drm/i915: Integrate GuC-based command submission
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL (1 << 0x2)
145 #define RING_EXECLIST1_VALID (1 << 0x3)
146 #define RING_EXECLIST0_VALID (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
157
158 #define CTX_LRI_HEADER_0 0x01
159 #define CTX_CONTEXT_CONTROL 0x02
160 #define CTX_RING_HEAD 0x04
161 #define CTX_RING_TAIL 0x06
162 #define CTX_RING_BUFFER_START 0x08
163 #define CTX_RING_BUFFER_CONTROL 0x0a
164 #define CTX_BB_HEAD_U 0x0c
165 #define CTX_BB_HEAD_L 0x0e
166 #define CTX_BB_STATE 0x10
167 #define CTX_SECOND_BB_HEAD_U 0x12
168 #define CTX_SECOND_BB_HEAD_L 0x14
169 #define CTX_SECOND_BB_STATE 0x16
170 #define CTX_BB_PER_CTX_PTR 0x18
171 #define CTX_RCS_INDIRECT_CTX 0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173 #define CTX_LRI_HEADER_1 0x21
174 #define CTX_CTX_TIMESTAMP 0x22
175 #define CTX_PDP3_UDW 0x24
176 #define CTX_PDP3_LDW 0x26
177 #define CTX_PDP2_UDW 0x28
178 #define CTX_PDP2_LDW 0x2a
179 #define CTX_PDP1_UDW 0x2c
180 #define CTX_PDP1_LDW 0x2e
181 #define CTX_PDP0_UDW 0x30
182 #define CTX_PDP0_LDW 0x32
183 #define CTX_LRI_HEADER_2 0x41
184 #define CTX_R_PWR_CLK_STATE 0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
195 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197 }
198
199 #define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
200 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202 }
203
204 enum {
205 ADVANCED_CONTEXT = 0,
206 LEGACY_32B_CONTEXT,
207 ADVANCED_AD_CONTEXT,
208 LEGACY_64B_CONTEXT
209 };
210 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
211 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
212 LEGACY_64B_CONTEXT :\
213 LEGACY_32B_CONTEXT)
214 enum {
215 FAULT_AND_HANG = 0,
216 FAULT_AND_HALT, /* Debug only */
217 FAULT_AND_STREAM,
218 FAULT_AND_CONTINUE /* Unsupported */
219 };
220 #define GEN8_CTX_ID_SHIFT 32
221 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
222
223 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
224
225 /**
226 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
227 * @dev: DRM device.
228 * @enable_execlists: value of i915.enable_execlists module parameter.
229 *
230 * Only certain platforms support Execlists (the prerequisites being
231 * support for Logical Ring Contexts and Aliasing PPGTT or better).
232 *
233 * Return: 1 if Execlists is supported and has to be enabled.
234 */
235 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
236 {
237 WARN_ON(i915.enable_ppgtt == -1);
238
239 if (INTEL_INFO(dev)->gen >= 9)
240 return 1;
241
242 if (enable_execlists == 0)
243 return 0;
244
245 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
246 i915.use_mmio_flip >= 0)
247 return 1;
248
249 return 0;
250 }
251
252 /**
253 * intel_execlists_ctx_id() - get the Execlists Context ID
254 * @ctx_obj: Logical Ring Context backing object.
255 *
256 * Do not confuse with ctx->id! Unfortunately we have a name overload
257 * here: the old context ID we pass to userspace as a handler so that
258 * they can refer to a context, and the new context ID we pass to the
259 * ELSP so that the GPU can inform us of the context status via
260 * interrupts.
261 *
262 * Return: 20-bits globally unique context ID.
263 */
264 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
265 {
266 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
267 LRC_PPHWSP_PN * PAGE_SIZE;
268
269 /* LRCA is required to be 4K aligned so the more significant 20 bits
270 * are globally unique */
271 return lrca >> 12;
272 }
273
274 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
275 struct intel_engine_cs *ring)
276 {
277 struct drm_device *dev = ring->dev;
278 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
279 uint64_t desc;
280 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
281 LRC_PPHWSP_PN * PAGE_SIZE;
282
283 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
284
285 desc = GEN8_CTX_VALID;
286 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
287 if (IS_GEN8(ctx_obj->base.dev))
288 desc |= GEN8_CTX_L3LLC_COHERENT;
289 desc |= GEN8_CTX_PRIVILEGE;
290 desc |= lrca;
291 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
292
293 /* TODO: WaDisableLiteRestore when we start using semaphore
294 * signalling between Command Streamers */
295 /* desc |= GEN8_CTX_FORCE_RESTORE; */
296
297 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
298 if (IS_GEN9(dev) &&
299 INTEL_REVID(dev) <= SKL_REVID_B0 &&
300 (ring->id == BCS || ring->id == VCS ||
301 ring->id == VECS || ring->id == VCS2))
302 desc |= GEN8_CTX_FORCE_RESTORE;
303
304 return desc;
305 }
306
307 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
308 struct drm_i915_gem_request *rq1)
309 {
310
311 struct intel_engine_cs *ring = rq0->ring;
312 struct drm_device *dev = ring->dev;
313 struct drm_i915_private *dev_priv = dev->dev_private;
314 uint64_t desc[2];
315
316 if (rq1) {
317 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
318 rq1->elsp_submitted++;
319 } else {
320 desc[1] = 0;
321 }
322
323 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
324 rq0->elsp_submitted++;
325
326 /* You must always write both descriptors in the order below. */
327 spin_lock(&dev_priv->uncore.lock);
328 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
329 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
330 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
331
332 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
333 /* The context is automatically loaded after the following */
334 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
335
336 /* ELSP is a wo register, use another nearby reg for posting */
337 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
338 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
339 spin_unlock(&dev_priv->uncore.lock);
340 }
341
342 static int execlists_update_context(struct drm_i915_gem_request *rq)
343 {
344 struct intel_engine_cs *ring = rq->ring;
345 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
346 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
347 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
348 struct page *page;
349 uint32_t *reg_state;
350
351 BUG_ON(!ctx_obj);
352 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
353 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
354
355 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
356 reg_state = kmap_atomic(page);
357
358 reg_state[CTX_RING_TAIL+1] = rq->tail;
359 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
360
361 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
362 /* True 32b PPGTT with dynamic page allocation: update PDP
363 * registers and point the unallocated PDPs to scratch page.
364 * PML4 is allocated during ppgtt init, so this is not needed
365 * in 48-bit mode.
366 */
367 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
368 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
369 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
370 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
371 }
372
373 kunmap_atomic(reg_state);
374
375 return 0;
376 }
377
378 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
379 struct drm_i915_gem_request *rq1)
380 {
381 execlists_update_context(rq0);
382
383 if (rq1)
384 execlists_update_context(rq1);
385
386 execlists_elsp_write(rq0, rq1);
387 }
388
389 static void execlists_context_unqueue(struct intel_engine_cs *ring)
390 {
391 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
392 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
393
394 assert_spin_locked(&ring->execlist_lock);
395
396 /*
397 * If irqs are not active generate a warning as batches that finish
398 * without the irqs may get lost and a GPU Hang may occur.
399 */
400 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
401
402 if (list_empty(&ring->execlist_queue))
403 return;
404
405 /* Try to read in pairs */
406 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
407 execlist_link) {
408 if (!req0) {
409 req0 = cursor;
410 } else if (req0->ctx == cursor->ctx) {
411 /* Same ctx: ignore first request, as second request
412 * will update tail past first request's workload */
413 cursor->elsp_submitted = req0->elsp_submitted;
414 list_del(&req0->execlist_link);
415 list_add_tail(&req0->execlist_link,
416 &ring->execlist_retired_req_list);
417 req0 = cursor;
418 } else {
419 req1 = cursor;
420 break;
421 }
422 }
423
424 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
425 /*
426 * WaIdleLiteRestore: make sure we never cause a lite
427 * restore with HEAD==TAIL
428 */
429 if (req0->elsp_submitted) {
430 /*
431 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
432 * as we resubmit the request. See gen8_emit_request()
433 * for where we prepare the padding after the end of the
434 * request.
435 */
436 struct intel_ringbuffer *ringbuf;
437
438 ringbuf = req0->ctx->engine[ring->id].ringbuf;
439 req0->tail += 8;
440 req0->tail &= ringbuf->size - 1;
441 }
442 }
443
444 WARN_ON(req1 && req1->elsp_submitted);
445
446 execlists_submit_requests(req0, req1);
447 }
448
449 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
450 u32 request_id)
451 {
452 struct drm_i915_gem_request *head_req;
453
454 assert_spin_locked(&ring->execlist_lock);
455
456 head_req = list_first_entry_or_null(&ring->execlist_queue,
457 struct drm_i915_gem_request,
458 execlist_link);
459
460 if (head_req != NULL) {
461 struct drm_i915_gem_object *ctx_obj =
462 head_req->ctx->engine[ring->id].state;
463 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
464 WARN(head_req->elsp_submitted == 0,
465 "Never submitted head request\n");
466
467 if (--head_req->elsp_submitted <= 0) {
468 list_del(&head_req->execlist_link);
469 list_add_tail(&head_req->execlist_link,
470 &ring->execlist_retired_req_list);
471 return true;
472 }
473 }
474 }
475
476 return false;
477 }
478
479 /**
480 * intel_lrc_irq_handler() - handle Context Switch interrupts
481 * @ring: Engine Command Streamer to handle.
482 *
483 * Check the unread Context Status Buffers and manage the submission of new
484 * contexts to the ELSP accordingly.
485 */
486 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
487 {
488 struct drm_i915_private *dev_priv = ring->dev->dev_private;
489 u32 status_pointer;
490 u8 read_pointer;
491 u8 write_pointer;
492 u32 status;
493 u32 status_id;
494 u32 submit_contexts = 0;
495
496 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
497
498 read_pointer = ring->next_context_status_buffer;
499 write_pointer = status_pointer & 0x07;
500 if (read_pointer > write_pointer)
501 write_pointer += 6;
502
503 spin_lock(&ring->execlist_lock);
504
505 while (read_pointer < write_pointer) {
506 read_pointer++;
507 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
508 (read_pointer % 6) * 8);
509 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
510 (read_pointer % 6) * 8 + 4);
511
512 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
513 continue;
514
515 if (status & GEN8_CTX_STATUS_PREEMPTED) {
516 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
517 if (execlists_check_remove_request(ring, status_id))
518 WARN(1, "Lite Restored request removed from queue\n");
519 } else
520 WARN(1, "Preemption without Lite Restore\n");
521 }
522
523 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
524 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
525 if (execlists_check_remove_request(ring, status_id))
526 submit_contexts++;
527 }
528 }
529
530 if (submit_contexts != 0)
531 execlists_context_unqueue(ring);
532
533 spin_unlock(&ring->execlist_lock);
534
535 WARN(submit_contexts > 2, "More than two context complete events?\n");
536 ring->next_context_status_buffer = write_pointer % 6;
537
538 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
539 _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
540 }
541
542 static int execlists_context_queue(struct drm_i915_gem_request *request)
543 {
544 struct intel_engine_cs *ring = request->ring;
545 struct drm_i915_gem_request *cursor;
546 int num_elements = 0;
547
548 if (request->ctx != ring->default_context)
549 intel_lr_context_pin(request);
550
551 i915_gem_request_reference(request);
552
553 spin_lock_irq(&ring->execlist_lock);
554
555 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
556 if (++num_elements > 2)
557 break;
558
559 if (num_elements > 2) {
560 struct drm_i915_gem_request *tail_req;
561
562 tail_req = list_last_entry(&ring->execlist_queue,
563 struct drm_i915_gem_request,
564 execlist_link);
565
566 if (request->ctx == tail_req->ctx) {
567 WARN(tail_req->elsp_submitted != 0,
568 "More than 2 already-submitted reqs queued\n");
569 list_del(&tail_req->execlist_link);
570 list_add_tail(&tail_req->execlist_link,
571 &ring->execlist_retired_req_list);
572 }
573 }
574
575 list_add_tail(&request->execlist_link, &ring->execlist_queue);
576 if (num_elements == 0)
577 execlists_context_unqueue(ring);
578
579 spin_unlock_irq(&ring->execlist_lock);
580
581 return 0;
582 }
583
584 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
585 {
586 struct intel_engine_cs *ring = req->ring;
587 uint32_t flush_domains;
588 int ret;
589
590 flush_domains = 0;
591 if (ring->gpu_caches_dirty)
592 flush_domains = I915_GEM_GPU_DOMAINS;
593
594 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
595 if (ret)
596 return ret;
597
598 ring->gpu_caches_dirty = false;
599 return 0;
600 }
601
602 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
603 struct list_head *vmas)
604 {
605 const unsigned other_rings = ~intel_ring_flag(req->ring);
606 struct i915_vma *vma;
607 uint32_t flush_domains = 0;
608 bool flush_chipset = false;
609 int ret;
610
611 list_for_each_entry(vma, vmas, exec_list) {
612 struct drm_i915_gem_object *obj = vma->obj;
613
614 if (obj->active & other_rings) {
615 ret = i915_gem_object_sync(obj, req->ring, &req);
616 if (ret)
617 return ret;
618 }
619
620 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
621 flush_chipset |= i915_gem_clflush_object(obj, false);
622
623 flush_domains |= obj->base.write_domain;
624 }
625
626 if (flush_domains & I915_GEM_DOMAIN_GTT)
627 wmb();
628
629 /* Unconditionally invalidate gpu caches and ensure that we do flush
630 * any residual writes from the previous batch.
631 */
632 return logical_ring_invalidate_all_caches(req);
633 }
634
635 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
636 {
637 int ret;
638
639 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
640
641 if (request->ctx != request->ring->default_context) {
642 ret = intel_lr_context_pin(request);
643 if (ret)
644 return ret;
645 }
646
647 return 0;
648 }
649
650 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
651 int bytes)
652 {
653 struct intel_ringbuffer *ringbuf = req->ringbuf;
654 struct intel_engine_cs *ring = req->ring;
655 struct drm_i915_gem_request *target;
656 unsigned space;
657 int ret;
658
659 if (intel_ring_space(ringbuf) >= bytes)
660 return 0;
661
662 /* The whole point of reserving space is to not wait! */
663 WARN_ON(ringbuf->reserved_in_use);
664
665 list_for_each_entry(target, &ring->request_list, list) {
666 /*
667 * The request queue is per-engine, so can contain requests
668 * from multiple ringbuffers. Here, we must ignore any that
669 * aren't from the ringbuffer we're considering.
670 */
671 if (target->ringbuf != ringbuf)
672 continue;
673
674 /* Would completion of this request free enough space? */
675 space = __intel_ring_space(target->postfix, ringbuf->tail,
676 ringbuf->size);
677 if (space >= bytes)
678 break;
679 }
680
681 if (WARN_ON(&target->list == &ring->request_list))
682 return -ENOSPC;
683
684 ret = i915_wait_request(target);
685 if (ret)
686 return ret;
687
688 ringbuf->space = space;
689 return 0;
690 }
691
692 /*
693 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
694 * @request: Request to advance the logical ringbuffer of.
695 *
696 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
697 * really happens during submission is that the context and current tail will be placed
698 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
699 * point, the tail *inside* the context is updated and the ELSP written to.
700 */
701 static void
702 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
703 {
704 struct intel_engine_cs *ring = request->ring;
705 struct drm_i915_private *dev_priv = request->i915;
706
707 intel_logical_ring_advance(request->ringbuf);
708
709 request->tail = request->ringbuf->tail;
710
711 if (intel_ring_stopped(ring))
712 return;
713
714 if (dev_priv->guc.execbuf_client)
715 i915_guc_submit(dev_priv->guc.execbuf_client, request);
716 else
717 execlists_context_queue(request);
718 }
719
720 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
721 {
722 uint32_t __iomem *virt;
723 int rem = ringbuf->size - ringbuf->tail;
724
725 virt = ringbuf->virtual_start + ringbuf->tail;
726 rem /= 4;
727 while (rem--)
728 iowrite32(MI_NOOP, virt++);
729
730 ringbuf->tail = 0;
731 intel_ring_update_space(ringbuf);
732 }
733
734 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
735 {
736 struct intel_ringbuffer *ringbuf = req->ringbuf;
737 int remain_usable = ringbuf->effective_size - ringbuf->tail;
738 int remain_actual = ringbuf->size - ringbuf->tail;
739 int ret, total_bytes, wait_bytes = 0;
740 bool need_wrap = false;
741
742 if (ringbuf->reserved_in_use)
743 total_bytes = bytes;
744 else
745 total_bytes = bytes + ringbuf->reserved_size;
746
747 if (unlikely(bytes > remain_usable)) {
748 /*
749 * Not enough space for the basic request. So need to flush
750 * out the remainder and then wait for base + reserved.
751 */
752 wait_bytes = remain_actual + total_bytes;
753 need_wrap = true;
754 } else {
755 if (unlikely(total_bytes > remain_usable)) {
756 /*
757 * The base request will fit but the reserved space
758 * falls off the end. So only need to to wait for the
759 * reserved size after flushing out the remainder.
760 */
761 wait_bytes = remain_actual + ringbuf->reserved_size;
762 need_wrap = true;
763 } else if (total_bytes > ringbuf->space) {
764 /* No wrapping required, just waiting. */
765 wait_bytes = total_bytes;
766 }
767 }
768
769 if (wait_bytes) {
770 ret = logical_ring_wait_for_space(req, wait_bytes);
771 if (unlikely(ret))
772 return ret;
773
774 if (need_wrap)
775 __wrap_ring_buffer(ringbuf);
776 }
777
778 return 0;
779 }
780
781 /**
782 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
783 *
784 * @request: The request to start some new work for
785 * @ctx: Logical ring context whose ringbuffer is being prepared.
786 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
787 *
788 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
789 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
790 * and also preallocates a request (every workload submission is still mediated through
791 * requests, same as it did with legacy ringbuffer submission).
792 *
793 * Return: non-zero if the ringbuffer is not ready to be written to.
794 */
795 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
796 {
797 struct drm_i915_private *dev_priv;
798 int ret;
799
800 WARN_ON(req == NULL);
801 dev_priv = req->ring->dev->dev_private;
802
803 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
804 dev_priv->mm.interruptible);
805 if (ret)
806 return ret;
807
808 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
809 if (ret)
810 return ret;
811
812 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
813 return 0;
814 }
815
816 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
817 {
818 /*
819 * The first call merely notes the reserve request and is common for
820 * all back ends. The subsequent localised _begin() call actually
821 * ensures that the reservation is available. Without the begin, if
822 * the request creator immediately submitted the request without
823 * adding any commands to it then there might not actually be
824 * sufficient room for the submission commands.
825 */
826 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
827
828 return intel_logical_ring_begin(request, 0);
829 }
830
831 /**
832 * execlists_submission() - submit a batchbuffer for execution, Execlists style
833 * @dev: DRM device.
834 * @file: DRM file.
835 * @ring: Engine Command Streamer to submit to.
836 * @ctx: Context to employ for this submission.
837 * @args: execbuffer call arguments.
838 * @vmas: list of vmas.
839 * @batch_obj: the batchbuffer to submit.
840 * @exec_start: batchbuffer start virtual address pointer.
841 * @dispatch_flags: translated execbuffer call flags.
842 *
843 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
844 * away the submission details of the execbuffer ioctl call.
845 *
846 * Return: non-zero if the submission fails.
847 */
848 int intel_execlists_submission(struct i915_execbuffer_params *params,
849 struct drm_i915_gem_execbuffer2 *args,
850 struct list_head *vmas)
851 {
852 struct drm_device *dev = params->dev;
853 struct intel_engine_cs *ring = params->ring;
854 struct drm_i915_private *dev_priv = dev->dev_private;
855 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
856 u64 exec_start;
857 int instp_mode;
858 u32 instp_mask;
859 int ret;
860
861 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
862 instp_mask = I915_EXEC_CONSTANTS_MASK;
863 switch (instp_mode) {
864 case I915_EXEC_CONSTANTS_REL_GENERAL:
865 case I915_EXEC_CONSTANTS_ABSOLUTE:
866 case I915_EXEC_CONSTANTS_REL_SURFACE:
867 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
868 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
869 return -EINVAL;
870 }
871
872 if (instp_mode != dev_priv->relative_constants_mode) {
873 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
874 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
875 return -EINVAL;
876 }
877
878 /* The HW changed the meaning on this bit on gen6 */
879 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
880 }
881 break;
882 default:
883 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
884 return -EINVAL;
885 }
886
887 if (args->num_cliprects != 0) {
888 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
889 return -EINVAL;
890 } else {
891 if (args->DR4 == 0xffffffff) {
892 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
893 args->DR4 = 0;
894 }
895
896 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
897 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
898 return -EINVAL;
899 }
900 }
901
902 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
903 DRM_DEBUG("sol reset is gen7 only\n");
904 return -EINVAL;
905 }
906
907 ret = execlists_move_to_gpu(params->request, vmas);
908 if (ret)
909 return ret;
910
911 if (ring == &dev_priv->ring[RCS] &&
912 instp_mode != dev_priv->relative_constants_mode) {
913 ret = intel_logical_ring_begin(params->request, 4);
914 if (ret)
915 return ret;
916
917 intel_logical_ring_emit(ringbuf, MI_NOOP);
918 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
919 intel_logical_ring_emit(ringbuf, INSTPM);
920 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
921 intel_logical_ring_advance(ringbuf);
922
923 dev_priv->relative_constants_mode = instp_mode;
924 }
925
926 exec_start = params->batch_obj_vm_offset +
927 args->batch_start_offset;
928
929 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
930 if (ret)
931 return ret;
932
933 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
934
935 i915_gem_execbuffer_move_to_active(vmas, params->request);
936 i915_gem_execbuffer_retire_commands(params);
937
938 return 0;
939 }
940
941 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
942 {
943 struct drm_i915_gem_request *req, *tmp;
944 struct list_head retired_list;
945
946 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
947 if (list_empty(&ring->execlist_retired_req_list))
948 return;
949
950 INIT_LIST_HEAD(&retired_list);
951 spin_lock_irq(&ring->execlist_lock);
952 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
953 spin_unlock_irq(&ring->execlist_lock);
954
955 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
956 struct intel_context *ctx = req->ctx;
957 struct drm_i915_gem_object *ctx_obj =
958 ctx->engine[ring->id].state;
959
960 if (ctx_obj && (ctx != ring->default_context))
961 intel_lr_context_unpin(req);
962 list_del(&req->execlist_link);
963 i915_gem_request_unreference(req);
964 }
965 }
966
967 void intel_logical_ring_stop(struct intel_engine_cs *ring)
968 {
969 struct drm_i915_private *dev_priv = ring->dev->dev_private;
970 int ret;
971
972 if (!intel_ring_initialized(ring))
973 return;
974
975 ret = intel_ring_idle(ring);
976 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
977 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
978 ring->name, ret);
979
980 /* TODO: Is this correct with Execlists enabled? */
981 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
982 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
983 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
984 return;
985 }
986 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
987 }
988
989 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
990 {
991 struct intel_engine_cs *ring = req->ring;
992 int ret;
993
994 if (!ring->gpu_caches_dirty)
995 return 0;
996
997 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
998 if (ret)
999 return ret;
1000
1001 ring->gpu_caches_dirty = false;
1002 return 0;
1003 }
1004
1005 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1006 {
1007 struct drm_i915_private *dev_priv = rq->i915;
1008 struct intel_engine_cs *ring = rq->ring;
1009 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1010 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1011 int ret = 0;
1012
1013 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1014 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1015 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1016 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1017 if (ret)
1018 goto reset_pin_count;
1019
1020 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1021 if (ret)
1022 goto unpin_ctx_obj;
1023
1024 /* Invalidate GuC TLB. */
1025 if (i915.enable_guc_submission)
1026 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1027 }
1028
1029 return ret;
1030
1031 unpin_ctx_obj:
1032 i915_gem_object_ggtt_unpin(ctx_obj);
1033 reset_pin_count:
1034 rq->ctx->engine[ring->id].pin_count = 0;
1035
1036 return ret;
1037 }
1038
1039 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1040 {
1041 struct intel_engine_cs *ring = rq->ring;
1042 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1043 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1044
1045 if (ctx_obj) {
1046 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1047 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1048 intel_unpin_ringbuffer_obj(ringbuf);
1049 i915_gem_object_ggtt_unpin(ctx_obj);
1050 }
1051 }
1052 }
1053
1054 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1055 {
1056 int ret, i;
1057 struct intel_engine_cs *ring = req->ring;
1058 struct intel_ringbuffer *ringbuf = req->ringbuf;
1059 struct drm_device *dev = ring->dev;
1060 struct drm_i915_private *dev_priv = dev->dev_private;
1061 struct i915_workarounds *w = &dev_priv->workarounds;
1062
1063 if (WARN_ON_ONCE(w->count == 0))
1064 return 0;
1065
1066 ring->gpu_caches_dirty = true;
1067 ret = logical_ring_flush_all_caches(req);
1068 if (ret)
1069 return ret;
1070
1071 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1072 if (ret)
1073 return ret;
1074
1075 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1076 for (i = 0; i < w->count; i++) {
1077 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1078 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1079 }
1080 intel_logical_ring_emit(ringbuf, MI_NOOP);
1081
1082 intel_logical_ring_advance(ringbuf);
1083
1084 ring->gpu_caches_dirty = true;
1085 ret = logical_ring_flush_all_caches(req);
1086 if (ret)
1087 return ret;
1088
1089 return 0;
1090 }
1091
1092 #define wa_ctx_emit(batch, index, cmd) \
1093 do { \
1094 int __index = (index)++; \
1095 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1096 return -ENOSPC; \
1097 } \
1098 batch[__index] = (cmd); \
1099 } while (0)
1100
1101
1102 /*
1103 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1104 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1105 * but there is a slight complication as this is applied in WA batch where the
1106 * values are only initialized once so we cannot take register value at the
1107 * beginning and reuse it further; hence we save its value to memory, upload a
1108 * constant value with bit21 set and then we restore it back with the saved value.
1109 * To simplify the WA, a constant value is formed by using the default value
1110 * of this register. This shouldn't be a problem because we are only modifying
1111 * it for a short period and this batch in non-premptible. We can ofcourse
1112 * use additional instructions that read the actual value of the register
1113 * at that time and set our bit of interest but it makes the WA complicated.
1114 *
1115 * This WA is also required for Gen9 so extracting as a function avoids
1116 * code duplication.
1117 */
1118 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1119 uint32_t *const batch,
1120 uint32_t index)
1121 {
1122 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1123
1124 /*
1125 * WaDisableLSQCROPERFforOCL:skl
1126 * This WA is implemented in skl_init_clock_gating() but since
1127 * this batch updates GEN8_L3SQCREG4 with default value we need to
1128 * set this bit here to retain the WA during flush.
1129 */
1130 if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1131 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1132
1133 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8(1) |
1134 MI_SRM_LRM_GLOBAL_GTT));
1135 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1136 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1137 wa_ctx_emit(batch, index, 0);
1138
1139 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1140 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1141 wa_ctx_emit(batch, index, l3sqc4_flush);
1142
1143 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1144 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1145 PIPE_CONTROL_DC_FLUSH_ENABLE));
1146 wa_ctx_emit(batch, index, 0);
1147 wa_ctx_emit(batch, index, 0);
1148 wa_ctx_emit(batch, index, 0);
1149 wa_ctx_emit(batch, index, 0);
1150
1151 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8(1) |
1152 MI_SRM_LRM_GLOBAL_GTT));
1153 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1154 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1155 wa_ctx_emit(batch, index, 0);
1156
1157 return index;
1158 }
1159
1160 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1161 uint32_t offset,
1162 uint32_t start_alignment)
1163 {
1164 return wa_ctx->offset = ALIGN(offset, start_alignment);
1165 }
1166
1167 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1168 uint32_t offset,
1169 uint32_t size_alignment)
1170 {
1171 wa_ctx->size = offset - wa_ctx->offset;
1172
1173 WARN(wa_ctx->size % size_alignment,
1174 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1175 wa_ctx->size, size_alignment);
1176 return 0;
1177 }
1178
1179 /**
1180 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1181 *
1182 * @ring: only applicable for RCS
1183 * @wa_ctx: structure representing wa_ctx
1184 * offset: specifies start of the batch, should be cache-aligned. This is updated
1185 * with the offset value received as input.
1186 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1187 * @batch: page in which WA are loaded
1188 * @offset: This field specifies the start of the batch, it should be
1189 * cache-aligned otherwise it is adjusted accordingly.
1190 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1191 * initialized at the beginning and shared across all contexts but this field
1192 * helps us to have multiple batches at different offsets and select them based
1193 * on a criteria. At the moment this batch always start at the beginning of the page
1194 * and at this point we don't have multiple wa_ctx batch buffers.
1195 *
1196 * The number of WA applied are not known at the beginning; we use this field
1197 * to return the no of DWORDS written.
1198 *
1199 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1200 * so it adds NOOPs as padding to make it cacheline aligned.
1201 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1202 * makes a complete batch buffer.
1203 *
1204 * Return: non-zero if we exceed the PAGE_SIZE limit.
1205 */
1206
1207 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1208 struct i915_wa_ctx_bb *wa_ctx,
1209 uint32_t *const batch,
1210 uint32_t *offset)
1211 {
1212 uint32_t scratch_addr;
1213 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1214
1215 /* WaDisableCtxRestoreArbitration:bdw,chv */
1216 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1217
1218 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1219 if (IS_BROADWELL(ring->dev)) {
1220 index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1221 if (index < 0)
1222 return index;
1223 }
1224
1225 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1226 /* Actual scratch location is at 128 bytes offset */
1227 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1228
1229 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1230 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1231 PIPE_CONTROL_GLOBAL_GTT_IVB |
1232 PIPE_CONTROL_CS_STALL |
1233 PIPE_CONTROL_QW_WRITE));
1234 wa_ctx_emit(batch, index, scratch_addr);
1235 wa_ctx_emit(batch, index, 0);
1236 wa_ctx_emit(batch, index, 0);
1237 wa_ctx_emit(batch, index, 0);
1238
1239 /* Pad to end of cacheline */
1240 while (index % CACHELINE_DWORDS)
1241 wa_ctx_emit(batch, index, MI_NOOP);
1242
1243 /*
1244 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1245 * execution depends on the length specified in terms of cache lines
1246 * in the register CTX_RCS_INDIRECT_CTX
1247 */
1248
1249 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1250 }
1251
1252 /**
1253 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1254 *
1255 * @ring: only applicable for RCS
1256 * @wa_ctx: structure representing wa_ctx
1257 * offset: specifies start of the batch, should be cache-aligned.
1258 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1259 * @batch: page in which WA are loaded
1260 * @offset: This field specifies the start of this batch.
1261 * This batch is started immediately after indirect_ctx batch. Since we ensure
1262 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1263 *
1264 * The number of DWORDS written are returned using this field.
1265 *
1266 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1267 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1268 */
1269 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1270 struct i915_wa_ctx_bb *wa_ctx,
1271 uint32_t *const batch,
1272 uint32_t *offset)
1273 {
1274 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1275
1276 /* WaDisableCtxRestoreArbitration:bdw,chv */
1277 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1278
1279 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1280
1281 return wa_ctx_end(wa_ctx, *offset = index, 1);
1282 }
1283
1284 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1285 struct i915_wa_ctx_bb *wa_ctx,
1286 uint32_t *const batch,
1287 uint32_t *offset)
1288 {
1289 int ret;
1290 struct drm_device *dev = ring->dev;
1291 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1292
1293 /* WaDisableCtxRestoreArbitration:skl,bxt */
1294 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1295 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1296 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1297
1298 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1299 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1300 if (ret < 0)
1301 return ret;
1302 index = ret;
1303
1304 /* Pad to end of cacheline */
1305 while (index % CACHELINE_DWORDS)
1306 wa_ctx_emit(batch, index, MI_NOOP);
1307
1308 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1309 }
1310
1311 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1312 struct i915_wa_ctx_bb *wa_ctx,
1313 uint32_t *const batch,
1314 uint32_t *offset)
1315 {
1316 struct drm_device *dev = ring->dev;
1317 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1318
1319 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1320 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1321 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1322 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1323 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1324 wa_ctx_emit(batch, index,
1325 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1326 wa_ctx_emit(batch, index, MI_NOOP);
1327 }
1328
1329 /* WaDisableCtxRestoreArbitration:skl,bxt */
1330 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1331 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1332 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1333
1334 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1335
1336 return wa_ctx_end(wa_ctx, *offset = index, 1);
1337 }
1338
1339 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1340 {
1341 int ret;
1342
1343 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1344 if (!ring->wa_ctx.obj) {
1345 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1346 return -ENOMEM;
1347 }
1348
1349 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1350 if (ret) {
1351 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1352 ret);
1353 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1354 return ret;
1355 }
1356
1357 return 0;
1358 }
1359
1360 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1361 {
1362 if (ring->wa_ctx.obj) {
1363 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1364 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1365 ring->wa_ctx.obj = NULL;
1366 }
1367 }
1368
1369 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1370 {
1371 int ret;
1372 uint32_t *batch;
1373 uint32_t offset;
1374 struct page *page;
1375 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1376
1377 WARN_ON(ring->id != RCS);
1378
1379 /* update this when WA for higher Gen are added */
1380 if (INTEL_INFO(ring->dev)->gen > 9) {
1381 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1382 INTEL_INFO(ring->dev)->gen);
1383 return 0;
1384 }
1385
1386 /* some WA perform writes to scratch page, ensure it is valid */
1387 if (ring->scratch.obj == NULL) {
1388 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1389 return -EINVAL;
1390 }
1391
1392 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1393 if (ret) {
1394 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1395 return ret;
1396 }
1397
1398 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1399 batch = kmap_atomic(page);
1400 offset = 0;
1401
1402 if (INTEL_INFO(ring->dev)->gen == 8) {
1403 ret = gen8_init_indirectctx_bb(ring,
1404 &wa_ctx->indirect_ctx,
1405 batch,
1406 &offset);
1407 if (ret)
1408 goto out;
1409
1410 ret = gen8_init_perctx_bb(ring,
1411 &wa_ctx->per_ctx,
1412 batch,
1413 &offset);
1414 if (ret)
1415 goto out;
1416 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1417 ret = gen9_init_indirectctx_bb(ring,
1418 &wa_ctx->indirect_ctx,
1419 batch,
1420 &offset);
1421 if (ret)
1422 goto out;
1423
1424 ret = gen9_init_perctx_bb(ring,
1425 &wa_ctx->per_ctx,
1426 batch,
1427 &offset);
1428 if (ret)
1429 goto out;
1430 }
1431
1432 out:
1433 kunmap_atomic(batch);
1434 if (ret)
1435 lrc_destroy_wa_ctx_obj(ring);
1436
1437 return ret;
1438 }
1439
1440 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1441 {
1442 struct drm_device *dev = ring->dev;
1443 struct drm_i915_private *dev_priv = dev->dev_private;
1444
1445 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1446 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1447
1448 if (ring->status_page.obj) {
1449 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1450 (u32)ring->status_page.gfx_addr);
1451 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1452 }
1453
1454 I915_WRITE(RING_MODE_GEN7(ring),
1455 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1456 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1457 POSTING_READ(RING_MODE_GEN7(ring));
1458 ring->next_context_status_buffer = 0;
1459 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1460
1461 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1462
1463 return 0;
1464 }
1465
1466 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1467 {
1468 struct drm_device *dev = ring->dev;
1469 struct drm_i915_private *dev_priv = dev->dev_private;
1470 int ret;
1471
1472 ret = gen8_init_common_ring(ring);
1473 if (ret)
1474 return ret;
1475
1476 /* We need to disable the AsyncFlip performance optimisations in order
1477 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1478 * programmed to '1' on all products.
1479 *
1480 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1481 */
1482 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1483
1484 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1485
1486 return init_workarounds_ring(ring);
1487 }
1488
1489 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1490 {
1491 int ret;
1492
1493 ret = gen8_init_common_ring(ring);
1494 if (ret)
1495 return ret;
1496
1497 return init_workarounds_ring(ring);
1498 }
1499
1500 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1501 {
1502 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1503 struct intel_engine_cs *ring = req->ring;
1504 struct intel_ringbuffer *ringbuf = req->ringbuf;
1505 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1506 int i, ret;
1507
1508 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1509 if (ret)
1510 return ret;
1511
1512 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1513 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1514 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1515
1516 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1517 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1518 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1519 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1520 }
1521
1522 intel_logical_ring_emit(ringbuf, MI_NOOP);
1523 intel_logical_ring_advance(ringbuf);
1524
1525 return 0;
1526 }
1527
1528 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1529 u64 offset, unsigned dispatch_flags)
1530 {
1531 struct intel_ringbuffer *ringbuf = req->ringbuf;
1532 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1533 int ret;
1534
1535 /* Don't rely in hw updating PDPs, specially in lite-restore.
1536 * Ideally, we should set Force PD Restore in ctx descriptor,
1537 * but we can't. Force Restore would be a second option, but
1538 * it is unsafe in case of lite-restore (because the ctx is
1539 * not idle). PML4 is allocated during ppgtt init so this is
1540 * not needed in 48-bit.*/
1541 if (req->ctx->ppgtt &&
1542 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1543 if (!USES_FULL_48BIT_PPGTT(req->i915)) {
1544 ret = intel_logical_ring_emit_pdps(req);
1545 if (ret)
1546 return ret;
1547 }
1548
1549 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1550 }
1551
1552 ret = intel_logical_ring_begin(req, 4);
1553 if (ret)
1554 return ret;
1555
1556 /* FIXME(BDW): Address space and security selectors. */
1557 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1558 (ppgtt<<8) |
1559 (dispatch_flags & I915_DISPATCH_RS ?
1560 MI_BATCH_RESOURCE_STREAMER : 0));
1561 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1562 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1563 intel_logical_ring_emit(ringbuf, MI_NOOP);
1564 intel_logical_ring_advance(ringbuf);
1565
1566 return 0;
1567 }
1568
1569 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1570 {
1571 struct drm_device *dev = ring->dev;
1572 struct drm_i915_private *dev_priv = dev->dev_private;
1573 unsigned long flags;
1574
1575 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1576 return false;
1577
1578 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1579 if (ring->irq_refcount++ == 0) {
1580 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1581 POSTING_READ(RING_IMR(ring->mmio_base));
1582 }
1583 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1584
1585 return true;
1586 }
1587
1588 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1589 {
1590 struct drm_device *dev = ring->dev;
1591 struct drm_i915_private *dev_priv = dev->dev_private;
1592 unsigned long flags;
1593
1594 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1595 if (--ring->irq_refcount == 0) {
1596 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1597 POSTING_READ(RING_IMR(ring->mmio_base));
1598 }
1599 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1600 }
1601
1602 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1603 u32 invalidate_domains,
1604 u32 unused)
1605 {
1606 struct intel_ringbuffer *ringbuf = request->ringbuf;
1607 struct intel_engine_cs *ring = ringbuf->ring;
1608 struct drm_device *dev = ring->dev;
1609 struct drm_i915_private *dev_priv = dev->dev_private;
1610 uint32_t cmd;
1611 int ret;
1612
1613 ret = intel_logical_ring_begin(request, 4);
1614 if (ret)
1615 return ret;
1616
1617 cmd = MI_FLUSH_DW + 1;
1618
1619 /* We always require a command barrier so that subsequent
1620 * commands, such as breadcrumb interrupts, are strictly ordered
1621 * wrt the contents of the write cache being flushed to memory
1622 * (and thus being coherent from the CPU).
1623 */
1624 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1625
1626 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1627 cmd |= MI_INVALIDATE_TLB;
1628 if (ring == &dev_priv->ring[VCS])
1629 cmd |= MI_INVALIDATE_BSD;
1630 }
1631
1632 intel_logical_ring_emit(ringbuf, cmd);
1633 intel_logical_ring_emit(ringbuf,
1634 I915_GEM_HWS_SCRATCH_ADDR |
1635 MI_FLUSH_DW_USE_GTT);
1636 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1637 intel_logical_ring_emit(ringbuf, 0); /* value */
1638 intel_logical_ring_advance(ringbuf);
1639
1640 return 0;
1641 }
1642
1643 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1644 u32 invalidate_domains,
1645 u32 flush_domains)
1646 {
1647 struct intel_ringbuffer *ringbuf = request->ringbuf;
1648 struct intel_engine_cs *ring = ringbuf->ring;
1649 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1650 bool vf_flush_wa;
1651 u32 flags = 0;
1652 int ret;
1653
1654 flags |= PIPE_CONTROL_CS_STALL;
1655
1656 if (flush_domains) {
1657 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1658 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1659 }
1660
1661 if (invalidate_domains) {
1662 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1663 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1664 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1665 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1666 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1667 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1668 flags |= PIPE_CONTROL_QW_WRITE;
1669 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1670 }
1671
1672 /*
1673 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1674 * control.
1675 */
1676 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1677 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1678
1679 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1680 if (ret)
1681 return ret;
1682
1683 if (vf_flush_wa) {
1684 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1685 intel_logical_ring_emit(ringbuf, 0);
1686 intel_logical_ring_emit(ringbuf, 0);
1687 intel_logical_ring_emit(ringbuf, 0);
1688 intel_logical_ring_emit(ringbuf, 0);
1689 intel_logical_ring_emit(ringbuf, 0);
1690 }
1691
1692 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1693 intel_logical_ring_emit(ringbuf, flags);
1694 intel_logical_ring_emit(ringbuf, scratch_addr);
1695 intel_logical_ring_emit(ringbuf, 0);
1696 intel_logical_ring_emit(ringbuf, 0);
1697 intel_logical_ring_emit(ringbuf, 0);
1698 intel_logical_ring_advance(ringbuf);
1699
1700 return 0;
1701 }
1702
1703 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1704 {
1705 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1706 }
1707
1708 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1709 {
1710 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1711 }
1712
1713 static int gen8_emit_request(struct drm_i915_gem_request *request)
1714 {
1715 struct intel_ringbuffer *ringbuf = request->ringbuf;
1716 struct intel_engine_cs *ring = ringbuf->ring;
1717 u32 cmd;
1718 int ret;
1719
1720 /*
1721 * Reserve space for 2 NOOPs at the end of each request to be
1722 * used as a workaround for not being allowed to do lite
1723 * restore with HEAD==TAIL (WaIdleLiteRestore).
1724 */
1725 ret = intel_logical_ring_begin(request, 8);
1726 if (ret)
1727 return ret;
1728
1729 cmd = MI_STORE_DWORD_IMM_GEN4;
1730 cmd |= MI_GLOBAL_GTT;
1731
1732 intel_logical_ring_emit(ringbuf, cmd);
1733 intel_logical_ring_emit(ringbuf,
1734 (ring->status_page.gfx_addr +
1735 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1736 intel_logical_ring_emit(ringbuf, 0);
1737 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1738 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1739 intel_logical_ring_emit(ringbuf, MI_NOOP);
1740 intel_logical_ring_advance_and_submit(request);
1741
1742 /*
1743 * Here we add two extra NOOPs as padding to avoid
1744 * lite restore of a context with HEAD==TAIL.
1745 */
1746 intel_logical_ring_emit(ringbuf, MI_NOOP);
1747 intel_logical_ring_emit(ringbuf, MI_NOOP);
1748 intel_logical_ring_advance(ringbuf);
1749
1750 return 0;
1751 }
1752
1753 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1754 {
1755 struct render_state so;
1756 int ret;
1757
1758 ret = i915_gem_render_state_prepare(req->ring, &so);
1759 if (ret)
1760 return ret;
1761
1762 if (so.rodata == NULL)
1763 return 0;
1764
1765 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1766 I915_DISPATCH_SECURE);
1767 if (ret)
1768 goto out;
1769
1770 ret = req->ring->emit_bb_start(req,
1771 (so.ggtt_offset + so.aux_batch_offset),
1772 I915_DISPATCH_SECURE);
1773 if (ret)
1774 goto out;
1775
1776 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1777
1778 out:
1779 i915_gem_render_state_fini(&so);
1780 return ret;
1781 }
1782
1783 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1784 {
1785 int ret;
1786
1787 ret = intel_logical_ring_workarounds_emit(req);
1788 if (ret)
1789 return ret;
1790
1791 ret = intel_rcs_context_init_mocs(req);
1792 /*
1793 * Failing to program the MOCS is non-fatal.The system will not
1794 * run at peak performance. So generate an error and carry on.
1795 */
1796 if (ret)
1797 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1798
1799 return intel_lr_context_render_state_init(req);
1800 }
1801
1802 /**
1803 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1804 *
1805 * @ring: Engine Command Streamer.
1806 *
1807 */
1808 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1809 {
1810 struct drm_i915_private *dev_priv;
1811
1812 if (!intel_ring_initialized(ring))
1813 return;
1814
1815 dev_priv = ring->dev->dev_private;
1816
1817 intel_logical_ring_stop(ring);
1818 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1819
1820 if (ring->cleanup)
1821 ring->cleanup(ring);
1822
1823 i915_cmd_parser_fini_ring(ring);
1824 i915_gem_batch_pool_fini(&ring->batch_pool);
1825
1826 if (ring->status_page.obj) {
1827 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1828 ring->status_page.obj = NULL;
1829 }
1830
1831 lrc_destroy_wa_ctx_obj(ring);
1832 }
1833
1834 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1835 {
1836 int ret;
1837
1838 /* Intentionally left blank. */
1839 ring->buffer = NULL;
1840
1841 ring->dev = dev;
1842 INIT_LIST_HEAD(&ring->active_list);
1843 INIT_LIST_HEAD(&ring->request_list);
1844 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1845 init_waitqueue_head(&ring->irq_queue);
1846
1847 INIT_LIST_HEAD(&ring->execlist_queue);
1848 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1849 spin_lock_init(&ring->execlist_lock);
1850
1851 ret = i915_cmd_parser_init_ring(ring);
1852 if (ret)
1853 return ret;
1854
1855 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1856
1857 return ret;
1858 }
1859
1860 static int logical_render_ring_init(struct drm_device *dev)
1861 {
1862 struct drm_i915_private *dev_priv = dev->dev_private;
1863 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1864 int ret;
1865
1866 ring->name = "render ring";
1867 ring->id = RCS;
1868 ring->mmio_base = RENDER_RING_BASE;
1869 ring->irq_enable_mask =
1870 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1871 ring->irq_keep_mask =
1872 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1873 if (HAS_L3_DPF(dev))
1874 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1875
1876 if (INTEL_INFO(dev)->gen >= 9)
1877 ring->init_hw = gen9_init_render_ring;
1878 else
1879 ring->init_hw = gen8_init_render_ring;
1880 ring->init_context = gen8_init_rcs_context;
1881 ring->cleanup = intel_fini_pipe_control;
1882 ring->get_seqno = gen8_get_seqno;
1883 ring->set_seqno = gen8_set_seqno;
1884 ring->emit_request = gen8_emit_request;
1885 ring->emit_flush = gen8_emit_flush_render;
1886 ring->irq_get = gen8_logical_ring_get_irq;
1887 ring->irq_put = gen8_logical_ring_put_irq;
1888 ring->emit_bb_start = gen8_emit_bb_start;
1889
1890 ring->dev = dev;
1891
1892 ret = intel_init_pipe_control(ring);
1893 if (ret)
1894 return ret;
1895
1896 ret = intel_init_workaround_bb(ring);
1897 if (ret) {
1898 /*
1899 * We continue even if we fail to initialize WA batch
1900 * because we only expect rare glitches but nothing
1901 * critical to prevent us from using GPU
1902 */
1903 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1904 ret);
1905 }
1906
1907 ret = logical_ring_init(dev, ring);
1908 if (ret) {
1909 lrc_destroy_wa_ctx_obj(ring);
1910 }
1911
1912 return ret;
1913 }
1914
1915 static int logical_bsd_ring_init(struct drm_device *dev)
1916 {
1917 struct drm_i915_private *dev_priv = dev->dev_private;
1918 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1919
1920 ring->name = "bsd ring";
1921 ring->id = VCS;
1922 ring->mmio_base = GEN6_BSD_RING_BASE;
1923 ring->irq_enable_mask =
1924 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1925 ring->irq_keep_mask =
1926 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1927
1928 ring->init_hw = gen8_init_common_ring;
1929 ring->get_seqno = gen8_get_seqno;
1930 ring->set_seqno = gen8_set_seqno;
1931 ring->emit_request = gen8_emit_request;
1932 ring->emit_flush = gen8_emit_flush;
1933 ring->irq_get = gen8_logical_ring_get_irq;
1934 ring->irq_put = gen8_logical_ring_put_irq;
1935 ring->emit_bb_start = gen8_emit_bb_start;
1936
1937 return logical_ring_init(dev, ring);
1938 }
1939
1940 static int logical_bsd2_ring_init(struct drm_device *dev)
1941 {
1942 struct drm_i915_private *dev_priv = dev->dev_private;
1943 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1944
1945 ring->name = "bds2 ring";
1946 ring->id = VCS2;
1947 ring->mmio_base = GEN8_BSD2_RING_BASE;
1948 ring->irq_enable_mask =
1949 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1950 ring->irq_keep_mask =
1951 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1952
1953 ring->init_hw = gen8_init_common_ring;
1954 ring->get_seqno = gen8_get_seqno;
1955 ring->set_seqno = gen8_set_seqno;
1956 ring->emit_request = gen8_emit_request;
1957 ring->emit_flush = gen8_emit_flush;
1958 ring->irq_get = gen8_logical_ring_get_irq;
1959 ring->irq_put = gen8_logical_ring_put_irq;
1960 ring->emit_bb_start = gen8_emit_bb_start;
1961
1962 return logical_ring_init(dev, ring);
1963 }
1964
1965 static int logical_blt_ring_init(struct drm_device *dev)
1966 {
1967 struct drm_i915_private *dev_priv = dev->dev_private;
1968 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1969
1970 ring->name = "blitter ring";
1971 ring->id = BCS;
1972 ring->mmio_base = BLT_RING_BASE;
1973 ring->irq_enable_mask =
1974 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1975 ring->irq_keep_mask =
1976 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1977
1978 ring->init_hw = gen8_init_common_ring;
1979 ring->get_seqno = gen8_get_seqno;
1980 ring->set_seqno = gen8_set_seqno;
1981 ring->emit_request = gen8_emit_request;
1982 ring->emit_flush = gen8_emit_flush;
1983 ring->irq_get = gen8_logical_ring_get_irq;
1984 ring->irq_put = gen8_logical_ring_put_irq;
1985 ring->emit_bb_start = gen8_emit_bb_start;
1986
1987 return logical_ring_init(dev, ring);
1988 }
1989
1990 static int logical_vebox_ring_init(struct drm_device *dev)
1991 {
1992 struct drm_i915_private *dev_priv = dev->dev_private;
1993 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1994
1995 ring->name = "video enhancement ring";
1996 ring->id = VECS;
1997 ring->mmio_base = VEBOX_RING_BASE;
1998 ring->irq_enable_mask =
1999 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2000 ring->irq_keep_mask =
2001 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2002
2003 ring->init_hw = gen8_init_common_ring;
2004 ring->get_seqno = gen8_get_seqno;
2005 ring->set_seqno = gen8_set_seqno;
2006 ring->emit_request = gen8_emit_request;
2007 ring->emit_flush = gen8_emit_flush;
2008 ring->irq_get = gen8_logical_ring_get_irq;
2009 ring->irq_put = gen8_logical_ring_put_irq;
2010 ring->emit_bb_start = gen8_emit_bb_start;
2011
2012 return logical_ring_init(dev, ring);
2013 }
2014
2015 /**
2016 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2017 * @dev: DRM device.
2018 *
2019 * This function inits the engines for an Execlists submission style (the equivalent in the
2020 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2021 * those engines that are present in the hardware.
2022 *
2023 * Return: non-zero if the initialization failed.
2024 */
2025 int intel_logical_rings_init(struct drm_device *dev)
2026 {
2027 struct drm_i915_private *dev_priv = dev->dev_private;
2028 int ret;
2029
2030 ret = logical_render_ring_init(dev);
2031 if (ret)
2032 return ret;
2033
2034 if (HAS_BSD(dev)) {
2035 ret = logical_bsd_ring_init(dev);
2036 if (ret)
2037 goto cleanup_render_ring;
2038 }
2039
2040 if (HAS_BLT(dev)) {
2041 ret = logical_blt_ring_init(dev);
2042 if (ret)
2043 goto cleanup_bsd_ring;
2044 }
2045
2046 if (HAS_VEBOX(dev)) {
2047 ret = logical_vebox_ring_init(dev);
2048 if (ret)
2049 goto cleanup_blt_ring;
2050 }
2051
2052 if (HAS_BSD2(dev)) {
2053 ret = logical_bsd2_ring_init(dev);
2054 if (ret)
2055 goto cleanup_vebox_ring;
2056 }
2057
2058 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
2059 if (ret)
2060 goto cleanup_bsd2_ring;
2061
2062 return 0;
2063
2064 cleanup_bsd2_ring:
2065 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
2066 cleanup_vebox_ring:
2067 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2068 cleanup_blt_ring:
2069 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2070 cleanup_bsd_ring:
2071 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2072 cleanup_render_ring:
2073 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2074
2075 return ret;
2076 }
2077
2078 static u32
2079 make_rpcs(struct drm_device *dev)
2080 {
2081 u32 rpcs = 0;
2082
2083 /*
2084 * No explicit RPCS request is needed to ensure full
2085 * slice/subslice/EU enablement prior to Gen9.
2086 */
2087 if (INTEL_INFO(dev)->gen < 9)
2088 return 0;
2089
2090 /*
2091 * Starting in Gen9, render power gating can leave
2092 * slice/subslice/EU in a partially enabled state. We
2093 * must make an explicit request through RPCS for full
2094 * enablement.
2095 */
2096 if (INTEL_INFO(dev)->has_slice_pg) {
2097 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2098 rpcs |= INTEL_INFO(dev)->slice_total <<
2099 GEN8_RPCS_S_CNT_SHIFT;
2100 rpcs |= GEN8_RPCS_ENABLE;
2101 }
2102
2103 if (INTEL_INFO(dev)->has_subslice_pg) {
2104 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2105 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2106 GEN8_RPCS_SS_CNT_SHIFT;
2107 rpcs |= GEN8_RPCS_ENABLE;
2108 }
2109
2110 if (INTEL_INFO(dev)->has_eu_pg) {
2111 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2112 GEN8_RPCS_EU_MIN_SHIFT;
2113 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2114 GEN8_RPCS_EU_MAX_SHIFT;
2115 rpcs |= GEN8_RPCS_ENABLE;
2116 }
2117
2118 return rpcs;
2119 }
2120
2121 static int
2122 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2123 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2124 {
2125 struct drm_device *dev = ring->dev;
2126 struct drm_i915_private *dev_priv = dev->dev_private;
2127 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2128 struct page *page;
2129 uint32_t *reg_state;
2130 int ret;
2131
2132 if (!ppgtt)
2133 ppgtt = dev_priv->mm.aliasing_ppgtt;
2134
2135 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2136 if (ret) {
2137 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2138 return ret;
2139 }
2140
2141 ret = i915_gem_object_get_pages(ctx_obj);
2142 if (ret) {
2143 DRM_DEBUG_DRIVER("Could not get object pages\n");
2144 return ret;
2145 }
2146
2147 i915_gem_object_pin_pages(ctx_obj);
2148
2149 /* The second page of the context object contains some fields which must
2150 * be set up prior to the first execution. */
2151 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2152 reg_state = kmap_atomic(page);
2153
2154 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2155 * commands followed by (reg, value) pairs. The values we are setting here are
2156 * only for the first context restore: on a subsequent save, the GPU will
2157 * recreate this batchbuffer with new values (including all the missing
2158 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2159 if (ring->id == RCS)
2160 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2161 else
2162 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2163 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2164 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2165 reg_state[CTX_CONTEXT_CONTROL+1] =
2166 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2167 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2168 CTX_CTRL_RS_CTX_ENABLE);
2169 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2170 reg_state[CTX_RING_HEAD+1] = 0;
2171 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2172 reg_state[CTX_RING_TAIL+1] = 0;
2173 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2174 /* Ring buffer start address is not known until the buffer is pinned.
2175 * It is written to the context image in execlists_update_context()
2176 */
2177 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2178 reg_state[CTX_RING_BUFFER_CONTROL+1] =
2179 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2180 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2181 reg_state[CTX_BB_HEAD_U+1] = 0;
2182 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2183 reg_state[CTX_BB_HEAD_L+1] = 0;
2184 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2185 reg_state[CTX_BB_STATE+1] = (1<<5);
2186 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2187 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2188 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2189 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2190 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2191 reg_state[CTX_SECOND_BB_STATE+1] = 0;
2192 if (ring->id == RCS) {
2193 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2194 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2195 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2196 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2197 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2198 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2199 if (ring->wa_ctx.obj) {
2200 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2201 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2202
2203 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2204 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2205 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2206
2207 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2208 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2209
2210 reg_state[CTX_BB_PER_CTX_PTR+1] =
2211 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2212 0x01;
2213 }
2214 }
2215 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2216 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2217 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2218 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2219 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2220 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2221 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2222 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2223 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2224 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2225 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2226 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2227
2228 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2229 /* 64b PPGTT (48bit canonical)
2230 * PDP0_DESCRIPTOR contains the base address to PML4 and
2231 * other PDP Descriptors are ignored.
2232 */
2233 ASSIGN_CTX_PML4(ppgtt, reg_state);
2234 } else {
2235 /* 32b PPGTT
2236 * PDP*_DESCRIPTOR contains the base address of space supported.
2237 * With dynamic page allocation, PDPs may not be allocated at
2238 * this point. Point the unallocated PDPs to the scratch page
2239 */
2240 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2241 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2242 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2243 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2244 }
2245
2246 if (ring->id == RCS) {
2247 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2248 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2249 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2250 }
2251
2252 kunmap_atomic(reg_state);
2253
2254 ctx_obj->dirty = 1;
2255 set_page_dirty(page);
2256 i915_gem_object_unpin_pages(ctx_obj);
2257
2258 return 0;
2259 }
2260
2261 /**
2262 * intel_lr_context_free() - free the LRC specific bits of a context
2263 * @ctx: the LR context to free.
2264 *
2265 * The real context freeing is done in i915_gem_context_free: this only
2266 * takes care of the bits that are LRC related: the per-engine backing
2267 * objects and the logical ringbuffer.
2268 */
2269 void intel_lr_context_free(struct intel_context *ctx)
2270 {
2271 int i;
2272
2273 for (i = 0; i < I915_NUM_RINGS; i++) {
2274 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2275
2276 if (ctx_obj) {
2277 struct intel_ringbuffer *ringbuf =
2278 ctx->engine[i].ringbuf;
2279 struct intel_engine_cs *ring = ringbuf->ring;
2280
2281 if (ctx == ring->default_context) {
2282 intel_unpin_ringbuffer_obj(ringbuf);
2283 i915_gem_object_ggtt_unpin(ctx_obj);
2284 }
2285 WARN_ON(ctx->engine[ring->id].pin_count);
2286 intel_destroy_ringbuffer_obj(ringbuf);
2287 kfree(ringbuf);
2288 drm_gem_object_unreference(&ctx_obj->base);
2289 }
2290 }
2291 }
2292
2293 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2294 {
2295 int ret = 0;
2296
2297 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2298
2299 switch (ring->id) {
2300 case RCS:
2301 if (INTEL_INFO(ring->dev)->gen >= 9)
2302 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2303 else
2304 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2305 break;
2306 case VCS:
2307 case BCS:
2308 case VECS:
2309 case VCS2:
2310 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2311 break;
2312 }
2313
2314 return ret;
2315 }
2316
2317 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2318 struct drm_i915_gem_object *default_ctx_obj)
2319 {
2320 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2321 struct page *page;
2322
2323 /* The HWSP is part of the default context object in LRC mode. */
2324 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2325 + LRC_PPHWSP_PN * PAGE_SIZE;
2326 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2327 ring->status_page.page_addr = kmap(page);
2328 ring->status_page.obj = default_ctx_obj;
2329
2330 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2331 (u32)ring->status_page.gfx_addr);
2332 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2333 }
2334
2335 /**
2336 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2337 * @ctx: LR context to create.
2338 * @ring: engine to be used with the context.
2339 *
2340 * This function can be called more than once, with different engines, if we plan
2341 * to use the context with them. The context backing objects and the ringbuffers
2342 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2343 * the creation is a deferred call: it's better to make sure first that we need to use
2344 * a given ring with the context.
2345 *
2346 * Return: non-zero on error.
2347 */
2348 int intel_lr_context_deferred_create(struct intel_context *ctx,
2349 struct intel_engine_cs *ring)
2350 {
2351 const bool is_global_default_ctx = (ctx == ring->default_context);
2352 struct drm_device *dev = ring->dev;
2353 struct drm_i915_private *dev_priv = dev->dev_private;
2354 struct drm_i915_gem_object *ctx_obj;
2355 uint32_t context_size;
2356 struct intel_ringbuffer *ringbuf;
2357 int ret;
2358
2359 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2360 WARN_ON(ctx->engine[ring->id].state);
2361
2362 context_size = round_up(get_lr_context_size(ring), 4096);
2363
2364 /* One extra page as the sharing data between driver and GuC */
2365 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2366
2367 ctx_obj = i915_gem_alloc_object(dev, context_size);
2368 if (!ctx_obj) {
2369 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2370 return -ENOMEM;
2371 }
2372
2373 if (is_global_default_ctx) {
2374 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
2375 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
2376 if (ret) {
2377 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2378 ret);
2379 drm_gem_object_unreference(&ctx_obj->base);
2380 return ret;
2381 }
2382
2383 /* Invalidate GuC TLB. */
2384 if (i915.enable_guc_submission)
2385 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
2386 }
2387
2388 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2389 if (!ringbuf) {
2390 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2391 ring->name);
2392 ret = -ENOMEM;
2393 goto error_unpin_ctx;
2394 }
2395
2396 ringbuf->ring = ring;
2397
2398 ringbuf->size = 4 * PAGE_SIZE;
2399 ringbuf->effective_size = ringbuf->size;
2400 ringbuf->head = 0;
2401 ringbuf->tail = 0;
2402 ringbuf->last_retired_head = -1;
2403 intel_ring_update_space(ringbuf);
2404
2405 if (ringbuf->obj == NULL) {
2406 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2407 if (ret) {
2408 DRM_DEBUG_DRIVER(
2409 "Failed to allocate ringbuffer obj %s: %d\n",
2410 ring->name, ret);
2411 goto error_free_rbuf;
2412 }
2413
2414 if (is_global_default_ctx) {
2415 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2416 if (ret) {
2417 DRM_ERROR(
2418 "Failed to pin and map ringbuffer %s: %d\n",
2419 ring->name, ret);
2420 goto error_destroy_rbuf;
2421 }
2422 }
2423
2424 }
2425
2426 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2427 if (ret) {
2428 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2429 goto error;
2430 }
2431
2432 ctx->engine[ring->id].ringbuf = ringbuf;
2433 ctx->engine[ring->id].state = ctx_obj;
2434
2435 if (ctx == ring->default_context)
2436 lrc_setup_hardware_status_page(ring, ctx_obj);
2437 else if (ring->id == RCS && !ctx->rcs_initialized) {
2438 if (ring->init_context) {
2439 struct drm_i915_gem_request *req;
2440
2441 ret = i915_gem_request_alloc(ring, ctx, &req);
2442 if (ret)
2443 return ret;
2444
2445 ret = ring->init_context(req);
2446 if (ret) {
2447 DRM_ERROR("ring init context: %d\n", ret);
2448 i915_gem_request_cancel(req);
2449 ctx->engine[ring->id].ringbuf = NULL;
2450 ctx->engine[ring->id].state = NULL;
2451 goto error;
2452 }
2453
2454 i915_add_request_no_flush(req);
2455 }
2456
2457 ctx->rcs_initialized = true;
2458 }
2459
2460 return 0;
2461
2462 error:
2463 if (is_global_default_ctx)
2464 intel_unpin_ringbuffer_obj(ringbuf);
2465 error_destroy_rbuf:
2466 intel_destroy_ringbuffer_obj(ringbuf);
2467 error_free_rbuf:
2468 kfree(ringbuf);
2469 error_unpin_ctx:
2470 if (is_global_default_ctx)
2471 i915_gem_object_ggtt_unpin(ctx_obj);
2472 drm_gem_object_unreference(&ctx_obj->base);
2473 return ret;
2474 }
2475
2476 void intel_lr_context_reset(struct drm_device *dev,
2477 struct intel_context *ctx)
2478 {
2479 struct drm_i915_private *dev_priv = dev->dev_private;
2480 struct intel_engine_cs *ring;
2481 int i;
2482
2483 for_each_ring(ring, dev_priv, i) {
2484 struct drm_i915_gem_object *ctx_obj =
2485 ctx->engine[ring->id].state;
2486 struct intel_ringbuffer *ringbuf =
2487 ctx->engine[ring->id].ringbuf;
2488 uint32_t *reg_state;
2489 struct page *page;
2490
2491 if (!ctx_obj)
2492 continue;
2493
2494 if (i915_gem_object_get_pages(ctx_obj)) {
2495 WARN(1, "Failed get_pages for context obj\n");
2496 continue;
2497 }
2498 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2499 reg_state = kmap_atomic(page);
2500
2501 reg_state[CTX_RING_HEAD+1] = 0;
2502 reg_state[CTX_RING_TAIL+1] = 0;
2503
2504 kunmap_atomic(reg_state);
2505
2506 ringbuf->head = 0;
2507 ringbuf->tail = 0;
2508 }
2509 }
This page took 0.085619 seconds and 5 git commands to generate.