drm/i915/bdw: Render state init for Execlists
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
141
142 #define GEN8_LR_CONTEXT_ALIGN 4096
143
144 #define RING_EXECLIST_QFULL (1 << 0x2)
145 #define RING_EXECLIST1_VALID (1 << 0x3)
146 #define RING_EXECLIST0_VALID (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
157
158 #define CTX_LRI_HEADER_0 0x01
159 #define CTX_CONTEXT_CONTROL 0x02
160 #define CTX_RING_HEAD 0x04
161 #define CTX_RING_TAIL 0x06
162 #define CTX_RING_BUFFER_START 0x08
163 #define CTX_RING_BUFFER_CONTROL 0x0a
164 #define CTX_BB_HEAD_U 0x0c
165 #define CTX_BB_HEAD_L 0x0e
166 #define CTX_BB_STATE 0x10
167 #define CTX_SECOND_BB_HEAD_U 0x12
168 #define CTX_SECOND_BB_HEAD_L 0x14
169 #define CTX_SECOND_BB_STATE 0x16
170 #define CTX_BB_PER_CTX_PTR 0x18
171 #define CTX_RCS_INDIRECT_CTX 0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173 #define CTX_LRI_HEADER_1 0x21
174 #define CTX_CTX_TIMESTAMP 0x22
175 #define CTX_PDP3_UDW 0x24
176 #define CTX_PDP3_LDW 0x26
177 #define CTX_PDP2_UDW 0x28
178 #define CTX_PDP2_LDW 0x2a
179 #define CTX_PDP1_UDW 0x2c
180 #define CTX_PDP1_LDW 0x2e
181 #define CTX_PDP0_UDW 0x30
182 #define CTX_PDP0_LDW 0x32
183 #define CTX_LRI_HEADER_2 0x41
184 #define CTX_R_PWR_CLK_STATE 0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192 enum {
193 ADVANCED_CONTEXT = 0,
194 LEGACY_CONTEXT,
195 ADVANCED_AD_CONTEXT,
196 LEGACY_64B_CONTEXT
197 };
198 #define GEN8_CTX_MODE_SHIFT 3
199 enum {
200 FAULT_AND_HANG = 0,
201 FAULT_AND_HALT, /* Debug only */
202 FAULT_AND_STREAM,
203 FAULT_AND_CONTINUE /* Unsupported */
204 };
205 #define GEN8_CTX_ID_SHIFT 32
206
207 /**
208 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
209 * @dev: DRM device.
210 * @enable_execlists: value of i915.enable_execlists module parameter.
211 *
212 * Only certain platforms support Execlists (the prerequisites being
213 * support for Logical Ring Contexts and Aliasing PPGTT or better),
214 * and only when enabled via module parameter.
215 *
216 * Return: 1 if Execlists is supported and has to be enabled.
217 */
218 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
219 {
220 WARN_ON(i915.enable_ppgtt == -1);
221
222 if (enable_execlists == 0)
223 return 0;
224
225 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
226 i915.use_mmio_flip >= 0)
227 return 1;
228
229 return 0;
230 }
231
232 /**
233 * intel_execlists_ctx_id() - get the Execlists Context ID
234 * @ctx_obj: Logical Ring Context backing object.
235 *
236 * Do not confuse with ctx->id! Unfortunately we have a name overload
237 * here: the old context ID we pass to userspace as a handler so that
238 * they can refer to a context, and the new context ID we pass to the
239 * ELSP so that the GPU can inform us of the context status via
240 * interrupts.
241 *
242 * Return: 20-bits globally unique context ID.
243 */
244 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
245 {
246 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
247
248 /* LRCA is required to be 4K aligned so the more significant 20 bits
249 * are globally unique */
250 return lrca >> 12;
251 }
252
253 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
254 {
255 uint64_t desc;
256 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
257
258 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
259
260 desc = GEN8_CTX_VALID;
261 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
262 desc |= GEN8_CTX_L3LLC_COHERENT;
263 desc |= GEN8_CTX_PRIVILEGE;
264 desc |= lrca;
265 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
266
267 /* TODO: WaDisableLiteRestore when we start using semaphore
268 * signalling between Command Streamers */
269 /* desc |= GEN8_CTX_FORCE_RESTORE; */
270
271 return desc;
272 }
273
274 static void execlists_elsp_write(struct intel_engine_cs *ring,
275 struct drm_i915_gem_object *ctx_obj0,
276 struct drm_i915_gem_object *ctx_obj1)
277 {
278 struct drm_i915_private *dev_priv = ring->dev->dev_private;
279 uint64_t temp = 0;
280 uint32_t desc[4];
281 unsigned long flags;
282
283 /* XXX: You must always write both descriptors in the order below. */
284 if (ctx_obj1)
285 temp = execlists_ctx_descriptor(ctx_obj1);
286 else
287 temp = 0;
288 desc[1] = (u32)(temp >> 32);
289 desc[0] = (u32)temp;
290
291 temp = execlists_ctx_descriptor(ctx_obj0);
292 desc[3] = (u32)(temp >> 32);
293 desc[2] = (u32)temp;
294
295 /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
296 * are in progress.
297 *
298 * The other problem is that we can't just call gen6_gt_force_wake_get()
299 * because that function calls intel_runtime_pm_get(), which might sleep.
300 * Instead, we do the runtime_pm_get/put when creating/destroying requests.
301 */
302 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
303 if (dev_priv->uncore.forcewake_count++ == 0)
304 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
305 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
306
307 I915_WRITE(RING_ELSP(ring), desc[1]);
308 I915_WRITE(RING_ELSP(ring), desc[0]);
309 I915_WRITE(RING_ELSP(ring), desc[3]);
310 /* The context is automatically loaded after the following */
311 I915_WRITE(RING_ELSP(ring), desc[2]);
312
313 /* ELSP is a wo register, so use another nearby reg for posting instead */
314 POSTING_READ(RING_EXECLIST_STATUS(ring));
315
316 /* Release Force Wakeup (see the big comment above). */
317 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
318 if (--dev_priv->uncore.forcewake_count == 0)
319 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
320 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
321 }
322
323 static int execlists_ctx_write_tail(struct drm_i915_gem_object *ctx_obj, u32 tail)
324 {
325 struct page *page;
326 uint32_t *reg_state;
327
328 page = i915_gem_object_get_page(ctx_obj, 1);
329 reg_state = kmap_atomic(page);
330
331 reg_state[CTX_RING_TAIL+1] = tail;
332
333 kunmap_atomic(reg_state);
334
335 return 0;
336 }
337
338 static int execlists_submit_context(struct intel_engine_cs *ring,
339 struct intel_context *to0, u32 tail0,
340 struct intel_context *to1, u32 tail1)
341 {
342 struct drm_i915_gem_object *ctx_obj0;
343 struct drm_i915_gem_object *ctx_obj1 = NULL;
344
345 ctx_obj0 = to0->engine[ring->id].state;
346 BUG_ON(!ctx_obj0);
347 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
348
349 execlists_ctx_write_tail(ctx_obj0, tail0);
350
351 if (to1) {
352 ctx_obj1 = to1->engine[ring->id].state;
353 BUG_ON(!ctx_obj1);
354 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
355
356 execlists_ctx_write_tail(ctx_obj1, tail1);
357 }
358
359 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
360
361 return 0;
362 }
363
364 static void execlists_context_unqueue(struct intel_engine_cs *ring)
365 {
366 struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
367 struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
368 struct drm_i915_private *dev_priv = ring->dev->dev_private;
369
370 assert_spin_locked(&ring->execlist_lock);
371
372 if (list_empty(&ring->execlist_queue))
373 return;
374
375 /* Try to read in pairs */
376 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
377 execlist_link) {
378 if (!req0) {
379 req0 = cursor;
380 } else if (req0->ctx == cursor->ctx) {
381 /* Same ctx: ignore first request, as second request
382 * will update tail past first request's workload */
383 cursor->elsp_submitted = req0->elsp_submitted;
384 list_del(&req0->execlist_link);
385 queue_work(dev_priv->wq, &req0->work);
386 req0 = cursor;
387 } else {
388 req1 = cursor;
389 break;
390 }
391 }
392
393 WARN_ON(req1 && req1->elsp_submitted);
394
395 WARN_ON(execlists_submit_context(ring, req0->ctx, req0->tail,
396 req1 ? req1->ctx : NULL,
397 req1 ? req1->tail : 0));
398
399 req0->elsp_submitted++;
400 if (req1)
401 req1->elsp_submitted++;
402 }
403
404 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
405 u32 request_id)
406 {
407 struct drm_i915_private *dev_priv = ring->dev->dev_private;
408 struct intel_ctx_submit_request *head_req;
409
410 assert_spin_locked(&ring->execlist_lock);
411
412 head_req = list_first_entry_or_null(&ring->execlist_queue,
413 struct intel_ctx_submit_request,
414 execlist_link);
415
416 if (head_req != NULL) {
417 struct drm_i915_gem_object *ctx_obj =
418 head_req->ctx->engine[ring->id].state;
419 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
420 WARN(head_req->elsp_submitted == 0,
421 "Never submitted head request\n");
422
423 if (--head_req->elsp_submitted <= 0) {
424 list_del(&head_req->execlist_link);
425 queue_work(dev_priv->wq, &head_req->work);
426 return true;
427 }
428 }
429 }
430
431 return false;
432 }
433
434 /**
435 * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
436 * @ring: Engine Command Streamer to handle.
437 *
438 * Check the unread Context Status Buffers and manage the submission of new
439 * contexts to the ELSP accordingly.
440 */
441 void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
442 {
443 struct drm_i915_private *dev_priv = ring->dev->dev_private;
444 u32 status_pointer;
445 u8 read_pointer;
446 u8 write_pointer;
447 u32 status;
448 u32 status_id;
449 u32 submit_contexts = 0;
450
451 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
452
453 read_pointer = ring->next_context_status_buffer;
454 write_pointer = status_pointer & 0x07;
455 if (read_pointer > write_pointer)
456 write_pointer += 6;
457
458 spin_lock(&ring->execlist_lock);
459
460 while (read_pointer < write_pointer) {
461 read_pointer++;
462 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
463 (read_pointer % 6) * 8);
464 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
465 (read_pointer % 6) * 8 + 4);
466
467 if (status & GEN8_CTX_STATUS_PREEMPTED) {
468 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
469 if (execlists_check_remove_request(ring, status_id))
470 WARN(1, "Lite Restored request removed from queue\n");
471 } else
472 WARN(1, "Preemption without Lite Restore\n");
473 }
474
475 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
476 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
477 if (execlists_check_remove_request(ring, status_id))
478 submit_contexts++;
479 }
480 }
481
482 if (submit_contexts != 0)
483 execlists_context_unqueue(ring);
484
485 spin_unlock(&ring->execlist_lock);
486
487 WARN(submit_contexts > 2, "More than two context complete events?\n");
488 ring->next_context_status_buffer = write_pointer % 6;
489
490 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
491 ((u32)ring->next_context_status_buffer & 0x07) << 8);
492 }
493
494 static void execlists_free_request_task(struct work_struct *work)
495 {
496 struct intel_ctx_submit_request *req =
497 container_of(work, struct intel_ctx_submit_request, work);
498 struct drm_device *dev = req->ring->dev;
499 struct drm_i915_private *dev_priv = dev->dev_private;
500
501 intel_runtime_pm_put(dev_priv);
502
503 mutex_lock(&dev->struct_mutex);
504 i915_gem_context_unreference(req->ctx);
505 mutex_unlock(&dev->struct_mutex);
506
507 kfree(req);
508 }
509
510 static int execlists_context_queue(struct intel_engine_cs *ring,
511 struct intel_context *to,
512 u32 tail)
513 {
514 struct intel_ctx_submit_request *req = NULL, *cursor;
515 struct drm_i915_private *dev_priv = ring->dev->dev_private;
516 unsigned long flags;
517 int num_elements = 0;
518
519 req = kzalloc(sizeof(*req), GFP_KERNEL);
520 if (req == NULL)
521 return -ENOMEM;
522 req->ctx = to;
523 i915_gem_context_reference(req->ctx);
524 req->ring = ring;
525 req->tail = tail;
526 INIT_WORK(&req->work, execlists_free_request_task);
527
528 intel_runtime_pm_get(dev_priv);
529
530 spin_lock_irqsave(&ring->execlist_lock, flags);
531
532 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
533 if (++num_elements > 2)
534 break;
535
536 if (num_elements > 2) {
537 struct intel_ctx_submit_request *tail_req;
538
539 tail_req = list_last_entry(&ring->execlist_queue,
540 struct intel_ctx_submit_request,
541 execlist_link);
542
543 if (to == tail_req->ctx) {
544 WARN(tail_req->elsp_submitted != 0,
545 "More than 2 already-submitted reqs queued\n");
546 list_del(&tail_req->execlist_link);
547 queue_work(dev_priv->wq, &tail_req->work);
548 }
549 }
550
551 list_add_tail(&req->execlist_link, &ring->execlist_queue);
552 if (num_elements == 0)
553 execlists_context_unqueue(ring);
554
555 spin_unlock_irqrestore(&ring->execlist_lock, flags);
556
557 return 0;
558 }
559
560 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
561 {
562 struct intel_engine_cs *ring = ringbuf->ring;
563 uint32_t flush_domains;
564 int ret;
565
566 flush_domains = 0;
567 if (ring->gpu_caches_dirty)
568 flush_domains = I915_GEM_GPU_DOMAINS;
569
570 ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
571 if (ret)
572 return ret;
573
574 ring->gpu_caches_dirty = false;
575 return 0;
576 }
577
578 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
579 struct list_head *vmas)
580 {
581 struct intel_engine_cs *ring = ringbuf->ring;
582 struct i915_vma *vma;
583 uint32_t flush_domains = 0;
584 bool flush_chipset = false;
585 int ret;
586
587 list_for_each_entry(vma, vmas, exec_list) {
588 struct drm_i915_gem_object *obj = vma->obj;
589
590 ret = i915_gem_object_sync(obj, ring);
591 if (ret)
592 return ret;
593
594 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
595 flush_chipset |= i915_gem_clflush_object(obj, false);
596
597 flush_domains |= obj->base.write_domain;
598 }
599
600 if (flush_domains & I915_GEM_DOMAIN_GTT)
601 wmb();
602
603 /* Unconditionally invalidate gpu caches and ensure that we do flush
604 * any residual writes from the previous batch.
605 */
606 return logical_ring_invalidate_all_caches(ringbuf);
607 }
608
609 /**
610 * execlists_submission() - submit a batchbuffer for execution, Execlists style
611 * @dev: DRM device.
612 * @file: DRM file.
613 * @ring: Engine Command Streamer to submit to.
614 * @ctx: Context to employ for this submission.
615 * @args: execbuffer call arguments.
616 * @vmas: list of vmas.
617 * @batch_obj: the batchbuffer to submit.
618 * @exec_start: batchbuffer start virtual address pointer.
619 * @flags: translated execbuffer call flags.
620 *
621 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
622 * away the submission details of the execbuffer ioctl call.
623 *
624 * Return: non-zero if the submission fails.
625 */
626 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
627 struct intel_engine_cs *ring,
628 struct intel_context *ctx,
629 struct drm_i915_gem_execbuffer2 *args,
630 struct list_head *vmas,
631 struct drm_i915_gem_object *batch_obj,
632 u64 exec_start, u32 flags)
633 {
634 struct drm_i915_private *dev_priv = dev->dev_private;
635 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
636 int instp_mode;
637 u32 instp_mask;
638 int ret;
639
640 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
641 instp_mask = I915_EXEC_CONSTANTS_MASK;
642 switch (instp_mode) {
643 case I915_EXEC_CONSTANTS_REL_GENERAL:
644 case I915_EXEC_CONSTANTS_ABSOLUTE:
645 case I915_EXEC_CONSTANTS_REL_SURFACE:
646 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
647 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
648 return -EINVAL;
649 }
650
651 if (instp_mode != dev_priv->relative_constants_mode) {
652 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
653 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
654 return -EINVAL;
655 }
656
657 /* The HW changed the meaning on this bit on gen6 */
658 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
659 }
660 break;
661 default:
662 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
663 return -EINVAL;
664 }
665
666 if (args->num_cliprects != 0) {
667 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
668 return -EINVAL;
669 } else {
670 if (args->DR4 == 0xffffffff) {
671 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
672 args->DR4 = 0;
673 }
674
675 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
676 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
677 return -EINVAL;
678 }
679 }
680
681 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
682 DRM_DEBUG("sol reset is gen7 only\n");
683 return -EINVAL;
684 }
685
686 ret = execlists_move_to_gpu(ringbuf, vmas);
687 if (ret)
688 return ret;
689
690 if (ring == &dev_priv->ring[RCS] &&
691 instp_mode != dev_priv->relative_constants_mode) {
692 ret = intel_logical_ring_begin(ringbuf, 4);
693 if (ret)
694 return ret;
695
696 intel_logical_ring_emit(ringbuf, MI_NOOP);
697 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
698 intel_logical_ring_emit(ringbuf, INSTPM);
699 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
700 intel_logical_ring_advance(ringbuf);
701
702 dev_priv->relative_constants_mode = instp_mode;
703 }
704
705 ret = ring->emit_bb_start(ringbuf, exec_start, flags);
706 if (ret)
707 return ret;
708
709 i915_gem_execbuffer_move_to_active(vmas, ring);
710 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
711
712 return 0;
713 }
714
715 void intel_logical_ring_stop(struct intel_engine_cs *ring)
716 {
717 struct drm_i915_private *dev_priv = ring->dev->dev_private;
718 int ret;
719
720 if (!intel_ring_initialized(ring))
721 return;
722
723 ret = intel_ring_idle(ring);
724 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
725 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
726 ring->name, ret);
727
728 /* TODO: Is this correct with Execlists enabled? */
729 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
730 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
731 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
732 return;
733 }
734 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
735 }
736
737 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
738 {
739 struct intel_engine_cs *ring = ringbuf->ring;
740 int ret;
741
742 if (!ring->gpu_caches_dirty)
743 return 0;
744
745 ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
746 if (ret)
747 return ret;
748
749 ring->gpu_caches_dirty = false;
750 return 0;
751 }
752
753 /**
754 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
755 * @ringbuf: Logical Ringbuffer to advance.
756 *
757 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
758 * really happens during submission is that the context and current tail will be placed
759 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
760 * point, the tail *inside* the context is updated and the ELSP written to.
761 */
762 void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
763 {
764 struct intel_engine_cs *ring = ringbuf->ring;
765 struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
766
767 intel_logical_ring_advance(ringbuf);
768
769 if (intel_ring_stopped(ring))
770 return;
771
772 execlists_context_queue(ring, ctx, ringbuf->tail);
773 }
774
775 static int logical_ring_alloc_seqno(struct intel_engine_cs *ring,
776 struct intel_context *ctx)
777 {
778 if (ring->outstanding_lazy_seqno)
779 return 0;
780
781 if (ring->preallocated_lazy_request == NULL) {
782 struct drm_i915_gem_request *request;
783
784 request = kmalloc(sizeof(*request), GFP_KERNEL);
785 if (request == NULL)
786 return -ENOMEM;
787
788 /* Hold a reference to the context this request belongs to
789 * (we will need it when the time comes to emit/retire the
790 * request).
791 */
792 request->ctx = ctx;
793 i915_gem_context_reference(request->ctx);
794
795 ring->preallocated_lazy_request = request;
796 }
797
798 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
799 }
800
801 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
802 int bytes)
803 {
804 struct intel_engine_cs *ring = ringbuf->ring;
805 struct drm_i915_gem_request *request;
806 u32 seqno = 0;
807 int ret;
808
809 if (ringbuf->last_retired_head != -1) {
810 ringbuf->head = ringbuf->last_retired_head;
811 ringbuf->last_retired_head = -1;
812
813 ringbuf->space = intel_ring_space(ringbuf);
814 if (ringbuf->space >= bytes)
815 return 0;
816 }
817
818 list_for_each_entry(request, &ring->request_list, list) {
819 if (__intel_ring_space(request->tail, ringbuf->tail,
820 ringbuf->size) >= bytes) {
821 seqno = request->seqno;
822 break;
823 }
824 }
825
826 if (seqno == 0)
827 return -ENOSPC;
828
829 ret = i915_wait_seqno(ring, seqno);
830 if (ret)
831 return ret;
832
833 i915_gem_retire_requests_ring(ring);
834 ringbuf->head = ringbuf->last_retired_head;
835 ringbuf->last_retired_head = -1;
836
837 ringbuf->space = intel_ring_space(ringbuf);
838 return 0;
839 }
840
841 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
842 int bytes)
843 {
844 struct intel_engine_cs *ring = ringbuf->ring;
845 struct drm_device *dev = ring->dev;
846 struct drm_i915_private *dev_priv = dev->dev_private;
847 unsigned long end;
848 int ret;
849
850 ret = logical_ring_wait_request(ringbuf, bytes);
851 if (ret != -ENOSPC)
852 return ret;
853
854 /* Force the context submission in case we have been skipping it */
855 intel_logical_ring_advance_and_submit(ringbuf);
856
857 /* With GEM the hangcheck timer should kick us out of the loop,
858 * leaving it early runs the risk of corrupting GEM state (due
859 * to running on almost untested codepaths). But on resume
860 * timers don't work yet, so prevent a complete hang in that
861 * case by choosing an insanely large timeout. */
862 end = jiffies + 60 * HZ;
863
864 do {
865 ringbuf->head = I915_READ_HEAD(ring);
866 ringbuf->space = intel_ring_space(ringbuf);
867 if (ringbuf->space >= bytes) {
868 ret = 0;
869 break;
870 }
871
872 msleep(1);
873
874 if (dev_priv->mm.interruptible && signal_pending(current)) {
875 ret = -ERESTARTSYS;
876 break;
877 }
878
879 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
880 dev_priv->mm.interruptible);
881 if (ret)
882 break;
883
884 if (time_after(jiffies, end)) {
885 ret = -EBUSY;
886 break;
887 }
888 } while (1);
889
890 return ret;
891 }
892
893 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
894 {
895 uint32_t __iomem *virt;
896 int rem = ringbuf->size - ringbuf->tail;
897
898 if (ringbuf->space < rem) {
899 int ret = logical_ring_wait_for_space(ringbuf, rem);
900
901 if (ret)
902 return ret;
903 }
904
905 virt = ringbuf->virtual_start + ringbuf->tail;
906 rem /= 4;
907 while (rem--)
908 iowrite32(MI_NOOP, virt++);
909
910 ringbuf->tail = 0;
911 ringbuf->space = intel_ring_space(ringbuf);
912
913 return 0;
914 }
915
916 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
917 {
918 int ret;
919
920 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
921 ret = logical_ring_wrap_buffer(ringbuf);
922 if (unlikely(ret))
923 return ret;
924 }
925
926 if (unlikely(ringbuf->space < bytes)) {
927 ret = logical_ring_wait_for_space(ringbuf, bytes);
928 if (unlikely(ret))
929 return ret;
930 }
931
932 return 0;
933 }
934
935 /**
936 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
937 *
938 * @ringbuf: Logical ringbuffer.
939 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
940 *
941 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
942 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
943 * and also preallocates a request (every workload submission is still mediated through
944 * requests, same as it did with legacy ringbuffer submission).
945 *
946 * Return: non-zero if the ringbuffer is not ready to be written to.
947 */
948 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
949 {
950 struct intel_engine_cs *ring = ringbuf->ring;
951 struct drm_device *dev = ring->dev;
952 struct drm_i915_private *dev_priv = dev->dev_private;
953 int ret;
954
955 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
956 dev_priv->mm.interruptible);
957 if (ret)
958 return ret;
959
960 ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
961 if (ret)
962 return ret;
963
964 /* Preallocate the olr before touching the ring */
965 ret = logical_ring_alloc_seqno(ring, ringbuf->FIXME_lrc_ctx);
966 if (ret)
967 return ret;
968
969 ringbuf->space -= num_dwords * sizeof(uint32_t);
970 return 0;
971 }
972
973 static int gen8_init_common_ring(struct intel_engine_cs *ring)
974 {
975 struct drm_device *dev = ring->dev;
976 struct drm_i915_private *dev_priv = dev->dev_private;
977
978 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
979 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
980
981 I915_WRITE(RING_MODE_GEN7(ring),
982 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
983 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
984 POSTING_READ(RING_MODE_GEN7(ring));
985 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
986
987 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
988
989 return 0;
990 }
991
992 static int gen8_init_render_ring(struct intel_engine_cs *ring)
993 {
994 struct drm_device *dev = ring->dev;
995 struct drm_i915_private *dev_priv = dev->dev_private;
996 int ret;
997
998 ret = gen8_init_common_ring(ring);
999 if (ret)
1000 return ret;
1001
1002 /* We need to disable the AsyncFlip performance optimisations in order
1003 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1004 * programmed to '1' on all products.
1005 *
1006 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1007 */
1008 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1009
1010 ret = intel_init_pipe_control(ring);
1011 if (ret)
1012 return ret;
1013
1014 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1015
1016 return ret;
1017 }
1018
1019 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1020 u64 offset, unsigned flags)
1021 {
1022 bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1023 int ret;
1024
1025 ret = intel_logical_ring_begin(ringbuf, 4);
1026 if (ret)
1027 return ret;
1028
1029 /* FIXME(BDW): Address space and security selectors. */
1030 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1031 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1032 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1033 intel_logical_ring_emit(ringbuf, MI_NOOP);
1034 intel_logical_ring_advance(ringbuf);
1035
1036 return 0;
1037 }
1038
1039 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1040 {
1041 struct drm_device *dev = ring->dev;
1042 struct drm_i915_private *dev_priv = dev->dev_private;
1043 unsigned long flags;
1044
1045 if (!dev->irq_enabled)
1046 return false;
1047
1048 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1049 if (ring->irq_refcount++ == 0) {
1050 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1051 POSTING_READ(RING_IMR(ring->mmio_base));
1052 }
1053 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1054
1055 return true;
1056 }
1057
1058 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1059 {
1060 struct drm_device *dev = ring->dev;
1061 struct drm_i915_private *dev_priv = dev->dev_private;
1062 unsigned long flags;
1063
1064 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1065 if (--ring->irq_refcount == 0) {
1066 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1067 POSTING_READ(RING_IMR(ring->mmio_base));
1068 }
1069 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1070 }
1071
1072 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1073 u32 invalidate_domains,
1074 u32 unused)
1075 {
1076 struct intel_engine_cs *ring = ringbuf->ring;
1077 struct drm_device *dev = ring->dev;
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 uint32_t cmd;
1080 int ret;
1081
1082 ret = intel_logical_ring_begin(ringbuf, 4);
1083 if (ret)
1084 return ret;
1085
1086 cmd = MI_FLUSH_DW + 1;
1087
1088 if (ring == &dev_priv->ring[VCS]) {
1089 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1090 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1091 MI_FLUSH_DW_STORE_INDEX |
1092 MI_FLUSH_DW_OP_STOREDW;
1093 } else {
1094 if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1095 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1096 MI_FLUSH_DW_OP_STOREDW;
1097 }
1098
1099 intel_logical_ring_emit(ringbuf, cmd);
1100 intel_logical_ring_emit(ringbuf,
1101 I915_GEM_HWS_SCRATCH_ADDR |
1102 MI_FLUSH_DW_USE_GTT);
1103 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1104 intel_logical_ring_emit(ringbuf, 0); /* value */
1105 intel_logical_ring_advance(ringbuf);
1106
1107 return 0;
1108 }
1109
1110 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1111 u32 invalidate_domains,
1112 u32 flush_domains)
1113 {
1114 struct intel_engine_cs *ring = ringbuf->ring;
1115 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1116 u32 flags = 0;
1117 int ret;
1118
1119 flags |= PIPE_CONTROL_CS_STALL;
1120
1121 if (flush_domains) {
1122 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1123 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1124 }
1125
1126 if (invalidate_domains) {
1127 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1128 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1129 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1130 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1131 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1132 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1133 flags |= PIPE_CONTROL_QW_WRITE;
1134 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1135 }
1136
1137 ret = intel_logical_ring_begin(ringbuf, 6);
1138 if (ret)
1139 return ret;
1140
1141 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1142 intel_logical_ring_emit(ringbuf, flags);
1143 intel_logical_ring_emit(ringbuf, scratch_addr);
1144 intel_logical_ring_emit(ringbuf, 0);
1145 intel_logical_ring_emit(ringbuf, 0);
1146 intel_logical_ring_emit(ringbuf, 0);
1147 intel_logical_ring_advance(ringbuf);
1148
1149 return 0;
1150 }
1151
1152 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1153 {
1154 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1155 }
1156
1157 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1158 {
1159 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1160 }
1161
1162 static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1163 {
1164 struct intel_engine_cs *ring = ringbuf->ring;
1165 u32 cmd;
1166 int ret;
1167
1168 ret = intel_logical_ring_begin(ringbuf, 6);
1169 if (ret)
1170 return ret;
1171
1172 cmd = MI_STORE_DWORD_IMM_GEN8;
1173 cmd |= MI_GLOBAL_GTT;
1174
1175 intel_logical_ring_emit(ringbuf, cmd);
1176 intel_logical_ring_emit(ringbuf,
1177 (ring->status_page.gfx_addr +
1178 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1179 intel_logical_ring_emit(ringbuf, 0);
1180 intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
1181 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1182 intel_logical_ring_emit(ringbuf, MI_NOOP);
1183 intel_logical_ring_advance_and_submit(ringbuf);
1184
1185 return 0;
1186 }
1187
1188 /**
1189 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1190 *
1191 * @ring: Engine Command Streamer.
1192 *
1193 */
1194 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1195 {
1196 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1197
1198 if (!intel_ring_initialized(ring))
1199 return;
1200
1201 intel_logical_ring_stop(ring);
1202 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1203 ring->preallocated_lazy_request = NULL;
1204 ring->outstanding_lazy_seqno = 0;
1205
1206 if (ring->cleanup)
1207 ring->cleanup(ring);
1208
1209 i915_cmd_parser_fini_ring(ring);
1210
1211 if (ring->status_page.obj) {
1212 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1213 ring->status_page.obj = NULL;
1214 }
1215 }
1216
1217 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1218 {
1219 int ret;
1220
1221 /* Intentionally left blank. */
1222 ring->buffer = NULL;
1223
1224 ring->dev = dev;
1225 INIT_LIST_HEAD(&ring->active_list);
1226 INIT_LIST_HEAD(&ring->request_list);
1227 init_waitqueue_head(&ring->irq_queue);
1228
1229 INIT_LIST_HEAD(&ring->execlist_queue);
1230 spin_lock_init(&ring->execlist_lock);
1231 ring->next_context_status_buffer = 0;
1232
1233 ret = i915_cmd_parser_init_ring(ring);
1234 if (ret)
1235 return ret;
1236
1237 if (ring->init) {
1238 ret = ring->init(ring);
1239 if (ret)
1240 return ret;
1241 }
1242
1243 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1244
1245 return ret;
1246 }
1247
1248 static int logical_render_ring_init(struct drm_device *dev)
1249 {
1250 struct drm_i915_private *dev_priv = dev->dev_private;
1251 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1252
1253 ring->name = "render ring";
1254 ring->id = RCS;
1255 ring->mmio_base = RENDER_RING_BASE;
1256 ring->irq_enable_mask =
1257 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1258 ring->irq_keep_mask =
1259 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1260 if (HAS_L3_DPF(dev))
1261 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1262
1263 ring->init = gen8_init_render_ring;
1264 ring->cleanup = intel_fini_pipe_control;
1265 ring->get_seqno = gen8_get_seqno;
1266 ring->set_seqno = gen8_set_seqno;
1267 ring->emit_request = gen8_emit_request;
1268 ring->emit_flush = gen8_emit_flush_render;
1269 ring->irq_get = gen8_logical_ring_get_irq;
1270 ring->irq_put = gen8_logical_ring_put_irq;
1271 ring->emit_bb_start = gen8_emit_bb_start;
1272
1273 return logical_ring_init(dev, ring);
1274 }
1275
1276 static int logical_bsd_ring_init(struct drm_device *dev)
1277 {
1278 struct drm_i915_private *dev_priv = dev->dev_private;
1279 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1280
1281 ring->name = "bsd ring";
1282 ring->id = VCS;
1283 ring->mmio_base = GEN6_BSD_RING_BASE;
1284 ring->irq_enable_mask =
1285 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1286 ring->irq_keep_mask =
1287 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1288
1289 ring->init = gen8_init_common_ring;
1290 ring->get_seqno = gen8_get_seqno;
1291 ring->set_seqno = gen8_set_seqno;
1292 ring->emit_request = gen8_emit_request;
1293 ring->emit_flush = gen8_emit_flush;
1294 ring->irq_get = gen8_logical_ring_get_irq;
1295 ring->irq_put = gen8_logical_ring_put_irq;
1296 ring->emit_bb_start = gen8_emit_bb_start;
1297
1298 return logical_ring_init(dev, ring);
1299 }
1300
1301 static int logical_bsd2_ring_init(struct drm_device *dev)
1302 {
1303 struct drm_i915_private *dev_priv = dev->dev_private;
1304 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1305
1306 ring->name = "bds2 ring";
1307 ring->id = VCS2;
1308 ring->mmio_base = GEN8_BSD2_RING_BASE;
1309 ring->irq_enable_mask =
1310 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1311 ring->irq_keep_mask =
1312 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1313
1314 ring->init = gen8_init_common_ring;
1315 ring->get_seqno = gen8_get_seqno;
1316 ring->set_seqno = gen8_set_seqno;
1317 ring->emit_request = gen8_emit_request;
1318 ring->emit_flush = gen8_emit_flush;
1319 ring->irq_get = gen8_logical_ring_get_irq;
1320 ring->irq_put = gen8_logical_ring_put_irq;
1321 ring->emit_bb_start = gen8_emit_bb_start;
1322
1323 return logical_ring_init(dev, ring);
1324 }
1325
1326 static int logical_blt_ring_init(struct drm_device *dev)
1327 {
1328 struct drm_i915_private *dev_priv = dev->dev_private;
1329 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1330
1331 ring->name = "blitter ring";
1332 ring->id = BCS;
1333 ring->mmio_base = BLT_RING_BASE;
1334 ring->irq_enable_mask =
1335 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1336 ring->irq_keep_mask =
1337 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1338
1339 ring->init = gen8_init_common_ring;
1340 ring->get_seqno = gen8_get_seqno;
1341 ring->set_seqno = gen8_set_seqno;
1342 ring->emit_request = gen8_emit_request;
1343 ring->emit_flush = gen8_emit_flush;
1344 ring->irq_get = gen8_logical_ring_get_irq;
1345 ring->irq_put = gen8_logical_ring_put_irq;
1346 ring->emit_bb_start = gen8_emit_bb_start;
1347
1348 return logical_ring_init(dev, ring);
1349 }
1350
1351 static int logical_vebox_ring_init(struct drm_device *dev)
1352 {
1353 struct drm_i915_private *dev_priv = dev->dev_private;
1354 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1355
1356 ring->name = "video enhancement ring";
1357 ring->id = VECS;
1358 ring->mmio_base = VEBOX_RING_BASE;
1359 ring->irq_enable_mask =
1360 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1361 ring->irq_keep_mask =
1362 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1363
1364 ring->init = gen8_init_common_ring;
1365 ring->get_seqno = gen8_get_seqno;
1366 ring->set_seqno = gen8_set_seqno;
1367 ring->emit_request = gen8_emit_request;
1368 ring->emit_flush = gen8_emit_flush;
1369 ring->irq_get = gen8_logical_ring_get_irq;
1370 ring->irq_put = gen8_logical_ring_put_irq;
1371 ring->emit_bb_start = gen8_emit_bb_start;
1372
1373 return logical_ring_init(dev, ring);
1374 }
1375
1376 /**
1377 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1378 * @dev: DRM device.
1379 *
1380 * This function inits the engines for an Execlists submission style (the equivalent in the
1381 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1382 * those engines that are present in the hardware.
1383 *
1384 * Return: non-zero if the initialization failed.
1385 */
1386 int intel_logical_rings_init(struct drm_device *dev)
1387 {
1388 struct drm_i915_private *dev_priv = dev->dev_private;
1389 int ret;
1390
1391 ret = logical_render_ring_init(dev);
1392 if (ret)
1393 return ret;
1394
1395 if (HAS_BSD(dev)) {
1396 ret = logical_bsd_ring_init(dev);
1397 if (ret)
1398 goto cleanup_render_ring;
1399 }
1400
1401 if (HAS_BLT(dev)) {
1402 ret = logical_blt_ring_init(dev);
1403 if (ret)
1404 goto cleanup_bsd_ring;
1405 }
1406
1407 if (HAS_VEBOX(dev)) {
1408 ret = logical_vebox_ring_init(dev);
1409 if (ret)
1410 goto cleanup_blt_ring;
1411 }
1412
1413 if (HAS_BSD2(dev)) {
1414 ret = logical_bsd2_ring_init(dev);
1415 if (ret)
1416 goto cleanup_vebox_ring;
1417 }
1418
1419 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1420 if (ret)
1421 goto cleanup_bsd2_ring;
1422
1423 return 0;
1424
1425 cleanup_bsd2_ring:
1426 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1427 cleanup_vebox_ring:
1428 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1429 cleanup_blt_ring:
1430 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1431 cleanup_bsd_ring:
1432 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1433 cleanup_render_ring:
1434 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1435
1436 return ret;
1437 }
1438
1439 int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1440 struct intel_context *ctx)
1441 {
1442 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1443 struct render_state so;
1444 struct drm_i915_file_private *file_priv = ctx->file_priv;
1445 struct drm_file *file = file_priv ? file_priv->file : NULL;
1446 int ret;
1447
1448 ret = i915_gem_render_state_prepare(ring, &so);
1449 if (ret)
1450 return ret;
1451
1452 if (so.rodata == NULL)
1453 return 0;
1454
1455 ret = ring->emit_bb_start(ringbuf,
1456 so.ggtt_offset,
1457 I915_DISPATCH_SECURE);
1458 if (ret)
1459 goto out;
1460
1461 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1462
1463 ret = __i915_add_request(ring, file, so.obj, NULL);
1464 /* intel_logical_ring_add_request moves object to inactive if it
1465 * fails */
1466 out:
1467 i915_gem_render_state_fini(&so);
1468 return ret;
1469 }
1470
1471 static int
1472 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1473 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1474 {
1475 struct drm_device *dev = ring->dev;
1476 struct drm_i915_private *dev_priv = dev->dev_private;
1477 struct drm_i915_gem_object *ring_obj = ringbuf->obj;
1478 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1479 struct page *page;
1480 uint32_t *reg_state;
1481 int ret;
1482
1483 if (!ppgtt)
1484 ppgtt = dev_priv->mm.aliasing_ppgtt;
1485
1486 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1487 if (ret) {
1488 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1489 return ret;
1490 }
1491
1492 ret = i915_gem_object_get_pages(ctx_obj);
1493 if (ret) {
1494 DRM_DEBUG_DRIVER("Could not get object pages\n");
1495 return ret;
1496 }
1497
1498 i915_gem_object_pin_pages(ctx_obj);
1499
1500 /* The second page of the context object contains some fields which must
1501 * be set up prior to the first execution. */
1502 page = i915_gem_object_get_page(ctx_obj, 1);
1503 reg_state = kmap_atomic(page);
1504
1505 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1506 * commands followed by (reg, value) pairs. The values we are setting here are
1507 * only for the first context restore: on a subsequent save, the GPU will
1508 * recreate this batchbuffer with new values (including all the missing
1509 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1510 if (ring->id == RCS)
1511 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1512 else
1513 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1514 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1515 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1516 reg_state[CTX_CONTEXT_CONTROL+1] =
1517 _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1518 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1519 reg_state[CTX_RING_HEAD+1] = 0;
1520 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1521 reg_state[CTX_RING_TAIL+1] = 0;
1522 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1523 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
1524 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1525 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1526 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1527 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1528 reg_state[CTX_BB_HEAD_U+1] = 0;
1529 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1530 reg_state[CTX_BB_HEAD_L+1] = 0;
1531 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1532 reg_state[CTX_BB_STATE+1] = (1<<5);
1533 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1534 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1535 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1536 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1537 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1538 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1539 if (ring->id == RCS) {
1540 /* TODO: according to BSpec, the register state context
1541 * for CHV does not have these. OTOH, these registers do
1542 * exist in CHV. I'm waiting for a clarification */
1543 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1544 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1545 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1546 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1547 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1548 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1549 }
1550 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1551 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1552 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1553 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1554 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1555 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1556 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1557 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1558 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1559 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1560 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1561 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1562 reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1563 reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1564 reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1565 reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1566 reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1567 reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1568 reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1569 reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1570 if (ring->id == RCS) {
1571 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1572 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1573 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1574 }
1575
1576 kunmap_atomic(reg_state);
1577
1578 ctx_obj->dirty = 1;
1579 set_page_dirty(page);
1580 i915_gem_object_unpin_pages(ctx_obj);
1581
1582 return 0;
1583 }
1584
1585 /**
1586 * intel_lr_context_free() - free the LRC specific bits of a context
1587 * @ctx: the LR context to free.
1588 *
1589 * The real context freeing is done in i915_gem_context_free: this only
1590 * takes care of the bits that are LRC related: the per-engine backing
1591 * objects and the logical ringbuffer.
1592 */
1593 void intel_lr_context_free(struct intel_context *ctx)
1594 {
1595 int i;
1596
1597 for (i = 0; i < I915_NUM_RINGS; i++) {
1598 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1599 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
1600
1601 if (ctx_obj) {
1602 intel_destroy_ringbuffer_obj(ringbuf);
1603 kfree(ringbuf);
1604 i915_gem_object_ggtt_unpin(ctx_obj);
1605 drm_gem_object_unreference(&ctx_obj->base);
1606 }
1607 }
1608 }
1609
1610 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1611 {
1612 int ret = 0;
1613
1614 WARN_ON(INTEL_INFO(ring->dev)->gen != 8);
1615
1616 switch (ring->id) {
1617 case RCS:
1618 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1619 break;
1620 case VCS:
1621 case BCS:
1622 case VECS:
1623 case VCS2:
1624 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1625 break;
1626 }
1627
1628 return ret;
1629 }
1630
1631 /**
1632 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1633 * @ctx: LR context to create.
1634 * @ring: engine to be used with the context.
1635 *
1636 * This function can be called more than once, with different engines, if we plan
1637 * to use the context with them. The context backing objects and the ringbuffers
1638 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1639 * the creation is a deferred call: it's better to make sure first that we need to use
1640 * a given ring with the context.
1641 *
1642 * Return: non-zero on eror.
1643 */
1644 int intel_lr_context_deferred_create(struct intel_context *ctx,
1645 struct intel_engine_cs *ring)
1646 {
1647 struct drm_device *dev = ring->dev;
1648 struct drm_i915_gem_object *ctx_obj;
1649 uint32_t context_size;
1650 struct intel_ringbuffer *ringbuf;
1651 int ret;
1652
1653 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1654 if (ctx->engine[ring->id].state)
1655 return 0;
1656
1657 context_size = round_up(get_lr_context_size(ring), 4096);
1658
1659 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1660 if (IS_ERR(ctx_obj)) {
1661 ret = PTR_ERR(ctx_obj);
1662 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1663 return ret;
1664 }
1665
1666 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1667 if (ret) {
1668 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n", ret);
1669 drm_gem_object_unreference(&ctx_obj->base);
1670 return ret;
1671 }
1672
1673 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1674 if (!ringbuf) {
1675 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1676 ring->name);
1677 i915_gem_object_ggtt_unpin(ctx_obj);
1678 drm_gem_object_unreference(&ctx_obj->base);
1679 ret = -ENOMEM;
1680 return ret;
1681 }
1682
1683 ringbuf->ring = ring;
1684 ringbuf->FIXME_lrc_ctx = ctx;
1685
1686 ringbuf->size = 32 * PAGE_SIZE;
1687 ringbuf->effective_size = ringbuf->size;
1688 ringbuf->head = 0;
1689 ringbuf->tail = 0;
1690 ringbuf->space = ringbuf->size;
1691 ringbuf->last_retired_head = -1;
1692
1693 /* TODO: For now we put this in the mappable region so that we can reuse
1694 * the existing ringbuffer code which ioremaps it. When we start
1695 * creating many contexts, this will no longer work and we must switch
1696 * to a kmapish interface.
1697 */
1698 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1699 if (ret) {
1700 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer obj %s: %d\n",
1701 ring->name, ret);
1702 goto error;
1703 }
1704
1705 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1706 if (ret) {
1707 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1708 intel_destroy_ringbuffer_obj(ringbuf);
1709 goto error;
1710 }
1711
1712 ctx->engine[ring->id].ringbuf = ringbuf;
1713 ctx->engine[ring->id].state = ctx_obj;
1714
1715 if (ctx == ring->default_context) {
1716 /* The status page is offset 0 from the default context object
1717 * in LRC mode. */
1718 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(ctx_obj);
1719 ring->status_page.page_addr =
1720 kmap(sg_page(ctx_obj->pages->sgl));
1721 if (ring->status_page.page_addr == NULL)
1722 return -ENOMEM;
1723 ring->status_page.obj = ctx_obj;
1724 }
1725
1726 if (ring->id == RCS && !ctx->rcs_initialized) {
1727 ret = intel_lr_context_render_state_init(ring, ctx);
1728 if (ret) {
1729 DRM_ERROR("Init render state failed: %d\n", ret);
1730 ctx->engine[ring->id].ringbuf = NULL;
1731 ctx->engine[ring->id].state = NULL;
1732 intel_destroy_ringbuffer_obj(ringbuf);
1733 goto error;
1734 }
1735 ctx->rcs_initialized = true;
1736 }
1737
1738 return 0;
1739
1740 error:
1741 kfree(ringbuf);
1742 i915_gem_object_ggtt_unpin(ctx_obj);
1743 drm_gem_object_unreference(&ctx_obj->base);
1744 return ret;
1745 }
This page took 0.073915 seconds and 5 git commands to generate.