drm/i915: Trim the flush for the execlists request emission
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211 ADVANCED_CONTEXT = 0,
212 LEGACY_32B_CONTEXT,
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
220 enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_ID_WIDTH 21
228 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
229 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
230
231 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
232 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
233
234 static int execlists_context_deferred_alloc(struct intel_context *ctx,
235 struct intel_engine_cs *engine);
236 static int intel_lr_context_pin(struct intel_context *ctx,
237 struct intel_engine_cs *engine);
238
239 /**
240 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
241 * @dev: DRM device.
242 * @enable_execlists: value of i915.enable_execlists module parameter.
243 *
244 * Only certain platforms support Execlists (the prerequisites being
245 * support for Logical Ring Contexts and Aliasing PPGTT or better).
246 *
247 * Return: 1 if Execlists is supported and has to be enabled.
248 */
249 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
250 {
251 WARN_ON(i915.enable_ppgtt == -1);
252
253 /* On platforms with execlist available, vGPU will only
254 * support execlist mode, no ring buffer mode.
255 */
256 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
257 return 1;
258
259 if (INTEL_INFO(dev)->gen >= 9)
260 return 1;
261
262 if (enable_execlists == 0)
263 return 0;
264
265 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
266 i915.use_mmio_flip >= 0)
267 return 1;
268
269 return 0;
270 }
271
272 static void
273 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274 {
275 struct drm_device *dev = engine->dev;
276
277 if (IS_GEN8(dev) || IS_GEN9(dev))
278 engine->idle_lite_restore_wa = ~0;
279
280 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
281 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
282 (engine->id == VCS || engine->id == VCS2);
283
284 engine->ctx_desc_template = GEN8_CTX_VALID;
285 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
286 GEN8_CTX_ADDRESSING_MODE_SHIFT;
287 if (IS_GEN8(dev))
288 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
289 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
290
291 /* TODO: WaDisableLiteRestore when we start using semaphore
292 * signalling between Command Streamers */
293 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
294
295 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
296 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
297 if (engine->disable_lite_restore_wa)
298 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
299 }
300
301 /**
302 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
303 * descriptor for a pinned context
304 *
305 * @ctx: Context to work on
306 * @ring: Engine the descriptor will be used with
307 *
308 * The context descriptor encodes various attributes of a context,
309 * including its GTT address and some flags. Because it's fairly
310 * expensive to calculate, we'll just do it once and cache the result,
311 * which remains valid until the context is unpinned.
312 *
313 * This is what a descriptor looks like, from LSB to MSB:
314 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
315 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
316 * bits 32-52: ctx ID, a globally unique tag
317 * bits 53-54: mbz, reserved for use by hardware
318 * bits 55-63: group ID, currently unused and set to 0
319 */
320 static void
321 intel_lr_context_descriptor_update(struct intel_context *ctx,
322 struct intel_engine_cs *engine)
323 {
324 u64 desc;
325
326 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
327
328 desc = engine->ctx_desc_template; /* bits 0-11 */
329 desc |= ctx->engine[engine->id].lrc_vma->node.start + /* bits 12-31 */
330 LRC_PPHWSP_PN * PAGE_SIZE;
331 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
332
333 ctx->engine[engine->id].lrc_desc = desc;
334 }
335
336 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
337 struct intel_engine_cs *engine)
338 {
339 return ctx->engine[engine->id].lrc_desc;
340 }
341
342 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
343 struct drm_i915_gem_request *rq1)
344 {
345
346 struct intel_engine_cs *engine = rq0->engine;
347 struct drm_device *dev = engine->dev;
348 struct drm_i915_private *dev_priv = dev->dev_private;
349 uint64_t desc[2];
350
351 if (rq1) {
352 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
353 rq1->elsp_submitted++;
354 } else {
355 desc[1] = 0;
356 }
357
358 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
359 rq0->elsp_submitted++;
360
361 /* You must always write both descriptors in the order below. */
362 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
363 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
364
365 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
366 /* The context is automatically loaded after the following */
367 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
368
369 /* ELSP is a wo register, use another nearby reg for posting */
370 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
371 }
372
373 static void
374 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
375 {
376 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
377 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
378 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
379 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
380 }
381
382 static void execlists_update_context(struct drm_i915_gem_request *rq)
383 {
384 struct intel_engine_cs *engine = rq->engine;
385 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
386 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
387
388 reg_state[CTX_RING_TAIL+1] = rq->tail;
389
390 /* True 32b PPGTT with dynamic page allocation: update PDP
391 * registers and point the unallocated PDPs to scratch page.
392 * PML4 is allocated during ppgtt init, so this is not needed
393 * in 48-bit mode.
394 */
395 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
396 execlists_update_context_pdps(ppgtt, reg_state);
397 }
398
399 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
400 struct drm_i915_gem_request *rq1)
401 {
402 struct drm_i915_private *dev_priv = rq0->i915;
403 unsigned int fw_domains = rq0->engine->fw_domains;
404
405 execlists_update_context(rq0);
406
407 if (rq1)
408 execlists_update_context(rq1);
409
410 spin_lock_irq(&dev_priv->uncore.lock);
411 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
412
413 execlists_elsp_write(rq0, rq1);
414
415 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
416 spin_unlock_irq(&dev_priv->uncore.lock);
417 }
418
419 static void execlists_context_unqueue(struct intel_engine_cs *engine)
420 {
421 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
422 struct drm_i915_gem_request *cursor, *tmp;
423
424 assert_spin_locked(&engine->execlist_lock);
425
426 /*
427 * If irqs are not active generate a warning as batches that finish
428 * without the irqs may get lost and a GPU Hang may occur.
429 */
430 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
431
432 /* Try to read in pairs */
433 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
434 execlist_link) {
435 if (!req0) {
436 req0 = cursor;
437 } else if (req0->ctx == cursor->ctx) {
438 /* Same ctx: ignore first request, as second request
439 * will update tail past first request's workload */
440 cursor->elsp_submitted = req0->elsp_submitted;
441 list_del(&req0->execlist_link);
442 i915_gem_request_unreference(req0);
443 req0 = cursor;
444 } else {
445 req1 = cursor;
446 WARN_ON(req1->elsp_submitted);
447 break;
448 }
449 }
450
451 if (unlikely(!req0))
452 return;
453
454 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
455 /*
456 * WaIdleLiteRestore: make sure we never cause a lite restore
457 * with HEAD==TAIL.
458 *
459 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
460 * resubmit the request. See gen8_emit_request() for where we
461 * prepare the padding after the end of the request.
462 */
463 struct intel_ringbuffer *ringbuf;
464
465 ringbuf = req0->ctx->engine[engine->id].ringbuf;
466 req0->tail += 8;
467 req0->tail &= ringbuf->size - 1;
468 }
469
470 execlists_submit_requests(req0, req1);
471 }
472
473 static unsigned int
474 execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
475 {
476 struct drm_i915_gem_request *head_req;
477
478 assert_spin_locked(&engine->execlist_lock);
479
480 head_req = list_first_entry_or_null(&engine->execlist_queue,
481 struct drm_i915_gem_request,
482 execlist_link);
483
484 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
485 return 0;
486
487 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
488
489 if (--head_req->elsp_submitted > 0)
490 return 0;
491
492 list_del(&head_req->execlist_link);
493 i915_gem_request_unreference(head_req);
494
495 return 1;
496 }
497
498 static u32
499 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
500 u32 *context_id)
501 {
502 struct drm_i915_private *dev_priv = engine->dev->dev_private;
503 u32 status;
504
505 read_pointer %= GEN8_CSB_ENTRIES;
506
507 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
508
509 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
510 return 0;
511
512 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
513 read_pointer));
514
515 return status;
516 }
517
518 /**
519 * intel_lrc_irq_handler() - handle Context Switch interrupts
520 * @engine: Engine Command Streamer to handle.
521 *
522 * Check the unread Context Status Buffers and manage the submission of new
523 * contexts to the ELSP accordingly.
524 */
525 static void intel_lrc_irq_handler(unsigned long data)
526 {
527 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
528 struct drm_i915_private *dev_priv = engine->dev->dev_private;
529 u32 status_pointer;
530 unsigned int read_pointer, write_pointer;
531 u32 csb[GEN8_CSB_ENTRIES][2];
532 unsigned int csb_read = 0, i;
533 unsigned int submit_contexts = 0;
534
535 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
536
537 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
538
539 read_pointer = engine->next_context_status_buffer;
540 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
541 if (read_pointer > write_pointer)
542 write_pointer += GEN8_CSB_ENTRIES;
543
544 while (read_pointer < write_pointer) {
545 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
546 break;
547 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
548 &csb[csb_read][1]);
549 csb_read++;
550 }
551
552 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
553
554 /* Update the read pointer to the old write pointer. Manual ringbuffer
555 * management ftw </sarcasm> */
556 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
557 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
558 engine->next_context_status_buffer << 8));
559
560 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
561
562 spin_lock(&engine->execlist_lock);
563
564 for (i = 0; i < csb_read; i++) {
565 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
566 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
567 if (execlists_check_remove_request(engine, csb[i][1]))
568 WARN(1, "Lite Restored request removed from queue\n");
569 } else
570 WARN(1, "Preemption without Lite Restore\n");
571 }
572
573 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
574 GEN8_CTX_STATUS_ELEMENT_SWITCH))
575 submit_contexts +=
576 execlists_check_remove_request(engine, csb[i][1]);
577 }
578
579 if (submit_contexts) {
580 if (!engine->disable_lite_restore_wa ||
581 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
582 execlists_context_unqueue(engine);
583 }
584
585 spin_unlock(&engine->execlist_lock);
586
587 if (unlikely(submit_contexts > 2))
588 DRM_ERROR("More than two context complete events?\n");
589 }
590
591 static void execlists_context_queue(struct drm_i915_gem_request *request)
592 {
593 struct intel_engine_cs *engine = request->engine;
594 struct drm_i915_gem_request *cursor;
595 int num_elements = 0;
596
597 spin_lock_bh(&engine->execlist_lock);
598
599 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
600 if (++num_elements > 2)
601 break;
602
603 if (num_elements > 2) {
604 struct drm_i915_gem_request *tail_req;
605
606 tail_req = list_last_entry(&engine->execlist_queue,
607 struct drm_i915_gem_request,
608 execlist_link);
609
610 if (request->ctx == tail_req->ctx) {
611 WARN(tail_req->elsp_submitted != 0,
612 "More than 2 already-submitted reqs queued\n");
613 list_del(&tail_req->execlist_link);
614 i915_gem_request_unreference(tail_req);
615 }
616 }
617
618 i915_gem_request_reference(request);
619 list_add_tail(&request->execlist_link, &engine->execlist_queue);
620 request->ctx_hw_id = request->ctx->hw_id;
621 if (num_elements == 0)
622 execlists_context_unqueue(engine);
623
624 spin_unlock_bh(&engine->execlist_lock);
625 }
626
627 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
628 {
629 struct intel_engine_cs *engine = req->engine;
630 uint32_t flush_domains;
631 int ret;
632
633 flush_domains = 0;
634 if (engine->gpu_caches_dirty)
635 flush_domains = I915_GEM_GPU_DOMAINS;
636
637 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
638 if (ret)
639 return ret;
640
641 engine->gpu_caches_dirty = false;
642 return 0;
643 }
644
645 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
646 struct list_head *vmas)
647 {
648 const unsigned other_rings = ~intel_engine_flag(req->engine);
649 struct i915_vma *vma;
650 uint32_t flush_domains = 0;
651 bool flush_chipset = false;
652 int ret;
653
654 list_for_each_entry(vma, vmas, exec_list) {
655 struct drm_i915_gem_object *obj = vma->obj;
656
657 if (obj->active & other_rings) {
658 ret = i915_gem_object_sync(obj, req->engine, &req);
659 if (ret)
660 return ret;
661 }
662
663 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
664 flush_chipset |= i915_gem_clflush_object(obj, false);
665
666 flush_domains |= obj->base.write_domain;
667 }
668
669 if (flush_domains & I915_GEM_DOMAIN_GTT)
670 wmb();
671
672 /* Unconditionally invalidate gpu caches and ensure that we do flush
673 * any residual writes from the previous batch.
674 */
675 return logical_ring_invalidate_all_caches(req);
676 }
677
678 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
679 {
680 struct intel_engine_cs *engine = request->engine;
681 int ret;
682
683 /* Flush enough space to reduce the likelihood of waiting after
684 * we start building the request - in which case we will just
685 * have to repeat work.
686 */
687 request->reserved_space += EXECLISTS_REQUEST_SIZE;
688
689 if (request->ctx->engine[engine->id].state == NULL) {
690 ret = execlists_context_deferred_alloc(request->ctx, engine);
691 if (ret)
692 return ret;
693 }
694
695 request->ringbuf = request->ctx->engine[engine->id].ringbuf;
696
697 if (i915.enable_guc_submission) {
698 /*
699 * Check that the GuC has space for the request before
700 * going any further, as the i915_add_request() call
701 * later on mustn't fail ...
702 */
703 struct intel_guc *guc = &request->i915->guc;
704
705 ret = i915_guc_wq_check_space(guc->execbuf_client);
706 if (ret)
707 return ret;
708 }
709
710 ret = intel_lr_context_pin(request->ctx, engine);
711 if (ret)
712 return ret;
713
714 ret = intel_ring_begin(request, 0);
715 if (ret)
716 goto err_unpin;
717
718 if (!request->ctx->engine[engine->id].initialised) {
719 ret = engine->init_context(request);
720 if (ret)
721 goto err_unpin;
722
723 request->ctx->engine[engine->id].initialised = true;
724 }
725
726 /* Note that after this point, we have committed to using
727 * this request as it is being used to both track the
728 * state of engine initialisation and liveness of the
729 * golden renderstate above. Think twice before you try
730 * to cancel/unwind this request now.
731 */
732
733 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
734 return 0;
735
736 err_unpin:
737 intel_lr_context_unpin(request->ctx, engine);
738 return ret;
739 }
740
741 /*
742 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
743 * @request: Request to advance the logical ringbuffer of.
744 *
745 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
746 * really happens during submission is that the context and current tail will be placed
747 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
748 * point, the tail *inside* the context is updated and the ELSP written to.
749 */
750 static int
751 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
752 {
753 struct intel_ringbuffer *ringbuf = request->ringbuf;
754 struct drm_i915_private *dev_priv = request->i915;
755 struct intel_engine_cs *engine = request->engine;
756
757 intel_logical_ring_advance(ringbuf);
758 request->tail = ringbuf->tail;
759
760 /*
761 * Here we add two extra NOOPs as padding to avoid
762 * lite restore of a context with HEAD==TAIL.
763 *
764 * Caller must reserve WA_TAIL_DWORDS for us!
765 */
766 intel_logical_ring_emit(ringbuf, MI_NOOP);
767 intel_logical_ring_emit(ringbuf, MI_NOOP);
768 intel_logical_ring_advance(ringbuf);
769
770 if (intel_engine_stopped(engine))
771 return 0;
772
773 /* We keep the previous context alive until we retire the following
774 * request. This ensures that any the context object is still pinned
775 * for any residual writes the HW makes into it on the context switch
776 * into the next object following the breadcrumb. Otherwise, we may
777 * retire the context too early.
778 */
779 request->previous_context = engine->last_context;
780 engine->last_context = request->ctx;
781
782 if (dev_priv->guc.execbuf_client)
783 i915_guc_submit(dev_priv->guc.execbuf_client, request);
784 else
785 execlists_context_queue(request);
786
787 return 0;
788 }
789
790 /**
791 * execlists_submission() - submit a batchbuffer for execution, Execlists style
792 * @dev: DRM device.
793 * @file: DRM file.
794 * @ring: Engine Command Streamer to submit to.
795 * @ctx: Context to employ for this submission.
796 * @args: execbuffer call arguments.
797 * @vmas: list of vmas.
798 * @batch_obj: the batchbuffer to submit.
799 * @exec_start: batchbuffer start virtual address pointer.
800 * @dispatch_flags: translated execbuffer call flags.
801 *
802 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
803 * away the submission details of the execbuffer ioctl call.
804 *
805 * Return: non-zero if the submission fails.
806 */
807 int intel_execlists_submission(struct i915_execbuffer_params *params,
808 struct drm_i915_gem_execbuffer2 *args,
809 struct list_head *vmas)
810 {
811 struct drm_device *dev = params->dev;
812 struct intel_engine_cs *engine = params->engine;
813 struct drm_i915_private *dev_priv = dev->dev_private;
814 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
815 u64 exec_start;
816 int instp_mode;
817 u32 instp_mask;
818 int ret;
819
820 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
821 instp_mask = I915_EXEC_CONSTANTS_MASK;
822 switch (instp_mode) {
823 case I915_EXEC_CONSTANTS_REL_GENERAL:
824 case I915_EXEC_CONSTANTS_ABSOLUTE:
825 case I915_EXEC_CONSTANTS_REL_SURFACE:
826 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
827 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
828 return -EINVAL;
829 }
830
831 if (instp_mode != dev_priv->relative_constants_mode) {
832 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
833 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
834 return -EINVAL;
835 }
836
837 /* The HW changed the meaning on this bit on gen6 */
838 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
839 }
840 break;
841 default:
842 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
843 return -EINVAL;
844 }
845
846 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
847 DRM_DEBUG("sol reset is gen7 only\n");
848 return -EINVAL;
849 }
850
851 ret = execlists_move_to_gpu(params->request, vmas);
852 if (ret)
853 return ret;
854
855 if (engine == &dev_priv->engine[RCS] &&
856 instp_mode != dev_priv->relative_constants_mode) {
857 ret = intel_ring_begin(params->request, 4);
858 if (ret)
859 return ret;
860
861 intel_logical_ring_emit(ringbuf, MI_NOOP);
862 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
863 intel_logical_ring_emit_reg(ringbuf, INSTPM);
864 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
865 intel_logical_ring_advance(ringbuf);
866
867 dev_priv->relative_constants_mode = instp_mode;
868 }
869
870 exec_start = params->batch_obj_vm_offset +
871 args->batch_start_offset;
872
873 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
874 if (ret)
875 return ret;
876
877 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
878
879 i915_gem_execbuffer_move_to_active(vmas, params->request);
880
881 return 0;
882 }
883
884 void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
885 {
886 struct drm_i915_gem_request *req, *tmp;
887 LIST_HEAD(cancel_list);
888
889 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
890
891 spin_lock_bh(&engine->execlist_lock);
892 list_replace_init(&engine->execlist_queue, &cancel_list);
893 spin_unlock_bh(&engine->execlist_lock);
894
895 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
896 list_del(&req->execlist_link);
897 i915_gem_request_unreference(req);
898 }
899 }
900
901 void intel_logical_ring_stop(struct intel_engine_cs *engine)
902 {
903 struct drm_i915_private *dev_priv = engine->dev->dev_private;
904 int ret;
905
906 if (!intel_engine_initialized(engine))
907 return;
908
909 ret = intel_engine_idle(engine);
910 if (ret)
911 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
912 engine->name, ret);
913
914 /* TODO: Is this correct with Execlists enabled? */
915 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
916 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
917 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
918 return;
919 }
920 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
921 }
922
923 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
924 {
925 struct intel_engine_cs *engine = req->engine;
926 int ret;
927
928 if (!engine->gpu_caches_dirty)
929 return 0;
930
931 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
932 if (ret)
933 return ret;
934
935 engine->gpu_caches_dirty = false;
936 return 0;
937 }
938
939 static int intel_lr_context_pin(struct intel_context *ctx,
940 struct intel_engine_cs *engine)
941 {
942 struct drm_i915_private *dev_priv = ctx->i915;
943 struct drm_i915_gem_object *ctx_obj;
944 struct intel_ringbuffer *ringbuf;
945 void *vaddr;
946 u32 *lrc_reg_state;
947 int ret;
948
949 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
950
951 if (ctx->engine[engine->id].pin_count++)
952 return 0;
953
954 ctx_obj = ctx->engine[engine->id].state;
955 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
956 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
957 if (ret)
958 goto err;
959
960 vaddr = i915_gem_object_pin_map(ctx_obj);
961 if (IS_ERR(vaddr)) {
962 ret = PTR_ERR(vaddr);
963 goto unpin_ctx_obj;
964 }
965
966 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
967
968 ringbuf = ctx->engine[engine->id].ringbuf;
969 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
970 if (ret)
971 goto unpin_map;
972
973 i915_gem_context_reference(ctx);
974 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
975 intel_lr_context_descriptor_update(ctx, engine);
976 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
977 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
978 ctx_obj->dirty = true;
979
980 /* Invalidate GuC TLB. */
981 if (i915.enable_guc_submission)
982 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
983
984 return 0;
985
986 unpin_map:
987 i915_gem_object_unpin_map(ctx_obj);
988 unpin_ctx_obj:
989 i915_gem_object_ggtt_unpin(ctx_obj);
990 err:
991 ctx->engine[engine->id].pin_count = 0;
992 return ret;
993 }
994
995 void intel_lr_context_unpin(struct intel_context *ctx,
996 struct intel_engine_cs *engine)
997 {
998 struct drm_i915_gem_object *ctx_obj;
999
1000 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
1001 GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
1002
1003 if (--ctx->engine[engine->id].pin_count)
1004 return;
1005
1006 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1007
1008 ctx_obj = ctx->engine[engine->id].state;
1009 i915_gem_object_unpin_map(ctx_obj);
1010 i915_gem_object_ggtt_unpin(ctx_obj);
1011
1012 ctx->engine[engine->id].lrc_vma = NULL;
1013 ctx->engine[engine->id].lrc_desc = 0;
1014 ctx->engine[engine->id].lrc_reg_state = NULL;
1015
1016 i915_gem_context_unreference(ctx);
1017 }
1018
1019 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1020 {
1021 int ret, i;
1022 struct intel_engine_cs *engine = req->engine;
1023 struct intel_ringbuffer *ringbuf = req->ringbuf;
1024 struct drm_device *dev = engine->dev;
1025 struct drm_i915_private *dev_priv = dev->dev_private;
1026 struct i915_workarounds *w = &dev_priv->workarounds;
1027
1028 if (w->count == 0)
1029 return 0;
1030
1031 engine->gpu_caches_dirty = true;
1032 ret = logical_ring_flush_all_caches(req);
1033 if (ret)
1034 return ret;
1035
1036 ret = intel_ring_begin(req, w->count * 2 + 2);
1037 if (ret)
1038 return ret;
1039
1040 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1041 for (i = 0; i < w->count; i++) {
1042 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1043 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1044 }
1045 intel_logical_ring_emit(ringbuf, MI_NOOP);
1046
1047 intel_logical_ring_advance(ringbuf);
1048
1049 engine->gpu_caches_dirty = true;
1050 ret = logical_ring_flush_all_caches(req);
1051 if (ret)
1052 return ret;
1053
1054 return 0;
1055 }
1056
1057 #define wa_ctx_emit(batch, index, cmd) \
1058 do { \
1059 int __index = (index)++; \
1060 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1061 return -ENOSPC; \
1062 } \
1063 batch[__index] = (cmd); \
1064 } while (0)
1065
1066 #define wa_ctx_emit_reg(batch, index, reg) \
1067 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1068
1069 /*
1070 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1071 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1072 * but there is a slight complication as this is applied in WA batch where the
1073 * values are only initialized once so we cannot take register value at the
1074 * beginning and reuse it further; hence we save its value to memory, upload a
1075 * constant value with bit21 set and then we restore it back with the saved value.
1076 * To simplify the WA, a constant value is formed by using the default value
1077 * of this register. This shouldn't be a problem because we are only modifying
1078 * it for a short period and this batch in non-premptible. We can ofcourse
1079 * use additional instructions that read the actual value of the register
1080 * at that time and set our bit of interest but it makes the WA complicated.
1081 *
1082 * This WA is also required for Gen9 so extracting as a function avoids
1083 * code duplication.
1084 */
1085 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1086 uint32_t *const batch,
1087 uint32_t index)
1088 {
1089 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1090
1091 /*
1092 * WaDisableLSQCROPERFforOCL:skl
1093 * This WA is implemented in skl_init_clock_gating() but since
1094 * this batch updates GEN8_L3SQCREG4 with default value we need to
1095 * set this bit here to retain the WA during flush.
1096 */
1097 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1098 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1099
1100 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1101 MI_SRM_LRM_GLOBAL_GTT));
1102 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1103 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1104 wa_ctx_emit(batch, index, 0);
1105
1106 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1107 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1108 wa_ctx_emit(batch, index, l3sqc4_flush);
1109
1110 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1111 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1112 PIPE_CONTROL_DC_FLUSH_ENABLE));
1113 wa_ctx_emit(batch, index, 0);
1114 wa_ctx_emit(batch, index, 0);
1115 wa_ctx_emit(batch, index, 0);
1116 wa_ctx_emit(batch, index, 0);
1117
1118 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1119 MI_SRM_LRM_GLOBAL_GTT));
1120 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1121 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1122 wa_ctx_emit(batch, index, 0);
1123
1124 return index;
1125 }
1126
1127 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1128 uint32_t offset,
1129 uint32_t start_alignment)
1130 {
1131 return wa_ctx->offset = ALIGN(offset, start_alignment);
1132 }
1133
1134 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1135 uint32_t offset,
1136 uint32_t size_alignment)
1137 {
1138 wa_ctx->size = offset - wa_ctx->offset;
1139
1140 WARN(wa_ctx->size % size_alignment,
1141 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1142 wa_ctx->size, size_alignment);
1143 return 0;
1144 }
1145
1146 /**
1147 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1148 *
1149 * @ring: only applicable for RCS
1150 * @wa_ctx: structure representing wa_ctx
1151 * offset: specifies start of the batch, should be cache-aligned. This is updated
1152 * with the offset value received as input.
1153 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1154 * @batch: page in which WA are loaded
1155 * @offset: This field specifies the start of the batch, it should be
1156 * cache-aligned otherwise it is adjusted accordingly.
1157 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1158 * initialized at the beginning and shared across all contexts but this field
1159 * helps us to have multiple batches at different offsets and select them based
1160 * on a criteria. At the moment this batch always start at the beginning of the page
1161 * and at this point we don't have multiple wa_ctx batch buffers.
1162 *
1163 * The number of WA applied are not known at the beginning; we use this field
1164 * to return the no of DWORDS written.
1165 *
1166 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1167 * so it adds NOOPs as padding to make it cacheline aligned.
1168 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1169 * makes a complete batch buffer.
1170 *
1171 * Return: non-zero if we exceed the PAGE_SIZE limit.
1172 */
1173
1174 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1175 struct i915_wa_ctx_bb *wa_ctx,
1176 uint32_t *const batch,
1177 uint32_t *offset)
1178 {
1179 uint32_t scratch_addr;
1180 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1181
1182 /* WaDisableCtxRestoreArbitration:bdw,chv */
1183 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1184
1185 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1186 if (IS_BROADWELL(engine->dev)) {
1187 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1188 if (rc < 0)
1189 return rc;
1190 index = rc;
1191 }
1192
1193 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1194 /* Actual scratch location is at 128 bytes offset */
1195 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1196
1197 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1198 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1199 PIPE_CONTROL_GLOBAL_GTT_IVB |
1200 PIPE_CONTROL_CS_STALL |
1201 PIPE_CONTROL_QW_WRITE));
1202 wa_ctx_emit(batch, index, scratch_addr);
1203 wa_ctx_emit(batch, index, 0);
1204 wa_ctx_emit(batch, index, 0);
1205 wa_ctx_emit(batch, index, 0);
1206
1207 /* Pad to end of cacheline */
1208 while (index % CACHELINE_DWORDS)
1209 wa_ctx_emit(batch, index, MI_NOOP);
1210
1211 /*
1212 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1213 * execution depends on the length specified in terms of cache lines
1214 * in the register CTX_RCS_INDIRECT_CTX
1215 */
1216
1217 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1218 }
1219
1220 /**
1221 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1222 *
1223 * @ring: only applicable for RCS
1224 * @wa_ctx: structure representing wa_ctx
1225 * offset: specifies start of the batch, should be cache-aligned.
1226 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1227 * @batch: page in which WA are loaded
1228 * @offset: This field specifies the start of this batch.
1229 * This batch is started immediately after indirect_ctx batch. Since we ensure
1230 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1231 *
1232 * The number of DWORDS written are returned using this field.
1233 *
1234 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1235 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1236 */
1237 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1238 struct i915_wa_ctx_bb *wa_ctx,
1239 uint32_t *const batch,
1240 uint32_t *offset)
1241 {
1242 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1243
1244 /* WaDisableCtxRestoreArbitration:bdw,chv */
1245 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1246
1247 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1248
1249 return wa_ctx_end(wa_ctx, *offset = index, 1);
1250 }
1251
1252 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1253 struct i915_wa_ctx_bb *wa_ctx,
1254 uint32_t *const batch,
1255 uint32_t *offset)
1256 {
1257 int ret;
1258 struct drm_device *dev = engine->dev;
1259 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1260
1261 /* WaDisableCtxRestoreArbitration:skl,bxt */
1262 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1263 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1264 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1265
1266 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1267 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1268 if (ret < 0)
1269 return ret;
1270 index = ret;
1271
1272 /* Pad to end of cacheline */
1273 while (index % CACHELINE_DWORDS)
1274 wa_ctx_emit(batch, index, MI_NOOP);
1275
1276 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1277 }
1278
1279 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1280 struct i915_wa_ctx_bb *wa_ctx,
1281 uint32_t *const batch,
1282 uint32_t *offset)
1283 {
1284 struct drm_device *dev = engine->dev;
1285 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1286
1287 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1288 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1289 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1290 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1291 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1292 wa_ctx_emit(batch, index,
1293 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1294 wa_ctx_emit(batch, index, MI_NOOP);
1295 }
1296
1297 /* WaClearTdlStateAckDirtyBits:bxt */
1298 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1299 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1300
1301 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1302 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1303
1304 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1305 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1306
1307 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1308 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1309
1310 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1311 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1312 wa_ctx_emit(batch, index, 0x0);
1313 wa_ctx_emit(batch, index, MI_NOOP);
1314 }
1315
1316 /* WaDisableCtxRestoreArbitration:skl,bxt */
1317 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1318 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1319 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1320
1321 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1322
1323 return wa_ctx_end(wa_ctx, *offset = index, 1);
1324 }
1325
1326 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1327 {
1328 int ret;
1329
1330 engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
1331 PAGE_ALIGN(size));
1332 if (IS_ERR(engine->wa_ctx.obj)) {
1333 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1334 ret = PTR_ERR(engine->wa_ctx.obj);
1335 engine->wa_ctx.obj = NULL;
1336 return ret;
1337 }
1338
1339 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1340 if (ret) {
1341 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1342 ret);
1343 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1344 return ret;
1345 }
1346
1347 return 0;
1348 }
1349
1350 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1351 {
1352 if (engine->wa_ctx.obj) {
1353 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1354 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1355 engine->wa_ctx.obj = NULL;
1356 }
1357 }
1358
1359 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1360 {
1361 int ret;
1362 uint32_t *batch;
1363 uint32_t offset;
1364 struct page *page;
1365 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1366
1367 WARN_ON(engine->id != RCS);
1368
1369 /* update this when WA for higher Gen are added */
1370 if (INTEL_INFO(engine->dev)->gen > 9) {
1371 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1372 INTEL_INFO(engine->dev)->gen);
1373 return 0;
1374 }
1375
1376 /* some WA perform writes to scratch page, ensure it is valid */
1377 if (engine->scratch.obj == NULL) {
1378 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1379 return -EINVAL;
1380 }
1381
1382 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1383 if (ret) {
1384 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1385 return ret;
1386 }
1387
1388 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1389 batch = kmap_atomic(page);
1390 offset = 0;
1391
1392 if (INTEL_INFO(engine->dev)->gen == 8) {
1393 ret = gen8_init_indirectctx_bb(engine,
1394 &wa_ctx->indirect_ctx,
1395 batch,
1396 &offset);
1397 if (ret)
1398 goto out;
1399
1400 ret = gen8_init_perctx_bb(engine,
1401 &wa_ctx->per_ctx,
1402 batch,
1403 &offset);
1404 if (ret)
1405 goto out;
1406 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1407 ret = gen9_init_indirectctx_bb(engine,
1408 &wa_ctx->indirect_ctx,
1409 batch,
1410 &offset);
1411 if (ret)
1412 goto out;
1413
1414 ret = gen9_init_perctx_bb(engine,
1415 &wa_ctx->per_ctx,
1416 batch,
1417 &offset);
1418 if (ret)
1419 goto out;
1420 }
1421
1422 out:
1423 kunmap_atomic(batch);
1424 if (ret)
1425 lrc_destroy_wa_ctx_obj(engine);
1426
1427 return ret;
1428 }
1429
1430 static void lrc_init_hws(struct intel_engine_cs *engine)
1431 {
1432 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1433
1434 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1435 (u32)engine->status_page.gfx_addr);
1436 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1437 }
1438
1439 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1440 {
1441 struct drm_device *dev = engine->dev;
1442 struct drm_i915_private *dev_priv = dev->dev_private;
1443 unsigned int next_context_status_buffer_hw;
1444
1445 lrc_init_hws(engine);
1446
1447 I915_WRITE_IMR(engine,
1448 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1449 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1450
1451 I915_WRITE(RING_MODE_GEN7(engine),
1452 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1453 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1454 POSTING_READ(RING_MODE_GEN7(engine));
1455
1456 /*
1457 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1458 * zero, we need to read the write pointer from hardware and use its
1459 * value because "this register is power context save restored".
1460 * Effectively, these states have been observed:
1461 *
1462 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1463 * BDW | CSB regs not reset | CSB regs reset |
1464 * CHT | CSB regs not reset | CSB regs not reset |
1465 * SKL | ? | ? |
1466 * BXT | ? | ? |
1467 */
1468 next_context_status_buffer_hw =
1469 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1470
1471 /*
1472 * When the CSB registers are reset (also after power-up / gpu reset),
1473 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1474 * this special case, so the first element read is CSB[0].
1475 */
1476 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1477 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1478
1479 engine->next_context_status_buffer = next_context_status_buffer_hw;
1480 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1481
1482 intel_engine_init_hangcheck(engine);
1483
1484 return intel_mocs_init_engine(engine);
1485 }
1486
1487 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1488 {
1489 struct drm_device *dev = engine->dev;
1490 struct drm_i915_private *dev_priv = dev->dev_private;
1491 int ret;
1492
1493 ret = gen8_init_common_ring(engine);
1494 if (ret)
1495 return ret;
1496
1497 /* We need to disable the AsyncFlip performance optimisations in order
1498 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1499 * programmed to '1' on all products.
1500 *
1501 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1502 */
1503 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1504
1505 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1506
1507 return init_workarounds_ring(engine);
1508 }
1509
1510 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1511 {
1512 int ret;
1513
1514 ret = gen8_init_common_ring(engine);
1515 if (ret)
1516 return ret;
1517
1518 return init_workarounds_ring(engine);
1519 }
1520
1521 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1522 {
1523 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1524 struct intel_engine_cs *engine = req->engine;
1525 struct intel_ringbuffer *ringbuf = req->ringbuf;
1526 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1527 int i, ret;
1528
1529 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1530 if (ret)
1531 return ret;
1532
1533 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1534 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1535 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1536
1537 intel_logical_ring_emit_reg(ringbuf,
1538 GEN8_RING_PDP_UDW(engine, i));
1539 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1540 intel_logical_ring_emit_reg(ringbuf,
1541 GEN8_RING_PDP_LDW(engine, i));
1542 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1543 }
1544
1545 intel_logical_ring_emit(ringbuf, MI_NOOP);
1546 intel_logical_ring_advance(ringbuf);
1547
1548 return 0;
1549 }
1550
1551 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1552 u64 offset, unsigned dispatch_flags)
1553 {
1554 struct intel_ringbuffer *ringbuf = req->ringbuf;
1555 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1556 int ret;
1557
1558 /* Don't rely in hw updating PDPs, specially in lite-restore.
1559 * Ideally, we should set Force PD Restore in ctx descriptor,
1560 * but we can't. Force Restore would be a second option, but
1561 * it is unsafe in case of lite-restore (because the ctx is
1562 * not idle). PML4 is allocated during ppgtt init so this is
1563 * not needed in 48-bit.*/
1564 if (req->ctx->ppgtt &&
1565 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1566 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1567 !intel_vgpu_active(req->i915->dev)) {
1568 ret = intel_logical_ring_emit_pdps(req);
1569 if (ret)
1570 return ret;
1571 }
1572
1573 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1574 }
1575
1576 ret = intel_ring_begin(req, 4);
1577 if (ret)
1578 return ret;
1579
1580 /* FIXME(BDW): Address space and security selectors. */
1581 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1582 (ppgtt<<8) |
1583 (dispatch_flags & I915_DISPATCH_RS ?
1584 MI_BATCH_RESOURCE_STREAMER : 0));
1585 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1586 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1587 intel_logical_ring_emit(ringbuf, MI_NOOP);
1588 intel_logical_ring_advance(ringbuf);
1589
1590 return 0;
1591 }
1592
1593 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1594 {
1595 struct drm_device *dev = engine->dev;
1596 struct drm_i915_private *dev_priv = dev->dev_private;
1597 unsigned long flags;
1598
1599 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1600 return false;
1601
1602 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1603 if (engine->irq_refcount++ == 0) {
1604 I915_WRITE_IMR(engine,
1605 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1606 POSTING_READ(RING_IMR(engine->mmio_base));
1607 }
1608 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1609
1610 return true;
1611 }
1612
1613 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1614 {
1615 struct drm_device *dev = engine->dev;
1616 struct drm_i915_private *dev_priv = dev->dev_private;
1617 unsigned long flags;
1618
1619 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1620 if (--engine->irq_refcount == 0) {
1621 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1622 POSTING_READ(RING_IMR(engine->mmio_base));
1623 }
1624 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1625 }
1626
1627 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1628 u32 invalidate_domains,
1629 u32 unused)
1630 {
1631 struct intel_ringbuffer *ringbuf = request->ringbuf;
1632 struct intel_engine_cs *engine = ringbuf->engine;
1633 struct drm_device *dev = engine->dev;
1634 struct drm_i915_private *dev_priv = dev->dev_private;
1635 uint32_t cmd;
1636 int ret;
1637
1638 ret = intel_ring_begin(request, 4);
1639 if (ret)
1640 return ret;
1641
1642 cmd = MI_FLUSH_DW + 1;
1643
1644 /* We always require a command barrier so that subsequent
1645 * commands, such as breadcrumb interrupts, are strictly ordered
1646 * wrt the contents of the write cache being flushed to memory
1647 * (and thus being coherent from the CPU).
1648 */
1649 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1650
1651 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1652 cmd |= MI_INVALIDATE_TLB;
1653 if (engine == &dev_priv->engine[VCS])
1654 cmd |= MI_INVALIDATE_BSD;
1655 }
1656
1657 intel_logical_ring_emit(ringbuf, cmd);
1658 intel_logical_ring_emit(ringbuf,
1659 I915_GEM_HWS_SCRATCH_ADDR |
1660 MI_FLUSH_DW_USE_GTT);
1661 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1662 intel_logical_ring_emit(ringbuf, 0); /* value */
1663 intel_logical_ring_advance(ringbuf);
1664
1665 return 0;
1666 }
1667
1668 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1669 u32 invalidate_domains,
1670 u32 flush_domains)
1671 {
1672 struct intel_ringbuffer *ringbuf = request->ringbuf;
1673 struct intel_engine_cs *engine = ringbuf->engine;
1674 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1675 bool vf_flush_wa = false;
1676 u32 flags = 0;
1677 int ret;
1678
1679 flags |= PIPE_CONTROL_CS_STALL;
1680
1681 if (flush_domains) {
1682 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1683 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1684 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1685 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1686 }
1687
1688 if (invalidate_domains) {
1689 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1690 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1691 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1692 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1693 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1694 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1695 flags |= PIPE_CONTROL_QW_WRITE;
1696 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1697
1698 /*
1699 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1700 * pipe control.
1701 */
1702 if (IS_GEN9(engine->dev))
1703 vf_flush_wa = true;
1704 }
1705
1706 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1707 if (ret)
1708 return ret;
1709
1710 if (vf_flush_wa) {
1711 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1712 intel_logical_ring_emit(ringbuf, 0);
1713 intel_logical_ring_emit(ringbuf, 0);
1714 intel_logical_ring_emit(ringbuf, 0);
1715 intel_logical_ring_emit(ringbuf, 0);
1716 intel_logical_ring_emit(ringbuf, 0);
1717 }
1718
1719 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1720 intel_logical_ring_emit(ringbuf, flags);
1721 intel_logical_ring_emit(ringbuf, scratch_addr);
1722 intel_logical_ring_emit(ringbuf, 0);
1723 intel_logical_ring_emit(ringbuf, 0);
1724 intel_logical_ring_emit(ringbuf, 0);
1725 intel_logical_ring_advance(ringbuf);
1726
1727 return 0;
1728 }
1729
1730 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1731 {
1732 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1733 }
1734
1735 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1736 {
1737 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1738 }
1739
1740 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1741 {
1742 /*
1743 * On BXT A steppings there is a HW coherency issue whereby the
1744 * MI_STORE_DATA_IMM storing the completed request's seqno
1745 * occasionally doesn't invalidate the CPU cache. Work around this by
1746 * clflushing the corresponding cacheline whenever the caller wants
1747 * the coherency to be guaranteed. Note that this cacheline is known
1748 * to be clean at this point, since we only write it in
1749 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1750 * this clflush in practice becomes an invalidate operation.
1751 */
1752 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1753 }
1754
1755 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1756 {
1757 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1758
1759 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1760 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1761 }
1762
1763 /*
1764 * Reserve space for 2 NOOPs at the end of each request to be
1765 * used as a workaround for not being allowed to do lite
1766 * restore with HEAD==TAIL (WaIdleLiteRestore).
1767 */
1768 #define WA_TAIL_DWORDS 2
1769
1770 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1771 {
1772 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1773 }
1774
1775 static int gen8_emit_request(struct drm_i915_gem_request *request)
1776 {
1777 struct intel_ringbuffer *ringbuf = request->ringbuf;
1778 int ret;
1779
1780 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1781 if (ret)
1782 return ret;
1783
1784 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1785 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1786
1787 intel_logical_ring_emit(ringbuf,
1788 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1789 intel_logical_ring_emit(ringbuf,
1790 hws_seqno_address(request->engine) |
1791 MI_FLUSH_DW_USE_GTT);
1792 intel_logical_ring_emit(ringbuf, 0);
1793 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1794 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1795 intel_logical_ring_emit(ringbuf, MI_NOOP);
1796 return intel_logical_ring_advance_and_submit(request);
1797 }
1798
1799 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1800 {
1801 struct intel_ringbuffer *ringbuf = request->ringbuf;
1802 int ret;
1803
1804 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1805 if (ret)
1806 return ret;
1807
1808 /* We're using qword write, seqno should be aligned to 8 bytes. */
1809 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1810
1811 /* w/a for post sync ops following a GPGPU operation we
1812 * need a prior CS_STALL, which is emitted by the flush
1813 * following the batch.
1814 */
1815 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1816 intel_logical_ring_emit(ringbuf,
1817 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1818 PIPE_CONTROL_CS_STALL |
1819 PIPE_CONTROL_QW_WRITE));
1820 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1821 intel_logical_ring_emit(ringbuf, 0);
1822 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1823 /* We're thrashing one dword of HWS. */
1824 intel_logical_ring_emit(ringbuf, 0);
1825 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1826 intel_logical_ring_emit(ringbuf, MI_NOOP);
1827 return intel_logical_ring_advance_and_submit(request);
1828 }
1829
1830 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1831 {
1832 struct render_state so;
1833 int ret;
1834
1835 ret = i915_gem_render_state_prepare(req->engine, &so);
1836 if (ret)
1837 return ret;
1838
1839 if (so.rodata == NULL)
1840 return 0;
1841
1842 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1843 I915_DISPATCH_SECURE);
1844 if (ret)
1845 goto out;
1846
1847 ret = req->engine->emit_bb_start(req,
1848 (so.ggtt_offset + so.aux_batch_offset),
1849 I915_DISPATCH_SECURE);
1850 if (ret)
1851 goto out;
1852
1853 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1854
1855 out:
1856 i915_gem_render_state_fini(&so);
1857 return ret;
1858 }
1859
1860 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1861 {
1862 int ret;
1863
1864 ret = intel_logical_ring_workarounds_emit(req);
1865 if (ret)
1866 return ret;
1867
1868 ret = intel_rcs_context_init_mocs(req);
1869 /*
1870 * Failing to program the MOCS is non-fatal.The system will not
1871 * run at peak performance. So generate an error and carry on.
1872 */
1873 if (ret)
1874 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1875
1876 return intel_lr_context_render_state_init(req);
1877 }
1878
1879 /**
1880 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1881 *
1882 * @ring: Engine Command Streamer.
1883 *
1884 */
1885 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1886 {
1887 struct drm_i915_private *dev_priv;
1888
1889 if (!intel_engine_initialized(engine))
1890 return;
1891
1892 /*
1893 * Tasklet cannot be active at this point due intel_mark_active/idle
1894 * so this is just for documentation.
1895 */
1896 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1897 tasklet_kill(&engine->irq_tasklet);
1898
1899 dev_priv = engine->dev->dev_private;
1900
1901 if (engine->buffer) {
1902 intel_logical_ring_stop(engine);
1903 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1904 }
1905
1906 if (engine->cleanup)
1907 engine->cleanup(engine);
1908
1909 i915_cmd_parser_fini_ring(engine);
1910 i915_gem_batch_pool_fini(&engine->batch_pool);
1911
1912 if (engine->status_page.obj) {
1913 i915_gem_object_unpin_map(engine->status_page.obj);
1914 engine->status_page.obj = NULL;
1915 }
1916 intel_lr_context_unpin(dev_priv->kernel_context, engine);
1917
1918 engine->idle_lite_restore_wa = 0;
1919 engine->disable_lite_restore_wa = false;
1920 engine->ctx_desc_template = 0;
1921
1922 lrc_destroy_wa_ctx_obj(engine);
1923 engine->dev = NULL;
1924 }
1925
1926 static void
1927 logical_ring_default_vfuncs(struct drm_device *dev,
1928 struct intel_engine_cs *engine)
1929 {
1930 /* Default vfuncs which can be overriden by each engine. */
1931 engine->init_hw = gen8_init_common_ring;
1932 engine->emit_request = gen8_emit_request;
1933 engine->emit_flush = gen8_emit_flush;
1934 engine->irq_get = gen8_logical_ring_get_irq;
1935 engine->irq_put = gen8_logical_ring_put_irq;
1936 engine->emit_bb_start = gen8_emit_bb_start;
1937 engine->get_seqno = gen8_get_seqno;
1938 engine->set_seqno = gen8_set_seqno;
1939 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1940 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1941 engine->set_seqno = bxt_a_set_seqno;
1942 }
1943 }
1944
1945 static inline void
1946 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1947 {
1948 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1949 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1950 }
1951
1952 static int
1953 lrc_setup_hws(struct intel_engine_cs *engine,
1954 struct drm_i915_gem_object *dctx_obj)
1955 {
1956 void *hws;
1957
1958 /* The HWSP is part of the default context object in LRC mode. */
1959 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1960 LRC_PPHWSP_PN * PAGE_SIZE;
1961 hws = i915_gem_object_pin_map(dctx_obj);
1962 if (IS_ERR(hws))
1963 return PTR_ERR(hws);
1964 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1965 engine->status_page.obj = dctx_obj;
1966
1967 return 0;
1968 }
1969
1970 static int
1971 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
1972 {
1973 struct drm_i915_private *dev_priv = to_i915(dev);
1974 struct intel_context *dctx = dev_priv->kernel_context;
1975 enum forcewake_domains fw_domains;
1976 int ret;
1977
1978 /* Intentionally left blank. */
1979 engine->buffer = NULL;
1980
1981 engine->dev = dev;
1982 INIT_LIST_HEAD(&engine->active_list);
1983 INIT_LIST_HEAD(&engine->request_list);
1984 i915_gem_batch_pool_init(dev, &engine->batch_pool);
1985 init_waitqueue_head(&engine->irq_queue);
1986
1987 INIT_LIST_HEAD(&engine->buffers);
1988 INIT_LIST_HEAD(&engine->execlist_queue);
1989 spin_lock_init(&engine->execlist_lock);
1990
1991 tasklet_init(&engine->irq_tasklet,
1992 intel_lrc_irq_handler, (unsigned long)engine);
1993
1994 logical_ring_init_platform_invariants(engine);
1995
1996 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1997 RING_ELSP(engine),
1998 FW_REG_WRITE);
1999
2000 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2001 RING_CONTEXT_STATUS_PTR(engine),
2002 FW_REG_READ | FW_REG_WRITE);
2003
2004 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2005 RING_CONTEXT_STATUS_BUF_BASE(engine),
2006 FW_REG_READ);
2007
2008 engine->fw_domains = fw_domains;
2009
2010 ret = i915_cmd_parser_init_ring(engine);
2011 if (ret)
2012 goto error;
2013
2014 ret = execlists_context_deferred_alloc(dctx, engine);
2015 if (ret)
2016 goto error;
2017
2018 /* As this is the default context, always pin it */
2019 ret = intel_lr_context_pin(dctx, engine);
2020 if (ret) {
2021 DRM_ERROR("Failed to pin context for %s: %d\n",
2022 engine->name, ret);
2023 goto error;
2024 }
2025
2026 /* And setup the hardware status page. */
2027 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2028 if (ret) {
2029 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2030 goto error;
2031 }
2032
2033 return 0;
2034
2035 error:
2036 intel_logical_ring_cleanup(engine);
2037 return ret;
2038 }
2039
2040 static int logical_render_ring_init(struct drm_device *dev)
2041 {
2042 struct drm_i915_private *dev_priv = dev->dev_private;
2043 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2044 int ret;
2045
2046 engine->name = "render ring";
2047 engine->id = RCS;
2048 engine->exec_id = I915_EXEC_RENDER;
2049 engine->guc_id = GUC_RENDER_ENGINE;
2050 engine->mmio_base = RENDER_RING_BASE;
2051
2052 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2053 if (HAS_L3_DPF(dev))
2054 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2055
2056 logical_ring_default_vfuncs(dev, engine);
2057
2058 /* Override some for render ring. */
2059 if (INTEL_INFO(dev)->gen >= 9)
2060 engine->init_hw = gen9_init_render_ring;
2061 else
2062 engine->init_hw = gen8_init_render_ring;
2063 engine->init_context = gen8_init_rcs_context;
2064 engine->cleanup = intel_fini_pipe_control;
2065 engine->emit_flush = gen8_emit_flush_render;
2066 engine->emit_request = gen8_emit_request_render;
2067
2068 engine->dev = dev;
2069
2070 ret = intel_init_pipe_control(engine);
2071 if (ret)
2072 return ret;
2073
2074 ret = intel_init_workaround_bb(engine);
2075 if (ret) {
2076 /*
2077 * We continue even if we fail to initialize WA batch
2078 * because we only expect rare glitches but nothing
2079 * critical to prevent us from using GPU
2080 */
2081 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2082 ret);
2083 }
2084
2085 ret = logical_ring_init(dev, engine);
2086 if (ret) {
2087 lrc_destroy_wa_ctx_obj(engine);
2088 }
2089
2090 return ret;
2091 }
2092
2093 static int logical_bsd_ring_init(struct drm_device *dev)
2094 {
2095 struct drm_i915_private *dev_priv = dev->dev_private;
2096 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2097
2098 engine->name = "bsd ring";
2099 engine->id = VCS;
2100 engine->exec_id = I915_EXEC_BSD;
2101 engine->guc_id = GUC_VIDEO_ENGINE;
2102 engine->mmio_base = GEN6_BSD_RING_BASE;
2103
2104 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2105 logical_ring_default_vfuncs(dev, engine);
2106
2107 return logical_ring_init(dev, engine);
2108 }
2109
2110 static int logical_bsd2_ring_init(struct drm_device *dev)
2111 {
2112 struct drm_i915_private *dev_priv = dev->dev_private;
2113 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2114
2115 engine->name = "bsd2 ring";
2116 engine->id = VCS2;
2117 engine->exec_id = I915_EXEC_BSD;
2118 engine->guc_id = GUC_VIDEO_ENGINE2;
2119 engine->mmio_base = GEN8_BSD2_RING_BASE;
2120
2121 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2122 logical_ring_default_vfuncs(dev, engine);
2123
2124 return logical_ring_init(dev, engine);
2125 }
2126
2127 static int logical_blt_ring_init(struct drm_device *dev)
2128 {
2129 struct drm_i915_private *dev_priv = dev->dev_private;
2130 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2131
2132 engine->name = "blitter ring";
2133 engine->id = BCS;
2134 engine->exec_id = I915_EXEC_BLT;
2135 engine->guc_id = GUC_BLITTER_ENGINE;
2136 engine->mmio_base = BLT_RING_BASE;
2137
2138 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2139 logical_ring_default_vfuncs(dev, engine);
2140
2141 return logical_ring_init(dev, engine);
2142 }
2143
2144 static int logical_vebox_ring_init(struct drm_device *dev)
2145 {
2146 struct drm_i915_private *dev_priv = dev->dev_private;
2147 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2148
2149 engine->name = "video enhancement ring";
2150 engine->id = VECS;
2151 engine->exec_id = I915_EXEC_VEBOX;
2152 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2153 engine->mmio_base = VEBOX_RING_BASE;
2154
2155 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2156 logical_ring_default_vfuncs(dev, engine);
2157
2158 return logical_ring_init(dev, engine);
2159 }
2160
2161 /**
2162 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2163 * @dev: DRM device.
2164 *
2165 * This function inits the engines for an Execlists submission style (the equivalent in the
2166 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2167 * those engines that are present in the hardware.
2168 *
2169 * Return: non-zero if the initialization failed.
2170 */
2171 int intel_logical_rings_init(struct drm_device *dev)
2172 {
2173 struct drm_i915_private *dev_priv = dev->dev_private;
2174 int ret;
2175
2176 ret = logical_render_ring_init(dev);
2177 if (ret)
2178 return ret;
2179
2180 if (HAS_BSD(dev)) {
2181 ret = logical_bsd_ring_init(dev);
2182 if (ret)
2183 goto cleanup_render_ring;
2184 }
2185
2186 if (HAS_BLT(dev)) {
2187 ret = logical_blt_ring_init(dev);
2188 if (ret)
2189 goto cleanup_bsd_ring;
2190 }
2191
2192 if (HAS_VEBOX(dev)) {
2193 ret = logical_vebox_ring_init(dev);
2194 if (ret)
2195 goto cleanup_blt_ring;
2196 }
2197
2198 if (HAS_BSD2(dev)) {
2199 ret = logical_bsd2_ring_init(dev);
2200 if (ret)
2201 goto cleanup_vebox_ring;
2202 }
2203
2204 return 0;
2205
2206 cleanup_vebox_ring:
2207 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2208 cleanup_blt_ring:
2209 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2210 cleanup_bsd_ring:
2211 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2212 cleanup_render_ring:
2213 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2214
2215 return ret;
2216 }
2217
2218 static u32
2219 make_rpcs(struct drm_device *dev)
2220 {
2221 u32 rpcs = 0;
2222
2223 /*
2224 * No explicit RPCS request is needed to ensure full
2225 * slice/subslice/EU enablement prior to Gen9.
2226 */
2227 if (INTEL_INFO(dev)->gen < 9)
2228 return 0;
2229
2230 /*
2231 * Starting in Gen9, render power gating can leave
2232 * slice/subslice/EU in a partially enabled state. We
2233 * must make an explicit request through RPCS for full
2234 * enablement.
2235 */
2236 if (INTEL_INFO(dev)->has_slice_pg) {
2237 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2238 rpcs |= INTEL_INFO(dev)->slice_total <<
2239 GEN8_RPCS_S_CNT_SHIFT;
2240 rpcs |= GEN8_RPCS_ENABLE;
2241 }
2242
2243 if (INTEL_INFO(dev)->has_subslice_pg) {
2244 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2245 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2246 GEN8_RPCS_SS_CNT_SHIFT;
2247 rpcs |= GEN8_RPCS_ENABLE;
2248 }
2249
2250 if (INTEL_INFO(dev)->has_eu_pg) {
2251 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2252 GEN8_RPCS_EU_MIN_SHIFT;
2253 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2254 GEN8_RPCS_EU_MAX_SHIFT;
2255 rpcs |= GEN8_RPCS_ENABLE;
2256 }
2257
2258 return rpcs;
2259 }
2260
2261 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2262 {
2263 u32 indirect_ctx_offset;
2264
2265 switch (INTEL_INFO(engine->dev)->gen) {
2266 default:
2267 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2268 /* fall through */
2269 case 9:
2270 indirect_ctx_offset =
2271 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2272 break;
2273 case 8:
2274 indirect_ctx_offset =
2275 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2276 break;
2277 }
2278
2279 return indirect_ctx_offset;
2280 }
2281
2282 static int
2283 populate_lr_context(struct intel_context *ctx,
2284 struct drm_i915_gem_object *ctx_obj,
2285 struct intel_engine_cs *engine,
2286 struct intel_ringbuffer *ringbuf)
2287 {
2288 struct drm_device *dev = engine->dev;
2289 struct drm_i915_private *dev_priv = dev->dev_private;
2290 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2291 void *vaddr;
2292 u32 *reg_state;
2293 int ret;
2294
2295 if (!ppgtt)
2296 ppgtt = dev_priv->mm.aliasing_ppgtt;
2297
2298 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2299 if (ret) {
2300 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2301 return ret;
2302 }
2303
2304 vaddr = i915_gem_object_pin_map(ctx_obj);
2305 if (IS_ERR(vaddr)) {
2306 ret = PTR_ERR(vaddr);
2307 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2308 return ret;
2309 }
2310 ctx_obj->dirty = true;
2311
2312 /* The second page of the context object contains some fields which must
2313 * be set up prior to the first execution. */
2314 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2315
2316 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2317 * commands followed by (reg, value) pairs. The values we are setting here are
2318 * only for the first context restore: on a subsequent save, the GPU will
2319 * recreate this batchbuffer with new values (including all the missing
2320 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2321 reg_state[CTX_LRI_HEADER_0] =
2322 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2323 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2324 RING_CONTEXT_CONTROL(engine),
2325 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2326 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2327 (HAS_RESOURCE_STREAMER(dev) ?
2328 CTX_CTRL_RS_CTX_ENABLE : 0)));
2329 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2330 0);
2331 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2332 0);
2333 /* Ring buffer start address is not known until the buffer is pinned.
2334 * It is written to the context image in execlists_update_context()
2335 */
2336 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2337 RING_START(engine->mmio_base), 0);
2338 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2339 RING_CTL(engine->mmio_base),
2340 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2341 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2342 RING_BBADDR_UDW(engine->mmio_base), 0);
2343 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2344 RING_BBADDR(engine->mmio_base), 0);
2345 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2346 RING_BBSTATE(engine->mmio_base),
2347 RING_BB_PPGTT);
2348 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2349 RING_SBBADDR_UDW(engine->mmio_base), 0);
2350 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2351 RING_SBBADDR(engine->mmio_base), 0);
2352 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2353 RING_SBBSTATE(engine->mmio_base), 0);
2354 if (engine->id == RCS) {
2355 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2356 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2357 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2358 RING_INDIRECT_CTX(engine->mmio_base), 0);
2359 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2360 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2361 if (engine->wa_ctx.obj) {
2362 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2363 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2364
2365 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2366 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2367 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2368
2369 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2370 intel_lr_indirect_ctx_offset(engine) << 6;
2371
2372 reg_state[CTX_BB_PER_CTX_PTR+1] =
2373 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2374 0x01;
2375 }
2376 }
2377 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2378 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2379 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2380 /* PDP values well be assigned later if needed */
2381 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2382 0);
2383 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2384 0);
2385 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2386 0);
2387 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2388 0);
2389 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2390 0);
2391 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2392 0);
2393 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2394 0);
2395 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2396 0);
2397
2398 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2399 /* 64b PPGTT (48bit canonical)
2400 * PDP0_DESCRIPTOR contains the base address to PML4 and
2401 * other PDP Descriptors are ignored.
2402 */
2403 ASSIGN_CTX_PML4(ppgtt, reg_state);
2404 } else {
2405 /* 32b PPGTT
2406 * PDP*_DESCRIPTOR contains the base address of space supported.
2407 * With dynamic page allocation, PDPs may not be allocated at
2408 * this point. Point the unallocated PDPs to the scratch page
2409 */
2410 execlists_update_context_pdps(ppgtt, reg_state);
2411 }
2412
2413 if (engine->id == RCS) {
2414 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2415 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2416 make_rpcs(dev));
2417 }
2418
2419 i915_gem_object_unpin_map(ctx_obj);
2420
2421 return 0;
2422 }
2423
2424 /**
2425 * intel_lr_context_free() - free the LRC specific bits of a context
2426 * @ctx: the LR context to free.
2427 *
2428 * The real context freeing is done in i915_gem_context_free: this only
2429 * takes care of the bits that are LRC related: the per-engine backing
2430 * objects and the logical ringbuffer.
2431 */
2432 void intel_lr_context_free(struct intel_context *ctx)
2433 {
2434 int i;
2435
2436 for (i = I915_NUM_ENGINES; --i >= 0; ) {
2437 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2438 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2439
2440 if (!ctx_obj)
2441 continue;
2442
2443 WARN_ON(ctx->engine[i].pin_count);
2444 intel_ringbuffer_free(ringbuf);
2445 drm_gem_object_unreference(&ctx_obj->base);
2446 }
2447 }
2448
2449 /**
2450 * intel_lr_context_size() - return the size of the context for an engine
2451 * @ring: which engine to find the context size for
2452 *
2453 * Each engine may require a different amount of space for a context image,
2454 * so when allocating (or copying) an image, this function can be used to
2455 * find the right size for the specific engine.
2456 *
2457 * Return: size (in bytes) of an engine-specific context image
2458 *
2459 * Note: this size includes the HWSP, which is part of the context image
2460 * in LRC mode, but does not include the "shared data page" used with
2461 * GuC submission. The caller should account for this if using the GuC.
2462 */
2463 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2464 {
2465 int ret = 0;
2466
2467 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2468
2469 switch (engine->id) {
2470 case RCS:
2471 if (INTEL_INFO(engine->dev)->gen >= 9)
2472 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2473 else
2474 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2475 break;
2476 case VCS:
2477 case BCS:
2478 case VECS:
2479 case VCS2:
2480 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2481 break;
2482 }
2483
2484 return ret;
2485 }
2486
2487 /**
2488 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2489 * @ctx: LR context to create.
2490 * @engine: engine to be used with the context.
2491 *
2492 * This function can be called more than once, with different engines, if we plan
2493 * to use the context with them. The context backing objects and the ringbuffers
2494 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2495 * the creation is a deferred call: it's better to make sure first that we need to use
2496 * a given ring with the context.
2497 *
2498 * Return: non-zero on error.
2499 */
2500 static int execlists_context_deferred_alloc(struct intel_context *ctx,
2501 struct intel_engine_cs *engine)
2502 {
2503 struct drm_device *dev = engine->dev;
2504 struct drm_i915_gem_object *ctx_obj;
2505 uint32_t context_size;
2506 struct intel_ringbuffer *ringbuf;
2507 int ret;
2508
2509 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2510 WARN_ON(ctx->engine[engine->id].state);
2511
2512 context_size = round_up(intel_lr_context_size(engine), 4096);
2513
2514 /* One extra page as the sharing data between driver and GuC */
2515 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2516
2517 ctx_obj = i915_gem_object_create(dev, context_size);
2518 if (IS_ERR(ctx_obj)) {
2519 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2520 return PTR_ERR(ctx_obj);
2521 }
2522
2523 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2524 if (IS_ERR(ringbuf)) {
2525 ret = PTR_ERR(ringbuf);
2526 goto error_deref_obj;
2527 }
2528
2529 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2530 if (ret) {
2531 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2532 goto error_ringbuf;
2533 }
2534
2535 ctx->engine[engine->id].ringbuf = ringbuf;
2536 ctx->engine[engine->id].state = ctx_obj;
2537 ctx->engine[engine->id].initialised = engine->init_context == NULL;
2538
2539 return 0;
2540
2541 error_ringbuf:
2542 intel_ringbuffer_free(ringbuf);
2543 error_deref_obj:
2544 drm_gem_object_unreference(&ctx_obj->base);
2545 ctx->engine[engine->id].ringbuf = NULL;
2546 ctx->engine[engine->id].state = NULL;
2547 return ret;
2548 }
2549
2550 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2551 struct intel_context *ctx)
2552 {
2553 struct intel_engine_cs *engine;
2554
2555 for_each_engine(engine, dev_priv) {
2556 struct drm_i915_gem_object *ctx_obj =
2557 ctx->engine[engine->id].state;
2558 struct intel_ringbuffer *ringbuf =
2559 ctx->engine[engine->id].ringbuf;
2560 void *vaddr;
2561 uint32_t *reg_state;
2562
2563 if (!ctx_obj)
2564 continue;
2565
2566 vaddr = i915_gem_object_pin_map(ctx_obj);
2567 if (WARN_ON(IS_ERR(vaddr)))
2568 continue;
2569
2570 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2571 ctx_obj->dirty = true;
2572
2573 reg_state[CTX_RING_HEAD+1] = 0;
2574 reg_state[CTX_RING_TAIL+1] = 0;
2575
2576 i915_gem_object_unpin_map(ctx_obj);
2577
2578 ringbuf->head = 0;
2579 ringbuf->tail = 0;
2580 }
2581 }
This page took 0.106883 seconds and 6 git commands to generate.