drm/i915: Assign every HW context a unique ID
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211 ADVANCED_CONTEXT = 0,
212 LEGACY_32B_CONTEXT,
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
220 enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
228 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
229
230 static int intel_lr_context_pin(struct intel_context *ctx,
231 struct intel_engine_cs *engine);
232
233 /**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245 WARN_ON(i915.enable_ppgtt == -1);
246
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
256 if (enable_execlists == 0)
257 return 0;
258
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
261 return 1;
262
263 return 0;
264 }
265
266 static void
267 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268 {
269 struct drm_device *dev = engine->dev;
270
271 if (IS_GEN8(dev) || IS_GEN9(dev))
272 engine->idle_lite_restore_wa = ~0;
273
274 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
275 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
276 (engine->id == VCS || engine->id == VCS2);
277
278 engine->ctx_desc_template = GEN8_CTX_VALID;
279 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
280 GEN8_CTX_ADDRESSING_MODE_SHIFT;
281 if (IS_GEN8(dev))
282 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
283 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
284
285 /* TODO: WaDisableLiteRestore when we start using semaphore
286 * signalling between Command Streamers */
287 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
288
289 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
290 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
291 if (engine->disable_lite_restore_wa)
292 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
293 }
294
295 /**
296 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
297 * descriptor for a pinned context
298 *
299 * @ctx: Context to work on
300 * @ring: Engine the descriptor will be used with
301 *
302 * The context descriptor encodes various attributes of a context,
303 * including its GTT address and some flags. Because it's fairly
304 * expensive to calculate, we'll just do it once and cache the result,
305 * which remains valid until the context is unpinned.
306 *
307 * This is what a descriptor looks like, from LSB to MSB:
308 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
309 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
310 * bits 32-52: ctx ID, a globally unique tag (the LRCA again!)
311 * bits 53-54: mbz, reserved for use by hardware
312 * bits 55-63: group ID, currently unused and set to 0
313 */
314 static void
315 intel_lr_context_descriptor_update(struct intel_context *ctx,
316 struct intel_engine_cs *engine)
317 {
318 uint64_t lrca, desc;
319
320 lrca = ctx->engine[engine->id].lrc_vma->node.start +
321 LRC_PPHWSP_PN * PAGE_SIZE;
322
323 desc = engine->ctx_desc_template; /* bits 0-11 */
324 desc |= lrca; /* bits 12-31 */
325 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
326
327 ctx->engine[engine->id].lrc_desc = desc;
328 }
329
330 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
331 struct intel_engine_cs *engine)
332 {
333 return ctx->engine[engine->id].lrc_desc;
334 }
335
336 /**
337 * intel_execlists_ctx_id() - get the Execlists Context ID
338 * @ctx: Context to get the ID for
339 * @ring: Engine to get the ID for
340 *
341 * Do not confuse with ctx->id! Unfortunately we have a name overload
342 * here: the old context ID we pass to userspace as a handler so that
343 * they can refer to a context, and the new context ID we pass to the
344 * ELSP so that the GPU can inform us of the context status via
345 * interrupts.
346 *
347 * The context ID is a portion of the context descriptor, so we can
348 * just extract the required part from the cached descriptor.
349 *
350 * Return: 20-bits globally unique context ID.
351 */
352 u32 intel_execlists_ctx_id(struct intel_context *ctx,
353 struct intel_engine_cs *engine)
354 {
355 return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
356 }
357
358 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
359 struct drm_i915_gem_request *rq1)
360 {
361
362 struct intel_engine_cs *engine = rq0->engine;
363 struct drm_device *dev = engine->dev;
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 uint64_t desc[2];
366
367 if (rq1) {
368 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
369 rq1->elsp_submitted++;
370 } else {
371 desc[1] = 0;
372 }
373
374 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
375 rq0->elsp_submitted++;
376
377 /* You must always write both descriptors in the order below. */
378 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
379 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
380
381 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
382 /* The context is automatically loaded after the following */
383 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
384
385 /* ELSP is a wo register, use another nearby reg for posting */
386 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
387 }
388
389 static void
390 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
391 {
392 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
393 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
394 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
395 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
396 }
397
398 static void execlists_update_context(struct drm_i915_gem_request *rq)
399 {
400 struct intel_engine_cs *engine = rq->engine;
401 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
402 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
403
404 reg_state[CTX_RING_TAIL+1] = rq->tail;
405
406 /* True 32b PPGTT with dynamic page allocation: update PDP
407 * registers and point the unallocated PDPs to scratch page.
408 * PML4 is allocated during ppgtt init, so this is not needed
409 * in 48-bit mode.
410 */
411 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
412 execlists_update_context_pdps(ppgtt, reg_state);
413 }
414
415 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
416 struct drm_i915_gem_request *rq1)
417 {
418 struct drm_i915_private *dev_priv = rq0->i915;
419 unsigned int fw_domains = rq0->engine->fw_domains;
420
421 execlists_update_context(rq0);
422
423 if (rq1)
424 execlists_update_context(rq1);
425
426 spin_lock_irq(&dev_priv->uncore.lock);
427 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
428
429 execlists_elsp_write(rq0, rq1);
430
431 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
432 spin_unlock_irq(&dev_priv->uncore.lock);
433 }
434
435 static void execlists_context_unqueue(struct intel_engine_cs *engine)
436 {
437 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
438 struct drm_i915_gem_request *cursor, *tmp;
439
440 assert_spin_locked(&engine->execlist_lock);
441
442 /*
443 * If irqs are not active generate a warning as batches that finish
444 * without the irqs may get lost and a GPU Hang may occur.
445 */
446 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
447
448 /* Try to read in pairs */
449 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
450 execlist_link) {
451 if (!req0) {
452 req0 = cursor;
453 } else if (req0->ctx == cursor->ctx) {
454 /* Same ctx: ignore first request, as second request
455 * will update tail past first request's workload */
456 cursor->elsp_submitted = req0->elsp_submitted;
457 list_move_tail(&req0->execlist_link,
458 &engine->execlist_retired_req_list);
459 req0 = cursor;
460 } else {
461 req1 = cursor;
462 WARN_ON(req1->elsp_submitted);
463 break;
464 }
465 }
466
467 if (unlikely(!req0))
468 return;
469
470 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
471 /*
472 * WaIdleLiteRestore: make sure we never cause a lite restore
473 * with HEAD==TAIL.
474 *
475 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
476 * resubmit the request. See gen8_emit_request() for where we
477 * prepare the padding after the end of the request.
478 */
479 struct intel_ringbuffer *ringbuf;
480
481 ringbuf = req0->ctx->engine[engine->id].ringbuf;
482 req0->tail += 8;
483 req0->tail &= ringbuf->size - 1;
484 }
485
486 execlists_submit_requests(req0, req1);
487 }
488
489 static unsigned int
490 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
491 {
492 struct drm_i915_gem_request *head_req;
493
494 assert_spin_locked(&engine->execlist_lock);
495
496 head_req = list_first_entry_or_null(&engine->execlist_queue,
497 struct drm_i915_gem_request,
498 execlist_link);
499
500 if (!head_req)
501 return 0;
502
503 if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
504 return 0;
505
506 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
507
508 if (--head_req->elsp_submitted > 0)
509 return 0;
510
511 list_move_tail(&head_req->execlist_link,
512 &engine->execlist_retired_req_list);
513
514 return 1;
515 }
516
517 static u32
518 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
519 u32 *context_id)
520 {
521 struct drm_i915_private *dev_priv = engine->dev->dev_private;
522 u32 status;
523
524 read_pointer %= GEN8_CSB_ENTRIES;
525
526 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
527
528 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
529 return 0;
530
531 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
532 read_pointer));
533
534 return status;
535 }
536
537 /**
538 * intel_lrc_irq_handler() - handle Context Switch interrupts
539 * @engine: Engine Command Streamer to handle.
540 *
541 * Check the unread Context Status Buffers and manage the submission of new
542 * contexts to the ELSP accordingly.
543 */
544 static void intel_lrc_irq_handler(unsigned long data)
545 {
546 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
547 struct drm_i915_private *dev_priv = engine->dev->dev_private;
548 u32 status_pointer;
549 unsigned int read_pointer, write_pointer;
550 u32 csb[GEN8_CSB_ENTRIES][2];
551 unsigned int csb_read = 0, i;
552 unsigned int submit_contexts = 0;
553
554 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
555
556 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
557
558 read_pointer = engine->next_context_status_buffer;
559 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
560 if (read_pointer > write_pointer)
561 write_pointer += GEN8_CSB_ENTRIES;
562
563 while (read_pointer < write_pointer) {
564 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
565 break;
566 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
567 &csb[csb_read][1]);
568 csb_read++;
569 }
570
571 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
572
573 /* Update the read pointer to the old write pointer. Manual ringbuffer
574 * management ftw </sarcasm> */
575 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
576 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
577 engine->next_context_status_buffer << 8));
578
579 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
580
581 spin_lock(&engine->execlist_lock);
582
583 for (i = 0; i < csb_read; i++) {
584 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
585 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
586 if (execlists_check_remove_request(engine, csb[i][1]))
587 WARN(1, "Lite Restored request removed from queue\n");
588 } else
589 WARN(1, "Preemption without Lite Restore\n");
590 }
591
592 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
593 GEN8_CTX_STATUS_ELEMENT_SWITCH))
594 submit_contexts +=
595 execlists_check_remove_request(engine, csb[i][1]);
596 }
597
598 if (submit_contexts) {
599 if (!engine->disable_lite_restore_wa ||
600 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
601 execlists_context_unqueue(engine);
602 }
603
604 spin_unlock(&engine->execlist_lock);
605
606 if (unlikely(submit_contexts > 2))
607 DRM_ERROR("More than two context complete events?\n");
608 }
609
610 static void execlists_context_queue(struct drm_i915_gem_request *request)
611 {
612 struct intel_engine_cs *engine = request->engine;
613 struct drm_i915_gem_request *cursor;
614 int num_elements = 0;
615
616 if (request->ctx != request->i915->kernel_context)
617 intel_lr_context_pin(request->ctx, engine);
618
619 i915_gem_request_reference(request);
620
621 spin_lock_bh(&engine->execlist_lock);
622
623 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
624 if (++num_elements > 2)
625 break;
626
627 if (num_elements > 2) {
628 struct drm_i915_gem_request *tail_req;
629
630 tail_req = list_last_entry(&engine->execlist_queue,
631 struct drm_i915_gem_request,
632 execlist_link);
633
634 if (request->ctx == tail_req->ctx) {
635 WARN(tail_req->elsp_submitted != 0,
636 "More than 2 already-submitted reqs queued\n");
637 list_move_tail(&tail_req->execlist_link,
638 &engine->execlist_retired_req_list);
639 }
640 }
641
642 list_add_tail(&request->execlist_link, &engine->execlist_queue);
643 if (num_elements == 0)
644 execlists_context_unqueue(engine);
645
646 spin_unlock_bh(&engine->execlist_lock);
647 }
648
649 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
650 {
651 struct intel_engine_cs *engine = req->engine;
652 uint32_t flush_domains;
653 int ret;
654
655 flush_domains = 0;
656 if (engine->gpu_caches_dirty)
657 flush_domains = I915_GEM_GPU_DOMAINS;
658
659 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
660 if (ret)
661 return ret;
662
663 engine->gpu_caches_dirty = false;
664 return 0;
665 }
666
667 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
668 struct list_head *vmas)
669 {
670 const unsigned other_rings = ~intel_engine_flag(req->engine);
671 struct i915_vma *vma;
672 uint32_t flush_domains = 0;
673 bool flush_chipset = false;
674 int ret;
675
676 list_for_each_entry(vma, vmas, exec_list) {
677 struct drm_i915_gem_object *obj = vma->obj;
678
679 if (obj->active & other_rings) {
680 ret = i915_gem_object_sync(obj, req->engine, &req);
681 if (ret)
682 return ret;
683 }
684
685 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
686 flush_chipset |= i915_gem_clflush_object(obj, false);
687
688 flush_domains |= obj->base.write_domain;
689 }
690
691 if (flush_domains & I915_GEM_DOMAIN_GTT)
692 wmb();
693
694 /* Unconditionally invalidate gpu caches and ensure that we do flush
695 * any residual writes from the previous batch.
696 */
697 return logical_ring_invalidate_all_caches(req);
698 }
699
700 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
701 {
702 int ret;
703
704 /* Flush enough space to reduce the likelihood of waiting after
705 * we start building the request - in which case we will just
706 * have to repeat work.
707 */
708 request->reserved_space += MIN_SPACE_FOR_ADD_REQUEST;
709
710 request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
711
712 if (i915.enable_guc_submission) {
713 /*
714 * Check that the GuC has space for the request before
715 * going any further, as the i915_add_request() call
716 * later on mustn't fail ...
717 */
718 struct intel_guc *guc = &request->i915->guc;
719
720 ret = i915_guc_wq_check_space(guc->execbuf_client);
721 if (ret)
722 return ret;
723 }
724
725 if (request->ctx != request->i915->kernel_context) {
726 ret = intel_lr_context_pin(request->ctx, request->engine);
727 if (ret)
728 return ret;
729 }
730
731 ret = intel_ring_begin(request, 0);
732 if (ret)
733 goto err_unpin;
734
735 request->reserved_space -= MIN_SPACE_FOR_ADD_REQUEST;
736 return 0;
737
738 err_unpin:
739 if (request->ctx != request->i915->kernel_context)
740 intel_lr_context_unpin(request->ctx, request->engine);
741 return ret;
742 }
743
744 /*
745 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
746 * @request: Request to advance the logical ringbuffer of.
747 *
748 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
749 * really happens during submission is that the context and current tail will be placed
750 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
751 * point, the tail *inside* the context is updated and the ELSP written to.
752 */
753 static int
754 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
755 {
756 struct intel_ringbuffer *ringbuf = request->ringbuf;
757 struct drm_i915_private *dev_priv = request->i915;
758 struct intel_engine_cs *engine = request->engine;
759
760 intel_logical_ring_advance(ringbuf);
761 request->tail = ringbuf->tail;
762
763 /*
764 * Here we add two extra NOOPs as padding to avoid
765 * lite restore of a context with HEAD==TAIL.
766 *
767 * Caller must reserve WA_TAIL_DWORDS for us!
768 */
769 intel_logical_ring_emit(ringbuf, MI_NOOP);
770 intel_logical_ring_emit(ringbuf, MI_NOOP);
771 intel_logical_ring_advance(ringbuf);
772
773 if (intel_engine_stopped(engine))
774 return 0;
775
776 if (engine->last_context != request->ctx) {
777 if (engine->last_context)
778 intel_lr_context_unpin(engine->last_context, engine);
779 if (request->ctx != request->i915->kernel_context) {
780 intel_lr_context_pin(request->ctx, engine);
781 engine->last_context = request->ctx;
782 } else {
783 engine->last_context = NULL;
784 }
785 }
786
787 if (dev_priv->guc.execbuf_client)
788 i915_guc_submit(dev_priv->guc.execbuf_client, request);
789 else
790 execlists_context_queue(request);
791
792 return 0;
793 }
794
795 /**
796 * execlists_submission() - submit a batchbuffer for execution, Execlists style
797 * @dev: DRM device.
798 * @file: DRM file.
799 * @ring: Engine Command Streamer to submit to.
800 * @ctx: Context to employ for this submission.
801 * @args: execbuffer call arguments.
802 * @vmas: list of vmas.
803 * @batch_obj: the batchbuffer to submit.
804 * @exec_start: batchbuffer start virtual address pointer.
805 * @dispatch_flags: translated execbuffer call flags.
806 *
807 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
808 * away the submission details of the execbuffer ioctl call.
809 *
810 * Return: non-zero if the submission fails.
811 */
812 int intel_execlists_submission(struct i915_execbuffer_params *params,
813 struct drm_i915_gem_execbuffer2 *args,
814 struct list_head *vmas)
815 {
816 struct drm_device *dev = params->dev;
817 struct intel_engine_cs *engine = params->engine;
818 struct drm_i915_private *dev_priv = dev->dev_private;
819 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
820 u64 exec_start;
821 int instp_mode;
822 u32 instp_mask;
823 int ret;
824
825 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
826 instp_mask = I915_EXEC_CONSTANTS_MASK;
827 switch (instp_mode) {
828 case I915_EXEC_CONSTANTS_REL_GENERAL:
829 case I915_EXEC_CONSTANTS_ABSOLUTE:
830 case I915_EXEC_CONSTANTS_REL_SURFACE:
831 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
832 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
833 return -EINVAL;
834 }
835
836 if (instp_mode != dev_priv->relative_constants_mode) {
837 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
838 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
839 return -EINVAL;
840 }
841
842 /* The HW changed the meaning on this bit on gen6 */
843 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
844 }
845 break;
846 default:
847 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
848 return -EINVAL;
849 }
850
851 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
852 DRM_DEBUG("sol reset is gen7 only\n");
853 return -EINVAL;
854 }
855
856 ret = execlists_move_to_gpu(params->request, vmas);
857 if (ret)
858 return ret;
859
860 if (engine == &dev_priv->engine[RCS] &&
861 instp_mode != dev_priv->relative_constants_mode) {
862 ret = intel_ring_begin(params->request, 4);
863 if (ret)
864 return ret;
865
866 intel_logical_ring_emit(ringbuf, MI_NOOP);
867 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
868 intel_logical_ring_emit_reg(ringbuf, INSTPM);
869 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
870 intel_logical_ring_advance(ringbuf);
871
872 dev_priv->relative_constants_mode = instp_mode;
873 }
874
875 exec_start = params->batch_obj_vm_offset +
876 args->batch_start_offset;
877
878 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
879 if (ret)
880 return ret;
881
882 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
883
884 i915_gem_execbuffer_move_to_active(vmas, params->request);
885
886 return 0;
887 }
888
889 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
890 {
891 struct drm_i915_gem_request *req, *tmp;
892 struct list_head retired_list;
893
894 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
895 if (list_empty(&engine->execlist_retired_req_list))
896 return;
897
898 INIT_LIST_HEAD(&retired_list);
899 spin_lock_bh(&engine->execlist_lock);
900 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
901 spin_unlock_bh(&engine->execlist_lock);
902
903 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
904 struct intel_context *ctx = req->ctx;
905 struct drm_i915_gem_object *ctx_obj =
906 ctx->engine[engine->id].state;
907
908 if (ctx_obj && (ctx != req->i915->kernel_context))
909 intel_lr_context_unpin(ctx, engine);
910
911 list_del(&req->execlist_link);
912 i915_gem_request_unreference(req);
913 }
914 }
915
916 void intel_logical_ring_stop(struct intel_engine_cs *engine)
917 {
918 struct drm_i915_private *dev_priv = engine->dev->dev_private;
919 int ret;
920
921 if (!intel_engine_initialized(engine))
922 return;
923
924 ret = intel_engine_idle(engine);
925 if (ret)
926 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
927 engine->name, ret);
928
929 /* TODO: Is this correct with Execlists enabled? */
930 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
931 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
932 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
933 return;
934 }
935 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
936 }
937
938 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
939 {
940 struct intel_engine_cs *engine = req->engine;
941 int ret;
942
943 if (!engine->gpu_caches_dirty)
944 return 0;
945
946 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
947 if (ret)
948 return ret;
949
950 engine->gpu_caches_dirty = false;
951 return 0;
952 }
953
954 static int intel_lr_context_do_pin(struct intel_context *ctx,
955 struct intel_engine_cs *engine)
956 {
957 struct drm_device *dev = engine->dev;
958 struct drm_i915_private *dev_priv = dev->dev_private;
959 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
960 struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
961 void *vaddr;
962 u32 *lrc_reg_state;
963 int ret;
964
965 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
966
967 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
968 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
969 if (ret)
970 return ret;
971
972 vaddr = i915_gem_object_pin_map(ctx_obj);
973 if (IS_ERR(vaddr)) {
974 ret = PTR_ERR(vaddr);
975 goto unpin_ctx_obj;
976 }
977
978 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
979
980 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
981 if (ret)
982 goto unpin_map;
983
984 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
985 intel_lr_context_descriptor_update(ctx, engine);
986 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
987 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
988 ctx_obj->dirty = true;
989
990 /* Invalidate GuC TLB. */
991 if (i915.enable_guc_submission)
992 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
993
994 return ret;
995
996 unpin_map:
997 i915_gem_object_unpin_map(ctx_obj);
998 unpin_ctx_obj:
999 i915_gem_object_ggtt_unpin(ctx_obj);
1000
1001 return ret;
1002 }
1003
1004 static int intel_lr_context_pin(struct intel_context *ctx,
1005 struct intel_engine_cs *engine)
1006 {
1007 int ret = 0;
1008
1009 if (ctx->engine[engine->id].pin_count++ == 0) {
1010 ret = intel_lr_context_do_pin(ctx, engine);
1011 if (ret)
1012 goto reset_pin_count;
1013
1014 i915_gem_context_reference(ctx);
1015 }
1016 return ret;
1017
1018 reset_pin_count:
1019 ctx->engine[engine->id].pin_count = 0;
1020 return ret;
1021 }
1022
1023 void intel_lr_context_unpin(struct intel_context *ctx,
1024 struct intel_engine_cs *engine)
1025 {
1026 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1027
1028 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1029 if (--ctx->engine[engine->id].pin_count == 0) {
1030 i915_gem_object_unpin_map(ctx_obj);
1031 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1032 i915_gem_object_ggtt_unpin(ctx_obj);
1033 ctx->engine[engine->id].lrc_vma = NULL;
1034 ctx->engine[engine->id].lrc_desc = 0;
1035 ctx->engine[engine->id].lrc_reg_state = NULL;
1036
1037 i915_gem_context_unreference(ctx);
1038 }
1039 }
1040
1041 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1042 {
1043 int ret, i;
1044 struct intel_engine_cs *engine = req->engine;
1045 struct intel_ringbuffer *ringbuf = req->ringbuf;
1046 struct drm_device *dev = engine->dev;
1047 struct drm_i915_private *dev_priv = dev->dev_private;
1048 struct i915_workarounds *w = &dev_priv->workarounds;
1049
1050 if (w->count == 0)
1051 return 0;
1052
1053 engine->gpu_caches_dirty = true;
1054 ret = logical_ring_flush_all_caches(req);
1055 if (ret)
1056 return ret;
1057
1058 ret = intel_ring_begin(req, w->count * 2 + 2);
1059 if (ret)
1060 return ret;
1061
1062 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1063 for (i = 0; i < w->count; i++) {
1064 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1065 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1066 }
1067 intel_logical_ring_emit(ringbuf, MI_NOOP);
1068
1069 intel_logical_ring_advance(ringbuf);
1070
1071 engine->gpu_caches_dirty = true;
1072 ret = logical_ring_flush_all_caches(req);
1073 if (ret)
1074 return ret;
1075
1076 return 0;
1077 }
1078
1079 #define wa_ctx_emit(batch, index, cmd) \
1080 do { \
1081 int __index = (index)++; \
1082 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1083 return -ENOSPC; \
1084 } \
1085 batch[__index] = (cmd); \
1086 } while (0)
1087
1088 #define wa_ctx_emit_reg(batch, index, reg) \
1089 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1090
1091 /*
1092 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1093 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1094 * but there is a slight complication as this is applied in WA batch where the
1095 * values are only initialized once so we cannot take register value at the
1096 * beginning and reuse it further; hence we save its value to memory, upload a
1097 * constant value with bit21 set and then we restore it back with the saved value.
1098 * To simplify the WA, a constant value is formed by using the default value
1099 * of this register. This shouldn't be a problem because we are only modifying
1100 * it for a short period and this batch in non-premptible. We can ofcourse
1101 * use additional instructions that read the actual value of the register
1102 * at that time and set our bit of interest but it makes the WA complicated.
1103 *
1104 * This WA is also required for Gen9 so extracting as a function avoids
1105 * code duplication.
1106 */
1107 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1108 uint32_t *const batch,
1109 uint32_t index)
1110 {
1111 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1112
1113 /*
1114 * WaDisableLSQCROPERFforOCL:skl
1115 * This WA is implemented in skl_init_clock_gating() but since
1116 * this batch updates GEN8_L3SQCREG4 with default value we need to
1117 * set this bit here to retain the WA during flush.
1118 */
1119 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1120 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1121
1122 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1123 MI_SRM_LRM_GLOBAL_GTT));
1124 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1125 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1126 wa_ctx_emit(batch, index, 0);
1127
1128 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1129 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1130 wa_ctx_emit(batch, index, l3sqc4_flush);
1131
1132 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1133 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1134 PIPE_CONTROL_DC_FLUSH_ENABLE));
1135 wa_ctx_emit(batch, index, 0);
1136 wa_ctx_emit(batch, index, 0);
1137 wa_ctx_emit(batch, index, 0);
1138 wa_ctx_emit(batch, index, 0);
1139
1140 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1141 MI_SRM_LRM_GLOBAL_GTT));
1142 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1143 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1144 wa_ctx_emit(batch, index, 0);
1145
1146 return index;
1147 }
1148
1149 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1150 uint32_t offset,
1151 uint32_t start_alignment)
1152 {
1153 return wa_ctx->offset = ALIGN(offset, start_alignment);
1154 }
1155
1156 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1157 uint32_t offset,
1158 uint32_t size_alignment)
1159 {
1160 wa_ctx->size = offset - wa_ctx->offset;
1161
1162 WARN(wa_ctx->size % size_alignment,
1163 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1164 wa_ctx->size, size_alignment);
1165 return 0;
1166 }
1167
1168 /**
1169 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1170 *
1171 * @ring: only applicable for RCS
1172 * @wa_ctx: structure representing wa_ctx
1173 * offset: specifies start of the batch, should be cache-aligned. This is updated
1174 * with the offset value received as input.
1175 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1176 * @batch: page in which WA are loaded
1177 * @offset: This field specifies the start of the batch, it should be
1178 * cache-aligned otherwise it is adjusted accordingly.
1179 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1180 * initialized at the beginning and shared across all contexts but this field
1181 * helps us to have multiple batches at different offsets and select them based
1182 * on a criteria. At the moment this batch always start at the beginning of the page
1183 * and at this point we don't have multiple wa_ctx batch buffers.
1184 *
1185 * The number of WA applied are not known at the beginning; we use this field
1186 * to return the no of DWORDS written.
1187 *
1188 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1189 * so it adds NOOPs as padding to make it cacheline aligned.
1190 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1191 * makes a complete batch buffer.
1192 *
1193 * Return: non-zero if we exceed the PAGE_SIZE limit.
1194 */
1195
1196 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1197 struct i915_wa_ctx_bb *wa_ctx,
1198 uint32_t *const batch,
1199 uint32_t *offset)
1200 {
1201 uint32_t scratch_addr;
1202 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1203
1204 /* WaDisableCtxRestoreArbitration:bdw,chv */
1205 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1206
1207 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1208 if (IS_BROADWELL(engine->dev)) {
1209 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1210 if (rc < 0)
1211 return rc;
1212 index = rc;
1213 }
1214
1215 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1216 /* Actual scratch location is at 128 bytes offset */
1217 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1218
1219 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1220 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1221 PIPE_CONTROL_GLOBAL_GTT_IVB |
1222 PIPE_CONTROL_CS_STALL |
1223 PIPE_CONTROL_QW_WRITE));
1224 wa_ctx_emit(batch, index, scratch_addr);
1225 wa_ctx_emit(batch, index, 0);
1226 wa_ctx_emit(batch, index, 0);
1227 wa_ctx_emit(batch, index, 0);
1228
1229 /* Pad to end of cacheline */
1230 while (index % CACHELINE_DWORDS)
1231 wa_ctx_emit(batch, index, MI_NOOP);
1232
1233 /*
1234 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1235 * execution depends on the length specified in terms of cache lines
1236 * in the register CTX_RCS_INDIRECT_CTX
1237 */
1238
1239 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1240 }
1241
1242 /**
1243 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1244 *
1245 * @ring: only applicable for RCS
1246 * @wa_ctx: structure representing wa_ctx
1247 * offset: specifies start of the batch, should be cache-aligned.
1248 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1249 * @batch: page in which WA are loaded
1250 * @offset: This field specifies the start of this batch.
1251 * This batch is started immediately after indirect_ctx batch. Since we ensure
1252 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1253 *
1254 * The number of DWORDS written are returned using this field.
1255 *
1256 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1257 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1258 */
1259 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1260 struct i915_wa_ctx_bb *wa_ctx,
1261 uint32_t *const batch,
1262 uint32_t *offset)
1263 {
1264 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1265
1266 /* WaDisableCtxRestoreArbitration:bdw,chv */
1267 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1268
1269 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1270
1271 return wa_ctx_end(wa_ctx, *offset = index, 1);
1272 }
1273
1274 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1275 struct i915_wa_ctx_bb *wa_ctx,
1276 uint32_t *const batch,
1277 uint32_t *offset)
1278 {
1279 int ret;
1280 struct drm_device *dev = engine->dev;
1281 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1282
1283 /* WaDisableCtxRestoreArbitration:skl,bxt */
1284 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1285 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1286 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1287
1288 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1289 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1290 if (ret < 0)
1291 return ret;
1292 index = ret;
1293
1294 /* Pad to end of cacheline */
1295 while (index % CACHELINE_DWORDS)
1296 wa_ctx_emit(batch, index, MI_NOOP);
1297
1298 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1299 }
1300
1301 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1302 struct i915_wa_ctx_bb *wa_ctx,
1303 uint32_t *const batch,
1304 uint32_t *offset)
1305 {
1306 struct drm_device *dev = engine->dev;
1307 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1308
1309 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1310 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1311 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1312 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1313 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1314 wa_ctx_emit(batch, index,
1315 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1316 wa_ctx_emit(batch, index, MI_NOOP);
1317 }
1318
1319 /* WaClearTdlStateAckDirtyBits:bxt */
1320 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1321 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1322
1323 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1324 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1325
1326 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1327 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1328
1329 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1330 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1331
1332 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1333 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1334 wa_ctx_emit(batch, index, 0x0);
1335 wa_ctx_emit(batch, index, MI_NOOP);
1336 }
1337
1338 /* WaDisableCtxRestoreArbitration:skl,bxt */
1339 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1340 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1341 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1342
1343 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1344
1345 return wa_ctx_end(wa_ctx, *offset = index, 1);
1346 }
1347
1348 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1349 {
1350 int ret;
1351
1352 engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
1353 PAGE_ALIGN(size));
1354 if (IS_ERR(engine->wa_ctx.obj)) {
1355 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1356 ret = PTR_ERR(engine->wa_ctx.obj);
1357 engine->wa_ctx.obj = NULL;
1358 return ret;
1359 }
1360
1361 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1362 if (ret) {
1363 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1364 ret);
1365 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1366 return ret;
1367 }
1368
1369 return 0;
1370 }
1371
1372 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1373 {
1374 if (engine->wa_ctx.obj) {
1375 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1376 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1377 engine->wa_ctx.obj = NULL;
1378 }
1379 }
1380
1381 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1382 {
1383 int ret;
1384 uint32_t *batch;
1385 uint32_t offset;
1386 struct page *page;
1387 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1388
1389 WARN_ON(engine->id != RCS);
1390
1391 /* update this when WA for higher Gen are added */
1392 if (INTEL_INFO(engine->dev)->gen > 9) {
1393 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1394 INTEL_INFO(engine->dev)->gen);
1395 return 0;
1396 }
1397
1398 /* some WA perform writes to scratch page, ensure it is valid */
1399 if (engine->scratch.obj == NULL) {
1400 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1401 return -EINVAL;
1402 }
1403
1404 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1405 if (ret) {
1406 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1407 return ret;
1408 }
1409
1410 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1411 batch = kmap_atomic(page);
1412 offset = 0;
1413
1414 if (INTEL_INFO(engine->dev)->gen == 8) {
1415 ret = gen8_init_indirectctx_bb(engine,
1416 &wa_ctx->indirect_ctx,
1417 batch,
1418 &offset);
1419 if (ret)
1420 goto out;
1421
1422 ret = gen8_init_perctx_bb(engine,
1423 &wa_ctx->per_ctx,
1424 batch,
1425 &offset);
1426 if (ret)
1427 goto out;
1428 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1429 ret = gen9_init_indirectctx_bb(engine,
1430 &wa_ctx->indirect_ctx,
1431 batch,
1432 &offset);
1433 if (ret)
1434 goto out;
1435
1436 ret = gen9_init_perctx_bb(engine,
1437 &wa_ctx->per_ctx,
1438 batch,
1439 &offset);
1440 if (ret)
1441 goto out;
1442 }
1443
1444 out:
1445 kunmap_atomic(batch);
1446 if (ret)
1447 lrc_destroy_wa_ctx_obj(engine);
1448
1449 return ret;
1450 }
1451
1452 static void lrc_init_hws(struct intel_engine_cs *engine)
1453 {
1454 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1455
1456 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1457 (u32)engine->status_page.gfx_addr);
1458 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1459 }
1460
1461 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1462 {
1463 struct drm_device *dev = engine->dev;
1464 struct drm_i915_private *dev_priv = dev->dev_private;
1465 unsigned int next_context_status_buffer_hw;
1466
1467 lrc_init_hws(engine);
1468
1469 I915_WRITE_IMR(engine,
1470 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1471 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1472
1473 I915_WRITE(RING_MODE_GEN7(engine),
1474 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1475 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1476 POSTING_READ(RING_MODE_GEN7(engine));
1477
1478 /*
1479 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1480 * zero, we need to read the write pointer from hardware and use its
1481 * value because "this register is power context save restored".
1482 * Effectively, these states have been observed:
1483 *
1484 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1485 * BDW | CSB regs not reset | CSB regs reset |
1486 * CHT | CSB regs not reset | CSB regs not reset |
1487 * SKL | ? | ? |
1488 * BXT | ? | ? |
1489 */
1490 next_context_status_buffer_hw =
1491 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1492
1493 /*
1494 * When the CSB registers are reset (also after power-up / gpu reset),
1495 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1496 * this special case, so the first element read is CSB[0].
1497 */
1498 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1499 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1500
1501 engine->next_context_status_buffer = next_context_status_buffer_hw;
1502 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1503
1504 intel_engine_init_hangcheck(engine);
1505
1506 return intel_mocs_init_engine(engine);
1507 }
1508
1509 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1510 {
1511 struct drm_device *dev = engine->dev;
1512 struct drm_i915_private *dev_priv = dev->dev_private;
1513 int ret;
1514
1515 ret = gen8_init_common_ring(engine);
1516 if (ret)
1517 return ret;
1518
1519 /* We need to disable the AsyncFlip performance optimisations in order
1520 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1521 * programmed to '1' on all products.
1522 *
1523 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1524 */
1525 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1526
1527 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1528
1529 return init_workarounds_ring(engine);
1530 }
1531
1532 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1533 {
1534 int ret;
1535
1536 ret = gen8_init_common_ring(engine);
1537 if (ret)
1538 return ret;
1539
1540 return init_workarounds_ring(engine);
1541 }
1542
1543 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1544 {
1545 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1546 struct intel_engine_cs *engine = req->engine;
1547 struct intel_ringbuffer *ringbuf = req->ringbuf;
1548 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1549 int i, ret;
1550
1551 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1552 if (ret)
1553 return ret;
1554
1555 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1556 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1557 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1558
1559 intel_logical_ring_emit_reg(ringbuf,
1560 GEN8_RING_PDP_UDW(engine, i));
1561 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1562 intel_logical_ring_emit_reg(ringbuf,
1563 GEN8_RING_PDP_LDW(engine, i));
1564 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1565 }
1566
1567 intel_logical_ring_emit(ringbuf, MI_NOOP);
1568 intel_logical_ring_advance(ringbuf);
1569
1570 return 0;
1571 }
1572
1573 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1574 u64 offset, unsigned dispatch_flags)
1575 {
1576 struct intel_ringbuffer *ringbuf = req->ringbuf;
1577 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1578 int ret;
1579
1580 /* Don't rely in hw updating PDPs, specially in lite-restore.
1581 * Ideally, we should set Force PD Restore in ctx descriptor,
1582 * but we can't. Force Restore would be a second option, but
1583 * it is unsafe in case of lite-restore (because the ctx is
1584 * not idle). PML4 is allocated during ppgtt init so this is
1585 * not needed in 48-bit.*/
1586 if (req->ctx->ppgtt &&
1587 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1588 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1589 !intel_vgpu_active(req->i915->dev)) {
1590 ret = intel_logical_ring_emit_pdps(req);
1591 if (ret)
1592 return ret;
1593 }
1594
1595 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1596 }
1597
1598 ret = intel_ring_begin(req, 4);
1599 if (ret)
1600 return ret;
1601
1602 /* FIXME(BDW): Address space and security selectors. */
1603 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1604 (ppgtt<<8) |
1605 (dispatch_flags & I915_DISPATCH_RS ?
1606 MI_BATCH_RESOURCE_STREAMER : 0));
1607 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1608 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1609 intel_logical_ring_emit(ringbuf, MI_NOOP);
1610 intel_logical_ring_advance(ringbuf);
1611
1612 return 0;
1613 }
1614
1615 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1616 {
1617 struct drm_device *dev = engine->dev;
1618 struct drm_i915_private *dev_priv = dev->dev_private;
1619 unsigned long flags;
1620
1621 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1622 return false;
1623
1624 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1625 if (engine->irq_refcount++ == 0) {
1626 I915_WRITE_IMR(engine,
1627 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1628 POSTING_READ(RING_IMR(engine->mmio_base));
1629 }
1630 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1631
1632 return true;
1633 }
1634
1635 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1636 {
1637 struct drm_device *dev = engine->dev;
1638 struct drm_i915_private *dev_priv = dev->dev_private;
1639 unsigned long flags;
1640
1641 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1642 if (--engine->irq_refcount == 0) {
1643 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1644 POSTING_READ(RING_IMR(engine->mmio_base));
1645 }
1646 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1647 }
1648
1649 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1650 u32 invalidate_domains,
1651 u32 unused)
1652 {
1653 struct intel_ringbuffer *ringbuf = request->ringbuf;
1654 struct intel_engine_cs *engine = ringbuf->engine;
1655 struct drm_device *dev = engine->dev;
1656 struct drm_i915_private *dev_priv = dev->dev_private;
1657 uint32_t cmd;
1658 int ret;
1659
1660 ret = intel_ring_begin(request, 4);
1661 if (ret)
1662 return ret;
1663
1664 cmd = MI_FLUSH_DW + 1;
1665
1666 /* We always require a command barrier so that subsequent
1667 * commands, such as breadcrumb interrupts, are strictly ordered
1668 * wrt the contents of the write cache being flushed to memory
1669 * (and thus being coherent from the CPU).
1670 */
1671 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1672
1673 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1674 cmd |= MI_INVALIDATE_TLB;
1675 if (engine == &dev_priv->engine[VCS])
1676 cmd |= MI_INVALIDATE_BSD;
1677 }
1678
1679 intel_logical_ring_emit(ringbuf, cmd);
1680 intel_logical_ring_emit(ringbuf,
1681 I915_GEM_HWS_SCRATCH_ADDR |
1682 MI_FLUSH_DW_USE_GTT);
1683 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1684 intel_logical_ring_emit(ringbuf, 0); /* value */
1685 intel_logical_ring_advance(ringbuf);
1686
1687 return 0;
1688 }
1689
1690 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1691 u32 invalidate_domains,
1692 u32 flush_domains)
1693 {
1694 struct intel_ringbuffer *ringbuf = request->ringbuf;
1695 struct intel_engine_cs *engine = ringbuf->engine;
1696 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1697 bool vf_flush_wa = false;
1698 u32 flags = 0;
1699 int ret;
1700
1701 flags |= PIPE_CONTROL_CS_STALL;
1702
1703 if (flush_domains) {
1704 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1705 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1706 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1707 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1708 }
1709
1710 if (invalidate_domains) {
1711 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1712 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1713 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1714 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1715 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1716 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1717 flags |= PIPE_CONTROL_QW_WRITE;
1718 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1719
1720 /*
1721 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1722 * pipe control.
1723 */
1724 if (IS_GEN9(engine->dev))
1725 vf_flush_wa = true;
1726 }
1727
1728 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1729 if (ret)
1730 return ret;
1731
1732 if (vf_flush_wa) {
1733 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1734 intel_logical_ring_emit(ringbuf, 0);
1735 intel_logical_ring_emit(ringbuf, 0);
1736 intel_logical_ring_emit(ringbuf, 0);
1737 intel_logical_ring_emit(ringbuf, 0);
1738 intel_logical_ring_emit(ringbuf, 0);
1739 }
1740
1741 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1742 intel_logical_ring_emit(ringbuf, flags);
1743 intel_logical_ring_emit(ringbuf, scratch_addr);
1744 intel_logical_ring_emit(ringbuf, 0);
1745 intel_logical_ring_emit(ringbuf, 0);
1746 intel_logical_ring_emit(ringbuf, 0);
1747 intel_logical_ring_advance(ringbuf);
1748
1749 return 0;
1750 }
1751
1752 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1753 {
1754 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1755 }
1756
1757 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1758 {
1759 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1760 }
1761
1762 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1763 {
1764 /*
1765 * On BXT A steppings there is a HW coherency issue whereby the
1766 * MI_STORE_DATA_IMM storing the completed request's seqno
1767 * occasionally doesn't invalidate the CPU cache. Work around this by
1768 * clflushing the corresponding cacheline whenever the caller wants
1769 * the coherency to be guaranteed. Note that this cacheline is known
1770 * to be clean at this point, since we only write it in
1771 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1772 * this clflush in practice becomes an invalidate operation.
1773 */
1774 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1775 }
1776
1777 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1778 {
1779 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1780
1781 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1782 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1783 }
1784
1785 /*
1786 * Reserve space for 2 NOOPs at the end of each request to be
1787 * used as a workaround for not being allowed to do lite
1788 * restore with HEAD==TAIL (WaIdleLiteRestore).
1789 */
1790 #define WA_TAIL_DWORDS 2
1791
1792 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1793 {
1794 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1795 }
1796
1797 static int gen8_emit_request(struct drm_i915_gem_request *request)
1798 {
1799 struct intel_ringbuffer *ringbuf = request->ringbuf;
1800 int ret;
1801
1802 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1803 if (ret)
1804 return ret;
1805
1806 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1807 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1808
1809 intel_logical_ring_emit(ringbuf,
1810 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1811 intel_logical_ring_emit(ringbuf,
1812 hws_seqno_address(request->engine) |
1813 MI_FLUSH_DW_USE_GTT);
1814 intel_logical_ring_emit(ringbuf, 0);
1815 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1816 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1817 intel_logical_ring_emit(ringbuf, MI_NOOP);
1818 return intel_logical_ring_advance_and_submit(request);
1819 }
1820
1821 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1822 {
1823 struct intel_ringbuffer *ringbuf = request->ringbuf;
1824 int ret;
1825
1826 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1827 if (ret)
1828 return ret;
1829
1830 /* We're using qword write, seqno should be aligned to 8 bytes. */
1831 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1832
1833 /* w/a for post sync ops following a GPGPU operation we
1834 * need a prior CS_STALL, which is emitted by the flush
1835 * following the batch.
1836 */
1837 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1838 intel_logical_ring_emit(ringbuf,
1839 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1840 PIPE_CONTROL_CS_STALL |
1841 PIPE_CONTROL_QW_WRITE));
1842 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1843 intel_logical_ring_emit(ringbuf, 0);
1844 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1845 /* We're thrashing one dword of HWS. */
1846 intel_logical_ring_emit(ringbuf, 0);
1847 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1848 intel_logical_ring_emit(ringbuf, MI_NOOP);
1849 return intel_logical_ring_advance_and_submit(request);
1850 }
1851
1852 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1853 {
1854 struct render_state so;
1855 int ret;
1856
1857 ret = i915_gem_render_state_prepare(req->engine, &so);
1858 if (ret)
1859 return ret;
1860
1861 if (so.rodata == NULL)
1862 return 0;
1863
1864 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1865 I915_DISPATCH_SECURE);
1866 if (ret)
1867 goto out;
1868
1869 ret = req->engine->emit_bb_start(req,
1870 (so.ggtt_offset + so.aux_batch_offset),
1871 I915_DISPATCH_SECURE);
1872 if (ret)
1873 goto out;
1874
1875 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1876
1877 out:
1878 i915_gem_render_state_fini(&so);
1879 return ret;
1880 }
1881
1882 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1883 {
1884 int ret;
1885
1886 ret = intel_logical_ring_workarounds_emit(req);
1887 if (ret)
1888 return ret;
1889
1890 ret = intel_rcs_context_init_mocs(req);
1891 /*
1892 * Failing to program the MOCS is non-fatal.The system will not
1893 * run at peak performance. So generate an error and carry on.
1894 */
1895 if (ret)
1896 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1897
1898 return intel_lr_context_render_state_init(req);
1899 }
1900
1901 /**
1902 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1903 *
1904 * @ring: Engine Command Streamer.
1905 *
1906 */
1907 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1908 {
1909 struct drm_i915_private *dev_priv;
1910
1911 if (!intel_engine_initialized(engine))
1912 return;
1913
1914 /*
1915 * Tasklet cannot be active at this point due intel_mark_active/idle
1916 * so this is just for documentation.
1917 */
1918 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1919 tasklet_kill(&engine->irq_tasklet);
1920
1921 dev_priv = engine->dev->dev_private;
1922
1923 if (engine->buffer) {
1924 intel_logical_ring_stop(engine);
1925 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1926 }
1927
1928 if (engine->cleanup)
1929 engine->cleanup(engine);
1930
1931 i915_cmd_parser_fini_ring(engine);
1932 i915_gem_batch_pool_fini(&engine->batch_pool);
1933
1934 if (engine->status_page.obj) {
1935 i915_gem_object_unpin_map(engine->status_page.obj);
1936 engine->status_page.obj = NULL;
1937 }
1938
1939 engine->idle_lite_restore_wa = 0;
1940 engine->disable_lite_restore_wa = false;
1941 engine->ctx_desc_template = 0;
1942
1943 lrc_destroy_wa_ctx_obj(engine);
1944 engine->dev = NULL;
1945 }
1946
1947 static void
1948 logical_ring_default_vfuncs(struct drm_device *dev,
1949 struct intel_engine_cs *engine)
1950 {
1951 /* Default vfuncs which can be overriden by each engine. */
1952 engine->init_hw = gen8_init_common_ring;
1953 engine->emit_request = gen8_emit_request;
1954 engine->emit_flush = gen8_emit_flush;
1955 engine->irq_get = gen8_logical_ring_get_irq;
1956 engine->irq_put = gen8_logical_ring_put_irq;
1957 engine->emit_bb_start = gen8_emit_bb_start;
1958 engine->get_seqno = gen8_get_seqno;
1959 engine->set_seqno = gen8_set_seqno;
1960 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1961 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1962 engine->set_seqno = bxt_a_set_seqno;
1963 }
1964 }
1965
1966 static inline void
1967 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1968 {
1969 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1970 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1971 }
1972
1973 static int
1974 lrc_setup_hws(struct intel_engine_cs *engine,
1975 struct drm_i915_gem_object *dctx_obj)
1976 {
1977 void *hws;
1978
1979 /* The HWSP is part of the default context object in LRC mode. */
1980 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1981 LRC_PPHWSP_PN * PAGE_SIZE;
1982 hws = i915_gem_object_pin_map(dctx_obj);
1983 if (IS_ERR(hws))
1984 return PTR_ERR(hws);
1985 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1986 engine->status_page.obj = dctx_obj;
1987
1988 return 0;
1989 }
1990
1991 static int
1992 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
1993 {
1994 struct drm_i915_private *dev_priv = to_i915(dev);
1995 struct intel_context *dctx = dev_priv->kernel_context;
1996 enum forcewake_domains fw_domains;
1997 int ret;
1998
1999 /* Intentionally left blank. */
2000 engine->buffer = NULL;
2001
2002 engine->dev = dev;
2003 INIT_LIST_HEAD(&engine->active_list);
2004 INIT_LIST_HEAD(&engine->request_list);
2005 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2006 init_waitqueue_head(&engine->irq_queue);
2007
2008 INIT_LIST_HEAD(&engine->buffers);
2009 INIT_LIST_HEAD(&engine->execlist_queue);
2010 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2011 spin_lock_init(&engine->execlist_lock);
2012
2013 tasklet_init(&engine->irq_tasklet,
2014 intel_lrc_irq_handler, (unsigned long)engine);
2015
2016 logical_ring_init_platform_invariants(engine);
2017
2018 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2019 RING_ELSP(engine),
2020 FW_REG_WRITE);
2021
2022 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2023 RING_CONTEXT_STATUS_PTR(engine),
2024 FW_REG_READ | FW_REG_WRITE);
2025
2026 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2027 RING_CONTEXT_STATUS_BUF_BASE(engine),
2028 FW_REG_READ);
2029
2030 engine->fw_domains = fw_domains;
2031
2032 ret = i915_cmd_parser_init_ring(engine);
2033 if (ret)
2034 goto error;
2035
2036 ret = intel_lr_context_deferred_alloc(dctx, engine);
2037 if (ret)
2038 goto error;
2039
2040 /* As this is the default context, always pin it */
2041 ret = intel_lr_context_do_pin(dctx, engine);
2042 if (ret) {
2043 DRM_ERROR(
2044 "Failed to pin and map ringbuffer %s: %d\n",
2045 engine->name, ret);
2046 goto error;
2047 }
2048
2049 /* And setup the hardware status page. */
2050 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2051 if (ret) {
2052 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2053 goto error;
2054 }
2055
2056 return 0;
2057
2058 error:
2059 intel_logical_ring_cleanup(engine);
2060 return ret;
2061 }
2062
2063 static int logical_render_ring_init(struct drm_device *dev)
2064 {
2065 struct drm_i915_private *dev_priv = dev->dev_private;
2066 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2067 int ret;
2068
2069 engine->name = "render ring";
2070 engine->id = RCS;
2071 engine->exec_id = I915_EXEC_RENDER;
2072 engine->guc_id = GUC_RENDER_ENGINE;
2073 engine->mmio_base = RENDER_RING_BASE;
2074
2075 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2076 if (HAS_L3_DPF(dev))
2077 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2078
2079 logical_ring_default_vfuncs(dev, engine);
2080
2081 /* Override some for render ring. */
2082 if (INTEL_INFO(dev)->gen >= 9)
2083 engine->init_hw = gen9_init_render_ring;
2084 else
2085 engine->init_hw = gen8_init_render_ring;
2086 engine->init_context = gen8_init_rcs_context;
2087 engine->cleanup = intel_fini_pipe_control;
2088 engine->emit_flush = gen8_emit_flush_render;
2089 engine->emit_request = gen8_emit_request_render;
2090
2091 engine->dev = dev;
2092
2093 ret = intel_init_pipe_control(engine);
2094 if (ret)
2095 return ret;
2096
2097 ret = intel_init_workaround_bb(engine);
2098 if (ret) {
2099 /*
2100 * We continue even if we fail to initialize WA batch
2101 * because we only expect rare glitches but nothing
2102 * critical to prevent us from using GPU
2103 */
2104 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2105 ret);
2106 }
2107
2108 ret = logical_ring_init(dev, engine);
2109 if (ret) {
2110 lrc_destroy_wa_ctx_obj(engine);
2111 }
2112
2113 return ret;
2114 }
2115
2116 static int logical_bsd_ring_init(struct drm_device *dev)
2117 {
2118 struct drm_i915_private *dev_priv = dev->dev_private;
2119 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2120
2121 engine->name = "bsd ring";
2122 engine->id = VCS;
2123 engine->exec_id = I915_EXEC_BSD;
2124 engine->guc_id = GUC_VIDEO_ENGINE;
2125 engine->mmio_base = GEN6_BSD_RING_BASE;
2126
2127 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2128 logical_ring_default_vfuncs(dev, engine);
2129
2130 return logical_ring_init(dev, engine);
2131 }
2132
2133 static int logical_bsd2_ring_init(struct drm_device *dev)
2134 {
2135 struct drm_i915_private *dev_priv = dev->dev_private;
2136 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2137
2138 engine->name = "bsd2 ring";
2139 engine->id = VCS2;
2140 engine->exec_id = I915_EXEC_BSD;
2141 engine->guc_id = GUC_VIDEO_ENGINE2;
2142 engine->mmio_base = GEN8_BSD2_RING_BASE;
2143
2144 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2145 logical_ring_default_vfuncs(dev, engine);
2146
2147 return logical_ring_init(dev, engine);
2148 }
2149
2150 static int logical_blt_ring_init(struct drm_device *dev)
2151 {
2152 struct drm_i915_private *dev_priv = dev->dev_private;
2153 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2154
2155 engine->name = "blitter ring";
2156 engine->id = BCS;
2157 engine->exec_id = I915_EXEC_BLT;
2158 engine->guc_id = GUC_BLITTER_ENGINE;
2159 engine->mmio_base = BLT_RING_BASE;
2160
2161 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2162 logical_ring_default_vfuncs(dev, engine);
2163
2164 return logical_ring_init(dev, engine);
2165 }
2166
2167 static int logical_vebox_ring_init(struct drm_device *dev)
2168 {
2169 struct drm_i915_private *dev_priv = dev->dev_private;
2170 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2171
2172 engine->name = "video enhancement ring";
2173 engine->id = VECS;
2174 engine->exec_id = I915_EXEC_VEBOX;
2175 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2176 engine->mmio_base = VEBOX_RING_BASE;
2177
2178 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2179 logical_ring_default_vfuncs(dev, engine);
2180
2181 return logical_ring_init(dev, engine);
2182 }
2183
2184 /**
2185 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2186 * @dev: DRM device.
2187 *
2188 * This function inits the engines for an Execlists submission style (the equivalent in the
2189 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2190 * those engines that are present in the hardware.
2191 *
2192 * Return: non-zero if the initialization failed.
2193 */
2194 int intel_logical_rings_init(struct drm_device *dev)
2195 {
2196 struct drm_i915_private *dev_priv = dev->dev_private;
2197 int ret;
2198
2199 ret = logical_render_ring_init(dev);
2200 if (ret)
2201 return ret;
2202
2203 if (HAS_BSD(dev)) {
2204 ret = logical_bsd_ring_init(dev);
2205 if (ret)
2206 goto cleanup_render_ring;
2207 }
2208
2209 if (HAS_BLT(dev)) {
2210 ret = logical_blt_ring_init(dev);
2211 if (ret)
2212 goto cleanup_bsd_ring;
2213 }
2214
2215 if (HAS_VEBOX(dev)) {
2216 ret = logical_vebox_ring_init(dev);
2217 if (ret)
2218 goto cleanup_blt_ring;
2219 }
2220
2221 if (HAS_BSD2(dev)) {
2222 ret = logical_bsd2_ring_init(dev);
2223 if (ret)
2224 goto cleanup_vebox_ring;
2225 }
2226
2227 return 0;
2228
2229 cleanup_vebox_ring:
2230 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2231 cleanup_blt_ring:
2232 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2233 cleanup_bsd_ring:
2234 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2235 cleanup_render_ring:
2236 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2237
2238 return ret;
2239 }
2240
2241 static u32
2242 make_rpcs(struct drm_device *dev)
2243 {
2244 u32 rpcs = 0;
2245
2246 /*
2247 * No explicit RPCS request is needed to ensure full
2248 * slice/subslice/EU enablement prior to Gen9.
2249 */
2250 if (INTEL_INFO(dev)->gen < 9)
2251 return 0;
2252
2253 /*
2254 * Starting in Gen9, render power gating can leave
2255 * slice/subslice/EU in a partially enabled state. We
2256 * must make an explicit request through RPCS for full
2257 * enablement.
2258 */
2259 if (INTEL_INFO(dev)->has_slice_pg) {
2260 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2261 rpcs |= INTEL_INFO(dev)->slice_total <<
2262 GEN8_RPCS_S_CNT_SHIFT;
2263 rpcs |= GEN8_RPCS_ENABLE;
2264 }
2265
2266 if (INTEL_INFO(dev)->has_subslice_pg) {
2267 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2268 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2269 GEN8_RPCS_SS_CNT_SHIFT;
2270 rpcs |= GEN8_RPCS_ENABLE;
2271 }
2272
2273 if (INTEL_INFO(dev)->has_eu_pg) {
2274 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2275 GEN8_RPCS_EU_MIN_SHIFT;
2276 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2277 GEN8_RPCS_EU_MAX_SHIFT;
2278 rpcs |= GEN8_RPCS_ENABLE;
2279 }
2280
2281 return rpcs;
2282 }
2283
2284 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2285 {
2286 u32 indirect_ctx_offset;
2287
2288 switch (INTEL_INFO(engine->dev)->gen) {
2289 default:
2290 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2291 /* fall through */
2292 case 9:
2293 indirect_ctx_offset =
2294 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2295 break;
2296 case 8:
2297 indirect_ctx_offset =
2298 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2299 break;
2300 }
2301
2302 return indirect_ctx_offset;
2303 }
2304
2305 static int
2306 populate_lr_context(struct intel_context *ctx,
2307 struct drm_i915_gem_object *ctx_obj,
2308 struct intel_engine_cs *engine,
2309 struct intel_ringbuffer *ringbuf)
2310 {
2311 struct drm_device *dev = engine->dev;
2312 struct drm_i915_private *dev_priv = dev->dev_private;
2313 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2314 void *vaddr;
2315 u32 *reg_state;
2316 int ret;
2317
2318 if (!ppgtt)
2319 ppgtt = dev_priv->mm.aliasing_ppgtt;
2320
2321 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2322 if (ret) {
2323 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2324 return ret;
2325 }
2326
2327 vaddr = i915_gem_object_pin_map(ctx_obj);
2328 if (IS_ERR(vaddr)) {
2329 ret = PTR_ERR(vaddr);
2330 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2331 return ret;
2332 }
2333 ctx_obj->dirty = true;
2334
2335 /* The second page of the context object contains some fields which must
2336 * be set up prior to the first execution. */
2337 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2338
2339 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2340 * commands followed by (reg, value) pairs. The values we are setting here are
2341 * only for the first context restore: on a subsequent save, the GPU will
2342 * recreate this batchbuffer with new values (including all the missing
2343 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2344 reg_state[CTX_LRI_HEADER_0] =
2345 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2346 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2347 RING_CONTEXT_CONTROL(engine),
2348 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2349 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2350 (HAS_RESOURCE_STREAMER(dev) ?
2351 CTX_CTRL_RS_CTX_ENABLE : 0)));
2352 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2353 0);
2354 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2355 0);
2356 /* Ring buffer start address is not known until the buffer is pinned.
2357 * It is written to the context image in execlists_update_context()
2358 */
2359 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2360 RING_START(engine->mmio_base), 0);
2361 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2362 RING_CTL(engine->mmio_base),
2363 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2364 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2365 RING_BBADDR_UDW(engine->mmio_base), 0);
2366 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2367 RING_BBADDR(engine->mmio_base), 0);
2368 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2369 RING_BBSTATE(engine->mmio_base),
2370 RING_BB_PPGTT);
2371 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2372 RING_SBBADDR_UDW(engine->mmio_base), 0);
2373 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2374 RING_SBBADDR(engine->mmio_base), 0);
2375 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2376 RING_SBBSTATE(engine->mmio_base), 0);
2377 if (engine->id == RCS) {
2378 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2379 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2380 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2381 RING_INDIRECT_CTX(engine->mmio_base), 0);
2382 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2383 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2384 if (engine->wa_ctx.obj) {
2385 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2386 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2387
2388 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2389 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2390 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2391
2392 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2393 intel_lr_indirect_ctx_offset(engine) << 6;
2394
2395 reg_state[CTX_BB_PER_CTX_PTR+1] =
2396 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2397 0x01;
2398 }
2399 }
2400 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2401 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2402 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2403 /* PDP values well be assigned later if needed */
2404 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2405 0);
2406 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2407 0);
2408 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2409 0);
2410 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2411 0);
2412 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2413 0);
2414 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2415 0);
2416 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2417 0);
2418 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2419 0);
2420
2421 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2422 /* 64b PPGTT (48bit canonical)
2423 * PDP0_DESCRIPTOR contains the base address to PML4 and
2424 * other PDP Descriptors are ignored.
2425 */
2426 ASSIGN_CTX_PML4(ppgtt, reg_state);
2427 } else {
2428 /* 32b PPGTT
2429 * PDP*_DESCRIPTOR contains the base address of space supported.
2430 * With dynamic page allocation, PDPs may not be allocated at
2431 * this point. Point the unallocated PDPs to the scratch page
2432 */
2433 execlists_update_context_pdps(ppgtt, reg_state);
2434 }
2435
2436 if (engine->id == RCS) {
2437 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2438 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2439 make_rpcs(dev));
2440 }
2441
2442 i915_gem_object_unpin_map(ctx_obj);
2443
2444 return 0;
2445 }
2446
2447 /**
2448 * intel_lr_context_free() - free the LRC specific bits of a context
2449 * @ctx: the LR context to free.
2450 *
2451 * The real context freeing is done in i915_gem_context_free: this only
2452 * takes care of the bits that are LRC related: the per-engine backing
2453 * objects and the logical ringbuffer.
2454 */
2455 void intel_lr_context_free(struct intel_context *ctx)
2456 {
2457 int i;
2458
2459 for (i = I915_NUM_ENGINES; --i >= 0; ) {
2460 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2461 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2462
2463 if (!ctx_obj)
2464 continue;
2465
2466 if (ctx == ctx->i915->kernel_context) {
2467 intel_unpin_ringbuffer_obj(ringbuf);
2468 i915_gem_object_ggtt_unpin(ctx_obj);
2469 i915_gem_object_unpin_map(ctx_obj);
2470 }
2471
2472 WARN_ON(ctx->engine[i].pin_count);
2473 intel_ringbuffer_free(ringbuf);
2474 drm_gem_object_unreference(&ctx_obj->base);
2475 }
2476 }
2477
2478 /**
2479 * intel_lr_context_size() - return the size of the context for an engine
2480 * @ring: which engine to find the context size for
2481 *
2482 * Each engine may require a different amount of space for a context image,
2483 * so when allocating (or copying) an image, this function can be used to
2484 * find the right size for the specific engine.
2485 *
2486 * Return: size (in bytes) of an engine-specific context image
2487 *
2488 * Note: this size includes the HWSP, which is part of the context image
2489 * in LRC mode, but does not include the "shared data page" used with
2490 * GuC submission. The caller should account for this if using the GuC.
2491 */
2492 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2493 {
2494 int ret = 0;
2495
2496 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2497
2498 switch (engine->id) {
2499 case RCS:
2500 if (INTEL_INFO(engine->dev)->gen >= 9)
2501 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2502 else
2503 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2504 break;
2505 case VCS:
2506 case BCS:
2507 case VECS:
2508 case VCS2:
2509 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2510 break;
2511 }
2512
2513 return ret;
2514 }
2515
2516 /**
2517 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2518 * @ctx: LR context to create.
2519 * @ring: engine to be used with the context.
2520 *
2521 * This function can be called more than once, with different engines, if we plan
2522 * to use the context with them. The context backing objects and the ringbuffers
2523 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2524 * the creation is a deferred call: it's better to make sure first that we need to use
2525 * a given ring with the context.
2526 *
2527 * Return: non-zero on error.
2528 */
2529
2530 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2531 struct intel_engine_cs *engine)
2532 {
2533 struct drm_device *dev = engine->dev;
2534 struct drm_i915_gem_object *ctx_obj;
2535 uint32_t context_size;
2536 struct intel_ringbuffer *ringbuf;
2537 int ret;
2538
2539 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2540 WARN_ON(ctx->engine[engine->id].state);
2541
2542 context_size = round_up(intel_lr_context_size(engine), 4096);
2543
2544 /* One extra page as the sharing data between driver and GuC */
2545 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2546
2547 ctx_obj = i915_gem_object_create(dev, context_size);
2548 if (IS_ERR(ctx_obj)) {
2549 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2550 return PTR_ERR(ctx_obj);
2551 }
2552
2553 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2554 if (IS_ERR(ringbuf)) {
2555 ret = PTR_ERR(ringbuf);
2556 goto error_deref_obj;
2557 }
2558
2559 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2560 if (ret) {
2561 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2562 goto error_ringbuf;
2563 }
2564
2565 ctx->engine[engine->id].ringbuf = ringbuf;
2566 ctx->engine[engine->id].state = ctx_obj;
2567
2568 if (ctx != ctx->i915->kernel_context && engine->init_context) {
2569 struct drm_i915_gem_request *req;
2570
2571 req = i915_gem_request_alloc(engine, ctx);
2572 if (IS_ERR(req)) {
2573 ret = PTR_ERR(req);
2574 DRM_ERROR("ring create req: %d\n", ret);
2575 goto error_ringbuf;
2576 }
2577
2578 ret = engine->init_context(req);
2579 i915_add_request_no_flush(req);
2580 if (ret) {
2581 DRM_ERROR("ring init context: %d\n",
2582 ret);
2583 goto error_ringbuf;
2584 }
2585 }
2586 return 0;
2587
2588 error_ringbuf:
2589 intel_ringbuffer_free(ringbuf);
2590 error_deref_obj:
2591 drm_gem_object_unreference(&ctx_obj->base);
2592 ctx->engine[engine->id].ringbuf = NULL;
2593 ctx->engine[engine->id].state = NULL;
2594 return ret;
2595 }
2596
2597 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2598 struct intel_context *ctx)
2599 {
2600 struct intel_engine_cs *engine;
2601
2602 for_each_engine(engine, dev_priv) {
2603 struct drm_i915_gem_object *ctx_obj =
2604 ctx->engine[engine->id].state;
2605 struct intel_ringbuffer *ringbuf =
2606 ctx->engine[engine->id].ringbuf;
2607 void *vaddr;
2608 uint32_t *reg_state;
2609
2610 if (!ctx_obj)
2611 continue;
2612
2613 vaddr = i915_gem_object_pin_map(ctx_obj);
2614 if (WARN_ON(IS_ERR(vaddr)))
2615 continue;
2616
2617 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2618 ctx_obj->dirty = true;
2619
2620 reg_state[CTX_RING_HEAD+1] = 0;
2621 reg_state[CTX_RING_TAIL+1] = 0;
2622
2623 i915_gem_object_unpin_map(ctx_obj);
2624
2625 ringbuf->head = 0;
2626 ringbuf->tail = 0;
2627 }
2628 }
This page took 0.087144 seconds and 6 git commands to generate.