drm/i915: Drop unused position fields (v2)
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL (1 << 0x2)
144 #define RING_EXECLIST1_VALID (1 << 0x3)
145 #define RING_EXECLIST0_VALID (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156
157 #define CTX_LRI_HEADER_0 0x01
158 #define CTX_CONTEXT_CONTROL 0x02
159 #define CTX_RING_HEAD 0x04
160 #define CTX_RING_TAIL 0x06
161 #define CTX_RING_BUFFER_START 0x08
162 #define CTX_RING_BUFFER_CONTROL 0x0a
163 #define CTX_BB_HEAD_U 0x0c
164 #define CTX_BB_HEAD_L 0x0e
165 #define CTX_BB_STATE 0x10
166 #define CTX_SECOND_BB_HEAD_U 0x12
167 #define CTX_SECOND_BB_HEAD_L 0x14
168 #define CTX_SECOND_BB_STATE 0x16
169 #define CTX_BB_PER_CTX_PTR 0x18
170 #define CTX_RCS_INDIRECT_CTX 0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172 #define CTX_LRI_HEADER_1 0x21
173 #define CTX_CTX_TIMESTAMP 0x22
174 #define CTX_PDP3_UDW 0x24
175 #define CTX_PDP3_LDW 0x26
176 #define CTX_PDP2_UDW 0x28
177 #define CTX_PDP2_LDW 0x2a
178 #define CTX_PDP1_UDW 0x2c
179 #define CTX_PDP1_LDW 0x2e
180 #define CTX_PDP0_UDW 0x30
181 #define CTX_PDP0_LDW 0x32
182 #define CTX_LRI_HEADER_2 0x41
183 #define CTX_R_PWR_CLK_STATE 0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191 enum {
192 ADVANCED_CONTEXT = 0,
193 LEGACY_CONTEXT,
194 ADVANCED_AD_CONTEXT,
195 LEGACY_64B_CONTEXT
196 };
197 #define GEN8_CTX_MODE_SHIFT 3
198 enum {
199 FAULT_AND_HANG = 0,
200 FAULT_AND_HALT, /* Debug only */
201 FAULT_AND_STREAM,
202 FAULT_AND_CONTINUE /* Unsupported */
203 };
204 #define GEN8_CTX_ID_SHIFT 32
205
206 static int intel_lr_context_pin(struct intel_engine_cs *ring,
207 struct intel_context *ctx);
208
209 /**
210 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
211 * @dev: DRM device.
212 * @enable_execlists: value of i915.enable_execlists module parameter.
213 *
214 * Only certain platforms support Execlists (the prerequisites being
215 * support for Logical Ring Contexts and Aliasing PPGTT or better).
216 *
217 * Return: 1 if Execlists is supported and has to be enabled.
218 */
219 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
220 {
221 WARN_ON(i915.enable_ppgtt == -1);
222
223 if (INTEL_INFO(dev)->gen >= 9)
224 return 1;
225
226 if (enable_execlists == 0)
227 return 0;
228
229 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
230 i915.use_mmio_flip >= 0)
231 return 1;
232
233 return 0;
234 }
235
236 /**
237 * intel_execlists_ctx_id() - get the Execlists Context ID
238 * @ctx_obj: Logical Ring Context backing object.
239 *
240 * Do not confuse with ctx->id! Unfortunately we have a name overload
241 * here: the old context ID we pass to userspace as a handler so that
242 * they can refer to a context, and the new context ID we pass to the
243 * ELSP so that the GPU can inform us of the context status via
244 * interrupts.
245 *
246 * Return: 20-bits globally unique context ID.
247 */
248 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
249 {
250 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
251
252 /* LRCA is required to be 4K aligned so the more significant 20 bits
253 * are globally unique */
254 return lrca >> 12;
255 }
256
257 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
258 {
259 uint64_t desc;
260 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
261
262 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
263
264 desc = GEN8_CTX_VALID;
265 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
266 desc |= GEN8_CTX_L3LLC_COHERENT;
267 desc |= GEN8_CTX_PRIVILEGE;
268 desc |= lrca;
269 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
270
271 /* TODO: WaDisableLiteRestore when we start using semaphore
272 * signalling between Command Streamers */
273 /* desc |= GEN8_CTX_FORCE_RESTORE; */
274
275 return desc;
276 }
277
278 static void execlists_elsp_write(struct intel_engine_cs *ring,
279 struct drm_i915_gem_object *ctx_obj0,
280 struct drm_i915_gem_object *ctx_obj1)
281 {
282 struct drm_device *dev = ring->dev;
283 struct drm_i915_private *dev_priv = dev->dev_private;
284 uint64_t temp = 0;
285 uint32_t desc[4];
286 unsigned long flags;
287
288 /* XXX: You must always write both descriptors in the order below. */
289 if (ctx_obj1)
290 temp = execlists_ctx_descriptor(ctx_obj1);
291 else
292 temp = 0;
293 desc[1] = (u32)(temp >> 32);
294 desc[0] = (u32)temp;
295
296 temp = execlists_ctx_descriptor(ctx_obj0);
297 desc[3] = (u32)(temp >> 32);
298 desc[2] = (u32)temp;
299
300 /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
301 * are in progress.
302 *
303 * The other problem is that we can't just call gen6_gt_force_wake_get()
304 * because that function calls intel_runtime_pm_get(), which might sleep.
305 * Instead, we do the runtime_pm_get/put when creating/destroying requests.
306 */
307 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
308 if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
309 if (dev_priv->uncore.fw_rendercount++ == 0)
310 dev_priv->uncore.funcs.force_wake_get(dev_priv,
311 FORCEWAKE_RENDER);
312 if (dev_priv->uncore.fw_mediacount++ == 0)
313 dev_priv->uncore.funcs.force_wake_get(dev_priv,
314 FORCEWAKE_MEDIA);
315 if (INTEL_INFO(dev)->gen >= 9) {
316 if (dev_priv->uncore.fw_blittercount++ == 0)
317 dev_priv->uncore.funcs.force_wake_get(dev_priv,
318 FORCEWAKE_BLITTER);
319 }
320 } else {
321 if (dev_priv->uncore.forcewake_count++ == 0)
322 dev_priv->uncore.funcs.force_wake_get(dev_priv,
323 FORCEWAKE_ALL);
324 }
325 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
326
327 I915_WRITE(RING_ELSP(ring), desc[1]);
328 I915_WRITE(RING_ELSP(ring), desc[0]);
329 I915_WRITE(RING_ELSP(ring), desc[3]);
330 /* The context is automatically loaded after the following */
331 I915_WRITE(RING_ELSP(ring), desc[2]);
332
333 /* ELSP is a wo register, so use another nearby reg for posting instead */
334 POSTING_READ(RING_EXECLIST_STATUS(ring));
335
336 /* Release Force Wakeup (see the big comment above). */
337 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
338 if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
339 if (--dev_priv->uncore.fw_rendercount == 0)
340 dev_priv->uncore.funcs.force_wake_put(dev_priv,
341 FORCEWAKE_RENDER);
342 if (--dev_priv->uncore.fw_mediacount == 0)
343 dev_priv->uncore.funcs.force_wake_put(dev_priv,
344 FORCEWAKE_MEDIA);
345 if (INTEL_INFO(dev)->gen >= 9) {
346 if (--dev_priv->uncore.fw_blittercount == 0)
347 dev_priv->uncore.funcs.force_wake_put(dev_priv,
348 FORCEWAKE_BLITTER);
349 }
350 } else {
351 if (--dev_priv->uncore.forcewake_count == 0)
352 dev_priv->uncore.funcs.force_wake_put(dev_priv,
353 FORCEWAKE_ALL);
354 }
355
356 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
357 }
358
359 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
360 struct drm_i915_gem_object *ring_obj,
361 u32 tail)
362 {
363 struct page *page;
364 uint32_t *reg_state;
365
366 page = i915_gem_object_get_page(ctx_obj, 1);
367 reg_state = kmap_atomic(page);
368
369 reg_state[CTX_RING_TAIL+1] = tail;
370 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
371
372 kunmap_atomic(reg_state);
373
374 return 0;
375 }
376
377 static void execlists_submit_contexts(struct intel_engine_cs *ring,
378 struct intel_context *to0, u32 tail0,
379 struct intel_context *to1, u32 tail1)
380 {
381 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
382 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
383 struct drm_i915_gem_object *ctx_obj1 = NULL;
384 struct intel_ringbuffer *ringbuf1 = NULL;
385
386 BUG_ON(!ctx_obj0);
387 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
388 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
389
390 execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
391
392 if (to1) {
393 ringbuf1 = to1->engine[ring->id].ringbuf;
394 ctx_obj1 = to1->engine[ring->id].state;
395 BUG_ON(!ctx_obj1);
396 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
397 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
398
399 execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
400 }
401
402 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
403 }
404
405 static void execlists_context_unqueue(struct intel_engine_cs *ring)
406 {
407 struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
408 struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
409
410 assert_spin_locked(&ring->execlist_lock);
411
412 if (list_empty(&ring->execlist_queue))
413 return;
414
415 /* Try to read in pairs */
416 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
417 execlist_link) {
418 if (!req0) {
419 req0 = cursor;
420 } else if (req0->ctx == cursor->ctx) {
421 /* Same ctx: ignore first request, as second request
422 * will update tail past first request's workload */
423 cursor->elsp_submitted = req0->elsp_submitted;
424 list_del(&req0->execlist_link);
425 list_add_tail(&req0->execlist_link,
426 &ring->execlist_retired_req_list);
427 req0 = cursor;
428 } else {
429 req1 = cursor;
430 break;
431 }
432 }
433
434 WARN_ON(req1 && req1->elsp_submitted);
435
436 execlists_submit_contexts(ring, req0->ctx, req0->tail,
437 req1 ? req1->ctx : NULL,
438 req1 ? req1->tail : 0);
439
440 req0->elsp_submitted++;
441 if (req1)
442 req1->elsp_submitted++;
443 }
444
445 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
446 u32 request_id)
447 {
448 struct intel_ctx_submit_request *head_req;
449
450 assert_spin_locked(&ring->execlist_lock);
451
452 head_req = list_first_entry_or_null(&ring->execlist_queue,
453 struct intel_ctx_submit_request,
454 execlist_link);
455
456 if (head_req != NULL) {
457 struct drm_i915_gem_object *ctx_obj =
458 head_req->ctx->engine[ring->id].state;
459 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
460 WARN(head_req->elsp_submitted == 0,
461 "Never submitted head request\n");
462
463 if (--head_req->elsp_submitted <= 0) {
464 list_del(&head_req->execlist_link);
465 list_add_tail(&head_req->execlist_link,
466 &ring->execlist_retired_req_list);
467 return true;
468 }
469 }
470 }
471
472 return false;
473 }
474
475 /**
476 * intel_lrc_irq_handler() - handle Context Switch interrupts
477 * @ring: Engine Command Streamer to handle.
478 *
479 * Check the unread Context Status Buffers and manage the submission of new
480 * contexts to the ELSP accordingly.
481 */
482 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
483 {
484 struct drm_i915_private *dev_priv = ring->dev->dev_private;
485 u32 status_pointer;
486 u8 read_pointer;
487 u8 write_pointer;
488 u32 status;
489 u32 status_id;
490 u32 submit_contexts = 0;
491
492 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
493
494 read_pointer = ring->next_context_status_buffer;
495 write_pointer = status_pointer & 0x07;
496 if (read_pointer > write_pointer)
497 write_pointer += 6;
498
499 spin_lock(&ring->execlist_lock);
500
501 while (read_pointer < write_pointer) {
502 read_pointer++;
503 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
504 (read_pointer % 6) * 8);
505 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
506 (read_pointer % 6) * 8 + 4);
507
508 if (status & GEN8_CTX_STATUS_PREEMPTED) {
509 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
510 if (execlists_check_remove_request(ring, status_id))
511 WARN(1, "Lite Restored request removed from queue\n");
512 } else
513 WARN(1, "Preemption without Lite Restore\n");
514 }
515
516 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
517 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
518 if (execlists_check_remove_request(ring, status_id))
519 submit_contexts++;
520 }
521 }
522
523 if (submit_contexts != 0)
524 execlists_context_unqueue(ring);
525
526 spin_unlock(&ring->execlist_lock);
527
528 WARN(submit_contexts > 2, "More than two context complete events?\n");
529 ring->next_context_status_buffer = write_pointer % 6;
530
531 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
532 ((u32)ring->next_context_status_buffer & 0x07) << 8);
533 }
534
535 static int execlists_context_queue(struct intel_engine_cs *ring,
536 struct intel_context *to,
537 u32 tail)
538 {
539 struct intel_ctx_submit_request *req = NULL, *cursor;
540 struct drm_i915_private *dev_priv = ring->dev->dev_private;
541 unsigned long flags;
542 int num_elements = 0;
543
544 req = kzalloc(sizeof(*req), GFP_KERNEL);
545 if (req == NULL)
546 return -ENOMEM;
547 req->ctx = to;
548 i915_gem_context_reference(req->ctx);
549
550 if (to != ring->default_context)
551 intel_lr_context_pin(ring, to);
552
553 req->ring = ring;
554 req->tail = tail;
555
556 intel_runtime_pm_get(dev_priv);
557
558 spin_lock_irqsave(&ring->execlist_lock, flags);
559
560 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
561 if (++num_elements > 2)
562 break;
563
564 if (num_elements > 2) {
565 struct intel_ctx_submit_request *tail_req;
566
567 tail_req = list_last_entry(&ring->execlist_queue,
568 struct intel_ctx_submit_request,
569 execlist_link);
570
571 if (to == tail_req->ctx) {
572 WARN(tail_req->elsp_submitted != 0,
573 "More than 2 already-submitted reqs queued\n");
574 list_del(&tail_req->execlist_link);
575 list_add_tail(&tail_req->execlist_link,
576 &ring->execlist_retired_req_list);
577 }
578 }
579
580 list_add_tail(&req->execlist_link, &ring->execlist_queue);
581 if (num_elements == 0)
582 execlists_context_unqueue(ring);
583
584 spin_unlock_irqrestore(&ring->execlist_lock, flags);
585
586 return 0;
587 }
588
589 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
590 {
591 struct intel_engine_cs *ring = ringbuf->ring;
592 uint32_t flush_domains;
593 int ret;
594
595 flush_domains = 0;
596 if (ring->gpu_caches_dirty)
597 flush_domains = I915_GEM_GPU_DOMAINS;
598
599 ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
600 if (ret)
601 return ret;
602
603 ring->gpu_caches_dirty = false;
604 return 0;
605 }
606
607 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
608 struct list_head *vmas)
609 {
610 struct intel_engine_cs *ring = ringbuf->ring;
611 struct i915_vma *vma;
612 uint32_t flush_domains = 0;
613 bool flush_chipset = false;
614 int ret;
615
616 list_for_each_entry(vma, vmas, exec_list) {
617 struct drm_i915_gem_object *obj = vma->obj;
618
619 ret = i915_gem_object_sync(obj, ring);
620 if (ret)
621 return ret;
622
623 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
624 flush_chipset |= i915_gem_clflush_object(obj, false);
625
626 flush_domains |= obj->base.write_domain;
627 }
628
629 if (flush_domains & I915_GEM_DOMAIN_GTT)
630 wmb();
631
632 /* Unconditionally invalidate gpu caches and ensure that we do flush
633 * any residual writes from the previous batch.
634 */
635 return logical_ring_invalidate_all_caches(ringbuf);
636 }
637
638 /**
639 * execlists_submission() - submit a batchbuffer for execution, Execlists style
640 * @dev: DRM device.
641 * @file: DRM file.
642 * @ring: Engine Command Streamer to submit to.
643 * @ctx: Context to employ for this submission.
644 * @args: execbuffer call arguments.
645 * @vmas: list of vmas.
646 * @batch_obj: the batchbuffer to submit.
647 * @exec_start: batchbuffer start virtual address pointer.
648 * @flags: translated execbuffer call flags.
649 *
650 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
651 * away the submission details of the execbuffer ioctl call.
652 *
653 * Return: non-zero if the submission fails.
654 */
655 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
656 struct intel_engine_cs *ring,
657 struct intel_context *ctx,
658 struct drm_i915_gem_execbuffer2 *args,
659 struct list_head *vmas,
660 struct drm_i915_gem_object *batch_obj,
661 u64 exec_start, u32 flags)
662 {
663 struct drm_i915_private *dev_priv = dev->dev_private;
664 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
665 int instp_mode;
666 u32 instp_mask;
667 int ret;
668
669 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
670 instp_mask = I915_EXEC_CONSTANTS_MASK;
671 switch (instp_mode) {
672 case I915_EXEC_CONSTANTS_REL_GENERAL:
673 case I915_EXEC_CONSTANTS_ABSOLUTE:
674 case I915_EXEC_CONSTANTS_REL_SURFACE:
675 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
676 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
677 return -EINVAL;
678 }
679
680 if (instp_mode != dev_priv->relative_constants_mode) {
681 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
682 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
683 return -EINVAL;
684 }
685
686 /* The HW changed the meaning on this bit on gen6 */
687 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
688 }
689 break;
690 default:
691 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
692 return -EINVAL;
693 }
694
695 if (args->num_cliprects != 0) {
696 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
697 return -EINVAL;
698 } else {
699 if (args->DR4 == 0xffffffff) {
700 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
701 args->DR4 = 0;
702 }
703
704 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
705 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
706 return -EINVAL;
707 }
708 }
709
710 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
711 DRM_DEBUG("sol reset is gen7 only\n");
712 return -EINVAL;
713 }
714
715 ret = execlists_move_to_gpu(ringbuf, vmas);
716 if (ret)
717 return ret;
718
719 if (ring == &dev_priv->ring[RCS] &&
720 instp_mode != dev_priv->relative_constants_mode) {
721 ret = intel_logical_ring_begin(ringbuf, 4);
722 if (ret)
723 return ret;
724
725 intel_logical_ring_emit(ringbuf, MI_NOOP);
726 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
727 intel_logical_ring_emit(ringbuf, INSTPM);
728 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
729 intel_logical_ring_advance(ringbuf);
730
731 dev_priv->relative_constants_mode = instp_mode;
732 }
733
734 ret = ring->emit_bb_start(ringbuf, exec_start, flags);
735 if (ret)
736 return ret;
737
738 i915_gem_execbuffer_move_to_active(vmas, ring);
739 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
740
741 return 0;
742 }
743
744 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
745 {
746 struct intel_ctx_submit_request *req, *tmp;
747 struct drm_i915_private *dev_priv = ring->dev->dev_private;
748 unsigned long flags;
749 struct list_head retired_list;
750
751 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
752 if (list_empty(&ring->execlist_retired_req_list))
753 return;
754
755 INIT_LIST_HEAD(&retired_list);
756 spin_lock_irqsave(&ring->execlist_lock, flags);
757 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
758 spin_unlock_irqrestore(&ring->execlist_lock, flags);
759
760 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
761 struct intel_context *ctx = req->ctx;
762 struct drm_i915_gem_object *ctx_obj =
763 ctx->engine[ring->id].state;
764
765 if (ctx_obj && (ctx != ring->default_context))
766 intel_lr_context_unpin(ring, ctx);
767 intel_runtime_pm_put(dev_priv);
768 i915_gem_context_unreference(req->ctx);
769 list_del(&req->execlist_link);
770 kfree(req);
771 }
772 }
773
774 void intel_logical_ring_stop(struct intel_engine_cs *ring)
775 {
776 struct drm_i915_private *dev_priv = ring->dev->dev_private;
777 int ret;
778
779 if (!intel_ring_initialized(ring))
780 return;
781
782 ret = intel_ring_idle(ring);
783 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
784 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
785 ring->name, ret);
786
787 /* TODO: Is this correct with Execlists enabled? */
788 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
789 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
790 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
791 return;
792 }
793 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
794 }
795
796 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
797 {
798 struct intel_engine_cs *ring = ringbuf->ring;
799 int ret;
800
801 if (!ring->gpu_caches_dirty)
802 return 0;
803
804 ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
805 if (ret)
806 return ret;
807
808 ring->gpu_caches_dirty = false;
809 return 0;
810 }
811
812 /**
813 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
814 * @ringbuf: Logical Ringbuffer to advance.
815 *
816 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
817 * really happens during submission is that the context and current tail will be placed
818 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
819 * point, the tail *inside* the context is updated and the ELSP written to.
820 */
821 void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
822 {
823 struct intel_engine_cs *ring = ringbuf->ring;
824 struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
825
826 intel_logical_ring_advance(ringbuf);
827
828 if (intel_ring_stopped(ring))
829 return;
830
831 execlists_context_queue(ring, ctx, ringbuf->tail);
832 }
833
834 static int intel_lr_context_pin(struct intel_engine_cs *ring,
835 struct intel_context *ctx)
836 {
837 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
838 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
839 int ret = 0;
840
841 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
842 if (ctx->engine[ring->id].unpin_count++ == 0) {
843 ret = i915_gem_obj_ggtt_pin(ctx_obj,
844 GEN8_LR_CONTEXT_ALIGN, 0);
845 if (ret)
846 goto reset_unpin_count;
847
848 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
849 if (ret)
850 goto unpin_ctx_obj;
851 }
852
853 return ret;
854
855 unpin_ctx_obj:
856 i915_gem_object_ggtt_unpin(ctx_obj);
857 reset_unpin_count:
858 ctx->engine[ring->id].unpin_count = 0;
859
860 return ret;
861 }
862
863 void intel_lr_context_unpin(struct intel_engine_cs *ring,
864 struct intel_context *ctx)
865 {
866 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
867 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
868
869 if (ctx_obj) {
870 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
871 if (--ctx->engine[ring->id].unpin_count == 0) {
872 intel_unpin_ringbuffer_obj(ringbuf);
873 i915_gem_object_ggtt_unpin(ctx_obj);
874 }
875 }
876 }
877
878 static int logical_ring_alloc_request(struct intel_engine_cs *ring,
879 struct intel_context *ctx)
880 {
881 struct drm_i915_gem_request *request;
882 struct drm_i915_private *dev_private = ring->dev->dev_private;
883 int ret;
884
885 if (ring->outstanding_lazy_request)
886 return 0;
887
888 request = kzalloc(sizeof(*request), GFP_KERNEL);
889 if (request == NULL)
890 return -ENOMEM;
891
892 if (ctx != ring->default_context) {
893 ret = intel_lr_context_pin(ring, ctx);
894 if (ret) {
895 kfree(request);
896 return ret;
897 }
898 }
899
900 kref_init(&request->ref);
901 request->ring = ring;
902 request->uniq = dev_private->request_uniq++;
903
904 ret = i915_gem_get_seqno(ring->dev, &request->seqno);
905 if (ret) {
906 intel_lr_context_unpin(ring, ctx);
907 kfree(request);
908 return ret;
909 }
910
911 /* Hold a reference to the context this request belongs to
912 * (we will need it when the time comes to emit/retire the
913 * request).
914 */
915 request->ctx = ctx;
916 i915_gem_context_reference(request->ctx);
917
918 ring->outstanding_lazy_request = request;
919 return 0;
920 }
921
922 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
923 int bytes)
924 {
925 struct intel_engine_cs *ring = ringbuf->ring;
926 struct drm_i915_gem_request *request;
927 int ret;
928
929 if (intel_ring_space(ringbuf) >= bytes)
930 return 0;
931
932 list_for_each_entry(request, &ring->request_list, list) {
933 /*
934 * The request queue is per-engine, so can contain requests
935 * from multiple ringbuffers. Here, we must ignore any that
936 * aren't from the ringbuffer we're considering.
937 */
938 struct intel_context *ctx = request->ctx;
939 if (ctx->engine[ring->id].ringbuf != ringbuf)
940 continue;
941
942 /* Would completion of this request free enough space? */
943 if (__intel_ring_space(request->tail, ringbuf->tail,
944 ringbuf->size) >= bytes) {
945 break;
946 }
947 }
948
949 if (&request->list == &ring->request_list)
950 return -ENOSPC;
951
952 ret = i915_wait_request(request);
953 if (ret)
954 return ret;
955
956 i915_gem_retire_requests_ring(ring);
957
958 return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
959 }
960
961 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
962 int bytes)
963 {
964 struct intel_engine_cs *ring = ringbuf->ring;
965 struct drm_device *dev = ring->dev;
966 struct drm_i915_private *dev_priv = dev->dev_private;
967 unsigned long end;
968 int ret;
969
970 ret = logical_ring_wait_request(ringbuf, bytes);
971 if (ret != -ENOSPC)
972 return ret;
973
974 /* Force the context submission in case we have been skipping it */
975 intel_logical_ring_advance_and_submit(ringbuf);
976
977 /* With GEM the hangcheck timer should kick us out of the loop,
978 * leaving it early runs the risk of corrupting GEM state (due
979 * to running on almost untested codepaths). But on resume
980 * timers don't work yet, so prevent a complete hang in that
981 * case by choosing an insanely large timeout. */
982 end = jiffies + 60 * HZ;
983
984 ret = 0;
985 do {
986 if (intel_ring_space(ringbuf) >= bytes)
987 break;
988
989 msleep(1);
990
991 if (dev_priv->mm.interruptible && signal_pending(current)) {
992 ret = -ERESTARTSYS;
993 break;
994 }
995
996 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
997 dev_priv->mm.interruptible);
998 if (ret)
999 break;
1000
1001 if (time_after(jiffies, end)) {
1002 ret = -EBUSY;
1003 break;
1004 }
1005 } while (1);
1006
1007 return ret;
1008 }
1009
1010 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
1011 {
1012 uint32_t __iomem *virt;
1013 int rem = ringbuf->size - ringbuf->tail;
1014
1015 if (ringbuf->space < rem) {
1016 int ret = logical_ring_wait_for_space(ringbuf, rem);
1017
1018 if (ret)
1019 return ret;
1020 }
1021
1022 virt = ringbuf->virtual_start + ringbuf->tail;
1023 rem /= 4;
1024 while (rem--)
1025 iowrite32(MI_NOOP, virt++);
1026
1027 ringbuf->tail = 0;
1028 intel_ring_update_space(ringbuf);
1029
1030 return 0;
1031 }
1032
1033 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
1034 {
1035 int ret;
1036
1037 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1038 ret = logical_ring_wrap_buffer(ringbuf);
1039 if (unlikely(ret))
1040 return ret;
1041 }
1042
1043 if (unlikely(ringbuf->space < bytes)) {
1044 ret = logical_ring_wait_for_space(ringbuf, bytes);
1045 if (unlikely(ret))
1046 return ret;
1047 }
1048
1049 return 0;
1050 }
1051
1052 /**
1053 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1054 *
1055 * @ringbuf: Logical ringbuffer.
1056 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1057 *
1058 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1059 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1060 * and also preallocates a request (every workload submission is still mediated through
1061 * requests, same as it did with legacy ringbuffer submission).
1062 *
1063 * Return: non-zero if the ringbuffer is not ready to be written to.
1064 */
1065 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
1066 {
1067 struct intel_engine_cs *ring = ringbuf->ring;
1068 struct drm_device *dev = ring->dev;
1069 struct drm_i915_private *dev_priv = dev->dev_private;
1070 int ret;
1071
1072 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1073 dev_priv->mm.interruptible);
1074 if (ret)
1075 return ret;
1076
1077 ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
1078 if (ret)
1079 return ret;
1080
1081 /* Preallocate the olr before touching the ring */
1082 ret = logical_ring_alloc_request(ring, ringbuf->FIXME_lrc_ctx);
1083 if (ret)
1084 return ret;
1085
1086 ringbuf->space -= num_dwords * sizeof(uint32_t);
1087 return 0;
1088 }
1089
1090 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1091 struct intel_context *ctx)
1092 {
1093 int ret, i;
1094 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1095 struct drm_device *dev = ring->dev;
1096 struct drm_i915_private *dev_priv = dev->dev_private;
1097 struct i915_workarounds *w = &dev_priv->workarounds;
1098
1099 if (WARN_ON_ONCE(w->count == 0))
1100 return 0;
1101
1102 ring->gpu_caches_dirty = true;
1103 ret = logical_ring_flush_all_caches(ringbuf);
1104 if (ret)
1105 return ret;
1106
1107 ret = intel_logical_ring_begin(ringbuf, w->count * 2 + 2);
1108 if (ret)
1109 return ret;
1110
1111 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1112 for (i = 0; i < w->count; i++) {
1113 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1114 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1115 }
1116 intel_logical_ring_emit(ringbuf, MI_NOOP);
1117
1118 intel_logical_ring_advance(ringbuf);
1119
1120 ring->gpu_caches_dirty = true;
1121 ret = logical_ring_flush_all_caches(ringbuf);
1122 if (ret)
1123 return ret;
1124
1125 return 0;
1126 }
1127
1128 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1129 {
1130 struct drm_device *dev = ring->dev;
1131 struct drm_i915_private *dev_priv = dev->dev_private;
1132
1133 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1134 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1135
1136 I915_WRITE(RING_MODE_GEN7(ring),
1137 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1138 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1139 POSTING_READ(RING_MODE_GEN7(ring));
1140 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1141
1142 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1143
1144 return 0;
1145 }
1146
1147 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1148 {
1149 struct drm_device *dev = ring->dev;
1150 struct drm_i915_private *dev_priv = dev->dev_private;
1151 int ret;
1152
1153 ret = gen8_init_common_ring(ring);
1154 if (ret)
1155 return ret;
1156
1157 /* We need to disable the AsyncFlip performance optimisations in order
1158 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1159 * programmed to '1' on all products.
1160 *
1161 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1162 */
1163 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1164
1165 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1166
1167 return init_workarounds_ring(ring);
1168 }
1169
1170 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1171 u64 offset, unsigned flags)
1172 {
1173 bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1174 int ret;
1175
1176 ret = intel_logical_ring_begin(ringbuf, 4);
1177 if (ret)
1178 return ret;
1179
1180 /* FIXME(BDW): Address space and security selectors. */
1181 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1182 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1183 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1184 intel_logical_ring_emit(ringbuf, MI_NOOP);
1185 intel_logical_ring_advance(ringbuf);
1186
1187 return 0;
1188 }
1189
1190 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1191 {
1192 struct drm_device *dev = ring->dev;
1193 struct drm_i915_private *dev_priv = dev->dev_private;
1194 unsigned long flags;
1195
1196 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1197 return false;
1198
1199 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1200 if (ring->irq_refcount++ == 0) {
1201 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1202 POSTING_READ(RING_IMR(ring->mmio_base));
1203 }
1204 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1205
1206 return true;
1207 }
1208
1209 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1210 {
1211 struct drm_device *dev = ring->dev;
1212 struct drm_i915_private *dev_priv = dev->dev_private;
1213 unsigned long flags;
1214
1215 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1216 if (--ring->irq_refcount == 0) {
1217 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1218 POSTING_READ(RING_IMR(ring->mmio_base));
1219 }
1220 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1221 }
1222
1223 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1224 u32 invalidate_domains,
1225 u32 unused)
1226 {
1227 struct intel_engine_cs *ring = ringbuf->ring;
1228 struct drm_device *dev = ring->dev;
1229 struct drm_i915_private *dev_priv = dev->dev_private;
1230 uint32_t cmd;
1231 int ret;
1232
1233 ret = intel_logical_ring_begin(ringbuf, 4);
1234 if (ret)
1235 return ret;
1236
1237 cmd = MI_FLUSH_DW + 1;
1238
1239 if (ring == &dev_priv->ring[VCS]) {
1240 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1241 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1242 MI_FLUSH_DW_STORE_INDEX |
1243 MI_FLUSH_DW_OP_STOREDW;
1244 } else {
1245 if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1246 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1247 MI_FLUSH_DW_OP_STOREDW;
1248 }
1249
1250 intel_logical_ring_emit(ringbuf, cmd);
1251 intel_logical_ring_emit(ringbuf,
1252 I915_GEM_HWS_SCRATCH_ADDR |
1253 MI_FLUSH_DW_USE_GTT);
1254 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1255 intel_logical_ring_emit(ringbuf, 0); /* value */
1256 intel_logical_ring_advance(ringbuf);
1257
1258 return 0;
1259 }
1260
1261 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1262 u32 invalidate_domains,
1263 u32 flush_domains)
1264 {
1265 struct intel_engine_cs *ring = ringbuf->ring;
1266 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1267 u32 flags = 0;
1268 int ret;
1269
1270 flags |= PIPE_CONTROL_CS_STALL;
1271
1272 if (flush_domains) {
1273 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1274 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1275 }
1276
1277 if (invalidate_domains) {
1278 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1279 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1280 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1281 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1282 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1283 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1284 flags |= PIPE_CONTROL_QW_WRITE;
1285 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1286 }
1287
1288 ret = intel_logical_ring_begin(ringbuf, 6);
1289 if (ret)
1290 return ret;
1291
1292 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1293 intel_logical_ring_emit(ringbuf, flags);
1294 intel_logical_ring_emit(ringbuf, scratch_addr);
1295 intel_logical_ring_emit(ringbuf, 0);
1296 intel_logical_ring_emit(ringbuf, 0);
1297 intel_logical_ring_emit(ringbuf, 0);
1298 intel_logical_ring_advance(ringbuf);
1299
1300 return 0;
1301 }
1302
1303 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1304 {
1305 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1306 }
1307
1308 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1309 {
1310 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1311 }
1312
1313 static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1314 {
1315 struct intel_engine_cs *ring = ringbuf->ring;
1316 u32 cmd;
1317 int ret;
1318
1319 ret = intel_logical_ring_begin(ringbuf, 6);
1320 if (ret)
1321 return ret;
1322
1323 cmd = MI_STORE_DWORD_IMM_GEN4;
1324 cmd |= MI_GLOBAL_GTT;
1325
1326 intel_logical_ring_emit(ringbuf, cmd);
1327 intel_logical_ring_emit(ringbuf,
1328 (ring->status_page.gfx_addr +
1329 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1330 intel_logical_ring_emit(ringbuf, 0);
1331 intel_logical_ring_emit(ringbuf,
1332 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1333 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1334 intel_logical_ring_emit(ringbuf, MI_NOOP);
1335 intel_logical_ring_advance_and_submit(ringbuf);
1336
1337 return 0;
1338 }
1339
1340 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1341 struct intel_context *ctx)
1342 {
1343 int ret;
1344
1345 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1346 if (ret)
1347 return ret;
1348
1349 return intel_lr_context_render_state_init(ring, ctx);
1350 }
1351
1352 /**
1353 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1354 *
1355 * @ring: Engine Command Streamer.
1356 *
1357 */
1358 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1359 {
1360 struct drm_i915_private *dev_priv;
1361
1362 if (!intel_ring_initialized(ring))
1363 return;
1364
1365 dev_priv = ring->dev->dev_private;
1366
1367 intel_logical_ring_stop(ring);
1368 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1369 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1370
1371 if (ring->cleanup)
1372 ring->cleanup(ring);
1373
1374 i915_cmd_parser_fini_ring(ring);
1375
1376 if (ring->status_page.obj) {
1377 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1378 ring->status_page.obj = NULL;
1379 }
1380 }
1381
1382 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1383 {
1384 int ret;
1385
1386 /* Intentionally left blank. */
1387 ring->buffer = NULL;
1388
1389 ring->dev = dev;
1390 INIT_LIST_HEAD(&ring->active_list);
1391 INIT_LIST_HEAD(&ring->request_list);
1392 init_waitqueue_head(&ring->irq_queue);
1393
1394 INIT_LIST_HEAD(&ring->execlist_queue);
1395 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1396 spin_lock_init(&ring->execlist_lock);
1397 ring->next_context_status_buffer = 0;
1398
1399 ret = i915_cmd_parser_init_ring(ring);
1400 if (ret)
1401 return ret;
1402
1403 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1404
1405 return ret;
1406 }
1407
1408 static int logical_render_ring_init(struct drm_device *dev)
1409 {
1410 struct drm_i915_private *dev_priv = dev->dev_private;
1411 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1412 int ret;
1413
1414 ring->name = "render ring";
1415 ring->id = RCS;
1416 ring->mmio_base = RENDER_RING_BASE;
1417 ring->irq_enable_mask =
1418 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1419 ring->irq_keep_mask =
1420 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1421 if (HAS_L3_DPF(dev))
1422 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1423
1424 ring->init_hw = gen8_init_render_ring;
1425 ring->init_context = gen8_init_rcs_context;
1426 ring->cleanup = intel_fini_pipe_control;
1427 ring->get_seqno = gen8_get_seqno;
1428 ring->set_seqno = gen8_set_seqno;
1429 ring->emit_request = gen8_emit_request;
1430 ring->emit_flush = gen8_emit_flush_render;
1431 ring->irq_get = gen8_logical_ring_get_irq;
1432 ring->irq_put = gen8_logical_ring_put_irq;
1433 ring->emit_bb_start = gen8_emit_bb_start;
1434
1435 ring->dev = dev;
1436 ret = logical_ring_init(dev, ring);
1437 if (ret)
1438 return ret;
1439
1440 return intel_init_pipe_control(ring);
1441 }
1442
1443 static int logical_bsd_ring_init(struct drm_device *dev)
1444 {
1445 struct drm_i915_private *dev_priv = dev->dev_private;
1446 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1447
1448 ring->name = "bsd ring";
1449 ring->id = VCS;
1450 ring->mmio_base = GEN6_BSD_RING_BASE;
1451 ring->irq_enable_mask =
1452 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1453 ring->irq_keep_mask =
1454 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1455
1456 ring->init_hw = gen8_init_common_ring;
1457 ring->get_seqno = gen8_get_seqno;
1458 ring->set_seqno = gen8_set_seqno;
1459 ring->emit_request = gen8_emit_request;
1460 ring->emit_flush = gen8_emit_flush;
1461 ring->irq_get = gen8_logical_ring_get_irq;
1462 ring->irq_put = gen8_logical_ring_put_irq;
1463 ring->emit_bb_start = gen8_emit_bb_start;
1464
1465 return logical_ring_init(dev, ring);
1466 }
1467
1468 static int logical_bsd2_ring_init(struct drm_device *dev)
1469 {
1470 struct drm_i915_private *dev_priv = dev->dev_private;
1471 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1472
1473 ring->name = "bds2 ring";
1474 ring->id = VCS2;
1475 ring->mmio_base = GEN8_BSD2_RING_BASE;
1476 ring->irq_enable_mask =
1477 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1478 ring->irq_keep_mask =
1479 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1480
1481 ring->init_hw = gen8_init_common_ring;
1482 ring->get_seqno = gen8_get_seqno;
1483 ring->set_seqno = gen8_set_seqno;
1484 ring->emit_request = gen8_emit_request;
1485 ring->emit_flush = gen8_emit_flush;
1486 ring->irq_get = gen8_logical_ring_get_irq;
1487 ring->irq_put = gen8_logical_ring_put_irq;
1488 ring->emit_bb_start = gen8_emit_bb_start;
1489
1490 return logical_ring_init(dev, ring);
1491 }
1492
1493 static int logical_blt_ring_init(struct drm_device *dev)
1494 {
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1497
1498 ring->name = "blitter ring";
1499 ring->id = BCS;
1500 ring->mmio_base = BLT_RING_BASE;
1501 ring->irq_enable_mask =
1502 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1503 ring->irq_keep_mask =
1504 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1505
1506 ring->init_hw = gen8_init_common_ring;
1507 ring->get_seqno = gen8_get_seqno;
1508 ring->set_seqno = gen8_set_seqno;
1509 ring->emit_request = gen8_emit_request;
1510 ring->emit_flush = gen8_emit_flush;
1511 ring->irq_get = gen8_logical_ring_get_irq;
1512 ring->irq_put = gen8_logical_ring_put_irq;
1513 ring->emit_bb_start = gen8_emit_bb_start;
1514
1515 return logical_ring_init(dev, ring);
1516 }
1517
1518 static int logical_vebox_ring_init(struct drm_device *dev)
1519 {
1520 struct drm_i915_private *dev_priv = dev->dev_private;
1521 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1522
1523 ring->name = "video enhancement ring";
1524 ring->id = VECS;
1525 ring->mmio_base = VEBOX_RING_BASE;
1526 ring->irq_enable_mask =
1527 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1528 ring->irq_keep_mask =
1529 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1530
1531 ring->init_hw = gen8_init_common_ring;
1532 ring->get_seqno = gen8_get_seqno;
1533 ring->set_seqno = gen8_set_seqno;
1534 ring->emit_request = gen8_emit_request;
1535 ring->emit_flush = gen8_emit_flush;
1536 ring->irq_get = gen8_logical_ring_get_irq;
1537 ring->irq_put = gen8_logical_ring_put_irq;
1538 ring->emit_bb_start = gen8_emit_bb_start;
1539
1540 return logical_ring_init(dev, ring);
1541 }
1542
1543 /**
1544 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1545 * @dev: DRM device.
1546 *
1547 * This function inits the engines for an Execlists submission style (the equivalent in the
1548 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1549 * those engines that are present in the hardware.
1550 *
1551 * Return: non-zero if the initialization failed.
1552 */
1553 int intel_logical_rings_init(struct drm_device *dev)
1554 {
1555 struct drm_i915_private *dev_priv = dev->dev_private;
1556 int ret;
1557
1558 ret = logical_render_ring_init(dev);
1559 if (ret)
1560 return ret;
1561
1562 if (HAS_BSD(dev)) {
1563 ret = logical_bsd_ring_init(dev);
1564 if (ret)
1565 goto cleanup_render_ring;
1566 }
1567
1568 if (HAS_BLT(dev)) {
1569 ret = logical_blt_ring_init(dev);
1570 if (ret)
1571 goto cleanup_bsd_ring;
1572 }
1573
1574 if (HAS_VEBOX(dev)) {
1575 ret = logical_vebox_ring_init(dev);
1576 if (ret)
1577 goto cleanup_blt_ring;
1578 }
1579
1580 if (HAS_BSD2(dev)) {
1581 ret = logical_bsd2_ring_init(dev);
1582 if (ret)
1583 goto cleanup_vebox_ring;
1584 }
1585
1586 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1587 if (ret)
1588 goto cleanup_bsd2_ring;
1589
1590 return 0;
1591
1592 cleanup_bsd2_ring:
1593 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1594 cleanup_vebox_ring:
1595 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1596 cleanup_blt_ring:
1597 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1598 cleanup_bsd_ring:
1599 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1600 cleanup_render_ring:
1601 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1602
1603 return ret;
1604 }
1605
1606 int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1607 struct intel_context *ctx)
1608 {
1609 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1610 struct render_state so;
1611 struct drm_i915_file_private *file_priv = ctx->file_priv;
1612 struct drm_file *file = file_priv ? file_priv->file : NULL;
1613 int ret;
1614
1615 ret = i915_gem_render_state_prepare(ring, &so);
1616 if (ret)
1617 return ret;
1618
1619 if (so.rodata == NULL)
1620 return 0;
1621
1622 ret = ring->emit_bb_start(ringbuf,
1623 so.ggtt_offset,
1624 I915_DISPATCH_SECURE);
1625 if (ret)
1626 goto out;
1627
1628 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1629
1630 ret = __i915_add_request(ring, file, so.obj);
1631 /* intel_logical_ring_add_request moves object to inactive if it
1632 * fails */
1633 out:
1634 i915_gem_render_state_fini(&so);
1635 return ret;
1636 }
1637
1638 static int
1639 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1640 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1641 {
1642 struct drm_device *dev = ring->dev;
1643 struct drm_i915_private *dev_priv = dev->dev_private;
1644 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1645 struct page *page;
1646 uint32_t *reg_state;
1647 int ret;
1648
1649 if (!ppgtt)
1650 ppgtt = dev_priv->mm.aliasing_ppgtt;
1651
1652 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1653 if (ret) {
1654 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1655 return ret;
1656 }
1657
1658 ret = i915_gem_object_get_pages(ctx_obj);
1659 if (ret) {
1660 DRM_DEBUG_DRIVER("Could not get object pages\n");
1661 return ret;
1662 }
1663
1664 i915_gem_object_pin_pages(ctx_obj);
1665
1666 /* The second page of the context object contains some fields which must
1667 * be set up prior to the first execution. */
1668 page = i915_gem_object_get_page(ctx_obj, 1);
1669 reg_state = kmap_atomic(page);
1670
1671 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1672 * commands followed by (reg, value) pairs. The values we are setting here are
1673 * only for the first context restore: on a subsequent save, the GPU will
1674 * recreate this batchbuffer with new values (including all the missing
1675 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1676 if (ring->id == RCS)
1677 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1678 else
1679 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1680 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1681 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1682 reg_state[CTX_CONTEXT_CONTROL+1] =
1683 _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1684 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1685 reg_state[CTX_RING_HEAD+1] = 0;
1686 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1687 reg_state[CTX_RING_TAIL+1] = 0;
1688 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1689 /* Ring buffer start address is not known until the buffer is pinned.
1690 * It is written to the context image in execlists_update_context()
1691 */
1692 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1693 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1694 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1695 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1696 reg_state[CTX_BB_HEAD_U+1] = 0;
1697 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1698 reg_state[CTX_BB_HEAD_L+1] = 0;
1699 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1700 reg_state[CTX_BB_STATE+1] = (1<<5);
1701 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1702 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1703 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1704 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1705 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1706 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1707 if (ring->id == RCS) {
1708 /* TODO: according to BSpec, the register state context
1709 * for CHV does not have these. OTOH, these registers do
1710 * exist in CHV. I'm waiting for a clarification */
1711 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1712 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1713 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1714 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1715 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1716 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1717 }
1718 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1719 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1720 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1721 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1722 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1723 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1724 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1725 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1726 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1727 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1728 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1729 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1730 reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1731 reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1732 reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1733 reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1734 reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1735 reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1736 reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1737 reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1738 if (ring->id == RCS) {
1739 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1740 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1741 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1742 }
1743
1744 kunmap_atomic(reg_state);
1745
1746 ctx_obj->dirty = 1;
1747 set_page_dirty(page);
1748 i915_gem_object_unpin_pages(ctx_obj);
1749
1750 return 0;
1751 }
1752
1753 /**
1754 * intel_lr_context_free() - free the LRC specific bits of a context
1755 * @ctx: the LR context to free.
1756 *
1757 * The real context freeing is done in i915_gem_context_free: this only
1758 * takes care of the bits that are LRC related: the per-engine backing
1759 * objects and the logical ringbuffer.
1760 */
1761 void intel_lr_context_free(struct intel_context *ctx)
1762 {
1763 int i;
1764
1765 for (i = 0; i < I915_NUM_RINGS; i++) {
1766 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1767
1768 if (ctx_obj) {
1769 struct intel_ringbuffer *ringbuf =
1770 ctx->engine[i].ringbuf;
1771 struct intel_engine_cs *ring = ringbuf->ring;
1772
1773 if (ctx == ring->default_context) {
1774 intel_unpin_ringbuffer_obj(ringbuf);
1775 i915_gem_object_ggtt_unpin(ctx_obj);
1776 }
1777 intel_destroy_ringbuffer_obj(ringbuf);
1778 kfree(ringbuf);
1779 drm_gem_object_unreference(&ctx_obj->base);
1780 }
1781 }
1782 }
1783
1784 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1785 {
1786 int ret = 0;
1787
1788 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1789
1790 switch (ring->id) {
1791 case RCS:
1792 if (INTEL_INFO(ring->dev)->gen >= 9)
1793 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1794 else
1795 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1796 break;
1797 case VCS:
1798 case BCS:
1799 case VECS:
1800 case VCS2:
1801 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1802 break;
1803 }
1804
1805 return ret;
1806 }
1807
1808 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1809 struct drm_i915_gem_object *default_ctx_obj)
1810 {
1811 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1812
1813 /* The status page is offset 0 from the default context object
1814 * in LRC mode. */
1815 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1816 ring->status_page.page_addr =
1817 kmap(sg_page(default_ctx_obj->pages->sgl));
1818 ring->status_page.obj = default_ctx_obj;
1819
1820 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1821 (u32)ring->status_page.gfx_addr);
1822 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1823 }
1824
1825 /**
1826 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1827 * @ctx: LR context to create.
1828 * @ring: engine to be used with the context.
1829 *
1830 * This function can be called more than once, with different engines, if we plan
1831 * to use the context with them. The context backing objects and the ringbuffers
1832 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1833 * the creation is a deferred call: it's better to make sure first that we need to use
1834 * a given ring with the context.
1835 *
1836 * Return: non-zero on error.
1837 */
1838 int intel_lr_context_deferred_create(struct intel_context *ctx,
1839 struct intel_engine_cs *ring)
1840 {
1841 const bool is_global_default_ctx = (ctx == ring->default_context);
1842 struct drm_device *dev = ring->dev;
1843 struct drm_i915_gem_object *ctx_obj;
1844 uint32_t context_size;
1845 struct intel_ringbuffer *ringbuf;
1846 int ret;
1847
1848 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1849 WARN_ON(ctx->engine[ring->id].state);
1850
1851 context_size = round_up(get_lr_context_size(ring), 4096);
1852
1853 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1854 if (IS_ERR(ctx_obj)) {
1855 ret = PTR_ERR(ctx_obj);
1856 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1857 return ret;
1858 }
1859
1860 if (is_global_default_ctx) {
1861 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1862 if (ret) {
1863 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1864 ret);
1865 drm_gem_object_unreference(&ctx_obj->base);
1866 return ret;
1867 }
1868 }
1869
1870 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1871 if (!ringbuf) {
1872 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1873 ring->name);
1874 ret = -ENOMEM;
1875 goto error_unpin_ctx;
1876 }
1877
1878 ringbuf->ring = ring;
1879 ringbuf->FIXME_lrc_ctx = ctx;
1880
1881 ringbuf->size = 32 * PAGE_SIZE;
1882 ringbuf->effective_size = ringbuf->size;
1883 ringbuf->head = 0;
1884 ringbuf->tail = 0;
1885 ringbuf->last_retired_head = -1;
1886 intel_ring_update_space(ringbuf);
1887
1888 if (ringbuf->obj == NULL) {
1889 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1890 if (ret) {
1891 DRM_DEBUG_DRIVER(
1892 "Failed to allocate ringbuffer obj %s: %d\n",
1893 ring->name, ret);
1894 goto error_free_rbuf;
1895 }
1896
1897 if (is_global_default_ctx) {
1898 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1899 if (ret) {
1900 DRM_ERROR(
1901 "Failed to pin and map ringbuffer %s: %d\n",
1902 ring->name, ret);
1903 goto error_destroy_rbuf;
1904 }
1905 }
1906
1907 }
1908
1909 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1910 if (ret) {
1911 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1912 goto error;
1913 }
1914
1915 ctx->engine[ring->id].ringbuf = ringbuf;
1916 ctx->engine[ring->id].state = ctx_obj;
1917
1918 if (ctx == ring->default_context)
1919 lrc_setup_hardware_status_page(ring, ctx_obj);
1920 else if (ring->id == RCS && !ctx->rcs_initialized) {
1921 if (ring->init_context) {
1922 ret = ring->init_context(ring, ctx);
1923 if (ret) {
1924 DRM_ERROR("ring init context: %d\n", ret);
1925 ctx->engine[ring->id].ringbuf = NULL;
1926 ctx->engine[ring->id].state = NULL;
1927 goto error;
1928 }
1929 }
1930
1931 ctx->rcs_initialized = true;
1932 }
1933
1934 return 0;
1935
1936 error:
1937 if (is_global_default_ctx)
1938 intel_unpin_ringbuffer_obj(ringbuf);
1939 error_destroy_rbuf:
1940 intel_destroy_ringbuffer_obj(ringbuf);
1941 error_free_rbuf:
1942 kfree(ringbuf);
1943 error_unpin_ctx:
1944 if (is_global_default_ctx)
1945 i915_gem_object_ggtt_unpin(ctx_obj);
1946 drm_gem_object_unreference(&ctx_obj->base);
1947 return ret;
1948 }
This page took 0.076217 seconds and 6 git commands to generate.