db10c961e0f4669170c29abd3733a34976adb940
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211 ADVANCED_CONTEXT = 0,
212 LEGACY_32B_CONTEXT,
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
220 enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_ID_WIDTH 21
228 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
229 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
230
231 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
232 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
233
234 static int execlists_context_deferred_alloc(struct intel_context *ctx,
235 struct intel_engine_cs *engine);
236 static int intel_lr_context_pin(struct intel_context *ctx,
237 struct intel_engine_cs *engine);
238
239 /**
240 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
241 * @dev: DRM device.
242 * @enable_execlists: value of i915.enable_execlists module parameter.
243 *
244 * Only certain platforms support Execlists (the prerequisites being
245 * support for Logical Ring Contexts and Aliasing PPGTT or better).
246 *
247 * Return: 1 if Execlists is supported and has to be enabled.
248 */
249 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
250 {
251 /* On platforms with execlist available, vGPU will only
252 * support execlist mode, no ring buffer mode.
253 */
254 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
255 return 1;
256
257 if (INTEL_GEN(dev_priv) >= 9)
258 return 1;
259
260 if (enable_execlists == 0)
261 return 0;
262
263 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
264 USES_PPGTT(dev_priv) &&
265 i915.use_mmio_flip >= 0)
266 return 1;
267
268 return 0;
269 }
270
271 static void
272 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
273 {
274 struct drm_i915_private *dev_priv = engine->i915;
275
276 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
277 engine->idle_lite_restore_wa = ~0;
278
279 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
280 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
281 (engine->id == VCS || engine->id == VCS2);
282
283 engine->ctx_desc_template = GEN8_CTX_VALID;
284 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev_priv) <<
285 GEN8_CTX_ADDRESSING_MODE_SHIFT;
286 if (IS_GEN8(dev_priv))
287 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
288 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
289
290 /* TODO: WaDisableLiteRestore when we start using semaphore
291 * signalling between Command Streamers */
292 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
293
294 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
295 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
296 if (engine->disable_lite_restore_wa)
297 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
298 }
299
300 /**
301 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
302 * descriptor for a pinned context
303 *
304 * @ctx: Context to work on
305 * @ring: Engine the descriptor will be used with
306 *
307 * The context descriptor encodes various attributes of a context,
308 * including its GTT address and some flags. Because it's fairly
309 * expensive to calculate, we'll just do it once and cache the result,
310 * which remains valid until the context is unpinned.
311 *
312 * This is what a descriptor looks like, from LSB to MSB:
313 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
314 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
315 * bits 32-52: ctx ID, a globally unique tag
316 * bits 53-54: mbz, reserved for use by hardware
317 * bits 55-63: group ID, currently unused and set to 0
318 */
319 static void
320 intel_lr_context_descriptor_update(struct intel_context *ctx,
321 struct intel_engine_cs *engine)
322 {
323 u64 desc;
324
325 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
326
327 desc = engine->ctx_desc_template; /* bits 0-11 */
328 desc |= ctx->engine[engine->id].lrc_vma->node.start + /* bits 12-31 */
329 LRC_PPHWSP_PN * PAGE_SIZE;
330 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
331
332 ctx->engine[engine->id].lrc_desc = desc;
333 }
334
335 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
336 struct intel_engine_cs *engine)
337 {
338 return ctx->engine[engine->id].lrc_desc;
339 }
340
341 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
342 struct drm_i915_gem_request *rq1)
343 {
344
345 struct intel_engine_cs *engine = rq0->engine;
346 struct drm_i915_private *dev_priv = rq0->i915;
347 uint64_t desc[2];
348
349 if (rq1) {
350 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
351 rq1->elsp_submitted++;
352 } else {
353 desc[1] = 0;
354 }
355
356 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
357 rq0->elsp_submitted++;
358
359 /* You must always write both descriptors in the order below. */
360 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
361 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
362
363 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
364 /* The context is automatically loaded after the following */
365 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
366
367 /* ELSP is a wo register, use another nearby reg for posting */
368 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
369 }
370
371 static void
372 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
373 {
374 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
375 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
376 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
377 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
378 }
379
380 static void execlists_update_context(struct drm_i915_gem_request *rq)
381 {
382 struct intel_engine_cs *engine = rq->engine;
383 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
384 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
385
386 reg_state[CTX_RING_TAIL+1] = rq->tail;
387
388 /* True 32b PPGTT with dynamic page allocation: update PDP
389 * registers and point the unallocated PDPs to scratch page.
390 * PML4 is allocated during ppgtt init, so this is not needed
391 * in 48-bit mode.
392 */
393 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
394 execlists_update_context_pdps(ppgtt, reg_state);
395 }
396
397 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
398 struct drm_i915_gem_request *rq1)
399 {
400 struct drm_i915_private *dev_priv = rq0->i915;
401 unsigned int fw_domains = rq0->engine->fw_domains;
402
403 execlists_update_context(rq0);
404
405 if (rq1)
406 execlists_update_context(rq1);
407
408 spin_lock_irq(&dev_priv->uncore.lock);
409 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
410
411 execlists_elsp_write(rq0, rq1);
412
413 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
414 spin_unlock_irq(&dev_priv->uncore.lock);
415 }
416
417 static void execlists_context_unqueue(struct intel_engine_cs *engine)
418 {
419 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
420 struct drm_i915_gem_request *cursor, *tmp;
421
422 assert_spin_locked(&engine->execlist_lock);
423
424 /*
425 * If irqs are not active generate a warning as batches that finish
426 * without the irqs may get lost and a GPU Hang may occur.
427 */
428 WARN_ON(!intel_irqs_enabled(engine->i915));
429
430 /* Try to read in pairs */
431 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
432 execlist_link) {
433 if (!req0) {
434 req0 = cursor;
435 } else if (req0->ctx == cursor->ctx) {
436 /* Same ctx: ignore first request, as second request
437 * will update tail past first request's workload */
438 cursor->elsp_submitted = req0->elsp_submitted;
439 list_del(&req0->execlist_link);
440 i915_gem_request_unreference(req0);
441 req0 = cursor;
442 } else {
443 req1 = cursor;
444 WARN_ON(req1->elsp_submitted);
445 break;
446 }
447 }
448
449 if (unlikely(!req0))
450 return;
451
452 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
453 /*
454 * WaIdleLiteRestore: make sure we never cause a lite restore
455 * with HEAD==TAIL.
456 *
457 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
458 * resubmit the request. See gen8_emit_request() for where we
459 * prepare the padding after the end of the request.
460 */
461 struct intel_ringbuffer *ringbuf;
462
463 ringbuf = req0->ctx->engine[engine->id].ringbuf;
464 req0->tail += 8;
465 req0->tail &= ringbuf->size - 1;
466 }
467
468 execlists_submit_requests(req0, req1);
469 }
470
471 static unsigned int
472 execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
473 {
474 struct drm_i915_gem_request *head_req;
475
476 assert_spin_locked(&engine->execlist_lock);
477
478 head_req = list_first_entry_or_null(&engine->execlist_queue,
479 struct drm_i915_gem_request,
480 execlist_link);
481
482 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
483 return 0;
484
485 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
486
487 if (--head_req->elsp_submitted > 0)
488 return 0;
489
490 list_del(&head_req->execlist_link);
491 i915_gem_request_unreference(head_req);
492
493 return 1;
494 }
495
496 static u32
497 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
498 u32 *context_id)
499 {
500 struct drm_i915_private *dev_priv = engine->i915;
501 u32 status;
502
503 read_pointer %= GEN8_CSB_ENTRIES;
504
505 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
506
507 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
508 return 0;
509
510 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
511 read_pointer));
512
513 return status;
514 }
515
516 /**
517 * intel_lrc_irq_handler() - handle Context Switch interrupts
518 * @engine: Engine Command Streamer to handle.
519 *
520 * Check the unread Context Status Buffers and manage the submission of new
521 * contexts to the ELSP accordingly.
522 */
523 static void intel_lrc_irq_handler(unsigned long data)
524 {
525 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
526 struct drm_i915_private *dev_priv = engine->i915;
527 u32 status_pointer;
528 unsigned int read_pointer, write_pointer;
529 u32 csb[GEN8_CSB_ENTRIES][2];
530 unsigned int csb_read = 0, i;
531 unsigned int submit_contexts = 0;
532
533 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
534
535 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
536
537 read_pointer = engine->next_context_status_buffer;
538 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
539 if (read_pointer > write_pointer)
540 write_pointer += GEN8_CSB_ENTRIES;
541
542 while (read_pointer < write_pointer) {
543 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
544 break;
545 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
546 &csb[csb_read][1]);
547 csb_read++;
548 }
549
550 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
551
552 /* Update the read pointer to the old write pointer. Manual ringbuffer
553 * management ftw </sarcasm> */
554 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
555 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
556 engine->next_context_status_buffer << 8));
557
558 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
559
560 spin_lock(&engine->execlist_lock);
561
562 for (i = 0; i < csb_read; i++) {
563 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
564 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
565 if (execlists_check_remove_request(engine, csb[i][1]))
566 WARN(1, "Lite Restored request removed from queue\n");
567 } else
568 WARN(1, "Preemption without Lite Restore\n");
569 }
570
571 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
572 GEN8_CTX_STATUS_ELEMENT_SWITCH))
573 submit_contexts +=
574 execlists_check_remove_request(engine, csb[i][1]);
575 }
576
577 if (submit_contexts) {
578 if (!engine->disable_lite_restore_wa ||
579 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
580 execlists_context_unqueue(engine);
581 }
582
583 spin_unlock(&engine->execlist_lock);
584
585 if (unlikely(submit_contexts > 2))
586 DRM_ERROR("More than two context complete events?\n");
587 }
588
589 static void execlists_context_queue(struct drm_i915_gem_request *request)
590 {
591 struct intel_engine_cs *engine = request->engine;
592 struct drm_i915_gem_request *cursor;
593 int num_elements = 0;
594
595 spin_lock_bh(&engine->execlist_lock);
596
597 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
598 if (++num_elements > 2)
599 break;
600
601 if (num_elements > 2) {
602 struct drm_i915_gem_request *tail_req;
603
604 tail_req = list_last_entry(&engine->execlist_queue,
605 struct drm_i915_gem_request,
606 execlist_link);
607
608 if (request->ctx == tail_req->ctx) {
609 WARN(tail_req->elsp_submitted != 0,
610 "More than 2 already-submitted reqs queued\n");
611 list_del(&tail_req->execlist_link);
612 i915_gem_request_unreference(tail_req);
613 }
614 }
615
616 i915_gem_request_reference(request);
617 list_add_tail(&request->execlist_link, &engine->execlist_queue);
618 request->ctx_hw_id = request->ctx->hw_id;
619 if (num_elements == 0)
620 execlists_context_unqueue(engine);
621
622 spin_unlock_bh(&engine->execlist_lock);
623 }
624
625 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
626 {
627 struct intel_engine_cs *engine = req->engine;
628 uint32_t flush_domains;
629 int ret;
630
631 flush_domains = 0;
632 if (engine->gpu_caches_dirty)
633 flush_domains = I915_GEM_GPU_DOMAINS;
634
635 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
636 if (ret)
637 return ret;
638
639 engine->gpu_caches_dirty = false;
640 return 0;
641 }
642
643 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
644 struct list_head *vmas)
645 {
646 const unsigned other_rings = ~intel_engine_flag(req->engine);
647 struct i915_vma *vma;
648 uint32_t flush_domains = 0;
649 bool flush_chipset = false;
650 int ret;
651
652 list_for_each_entry(vma, vmas, exec_list) {
653 struct drm_i915_gem_object *obj = vma->obj;
654
655 if (obj->active & other_rings) {
656 ret = i915_gem_object_sync(obj, req->engine, &req);
657 if (ret)
658 return ret;
659 }
660
661 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
662 flush_chipset |= i915_gem_clflush_object(obj, false);
663
664 flush_domains |= obj->base.write_domain;
665 }
666
667 if (flush_domains & I915_GEM_DOMAIN_GTT)
668 wmb();
669
670 /* Unconditionally invalidate gpu caches and ensure that we do flush
671 * any residual writes from the previous batch.
672 */
673 return logical_ring_invalidate_all_caches(req);
674 }
675
676 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
677 {
678 struct intel_engine_cs *engine = request->engine;
679 int ret;
680
681 /* Flush enough space to reduce the likelihood of waiting after
682 * we start building the request - in which case we will just
683 * have to repeat work.
684 */
685 request->reserved_space += EXECLISTS_REQUEST_SIZE;
686
687 if (request->ctx->engine[engine->id].state == NULL) {
688 ret = execlists_context_deferred_alloc(request->ctx, engine);
689 if (ret)
690 return ret;
691 }
692
693 request->ringbuf = request->ctx->engine[engine->id].ringbuf;
694
695 if (i915.enable_guc_submission) {
696 /*
697 * Check that the GuC has space for the request before
698 * going any further, as the i915_add_request() call
699 * later on mustn't fail ...
700 */
701 struct intel_guc *guc = &request->i915->guc;
702
703 ret = i915_guc_wq_check_space(guc->execbuf_client);
704 if (ret)
705 return ret;
706 }
707
708 ret = intel_lr_context_pin(request->ctx, engine);
709 if (ret)
710 return ret;
711
712 ret = intel_ring_begin(request, 0);
713 if (ret)
714 goto err_unpin;
715
716 if (!request->ctx->engine[engine->id].initialised) {
717 ret = engine->init_context(request);
718 if (ret)
719 goto err_unpin;
720
721 request->ctx->engine[engine->id].initialised = true;
722 }
723
724 /* Note that after this point, we have committed to using
725 * this request as it is being used to both track the
726 * state of engine initialisation and liveness of the
727 * golden renderstate above. Think twice before you try
728 * to cancel/unwind this request now.
729 */
730
731 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
732 return 0;
733
734 err_unpin:
735 intel_lr_context_unpin(request->ctx, engine);
736 return ret;
737 }
738
739 /*
740 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
741 * @request: Request to advance the logical ringbuffer of.
742 *
743 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
744 * really happens during submission is that the context and current tail will be placed
745 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
746 * point, the tail *inside* the context is updated and the ELSP written to.
747 */
748 static int
749 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
750 {
751 struct intel_ringbuffer *ringbuf = request->ringbuf;
752 struct drm_i915_private *dev_priv = request->i915;
753 struct intel_engine_cs *engine = request->engine;
754
755 intel_logical_ring_advance(ringbuf);
756 request->tail = ringbuf->tail;
757
758 /*
759 * Here we add two extra NOOPs as padding to avoid
760 * lite restore of a context with HEAD==TAIL.
761 *
762 * Caller must reserve WA_TAIL_DWORDS for us!
763 */
764 intel_logical_ring_emit(ringbuf, MI_NOOP);
765 intel_logical_ring_emit(ringbuf, MI_NOOP);
766 intel_logical_ring_advance(ringbuf);
767
768 if (intel_engine_stopped(engine))
769 return 0;
770
771 /* We keep the previous context alive until we retire the following
772 * request. This ensures that any the context object is still pinned
773 * for any residual writes the HW makes into it on the context switch
774 * into the next object following the breadcrumb. Otherwise, we may
775 * retire the context too early.
776 */
777 request->previous_context = engine->last_context;
778 engine->last_context = request->ctx;
779
780 if (dev_priv->guc.execbuf_client)
781 i915_guc_submit(dev_priv->guc.execbuf_client, request);
782 else
783 execlists_context_queue(request);
784
785 return 0;
786 }
787
788 /**
789 * execlists_submission() - submit a batchbuffer for execution, Execlists style
790 * @dev: DRM device.
791 * @file: DRM file.
792 * @ring: Engine Command Streamer to submit to.
793 * @ctx: Context to employ for this submission.
794 * @args: execbuffer call arguments.
795 * @vmas: list of vmas.
796 * @batch_obj: the batchbuffer to submit.
797 * @exec_start: batchbuffer start virtual address pointer.
798 * @dispatch_flags: translated execbuffer call flags.
799 *
800 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
801 * away the submission details of the execbuffer ioctl call.
802 *
803 * Return: non-zero if the submission fails.
804 */
805 int intel_execlists_submission(struct i915_execbuffer_params *params,
806 struct drm_i915_gem_execbuffer2 *args,
807 struct list_head *vmas)
808 {
809 struct drm_device *dev = params->dev;
810 struct intel_engine_cs *engine = params->engine;
811 struct drm_i915_private *dev_priv = dev->dev_private;
812 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
813 u64 exec_start;
814 int instp_mode;
815 u32 instp_mask;
816 int ret;
817
818 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
819 instp_mask = I915_EXEC_CONSTANTS_MASK;
820 switch (instp_mode) {
821 case I915_EXEC_CONSTANTS_REL_GENERAL:
822 case I915_EXEC_CONSTANTS_ABSOLUTE:
823 case I915_EXEC_CONSTANTS_REL_SURFACE:
824 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
825 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
826 return -EINVAL;
827 }
828
829 if (instp_mode != dev_priv->relative_constants_mode) {
830 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
831 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
832 return -EINVAL;
833 }
834
835 /* The HW changed the meaning on this bit on gen6 */
836 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
837 }
838 break;
839 default:
840 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
841 return -EINVAL;
842 }
843
844 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
845 DRM_DEBUG("sol reset is gen7 only\n");
846 return -EINVAL;
847 }
848
849 ret = execlists_move_to_gpu(params->request, vmas);
850 if (ret)
851 return ret;
852
853 if (engine == &dev_priv->engine[RCS] &&
854 instp_mode != dev_priv->relative_constants_mode) {
855 ret = intel_ring_begin(params->request, 4);
856 if (ret)
857 return ret;
858
859 intel_logical_ring_emit(ringbuf, MI_NOOP);
860 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
861 intel_logical_ring_emit_reg(ringbuf, INSTPM);
862 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
863 intel_logical_ring_advance(ringbuf);
864
865 dev_priv->relative_constants_mode = instp_mode;
866 }
867
868 exec_start = params->batch_obj_vm_offset +
869 args->batch_start_offset;
870
871 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
872 if (ret)
873 return ret;
874
875 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
876
877 i915_gem_execbuffer_move_to_active(vmas, params->request);
878
879 return 0;
880 }
881
882 void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
883 {
884 struct drm_i915_gem_request *req, *tmp;
885 LIST_HEAD(cancel_list);
886
887 WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
888
889 spin_lock_bh(&engine->execlist_lock);
890 list_replace_init(&engine->execlist_queue, &cancel_list);
891 spin_unlock_bh(&engine->execlist_lock);
892
893 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
894 list_del(&req->execlist_link);
895 i915_gem_request_unreference(req);
896 }
897 }
898
899 void intel_logical_ring_stop(struct intel_engine_cs *engine)
900 {
901 struct drm_i915_private *dev_priv = engine->i915;
902 int ret;
903
904 if (!intel_engine_initialized(engine))
905 return;
906
907 ret = intel_engine_idle(engine);
908 if (ret)
909 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
910 engine->name, ret);
911
912 /* TODO: Is this correct with Execlists enabled? */
913 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
914 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
915 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
916 return;
917 }
918 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
919 }
920
921 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
922 {
923 struct intel_engine_cs *engine = req->engine;
924 int ret;
925
926 if (!engine->gpu_caches_dirty)
927 return 0;
928
929 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
930 if (ret)
931 return ret;
932
933 engine->gpu_caches_dirty = false;
934 return 0;
935 }
936
937 static int intel_lr_context_pin(struct intel_context *ctx,
938 struct intel_engine_cs *engine)
939 {
940 struct drm_i915_private *dev_priv = ctx->i915;
941 struct drm_i915_gem_object *ctx_obj;
942 struct intel_ringbuffer *ringbuf;
943 void *vaddr;
944 u32 *lrc_reg_state;
945 int ret;
946
947 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
948
949 if (ctx->engine[engine->id].pin_count++)
950 return 0;
951
952 ctx_obj = ctx->engine[engine->id].state;
953 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
954 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
955 if (ret)
956 goto err;
957
958 vaddr = i915_gem_object_pin_map(ctx_obj);
959 if (IS_ERR(vaddr)) {
960 ret = PTR_ERR(vaddr);
961 goto unpin_ctx_obj;
962 }
963
964 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
965
966 ringbuf = ctx->engine[engine->id].ringbuf;
967 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
968 if (ret)
969 goto unpin_map;
970
971 i915_gem_context_reference(ctx);
972 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
973 intel_lr_context_descriptor_update(ctx, engine);
974 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
975 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
976 ctx_obj->dirty = true;
977
978 /* Invalidate GuC TLB. */
979 if (i915.enable_guc_submission)
980 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
981
982 return 0;
983
984 unpin_map:
985 i915_gem_object_unpin_map(ctx_obj);
986 unpin_ctx_obj:
987 i915_gem_object_ggtt_unpin(ctx_obj);
988 err:
989 ctx->engine[engine->id].pin_count = 0;
990 return ret;
991 }
992
993 void intel_lr_context_unpin(struct intel_context *ctx,
994 struct intel_engine_cs *engine)
995 {
996 struct drm_i915_gem_object *ctx_obj;
997
998 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
999 GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
1000
1001 if (--ctx->engine[engine->id].pin_count)
1002 return;
1003
1004 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1005
1006 ctx_obj = ctx->engine[engine->id].state;
1007 i915_gem_object_unpin_map(ctx_obj);
1008 i915_gem_object_ggtt_unpin(ctx_obj);
1009
1010 ctx->engine[engine->id].lrc_vma = NULL;
1011 ctx->engine[engine->id].lrc_desc = 0;
1012 ctx->engine[engine->id].lrc_reg_state = NULL;
1013
1014 i915_gem_context_unreference(ctx);
1015 }
1016
1017 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1018 {
1019 int ret, i;
1020 struct intel_engine_cs *engine = req->engine;
1021 struct intel_ringbuffer *ringbuf = req->ringbuf;
1022 struct i915_workarounds *w = &req->i915->workarounds;
1023
1024 if (w->count == 0)
1025 return 0;
1026
1027 engine->gpu_caches_dirty = true;
1028 ret = logical_ring_flush_all_caches(req);
1029 if (ret)
1030 return ret;
1031
1032 ret = intel_ring_begin(req, w->count * 2 + 2);
1033 if (ret)
1034 return ret;
1035
1036 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1037 for (i = 0; i < w->count; i++) {
1038 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1039 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1040 }
1041 intel_logical_ring_emit(ringbuf, MI_NOOP);
1042
1043 intel_logical_ring_advance(ringbuf);
1044
1045 engine->gpu_caches_dirty = true;
1046 ret = logical_ring_flush_all_caches(req);
1047 if (ret)
1048 return ret;
1049
1050 return 0;
1051 }
1052
1053 #define wa_ctx_emit(batch, index, cmd) \
1054 do { \
1055 int __index = (index)++; \
1056 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1057 return -ENOSPC; \
1058 } \
1059 batch[__index] = (cmd); \
1060 } while (0)
1061
1062 #define wa_ctx_emit_reg(batch, index, reg) \
1063 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1064
1065 /*
1066 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1067 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1068 * but there is a slight complication as this is applied in WA batch where the
1069 * values are only initialized once so we cannot take register value at the
1070 * beginning and reuse it further; hence we save its value to memory, upload a
1071 * constant value with bit21 set and then we restore it back with the saved value.
1072 * To simplify the WA, a constant value is formed by using the default value
1073 * of this register. This shouldn't be a problem because we are only modifying
1074 * it for a short period and this batch in non-premptible. We can ofcourse
1075 * use additional instructions that read the actual value of the register
1076 * at that time and set our bit of interest but it makes the WA complicated.
1077 *
1078 * This WA is also required for Gen9 so extracting as a function avoids
1079 * code duplication.
1080 */
1081 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1082 uint32_t *const batch,
1083 uint32_t index)
1084 {
1085 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1086
1087 /*
1088 * WaDisableLSQCROPERFforOCL:skl
1089 * This WA is implemented in skl_init_clock_gating() but since
1090 * this batch updates GEN8_L3SQCREG4 with default value we need to
1091 * set this bit here to retain the WA during flush.
1092 */
1093 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0))
1094 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1095
1096 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1097 MI_SRM_LRM_GLOBAL_GTT));
1098 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1099 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1100 wa_ctx_emit(batch, index, 0);
1101
1102 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1103 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1104 wa_ctx_emit(batch, index, l3sqc4_flush);
1105
1106 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1107 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1108 PIPE_CONTROL_DC_FLUSH_ENABLE));
1109 wa_ctx_emit(batch, index, 0);
1110 wa_ctx_emit(batch, index, 0);
1111 wa_ctx_emit(batch, index, 0);
1112 wa_ctx_emit(batch, index, 0);
1113
1114 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1115 MI_SRM_LRM_GLOBAL_GTT));
1116 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1117 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1118 wa_ctx_emit(batch, index, 0);
1119
1120 return index;
1121 }
1122
1123 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1124 uint32_t offset,
1125 uint32_t start_alignment)
1126 {
1127 return wa_ctx->offset = ALIGN(offset, start_alignment);
1128 }
1129
1130 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1131 uint32_t offset,
1132 uint32_t size_alignment)
1133 {
1134 wa_ctx->size = offset - wa_ctx->offset;
1135
1136 WARN(wa_ctx->size % size_alignment,
1137 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1138 wa_ctx->size, size_alignment);
1139 return 0;
1140 }
1141
1142 /**
1143 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1144 *
1145 * @ring: only applicable for RCS
1146 * @wa_ctx: structure representing wa_ctx
1147 * offset: specifies start of the batch, should be cache-aligned. This is updated
1148 * with the offset value received as input.
1149 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1150 * @batch: page in which WA are loaded
1151 * @offset: This field specifies the start of the batch, it should be
1152 * cache-aligned otherwise it is adjusted accordingly.
1153 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1154 * initialized at the beginning and shared across all contexts but this field
1155 * helps us to have multiple batches at different offsets and select them based
1156 * on a criteria. At the moment this batch always start at the beginning of the page
1157 * and at this point we don't have multiple wa_ctx batch buffers.
1158 *
1159 * The number of WA applied are not known at the beginning; we use this field
1160 * to return the no of DWORDS written.
1161 *
1162 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1163 * so it adds NOOPs as padding to make it cacheline aligned.
1164 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1165 * makes a complete batch buffer.
1166 *
1167 * Return: non-zero if we exceed the PAGE_SIZE limit.
1168 */
1169
1170 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1171 struct i915_wa_ctx_bb *wa_ctx,
1172 uint32_t *const batch,
1173 uint32_t *offset)
1174 {
1175 uint32_t scratch_addr;
1176 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1177
1178 /* WaDisableCtxRestoreArbitration:bdw,chv */
1179 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1180
1181 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1182 if (IS_BROADWELL(engine->i915)) {
1183 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1184 if (rc < 0)
1185 return rc;
1186 index = rc;
1187 }
1188
1189 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1190 /* Actual scratch location is at 128 bytes offset */
1191 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1192
1193 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1194 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1195 PIPE_CONTROL_GLOBAL_GTT_IVB |
1196 PIPE_CONTROL_CS_STALL |
1197 PIPE_CONTROL_QW_WRITE));
1198 wa_ctx_emit(batch, index, scratch_addr);
1199 wa_ctx_emit(batch, index, 0);
1200 wa_ctx_emit(batch, index, 0);
1201 wa_ctx_emit(batch, index, 0);
1202
1203 /* Pad to end of cacheline */
1204 while (index % CACHELINE_DWORDS)
1205 wa_ctx_emit(batch, index, MI_NOOP);
1206
1207 /*
1208 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1209 * execution depends on the length specified in terms of cache lines
1210 * in the register CTX_RCS_INDIRECT_CTX
1211 */
1212
1213 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1214 }
1215
1216 /**
1217 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1218 *
1219 * @ring: only applicable for RCS
1220 * @wa_ctx: structure representing wa_ctx
1221 * offset: specifies start of the batch, should be cache-aligned.
1222 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1223 * @batch: page in which WA are loaded
1224 * @offset: This field specifies the start of this batch.
1225 * This batch is started immediately after indirect_ctx batch. Since we ensure
1226 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1227 *
1228 * The number of DWORDS written are returned using this field.
1229 *
1230 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1231 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1232 */
1233 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1234 struct i915_wa_ctx_bb *wa_ctx,
1235 uint32_t *const batch,
1236 uint32_t *offset)
1237 {
1238 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1239
1240 /* WaDisableCtxRestoreArbitration:bdw,chv */
1241 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1242
1243 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1244
1245 return wa_ctx_end(wa_ctx, *offset = index, 1);
1246 }
1247
1248 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1249 struct i915_wa_ctx_bb *wa_ctx,
1250 uint32_t *const batch,
1251 uint32_t *offset)
1252 {
1253 int ret;
1254 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1255
1256 /* WaDisableCtxRestoreArbitration:skl,bxt */
1257 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1258 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1259 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1260
1261 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1262 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1263 if (ret < 0)
1264 return ret;
1265 index = ret;
1266
1267 /* Pad to end of cacheline */
1268 while (index % CACHELINE_DWORDS)
1269 wa_ctx_emit(batch, index, MI_NOOP);
1270
1271 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1272 }
1273
1274 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1275 struct i915_wa_ctx_bb *wa_ctx,
1276 uint32_t *const batch,
1277 uint32_t *offset)
1278 {
1279 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1280
1281 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1282 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1283 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1284 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1285 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1286 wa_ctx_emit(batch, index,
1287 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1288 wa_ctx_emit(batch, index, MI_NOOP);
1289 }
1290
1291 /* WaClearTdlStateAckDirtyBits:bxt */
1292 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1293 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1294
1295 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1296 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1297
1298 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1299 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1300
1301 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1302 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1303
1304 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1305 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1306 wa_ctx_emit(batch, index, 0x0);
1307 wa_ctx_emit(batch, index, MI_NOOP);
1308 }
1309
1310 /* WaDisableCtxRestoreArbitration:skl,bxt */
1311 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1312 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1313 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1314
1315 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1316
1317 return wa_ctx_end(wa_ctx, *offset = index, 1);
1318 }
1319
1320 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1321 {
1322 int ret;
1323
1324 engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1325 PAGE_ALIGN(size));
1326 if (IS_ERR(engine->wa_ctx.obj)) {
1327 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1328 ret = PTR_ERR(engine->wa_ctx.obj);
1329 engine->wa_ctx.obj = NULL;
1330 return ret;
1331 }
1332
1333 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1334 if (ret) {
1335 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1336 ret);
1337 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1338 return ret;
1339 }
1340
1341 return 0;
1342 }
1343
1344 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1345 {
1346 if (engine->wa_ctx.obj) {
1347 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1348 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1349 engine->wa_ctx.obj = NULL;
1350 }
1351 }
1352
1353 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1354 {
1355 int ret;
1356 uint32_t *batch;
1357 uint32_t offset;
1358 struct page *page;
1359 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1360
1361 WARN_ON(engine->id != RCS);
1362
1363 /* update this when WA for higher Gen are added */
1364 if (INTEL_GEN(engine->i915) > 9) {
1365 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1366 INTEL_GEN(engine->i915));
1367 return 0;
1368 }
1369
1370 /* some WA perform writes to scratch page, ensure it is valid */
1371 if (engine->scratch.obj == NULL) {
1372 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1373 return -EINVAL;
1374 }
1375
1376 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1377 if (ret) {
1378 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1379 return ret;
1380 }
1381
1382 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1383 batch = kmap_atomic(page);
1384 offset = 0;
1385
1386 if (IS_GEN8(engine->i915)) {
1387 ret = gen8_init_indirectctx_bb(engine,
1388 &wa_ctx->indirect_ctx,
1389 batch,
1390 &offset);
1391 if (ret)
1392 goto out;
1393
1394 ret = gen8_init_perctx_bb(engine,
1395 &wa_ctx->per_ctx,
1396 batch,
1397 &offset);
1398 if (ret)
1399 goto out;
1400 } else if (IS_GEN9(engine->i915)) {
1401 ret = gen9_init_indirectctx_bb(engine,
1402 &wa_ctx->indirect_ctx,
1403 batch,
1404 &offset);
1405 if (ret)
1406 goto out;
1407
1408 ret = gen9_init_perctx_bb(engine,
1409 &wa_ctx->per_ctx,
1410 batch,
1411 &offset);
1412 if (ret)
1413 goto out;
1414 }
1415
1416 out:
1417 kunmap_atomic(batch);
1418 if (ret)
1419 lrc_destroy_wa_ctx_obj(engine);
1420
1421 return ret;
1422 }
1423
1424 static void lrc_init_hws(struct intel_engine_cs *engine)
1425 {
1426 struct drm_i915_private *dev_priv = engine->i915;
1427
1428 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1429 (u32)engine->status_page.gfx_addr);
1430 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1431 }
1432
1433 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1434 {
1435 struct drm_i915_private *dev_priv = engine->i915;
1436 unsigned int next_context_status_buffer_hw;
1437
1438 lrc_init_hws(engine);
1439
1440 I915_WRITE_IMR(engine,
1441 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1442 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1443
1444 I915_WRITE(RING_MODE_GEN7(engine),
1445 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1446 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1447 POSTING_READ(RING_MODE_GEN7(engine));
1448
1449 /*
1450 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1451 * zero, we need to read the write pointer from hardware and use its
1452 * value because "this register is power context save restored".
1453 * Effectively, these states have been observed:
1454 *
1455 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1456 * BDW | CSB regs not reset | CSB regs reset |
1457 * CHT | CSB regs not reset | CSB regs not reset |
1458 * SKL | ? | ? |
1459 * BXT | ? | ? |
1460 */
1461 next_context_status_buffer_hw =
1462 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1463
1464 /*
1465 * When the CSB registers are reset (also after power-up / gpu reset),
1466 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1467 * this special case, so the first element read is CSB[0].
1468 */
1469 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1470 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1471
1472 engine->next_context_status_buffer = next_context_status_buffer_hw;
1473 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1474
1475 intel_engine_init_hangcheck(engine);
1476
1477 return intel_mocs_init_engine(engine);
1478 }
1479
1480 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1481 {
1482 struct drm_i915_private *dev_priv = engine->i915;
1483 int ret;
1484
1485 ret = gen8_init_common_ring(engine);
1486 if (ret)
1487 return ret;
1488
1489 /* We need to disable the AsyncFlip performance optimisations in order
1490 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1491 * programmed to '1' on all products.
1492 *
1493 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1494 */
1495 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1496
1497 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1498
1499 return init_workarounds_ring(engine);
1500 }
1501
1502 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1503 {
1504 int ret;
1505
1506 ret = gen8_init_common_ring(engine);
1507 if (ret)
1508 return ret;
1509
1510 return init_workarounds_ring(engine);
1511 }
1512
1513 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1514 {
1515 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1516 struct intel_engine_cs *engine = req->engine;
1517 struct intel_ringbuffer *ringbuf = req->ringbuf;
1518 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1519 int i, ret;
1520
1521 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1522 if (ret)
1523 return ret;
1524
1525 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1526 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1527 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1528
1529 intel_logical_ring_emit_reg(ringbuf,
1530 GEN8_RING_PDP_UDW(engine, i));
1531 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1532 intel_logical_ring_emit_reg(ringbuf,
1533 GEN8_RING_PDP_LDW(engine, i));
1534 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1535 }
1536
1537 intel_logical_ring_emit(ringbuf, MI_NOOP);
1538 intel_logical_ring_advance(ringbuf);
1539
1540 return 0;
1541 }
1542
1543 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1544 u64 offset, unsigned dispatch_flags)
1545 {
1546 struct intel_ringbuffer *ringbuf = req->ringbuf;
1547 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1548 int ret;
1549
1550 /* Don't rely in hw updating PDPs, specially in lite-restore.
1551 * Ideally, we should set Force PD Restore in ctx descriptor,
1552 * but we can't. Force Restore would be a second option, but
1553 * it is unsafe in case of lite-restore (because the ctx is
1554 * not idle). PML4 is allocated during ppgtt init so this is
1555 * not needed in 48-bit.*/
1556 if (req->ctx->ppgtt &&
1557 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1558 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1559 !intel_vgpu_active(req->i915)) {
1560 ret = intel_logical_ring_emit_pdps(req);
1561 if (ret)
1562 return ret;
1563 }
1564
1565 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1566 }
1567
1568 ret = intel_ring_begin(req, 4);
1569 if (ret)
1570 return ret;
1571
1572 /* FIXME(BDW): Address space and security selectors. */
1573 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1574 (ppgtt<<8) |
1575 (dispatch_flags & I915_DISPATCH_RS ?
1576 MI_BATCH_RESOURCE_STREAMER : 0));
1577 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1578 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1579 intel_logical_ring_emit(ringbuf, MI_NOOP);
1580 intel_logical_ring_advance(ringbuf);
1581
1582 return 0;
1583 }
1584
1585 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1586 {
1587 struct drm_i915_private *dev_priv = engine->i915;
1588 unsigned long flags;
1589
1590 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1591 return false;
1592
1593 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1594 if (engine->irq_refcount++ == 0) {
1595 I915_WRITE_IMR(engine,
1596 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1597 POSTING_READ(RING_IMR(engine->mmio_base));
1598 }
1599 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1600
1601 return true;
1602 }
1603
1604 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1605 {
1606 struct drm_i915_private *dev_priv = engine->i915;
1607 unsigned long flags;
1608
1609 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1610 if (--engine->irq_refcount == 0) {
1611 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1612 POSTING_READ(RING_IMR(engine->mmio_base));
1613 }
1614 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1615 }
1616
1617 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1618 u32 invalidate_domains,
1619 u32 unused)
1620 {
1621 struct intel_ringbuffer *ringbuf = request->ringbuf;
1622 struct intel_engine_cs *engine = ringbuf->engine;
1623 struct drm_i915_private *dev_priv = request->i915;
1624 uint32_t cmd;
1625 int ret;
1626
1627 ret = intel_ring_begin(request, 4);
1628 if (ret)
1629 return ret;
1630
1631 cmd = MI_FLUSH_DW + 1;
1632
1633 /* We always require a command barrier so that subsequent
1634 * commands, such as breadcrumb interrupts, are strictly ordered
1635 * wrt the contents of the write cache being flushed to memory
1636 * (and thus being coherent from the CPU).
1637 */
1638 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1639
1640 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1641 cmd |= MI_INVALIDATE_TLB;
1642 if (engine == &dev_priv->engine[VCS])
1643 cmd |= MI_INVALIDATE_BSD;
1644 }
1645
1646 intel_logical_ring_emit(ringbuf, cmd);
1647 intel_logical_ring_emit(ringbuf,
1648 I915_GEM_HWS_SCRATCH_ADDR |
1649 MI_FLUSH_DW_USE_GTT);
1650 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1651 intel_logical_ring_emit(ringbuf, 0); /* value */
1652 intel_logical_ring_advance(ringbuf);
1653
1654 return 0;
1655 }
1656
1657 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1658 u32 invalidate_domains,
1659 u32 flush_domains)
1660 {
1661 struct intel_ringbuffer *ringbuf = request->ringbuf;
1662 struct intel_engine_cs *engine = ringbuf->engine;
1663 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1664 bool vf_flush_wa = false;
1665 u32 flags = 0;
1666 int ret;
1667
1668 flags |= PIPE_CONTROL_CS_STALL;
1669
1670 if (flush_domains) {
1671 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1672 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1673 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1674 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1675 }
1676
1677 if (invalidate_domains) {
1678 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1679 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1680 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1681 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1682 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1683 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1684 flags |= PIPE_CONTROL_QW_WRITE;
1685 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1686
1687 /*
1688 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1689 * pipe control.
1690 */
1691 if (IS_GEN9(request->i915))
1692 vf_flush_wa = true;
1693 }
1694
1695 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1696 if (ret)
1697 return ret;
1698
1699 if (vf_flush_wa) {
1700 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1701 intel_logical_ring_emit(ringbuf, 0);
1702 intel_logical_ring_emit(ringbuf, 0);
1703 intel_logical_ring_emit(ringbuf, 0);
1704 intel_logical_ring_emit(ringbuf, 0);
1705 intel_logical_ring_emit(ringbuf, 0);
1706 }
1707
1708 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1709 intel_logical_ring_emit(ringbuf, flags);
1710 intel_logical_ring_emit(ringbuf, scratch_addr);
1711 intel_logical_ring_emit(ringbuf, 0);
1712 intel_logical_ring_emit(ringbuf, 0);
1713 intel_logical_ring_emit(ringbuf, 0);
1714 intel_logical_ring_advance(ringbuf);
1715
1716 return 0;
1717 }
1718
1719 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1720 {
1721 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1722 }
1723
1724 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1725 {
1726 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1727 }
1728
1729 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1730 {
1731 /*
1732 * On BXT A steppings there is a HW coherency issue whereby the
1733 * MI_STORE_DATA_IMM storing the completed request's seqno
1734 * occasionally doesn't invalidate the CPU cache. Work around this by
1735 * clflushing the corresponding cacheline whenever the caller wants
1736 * the coherency to be guaranteed. Note that this cacheline is known
1737 * to be clean at this point, since we only write it in
1738 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1739 * this clflush in practice becomes an invalidate operation.
1740 */
1741 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1742 }
1743
1744 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1745 {
1746 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1747
1748 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1749 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1750 }
1751
1752 /*
1753 * Reserve space for 2 NOOPs at the end of each request to be
1754 * used as a workaround for not being allowed to do lite
1755 * restore with HEAD==TAIL (WaIdleLiteRestore).
1756 */
1757 #define WA_TAIL_DWORDS 2
1758
1759 static int gen8_emit_request(struct drm_i915_gem_request *request)
1760 {
1761 struct intel_ringbuffer *ringbuf = request->ringbuf;
1762 int ret;
1763
1764 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1765 if (ret)
1766 return ret;
1767
1768 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1769 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1770
1771 intel_logical_ring_emit(ringbuf,
1772 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1773 intel_logical_ring_emit(ringbuf,
1774 intel_hws_seqno_address(request->engine) |
1775 MI_FLUSH_DW_USE_GTT);
1776 intel_logical_ring_emit(ringbuf, 0);
1777 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1778 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1779 intel_logical_ring_emit(ringbuf, MI_NOOP);
1780 return intel_logical_ring_advance_and_submit(request);
1781 }
1782
1783 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1784 {
1785 struct intel_ringbuffer *ringbuf = request->ringbuf;
1786 int ret;
1787
1788 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1789 if (ret)
1790 return ret;
1791
1792 /* We're using qword write, seqno should be aligned to 8 bytes. */
1793 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1794
1795 /* w/a for post sync ops following a GPGPU operation we
1796 * need a prior CS_STALL, which is emitted by the flush
1797 * following the batch.
1798 */
1799 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1800 intel_logical_ring_emit(ringbuf,
1801 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1802 PIPE_CONTROL_CS_STALL |
1803 PIPE_CONTROL_QW_WRITE));
1804 intel_logical_ring_emit(ringbuf,
1805 intel_hws_seqno_address(request->engine));
1806 intel_logical_ring_emit(ringbuf, 0);
1807 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1808 /* We're thrashing one dword of HWS. */
1809 intel_logical_ring_emit(ringbuf, 0);
1810 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1811 intel_logical_ring_emit(ringbuf, MI_NOOP);
1812 return intel_logical_ring_advance_and_submit(request);
1813 }
1814
1815 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1816 {
1817 struct render_state so;
1818 int ret;
1819
1820 ret = i915_gem_render_state_prepare(req->engine, &so);
1821 if (ret)
1822 return ret;
1823
1824 if (so.rodata == NULL)
1825 return 0;
1826
1827 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1828 I915_DISPATCH_SECURE);
1829 if (ret)
1830 goto out;
1831
1832 ret = req->engine->emit_bb_start(req,
1833 (so.ggtt_offset + so.aux_batch_offset),
1834 I915_DISPATCH_SECURE);
1835 if (ret)
1836 goto out;
1837
1838 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1839
1840 out:
1841 i915_gem_render_state_fini(&so);
1842 return ret;
1843 }
1844
1845 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1846 {
1847 int ret;
1848
1849 ret = intel_logical_ring_workarounds_emit(req);
1850 if (ret)
1851 return ret;
1852
1853 ret = intel_rcs_context_init_mocs(req);
1854 /*
1855 * Failing to program the MOCS is non-fatal.The system will not
1856 * run at peak performance. So generate an error and carry on.
1857 */
1858 if (ret)
1859 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1860
1861 return intel_lr_context_render_state_init(req);
1862 }
1863
1864 /**
1865 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1866 *
1867 * @ring: Engine Command Streamer.
1868 *
1869 */
1870 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1871 {
1872 struct drm_i915_private *dev_priv;
1873
1874 if (!intel_engine_initialized(engine))
1875 return;
1876
1877 /*
1878 * Tasklet cannot be active at this point due intel_mark_active/idle
1879 * so this is just for documentation.
1880 */
1881 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1882 tasklet_kill(&engine->irq_tasklet);
1883
1884 dev_priv = engine->i915;
1885
1886 if (engine->buffer) {
1887 intel_logical_ring_stop(engine);
1888 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1889 }
1890
1891 if (engine->cleanup)
1892 engine->cleanup(engine);
1893
1894 i915_cmd_parser_fini_ring(engine);
1895 i915_gem_batch_pool_fini(&engine->batch_pool);
1896
1897 if (engine->status_page.obj) {
1898 i915_gem_object_unpin_map(engine->status_page.obj);
1899 engine->status_page.obj = NULL;
1900 }
1901 intel_lr_context_unpin(dev_priv->kernel_context, engine);
1902
1903 engine->idle_lite_restore_wa = 0;
1904 engine->disable_lite_restore_wa = false;
1905 engine->ctx_desc_template = 0;
1906
1907 lrc_destroy_wa_ctx_obj(engine);
1908 engine->i915 = NULL;
1909 }
1910
1911 static void
1912 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1913 {
1914 /* Default vfuncs which can be overriden by each engine. */
1915 engine->init_hw = gen8_init_common_ring;
1916 engine->emit_request = gen8_emit_request;
1917 engine->emit_flush = gen8_emit_flush;
1918 engine->irq_get = gen8_logical_ring_get_irq;
1919 engine->irq_put = gen8_logical_ring_put_irq;
1920 engine->emit_bb_start = gen8_emit_bb_start;
1921 engine->get_seqno = gen8_get_seqno;
1922 engine->set_seqno = gen8_set_seqno;
1923 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1924 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1925 engine->set_seqno = bxt_a_set_seqno;
1926 }
1927 }
1928
1929 static inline void
1930 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1931 {
1932 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1933 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1934 init_waitqueue_head(&engine->irq_queue);
1935 }
1936
1937 static int
1938 lrc_setup_hws(struct intel_engine_cs *engine,
1939 struct drm_i915_gem_object *dctx_obj)
1940 {
1941 void *hws;
1942
1943 /* The HWSP is part of the default context object in LRC mode. */
1944 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1945 LRC_PPHWSP_PN * PAGE_SIZE;
1946 hws = i915_gem_object_pin_map(dctx_obj);
1947 if (IS_ERR(hws))
1948 return PTR_ERR(hws);
1949 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1950 engine->status_page.obj = dctx_obj;
1951
1952 return 0;
1953 }
1954
1955 static const struct logical_ring_info {
1956 const char *name;
1957 unsigned exec_id;
1958 unsigned guc_id;
1959 u32 mmio_base;
1960 unsigned irq_shift;
1961 } logical_rings[] = {
1962 [RCS] = {
1963 .name = "render ring",
1964 .exec_id = I915_EXEC_RENDER,
1965 .guc_id = GUC_RENDER_ENGINE,
1966 .mmio_base = RENDER_RING_BASE,
1967 .irq_shift = GEN8_RCS_IRQ_SHIFT,
1968 },
1969 [BCS] = {
1970 .name = "blitter ring",
1971 .exec_id = I915_EXEC_BLT,
1972 .guc_id = GUC_BLITTER_ENGINE,
1973 .mmio_base = BLT_RING_BASE,
1974 .irq_shift = GEN8_BCS_IRQ_SHIFT,
1975 },
1976 [VCS] = {
1977 .name = "bsd ring",
1978 .exec_id = I915_EXEC_BSD,
1979 .guc_id = GUC_VIDEO_ENGINE,
1980 .mmio_base = GEN6_BSD_RING_BASE,
1981 .irq_shift = GEN8_VCS1_IRQ_SHIFT,
1982 },
1983 [VCS2] = {
1984 .name = "bsd2 ring",
1985 .exec_id = I915_EXEC_BSD,
1986 .guc_id = GUC_VIDEO_ENGINE2,
1987 .mmio_base = GEN8_BSD2_RING_BASE,
1988 .irq_shift = GEN8_VCS2_IRQ_SHIFT,
1989 },
1990 [VECS] = {
1991 .name = "video enhancement ring",
1992 .exec_id = I915_EXEC_VEBOX,
1993 .guc_id = GUC_VIDEOENHANCE_ENGINE,
1994 .mmio_base = VEBOX_RING_BASE,
1995 .irq_shift = GEN8_VECS_IRQ_SHIFT,
1996 },
1997 };
1998
1999 static struct intel_engine_cs *
2000 logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
2001 {
2002 const struct logical_ring_info *info = &logical_rings[id];
2003 struct drm_i915_private *dev_priv = to_i915(dev);
2004 struct intel_engine_cs *engine = &dev_priv->engine[id];
2005 enum forcewake_domains fw_domains;
2006
2007 engine->id = id;
2008 engine->name = info->name;
2009 engine->exec_id = info->exec_id;
2010 engine->guc_id = info->guc_id;
2011 engine->mmio_base = info->mmio_base;
2012
2013 engine->i915 = dev_priv;
2014
2015 /* Intentionally left blank. */
2016 engine->buffer = NULL;
2017
2018 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2019 RING_ELSP(engine),
2020 FW_REG_WRITE);
2021
2022 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2023 RING_CONTEXT_STATUS_PTR(engine),
2024 FW_REG_READ | FW_REG_WRITE);
2025
2026 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2027 RING_CONTEXT_STATUS_BUF_BASE(engine),
2028 FW_REG_READ);
2029
2030 engine->fw_domains = fw_domains;
2031
2032 INIT_LIST_HEAD(&engine->active_list);
2033 INIT_LIST_HEAD(&engine->request_list);
2034 INIT_LIST_HEAD(&engine->buffers);
2035 INIT_LIST_HEAD(&engine->execlist_queue);
2036 spin_lock_init(&engine->execlist_lock);
2037
2038 tasklet_init(&engine->irq_tasklet,
2039 intel_lrc_irq_handler, (unsigned long)engine);
2040
2041 logical_ring_init_platform_invariants(engine);
2042 logical_ring_default_vfuncs(engine);
2043 logical_ring_default_irqs(engine, info->irq_shift);
2044
2045 intel_engine_init_hangcheck(engine);
2046 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2047
2048 return engine;
2049 }
2050
2051 static int
2052 logical_ring_init(struct intel_engine_cs *engine)
2053 {
2054 struct intel_context *dctx = engine->i915->kernel_context;
2055 int ret;
2056
2057 ret = i915_cmd_parser_init_ring(engine);
2058 if (ret)
2059 goto error;
2060
2061 ret = execlists_context_deferred_alloc(dctx, engine);
2062 if (ret)
2063 goto error;
2064
2065 /* As this is the default context, always pin it */
2066 ret = intel_lr_context_pin(dctx, engine);
2067 if (ret) {
2068 DRM_ERROR("Failed to pin context for %s: %d\n",
2069 engine->name, ret);
2070 goto error;
2071 }
2072
2073 /* And setup the hardware status page. */
2074 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2075 if (ret) {
2076 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2077 goto error;
2078 }
2079
2080 return 0;
2081
2082 error:
2083 intel_logical_ring_cleanup(engine);
2084 return ret;
2085 }
2086
2087 static int logical_render_ring_init(struct drm_device *dev)
2088 {
2089 struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
2090 int ret;
2091
2092 if (HAS_L3_DPF(dev))
2093 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2094
2095 /* Override some for render ring. */
2096 if (INTEL_INFO(dev)->gen >= 9)
2097 engine->init_hw = gen9_init_render_ring;
2098 else
2099 engine->init_hw = gen8_init_render_ring;
2100 engine->init_context = gen8_init_rcs_context;
2101 engine->cleanup = intel_fini_pipe_control;
2102 engine->emit_flush = gen8_emit_flush_render;
2103 engine->emit_request = gen8_emit_request_render;
2104
2105 ret = intel_init_pipe_control(engine);
2106 if (ret)
2107 return ret;
2108
2109 ret = intel_init_workaround_bb(engine);
2110 if (ret) {
2111 /*
2112 * We continue even if we fail to initialize WA batch
2113 * because we only expect rare glitches but nothing
2114 * critical to prevent us from using GPU
2115 */
2116 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2117 ret);
2118 }
2119
2120 ret = logical_ring_init(engine);
2121 if (ret) {
2122 lrc_destroy_wa_ctx_obj(engine);
2123 }
2124
2125 return ret;
2126 }
2127
2128 static int logical_bsd_ring_init(struct drm_device *dev)
2129 {
2130 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
2131
2132 return logical_ring_init(engine);
2133 }
2134
2135 static int logical_bsd2_ring_init(struct drm_device *dev)
2136 {
2137 struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
2138
2139 return logical_ring_init(engine);
2140 }
2141
2142 static int logical_blt_ring_init(struct drm_device *dev)
2143 {
2144 struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
2145
2146 return logical_ring_init(engine);
2147 }
2148
2149 static int logical_vebox_ring_init(struct drm_device *dev)
2150 {
2151 struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
2152
2153 return logical_ring_init(engine);
2154 }
2155
2156 /**
2157 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2158 * @dev: DRM device.
2159 *
2160 * This function inits the engines for an Execlists submission style (the equivalent in the
2161 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2162 * those engines that are present in the hardware.
2163 *
2164 * Return: non-zero if the initialization failed.
2165 */
2166 int intel_logical_rings_init(struct drm_device *dev)
2167 {
2168 struct drm_i915_private *dev_priv = dev->dev_private;
2169 int ret;
2170
2171 ret = logical_render_ring_init(dev);
2172 if (ret)
2173 return ret;
2174
2175 if (HAS_BSD(dev)) {
2176 ret = logical_bsd_ring_init(dev);
2177 if (ret)
2178 goto cleanup_render_ring;
2179 }
2180
2181 if (HAS_BLT(dev)) {
2182 ret = logical_blt_ring_init(dev);
2183 if (ret)
2184 goto cleanup_bsd_ring;
2185 }
2186
2187 if (HAS_VEBOX(dev)) {
2188 ret = logical_vebox_ring_init(dev);
2189 if (ret)
2190 goto cleanup_blt_ring;
2191 }
2192
2193 if (HAS_BSD2(dev)) {
2194 ret = logical_bsd2_ring_init(dev);
2195 if (ret)
2196 goto cleanup_vebox_ring;
2197 }
2198
2199 return 0;
2200
2201 cleanup_vebox_ring:
2202 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2203 cleanup_blt_ring:
2204 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2205 cleanup_bsd_ring:
2206 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2207 cleanup_render_ring:
2208 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2209
2210 return ret;
2211 }
2212
2213 static u32
2214 make_rpcs(struct drm_i915_private *dev_priv)
2215 {
2216 u32 rpcs = 0;
2217
2218 /*
2219 * No explicit RPCS request is needed to ensure full
2220 * slice/subslice/EU enablement prior to Gen9.
2221 */
2222 if (INTEL_GEN(dev_priv) < 9)
2223 return 0;
2224
2225 /*
2226 * Starting in Gen9, render power gating can leave
2227 * slice/subslice/EU in a partially enabled state. We
2228 * must make an explicit request through RPCS for full
2229 * enablement.
2230 */
2231 if (INTEL_INFO(dev_priv)->has_slice_pg) {
2232 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2233 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2234 GEN8_RPCS_S_CNT_SHIFT;
2235 rpcs |= GEN8_RPCS_ENABLE;
2236 }
2237
2238 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2239 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2240 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2241 GEN8_RPCS_SS_CNT_SHIFT;
2242 rpcs |= GEN8_RPCS_ENABLE;
2243 }
2244
2245 if (INTEL_INFO(dev_priv)->has_eu_pg) {
2246 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2247 GEN8_RPCS_EU_MIN_SHIFT;
2248 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2249 GEN8_RPCS_EU_MAX_SHIFT;
2250 rpcs |= GEN8_RPCS_ENABLE;
2251 }
2252
2253 return rpcs;
2254 }
2255
2256 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2257 {
2258 u32 indirect_ctx_offset;
2259
2260 switch (INTEL_GEN(engine->i915)) {
2261 default:
2262 MISSING_CASE(INTEL_GEN(engine->i915));
2263 /* fall through */
2264 case 9:
2265 indirect_ctx_offset =
2266 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2267 break;
2268 case 8:
2269 indirect_ctx_offset =
2270 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2271 break;
2272 }
2273
2274 return indirect_ctx_offset;
2275 }
2276
2277 static int
2278 populate_lr_context(struct intel_context *ctx,
2279 struct drm_i915_gem_object *ctx_obj,
2280 struct intel_engine_cs *engine,
2281 struct intel_ringbuffer *ringbuf)
2282 {
2283 struct drm_i915_private *dev_priv = ctx->i915;
2284 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2285 void *vaddr;
2286 u32 *reg_state;
2287 int ret;
2288
2289 if (!ppgtt)
2290 ppgtt = dev_priv->mm.aliasing_ppgtt;
2291
2292 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2293 if (ret) {
2294 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2295 return ret;
2296 }
2297
2298 vaddr = i915_gem_object_pin_map(ctx_obj);
2299 if (IS_ERR(vaddr)) {
2300 ret = PTR_ERR(vaddr);
2301 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2302 return ret;
2303 }
2304 ctx_obj->dirty = true;
2305
2306 /* The second page of the context object contains some fields which must
2307 * be set up prior to the first execution. */
2308 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2309
2310 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2311 * commands followed by (reg, value) pairs. The values we are setting here are
2312 * only for the first context restore: on a subsequent save, the GPU will
2313 * recreate this batchbuffer with new values (including all the missing
2314 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2315 reg_state[CTX_LRI_HEADER_0] =
2316 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2317 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2318 RING_CONTEXT_CONTROL(engine),
2319 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2320 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2321 (HAS_RESOURCE_STREAMER(dev_priv) ?
2322 CTX_CTRL_RS_CTX_ENABLE : 0)));
2323 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2324 0);
2325 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2326 0);
2327 /* Ring buffer start address is not known until the buffer is pinned.
2328 * It is written to the context image in execlists_update_context()
2329 */
2330 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2331 RING_START(engine->mmio_base), 0);
2332 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2333 RING_CTL(engine->mmio_base),
2334 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2335 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2336 RING_BBADDR_UDW(engine->mmio_base), 0);
2337 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2338 RING_BBADDR(engine->mmio_base), 0);
2339 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2340 RING_BBSTATE(engine->mmio_base),
2341 RING_BB_PPGTT);
2342 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2343 RING_SBBADDR_UDW(engine->mmio_base), 0);
2344 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2345 RING_SBBADDR(engine->mmio_base), 0);
2346 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2347 RING_SBBSTATE(engine->mmio_base), 0);
2348 if (engine->id == RCS) {
2349 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2350 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2351 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2352 RING_INDIRECT_CTX(engine->mmio_base), 0);
2353 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2354 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2355 if (engine->wa_ctx.obj) {
2356 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2357 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2358
2359 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2360 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2361 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2362
2363 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2364 intel_lr_indirect_ctx_offset(engine) << 6;
2365
2366 reg_state[CTX_BB_PER_CTX_PTR+1] =
2367 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2368 0x01;
2369 }
2370 }
2371 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2372 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2373 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2374 /* PDP values well be assigned later if needed */
2375 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2376 0);
2377 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2378 0);
2379 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2380 0);
2381 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2382 0);
2383 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2384 0);
2385 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2386 0);
2387 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2388 0);
2389 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2390 0);
2391
2392 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2393 /* 64b PPGTT (48bit canonical)
2394 * PDP0_DESCRIPTOR contains the base address to PML4 and
2395 * other PDP Descriptors are ignored.
2396 */
2397 ASSIGN_CTX_PML4(ppgtt, reg_state);
2398 } else {
2399 /* 32b PPGTT
2400 * PDP*_DESCRIPTOR contains the base address of space supported.
2401 * With dynamic page allocation, PDPs may not be allocated at
2402 * this point. Point the unallocated PDPs to the scratch page
2403 */
2404 execlists_update_context_pdps(ppgtt, reg_state);
2405 }
2406
2407 if (engine->id == RCS) {
2408 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2409 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2410 make_rpcs(dev_priv));
2411 }
2412
2413 i915_gem_object_unpin_map(ctx_obj);
2414
2415 return 0;
2416 }
2417
2418 /**
2419 * intel_lr_context_free() - free the LRC specific bits of a context
2420 * @ctx: the LR context to free.
2421 *
2422 * The real context freeing is done in i915_gem_context_free: this only
2423 * takes care of the bits that are LRC related: the per-engine backing
2424 * objects and the logical ringbuffer.
2425 */
2426 void intel_lr_context_free(struct intel_context *ctx)
2427 {
2428 int i;
2429
2430 for (i = I915_NUM_ENGINES; --i >= 0; ) {
2431 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2432 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2433
2434 if (!ctx_obj)
2435 continue;
2436
2437 WARN_ON(ctx->engine[i].pin_count);
2438 intel_ringbuffer_free(ringbuf);
2439 drm_gem_object_unreference(&ctx_obj->base);
2440 }
2441 }
2442
2443 /**
2444 * intel_lr_context_size() - return the size of the context for an engine
2445 * @ring: which engine to find the context size for
2446 *
2447 * Each engine may require a different amount of space for a context image,
2448 * so when allocating (or copying) an image, this function can be used to
2449 * find the right size for the specific engine.
2450 *
2451 * Return: size (in bytes) of an engine-specific context image
2452 *
2453 * Note: this size includes the HWSP, which is part of the context image
2454 * in LRC mode, but does not include the "shared data page" used with
2455 * GuC submission. The caller should account for this if using the GuC.
2456 */
2457 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2458 {
2459 int ret = 0;
2460
2461 WARN_ON(INTEL_GEN(engine->i915) < 8);
2462
2463 switch (engine->id) {
2464 case RCS:
2465 if (INTEL_GEN(engine->i915) >= 9)
2466 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2467 else
2468 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2469 break;
2470 case VCS:
2471 case BCS:
2472 case VECS:
2473 case VCS2:
2474 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2475 break;
2476 }
2477
2478 return ret;
2479 }
2480
2481 /**
2482 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2483 * @ctx: LR context to create.
2484 * @engine: engine to be used with the context.
2485 *
2486 * This function can be called more than once, with different engines, if we plan
2487 * to use the context with them. The context backing objects and the ringbuffers
2488 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2489 * the creation is a deferred call: it's better to make sure first that we need to use
2490 * a given ring with the context.
2491 *
2492 * Return: non-zero on error.
2493 */
2494 static int execlists_context_deferred_alloc(struct intel_context *ctx,
2495 struct intel_engine_cs *engine)
2496 {
2497 struct drm_i915_gem_object *ctx_obj;
2498 uint32_t context_size;
2499 struct intel_ringbuffer *ringbuf;
2500 int ret;
2501
2502 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2503 WARN_ON(ctx->engine[engine->id].state);
2504
2505 context_size = round_up(intel_lr_context_size(engine), 4096);
2506
2507 /* One extra page as the sharing data between driver and GuC */
2508 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2509
2510 ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2511 if (IS_ERR(ctx_obj)) {
2512 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2513 return PTR_ERR(ctx_obj);
2514 }
2515
2516 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2517 if (IS_ERR(ringbuf)) {
2518 ret = PTR_ERR(ringbuf);
2519 goto error_deref_obj;
2520 }
2521
2522 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2523 if (ret) {
2524 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2525 goto error_ringbuf;
2526 }
2527
2528 ctx->engine[engine->id].ringbuf = ringbuf;
2529 ctx->engine[engine->id].state = ctx_obj;
2530 ctx->engine[engine->id].initialised = engine->init_context == NULL;
2531
2532 return 0;
2533
2534 error_ringbuf:
2535 intel_ringbuffer_free(ringbuf);
2536 error_deref_obj:
2537 drm_gem_object_unreference(&ctx_obj->base);
2538 ctx->engine[engine->id].ringbuf = NULL;
2539 ctx->engine[engine->id].state = NULL;
2540 return ret;
2541 }
2542
2543 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2544 struct intel_context *ctx)
2545 {
2546 struct intel_engine_cs *engine;
2547
2548 for_each_engine(engine, dev_priv) {
2549 struct drm_i915_gem_object *ctx_obj =
2550 ctx->engine[engine->id].state;
2551 struct intel_ringbuffer *ringbuf =
2552 ctx->engine[engine->id].ringbuf;
2553 void *vaddr;
2554 uint32_t *reg_state;
2555
2556 if (!ctx_obj)
2557 continue;
2558
2559 vaddr = i915_gem_object_pin_map(ctx_obj);
2560 if (WARN_ON(IS_ERR(vaddr)))
2561 continue;
2562
2563 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2564 ctx_obj->dirty = true;
2565
2566 reg_state[CTX_RING_HEAD+1] = 0;
2567 reg_state[CTX_RING_TAIL+1] = 0;
2568
2569 i915_gem_object_unpin_map(ctx_obj);
2570
2571 ringbuf->head = 0;
2572 ringbuf->tail = 0;
2573 }
2574 }
This page took 0.109869 seconds and 5 git commands to generate.