drm/i915/lrc: Prevent preemption when lite-restore is disabled
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL (1 << 0x2)
145 #define RING_EXECLIST1_VALID (1 << 0x3)
146 #define RING_EXECLIST0_VALID (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
157
158 #define CTX_LRI_HEADER_0 0x01
159 #define CTX_CONTEXT_CONTROL 0x02
160 #define CTX_RING_HEAD 0x04
161 #define CTX_RING_TAIL 0x06
162 #define CTX_RING_BUFFER_START 0x08
163 #define CTX_RING_BUFFER_CONTROL 0x0a
164 #define CTX_BB_HEAD_U 0x0c
165 #define CTX_BB_HEAD_L 0x0e
166 #define CTX_BB_STATE 0x10
167 #define CTX_SECOND_BB_HEAD_U 0x12
168 #define CTX_SECOND_BB_HEAD_L 0x14
169 #define CTX_SECOND_BB_STATE 0x16
170 #define CTX_BB_PER_CTX_PTR 0x18
171 #define CTX_RCS_INDIRECT_CTX 0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173 #define CTX_LRI_HEADER_1 0x21
174 #define CTX_CTX_TIMESTAMP 0x22
175 #define CTX_PDP3_UDW 0x24
176 #define CTX_PDP3_LDW 0x26
177 #define CTX_PDP2_UDW 0x28
178 #define CTX_PDP2_LDW 0x2a
179 #define CTX_PDP1_UDW 0x2c
180 #define CTX_PDP1_LDW 0x2e
181 #define CTX_PDP0_UDW 0x30
182 #define CTX_PDP0_LDW 0x32
183 #define CTX_LRI_HEADER_2 0x41
184 #define CTX_R_PWR_CLK_STATE 0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
195 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197 }
198
199 #define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
200 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202 }
203
204 enum {
205 ADVANCED_CONTEXT = 0,
206 LEGACY_32B_CONTEXT,
207 ADVANCED_AD_CONTEXT,
208 LEGACY_64B_CONTEXT
209 };
210 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
211 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
212 LEGACY_64B_CONTEXT :\
213 LEGACY_32B_CONTEXT)
214 enum {
215 FAULT_AND_HANG = 0,
216 FAULT_AND_HALT, /* Debug only */
217 FAULT_AND_STREAM,
218 FAULT_AND_CONTINUE /* Unsupported */
219 };
220 #define GEN8_CTX_ID_SHIFT 32
221 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
222
223 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
224
225 /**
226 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
227 * @dev: DRM device.
228 * @enable_execlists: value of i915.enable_execlists module parameter.
229 *
230 * Only certain platforms support Execlists (the prerequisites being
231 * support for Logical Ring Contexts and Aliasing PPGTT or better).
232 *
233 * Return: 1 if Execlists is supported and has to be enabled.
234 */
235 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
236 {
237 WARN_ON(i915.enable_ppgtt == -1);
238
239 /* On platforms with execlist available, vGPU will only
240 * support execlist mode, no ring buffer mode.
241 */
242 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
243 return 1;
244
245 if (INTEL_INFO(dev)->gen >= 9)
246 return 1;
247
248 if (enable_execlists == 0)
249 return 0;
250
251 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
252 i915.use_mmio_flip >= 0)
253 return 1;
254
255 return 0;
256 }
257
258 /**
259 * intel_execlists_ctx_id() - get the Execlists Context ID
260 * @ctx_obj: Logical Ring Context backing object.
261 *
262 * Do not confuse with ctx->id! Unfortunately we have a name overload
263 * here: the old context ID we pass to userspace as a handler so that
264 * they can refer to a context, and the new context ID we pass to the
265 * ELSP so that the GPU can inform us of the context status via
266 * interrupts.
267 *
268 * Return: 20-bits globally unique context ID.
269 */
270 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
271 {
272 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
273 LRC_PPHWSP_PN * PAGE_SIZE;
274
275 /* LRCA is required to be 4K aligned so the more significant 20 bits
276 * are globally unique */
277 return lrca >> 12;
278 }
279
280 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
281 {
282 struct drm_device *dev = ring->dev;
283
284 return ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
285 (IS_BROXTON(dev) && INTEL_REVID(dev) == BXT_REVID_A0)) &&
286 (ring->id == VCS || ring->id == VCS2);
287 }
288
289 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
290 struct intel_engine_cs *ring)
291 {
292 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
293 uint64_t desc;
294 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
295 LRC_PPHWSP_PN * PAGE_SIZE;
296
297 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
298
299 desc = GEN8_CTX_VALID;
300 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
301 if (IS_GEN8(ctx_obj->base.dev))
302 desc |= GEN8_CTX_L3LLC_COHERENT;
303 desc |= GEN8_CTX_PRIVILEGE;
304 desc |= lrca;
305 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
306
307 /* TODO: WaDisableLiteRestore when we start using semaphore
308 * signalling between Command Streamers */
309 /* desc |= GEN8_CTX_FORCE_RESTORE; */
310
311 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
312 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
313 if (disable_lite_restore_wa(ring))
314 desc |= GEN8_CTX_FORCE_RESTORE;
315
316 return desc;
317 }
318
319 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
320 struct drm_i915_gem_request *rq1)
321 {
322
323 struct intel_engine_cs *ring = rq0->ring;
324 struct drm_device *dev = ring->dev;
325 struct drm_i915_private *dev_priv = dev->dev_private;
326 uint64_t desc[2];
327
328 if (rq1) {
329 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
330 rq1->elsp_submitted++;
331 } else {
332 desc[1] = 0;
333 }
334
335 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
336 rq0->elsp_submitted++;
337
338 /* You must always write both descriptors in the order below. */
339 spin_lock(&dev_priv->uncore.lock);
340 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
341 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
342 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
343
344 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
345 /* The context is automatically loaded after the following */
346 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
347
348 /* ELSP is a wo register, use another nearby reg for posting */
349 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
350 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
351 spin_unlock(&dev_priv->uncore.lock);
352 }
353
354 static int execlists_update_context(struct drm_i915_gem_request *rq)
355 {
356 struct intel_engine_cs *ring = rq->ring;
357 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
358 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
359 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
360 struct page *page;
361 uint32_t *reg_state;
362
363 BUG_ON(!ctx_obj);
364 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
365 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
366
367 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
368 reg_state = kmap_atomic(page);
369
370 reg_state[CTX_RING_TAIL+1] = rq->tail;
371 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
372
373 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
374 /* True 32b PPGTT with dynamic page allocation: update PDP
375 * registers and point the unallocated PDPs to scratch page.
376 * PML4 is allocated during ppgtt init, so this is not needed
377 * in 48-bit mode.
378 */
379 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
380 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
381 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
382 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
383 }
384
385 kunmap_atomic(reg_state);
386
387 return 0;
388 }
389
390 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
391 struct drm_i915_gem_request *rq1)
392 {
393 execlists_update_context(rq0);
394
395 if (rq1)
396 execlists_update_context(rq1);
397
398 execlists_elsp_write(rq0, rq1);
399 }
400
401 static void execlists_context_unqueue(struct intel_engine_cs *ring)
402 {
403 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
404 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
405
406 assert_spin_locked(&ring->execlist_lock);
407
408 /*
409 * If irqs are not active generate a warning as batches that finish
410 * without the irqs may get lost and a GPU Hang may occur.
411 */
412 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
413
414 if (list_empty(&ring->execlist_queue))
415 return;
416
417 /* Try to read in pairs */
418 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
419 execlist_link) {
420 if (!req0) {
421 req0 = cursor;
422 } else if (req0->ctx == cursor->ctx) {
423 /* Same ctx: ignore first request, as second request
424 * will update tail past first request's workload */
425 cursor->elsp_submitted = req0->elsp_submitted;
426 list_del(&req0->execlist_link);
427 list_add_tail(&req0->execlist_link,
428 &ring->execlist_retired_req_list);
429 req0 = cursor;
430 } else {
431 req1 = cursor;
432 break;
433 }
434 }
435
436 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
437 /*
438 * WaIdleLiteRestore: make sure we never cause a lite
439 * restore with HEAD==TAIL
440 */
441 if (req0->elsp_submitted) {
442 /*
443 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
444 * as we resubmit the request. See gen8_emit_request()
445 * for where we prepare the padding after the end of the
446 * request.
447 */
448 struct intel_ringbuffer *ringbuf;
449
450 ringbuf = req0->ctx->engine[ring->id].ringbuf;
451 req0->tail += 8;
452 req0->tail &= ringbuf->size - 1;
453 }
454 }
455
456 WARN_ON(req1 && req1->elsp_submitted);
457
458 execlists_submit_requests(req0, req1);
459 }
460
461 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
462 u32 request_id)
463 {
464 struct drm_i915_gem_request *head_req;
465
466 assert_spin_locked(&ring->execlist_lock);
467
468 head_req = list_first_entry_or_null(&ring->execlist_queue,
469 struct drm_i915_gem_request,
470 execlist_link);
471
472 if (head_req != NULL) {
473 struct drm_i915_gem_object *ctx_obj =
474 head_req->ctx->engine[ring->id].state;
475 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
476 WARN(head_req->elsp_submitted == 0,
477 "Never submitted head request\n");
478
479 if (--head_req->elsp_submitted <= 0) {
480 list_del(&head_req->execlist_link);
481 list_add_tail(&head_req->execlist_link,
482 &ring->execlist_retired_req_list);
483 return true;
484 }
485 }
486 }
487
488 return false;
489 }
490
491 /**
492 * intel_lrc_irq_handler() - handle Context Switch interrupts
493 * @ring: Engine Command Streamer to handle.
494 *
495 * Check the unread Context Status Buffers and manage the submission of new
496 * contexts to the ELSP accordingly.
497 */
498 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
499 {
500 struct drm_i915_private *dev_priv = ring->dev->dev_private;
501 u32 status_pointer;
502 u8 read_pointer;
503 u8 write_pointer;
504 u32 status = 0;
505 u32 status_id;
506 u32 submit_contexts = 0;
507
508 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
509
510 read_pointer = ring->next_context_status_buffer;
511 write_pointer = status_pointer & 0x07;
512 if (read_pointer > write_pointer)
513 write_pointer += 6;
514
515 spin_lock(&ring->execlist_lock);
516
517 while (read_pointer < write_pointer) {
518 read_pointer++;
519 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
520 (read_pointer % 6) * 8);
521 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
522 (read_pointer % 6) * 8 + 4);
523
524 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
525 continue;
526
527 if (status & GEN8_CTX_STATUS_PREEMPTED) {
528 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
529 if (execlists_check_remove_request(ring, status_id))
530 WARN(1, "Lite Restored request removed from queue\n");
531 } else
532 WARN(1, "Preemption without Lite Restore\n");
533 }
534
535 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
536 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
537 if (execlists_check_remove_request(ring, status_id))
538 submit_contexts++;
539 }
540 }
541
542 if (disable_lite_restore_wa(ring)) {
543 /* Prevent a ctx to preempt itself */
544 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
545 (submit_contexts != 0))
546 execlists_context_unqueue(ring);
547 } else if (submit_contexts != 0) {
548 execlists_context_unqueue(ring);
549 }
550
551 spin_unlock(&ring->execlist_lock);
552
553 WARN(submit_contexts > 2, "More than two context complete events?\n");
554 ring->next_context_status_buffer = write_pointer % 6;
555
556 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
557 _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
558 }
559
560 static int execlists_context_queue(struct drm_i915_gem_request *request)
561 {
562 struct intel_engine_cs *ring = request->ring;
563 struct drm_i915_gem_request *cursor;
564 int num_elements = 0;
565
566 if (request->ctx != ring->default_context)
567 intel_lr_context_pin(request);
568
569 i915_gem_request_reference(request);
570
571 spin_lock_irq(&ring->execlist_lock);
572
573 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
574 if (++num_elements > 2)
575 break;
576
577 if (num_elements > 2) {
578 struct drm_i915_gem_request *tail_req;
579
580 tail_req = list_last_entry(&ring->execlist_queue,
581 struct drm_i915_gem_request,
582 execlist_link);
583
584 if (request->ctx == tail_req->ctx) {
585 WARN(tail_req->elsp_submitted != 0,
586 "More than 2 already-submitted reqs queued\n");
587 list_del(&tail_req->execlist_link);
588 list_add_tail(&tail_req->execlist_link,
589 &ring->execlist_retired_req_list);
590 }
591 }
592
593 list_add_tail(&request->execlist_link, &ring->execlist_queue);
594 if (num_elements == 0)
595 execlists_context_unqueue(ring);
596
597 spin_unlock_irq(&ring->execlist_lock);
598
599 return 0;
600 }
601
602 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
603 {
604 struct intel_engine_cs *ring = req->ring;
605 uint32_t flush_domains;
606 int ret;
607
608 flush_domains = 0;
609 if (ring->gpu_caches_dirty)
610 flush_domains = I915_GEM_GPU_DOMAINS;
611
612 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
613 if (ret)
614 return ret;
615
616 ring->gpu_caches_dirty = false;
617 return 0;
618 }
619
620 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
621 struct list_head *vmas)
622 {
623 const unsigned other_rings = ~intel_ring_flag(req->ring);
624 struct i915_vma *vma;
625 uint32_t flush_domains = 0;
626 bool flush_chipset = false;
627 int ret;
628
629 list_for_each_entry(vma, vmas, exec_list) {
630 struct drm_i915_gem_object *obj = vma->obj;
631
632 if (obj->active & other_rings) {
633 ret = i915_gem_object_sync(obj, req->ring, &req);
634 if (ret)
635 return ret;
636 }
637
638 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
639 flush_chipset |= i915_gem_clflush_object(obj, false);
640
641 flush_domains |= obj->base.write_domain;
642 }
643
644 if (flush_domains & I915_GEM_DOMAIN_GTT)
645 wmb();
646
647 /* Unconditionally invalidate gpu caches and ensure that we do flush
648 * any residual writes from the previous batch.
649 */
650 return logical_ring_invalidate_all_caches(req);
651 }
652
653 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
654 {
655 int ret;
656
657 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
658
659 if (request->ctx != request->ring->default_context) {
660 ret = intel_lr_context_pin(request);
661 if (ret)
662 return ret;
663 }
664
665 return 0;
666 }
667
668 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
669 int bytes)
670 {
671 struct intel_ringbuffer *ringbuf = req->ringbuf;
672 struct intel_engine_cs *ring = req->ring;
673 struct drm_i915_gem_request *target;
674 unsigned space;
675 int ret;
676
677 if (intel_ring_space(ringbuf) >= bytes)
678 return 0;
679
680 /* The whole point of reserving space is to not wait! */
681 WARN_ON(ringbuf->reserved_in_use);
682
683 list_for_each_entry(target, &ring->request_list, list) {
684 /*
685 * The request queue is per-engine, so can contain requests
686 * from multiple ringbuffers. Here, we must ignore any that
687 * aren't from the ringbuffer we're considering.
688 */
689 if (target->ringbuf != ringbuf)
690 continue;
691
692 /* Would completion of this request free enough space? */
693 space = __intel_ring_space(target->postfix, ringbuf->tail,
694 ringbuf->size);
695 if (space >= bytes)
696 break;
697 }
698
699 if (WARN_ON(&target->list == &ring->request_list))
700 return -ENOSPC;
701
702 ret = i915_wait_request(target);
703 if (ret)
704 return ret;
705
706 ringbuf->space = space;
707 return 0;
708 }
709
710 /*
711 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
712 * @request: Request to advance the logical ringbuffer of.
713 *
714 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
715 * really happens during submission is that the context and current tail will be placed
716 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
717 * point, the tail *inside* the context is updated and the ELSP written to.
718 */
719 static void
720 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
721 {
722 struct intel_engine_cs *ring = request->ring;
723 struct drm_i915_private *dev_priv = request->i915;
724
725 intel_logical_ring_advance(request->ringbuf);
726
727 request->tail = request->ringbuf->tail;
728
729 if (intel_ring_stopped(ring))
730 return;
731
732 if (dev_priv->guc.execbuf_client)
733 i915_guc_submit(dev_priv->guc.execbuf_client, request);
734 else
735 execlists_context_queue(request);
736 }
737
738 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
739 {
740 uint32_t __iomem *virt;
741 int rem = ringbuf->size - ringbuf->tail;
742
743 virt = ringbuf->virtual_start + ringbuf->tail;
744 rem /= 4;
745 while (rem--)
746 iowrite32(MI_NOOP, virt++);
747
748 ringbuf->tail = 0;
749 intel_ring_update_space(ringbuf);
750 }
751
752 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
753 {
754 struct intel_ringbuffer *ringbuf = req->ringbuf;
755 int remain_usable = ringbuf->effective_size - ringbuf->tail;
756 int remain_actual = ringbuf->size - ringbuf->tail;
757 int ret, total_bytes, wait_bytes = 0;
758 bool need_wrap = false;
759
760 if (ringbuf->reserved_in_use)
761 total_bytes = bytes;
762 else
763 total_bytes = bytes + ringbuf->reserved_size;
764
765 if (unlikely(bytes > remain_usable)) {
766 /*
767 * Not enough space for the basic request. So need to flush
768 * out the remainder and then wait for base + reserved.
769 */
770 wait_bytes = remain_actual + total_bytes;
771 need_wrap = true;
772 } else {
773 if (unlikely(total_bytes > remain_usable)) {
774 /*
775 * The base request will fit but the reserved space
776 * falls off the end. So only need to to wait for the
777 * reserved size after flushing out the remainder.
778 */
779 wait_bytes = remain_actual + ringbuf->reserved_size;
780 need_wrap = true;
781 } else if (total_bytes > ringbuf->space) {
782 /* No wrapping required, just waiting. */
783 wait_bytes = total_bytes;
784 }
785 }
786
787 if (wait_bytes) {
788 ret = logical_ring_wait_for_space(req, wait_bytes);
789 if (unlikely(ret))
790 return ret;
791
792 if (need_wrap)
793 __wrap_ring_buffer(ringbuf);
794 }
795
796 return 0;
797 }
798
799 /**
800 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
801 *
802 * @request: The request to start some new work for
803 * @ctx: Logical ring context whose ringbuffer is being prepared.
804 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
805 *
806 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
807 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
808 * and also preallocates a request (every workload submission is still mediated through
809 * requests, same as it did with legacy ringbuffer submission).
810 *
811 * Return: non-zero if the ringbuffer is not ready to be written to.
812 */
813 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
814 {
815 struct drm_i915_private *dev_priv;
816 int ret;
817
818 WARN_ON(req == NULL);
819 dev_priv = req->ring->dev->dev_private;
820
821 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
822 dev_priv->mm.interruptible);
823 if (ret)
824 return ret;
825
826 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
827 if (ret)
828 return ret;
829
830 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
831 return 0;
832 }
833
834 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
835 {
836 /*
837 * The first call merely notes the reserve request and is common for
838 * all back ends. The subsequent localised _begin() call actually
839 * ensures that the reservation is available. Without the begin, if
840 * the request creator immediately submitted the request without
841 * adding any commands to it then there might not actually be
842 * sufficient room for the submission commands.
843 */
844 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
845
846 return intel_logical_ring_begin(request, 0);
847 }
848
849 /**
850 * execlists_submission() - submit a batchbuffer for execution, Execlists style
851 * @dev: DRM device.
852 * @file: DRM file.
853 * @ring: Engine Command Streamer to submit to.
854 * @ctx: Context to employ for this submission.
855 * @args: execbuffer call arguments.
856 * @vmas: list of vmas.
857 * @batch_obj: the batchbuffer to submit.
858 * @exec_start: batchbuffer start virtual address pointer.
859 * @dispatch_flags: translated execbuffer call flags.
860 *
861 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
862 * away the submission details of the execbuffer ioctl call.
863 *
864 * Return: non-zero if the submission fails.
865 */
866 int intel_execlists_submission(struct i915_execbuffer_params *params,
867 struct drm_i915_gem_execbuffer2 *args,
868 struct list_head *vmas)
869 {
870 struct drm_device *dev = params->dev;
871 struct intel_engine_cs *ring = params->ring;
872 struct drm_i915_private *dev_priv = dev->dev_private;
873 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
874 u64 exec_start;
875 int instp_mode;
876 u32 instp_mask;
877 int ret;
878
879 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
880 instp_mask = I915_EXEC_CONSTANTS_MASK;
881 switch (instp_mode) {
882 case I915_EXEC_CONSTANTS_REL_GENERAL:
883 case I915_EXEC_CONSTANTS_ABSOLUTE:
884 case I915_EXEC_CONSTANTS_REL_SURFACE:
885 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
886 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
887 return -EINVAL;
888 }
889
890 if (instp_mode != dev_priv->relative_constants_mode) {
891 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
892 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
893 return -EINVAL;
894 }
895
896 /* The HW changed the meaning on this bit on gen6 */
897 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
898 }
899 break;
900 default:
901 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
902 return -EINVAL;
903 }
904
905 if (args->num_cliprects != 0) {
906 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
907 return -EINVAL;
908 } else {
909 if (args->DR4 == 0xffffffff) {
910 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
911 args->DR4 = 0;
912 }
913
914 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
915 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
916 return -EINVAL;
917 }
918 }
919
920 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
921 DRM_DEBUG("sol reset is gen7 only\n");
922 return -EINVAL;
923 }
924
925 ret = execlists_move_to_gpu(params->request, vmas);
926 if (ret)
927 return ret;
928
929 if (ring == &dev_priv->ring[RCS] &&
930 instp_mode != dev_priv->relative_constants_mode) {
931 ret = intel_logical_ring_begin(params->request, 4);
932 if (ret)
933 return ret;
934
935 intel_logical_ring_emit(ringbuf, MI_NOOP);
936 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
937 intel_logical_ring_emit(ringbuf, INSTPM);
938 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
939 intel_logical_ring_advance(ringbuf);
940
941 dev_priv->relative_constants_mode = instp_mode;
942 }
943
944 exec_start = params->batch_obj_vm_offset +
945 args->batch_start_offset;
946
947 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
948 if (ret)
949 return ret;
950
951 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
952
953 i915_gem_execbuffer_move_to_active(vmas, params->request);
954 i915_gem_execbuffer_retire_commands(params);
955
956 return 0;
957 }
958
959 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
960 {
961 struct drm_i915_gem_request *req, *tmp;
962 struct list_head retired_list;
963
964 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
965 if (list_empty(&ring->execlist_retired_req_list))
966 return;
967
968 INIT_LIST_HEAD(&retired_list);
969 spin_lock_irq(&ring->execlist_lock);
970 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
971 spin_unlock_irq(&ring->execlist_lock);
972
973 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
974 struct intel_context *ctx = req->ctx;
975 struct drm_i915_gem_object *ctx_obj =
976 ctx->engine[ring->id].state;
977
978 if (ctx_obj && (ctx != ring->default_context))
979 intel_lr_context_unpin(req);
980 list_del(&req->execlist_link);
981 i915_gem_request_unreference(req);
982 }
983 }
984
985 void intel_logical_ring_stop(struct intel_engine_cs *ring)
986 {
987 struct drm_i915_private *dev_priv = ring->dev->dev_private;
988 int ret;
989
990 if (!intel_ring_initialized(ring))
991 return;
992
993 ret = intel_ring_idle(ring);
994 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
995 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
996 ring->name, ret);
997
998 /* TODO: Is this correct with Execlists enabled? */
999 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1000 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1001 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1002 return;
1003 }
1004 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1005 }
1006
1007 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1008 {
1009 struct intel_engine_cs *ring = req->ring;
1010 int ret;
1011
1012 if (!ring->gpu_caches_dirty)
1013 return 0;
1014
1015 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1016 if (ret)
1017 return ret;
1018
1019 ring->gpu_caches_dirty = false;
1020 return 0;
1021 }
1022
1023 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1024 {
1025 struct drm_i915_private *dev_priv = rq->i915;
1026 struct intel_engine_cs *ring = rq->ring;
1027 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1028 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1029 int ret = 0;
1030
1031 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1032 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1033 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1034 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1035 if (ret)
1036 goto reset_pin_count;
1037
1038 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1039 if (ret)
1040 goto unpin_ctx_obj;
1041
1042 ctx_obj->dirty = true;
1043
1044 /* Invalidate GuC TLB. */
1045 if (i915.enable_guc_submission)
1046 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1047 }
1048
1049 return ret;
1050
1051 unpin_ctx_obj:
1052 i915_gem_object_ggtt_unpin(ctx_obj);
1053 reset_pin_count:
1054 rq->ctx->engine[ring->id].pin_count = 0;
1055
1056 return ret;
1057 }
1058
1059 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1060 {
1061 struct intel_engine_cs *ring = rq->ring;
1062 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1063 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1064
1065 if (ctx_obj) {
1066 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1067 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1068 intel_unpin_ringbuffer_obj(ringbuf);
1069 i915_gem_object_ggtt_unpin(ctx_obj);
1070 }
1071 }
1072 }
1073
1074 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1075 {
1076 int ret, i;
1077 struct intel_engine_cs *ring = req->ring;
1078 struct intel_ringbuffer *ringbuf = req->ringbuf;
1079 struct drm_device *dev = ring->dev;
1080 struct drm_i915_private *dev_priv = dev->dev_private;
1081 struct i915_workarounds *w = &dev_priv->workarounds;
1082
1083 if (WARN_ON_ONCE(w->count == 0))
1084 return 0;
1085
1086 ring->gpu_caches_dirty = true;
1087 ret = logical_ring_flush_all_caches(req);
1088 if (ret)
1089 return ret;
1090
1091 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1092 if (ret)
1093 return ret;
1094
1095 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1096 for (i = 0; i < w->count; i++) {
1097 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1098 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1099 }
1100 intel_logical_ring_emit(ringbuf, MI_NOOP);
1101
1102 intel_logical_ring_advance(ringbuf);
1103
1104 ring->gpu_caches_dirty = true;
1105 ret = logical_ring_flush_all_caches(req);
1106 if (ret)
1107 return ret;
1108
1109 return 0;
1110 }
1111
1112 #define wa_ctx_emit(batch, index, cmd) \
1113 do { \
1114 int __index = (index)++; \
1115 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1116 return -ENOSPC; \
1117 } \
1118 batch[__index] = (cmd); \
1119 } while (0)
1120
1121
1122 /*
1123 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1124 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1125 * but there is a slight complication as this is applied in WA batch where the
1126 * values are only initialized once so we cannot take register value at the
1127 * beginning and reuse it further; hence we save its value to memory, upload a
1128 * constant value with bit21 set and then we restore it back with the saved value.
1129 * To simplify the WA, a constant value is formed by using the default value
1130 * of this register. This shouldn't be a problem because we are only modifying
1131 * it for a short period and this batch in non-premptible. We can ofcourse
1132 * use additional instructions that read the actual value of the register
1133 * at that time and set our bit of interest but it makes the WA complicated.
1134 *
1135 * This WA is also required for Gen9 so extracting as a function avoids
1136 * code duplication.
1137 */
1138 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1139 uint32_t *const batch,
1140 uint32_t index)
1141 {
1142 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1143
1144 /*
1145 * WaDisableLSQCROPERFforOCL:skl
1146 * This WA is implemented in skl_init_clock_gating() but since
1147 * this batch updates GEN8_L3SQCREG4 with default value we need to
1148 * set this bit here to retain the WA during flush.
1149 */
1150 if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1151 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1152
1153 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1154 MI_SRM_LRM_GLOBAL_GTT));
1155 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1156 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1157 wa_ctx_emit(batch, index, 0);
1158
1159 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1160 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1161 wa_ctx_emit(batch, index, l3sqc4_flush);
1162
1163 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1164 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1165 PIPE_CONTROL_DC_FLUSH_ENABLE));
1166 wa_ctx_emit(batch, index, 0);
1167 wa_ctx_emit(batch, index, 0);
1168 wa_ctx_emit(batch, index, 0);
1169 wa_ctx_emit(batch, index, 0);
1170
1171 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1172 MI_SRM_LRM_GLOBAL_GTT));
1173 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1174 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1175 wa_ctx_emit(batch, index, 0);
1176
1177 return index;
1178 }
1179
1180 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1181 uint32_t offset,
1182 uint32_t start_alignment)
1183 {
1184 return wa_ctx->offset = ALIGN(offset, start_alignment);
1185 }
1186
1187 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1188 uint32_t offset,
1189 uint32_t size_alignment)
1190 {
1191 wa_ctx->size = offset - wa_ctx->offset;
1192
1193 WARN(wa_ctx->size % size_alignment,
1194 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1195 wa_ctx->size, size_alignment);
1196 return 0;
1197 }
1198
1199 /**
1200 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1201 *
1202 * @ring: only applicable for RCS
1203 * @wa_ctx: structure representing wa_ctx
1204 * offset: specifies start of the batch, should be cache-aligned. This is updated
1205 * with the offset value received as input.
1206 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1207 * @batch: page in which WA are loaded
1208 * @offset: This field specifies the start of the batch, it should be
1209 * cache-aligned otherwise it is adjusted accordingly.
1210 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1211 * initialized at the beginning and shared across all contexts but this field
1212 * helps us to have multiple batches at different offsets and select them based
1213 * on a criteria. At the moment this batch always start at the beginning of the page
1214 * and at this point we don't have multiple wa_ctx batch buffers.
1215 *
1216 * The number of WA applied are not known at the beginning; we use this field
1217 * to return the no of DWORDS written.
1218 *
1219 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1220 * so it adds NOOPs as padding to make it cacheline aligned.
1221 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1222 * makes a complete batch buffer.
1223 *
1224 * Return: non-zero if we exceed the PAGE_SIZE limit.
1225 */
1226
1227 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1228 struct i915_wa_ctx_bb *wa_ctx,
1229 uint32_t *const batch,
1230 uint32_t *offset)
1231 {
1232 uint32_t scratch_addr;
1233 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1234
1235 /* WaDisableCtxRestoreArbitration:bdw,chv */
1236 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1237
1238 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1239 if (IS_BROADWELL(ring->dev)) {
1240 index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1241 if (index < 0)
1242 return index;
1243 }
1244
1245 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1246 /* Actual scratch location is at 128 bytes offset */
1247 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1248
1249 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1250 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1251 PIPE_CONTROL_GLOBAL_GTT_IVB |
1252 PIPE_CONTROL_CS_STALL |
1253 PIPE_CONTROL_QW_WRITE));
1254 wa_ctx_emit(batch, index, scratch_addr);
1255 wa_ctx_emit(batch, index, 0);
1256 wa_ctx_emit(batch, index, 0);
1257 wa_ctx_emit(batch, index, 0);
1258
1259 /* Pad to end of cacheline */
1260 while (index % CACHELINE_DWORDS)
1261 wa_ctx_emit(batch, index, MI_NOOP);
1262
1263 /*
1264 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1265 * execution depends on the length specified in terms of cache lines
1266 * in the register CTX_RCS_INDIRECT_CTX
1267 */
1268
1269 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1270 }
1271
1272 /**
1273 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1274 *
1275 * @ring: only applicable for RCS
1276 * @wa_ctx: structure representing wa_ctx
1277 * offset: specifies start of the batch, should be cache-aligned.
1278 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1279 * @batch: page in which WA are loaded
1280 * @offset: This field specifies the start of this batch.
1281 * This batch is started immediately after indirect_ctx batch. Since we ensure
1282 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1283 *
1284 * The number of DWORDS written are returned using this field.
1285 *
1286 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1287 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1288 */
1289 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1290 struct i915_wa_ctx_bb *wa_ctx,
1291 uint32_t *const batch,
1292 uint32_t *offset)
1293 {
1294 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1295
1296 /* WaDisableCtxRestoreArbitration:bdw,chv */
1297 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1298
1299 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1300
1301 return wa_ctx_end(wa_ctx, *offset = index, 1);
1302 }
1303
1304 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1305 struct i915_wa_ctx_bb *wa_ctx,
1306 uint32_t *const batch,
1307 uint32_t *offset)
1308 {
1309 int ret;
1310 struct drm_device *dev = ring->dev;
1311 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1312
1313 /* WaDisableCtxRestoreArbitration:skl,bxt */
1314 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1315 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1316 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1317
1318 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1319 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1320 if (ret < 0)
1321 return ret;
1322 index = ret;
1323
1324 /* Pad to end of cacheline */
1325 while (index % CACHELINE_DWORDS)
1326 wa_ctx_emit(batch, index, MI_NOOP);
1327
1328 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1329 }
1330
1331 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1332 struct i915_wa_ctx_bb *wa_ctx,
1333 uint32_t *const batch,
1334 uint32_t *offset)
1335 {
1336 struct drm_device *dev = ring->dev;
1337 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1338
1339 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1340 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1341 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1342 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1343 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1344 wa_ctx_emit(batch, index,
1345 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1346 wa_ctx_emit(batch, index, MI_NOOP);
1347 }
1348
1349 /* WaDisableCtxRestoreArbitration:skl,bxt */
1350 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1351 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1352 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1353
1354 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1355
1356 return wa_ctx_end(wa_ctx, *offset = index, 1);
1357 }
1358
1359 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1360 {
1361 int ret;
1362
1363 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1364 if (!ring->wa_ctx.obj) {
1365 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1366 return -ENOMEM;
1367 }
1368
1369 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1370 if (ret) {
1371 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1372 ret);
1373 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1374 return ret;
1375 }
1376
1377 return 0;
1378 }
1379
1380 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1381 {
1382 if (ring->wa_ctx.obj) {
1383 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1384 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1385 ring->wa_ctx.obj = NULL;
1386 }
1387 }
1388
1389 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1390 {
1391 int ret;
1392 uint32_t *batch;
1393 uint32_t offset;
1394 struct page *page;
1395 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1396
1397 WARN_ON(ring->id != RCS);
1398
1399 /* update this when WA for higher Gen are added */
1400 if (INTEL_INFO(ring->dev)->gen > 9) {
1401 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1402 INTEL_INFO(ring->dev)->gen);
1403 return 0;
1404 }
1405
1406 /* some WA perform writes to scratch page, ensure it is valid */
1407 if (ring->scratch.obj == NULL) {
1408 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1409 return -EINVAL;
1410 }
1411
1412 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1413 if (ret) {
1414 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1415 return ret;
1416 }
1417
1418 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1419 batch = kmap_atomic(page);
1420 offset = 0;
1421
1422 if (INTEL_INFO(ring->dev)->gen == 8) {
1423 ret = gen8_init_indirectctx_bb(ring,
1424 &wa_ctx->indirect_ctx,
1425 batch,
1426 &offset);
1427 if (ret)
1428 goto out;
1429
1430 ret = gen8_init_perctx_bb(ring,
1431 &wa_ctx->per_ctx,
1432 batch,
1433 &offset);
1434 if (ret)
1435 goto out;
1436 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1437 ret = gen9_init_indirectctx_bb(ring,
1438 &wa_ctx->indirect_ctx,
1439 batch,
1440 &offset);
1441 if (ret)
1442 goto out;
1443
1444 ret = gen9_init_perctx_bb(ring,
1445 &wa_ctx->per_ctx,
1446 batch,
1447 &offset);
1448 if (ret)
1449 goto out;
1450 }
1451
1452 out:
1453 kunmap_atomic(batch);
1454 if (ret)
1455 lrc_destroy_wa_ctx_obj(ring);
1456
1457 return ret;
1458 }
1459
1460 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1461 {
1462 struct drm_device *dev = ring->dev;
1463 struct drm_i915_private *dev_priv = dev->dev_private;
1464
1465 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1466 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1467
1468 if (ring->status_page.obj) {
1469 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1470 (u32)ring->status_page.gfx_addr);
1471 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1472 }
1473
1474 I915_WRITE(RING_MODE_GEN7(ring),
1475 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1476 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1477 POSTING_READ(RING_MODE_GEN7(ring));
1478 ring->next_context_status_buffer = 0;
1479 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1480
1481 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1482
1483 return 0;
1484 }
1485
1486 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1487 {
1488 struct drm_device *dev = ring->dev;
1489 struct drm_i915_private *dev_priv = dev->dev_private;
1490 int ret;
1491
1492 ret = gen8_init_common_ring(ring);
1493 if (ret)
1494 return ret;
1495
1496 /* We need to disable the AsyncFlip performance optimisations in order
1497 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1498 * programmed to '1' on all products.
1499 *
1500 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1501 */
1502 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1503
1504 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1505
1506 return init_workarounds_ring(ring);
1507 }
1508
1509 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1510 {
1511 int ret;
1512
1513 ret = gen8_init_common_ring(ring);
1514 if (ret)
1515 return ret;
1516
1517 return init_workarounds_ring(ring);
1518 }
1519
1520 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1521 {
1522 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1523 struct intel_engine_cs *ring = req->ring;
1524 struct intel_ringbuffer *ringbuf = req->ringbuf;
1525 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1526 int i, ret;
1527
1528 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1529 if (ret)
1530 return ret;
1531
1532 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1533 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1534 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1535
1536 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1537 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1538 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1539 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1540 }
1541
1542 intel_logical_ring_emit(ringbuf, MI_NOOP);
1543 intel_logical_ring_advance(ringbuf);
1544
1545 return 0;
1546 }
1547
1548 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1549 u64 offset, unsigned dispatch_flags)
1550 {
1551 struct intel_ringbuffer *ringbuf = req->ringbuf;
1552 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1553 int ret;
1554
1555 /* Don't rely in hw updating PDPs, specially in lite-restore.
1556 * Ideally, we should set Force PD Restore in ctx descriptor,
1557 * but we can't. Force Restore would be a second option, but
1558 * it is unsafe in case of lite-restore (because the ctx is
1559 * not idle). PML4 is allocated during ppgtt init so this is
1560 * not needed in 48-bit.*/
1561 if (req->ctx->ppgtt &&
1562 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1563 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1564 !intel_vgpu_active(req->i915->dev)) {
1565 ret = intel_logical_ring_emit_pdps(req);
1566 if (ret)
1567 return ret;
1568 }
1569
1570 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1571 }
1572
1573 ret = intel_logical_ring_begin(req, 4);
1574 if (ret)
1575 return ret;
1576
1577 /* FIXME(BDW): Address space and security selectors. */
1578 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1579 (ppgtt<<8) |
1580 (dispatch_flags & I915_DISPATCH_RS ?
1581 MI_BATCH_RESOURCE_STREAMER : 0));
1582 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1583 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1584 intel_logical_ring_emit(ringbuf, MI_NOOP);
1585 intel_logical_ring_advance(ringbuf);
1586
1587 return 0;
1588 }
1589
1590 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1591 {
1592 struct drm_device *dev = ring->dev;
1593 struct drm_i915_private *dev_priv = dev->dev_private;
1594 unsigned long flags;
1595
1596 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1597 return false;
1598
1599 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1600 if (ring->irq_refcount++ == 0) {
1601 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1602 POSTING_READ(RING_IMR(ring->mmio_base));
1603 }
1604 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1605
1606 return true;
1607 }
1608
1609 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1610 {
1611 struct drm_device *dev = ring->dev;
1612 struct drm_i915_private *dev_priv = dev->dev_private;
1613 unsigned long flags;
1614
1615 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1616 if (--ring->irq_refcount == 0) {
1617 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1618 POSTING_READ(RING_IMR(ring->mmio_base));
1619 }
1620 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1621 }
1622
1623 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1624 u32 invalidate_domains,
1625 u32 unused)
1626 {
1627 struct intel_ringbuffer *ringbuf = request->ringbuf;
1628 struct intel_engine_cs *ring = ringbuf->ring;
1629 struct drm_device *dev = ring->dev;
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631 uint32_t cmd;
1632 int ret;
1633
1634 ret = intel_logical_ring_begin(request, 4);
1635 if (ret)
1636 return ret;
1637
1638 cmd = MI_FLUSH_DW + 1;
1639
1640 /* We always require a command barrier so that subsequent
1641 * commands, such as breadcrumb interrupts, are strictly ordered
1642 * wrt the contents of the write cache being flushed to memory
1643 * (and thus being coherent from the CPU).
1644 */
1645 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1646
1647 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1648 cmd |= MI_INVALIDATE_TLB;
1649 if (ring == &dev_priv->ring[VCS])
1650 cmd |= MI_INVALIDATE_BSD;
1651 }
1652
1653 intel_logical_ring_emit(ringbuf, cmd);
1654 intel_logical_ring_emit(ringbuf,
1655 I915_GEM_HWS_SCRATCH_ADDR |
1656 MI_FLUSH_DW_USE_GTT);
1657 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1658 intel_logical_ring_emit(ringbuf, 0); /* value */
1659 intel_logical_ring_advance(ringbuf);
1660
1661 return 0;
1662 }
1663
1664 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1665 u32 invalidate_domains,
1666 u32 flush_domains)
1667 {
1668 struct intel_ringbuffer *ringbuf = request->ringbuf;
1669 struct intel_engine_cs *ring = ringbuf->ring;
1670 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1671 bool vf_flush_wa;
1672 u32 flags = 0;
1673 int ret;
1674
1675 flags |= PIPE_CONTROL_CS_STALL;
1676
1677 if (flush_domains) {
1678 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1679 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1680 }
1681
1682 if (invalidate_domains) {
1683 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1684 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1685 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1686 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1687 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1688 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1689 flags |= PIPE_CONTROL_QW_WRITE;
1690 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1691 }
1692
1693 /*
1694 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1695 * control.
1696 */
1697 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1698 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1699
1700 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1701 if (ret)
1702 return ret;
1703
1704 if (vf_flush_wa) {
1705 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1706 intel_logical_ring_emit(ringbuf, 0);
1707 intel_logical_ring_emit(ringbuf, 0);
1708 intel_logical_ring_emit(ringbuf, 0);
1709 intel_logical_ring_emit(ringbuf, 0);
1710 intel_logical_ring_emit(ringbuf, 0);
1711 }
1712
1713 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1714 intel_logical_ring_emit(ringbuf, flags);
1715 intel_logical_ring_emit(ringbuf, scratch_addr);
1716 intel_logical_ring_emit(ringbuf, 0);
1717 intel_logical_ring_emit(ringbuf, 0);
1718 intel_logical_ring_emit(ringbuf, 0);
1719 intel_logical_ring_advance(ringbuf);
1720
1721 return 0;
1722 }
1723
1724 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1725 {
1726 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1727 }
1728
1729 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1730 {
1731 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1732 }
1733
1734 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1735 {
1736
1737 /*
1738 * On BXT A steppings there is a HW coherency issue whereby the
1739 * MI_STORE_DATA_IMM storing the completed request's seqno
1740 * occasionally doesn't invalidate the CPU cache. Work around this by
1741 * clflushing the corresponding cacheline whenever the caller wants
1742 * the coherency to be guaranteed. Note that this cacheline is known
1743 * to be clean at this point, since we only write it in
1744 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1745 * this clflush in practice becomes an invalidate operation.
1746 */
1747
1748 if (!lazy_coherency)
1749 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1750
1751 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1752 }
1753
1754 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1755 {
1756 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1757
1758 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1759 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1760 }
1761
1762 static int gen8_emit_request(struct drm_i915_gem_request *request)
1763 {
1764 struct intel_ringbuffer *ringbuf = request->ringbuf;
1765 struct intel_engine_cs *ring = ringbuf->ring;
1766 u32 cmd;
1767 int ret;
1768
1769 /*
1770 * Reserve space for 2 NOOPs at the end of each request to be
1771 * used as a workaround for not being allowed to do lite
1772 * restore with HEAD==TAIL (WaIdleLiteRestore).
1773 */
1774 ret = intel_logical_ring_begin(request, 8);
1775 if (ret)
1776 return ret;
1777
1778 cmd = MI_STORE_DWORD_IMM_GEN4;
1779 cmd |= MI_GLOBAL_GTT;
1780
1781 intel_logical_ring_emit(ringbuf, cmd);
1782 intel_logical_ring_emit(ringbuf,
1783 (ring->status_page.gfx_addr +
1784 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1785 intel_logical_ring_emit(ringbuf, 0);
1786 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1787 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1788 intel_logical_ring_emit(ringbuf, MI_NOOP);
1789 intel_logical_ring_advance_and_submit(request);
1790
1791 /*
1792 * Here we add two extra NOOPs as padding to avoid
1793 * lite restore of a context with HEAD==TAIL.
1794 */
1795 intel_logical_ring_emit(ringbuf, MI_NOOP);
1796 intel_logical_ring_emit(ringbuf, MI_NOOP);
1797 intel_logical_ring_advance(ringbuf);
1798
1799 return 0;
1800 }
1801
1802 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1803 {
1804 struct render_state so;
1805 int ret;
1806
1807 ret = i915_gem_render_state_prepare(req->ring, &so);
1808 if (ret)
1809 return ret;
1810
1811 if (so.rodata == NULL)
1812 return 0;
1813
1814 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1815 I915_DISPATCH_SECURE);
1816 if (ret)
1817 goto out;
1818
1819 ret = req->ring->emit_bb_start(req,
1820 (so.ggtt_offset + so.aux_batch_offset),
1821 I915_DISPATCH_SECURE);
1822 if (ret)
1823 goto out;
1824
1825 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1826
1827 out:
1828 i915_gem_render_state_fini(&so);
1829 return ret;
1830 }
1831
1832 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1833 {
1834 int ret;
1835
1836 ret = intel_logical_ring_workarounds_emit(req);
1837 if (ret)
1838 return ret;
1839
1840 ret = intel_rcs_context_init_mocs(req);
1841 /*
1842 * Failing to program the MOCS is non-fatal.The system will not
1843 * run at peak performance. So generate an error and carry on.
1844 */
1845 if (ret)
1846 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1847
1848 return intel_lr_context_render_state_init(req);
1849 }
1850
1851 /**
1852 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1853 *
1854 * @ring: Engine Command Streamer.
1855 *
1856 */
1857 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1858 {
1859 struct drm_i915_private *dev_priv;
1860
1861 if (!intel_ring_initialized(ring))
1862 return;
1863
1864 dev_priv = ring->dev->dev_private;
1865
1866 intel_logical_ring_stop(ring);
1867 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1868
1869 if (ring->cleanup)
1870 ring->cleanup(ring);
1871
1872 i915_cmd_parser_fini_ring(ring);
1873 i915_gem_batch_pool_fini(&ring->batch_pool);
1874
1875 if (ring->status_page.obj) {
1876 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1877 ring->status_page.obj = NULL;
1878 }
1879
1880 lrc_destroy_wa_ctx_obj(ring);
1881 }
1882
1883 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1884 {
1885 int ret;
1886
1887 /* Intentionally left blank. */
1888 ring->buffer = NULL;
1889
1890 ring->dev = dev;
1891 INIT_LIST_HEAD(&ring->active_list);
1892 INIT_LIST_HEAD(&ring->request_list);
1893 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1894 init_waitqueue_head(&ring->irq_queue);
1895
1896 INIT_LIST_HEAD(&ring->execlist_queue);
1897 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1898 spin_lock_init(&ring->execlist_lock);
1899
1900 ret = i915_cmd_parser_init_ring(ring);
1901 if (ret)
1902 return ret;
1903
1904 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1905
1906 return ret;
1907 }
1908
1909 static int logical_render_ring_init(struct drm_device *dev)
1910 {
1911 struct drm_i915_private *dev_priv = dev->dev_private;
1912 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1913 int ret;
1914
1915 ring->name = "render ring";
1916 ring->id = RCS;
1917 ring->mmio_base = RENDER_RING_BASE;
1918 ring->irq_enable_mask =
1919 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1920 ring->irq_keep_mask =
1921 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1922 if (HAS_L3_DPF(dev))
1923 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1924
1925 if (INTEL_INFO(dev)->gen >= 9)
1926 ring->init_hw = gen9_init_render_ring;
1927 else
1928 ring->init_hw = gen8_init_render_ring;
1929 ring->init_context = gen8_init_rcs_context;
1930 ring->cleanup = intel_fini_pipe_control;
1931 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1932 ring->get_seqno = bxt_a_get_seqno;
1933 ring->set_seqno = bxt_a_set_seqno;
1934 } else {
1935 ring->get_seqno = gen8_get_seqno;
1936 ring->set_seqno = gen8_set_seqno;
1937 }
1938 ring->emit_request = gen8_emit_request;
1939 ring->emit_flush = gen8_emit_flush_render;
1940 ring->irq_get = gen8_logical_ring_get_irq;
1941 ring->irq_put = gen8_logical_ring_put_irq;
1942 ring->emit_bb_start = gen8_emit_bb_start;
1943
1944 ring->dev = dev;
1945
1946 ret = intel_init_pipe_control(ring);
1947 if (ret)
1948 return ret;
1949
1950 ret = intel_init_workaround_bb(ring);
1951 if (ret) {
1952 /*
1953 * We continue even if we fail to initialize WA batch
1954 * because we only expect rare glitches but nothing
1955 * critical to prevent us from using GPU
1956 */
1957 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1958 ret);
1959 }
1960
1961 ret = logical_ring_init(dev, ring);
1962 if (ret) {
1963 lrc_destroy_wa_ctx_obj(ring);
1964 }
1965
1966 return ret;
1967 }
1968
1969 static int logical_bsd_ring_init(struct drm_device *dev)
1970 {
1971 struct drm_i915_private *dev_priv = dev->dev_private;
1972 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1973
1974 ring->name = "bsd ring";
1975 ring->id = VCS;
1976 ring->mmio_base = GEN6_BSD_RING_BASE;
1977 ring->irq_enable_mask =
1978 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1979 ring->irq_keep_mask =
1980 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1981
1982 ring->init_hw = gen8_init_common_ring;
1983 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1984 ring->get_seqno = bxt_a_get_seqno;
1985 ring->set_seqno = bxt_a_set_seqno;
1986 } else {
1987 ring->get_seqno = gen8_get_seqno;
1988 ring->set_seqno = gen8_set_seqno;
1989 }
1990 ring->emit_request = gen8_emit_request;
1991 ring->emit_flush = gen8_emit_flush;
1992 ring->irq_get = gen8_logical_ring_get_irq;
1993 ring->irq_put = gen8_logical_ring_put_irq;
1994 ring->emit_bb_start = gen8_emit_bb_start;
1995
1996 return logical_ring_init(dev, ring);
1997 }
1998
1999 static int logical_bsd2_ring_init(struct drm_device *dev)
2000 {
2001 struct drm_i915_private *dev_priv = dev->dev_private;
2002 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2003
2004 ring->name = "bds2 ring";
2005 ring->id = VCS2;
2006 ring->mmio_base = GEN8_BSD2_RING_BASE;
2007 ring->irq_enable_mask =
2008 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2009 ring->irq_keep_mask =
2010 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2011
2012 ring->init_hw = gen8_init_common_ring;
2013 ring->get_seqno = gen8_get_seqno;
2014 ring->set_seqno = gen8_set_seqno;
2015 ring->emit_request = gen8_emit_request;
2016 ring->emit_flush = gen8_emit_flush;
2017 ring->irq_get = gen8_logical_ring_get_irq;
2018 ring->irq_put = gen8_logical_ring_put_irq;
2019 ring->emit_bb_start = gen8_emit_bb_start;
2020
2021 return logical_ring_init(dev, ring);
2022 }
2023
2024 static int logical_blt_ring_init(struct drm_device *dev)
2025 {
2026 struct drm_i915_private *dev_priv = dev->dev_private;
2027 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2028
2029 ring->name = "blitter ring";
2030 ring->id = BCS;
2031 ring->mmio_base = BLT_RING_BASE;
2032 ring->irq_enable_mask =
2033 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2034 ring->irq_keep_mask =
2035 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2036
2037 ring->init_hw = gen8_init_common_ring;
2038 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2039 ring->get_seqno = bxt_a_get_seqno;
2040 ring->set_seqno = bxt_a_set_seqno;
2041 } else {
2042 ring->get_seqno = gen8_get_seqno;
2043 ring->set_seqno = gen8_set_seqno;
2044 }
2045 ring->emit_request = gen8_emit_request;
2046 ring->emit_flush = gen8_emit_flush;
2047 ring->irq_get = gen8_logical_ring_get_irq;
2048 ring->irq_put = gen8_logical_ring_put_irq;
2049 ring->emit_bb_start = gen8_emit_bb_start;
2050
2051 return logical_ring_init(dev, ring);
2052 }
2053
2054 static int logical_vebox_ring_init(struct drm_device *dev)
2055 {
2056 struct drm_i915_private *dev_priv = dev->dev_private;
2057 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2058
2059 ring->name = "video enhancement ring";
2060 ring->id = VECS;
2061 ring->mmio_base = VEBOX_RING_BASE;
2062 ring->irq_enable_mask =
2063 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2064 ring->irq_keep_mask =
2065 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2066
2067 ring->init_hw = gen8_init_common_ring;
2068 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2069 ring->get_seqno = bxt_a_get_seqno;
2070 ring->set_seqno = bxt_a_set_seqno;
2071 } else {
2072 ring->get_seqno = gen8_get_seqno;
2073 ring->set_seqno = gen8_set_seqno;
2074 }
2075 ring->emit_request = gen8_emit_request;
2076 ring->emit_flush = gen8_emit_flush;
2077 ring->irq_get = gen8_logical_ring_get_irq;
2078 ring->irq_put = gen8_logical_ring_put_irq;
2079 ring->emit_bb_start = gen8_emit_bb_start;
2080
2081 return logical_ring_init(dev, ring);
2082 }
2083
2084 /**
2085 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2086 * @dev: DRM device.
2087 *
2088 * This function inits the engines for an Execlists submission style (the equivalent in the
2089 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2090 * those engines that are present in the hardware.
2091 *
2092 * Return: non-zero if the initialization failed.
2093 */
2094 int intel_logical_rings_init(struct drm_device *dev)
2095 {
2096 struct drm_i915_private *dev_priv = dev->dev_private;
2097 int ret;
2098
2099 ret = logical_render_ring_init(dev);
2100 if (ret)
2101 return ret;
2102
2103 if (HAS_BSD(dev)) {
2104 ret = logical_bsd_ring_init(dev);
2105 if (ret)
2106 goto cleanup_render_ring;
2107 }
2108
2109 if (HAS_BLT(dev)) {
2110 ret = logical_blt_ring_init(dev);
2111 if (ret)
2112 goto cleanup_bsd_ring;
2113 }
2114
2115 if (HAS_VEBOX(dev)) {
2116 ret = logical_vebox_ring_init(dev);
2117 if (ret)
2118 goto cleanup_blt_ring;
2119 }
2120
2121 if (HAS_BSD2(dev)) {
2122 ret = logical_bsd2_ring_init(dev);
2123 if (ret)
2124 goto cleanup_vebox_ring;
2125 }
2126
2127 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
2128 if (ret)
2129 goto cleanup_bsd2_ring;
2130
2131 return 0;
2132
2133 cleanup_bsd2_ring:
2134 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
2135 cleanup_vebox_ring:
2136 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2137 cleanup_blt_ring:
2138 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2139 cleanup_bsd_ring:
2140 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2141 cleanup_render_ring:
2142 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2143
2144 return ret;
2145 }
2146
2147 static u32
2148 make_rpcs(struct drm_device *dev)
2149 {
2150 u32 rpcs = 0;
2151
2152 /*
2153 * No explicit RPCS request is needed to ensure full
2154 * slice/subslice/EU enablement prior to Gen9.
2155 */
2156 if (INTEL_INFO(dev)->gen < 9)
2157 return 0;
2158
2159 /*
2160 * Starting in Gen9, render power gating can leave
2161 * slice/subslice/EU in a partially enabled state. We
2162 * must make an explicit request through RPCS for full
2163 * enablement.
2164 */
2165 if (INTEL_INFO(dev)->has_slice_pg) {
2166 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2167 rpcs |= INTEL_INFO(dev)->slice_total <<
2168 GEN8_RPCS_S_CNT_SHIFT;
2169 rpcs |= GEN8_RPCS_ENABLE;
2170 }
2171
2172 if (INTEL_INFO(dev)->has_subslice_pg) {
2173 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2174 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2175 GEN8_RPCS_SS_CNT_SHIFT;
2176 rpcs |= GEN8_RPCS_ENABLE;
2177 }
2178
2179 if (INTEL_INFO(dev)->has_eu_pg) {
2180 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2181 GEN8_RPCS_EU_MIN_SHIFT;
2182 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2183 GEN8_RPCS_EU_MAX_SHIFT;
2184 rpcs |= GEN8_RPCS_ENABLE;
2185 }
2186
2187 return rpcs;
2188 }
2189
2190 static int
2191 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2192 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2193 {
2194 struct drm_device *dev = ring->dev;
2195 struct drm_i915_private *dev_priv = dev->dev_private;
2196 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2197 struct page *page;
2198 uint32_t *reg_state;
2199 int ret;
2200
2201 if (!ppgtt)
2202 ppgtt = dev_priv->mm.aliasing_ppgtt;
2203
2204 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2205 if (ret) {
2206 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2207 return ret;
2208 }
2209
2210 ret = i915_gem_object_get_pages(ctx_obj);
2211 if (ret) {
2212 DRM_DEBUG_DRIVER("Could not get object pages\n");
2213 return ret;
2214 }
2215
2216 i915_gem_object_pin_pages(ctx_obj);
2217
2218 /* The second page of the context object contains some fields which must
2219 * be set up prior to the first execution. */
2220 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2221 reg_state = kmap_atomic(page);
2222
2223 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2224 * commands followed by (reg, value) pairs. The values we are setting here are
2225 * only for the first context restore: on a subsequent save, the GPU will
2226 * recreate this batchbuffer with new values (including all the missing
2227 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2228 if (ring->id == RCS)
2229 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2230 else
2231 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2232 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2233 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2234 reg_state[CTX_CONTEXT_CONTROL+1] =
2235 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2236 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2237 CTX_CTRL_RS_CTX_ENABLE);
2238 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2239 reg_state[CTX_RING_HEAD+1] = 0;
2240 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2241 reg_state[CTX_RING_TAIL+1] = 0;
2242 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2243 /* Ring buffer start address is not known until the buffer is pinned.
2244 * It is written to the context image in execlists_update_context()
2245 */
2246 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2247 reg_state[CTX_RING_BUFFER_CONTROL+1] =
2248 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2249 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2250 reg_state[CTX_BB_HEAD_U+1] = 0;
2251 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2252 reg_state[CTX_BB_HEAD_L+1] = 0;
2253 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2254 reg_state[CTX_BB_STATE+1] = (1<<5);
2255 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2256 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2257 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2258 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2259 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2260 reg_state[CTX_SECOND_BB_STATE+1] = 0;
2261 if (ring->id == RCS) {
2262 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2263 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2264 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2265 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2266 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2267 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2268 if (ring->wa_ctx.obj) {
2269 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2270 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2271
2272 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2273 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2274 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2275
2276 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2277 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2278
2279 reg_state[CTX_BB_PER_CTX_PTR+1] =
2280 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2281 0x01;
2282 }
2283 }
2284 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2285 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2286 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2287 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2288 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2289 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2290 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2291 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2292 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2293 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2294 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2295 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2296
2297 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2298 /* 64b PPGTT (48bit canonical)
2299 * PDP0_DESCRIPTOR contains the base address to PML4 and
2300 * other PDP Descriptors are ignored.
2301 */
2302 ASSIGN_CTX_PML4(ppgtt, reg_state);
2303 } else {
2304 /* 32b PPGTT
2305 * PDP*_DESCRIPTOR contains the base address of space supported.
2306 * With dynamic page allocation, PDPs may not be allocated at
2307 * this point. Point the unallocated PDPs to the scratch page
2308 */
2309 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2310 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2311 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2312 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2313 }
2314
2315 if (ring->id == RCS) {
2316 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2317 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2318 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2319 }
2320
2321 kunmap_atomic(reg_state);
2322
2323 ctx_obj->dirty = 1;
2324 set_page_dirty(page);
2325 i915_gem_object_unpin_pages(ctx_obj);
2326
2327 return 0;
2328 }
2329
2330 /**
2331 * intel_lr_context_free() - free the LRC specific bits of a context
2332 * @ctx: the LR context to free.
2333 *
2334 * The real context freeing is done in i915_gem_context_free: this only
2335 * takes care of the bits that are LRC related: the per-engine backing
2336 * objects and the logical ringbuffer.
2337 */
2338 void intel_lr_context_free(struct intel_context *ctx)
2339 {
2340 int i;
2341
2342 for (i = 0; i < I915_NUM_RINGS; i++) {
2343 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2344
2345 if (ctx_obj) {
2346 struct intel_ringbuffer *ringbuf =
2347 ctx->engine[i].ringbuf;
2348 struct intel_engine_cs *ring = ringbuf->ring;
2349
2350 if (ctx == ring->default_context) {
2351 intel_unpin_ringbuffer_obj(ringbuf);
2352 i915_gem_object_ggtt_unpin(ctx_obj);
2353 }
2354 WARN_ON(ctx->engine[ring->id].pin_count);
2355 intel_ringbuffer_free(ringbuf);
2356 drm_gem_object_unreference(&ctx_obj->base);
2357 }
2358 }
2359 }
2360
2361 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2362 {
2363 int ret = 0;
2364
2365 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2366
2367 switch (ring->id) {
2368 case RCS:
2369 if (INTEL_INFO(ring->dev)->gen >= 9)
2370 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2371 else
2372 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2373 break;
2374 case VCS:
2375 case BCS:
2376 case VECS:
2377 case VCS2:
2378 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2379 break;
2380 }
2381
2382 return ret;
2383 }
2384
2385 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2386 struct drm_i915_gem_object *default_ctx_obj)
2387 {
2388 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2389 struct page *page;
2390
2391 /* The HWSP is part of the default context object in LRC mode. */
2392 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2393 + LRC_PPHWSP_PN * PAGE_SIZE;
2394 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2395 ring->status_page.page_addr = kmap(page);
2396 ring->status_page.obj = default_ctx_obj;
2397
2398 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2399 (u32)ring->status_page.gfx_addr);
2400 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2401 }
2402
2403 /**
2404 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2405 * @ctx: LR context to create.
2406 * @ring: engine to be used with the context.
2407 *
2408 * This function can be called more than once, with different engines, if we plan
2409 * to use the context with them. The context backing objects and the ringbuffers
2410 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2411 * the creation is a deferred call: it's better to make sure first that we need to use
2412 * a given ring with the context.
2413 *
2414 * Return: non-zero on error.
2415 */
2416 int intel_lr_context_deferred_create(struct intel_context *ctx,
2417 struct intel_engine_cs *ring)
2418 {
2419 const bool is_global_default_ctx = (ctx == ring->default_context);
2420 struct drm_device *dev = ring->dev;
2421 struct drm_i915_private *dev_priv = dev->dev_private;
2422 struct drm_i915_gem_object *ctx_obj;
2423 uint32_t context_size;
2424 struct intel_ringbuffer *ringbuf;
2425 int ret;
2426
2427 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2428 WARN_ON(ctx->engine[ring->id].state);
2429
2430 context_size = round_up(get_lr_context_size(ring), 4096);
2431
2432 /* One extra page as the sharing data between driver and GuC */
2433 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2434
2435 ctx_obj = i915_gem_alloc_object(dev, context_size);
2436 if (!ctx_obj) {
2437 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2438 return -ENOMEM;
2439 }
2440
2441 if (is_global_default_ctx) {
2442 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
2443 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
2444 if (ret) {
2445 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2446 ret);
2447 drm_gem_object_unreference(&ctx_obj->base);
2448 return ret;
2449 }
2450
2451 /* Invalidate GuC TLB. */
2452 if (i915.enable_guc_submission)
2453 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
2454 }
2455
2456 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2457 if (IS_ERR(ringbuf)) {
2458 ret = PTR_ERR(ringbuf);
2459 goto error_unpin_ctx;
2460 }
2461
2462 if (is_global_default_ctx) {
2463 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2464 if (ret) {
2465 DRM_ERROR(
2466 "Failed to pin and map ringbuffer %s: %d\n",
2467 ring->name, ret);
2468 goto error_ringbuf;
2469 }
2470 }
2471
2472 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2473 if (ret) {
2474 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2475 goto error;
2476 }
2477
2478 ctx->engine[ring->id].ringbuf = ringbuf;
2479 ctx->engine[ring->id].state = ctx_obj;
2480
2481 if (ctx == ring->default_context)
2482 lrc_setup_hardware_status_page(ring, ctx_obj);
2483 else if (ring->id == RCS && !ctx->rcs_initialized) {
2484 if (ring->init_context) {
2485 struct drm_i915_gem_request *req;
2486
2487 ret = i915_gem_request_alloc(ring, ctx, &req);
2488 if (ret)
2489 return ret;
2490
2491 ret = ring->init_context(req);
2492 if (ret) {
2493 DRM_ERROR("ring init context: %d\n", ret);
2494 i915_gem_request_cancel(req);
2495 ctx->engine[ring->id].ringbuf = NULL;
2496 ctx->engine[ring->id].state = NULL;
2497 goto error;
2498 }
2499
2500 i915_add_request_no_flush(req);
2501 }
2502
2503 ctx->rcs_initialized = true;
2504 }
2505
2506 return 0;
2507
2508 error:
2509 if (is_global_default_ctx)
2510 intel_unpin_ringbuffer_obj(ringbuf);
2511 error_ringbuf:
2512 intel_ringbuffer_free(ringbuf);
2513 error_unpin_ctx:
2514 if (is_global_default_ctx)
2515 i915_gem_object_ggtt_unpin(ctx_obj);
2516 drm_gem_object_unreference(&ctx_obj->base);
2517 return ret;
2518 }
2519
2520 void intel_lr_context_reset(struct drm_device *dev,
2521 struct intel_context *ctx)
2522 {
2523 struct drm_i915_private *dev_priv = dev->dev_private;
2524 struct intel_engine_cs *ring;
2525 int i;
2526
2527 for_each_ring(ring, dev_priv, i) {
2528 struct drm_i915_gem_object *ctx_obj =
2529 ctx->engine[ring->id].state;
2530 struct intel_ringbuffer *ringbuf =
2531 ctx->engine[ring->id].ringbuf;
2532 uint32_t *reg_state;
2533 struct page *page;
2534
2535 if (!ctx_obj)
2536 continue;
2537
2538 if (i915_gem_object_get_pages(ctx_obj)) {
2539 WARN(1, "Failed get_pages for context obj\n");
2540 continue;
2541 }
2542 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2543 reg_state = kmap_atomic(page);
2544
2545 reg_state[CTX_RING_HEAD+1] = 0;
2546 reg_state[CTX_RING_TAIL+1] = 0;
2547
2548 kunmap_atomic(reg_state);
2549
2550 ringbuf->head = 0;
2551 ringbuf->tail = 0;
2552 }
2553 }
This page took 0.089565 seconds and 5 git commands to generate.