: size (in bytes) of an engine-specific context image
2339 *
2340 * Note: this size includes the HWSP, which is part of the context image
2341 * in LRC mode, but does not include the "shared data page" used with
2342 * GuC submission. The caller should account for this if using the GuC.
2343 */
2344 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2345 {
2346 int ret = 0;
2347
2348 WARN_ON(INTEL_GEN(engine->i915) < 8);
2349
2350 switch (engine->id) {
2351 case RCS:
2352 if (INTEL_GEN(engine->i915) >= 9)
2353 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2354 else
2355 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2356 break;
2357 case VCS:
2358 case BCS:
2359 case VECS:
2360 case VCS2:
2361 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2362 break;
2363 }
2364
2365 return ret;
2366 }
2367
2368 /**
2369 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2370 * @ctx: LR context to create.
2371 * @engine: engine to be used with the context.
2372 *
2373 * This function can be called more than once, with different engines, if we plan
2374 * to use the context with them. The context backing objects and the ringbuffers
2375 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2376 * the creation is a deferred call: it's better to make sure first that we need to use
2377 * a given ring with the context.
2378 *
2379 * Return: non-zero on error.
2380 */
2381 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2382 struct intel_engine_cs *engine)
2383 {
2384 struct drm_i915_gem_object *ctx_obj;
2385 struct intel_context *ce = &ctx->engine[engine->id];
2386 uint32_t context_size;
2387 struct intel_ringbuffer *ringbuf;
2388 int ret;
2389
2390 WARN_ON(ce->state);
2391
2392 context_size = round_up(intel_lr_context_size(engine), 4096);
2393
2394 /* One extra page as the sharing data between driver and GuC */
2395 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2396
2397 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2398 if (IS_ERR(ctx_obj)) {
2399 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2400 return PTR_ERR(ctx_obj);
2401 }
2402
2403 ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
2404 if (IS_ERR(ringbuf)) {
2405 ret = PTR_ERR(ringbuf);
2406 goto error_deref_obj;
2407 }
2408
2409 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2410 if (ret) {
2411 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2412 goto error_ringbuf;
2413 }
2414
2415 ce->ringbuf = ringbuf;
2416 ce->state = ctx_obj;
2417 ce->initialised = engine->init_context == NULL;
2418
2419 return 0;
2420
2421 error_ringbuf:
2422 intel_ringbuffer_free(ringbuf);
2423 error_deref_obj:
2424 drm_gem_object_unreference(&ctx_obj->base);
2425 ce->ringbuf = NULL;
2426 ce->state = NULL;
2427 return ret;
2428 }
2429
2430 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2431 struct i915_gem_context *ctx)
2432 {
2433 struct intel_engine_cs *engine;
2434
2435 for_each_engine(engine, dev_priv) {
2436 struct intel_context *ce = &ctx->engine[engine->id];
2437 struct drm_i915_gem_object *ctx_obj = ce->state;
2438 void *vaddr;
2439 uint32_t *reg_state;
2440
2441 if (!ctx_obj)
2442 continue;
2443
2444 vaddr = i915_gem_object_pin_map(ctx_obj);
2445 if (WARN_ON(IS_ERR(vaddr)))
2446 continue;
2447
2448 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2449 ctx_obj->dirty = true;
2450
2451 reg_state[CTX_RING_HEAD+1] = 0;
2452 reg_state[CTX_RING_TAIL+1] = 0;
2453
2454 i915_gem_object_unpin_map(ctx_obj);
2455
2456 ce->ringbuf->head = 0;
2457 ce->ringbuf->tail = 0;
2458 }
2459 }
This page took 0.08102 seconds and 4 git commands to generate.