drm/i915: Convert intel_lr_context_pin() for requests
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL (1 << 0x2)
144 #define RING_EXECLIST1_VALID (1 << 0x3)
145 #define RING_EXECLIST0_VALID (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156
157 #define CTX_LRI_HEADER_0 0x01
158 #define CTX_CONTEXT_CONTROL 0x02
159 #define CTX_RING_HEAD 0x04
160 #define CTX_RING_TAIL 0x06
161 #define CTX_RING_BUFFER_START 0x08
162 #define CTX_RING_BUFFER_CONTROL 0x0a
163 #define CTX_BB_HEAD_U 0x0c
164 #define CTX_BB_HEAD_L 0x0e
165 #define CTX_BB_STATE 0x10
166 #define CTX_SECOND_BB_HEAD_U 0x12
167 #define CTX_SECOND_BB_HEAD_L 0x14
168 #define CTX_SECOND_BB_STATE 0x16
169 #define CTX_BB_PER_CTX_PTR 0x18
170 #define CTX_RCS_INDIRECT_CTX 0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172 #define CTX_LRI_HEADER_1 0x21
173 #define CTX_CTX_TIMESTAMP 0x22
174 #define CTX_PDP3_UDW 0x24
175 #define CTX_PDP3_LDW 0x26
176 #define CTX_PDP2_UDW 0x28
177 #define CTX_PDP2_LDW 0x2a
178 #define CTX_PDP1_UDW 0x2c
179 #define CTX_PDP1_LDW 0x2e
180 #define CTX_PDP0_UDW 0x30
181 #define CTX_PDP0_LDW 0x32
182 #define CTX_LRI_HEADER_2 0x41
183 #define CTX_R_PWR_CLK_STATE 0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191
192 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
194 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
195 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
196 }
197
198 enum {
199 ADVANCED_CONTEXT = 0,
200 LEGACY_CONTEXT,
201 ADVANCED_AD_CONTEXT,
202 LEGACY_64B_CONTEXT
203 };
204 #define GEN8_CTX_MODE_SHIFT 3
205 enum {
206 FAULT_AND_HANG = 0,
207 FAULT_AND_HALT, /* Debug only */
208 FAULT_AND_STREAM,
209 FAULT_AND_CONTINUE /* Unsupported */
210 };
211 #define GEN8_CTX_ID_SHIFT 32
212 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
213
214 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
215
216 /**
217 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
218 * @dev: DRM device.
219 * @enable_execlists: value of i915.enable_execlists module parameter.
220 *
221 * Only certain platforms support Execlists (the prerequisites being
222 * support for Logical Ring Contexts and Aliasing PPGTT or better).
223 *
224 * Return: 1 if Execlists is supported and has to be enabled.
225 */
226 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
227 {
228 WARN_ON(i915.enable_ppgtt == -1);
229
230 if (INTEL_INFO(dev)->gen >= 9)
231 return 1;
232
233 if (enable_execlists == 0)
234 return 0;
235
236 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
237 i915.use_mmio_flip >= 0)
238 return 1;
239
240 return 0;
241 }
242
243 /**
244 * intel_execlists_ctx_id() - get the Execlists Context ID
245 * @ctx_obj: Logical Ring Context backing object.
246 *
247 * Do not confuse with ctx->id! Unfortunately we have a name overload
248 * here: the old context ID we pass to userspace as a handler so that
249 * they can refer to a context, and the new context ID we pass to the
250 * ELSP so that the GPU can inform us of the context status via
251 * interrupts.
252 *
253 * Return: 20-bits globally unique context ID.
254 */
255 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
256 {
257 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
258
259 /* LRCA is required to be 4K aligned so the more significant 20 bits
260 * are globally unique */
261 return lrca >> 12;
262 }
263
264 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
265 struct drm_i915_gem_object *ctx_obj)
266 {
267 struct drm_device *dev = ring->dev;
268 uint64_t desc;
269 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
270
271 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
272
273 desc = GEN8_CTX_VALID;
274 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
275 if (IS_GEN8(ctx_obj->base.dev))
276 desc |= GEN8_CTX_L3LLC_COHERENT;
277 desc |= GEN8_CTX_PRIVILEGE;
278 desc |= lrca;
279 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
280
281 /* TODO: WaDisableLiteRestore when we start using semaphore
282 * signalling between Command Streamers */
283 /* desc |= GEN8_CTX_FORCE_RESTORE; */
284
285 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
286 if (IS_GEN9(dev) &&
287 INTEL_REVID(dev) <= SKL_REVID_B0 &&
288 (ring->id == BCS || ring->id == VCS ||
289 ring->id == VECS || ring->id == VCS2))
290 desc |= GEN8_CTX_FORCE_RESTORE;
291
292 return desc;
293 }
294
295 static void execlists_elsp_write(struct intel_engine_cs *ring,
296 struct drm_i915_gem_object *ctx_obj0,
297 struct drm_i915_gem_object *ctx_obj1)
298 {
299 struct drm_device *dev = ring->dev;
300 struct drm_i915_private *dev_priv = dev->dev_private;
301 uint64_t temp = 0;
302 uint32_t desc[4];
303
304 /* XXX: You must always write both descriptors in the order below. */
305 if (ctx_obj1)
306 temp = execlists_ctx_descriptor(ring, ctx_obj1);
307 else
308 temp = 0;
309 desc[1] = (u32)(temp >> 32);
310 desc[0] = (u32)temp;
311
312 temp = execlists_ctx_descriptor(ring, ctx_obj0);
313 desc[3] = (u32)(temp >> 32);
314 desc[2] = (u32)temp;
315
316 spin_lock(&dev_priv->uncore.lock);
317 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
318 I915_WRITE_FW(RING_ELSP(ring), desc[1]);
319 I915_WRITE_FW(RING_ELSP(ring), desc[0]);
320 I915_WRITE_FW(RING_ELSP(ring), desc[3]);
321
322 /* The context is automatically loaded after the following */
323 I915_WRITE_FW(RING_ELSP(ring), desc[2]);
324
325 /* ELSP is a wo register, so use another nearby reg for posting instead */
326 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
327 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
328 spin_unlock(&dev_priv->uncore.lock);
329 }
330
331 static int execlists_update_context(struct drm_i915_gem_request *rq)
332 {
333 struct intel_engine_cs *ring = rq->ring;
334 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
335 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
336 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
337 struct page *page;
338 uint32_t *reg_state;
339
340 BUG_ON(!ctx_obj);
341 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
342 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
343
344 page = i915_gem_object_get_page(ctx_obj, 1);
345 reg_state = kmap_atomic(page);
346
347 reg_state[CTX_RING_TAIL+1] = rq->tail;
348 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
349
350 /* True PPGTT with dynamic page allocation: update PDP registers and
351 * point the unallocated PDPs to the scratch page
352 */
353 if (ppgtt) {
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
355 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
356 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
357 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
358 }
359
360 kunmap_atomic(reg_state);
361
362 return 0;
363 }
364
365 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
366 struct drm_i915_gem_request *rq1)
367 {
368 struct intel_engine_cs *ring = rq0->ring;
369 struct drm_i915_gem_object *ctx_obj0 = rq0->ctx->engine[ring->id].state;
370 struct drm_i915_gem_object *ctx_obj1 = NULL;
371
372 execlists_update_context(rq0);
373
374 if (rq1) {
375 execlists_update_context(rq1);
376 ctx_obj1 = rq1->ctx->engine[ring->id].state;
377 }
378
379 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
380 }
381
382 static void execlists_context_unqueue(struct intel_engine_cs *ring)
383 {
384 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
385 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
386
387 assert_spin_locked(&ring->execlist_lock);
388
389 /*
390 * If irqs are not active generate a warning as batches that finish
391 * without the irqs may get lost and a GPU Hang may occur.
392 */
393 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
394
395 if (list_empty(&ring->execlist_queue))
396 return;
397
398 /* Try to read in pairs */
399 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
400 execlist_link) {
401 if (!req0) {
402 req0 = cursor;
403 } else if (req0->ctx == cursor->ctx) {
404 /* Same ctx: ignore first request, as second request
405 * will update tail past first request's workload */
406 cursor->elsp_submitted = req0->elsp_submitted;
407 list_del(&req0->execlist_link);
408 list_add_tail(&req0->execlist_link,
409 &ring->execlist_retired_req_list);
410 req0 = cursor;
411 } else {
412 req1 = cursor;
413 break;
414 }
415 }
416
417 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
418 /*
419 * WaIdleLiteRestore: make sure we never cause a lite
420 * restore with HEAD==TAIL
421 */
422 if (req0->elsp_submitted) {
423 /*
424 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
425 * as we resubmit the request. See gen8_emit_request()
426 * for where we prepare the padding after the end of the
427 * request.
428 */
429 struct intel_ringbuffer *ringbuf;
430
431 ringbuf = req0->ctx->engine[ring->id].ringbuf;
432 req0->tail += 8;
433 req0->tail &= ringbuf->size - 1;
434 }
435 }
436
437 WARN_ON(req1 && req1->elsp_submitted);
438
439 execlists_submit_requests(req0, req1);
440
441 req0->elsp_submitted++;
442 if (req1)
443 req1->elsp_submitted++;
444 }
445
446 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
447 u32 request_id)
448 {
449 struct drm_i915_gem_request *head_req;
450
451 assert_spin_locked(&ring->execlist_lock);
452
453 head_req = list_first_entry_or_null(&ring->execlist_queue,
454 struct drm_i915_gem_request,
455 execlist_link);
456
457 if (head_req != NULL) {
458 struct drm_i915_gem_object *ctx_obj =
459 head_req->ctx->engine[ring->id].state;
460 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
461 WARN(head_req->elsp_submitted == 0,
462 "Never submitted head request\n");
463
464 if (--head_req->elsp_submitted <= 0) {
465 list_del(&head_req->execlist_link);
466 list_add_tail(&head_req->execlist_link,
467 &ring->execlist_retired_req_list);
468 return true;
469 }
470 }
471 }
472
473 return false;
474 }
475
476 /**
477 * intel_lrc_irq_handler() - handle Context Switch interrupts
478 * @ring: Engine Command Streamer to handle.
479 *
480 * Check the unread Context Status Buffers and manage the submission of new
481 * contexts to the ELSP accordingly.
482 */
483 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
484 {
485 struct drm_i915_private *dev_priv = ring->dev->dev_private;
486 u32 status_pointer;
487 u8 read_pointer;
488 u8 write_pointer;
489 u32 status;
490 u32 status_id;
491 u32 submit_contexts = 0;
492
493 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
494
495 read_pointer = ring->next_context_status_buffer;
496 write_pointer = status_pointer & 0x07;
497 if (read_pointer > write_pointer)
498 write_pointer += 6;
499
500 spin_lock(&ring->execlist_lock);
501
502 while (read_pointer < write_pointer) {
503 read_pointer++;
504 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
505 (read_pointer % 6) * 8);
506 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
507 (read_pointer % 6) * 8 + 4);
508
509 if (status & GEN8_CTX_STATUS_PREEMPTED) {
510 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
511 if (execlists_check_remove_request(ring, status_id))
512 WARN(1, "Lite Restored request removed from queue\n");
513 } else
514 WARN(1, "Preemption without Lite Restore\n");
515 }
516
517 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
518 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
519 if (execlists_check_remove_request(ring, status_id))
520 submit_contexts++;
521 }
522 }
523
524 if (submit_contexts != 0)
525 execlists_context_unqueue(ring);
526
527 spin_unlock(&ring->execlist_lock);
528
529 WARN(submit_contexts > 2, "More than two context complete events?\n");
530 ring->next_context_status_buffer = write_pointer % 6;
531
532 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
533 ((u32)ring->next_context_status_buffer & 0x07) << 8);
534 }
535
536 static int execlists_context_queue(struct drm_i915_gem_request *request)
537 {
538 struct intel_engine_cs *ring = request->ring;
539 struct drm_i915_gem_request *cursor;
540 int num_elements = 0;
541
542 if (request->ctx != ring->default_context)
543 intel_lr_context_pin(request);
544
545 i915_gem_request_reference(request);
546
547 request->tail = request->ringbuf->tail;
548
549 spin_lock_irq(&ring->execlist_lock);
550
551 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
552 if (++num_elements > 2)
553 break;
554
555 if (num_elements > 2) {
556 struct drm_i915_gem_request *tail_req;
557
558 tail_req = list_last_entry(&ring->execlist_queue,
559 struct drm_i915_gem_request,
560 execlist_link);
561
562 if (request->ctx == tail_req->ctx) {
563 WARN(tail_req->elsp_submitted != 0,
564 "More than 2 already-submitted reqs queued\n");
565 list_del(&tail_req->execlist_link);
566 list_add_tail(&tail_req->execlist_link,
567 &ring->execlist_retired_req_list);
568 }
569 }
570
571 list_add_tail(&request->execlist_link, &ring->execlist_queue);
572 if (num_elements == 0)
573 execlists_context_unqueue(ring);
574
575 spin_unlock_irq(&ring->execlist_lock);
576
577 return 0;
578 }
579
580 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
581 {
582 struct intel_engine_cs *ring = req->ring;
583 uint32_t flush_domains;
584 int ret;
585
586 flush_domains = 0;
587 if (ring->gpu_caches_dirty)
588 flush_domains = I915_GEM_GPU_DOMAINS;
589
590 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
591 if (ret)
592 return ret;
593
594 ring->gpu_caches_dirty = false;
595 return 0;
596 }
597
598 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
599 struct list_head *vmas)
600 {
601 const unsigned other_rings = ~intel_ring_flag(req->ring);
602 struct i915_vma *vma;
603 uint32_t flush_domains = 0;
604 bool flush_chipset = false;
605 int ret;
606
607 list_for_each_entry(vma, vmas, exec_list) {
608 struct drm_i915_gem_object *obj = vma->obj;
609
610 if (obj->active & other_rings) {
611 ret = i915_gem_object_sync(obj, req->ring, &req);
612 if (ret)
613 return ret;
614 }
615
616 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
617 flush_chipset |= i915_gem_clflush_object(obj, false);
618
619 flush_domains |= obj->base.write_domain;
620 }
621
622 if (flush_domains & I915_GEM_DOMAIN_GTT)
623 wmb();
624
625 /* Unconditionally invalidate gpu caches and ensure that we do flush
626 * any residual writes from the previous batch.
627 */
628 return logical_ring_invalidate_all_caches(req);
629 }
630
631 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
632 {
633 int ret;
634
635 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
636
637 if (request->ctx != request->ring->default_context) {
638 ret = intel_lr_context_pin(request);
639 if (ret)
640 return ret;
641 }
642
643 return 0;
644 }
645
646 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
647 int bytes)
648 {
649 struct intel_ringbuffer *ringbuf = req->ringbuf;
650 struct intel_engine_cs *ring = req->ring;
651 struct drm_i915_gem_request *target;
652 unsigned space;
653 int ret;
654
655 if (intel_ring_space(ringbuf) >= bytes)
656 return 0;
657
658 /* The whole point of reserving space is to not wait! */
659 WARN_ON(ringbuf->reserved_in_use);
660
661 list_for_each_entry(target, &ring->request_list, list) {
662 /*
663 * The request queue is per-engine, so can contain requests
664 * from multiple ringbuffers. Here, we must ignore any that
665 * aren't from the ringbuffer we're considering.
666 */
667 if (target->ringbuf != ringbuf)
668 continue;
669
670 /* Would completion of this request free enough space? */
671 space = __intel_ring_space(target->postfix, ringbuf->tail,
672 ringbuf->size);
673 if (space >= bytes)
674 break;
675 }
676
677 if (WARN_ON(&target->list == &ring->request_list))
678 return -ENOSPC;
679
680 ret = i915_wait_request(target);
681 if (ret)
682 return ret;
683
684 ringbuf->space = space;
685 return 0;
686 }
687
688 /*
689 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
690 * @request: Request to advance the logical ringbuffer of.
691 *
692 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
693 * really happens during submission is that the context and current tail will be placed
694 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
695 * point, the tail *inside* the context is updated and the ELSP written to.
696 */
697 static void
698 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
699 {
700 struct intel_engine_cs *ring = request->ring;
701
702 intel_logical_ring_advance(request->ringbuf);
703
704 if (intel_ring_stopped(ring))
705 return;
706
707 execlists_context_queue(request);
708 }
709
710 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
711 {
712 uint32_t __iomem *virt;
713 int rem = ringbuf->size - ringbuf->tail;
714
715 virt = ringbuf->virtual_start + ringbuf->tail;
716 rem /= 4;
717 while (rem--)
718 iowrite32(MI_NOOP, virt++);
719
720 ringbuf->tail = 0;
721 intel_ring_update_space(ringbuf);
722 }
723
724 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
725 {
726 struct intel_ringbuffer *ringbuf = req->ringbuf;
727 int remain_usable = ringbuf->effective_size - ringbuf->tail;
728 int remain_actual = ringbuf->size - ringbuf->tail;
729 int ret, total_bytes, wait_bytes = 0;
730 bool need_wrap = false;
731
732 if (ringbuf->reserved_in_use)
733 total_bytes = bytes;
734 else
735 total_bytes = bytes + ringbuf->reserved_size;
736
737 if (unlikely(bytes > remain_usable)) {
738 /*
739 * Not enough space for the basic request. So need to flush
740 * out the remainder and then wait for base + reserved.
741 */
742 wait_bytes = remain_actual + total_bytes;
743 need_wrap = true;
744 } else {
745 if (unlikely(total_bytes > remain_usable)) {
746 /*
747 * The base request will fit but the reserved space
748 * falls off the end. So only need to to wait for the
749 * reserved size after flushing out the remainder.
750 */
751 wait_bytes = remain_actual + ringbuf->reserved_size;
752 need_wrap = true;
753 } else if (total_bytes > ringbuf->space) {
754 /* No wrapping required, just waiting. */
755 wait_bytes = total_bytes;
756 }
757 }
758
759 if (wait_bytes) {
760 ret = logical_ring_wait_for_space(req, wait_bytes);
761 if (unlikely(ret))
762 return ret;
763
764 if (need_wrap)
765 __wrap_ring_buffer(ringbuf);
766 }
767
768 return 0;
769 }
770
771 /**
772 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
773 *
774 * @request: The request to start some new work for
775 * @ctx: Logical ring context whose ringbuffer is being prepared.
776 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
777 *
778 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
779 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
780 * and also preallocates a request (every workload submission is still mediated through
781 * requests, same as it did with legacy ringbuffer submission).
782 *
783 * Return: non-zero if the ringbuffer is not ready to be written to.
784 */
785 static int intel_logical_ring_begin(struct drm_i915_gem_request *req,
786 int num_dwords)
787 {
788 struct drm_i915_private *dev_priv;
789 int ret;
790
791 WARN_ON(req == NULL);
792 dev_priv = req->ring->dev->dev_private;
793
794 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
795 dev_priv->mm.interruptible);
796 if (ret)
797 return ret;
798
799 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
800 if (ret)
801 return ret;
802
803 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
804 return 0;
805 }
806
807 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
808 {
809 /*
810 * The first call merely notes the reserve request and is common for
811 * all back ends. The subsequent localised _begin() call actually
812 * ensures that the reservation is available. Without the begin, if
813 * the request creator immediately submitted the request without
814 * adding any commands to it then there might not actually be
815 * sufficient room for the submission commands.
816 */
817 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
818
819 return intel_logical_ring_begin(request, 0);
820 }
821
822 /**
823 * execlists_submission() - submit a batchbuffer for execution, Execlists style
824 * @dev: DRM device.
825 * @file: DRM file.
826 * @ring: Engine Command Streamer to submit to.
827 * @ctx: Context to employ for this submission.
828 * @args: execbuffer call arguments.
829 * @vmas: list of vmas.
830 * @batch_obj: the batchbuffer to submit.
831 * @exec_start: batchbuffer start virtual address pointer.
832 * @dispatch_flags: translated execbuffer call flags.
833 *
834 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
835 * away the submission details of the execbuffer ioctl call.
836 *
837 * Return: non-zero if the submission fails.
838 */
839 int intel_execlists_submission(struct i915_execbuffer_params *params,
840 struct drm_i915_gem_execbuffer2 *args,
841 struct list_head *vmas)
842 {
843 struct drm_device *dev = params->dev;
844 struct intel_engine_cs *ring = params->ring;
845 struct drm_i915_private *dev_priv = dev->dev_private;
846 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
847 u64 exec_start;
848 int instp_mode;
849 u32 instp_mask;
850 int ret;
851
852 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
853 instp_mask = I915_EXEC_CONSTANTS_MASK;
854 switch (instp_mode) {
855 case I915_EXEC_CONSTANTS_REL_GENERAL:
856 case I915_EXEC_CONSTANTS_ABSOLUTE:
857 case I915_EXEC_CONSTANTS_REL_SURFACE:
858 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
859 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
860 return -EINVAL;
861 }
862
863 if (instp_mode != dev_priv->relative_constants_mode) {
864 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
865 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
866 return -EINVAL;
867 }
868
869 /* The HW changed the meaning on this bit on gen6 */
870 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
871 }
872 break;
873 default:
874 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
875 return -EINVAL;
876 }
877
878 if (args->num_cliprects != 0) {
879 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
880 return -EINVAL;
881 } else {
882 if (args->DR4 == 0xffffffff) {
883 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
884 args->DR4 = 0;
885 }
886
887 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
888 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
889 return -EINVAL;
890 }
891 }
892
893 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
894 DRM_DEBUG("sol reset is gen7 only\n");
895 return -EINVAL;
896 }
897
898 ret = execlists_move_to_gpu(params->request, vmas);
899 if (ret)
900 return ret;
901
902 if (ring == &dev_priv->ring[RCS] &&
903 instp_mode != dev_priv->relative_constants_mode) {
904 ret = intel_logical_ring_begin(params->request, 4);
905 if (ret)
906 return ret;
907
908 intel_logical_ring_emit(ringbuf, MI_NOOP);
909 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
910 intel_logical_ring_emit(ringbuf, INSTPM);
911 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
912 intel_logical_ring_advance(ringbuf);
913
914 dev_priv->relative_constants_mode = instp_mode;
915 }
916
917 exec_start = params->batch_obj_vm_offset +
918 args->batch_start_offset;
919
920 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
921 if (ret)
922 return ret;
923
924 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
925
926 i915_gem_execbuffer_move_to_active(vmas, params->request);
927 i915_gem_execbuffer_retire_commands(params);
928
929 return 0;
930 }
931
932 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
933 {
934 struct drm_i915_gem_request *req, *tmp;
935 struct list_head retired_list;
936
937 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
938 if (list_empty(&ring->execlist_retired_req_list))
939 return;
940
941 INIT_LIST_HEAD(&retired_list);
942 spin_lock_irq(&ring->execlist_lock);
943 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
944 spin_unlock_irq(&ring->execlist_lock);
945
946 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
947 struct intel_context *ctx = req->ctx;
948 struct drm_i915_gem_object *ctx_obj =
949 ctx->engine[ring->id].state;
950
951 if (ctx_obj && (ctx != ring->default_context))
952 intel_lr_context_unpin(req);
953 list_del(&req->execlist_link);
954 i915_gem_request_unreference(req);
955 }
956 }
957
958 void intel_logical_ring_stop(struct intel_engine_cs *ring)
959 {
960 struct drm_i915_private *dev_priv = ring->dev->dev_private;
961 int ret;
962
963 if (!intel_ring_initialized(ring))
964 return;
965
966 ret = intel_ring_idle(ring);
967 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
968 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
969 ring->name, ret);
970
971 /* TODO: Is this correct with Execlists enabled? */
972 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
973 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
974 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
975 return;
976 }
977 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
978 }
979
980 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
981 {
982 struct intel_engine_cs *ring = req->ring;
983 int ret;
984
985 if (!ring->gpu_caches_dirty)
986 return 0;
987
988 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
989 if (ret)
990 return ret;
991
992 ring->gpu_caches_dirty = false;
993 return 0;
994 }
995
996 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
997 {
998 struct intel_engine_cs *ring = rq->ring;
999 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1000 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1001 int ret = 0;
1002
1003 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1004 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1005 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1006 GEN8_LR_CONTEXT_ALIGN, 0);
1007 if (ret)
1008 goto reset_pin_count;
1009
1010 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1011 if (ret)
1012 goto unpin_ctx_obj;
1013 }
1014
1015 return ret;
1016
1017 unpin_ctx_obj:
1018 i915_gem_object_ggtt_unpin(ctx_obj);
1019 reset_pin_count:
1020 rq->ctx->engine[ring->id].pin_count = 0;
1021
1022 return ret;
1023 }
1024
1025 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1026 {
1027 struct intel_engine_cs *ring = rq->ring;
1028 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1029 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1030
1031 if (ctx_obj) {
1032 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1033 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1034 intel_unpin_ringbuffer_obj(ringbuf);
1035 i915_gem_object_ggtt_unpin(ctx_obj);
1036 }
1037 }
1038 }
1039
1040 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1041 {
1042 int ret, i;
1043 struct intel_engine_cs *ring = req->ring;
1044 struct intel_ringbuffer *ringbuf = req->ringbuf;
1045 struct drm_device *dev = ring->dev;
1046 struct drm_i915_private *dev_priv = dev->dev_private;
1047 struct i915_workarounds *w = &dev_priv->workarounds;
1048
1049 if (WARN_ON_ONCE(w->count == 0))
1050 return 0;
1051
1052 ring->gpu_caches_dirty = true;
1053 ret = logical_ring_flush_all_caches(req);
1054 if (ret)
1055 return ret;
1056
1057 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1058 if (ret)
1059 return ret;
1060
1061 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1062 for (i = 0; i < w->count; i++) {
1063 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1064 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1065 }
1066 intel_logical_ring_emit(ringbuf, MI_NOOP);
1067
1068 intel_logical_ring_advance(ringbuf);
1069
1070 ring->gpu_caches_dirty = true;
1071 ret = logical_ring_flush_all_caches(req);
1072 if (ret)
1073 return ret;
1074
1075 return 0;
1076 }
1077
1078 #define wa_ctx_emit(batch, cmd) \
1079 do { \
1080 if (WARN_ON(index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1081 return -ENOSPC; \
1082 } \
1083 batch[index++] = (cmd); \
1084 } while (0)
1085
1086
1087 /*
1088 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1089 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1090 * but there is a slight complication as this is applied in WA batch where the
1091 * values are only initialized once so we cannot take register value at the
1092 * beginning and reuse it further; hence we save its value to memory, upload a
1093 * constant value with bit21 set and then we restore it back with the saved value.
1094 * To simplify the WA, a constant value is formed by using the default value
1095 * of this register. This shouldn't be a problem because we are only modifying
1096 * it for a short period and this batch in non-premptible. We can ofcourse
1097 * use additional instructions that read the actual value of the register
1098 * at that time and set our bit of interest but it makes the WA complicated.
1099 *
1100 * This WA is also required for Gen9 so extracting as a function avoids
1101 * code duplication.
1102 */
1103 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1104 uint32_t *const batch,
1105 uint32_t index)
1106 {
1107 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1108
1109 wa_ctx_emit(batch, (MI_STORE_REGISTER_MEM_GEN8(1) |
1110 MI_SRM_LRM_GLOBAL_GTT));
1111 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1112 wa_ctx_emit(batch, ring->scratch.gtt_offset + 256);
1113 wa_ctx_emit(batch, 0);
1114
1115 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1116 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1117 wa_ctx_emit(batch, l3sqc4_flush);
1118
1119 wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
1120 wa_ctx_emit(batch, (PIPE_CONTROL_CS_STALL |
1121 PIPE_CONTROL_DC_FLUSH_ENABLE));
1122 wa_ctx_emit(batch, 0);
1123 wa_ctx_emit(batch, 0);
1124 wa_ctx_emit(batch, 0);
1125 wa_ctx_emit(batch, 0);
1126
1127 wa_ctx_emit(batch, (MI_LOAD_REGISTER_MEM_GEN8(1) |
1128 MI_SRM_LRM_GLOBAL_GTT));
1129 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1130 wa_ctx_emit(batch, ring->scratch.gtt_offset + 256);
1131 wa_ctx_emit(batch, 0);
1132
1133 return index;
1134 }
1135
1136 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1137 uint32_t offset,
1138 uint32_t start_alignment)
1139 {
1140 return wa_ctx->offset = ALIGN(offset, start_alignment);
1141 }
1142
1143 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1144 uint32_t offset,
1145 uint32_t size_alignment)
1146 {
1147 wa_ctx->size = offset - wa_ctx->offset;
1148
1149 WARN(wa_ctx->size % size_alignment,
1150 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1151 wa_ctx->size, size_alignment);
1152 return 0;
1153 }
1154
1155 /**
1156 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1157 *
1158 * @ring: only applicable for RCS
1159 * @wa_ctx: structure representing wa_ctx
1160 * offset: specifies start of the batch, should be cache-aligned. This is updated
1161 * with the offset value received as input.
1162 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1163 * @batch: page in which WA are loaded
1164 * @offset: This field specifies the start of the batch, it should be
1165 * cache-aligned otherwise it is adjusted accordingly.
1166 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1167 * initialized at the beginning and shared across all contexts but this field
1168 * helps us to have multiple batches at different offsets and select them based
1169 * on a criteria. At the moment this batch always start at the beginning of the page
1170 * and at this point we don't have multiple wa_ctx batch buffers.
1171 *
1172 * The number of WA applied are not known at the beginning; we use this field
1173 * to return the no of DWORDS written.
1174 *
1175 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1176 * so it adds NOOPs as padding to make it cacheline aligned.
1177 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1178 * makes a complete batch buffer.
1179 *
1180 * Return: non-zero if we exceed the PAGE_SIZE limit.
1181 */
1182
1183 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1184 struct i915_wa_ctx_bb *wa_ctx,
1185 uint32_t *const batch,
1186 uint32_t *offset)
1187 {
1188 uint32_t scratch_addr;
1189 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1190
1191 /* WaDisableCtxRestoreArbitration:bdw,chv */
1192 wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1193
1194 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1195 if (IS_BROADWELL(ring->dev)) {
1196 index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1197 if (index < 0)
1198 return index;
1199 }
1200
1201 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1202 /* Actual scratch location is at 128 bytes offset */
1203 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1204
1205 wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
1206 wa_ctx_emit(batch, (PIPE_CONTROL_FLUSH_L3 |
1207 PIPE_CONTROL_GLOBAL_GTT_IVB |
1208 PIPE_CONTROL_CS_STALL |
1209 PIPE_CONTROL_QW_WRITE));
1210 wa_ctx_emit(batch, scratch_addr);
1211 wa_ctx_emit(batch, 0);
1212 wa_ctx_emit(batch, 0);
1213 wa_ctx_emit(batch, 0);
1214
1215 /* Pad to end of cacheline */
1216 while (index % CACHELINE_DWORDS)
1217 wa_ctx_emit(batch, MI_NOOP);
1218
1219 /*
1220 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1221 * execution depends on the length specified in terms of cache lines
1222 * in the register CTX_RCS_INDIRECT_CTX
1223 */
1224
1225 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1226 }
1227
1228 /**
1229 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1230 *
1231 * @ring: only applicable for RCS
1232 * @wa_ctx: structure representing wa_ctx
1233 * offset: specifies start of the batch, should be cache-aligned.
1234 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1235 * @batch: page in which WA are loaded
1236 * @offset: This field specifies the start of this batch.
1237 * This batch is started immediately after indirect_ctx batch. Since we ensure
1238 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1239 *
1240 * The number of DWORDS written are returned using this field.
1241 *
1242 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1243 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1244 */
1245 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1246 struct i915_wa_ctx_bb *wa_ctx,
1247 uint32_t *const batch,
1248 uint32_t *offset)
1249 {
1250 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1251
1252 /* WaDisableCtxRestoreArbitration:bdw,chv */
1253 wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1254
1255 wa_ctx_emit(batch, MI_BATCH_BUFFER_END);
1256
1257 return wa_ctx_end(wa_ctx, *offset = index, 1);
1258 }
1259
1260 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1261 {
1262 int ret;
1263
1264 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1265 if (!ring->wa_ctx.obj) {
1266 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1267 return -ENOMEM;
1268 }
1269
1270 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1271 if (ret) {
1272 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1273 ret);
1274 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1275 return ret;
1276 }
1277
1278 return 0;
1279 }
1280
1281 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1282 {
1283 if (ring->wa_ctx.obj) {
1284 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1285 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1286 ring->wa_ctx.obj = NULL;
1287 }
1288 }
1289
1290 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1291 {
1292 int ret;
1293 uint32_t *batch;
1294 uint32_t offset;
1295 struct page *page;
1296 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1297
1298 WARN_ON(ring->id != RCS);
1299
1300 /* update this when WA for higher Gen are added */
1301 if (WARN(INTEL_INFO(ring->dev)->gen > 8,
1302 "WA batch buffer is not initialized for Gen%d\n",
1303 INTEL_INFO(ring->dev)->gen))
1304 return 0;
1305
1306 /* some WA perform writes to scratch page, ensure it is valid */
1307 if (ring->scratch.obj == NULL) {
1308 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1309 return -EINVAL;
1310 }
1311
1312 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1313 if (ret) {
1314 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1315 return ret;
1316 }
1317
1318 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1319 batch = kmap_atomic(page);
1320 offset = 0;
1321
1322 if (INTEL_INFO(ring->dev)->gen == 8) {
1323 ret = gen8_init_indirectctx_bb(ring,
1324 &wa_ctx->indirect_ctx,
1325 batch,
1326 &offset);
1327 if (ret)
1328 goto out;
1329
1330 ret = gen8_init_perctx_bb(ring,
1331 &wa_ctx->per_ctx,
1332 batch,
1333 &offset);
1334 if (ret)
1335 goto out;
1336 }
1337
1338 out:
1339 kunmap_atomic(batch);
1340 if (ret)
1341 lrc_destroy_wa_ctx_obj(ring);
1342
1343 return ret;
1344 }
1345
1346 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1347 {
1348 struct drm_device *dev = ring->dev;
1349 struct drm_i915_private *dev_priv = dev->dev_private;
1350
1351 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1352 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1353
1354 I915_WRITE(RING_MODE_GEN7(ring),
1355 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1356 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1357 POSTING_READ(RING_MODE_GEN7(ring));
1358 ring->next_context_status_buffer = 0;
1359 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1360
1361 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1362
1363 return 0;
1364 }
1365
1366 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1367 {
1368 struct drm_device *dev = ring->dev;
1369 struct drm_i915_private *dev_priv = dev->dev_private;
1370 int ret;
1371
1372 ret = gen8_init_common_ring(ring);
1373 if (ret)
1374 return ret;
1375
1376 /* We need to disable the AsyncFlip performance optimisations in order
1377 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1378 * programmed to '1' on all products.
1379 *
1380 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1381 */
1382 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1383
1384 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1385
1386 return init_workarounds_ring(ring);
1387 }
1388
1389 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1390 {
1391 int ret;
1392
1393 ret = gen8_init_common_ring(ring);
1394 if (ret)
1395 return ret;
1396
1397 return init_workarounds_ring(ring);
1398 }
1399
1400 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1401 {
1402 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1403 struct intel_engine_cs *ring = req->ring;
1404 struct intel_ringbuffer *ringbuf = req->ringbuf;
1405 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1406 int i, ret;
1407
1408 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1409 if (ret)
1410 return ret;
1411
1412 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1413 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1414 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1415
1416 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1417 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1418 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1419 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1420 }
1421
1422 intel_logical_ring_emit(ringbuf, MI_NOOP);
1423 intel_logical_ring_advance(ringbuf);
1424
1425 return 0;
1426 }
1427
1428 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1429 u64 offset, unsigned dispatch_flags)
1430 {
1431 struct intel_ringbuffer *ringbuf = req->ringbuf;
1432 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1433 int ret;
1434
1435 /* Don't rely in hw updating PDPs, specially in lite-restore.
1436 * Ideally, we should set Force PD Restore in ctx descriptor,
1437 * but we can't. Force Restore would be a second option, but
1438 * it is unsafe in case of lite-restore (because the ctx is
1439 * not idle). */
1440 if (req->ctx->ppgtt &&
1441 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1442 ret = intel_logical_ring_emit_pdps(req);
1443 if (ret)
1444 return ret;
1445
1446 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1447 }
1448
1449 ret = intel_logical_ring_begin(req, 4);
1450 if (ret)
1451 return ret;
1452
1453 /* FIXME(BDW): Address space and security selectors. */
1454 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1455 (ppgtt<<8) |
1456 (dispatch_flags & I915_DISPATCH_RS ?
1457 MI_BATCH_RESOURCE_STREAMER : 0));
1458 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1459 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1460 intel_logical_ring_emit(ringbuf, MI_NOOP);
1461 intel_logical_ring_advance(ringbuf);
1462
1463 return 0;
1464 }
1465
1466 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1467 {
1468 struct drm_device *dev = ring->dev;
1469 struct drm_i915_private *dev_priv = dev->dev_private;
1470 unsigned long flags;
1471
1472 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1473 return false;
1474
1475 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1476 if (ring->irq_refcount++ == 0) {
1477 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1478 POSTING_READ(RING_IMR(ring->mmio_base));
1479 }
1480 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1481
1482 return true;
1483 }
1484
1485 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1486 {
1487 struct drm_device *dev = ring->dev;
1488 struct drm_i915_private *dev_priv = dev->dev_private;
1489 unsigned long flags;
1490
1491 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1492 if (--ring->irq_refcount == 0) {
1493 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1494 POSTING_READ(RING_IMR(ring->mmio_base));
1495 }
1496 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1497 }
1498
1499 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1500 u32 invalidate_domains,
1501 u32 unused)
1502 {
1503 struct intel_ringbuffer *ringbuf = request->ringbuf;
1504 struct intel_engine_cs *ring = ringbuf->ring;
1505 struct drm_device *dev = ring->dev;
1506 struct drm_i915_private *dev_priv = dev->dev_private;
1507 uint32_t cmd;
1508 int ret;
1509
1510 ret = intel_logical_ring_begin(request, 4);
1511 if (ret)
1512 return ret;
1513
1514 cmd = MI_FLUSH_DW + 1;
1515
1516 /* We always require a command barrier so that subsequent
1517 * commands, such as breadcrumb interrupts, are strictly ordered
1518 * wrt the contents of the write cache being flushed to memory
1519 * (and thus being coherent from the CPU).
1520 */
1521 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1522
1523 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1524 cmd |= MI_INVALIDATE_TLB;
1525 if (ring == &dev_priv->ring[VCS])
1526 cmd |= MI_INVALIDATE_BSD;
1527 }
1528
1529 intel_logical_ring_emit(ringbuf, cmd);
1530 intel_logical_ring_emit(ringbuf,
1531 I915_GEM_HWS_SCRATCH_ADDR |
1532 MI_FLUSH_DW_USE_GTT);
1533 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1534 intel_logical_ring_emit(ringbuf, 0); /* value */
1535 intel_logical_ring_advance(ringbuf);
1536
1537 return 0;
1538 }
1539
1540 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1541 u32 invalidate_domains,
1542 u32 flush_domains)
1543 {
1544 struct intel_ringbuffer *ringbuf = request->ringbuf;
1545 struct intel_engine_cs *ring = ringbuf->ring;
1546 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1547 bool vf_flush_wa;
1548 u32 flags = 0;
1549 int ret;
1550
1551 flags |= PIPE_CONTROL_CS_STALL;
1552
1553 if (flush_domains) {
1554 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1555 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1556 }
1557
1558 if (invalidate_domains) {
1559 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1560 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1561 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1562 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1563 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1564 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1565 flags |= PIPE_CONTROL_QW_WRITE;
1566 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1567 }
1568
1569 /*
1570 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1571 * control.
1572 */
1573 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1574 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1575
1576 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1577 if (ret)
1578 return ret;
1579
1580 if (vf_flush_wa) {
1581 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1582 intel_logical_ring_emit(ringbuf, 0);
1583 intel_logical_ring_emit(ringbuf, 0);
1584 intel_logical_ring_emit(ringbuf, 0);
1585 intel_logical_ring_emit(ringbuf, 0);
1586 intel_logical_ring_emit(ringbuf, 0);
1587 }
1588
1589 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1590 intel_logical_ring_emit(ringbuf, flags);
1591 intel_logical_ring_emit(ringbuf, scratch_addr);
1592 intel_logical_ring_emit(ringbuf, 0);
1593 intel_logical_ring_emit(ringbuf, 0);
1594 intel_logical_ring_emit(ringbuf, 0);
1595 intel_logical_ring_advance(ringbuf);
1596
1597 return 0;
1598 }
1599
1600 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1601 {
1602 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1603 }
1604
1605 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1606 {
1607 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1608 }
1609
1610 static int gen8_emit_request(struct drm_i915_gem_request *request)
1611 {
1612 struct intel_ringbuffer *ringbuf = request->ringbuf;
1613 struct intel_engine_cs *ring = ringbuf->ring;
1614 u32 cmd;
1615 int ret;
1616
1617 /*
1618 * Reserve space for 2 NOOPs at the end of each request to be
1619 * used as a workaround for not being allowed to do lite
1620 * restore with HEAD==TAIL (WaIdleLiteRestore).
1621 */
1622 ret = intel_logical_ring_begin(request, 8);
1623 if (ret)
1624 return ret;
1625
1626 cmd = MI_STORE_DWORD_IMM_GEN4;
1627 cmd |= MI_GLOBAL_GTT;
1628
1629 intel_logical_ring_emit(ringbuf, cmd);
1630 intel_logical_ring_emit(ringbuf,
1631 (ring->status_page.gfx_addr +
1632 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1633 intel_logical_ring_emit(ringbuf, 0);
1634 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1635 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1636 intel_logical_ring_emit(ringbuf, MI_NOOP);
1637 intel_logical_ring_advance_and_submit(request);
1638
1639 /*
1640 * Here we add two extra NOOPs as padding to avoid
1641 * lite restore of a context with HEAD==TAIL.
1642 */
1643 intel_logical_ring_emit(ringbuf, MI_NOOP);
1644 intel_logical_ring_emit(ringbuf, MI_NOOP);
1645 intel_logical_ring_advance(ringbuf);
1646
1647 return 0;
1648 }
1649
1650 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1651 {
1652 struct render_state so;
1653 int ret;
1654
1655 ret = i915_gem_render_state_prepare(req->ring, &so);
1656 if (ret)
1657 return ret;
1658
1659 if (so.rodata == NULL)
1660 return 0;
1661
1662 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1663 I915_DISPATCH_SECURE);
1664 if (ret)
1665 goto out;
1666
1667 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1668
1669 out:
1670 i915_gem_render_state_fini(&so);
1671 return ret;
1672 }
1673
1674 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1675 {
1676 int ret;
1677
1678 ret = intel_logical_ring_workarounds_emit(req);
1679 if (ret)
1680 return ret;
1681
1682 return intel_lr_context_render_state_init(req);
1683 }
1684
1685 /**
1686 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1687 *
1688 * @ring: Engine Command Streamer.
1689 *
1690 */
1691 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1692 {
1693 struct drm_i915_private *dev_priv;
1694
1695 if (!intel_ring_initialized(ring))
1696 return;
1697
1698 dev_priv = ring->dev->dev_private;
1699
1700 intel_logical_ring_stop(ring);
1701 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1702
1703 if (ring->cleanup)
1704 ring->cleanup(ring);
1705
1706 i915_cmd_parser_fini_ring(ring);
1707 i915_gem_batch_pool_fini(&ring->batch_pool);
1708
1709 if (ring->status_page.obj) {
1710 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1711 ring->status_page.obj = NULL;
1712 }
1713
1714 lrc_destroy_wa_ctx_obj(ring);
1715 }
1716
1717 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1718 {
1719 int ret;
1720
1721 /* Intentionally left blank. */
1722 ring->buffer = NULL;
1723
1724 ring->dev = dev;
1725 INIT_LIST_HEAD(&ring->active_list);
1726 INIT_LIST_HEAD(&ring->request_list);
1727 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1728 init_waitqueue_head(&ring->irq_queue);
1729
1730 INIT_LIST_HEAD(&ring->execlist_queue);
1731 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1732 spin_lock_init(&ring->execlist_lock);
1733
1734 ret = i915_cmd_parser_init_ring(ring);
1735 if (ret)
1736 return ret;
1737
1738 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1739
1740 return ret;
1741 }
1742
1743 static int logical_render_ring_init(struct drm_device *dev)
1744 {
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1747 int ret;
1748
1749 ring->name = "render ring";
1750 ring->id = RCS;
1751 ring->mmio_base = RENDER_RING_BASE;
1752 ring->irq_enable_mask =
1753 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1754 ring->irq_keep_mask =
1755 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1756 if (HAS_L3_DPF(dev))
1757 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1758
1759 if (INTEL_INFO(dev)->gen >= 9)
1760 ring->init_hw = gen9_init_render_ring;
1761 else
1762 ring->init_hw = gen8_init_render_ring;
1763 ring->init_context = gen8_init_rcs_context;
1764 ring->cleanup = intel_fini_pipe_control;
1765 ring->get_seqno = gen8_get_seqno;
1766 ring->set_seqno = gen8_set_seqno;
1767 ring->emit_request = gen8_emit_request;
1768 ring->emit_flush = gen8_emit_flush_render;
1769 ring->irq_get = gen8_logical_ring_get_irq;
1770 ring->irq_put = gen8_logical_ring_put_irq;
1771 ring->emit_bb_start = gen8_emit_bb_start;
1772
1773 ring->dev = dev;
1774
1775 ret = intel_init_pipe_control(ring);
1776 if (ret)
1777 return ret;
1778
1779 ret = intel_init_workaround_bb(ring);
1780 if (ret) {
1781 /*
1782 * We continue even if we fail to initialize WA batch
1783 * because we only expect rare glitches but nothing
1784 * critical to prevent us from using GPU
1785 */
1786 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1787 ret);
1788 }
1789
1790 ret = logical_ring_init(dev, ring);
1791 if (ret) {
1792 lrc_destroy_wa_ctx_obj(ring);
1793 }
1794
1795 return ret;
1796 }
1797
1798 static int logical_bsd_ring_init(struct drm_device *dev)
1799 {
1800 struct drm_i915_private *dev_priv = dev->dev_private;
1801 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1802
1803 ring->name = "bsd ring";
1804 ring->id = VCS;
1805 ring->mmio_base = GEN6_BSD_RING_BASE;
1806 ring->irq_enable_mask =
1807 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1808 ring->irq_keep_mask =
1809 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1810
1811 ring->init_hw = gen8_init_common_ring;
1812 ring->get_seqno = gen8_get_seqno;
1813 ring->set_seqno = gen8_set_seqno;
1814 ring->emit_request = gen8_emit_request;
1815 ring->emit_flush = gen8_emit_flush;
1816 ring->irq_get = gen8_logical_ring_get_irq;
1817 ring->irq_put = gen8_logical_ring_put_irq;
1818 ring->emit_bb_start = gen8_emit_bb_start;
1819
1820 return logical_ring_init(dev, ring);
1821 }
1822
1823 static int logical_bsd2_ring_init(struct drm_device *dev)
1824 {
1825 struct drm_i915_private *dev_priv = dev->dev_private;
1826 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1827
1828 ring->name = "bds2 ring";
1829 ring->id = VCS2;
1830 ring->mmio_base = GEN8_BSD2_RING_BASE;
1831 ring->irq_enable_mask =
1832 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1833 ring->irq_keep_mask =
1834 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1835
1836 ring->init_hw = gen8_init_common_ring;
1837 ring->get_seqno = gen8_get_seqno;
1838 ring->set_seqno = gen8_set_seqno;
1839 ring->emit_request = gen8_emit_request;
1840 ring->emit_flush = gen8_emit_flush;
1841 ring->irq_get = gen8_logical_ring_get_irq;
1842 ring->irq_put = gen8_logical_ring_put_irq;
1843 ring->emit_bb_start = gen8_emit_bb_start;
1844
1845 return logical_ring_init(dev, ring);
1846 }
1847
1848 static int logical_blt_ring_init(struct drm_device *dev)
1849 {
1850 struct drm_i915_private *dev_priv = dev->dev_private;
1851 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1852
1853 ring->name = "blitter ring";
1854 ring->id = BCS;
1855 ring->mmio_base = BLT_RING_BASE;
1856 ring->irq_enable_mask =
1857 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1858 ring->irq_keep_mask =
1859 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1860
1861 ring->init_hw = gen8_init_common_ring;
1862 ring->get_seqno = gen8_get_seqno;
1863 ring->set_seqno = gen8_set_seqno;
1864 ring->emit_request = gen8_emit_request;
1865 ring->emit_flush = gen8_emit_flush;
1866 ring->irq_get = gen8_logical_ring_get_irq;
1867 ring->irq_put = gen8_logical_ring_put_irq;
1868 ring->emit_bb_start = gen8_emit_bb_start;
1869
1870 return logical_ring_init(dev, ring);
1871 }
1872
1873 static int logical_vebox_ring_init(struct drm_device *dev)
1874 {
1875 struct drm_i915_private *dev_priv = dev->dev_private;
1876 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1877
1878 ring->name = "video enhancement ring";
1879 ring->id = VECS;
1880 ring->mmio_base = VEBOX_RING_BASE;
1881 ring->irq_enable_mask =
1882 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1883 ring->irq_keep_mask =
1884 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1885
1886 ring->init_hw = gen8_init_common_ring;
1887 ring->get_seqno = gen8_get_seqno;
1888 ring->set_seqno = gen8_set_seqno;
1889 ring->emit_request = gen8_emit_request;
1890 ring->emit_flush = gen8_emit_flush;
1891 ring->irq_get = gen8_logical_ring_get_irq;
1892 ring->irq_put = gen8_logical_ring_put_irq;
1893 ring->emit_bb_start = gen8_emit_bb_start;
1894
1895 return logical_ring_init(dev, ring);
1896 }
1897
1898 /**
1899 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1900 * @dev: DRM device.
1901 *
1902 * This function inits the engines for an Execlists submission style (the equivalent in the
1903 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1904 * those engines that are present in the hardware.
1905 *
1906 * Return: non-zero if the initialization failed.
1907 */
1908 int intel_logical_rings_init(struct drm_device *dev)
1909 {
1910 struct drm_i915_private *dev_priv = dev->dev_private;
1911 int ret;
1912
1913 ret = logical_render_ring_init(dev);
1914 if (ret)
1915 return ret;
1916
1917 if (HAS_BSD(dev)) {
1918 ret = logical_bsd_ring_init(dev);
1919 if (ret)
1920 goto cleanup_render_ring;
1921 }
1922
1923 if (HAS_BLT(dev)) {
1924 ret = logical_blt_ring_init(dev);
1925 if (ret)
1926 goto cleanup_bsd_ring;
1927 }
1928
1929 if (HAS_VEBOX(dev)) {
1930 ret = logical_vebox_ring_init(dev);
1931 if (ret)
1932 goto cleanup_blt_ring;
1933 }
1934
1935 if (HAS_BSD2(dev)) {
1936 ret = logical_bsd2_ring_init(dev);
1937 if (ret)
1938 goto cleanup_vebox_ring;
1939 }
1940
1941 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1942 if (ret)
1943 goto cleanup_bsd2_ring;
1944
1945 return 0;
1946
1947 cleanup_bsd2_ring:
1948 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1949 cleanup_vebox_ring:
1950 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1951 cleanup_blt_ring:
1952 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1953 cleanup_bsd_ring:
1954 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1955 cleanup_render_ring:
1956 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1957
1958 return ret;
1959 }
1960
1961 static u32
1962 make_rpcs(struct drm_device *dev)
1963 {
1964 u32 rpcs = 0;
1965
1966 /*
1967 * No explicit RPCS request is needed to ensure full
1968 * slice/subslice/EU enablement prior to Gen9.
1969 */
1970 if (INTEL_INFO(dev)->gen < 9)
1971 return 0;
1972
1973 /*
1974 * Starting in Gen9, render power gating can leave
1975 * slice/subslice/EU in a partially enabled state. We
1976 * must make an explicit request through RPCS for full
1977 * enablement.
1978 */
1979 if (INTEL_INFO(dev)->has_slice_pg) {
1980 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1981 rpcs |= INTEL_INFO(dev)->slice_total <<
1982 GEN8_RPCS_S_CNT_SHIFT;
1983 rpcs |= GEN8_RPCS_ENABLE;
1984 }
1985
1986 if (INTEL_INFO(dev)->has_subslice_pg) {
1987 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1988 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1989 GEN8_RPCS_SS_CNT_SHIFT;
1990 rpcs |= GEN8_RPCS_ENABLE;
1991 }
1992
1993 if (INTEL_INFO(dev)->has_eu_pg) {
1994 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1995 GEN8_RPCS_EU_MIN_SHIFT;
1996 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1997 GEN8_RPCS_EU_MAX_SHIFT;
1998 rpcs |= GEN8_RPCS_ENABLE;
1999 }
2000
2001 return rpcs;
2002 }
2003
2004 static int
2005 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2006 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2007 {
2008 struct drm_device *dev = ring->dev;
2009 struct drm_i915_private *dev_priv = dev->dev_private;
2010 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2011 struct page *page;
2012 uint32_t *reg_state;
2013 int ret;
2014
2015 if (!ppgtt)
2016 ppgtt = dev_priv->mm.aliasing_ppgtt;
2017
2018 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2019 if (ret) {
2020 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2021 return ret;
2022 }
2023
2024 ret = i915_gem_object_get_pages(ctx_obj);
2025 if (ret) {
2026 DRM_DEBUG_DRIVER("Could not get object pages\n");
2027 return ret;
2028 }
2029
2030 i915_gem_object_pin_pages(ctx_obj);
2031
2032 /* The second page of the context object contains some fields which must
2033 * be set up prior to the first execution. */
2034 page = i915_gem_object_get_page(ctx_obj, 1);
2035 reg_state = kmap_atomic(page);
2036
2037 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2038 * commands followed by (reg, value) pairs. The values we are setting here are
2039 * only for the first context restore: on a subsequent save, the GPU will
2040 * recreate this batchbuffer with new values (including all the missing
2041 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2042 if (ring->id == RCS)
2043 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2044 else
2045 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2046 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2047 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2048 reg_state[CTX_CONTEXT_CONTROL+1] =
2049 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2050 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2051 CTX_CTRL_RS_CTX_ENABLE);
2052 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2053 reg_state[CTX_RING_HEAD+1] = 0;
2054 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2055 reg_state[CTX_RING_TAIL+1] = 0;
2056 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2057 /* Ring buffer start address is not known until the buffer is pinned.
2058 * It is written to the context image in execlists_update_context()
2059 */
2060 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2061 reg_state[CTX_RING_BUFFER_CONTROL+1] =
2062 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2063 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2064 reg_state[CTX_BB_HEAD_U+1] = 0;
2065 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2066 reg_state[CTX_BB_HEAD_L+1] = 0;
2067 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2068 reg_state[CTX_BB_STATE+1] = (1<<5);
2069 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2070 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2071 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2072 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2073 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2074 reg_state[CTX_SECOND_BB_STATE+1] = 0;
2075 if (ring->id == RCS) {
2076 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2077 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2078 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2079 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2080 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2081 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2082 if (ring->wa_ctx.obj) {
2083 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2084 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2085
2086 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2087 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2088 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2089
2090 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2091 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2092
2093 reg_state[CTX_BB_PER_CTX_PTR+1] =
2094 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2095 0x01;
2096 }
2097 }
2098 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2099 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2100 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2101 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2102 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2103 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2104 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2105 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2106 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2107 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2108 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2109 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2110
2111 /* With dynamic page allocation, PDPs may not be allocated at this point,
2112 * Point the unallocated PDPs to the scratch page
2113 */
2114 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2115 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2116 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2117 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2118 if (ring->id == RCS) {
2119 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2120 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2121 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2122 }
2123
2124 kunmap_atomic(reg_state);
2125
2126 ctx_obj->dirty = 1;
2127 set_page_dirty(page);
2128 i915_gem_object_unpin_pages(ctx_obj);
2129
2130 return 0;
2131 }
2132
2133 /**
2134 * intel_lr_context_free() - free the LRC specific bits of a context
2135 * @ctx: the LR context to free.
2136 *
2137 * The real context freeing is done in i915_gem_context_free: this only
2138 * takes care of the bits that are LRC related: the per-engine backing
2139 * objects and the logical ringbuffer.
2140 */
2141 void intel_lr_context_free(struct intel_context *ctx)
2142 {
2143 int i;
2144
2145 for (i = 0; i < I915_NUM_RINGS; i++) {
2146 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2147
2148 if (ctx_obj) {
2149 struct intel_ringbuffer *ringbuf =
2150 ctx->engine[i].ringbuf;
2151 struct intel_engine_cs *ring = ringbuf->ring;
2152
2153 if (ctx == ring->default_context) {
2154 intel_unpin_ringbuffer_obj(ringbuf);
2155 i915_gem_object_ggtt_unpin(ctx_obj);
2156 }
2157 WARN_ON(ctx->engine[ring->id].pin_count);
2158 intel_destroy_ringbuffer_obj(ringbuf);
2159 kfree(ringbuf);
2160 drm_gem_object_unreference(&ctx_obj->base);
2161 }
2162 }
2163 }
2164
2165 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2166 {
2167 int ret = 0;
2168
2169 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2170
2171 switch (ring->id) {
2172 case RCS:
2173 if (INTEL_INFO(ring->dev)->gen >= 9)
2174 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2175 else
2176 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2177 break;
2178 case VCS:
2179 case BCS:
2180 case VECS:
2181 case VCS2:
2182 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2183 break;
2184 }
2185
2186 return ret;
2187 }
2188
2189 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2190 struct drm_i915_gem_object *default_ctx_obj)
2191 {
2192 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2193
2194 /* The status page is offset 0 from the default context object
2195 * in LRC mode. */
2196 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2197 ring->status_page.page_addr =
2198 kmap(sg_page(default_ctx_obj->pages->sgl));
2199 ring->status_page.obj = default_ctx_obj;
2200
2201 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2202 (u32)ring->status_page.gfx_addr);
2203 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2204 }
2205
2206 /**
2207 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2208 * @ctx: LR context to create.
2209 * @ring: engine to be used with the context.
2210 *
2211 * This function can be called more than once, with different engines, if we plan
2212 * to use the context with them. The context backing objects and the ringbuffers
2213 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2214 * the creation is a deferred call: it's better to make sure first that we need to use
2215 * a given ring with the context.
2216 *
2217 * Return: non-zero on error.
2218 */
2219 int intel_lr_context_deferred_create(struct intel_context *ctx,
2220 struct intel_engine_cs *ring)
2221 {
2222 const bool is_global_default_ctx = (ctx == ring->default_context);
2223 struct drm_device *dev = ring->dev;
2224 struct drm_i915_gem_object *ctx_obj;
2225 uint32_t context_size;
2226 struct intel_ringbuffer *ringbuf;
2227 int ret;
2228
2229 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2230 WARN_ON(ctx->engine[ring->id].state);
2231
2232 context_size = round_up(get_lr_context_size(ring), 4096);
2233
2234 ctx_obj = i915_gem_alloc_object(dev, context_size);
2235 if (!ctx_obj) {
2236 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2237 return -ENOMEM;
2238 }
2239
2240 if (is_global_default_ctx) {
2241 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2242 if (ret) {
2243 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2244 ret);
2245 drm_gem_object_unreference(&ctx_obj->base);
2246 return ret;
2247 }
2248 }
2249
2250 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2251 if (!ringbuf) {
2252 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2253 ring->name);
2254 ret = -ENOMEM;
2255 goto error_unpin_ctx;
2256 }
2257
2258 ringbuf->ring = ring;
2259
2260 ringbuf->size = 32 * PAGE_SIZE;
2261 ringbuf->effective_size = ringbuf->size;
2262 ringbuf->head = 0;
2263 ringbuf->tail = 0;
2264 ringbuf->last_retired_head = -1;
2265 intel_ring_update_space(ringbuf);
2266
2267 if (ringbuf->obj == NULL) {
2268 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2269 if (ret) {
2270 DRM_DEBUG_DRIVER(
2271 "Failed to allocate ringbuffer obj %s: %d\n",
2272 ring->name, ret);
2273 goto error_free_rbuf;
2274 }
2275
2276 if (is_global_default_ctx) {
2277 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2278 if (ret) {
2279 DRM_ERROR(
2280 "Failed to pin and map ringbuffer %s: %d\n",
2281 ring->name, ret);
2282 goto error_destroy_rbuf;
2283 }
2284 }
2285
2286 }
2287
2288 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2289 if (ret) {
2290 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2291 goto error;
2292 }
2293
2294 ctx->engine[ring->id].ringbuf = ringbuf;
2295 ctx->engine[ring->id].state = ctx_obj;
2296
2297 if (ctx == ring->default_context)
2298 lrc_setup_hardware_status_page(ring, ctx_obj);
2299 else if (ring->id == RCS && !ctx->rcs_initialized) {
2300 if (ring->init_context) {
2301 struct drm_i915_gem_request *req;
2302
2303 ret = i915_gem_request_alloc(ring, ctx, &req);
2304 if (ret)
2305 return ret;
2306
2307 ret = ring->init_context(req);
2308 if (ret) {
2309 DRM_ERROR("ring init context: %d\n", ret);
2310 i915_gem_request_cancel(req);
2311 ctx->engine[ring->id].ringbuf = NULL;
2312 ctx->engine[ring->id].state = NULL;
2313 goto error;
2314 }
2315
2316 i915_add_request_no_flush(req);
2317 }
2318
2319 ctx->rcs_initialized = true;
2320 }
2321
2322 return 0;
2323
2324 error:
2325 if (is_global_default_ctx)
2326 intel_unpin_ringbuffer_obj(ringbuf);
2327 error_destroy_rbuf:
2328 intel_destroy_ringbuffer_obj(ringbuf);
2329 error_free_rbuf:
2330 kfree(ringbuf);
2331 error_unpin_ctx:
2332 if (is_global_default_ctx)
2333 i915_gem_object_ggtt_unpin(ctx_obj);
2334 drm_gem_object_unreference(&ctx_obj->base);
2335 return ret;
2336 }
2337
2338 void intel_lr_context_reset(struct drm_device *dev,
2339 struct intel_context *ctx)
2340 {
2341 struct drm_i915_private *dev_priv = dev->dev_private;
2342 struct intel_engine_cs *ring;
2343 int i;
2344
2345 for_each_ring(ring, dev_priv, i) {
2346 struct drm_i915_gem_object *ctx_obj =
2347 ctx->engine[ring->id].state;
2348 struct intel_ringbuffer *ringbuf =
2349 ctx->engine[ring->id].ringbuf;
2350 uint32_t *reg_state;
2351 struct page *page;
2352
2353 if (!ctx_obj)
2354 continue;
2355
2356 if (i915_gem_object_get_pages(ctx_obj)) {
2357 WARN(1, "Failed get_pages for context obj\n");
2358 continue;
2359 }
2360 page = i915_gem_object_get_page(ctx_obj, 1);
2361 reg_state = kmap_atomic(page);
2362
2363 reg_state[CTX_RING_HEAD+1] = 0;
2364 reg_state[CTX_RING_TAIL+1] = 0;
2365
2366 kunmap_atomic(reg_state);
2367
2368 ringbuf->head = 0;
2369 ringbuf->tail = 0;
2370 }
2371 }
This page took 0.077217 seconds and 6 git commands to generate.