drm/i915: cope with large i2c transfers
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL (1 << 0x2)
144 #define RING_EXECLIST1_VALID (1 << 0x3)
145 #define RING_EXECLIST0_VALID (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156
157 #define CTX_LRI_HEADER_0 0x01
158 #define CTX_CONTEXT_CONTROL 0x02
159 #define CTX_RING_HEAD 0x04
160 #define CTX_RING_TAIL 0x06
161 #define CTX_RING_BUFFER_START 0x08
162 #define CTX_RING_BUFFER_CONTROL 0x0a
163 #define CTX_BB_HEAD_U 0x0c
164 #define CTX_BB_HEAD_L 0x0e
165 #define CTX_BB_STATE 0x10
166 #define CTX_SECOND_BB_HEAD_U 0x12
167 #define CTX_SECOND_BB_HEAD_L 0x14
168 #define CTX_SECOND_BB_STATE 0x16
169 #define CTX_BB_PER_CTX_PTR 0x18
170 #define CTX_RCS_INDIRECT_CTX 0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172 #define CTX_LRI_HEADER_1 0x21
173 #define CTX_CTX_TIMESTAMP 0x22
174 #define CTX_PDP3_UDW 0x24
175 #define CTX_PDP3_LDW 0x26
176 #define CTX_PDP2_UDW 0x28
177 #define CTX_PDP2_LDW 0x2a
178 #define CTX_PDP1_UDW 0x2c
179 #define CTX_PDP1_LDW 0x2e
180 #define CTX_PDP0_UDW 0x30
181 #define CTX_PDP0_LDW 0x32
182 #define CTX_LRI_HEADER_2 0x41
183 #define CTX_R_PWR_CLK_STATE 0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191 enum {
192 ADVANCED_CONTEXT = 0,
193 LEGACY_CONTEXT,
194 ADVANCED_AD_CONTEXT,
195 LEGACY_64B_CONTEXT
196 };
197 #define GEN8_CTX_MODE_SHIFT 3
198 enum {
199 FAULT_AND_HANG = 0,
200 FAULT_AND_HALT, /* Debug only */
201 FAULT_AND_STREAM,
202 FAULT_AND_CONTINUE /* Unsupported */
203 };
204 #define GEN8_CTX_ID_SHIFT 32
205
206 static int intel_lr_context_pin(struct intel_engine_cs *ring,
207 struct intel_context *ctx);
208
209 /**
210 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
211 * @dev: DRM device.
212 * @enable_execlists: value of i915.enable_execlists module parameter.
213 *
214 * Only certain platforms support Execlists (the prerequisites being
215 * support for Logical Ring Contexts and Aliasing PPGTT or better).
216 *
217 * Return: 1 if Execlists is supported and has to be enabled.
218 */
219 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
220 {
221 WARN_ON(i915.enable_ppgtt == -1);
222
223 if (INTEL_INFO(dev)->gen >= 9)
224 return 1;
225
226 if (enable_execlists == 0)
227 return 0;
228
229 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
230 i915.use_mmio_flip >= 0)
231 return 1;
232
233 return 0;
234 }
235
236 /**
237 * intel_execlists_ctx_id() - get the Execlists Context ID
238 * @ctx_obj: Logical Ring Context backing object.
239 *
240 * Do not confuse with ctx->id! Unfortunately we have a name overload
241 * here: the old context ID we pass to userspace as a handler so that
242 * they can refer to a context, and the new context ID we pass to the
243 * ELSP so that the GPU can inform us of the context status via
244 * interrupts.
245 *
246 * Return: 20-bits globally unique context ID.
247 */
248 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
249 {
250 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
251
252 /* LRCA is required to be 4K aligned so the more significant 20 bits
253 * are globally unique */
254 return lrca >> 12;
255 }
256
257 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
258 struct drm_i915_gem_object *ctx_obj)
259 {
260 struct drm_device *dev = ring->dev;
261 uint64_t desc;
262 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
263
264 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
265
266 desc = GEN8_CTX_VALID;
267 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
268 desc |= GEN8_CTX_L3LLC_COHERENT;
269 desc |= GEN8_CTX_PRIVILEGE;
270 desc |= lrca;
271 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
272
273 /* TODO: WaDisableLiteRestore when we start using semaphore
274 * signalling between Command Streamers */
275 /* desc |= GEN8_CTX_FORCE_RESTORE; */
276
277 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
278 if (IS_GEN9(dev) &&
279 INTEL_REVID(dev) <= SKL_REVID_B0 &&
280 (ring->id == BCS || ring->id == VCS ||
281 ring->id == VECS || ring->id == VCS2))
282 desc |= GEN8_CTX_FORCE_RESTORE;
283
284 return desc;
285 }
286
287 static void execlists_elsp_write(struct intel_engine_cs *ring,
288 struct drm_i915_gem_object *ctx_obj0,
289 struct drm_i915_gem_object *ctx_obj1)
290 {
291 struct drm_device *dev = ring->dev;
292 struct drm_i915_private *dev_priv = dev->dev_private;
293 uint64_t temp = 0;
294 uint32_t desc[4];
295
296 /* XXX: You must always write both descriptors in the order below. */
297 if (ctx_obj1)
298 temp = execlists_ctx_descriptor(ring, ctx_obj1);
299 else
300 temp = 0;
301 desc[1] = (u32)(temp >> 32);
302 desc[0] = (u32)temp;
303
304 temp = execlists_ctx_descriptor(ring, ctx_obj0);
305 desc[3] = (u32)(temp >> 32);
306 desc[2] = (u32)temp;
307
308 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
309 I915_WRITE(RING_ELSP(ring), desc[1]);
310 I915_WRITE(RING_ELSP(ring), desc[0]);
311 I915_WRITE(RING_ELSP(ring), desc[3]);
312
313 /* The context is automatically loaded after the following */
314 I915_WRITE(RING_ELSP(ring), desc[2]);
315
316 /* ELSP is a wo register, so use another nearby reg for posting instead */
317 POSTING_READ(RING_EXECLIST_STATUS(ring));
318 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
319 }
320
321 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
322 struct drm_i915_gem_object *ring_obj,
323 u32 tail)
324 {
325 struct page *page;
326 uint32_t *reg_state;
327
328 page = i915_gem_object_get_page(ctx_obj, 1);
329 reg_state = kmap_atomic(page);
330
331 reg_state[CTX_RING_TAIL+1] = tail;
332 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
333
334 kunmap_atomic(reg_state);
335
336 return 0;
337 }
338
339 static void execlists_submit_contexts(struct intel_engine_cs *ring,
340 struct intel_context *to0, u32 tail0,
341 struct intel_context *to1, u32 tail1)
342 {
343 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
344 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
345 struct drm_i915_gem_object *ctx_obj1 = NULL;
346 struct intel_ringbuffer *ringbuf1 = NULL;
347
348 BUG_ON(!ctx_obj0);
349 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
350 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
351
352 execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
353
354 if (to1) {
355 ringbuf1 = to1->engine[ring->id].ringbuf;
356 ctx_obj1 = to1->engine[ring->id].state;
357 BUG_ON(!ctx_obj1);
358 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
359 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
360
361 execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
362 }
363
364 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
365 }
366
367 static void execlists_context_unqueue(struct intel_engine_cs *ring)
368 {
369 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
370 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
371
372 assert_spin_locked(&ring->execlist_lock);
373
374 if (list_empty(&ring->execlist_queue))
375 return;
376
377 /* Try to read in pairs */
378 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
379 execlist_link) {
380 if (!req0) {
381 req0 = cursor;
382 } else if (req0->ctx == cursor->ctx) {
383 /* Same ctx: ignore first request, as second request
384 * will update tail past first request's workload */
385 cursor->elsp_submitted = req0->elsp_submitted;
386 list_del(&req0->execlist_link);
387 list_add_tail(&req0->execlist_link,
388 &ring->execlist_retired_req_list);
389 req0 = cursor;
390 } else {
391 req1 = cursor;
392 break;
393 }
394 }
395
396 WARN_ON(req1 && req1->elsp_submitted);
397
398 execlists_submit_contexts(ring, req0->ctx, req0->tail,
399 req1 ? req1->ctx : NULL,
400 req1 ? req1->tail : 0);
401
402 req0->elsp_submitted++;
403 if (req1)
404 req1->elsp_submitted++;
405 }
406
407 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
408 u32 request_id)
409 {
410 struct drm_i915_gem_request *head_req;
411
412 assert_spin_locked(&ring->execlist_lock);
413
414 head_req = list_first_entry_or_null(&ring->execlist_queue,
415 struct drm_i915_gem_request,
416 execlist_link);
417
418 if (head_req != NULL) {
419 struct drm_i915_gem_object *ctx_obj =
420 head_req->ctx->engine[ring->id].state;
421 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
422 WARN(head_req->elsp_submitted == 0,
423 "Never submitted head request\n");
424
425 if (--head_req->elsp_submitted <= 0) {
426 list_del(&head_req->execlist_link);
427 list_add_tail(&head_req->execlist_link,
428 &ring->execlist_retired_req_list);
429 return true;
430 }
431 }
432 }
433
434 return false;
435 }
436
437 /**
438 * intel_lrc_irq_handler() - handle Context Switch interrupts
439 * @ring: Engine Command Streamer to handle.
440 *
441 * Check the unread Context Status Buffers and manage the submission of new
442 * contexts to the ELSP accordingly.
443 */
444 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
445 {
446 struct drm_i915_private *dev_priv = ring->dev->dev_private;
447 u32 status_pointer;
448 u8 read_pointer;
449 u8 write_pointer;
450 u32 status;
451 u32 status_id;
452 u32 submit_contexts = 0;
453
454 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
455
456 read_pointer = ring->next_context_status_buffer;
457 write_pointer = status_pointer & 0x07;
458 if (read_pointer > write_pointer)
459 write_pointer += 6;
460
461 spin_lock(&ring->execlist_lock);
462
463 while (read_pointer < write_pointer) {
464 read_pointer++;
465 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
466 (read_pointer % 6) * 8);
467 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
468 (read_pointer % 6) * 8 + 4);
469
470 if (status & GEN8_CTX_STATUS_PREEMPTED) {
471 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
472 if (execlists_check_remove_request(ring, status_id))
473 WARN(1, "Lite Restored request removed from queue\n");
474 } else
475 WARN(1, "Preemption without Lite Restore\n");
476 }
477
478 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
479 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
480 if (execlists_check_remove_request(ring, status_id))
481 submit_contexts++;
482 }
483 }
484
485 if (submit_contexts != 0)
486 execlists_context_unqueue(ring);
487
488 spin_unlock(&ring->execlist_lock);
489
490 WARN(submit_contexts > 2, "More than two context complete events?\n");
491 ring->next_context_status_buffer = write_pointer % 6;
492
493 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
494 ((u32)ring->next_context_status_buffer & 0x07) << 8);
495 }
496
497 static int execlists_context_queue(struct intel_engine_cs *ring,
498 struct intel_context *to,
499 u32 tail,
500 struct drm_i915_gem_request *request)
501 {
502 struct drm_i915_gem_request *cursor;
503 struct drm_i915_private *dev_priv = ring->dev->dev_private;
504 unsigned long flags;
505 int num_elements = 0;
506
507 if (to != ring->default_context)
508 intel_lr_context_pin(ring, to);
509
510 if (!request) {
511 /*
512 * If there isn't a request associated with this submission,
513 * create one as a temporary holder.
514 */
515 request = kzalloc(sizeof(*request), GFP_KERNEL);
516 if (request == NULL)
517 return -ENOMEM;
518 request->ring = ring;
519 request->ctx = to;
520 kref_init(&request->ref);
521 request->uniq = dev_priv->request_uniq++;
522 i915_gem_context_reference(request->ctx);
523 } else {
524 i915_gem_request_reference(request);
525 WARN_ON(to != request->ctx);
526 }
527 request->tail = tail;
528
529 intel_runtime_pm_get(dev_priv);
530
531 spin_lock_irqsave(&ring->execlist_lock, flags);
532
533 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
534 if (++num_elements > 2)
535 break;
536
537 if (num_elements > 2) {
538 struct drm_i915_gem_request *tail_req;
539
540 tail_req = list_last_entry(&ring->execlist_queue,
541 struct drm_i915_gem_request,
542 execlist_link);
543
544 if (to == tail_req->ctx) {
545 WARN(tail_req->elsp_submitted != 0,
546 "More than 2 already-submitted reqs queued\n");
547 list_del(&tail_req->execlist_link);
548 list_add_tail(&tail_req->execlist_link,
549 &ring->execlist_retired_req_list);
550 }
551 }
552
553 list_add_tail(&request->execlist_link, &ring->execlist_queue);
554 if (num_elements == 0)
555 execlists_context_unqueue(ring);
556
557 spin_unlock_irqrestore(&ring->execlist_lock, flags);
558
559 return 0;
560 }
561
562 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
563 struct intel_context *ctx)
564 {
565 struct intel_engine_cs *ring = ringbuf->ring;
566 uint32_t flush_domains;
567 int ret;
568
569 flush_domains = 0;
570 if (ring->gpu_caches_dirty)
571 flush_domains = I915_GEM_GPU_DOMAINS;
572
573 ret = ring->emit_flush(ringbuf, ctx,
574 I915_GEM_GPU_DOMAINS, flush_domains);
575 if (ret)
576 return ret;
577
578 ring->gpu_caches_dirty = false;
579 return 0;
580 }
581
582 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
583 struct intel_context *ctx,
584 struct list_head *vmas)
585 {
586 struct intel_engine_cs *ring = ringbuf->ring;
587 struct i915_vma *vma;
588 uint32_t flush_domains = 0;
589 bool flush_chipset = false;
590 int ret;
591
592 list_for_each_entry(vma, vmas, exec_list) {
593 struct drm_i915_gem_object *obj = vma->obj;
594
595 ret = i915_gem_object_sync(obj, ring);
596 if (ret)
597 return ret;
598
599 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
600 flush_chipset |= i915_gem_clflush_object(obj, false);
601
602 flush_domains |= obj->base.write_domain;
603 }
604
605 if (flush_domains & I915_GEM_DOMAIN_GTT)
606 wmb();
607
608 /* Unconditionally invalidate gpu caches and ensure that we do flush
609 * any residual writes from the previous batch.
610 */
611 return logical_ring_invalidate_all_caches(ringbuf, ctx);
612 }
613
614 /**
615 * execlists_submission() - submit a batchbuffer for execution, Execlists style
616 * @dev: DRM device.
617 * @file: DRM file.
618 * @ring: Engine Command Streamer to submit to.
619 * @ctx: Context to employ for this submission.
620 * @args: execbuffer call arguments.
621 * @vmas: list of vmas.
622 * @batch_obj: the batchbuffer to submit.
623 * @exec_start: batchbuffer start virtual address pointer.
624 * @dispatch_flags: translated execbuffer call flags.
625 *
626 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
627 * away the submission details of the execbuffer ioctl call.
628 *
629 * Return: non-zero if the submission fails.
630 */
631 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
632 struct intel_engine_cs *ring,
633 struct intel_context *ctx,
634 struct drm_i915_gem_execbuffer2 *args,
635 struct list_head *vmas,
636 struct drm_i915_gem_object *batch_obj,
637 u64 exec_start, u32 dispatch_flags)
638 {
639 struct drm_i915_private *dev_priv = dev->dev_private;
640 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
641 int instp_mode;
642 u32 instp_mask;
643 int ret;
644
645 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
646 instp_mask = I915_EXEC_CONSTANTS_MASK;
647 switch (instp_mode) {
648 case I915_EXEC_CONSTANTS_REL_GENERAL:
649 case I915_EXEC_CONSTANTS_ABSOLUTE:
650 case I915_EXEC_CONSTANTS_REL_SURFACE:
651 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
652 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
653 return -EINVAL;
654 }
655
656 if (instp_mode != dev_priv->relative_constants_mode) {
657 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
658 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
659 return -EINVAL;
660 }
661
662 /* The HW changed the meaning on this bit on gen6 */
663 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
664 }
665 break;
666 default:
667 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
668 return -EINVAL;
669 }
670
671 if (args->num_cliprects != 0) {
672 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
673 return -EINVAL;
674 } else {
675 if (args->DR4 == 0xffffffff) {
676 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
677 args->DR4 = 0;
678 }
679
680 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
681 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
682 return -EINVAL;
683 }
684 }
685
686 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
687 DRM_DEBUG("sol reset is gen7 only\n");
688 return -EINVAL;
689 }
690
691 ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
692 if (ret)
693 return ret;
694
695 if (ring == &dev_priv->ring[RCS] &&
696 instp_mode != dev_priv->relative_constants_mode) {
697 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
698 if (ret)
699 return ret;
700
701 intel_logical_ring_emit(ringbuf, MI_NOOP);
702 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
703 intel_logical_ring_emit(ringbuf, INSTPM);
704 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
705 intel_logical_ring_advance(ringbuf);
706
707 dev_priv->relative_constants_mode = instp_mode;
708 }
709
710 ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
711 if (ret)
712 return ret;
713
714 trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
715
716 i915_gem_execbuffer_move_to_active(vmas, ring);
717 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
718
719 return 0;
720 }
721
722 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
723 {
724 struct drm_i915_gem_request *req, *tmp;
725 struct drm_i915_private *dev_priv = ring->dev->dev_private;
726 unsigned long flags;
727 struct list_head retired_list;
728
729 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
730 if (list_empty(&ring->execlist_retired_req_list))
731 return;
732
733 INIT_LIST_HEAD(&retired_list);
734 spin_lock_irqsave(&ring->execlist_lock, flags);
735 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
736 spin_unlock_irqrestore(&ring->execlist_lock, flags);
737
738 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
739 struct intel_context *ctx = req->ctx;
740 struct drm_i915_gem_object *ctx_obj =
741 ctx->engine[ring->id].state;
742
743 if (ctx_obj && (ctx != ring->default_context))
744 intel_lr_context_unpin(ring, ctx);
745 intel_runtime_pm_put(dev_priv);
746 list_del(&req->execlist_link);
747 i915_gem_request_unreference(req);
748 }
749 }
750
751 void intel_logical_ring_stop(struct intel_engine_cs *ring)
752 {
753 struct drm_i915_private *dev_priv = ring->dev->dev_private;
754 int ret;
755
756 if (!intel_ring_initialized(ring))
757 return;
758
759 ret = intel_ring_idle(ring);
760 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
761 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
762 ring->name, ret);
763
764 /* TODO: Is this correct with Execlists enabled? */
765 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
766 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
767 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
768 return;
769 }
770 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
771 }
772
773 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
774 struct intel_context *ctx)
775 {
776 struct intel_engine_cs *ring = ringbuf->ring;
777 int ret;
778
779 if (!ring->gpu_caches_dirty)
780 return 0;
781
782 ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
783 if (ret)
784 return ret;
785
786 ring->gpu_caches_dirty = false;
787 return 0;
788 }
789
790 /*
791 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
792 * @ringbuf: Logical Ringbuffer to advance.
793 *
794 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
795 * really happens during submission is that the context and current tail will be placed
796 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
797 * point, the tail *inside* the context is updated and the ELSP written to.
798 */
799 static void
800 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
801 struct intel_context *ctx,
802 struct drm_i915_gem_request *request)
803 {
804 struct intel_engine_cs *ring = ringbuf->ring;
805
806 intel_logical_ring_advance(ringbuf);
807
808 if (intel_ring_stopped(ring))
809 return;
810
811 execlists_context_queue(ring, ctx, ringbuf->tail, request);
812 }
813
814 static int intel_lr_context_pin(struct intel_engine_cs *ring,
815 struct intel_context *ctx)
816 {
817 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
818 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
819 int ret = 0;
820
821 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
822 if (ctx->engine[ring->id].pin_count++ == 0) {
823 ret = i915_gem_obj_ggtt_pin(ctx_obj,
824 GEN8_LR_CONTEXT_ALIGN, 0);
825 if (ret)
826 goto reset_pin_count;
827
828 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
829 if (ret)
830 goto unpin_ctx_obj;
831 }
832
833 return ret;
834
835 unpin_ctx_obj:
836 i915_gem_object_ggtt_unpin(ctx_obj);
837 reset_pin_count:
838 ctx->engine[ring->id].pin_count = 0;
839
840 return ret;
841 }
842
843 void intel_lr_context_unpin(struct intel_engine_cs *ring,
844 struct intel_context *ctx)
845 {
846 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
847 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
848
849 if (ctx_obj) {
850 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
851 if (--ctx->engine[ring->id].pin_count == 0) {
852 intel_unpin_ringbuffer_obj(ringbuf);
853 i915_gem_object_ggtt_unpin(ctx_obj);
854 }
855 }
856 }
857
858 static int logical_ring_alloc_request(struct intel_engine_cs *ring,
859 struct intel_context *ctx)
860 {
861 struct drm_i915_gem_request *request;
862 struct drm_i915_private *dev_private = ring->dev->dev_private;
863 int ret;
864
865 if (ring->outstanding_lazy_request)
866 return 0;
867
868 request = kzalloc(sizeof(*request), GFP_KERNEL);
869 if (request == NULL)
870 return -ENOMEM;
871
872 if (ctx != ring->default_context) {
873 ret = intel_lr_context_pin(ring, ctx);
874 if (ret) {
875 kfree(request);
876 return ret;
877 }
878 }
879
880 kref_init(&request->ref);
881 request->ring = ring;
882 request->uniq = dev_private->request_uniq++;
883
884 ret = i915_gem_get_seqno(ring->dev, &request->seqno);
885 if (ret) {
886 intel_lr_context_unpin(ring, ctx);
887 kfree(request);
888 return ret;
889 }
890
891 request->ctx = ctx;
892 i915_gem_context_reference(request->ctx);
893 request->ringbuf = ctx->engine[ring->id].ringbuf;
894
895 ring->outstanding_lazy_request = request;
896 return 0;
897 }
898
899 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
900 int bytes)
901 {
902 struct intel_engine_cs *ring = ringbuf->ring;
903 struct drm_i915_gem_request *request;
904 int ret;
905
906 if (intel_ring_space(ringbuf) >= bytes)
907 return 0;
908
909 list_for_each_entry(request, &ring->request_list, list) {
910 /*
911 * The request queue is per-engine, so can contain requests
912 * from multiple ringbuffers. Here, we must ignore any that
913 * aren't from the ringbuffer we're considering.
914 */
915 struct intel_context *ctx = request->ctx;
916 if (ctx->engine[ring->id].ringbuf != ringbuf)
917 continue;
918
919 /* Would completion of this request free enough space? */
920 if (__intel_ring_space(request->tail, ringbuf->tail,
921 ringbuf->size) >= bytes) {
922 break;
923 }
924 }
925
926 if (&request->list == &ring->request_list)
927 return -ENOSPC;
928
929 ret = i915_wait_request(request);
930 if (ret)
931 return ret;
932
933 i915_gem_retire_requests_ring(ring);
934
935 return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
936 }
937
938 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
939 struct intel_context *ctx,
940 int bytes)
941 {
942 struct intel_engine_cs *ring = ringbuf->ring;
943 struct drm_device *dev = ring->dev;
944 struct drm_i915_private *dev_priv = dev->dev_private;
945 unsigned long end;
946 int ret;
947
948 ret = logical_ring_wait_request(ringbuf, bytes);
949 if (ret != -ENOSPC)
950 return ret;
951
952 /* Force the context submission in case we have been skipping it */
953 intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
954
955 /* With GEM the hangcheck timer should kick us out of the loop,
956 * leaving it early runs the risk of corrupting GEM state (due
957 * to running on almost untested codepaths). But on resume
958 * timers don't work yet, so prevent a complete hang in that
959 * case by choosing an insanely large timeout. */
960 end = jiffies + 60 * HZ;
961
962 ret = 0;
963 do {
964 if (intel_ring_space(ringbuf) >= bytes)
965 break;
966
967 msleep(1);
968
969 if (dev_priv->mm.interruptible && signal_pending(current)) {
970 ret = -ERESTARTSYS;
971 break;
972 }
973
974 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
975 dev_priv->mm.interruptible);
976 if (ret)
977 break;
978
979 if (time_after(jiffies, end)) {
980 ret = -EBUSY;
981 break;
982 }
983 } while (1);
984
985 return ret;
986 }
987
988 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
989 struct intel_context *ctx)
990 {
991 uint32_t __iomem *virt;
992 int rem = ringbuf->size - ringbuf->tail;
993
994 if (ringbuf->space < rem) {
995 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
996
997 if (ret)
998 return ret;
999 }
1000
1001 virt = ringbuf->virtual_start + ringbuf->tail;
1002 rem /= 4;
1003 while (rem--)
1004 iowrite32(MI_NOOP, virt++);
1005
1006 ringbuf->tail = 0;
1007 intel_ring_update_space(ringbuf);
1008
1009 return 0;
1010 }
1011
1012 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
1013 struct intel_context *ctx, int bytes)
1014 {
1015 int ret;
1016
1017 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1018 ret = logical_ring_wrap_buffer(ringbuf, ctx);
1019 if (unlikely(ret))
1020 return ret;
1021 }
1022
1023 if (unlikely(ringbuf->space < bytes)) {
1024 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
1025 if (unlikely(ret))
1026 return ret;
1027 }
1028
1029 return 0;
1030 }
1031
1032 /**
1033 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1034 *
1035 * @ringbuf: Logical ringbuffer.
1036 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1037 *
1038 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1039 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1040 * and also preallocates a request (every workload submission is still mediated through
1041 * requests, same as it did with legacy ringbuffer submission).
1042 *
1043 * Return: non-zero if the ringbuffer is not ready to be written to.
1044 */
1045 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
1046 struct intel_context *ctx, int num_dwords)
1047 {
1048 struct intel_engine_cs *ring = ringbuf->ring;
1049 struct drm_device *dev = ring->dev;
1050 struct drm_i915_private *dev_priv = dev->dev_private;
1051 int ret;
1052
1053 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1054 dev_priv->mm.interruptible);
1055 if (ret)
1056 return ret;
1057
1058 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
1059 if (ret)
1060 return ret;
1061
1062 /* Preallocate the olr before touching the ring */
1063 ret = logical_ring_alloc_request(ring, ctx);
1064 if (ret)
1065 return ret;
1066
1067 ringbuf->space -= num_dwords * sizeof(uint32_t);
1068 return 0;
1069 }
1070
1071 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1072 struct intel_context *ctx)
1073 {
1074 int ret, i;
1075 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1076 struct drm_device *dev = ring->dev;
1077 struct drm_i915_private *dev_priv = dev->dev_private;
1078 struct i915_workarounds *w = &dev_priv->workarounds;
1079
1080 if (WARN_ON_ONCE(w->count == 0))
1081 return 0;
1082
1083 ring->gpu_caches_dirty = true;
1084 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1085 if (ret)
1086 return ret;
1087
1088 ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1089 if (ret)
1090 return ret;
1091
1092 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1093 for (i = 0; i < w->count; i++) {
1094 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1095 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1096 }
1097 intel_logical_ring_emit(ringbuf, MI_NOOP);
1098
1099 intel_logical_ring_advance(ringbuf);
1100
1101 ring->gpu_caches_dirty = true;
1102 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1103 if (ret)
1104 return ret;
1105
1106 return 0;
1107 }
1108
1109 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1110 {
1111 struct drm_device *dev = ring->dev;
1112 struct drm_i915_private *dev_priv = dev->dev_private;
1113
1114 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1115 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1116
1117 I915_WRITE(RING_MODE_GEN7(ring),
1118 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1119 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1120 POSTING_READ(RING_MODE_GEN7(ring));
1121 ring->next_context_status_buffer = 0;
1122 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1123
1124 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1125
1126 return 0;
1127 }
1128
1129 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1130 {
1131 struct drm_device *dev = ring->dev;
1132 struct drm_i915_private *dev_priv = dev->dev_private;
1133 int ret;
1134
1135 ret = gen8_init_common_ring(ring);
1136 if (ret)
1137 return ret;
1138
1139 /* We need to disable the AsyncFlip performance optimisations in order
1140 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1141 * programmed to '1' on all products.
1142 *
1143 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1144 */
1145 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1146
1147 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1148
1149 return init_workarounds_ring(ring);
1150 }
1151
1152 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1153 {
1154 int ret;
1155
1156 ret = gen8_init_common_ring(ring);
1157 if (ret)
1158 return ret;
1159
1160 return init_workarounds_ring(ring);
1161 }
1162
1163 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1164 struct intel_context *ctx,
1165 u64 offset, unsigned dispatch_flags)
1166 {
1167 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1168 int ret;
1169
1170 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1171 if (ret)
1172 return ret;
1173
1174 /* FIXME(BDW): Address space and security selectors. */
1175 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1176 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1177 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1178 intel_logical_ring_emit(ringbuf, MI_NOOP);
1179 intel_logical_ring_advance(ringbuf);
1180
1181 return 0;
1182 }
1183
1184 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1185 {
1186 struct drm_device *dev = ring->dev;
1187 struct drm_i915_private *dev_priv = dev->dev_private;
1188 unsigned long flags;
1189
1190 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1191 return false;
1192
1193 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1194 if (ring->irq_refcount++ == 0) {
1195 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1196 POSTING_READ(RING_IMR(ring->mmio_base));
1197 }
1198 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1199
1200 return true;
1201 }
1202
1203 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1204 {
1205 struct drm_device *dev = ring->dev;
1206 struct drm_i915_private *dev_priv = dev->dev_private;
1207 unsigned long flags;
1208
1209 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1210 if (--ring->irq_refcount == 0) {
1211 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1212 POSTING_READ(RING_IMR(ring->mmio_base));
1213 }
1214 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1215 }
1216
1217 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1218 struct intel_context *ctx,
1219 u32 invalidate_domains,
1220 u32 unused)
1221 {
1222 struct intel_engine_cs *ring = ringbuf->ring;
1223 struct drm_device *dev = ring->dev;
1224 struct drm_i915_private *dev_priv = dev->dev_private;
1225 uint32_t cmd;
1226 int ret;
1227
1228 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1229 if (ret)
1230 return ret;
1231
1232 cmd = MI_FLUSH_DW + 1;
1233
1234 /* We always require a command barrier so that subsequent
1235 * commands, such as breadcrumb interrupts, are strictly ordered
1236 * wrt the contents of the write cache being flushed to memory
1237 * (and thus being coherent from the CPU).
1238 */
1239 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1240
1241 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1242 cmd |= MI_INVALIDATE_TLB;
1243 if (ring == &dev_priv->ring[VCS])
1244 cmd |= MI_INVALIDATE_BSD;
1245 }
1246
1247 intel_logical_ring_emit(ringbuf, cmd);
1248 intel_logical_ring_emit(ringbuf,
1249 I915_GEM_HWS_SCRATCH_ADDR |
1250 MI_FLUSH_DW_USE_GTT);
1251 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1252 intel_logical_ring_emit(ringbuf, 0); /* value */
1253 intel_logical_ring_advance(ringbuf);
1254
1255 return 0;
1256 }
1257
1258 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1259 struct intel_context *ctx,
1260 u32 invalidate_domains,
1261 u32 flush_domains)
1262 {
1263 struct intel_engine_cs *ring = ringbuf->ring;
1264 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1265 u32 flags = 0;
1266 int ret;
1267
1268 flags |= PIPE_CONTROL_CS_STALL;
1269
1270 if (flush_domains) {
1271 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1272 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1273 }
1274
1275 if (invalidate_domains) {
1276 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1277 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1278 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1279 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1280 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1281 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1282 flags |= PIPE_CONTROL_QW_WRITE;
1283 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1284 }
1285
1286 ret = intel_logical_ring_begin(ringbuf, ctx, 6);
1287 if (ret)
1288 return ret;
1289
1290 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1291 intel_logical_ring_emit(ringbuf, flags);
1292 intel_logical_ring_emit(ringbuf, scratch_addr);
1293 intel_logical_ring_emit(ringbuf, 0);
1294 intel_logical_ring_emit(ringbuf, 0);
1295 intel_logical_ring_emit(ringbuf, 0);
1296 intel_logical_ring_advance(ringbuf);
1297
1298 return 0;
1299 }
1300
1301 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1302 {
1303 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1304 }
1305
1306 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1307 {
1308 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1309 }
1310
1311 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1312 struct drm_i915_gem_request *request)
1313 {
1314 struct intel_engine_cs *ring = ringbuf->ring;
1315 u32 cmd;
1316 int ret;
1317
1318 ret = intel_logical_ring_begin(ringbuf, request->ctx, 6);
1319 if (ret)
1320 return ret;
1321
1322 cmd = MI_STORE_DWORD_IMM_GEN4;
1323 cmd |= MI_GLOBAL_GTT;
1324
1325 intel_logical_ring_emit(ringbuf, cmd);
1326 intel_logical_ring_emit(ringbuf,
1327 (ring->status_page.gfx_addr +
1328 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1329 intel_logical_ring_emit(ringbuf, 0);
1330 intel_logical_ring_emit(ringbuf,
1331 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1332 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1333 intel_logical_ring_emit(ringbuf, MI_NOOP);
1334 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1335
1336 return 0;
1337 }
1338
1339 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1340 struct intel_context *ctx)
1341 {
1342 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1343 struct render_state so;
1344 struct drm_i915_file_private *file_priv = ctx->file_priv;
1345 struct drm_file *file = file_priv ? file_priv->file : NULL;
1346 int ret;
1347
1348 ret = i915_gem_render_state_prepare(ring, &so);
1349 if (ret)
1350 return ret;
1351
1352 if (so.rodata == NULL)
1353 return 0;
1354
1355 ret = ring->emit_bb_start(ringbuf,
1356 ctx,
1357 so.ggtt_offset,
1358 I915_DISPATCH_SECURE);
1359 if (ret)
1360 goto out;
1361
1362 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1363
1364 ret = __i915_add_request(ring, file, so.obj);
1365 /* intel_logical_ring_add_request moves object to inactive if it
1366 * fails */
1367 out:
1368 i915_gem_render_state_fini(&so);
1369 return ret;
1370 }
1371
1372 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1373 struct intel_context *ctx)
1374 {
1375 int ret;
1376
1377 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1378 if (ret)
1379 return ret;
1380
1381 return intel_lr_context_render_state_init(ring, ctx);
1382 }
1383
1384 /**
1385 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1386 *
1387 * @ring: Engine Command Streamer.
1388 *
1389 */
1390 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1391 {
1392 struct drm_i915_private *dev_priv;
1393
1394 if (!intel_ring_initialized(ring))
1395 return;
1396
1397 dev_priv = ring->dev->dev_private;
1398
1399 intel_logical_ring_stop(ring);
1400 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1401 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1402
1403 if (ring->cleanup)
1404 ring->cleanup(ring);
1405
1406 i915_cmd_parser_fini_ring(ring);
1407
1408 if (ring->status_page.obj) {
1409 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1410 ring->status_page.obj = NULL;
1411 }
1412 }
1413
1414 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1415 {
1416 int ret;
1417
1418 /* Intentionally left blank. */
1419 ring->buffer = NULL;
1420
1421 ring->dev = dev;
1422 INIT_LIST_HEAD(&ring->active_list);
1423 INIT_LIST_HEAD(&ring->request_list);
1424 init_waitqueue_head(&ring->irq_queue);
1425
1426 INIT_LIST_HEAD(&ring->execlist_queue);
1427 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1428 spin_lock_init(&ring->execlist_lock);
1429
1430 ret = i915_cmd_parser_init_ring(ring);
1431 if (ret)
1432 return ret;
1433
1434 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1435
1436 return ret;
1437 }
1438
1439 static int logical_render_ring_init(struct drm_device *dev)
1440 {
1441 struct drm_i915_private *dev_priv = dev->dev_private;
1442 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1443 int ret;
1444
1445 ring->name = "render ring";
1446 ring->id = RCS;
1447 ring->mmio_base = RENDER_RING_BASE;
1448 ring->irq_enable_mask =
1449 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1450 ring->irq_keep_mask =
1451 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1452 if (HAS_L3_DPF(dev))
1453 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1454
1455 if (INTEL_INFO(dev)->gen >= 9)
1456 ring->init_hw = gen9_init_render_ring;
1457 else
1458 ring->init_hw = gen8_init_render_ring;
1459 ring->init_context = gen8_init_rcs_context;
1460 ring->cleanup = intel_fini_pipe_control;
1461 ring->get_seqno = gen8_get_seqno;
1462 ring->set_seqno = gen8_set_seqno;
1463 ring->emit_request = gen8_emit_request;
1464 ring->emit_flush = gen8_emit_flush_render;
1465 ring->irq_get = gen8_logical_ring_get_irq;
1466 ring->irq_put = gen8_logical_ring_put_irq;
1467 ring->emit_bb_start = gen8_emit_bb_start;
1468
1469 ring->dev = dev;
1470 ret = logical_ring_init(dev, ring);
1471 if (ret)
1472 return ret;
1473
1474 return intel_init_pipe_control(ring);
1475 }
1476
1477 static int logical_bsd_ring_init(struct drm_device *dev)
1478 {
1479 struct drm_i915_private *dev_priv = dev->dev_private;
1480 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1481
1482 ring->name = "bsd ring";
1483 ring->id = VCS;
1484 ring->mmio_base = GEN6_BSD_RING_BASE;
1485 ring->irq_enable_mask =
1486 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1487 ring->irq_keep_mask =
1488 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1489
1490 ring->init_hw = gen8_init_common_ring;
1491 ring->get_seqno = gen8_get_seqno;
1492 ring->set_seqno = gen8_set_seqno;
1493 ring->emit_request = gen8_emit_request;
1494 ring->emit_flush = gen8_emit_flush;
1495 ring->irq_get = gen8_logical_ring_get_irq;
1496 ring->irq_put = gen8_logical_ring_put_irq;
1497 ring->emit_bb_start = gen8_emit_bb_start;
1498
1499 return logical_ring_init(dev, ring);
1500 }
1501
1502 static int logical_bsd2_ring_init(struct drm_device *dev)
1503 {
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1506
1507 ring->name = "bds2 ring";
1508 ring->id = VCS2;
1509 ring->mmio_base = GEN8_BSD2_RING_BASE;
1510 ring->irq_enable_mask =
1511 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1512 ring->irq_keep_mask =
1513 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1514
1515 ring->init_hw = gen8_init_common_ring;
1516 ring->get_seqno = gen8_get_seqno;
1517 ring->set_seqno = gen8_set_seqno;
1518 ring->emit_request = gen8_emit_request;
1519 ring->emit_flush = gen8_emit_flush;
1520 ring->irq_get = gen8_logical_ring_get_irq;
1521 ring->irq_put = gen8_logical_ring_put_irq;
1522 ring->emit_bb_start = gen8_emit_bb_start;
1523
1524 return logical_ring_init(dev, ring);
1525 }
1526
1527 static int logical_blt_ring_init(struct drm_device *dev)
1528 {
1529 struct drm_i915_private *dev_priv = dev->dev_private;
1530 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1531
1532 ring->name = "blitter ring";
1533 ring->id = BCS;
1534 ring->mmio_base = BLT_RING_BASE;
1535 ring->irq_enable_mask =
1536 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1537 ring->irq_keep_mask =
1538 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1539
1540 ring->init_hw = gen8_init_common_ring;
1541 ring->get_seqno = gen8_get_seqno;
1542 ring->set_seqno = gen8_set_seqno;
1543 ring->emit_request = gen8_emit_request;
1544 ring->emit_flush = gen8_emit_flush;
1545 ring->irq_get = gen8_logical_ring_get_irq;
1546 ring->irq_put = gen8_logical_ring_put_irq;
1547 ring->emit_bb_start = gen8_emit_bb_start;
1548
1549 return logical_ring_init(dev, ring);
1550 }
1551
1552 static int logical_vebox_ring_init(struct drm_device *dev)
1553 {
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1556
1557 ring->name = "video enhancement ring";
1558 ring->id = VECS;
1559 ring->mmio_base = VEBOX_RING_BASE;
1560 ring->irq_enable_mask =
1561 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1562 ring->irq_keep_mask =
1563 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1564
1565 ring->init_hw = gen8_init_common_ring;
1566 ring->get_seqno = gen8_get_seqno;
1567 ring->set_seqno = gen8_set_seqno;
1568 ring->emit_request = gen8_emit_request;
1569 ring->emit_flush = gen8_emit_flush;
1570 ring->irq_get = gen8_logical_ring_get_irq;
1571 ring->irq_put = gen8_logical_ring_put_irq;
1572 ring->emit_bb_start = gen8_emit_bb_start;
1573
1574 return logical_ring_init(dev, ring);
1575 }
1576
1577 /**
1578 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1579 * @dev: DRM device.
1580 *
1581 * This function inits the engines for an Execlists submission style (the equivalent in the
1582 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1583 * those engines that are present in the hardware.
1584 *
1585 * Return: non-zero if the initialization failed.
1586 */
1587 int intel_logical_rings_init(struct drm_device *dev)
1588 {
1589 struct drm_i915_private *dev_priv = dev->dev_private;
1590 int ret;
1591
1592 ret = logical_render_ring_init(dev);
1593 if (ret)
1594 return ret;
1595
1596 if (HAS_BSD(dev)) {
1597 ret = logical_bsd_ring_init(dev);
1598 if (ret)
1599 goto cleanup_render_ring;
1600 }
1601
1602 if (HAS_BLT(dev)) {
1603 ret = logical_blt_ring_init(dev);
1604 if (ret)
1605 goto cleanup_bsd_ring;
1606 }
1607
1608 if (HAS_VEBOX(dev)) {
1609 ret = logical_vebox_ring_init(dev);
1610 if (ret)
1611 goto cleanup_blt_ring;
1612 }
1613
1614 if (HAS_BSD2(dev)) {
1615 ret = logical_bsd2_ring_init(dev);
1616 if (ret)
1617 goto cleanup_vebox_ring;
1618 }
1619
1620 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1621 if (ret)
1622 goto cleanup_bsd2_ring;
1623
1624 return 0;
1625
1626 cleanup_bsd2_ring:
1627 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1628 cleanup_vebox_ring:
1629 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1630 cleanup_blt_ring:
1631 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1632 cleanup_bsd_ring:
1633 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1634 cleanup_render_ring:
1635 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1636
1637 return ret;
1638 }
1639
1640 static u32
1641 make_rpcs(struct drm_device *dev)
1642 {
1643 u32 rpcs = 0;
1644
1645 /*
1646 * No explicit RPCS request is needed to ensure full
1647 * slice/subslice/EU enablement prior to Gen9.
1648 */
1649 if (INTEL_INFO(dev)->gen < 9)
1650 return 0;
1651
1652 /*
1653 * Starting in Gen9, render power gating can leave
1654 * slice/subslice/EU in a partially enabled state. We
1655 * must make an explicit request through RPCS for full
1656 * enablement.
1657 */
1658 if (INTEL_INFO(dev)->has_slice_pg) {
1659 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1660 rpcs |= INTEL_INFO(dev)->slice_total <<
1661 GEN8_RPCS_S_CNT_SHIFT;
1662 rpcs |= GEN8_RPCS_ENABLE;
1663 }
1664
1665 if (INTEL_INFO(dev)->has_subslice_pg) {
1666 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1667 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1668 GEN8_RPCS_SS_CNT_SHIFT;
1669 rpcs |= GEN8_RPCS_ENABLE;
1670 }
1671
1672 if (INTEL_INFO(dev)->has_eu_pg) {
1673 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1674 GEN8_RPCS_EU_MIN_SHIFT;
1675 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1676 GEN8_RPCS_EU_MAX_SHIFT;
1677 rpcs |= GEN8_RPCS_ENABLE;
1678 }
1679
1680 return rpcs;
1681 }
1682
1683 static int
1684 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1685 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1686 {
1687 struct drm_device *dev = ring->dev;
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1689 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1690 struct page *page;
1691 uint32_t *reg_state;
1692 int ret;
1693
1694 if (!ppgtt)
1695 ppgtt = dev_priv->mm.aliasing_ppgtt;
1696
1697 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1698 if (ret) {
1699 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1700 return ret;
1701 }
1702
1703 ret = i915_gem_object_get_pages(ctx_obj);
1704 if (ret) {
1705 DRM_DEBUG_DRIVER("Could not get object pages\n");
1706 return ret;
1707 }
1708
1709 i915_gem_object_pin_pages(ctx_obj);
1710
1711 /* The second page of the context object contains some fields which must
1712 * be set up prior to the first execution. */
1713 page = i915_gem_object_get_page(ctx_obj, 1);
1714 reg_state = kmap_atomic(page);
1715
1716 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1717 * commands followed by (reg, value) pairs. The values we are setting here are
1718 * only for the first context restore: on a subsequent save, the GPU will
1719 * recreate this batchbuffer with new values (including all the missing
1720 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1721 if (ring->id == RCS)
1722 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1723 else
1724 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1725 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1726 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1727 reg_state[CTX_CONTEXT_CONTROL+1] =
1728 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1729 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1730 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1731 reg_state[CTX_RING_HEAD+1] = 0;
1732 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1733 reg_state[CTX_RING_TAIL+1] = 0;
1734 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1735 /* Ring buffer start address is not known until the buffer is pinned.
1736 * It is written to the context image in execlists_update_context()
1737 */
1738 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1739 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1740 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1741 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1742 reg_state[CTX_BB_HEAD_U+1] = 0;
1743 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1744 reg_state[CTX_BB_HEAD_L+1] = 0;
1745 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1746 reg_state[CTX_BB_STATE+1] = (1<<5);
1747 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1748 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1749 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1750 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1751 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1752 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1753 if (ring->id == RCS) {
1754 /* TODO: according to BSpec, the register state context
1755 * for CHV does not have these. OTOH, these registers do
1756 * exist in CHV. I'm waiting for a clarification */
1757 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1758 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1759 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1760 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1761 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1762 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1763 }
1764 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1765 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1766 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1767 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1768 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1769 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1770 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1771 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1772 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1773 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1774 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1775 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1776 reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1777 reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1778 reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1779 reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1780 reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1781 reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1782 reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1783 reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1784 if (ring->id == RCS) {
1785 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1786 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1787 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1788 }
1789
1790 kunmap_atomic(reg_state);
1791
1792 ctx_obj->dirty = 1;
1793 set_page_dirty(page);
1794 i915_gem_object_unpin_pages(ctx_obj);
1795
1796 return 0;
1797 }
1798
1799 /**
1800 * intel_lr_context_free() - free the LRC specific bits of a context
1801 * @ctx: the LR context to free.
1802 *
1803 * The real context freeing is done in i915_gem_context_free: this only
1804 * takes care of the bits that are LRC related: the per-engine backing
1805 * objects and the logical ringbuffer.
1806 */
1807 void intel_lr_context_free(struct intel_context *ctx)
1808 {
1809 int i;
1810
1811 for (i = 0; i < I915_NUM_RINGS; i++) {
1812 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1813
1814 if (ctx_obj) {
1815 struct intel_ringbuffer *ringbuf =
1816 ctx->engine[i].ringbuf;
1817 struct intel_engine_cs *ring = ringbuf->ring;
1818
1819 if (ctx == ring->default_context) {
1820 intel_unpin_ringbuffer_obj(ringbuf);
1821 i915_gem_object_ggtt_unpin(ctx_obj);
1822 }
1823 WARN_ON(ctx->engine[ring->id].pin_count);
1824 intel_destroy_ringbuffer_obj(ringbuf);
1825 kfree(ringbuf);
1826 drm_gem_object_unreference(&ctx_obj->base);
1827 }
1828 }
1829 }
1830
1831 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1832 {
1833 int ret = 0;
1834
1835 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1836
1837 switch (ring->id) {
1838 case RCS:
1839 if (INTEL_INFO(ring->dev)->gen >= 9)
1840 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1841 else
1842 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1843 break;
1844 case VCS:
1845 case BCS:
1846 case VECS:
1847 case VCS2:
1848 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1849 break;
1850 }
1851
1852 return ret;
1853 }
1854
1855 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1856 struct drm_i915_gem_object *default_ctx_obj)
1857 {
1858 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1859
1860 /* The status page is offset 0 from the default context object
1861 * in LRC mode. */
1862 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1863 ring->status_page.page_addr =
1864 kmap(sg_page(default_ctx_obj->pages->sgl));
1865 ring->status_page.obj = default_ctx_obj;
1866
1867 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1868 (u32)ring->status_page.gfx_addr);
1869 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1870 }
1871
1872 /**
1873 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1874 * @ctx: LR context to create.
1875 * @ring: engine to be used with the context.
1876 *
1877 * This function can be called more than once, with different engines, if we plan
1878 * to use the context with them. The context backing objects and the ringbuffers
1879 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1880 * the creation is a deferred call: it's better to make sure first that we need to use
1881 * a given ring with the context.
1882 *
1883 * Return: non-zero on error.
1884 */
1885 int intel_lr_context_deferred_create(struct intel_context *ctx,
1886 struct intel_engine_cs *ring)
1887 {
1888 const bool is_global_default_ctx = (ctx == ring->default_context);
1889 struct drm_device *dev = ring->dev;
1890 struct drm_i915_gem_object *ctx_obj;
1891 uint32_t context_size;
1892 struct intel_ringbuffer *ringbuf;
1893 int ret;
1894
1895 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1896 WARN_ON(ctx->engine[ring->id].state);
1897
1898 context_size = round_up(get_lr_context_size(ring), 4096);
1899
1900 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1901 if (IS_ERR(ctx_obj)) {
1902 ret = PTR_ERR(ctx_obj);
1903 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1904 return ret;
1905 }
1906
1907 if (is_global_default_ctx) {
1908 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1909 if (ret) {
1910 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1911 ret);
1912 drm_gem_object_unreference(&ctx_obj->base);
1913 return ret;
1914 }
1915 }
1916
1917 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1918 if (!ringbuf) {
1919 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1920 ring->name);
1921 ret = -ENOMEM;
1922 goto error_unpin_ctx;
1923 }
1924
1925 ringbuf->ring = ring;
1926
1927 ringbuf->size = 32 * PAGE_SIZE;
1928 ringbuf->effective_size = ringbuf->size;
1929 ringbuf->head = 0;
1930 ringbuf->tail = 0;
1931 ringbuf->last_retired_head = -1;
1932 intel_ring_update_space(ringbuf);
1933
1934 if (ringbuf->obj == NULL) {
1935 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1936 if (ret) {
1937 DRM_DEBUG_DRIVER(
1938 "Failed to allocate ringbuffer obj %s: %d\n",
1939 ring->name, ret);
1940 goto error_free_rbuf;
1941 }
1942
1943 if (is_global_default_ctx) {
1944 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1945 if (ret) {
1946 DRM_ERROR(
1947 "Failed to pin and map ringbuffer %s: %d\n",
1948 ring->name, ret);
1949 goto error_destroy_rbuf;
1950 }
1951 }
1952
1953 }
1954
1955 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1956 if (ret) {
1957 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1958 goto error;
1959 }
1960
1961 ctx->engine[ring->id].ringbuf = ringbuf;
1962 ctx->engine[ring->id].state = ctx_obj;
1963
1964 if (ctx == ring->default_context)
1965 lrc_setup_hardware_status_page(ring, ctx_obj);
1966 else if (ring->id == RCS && !ctx->rcs_initialized) {
1967 if (ring->init_context) {
1968 ret = ring->init_context(ring, ctx);
1969 if (ret) {
1970 DRM_ERROR("ring init context: %d\n", ret);
1971 ctx->engine[ring->id].ringbuf = NULL;
1972 ctx->engine[ring->id].state = NULL;
1973 goto error;
1974 }
1975 }
1976
1977 ctx->rcs_initialized = true;
1978 }
1979
1980 return 0;
1981
1982 error:
1983 if (is_global_default_ctx)
1984 intel_unpin_ringbuffer_obj(ringbuf);
1985 error_destroy_rbuf:
1986 intel_destroy_ringbuffer_obj(ringbuf);
1987 error_free_rbuf:
1988 kfree(ringbuf);
1989 error_unpin_ctx:
1990 if (is_global_default_ctx)
1991 i915_gem_object_ggtt_unpin(ctx_obj);
1992 drm_gem_object_unreference(&ctx_obj->base);
1993 return ret;
1994 }
1995
1996 void intel_lr_context_reset(struct drm_device *dev,
1997 struct intel_context *ctx)
1998 {
1999 struct drm_i915_private *dev_priv = dev->dev_private;
2000 struct intel_engine_cs *ring;
2001 int i;
2002
2003 for_each_ring(ring, dev_priv, i) {
2004 struct drm_i915_gem_object *ctx_obj =
2005 ctx->engine[ring->id].state;
2006 struct intel_ringbuffer *ringbuf =
2007 ctx->engine[ring->id].ringbuf;
2008 uint32_t *reg_state;
2009 struct page *page;
2010
2011 if (!ctx_obj)
2012 continue;
2013
2014 if (i915_gem_object_get_pages(ctx_obj)) {
2015 WARN(1, "Failed get_pages for context obj\n");
2016 continue;
2017 }
2018 page = i915_gem_object_get_page(ctx_obj, 1);
2019 reg_state = kmap_atomic(page);
2020
2021 reg_state[CTX_RING_HEAD+1] = 0;
2022 reg_state[CTX_RING_TAIL+1] = 0;
2023
2024 kunmap_atomic(reg_state);
2025
2026 ringbuf->head = 0;
2027 ringbuf->tail = 0;
2028 }
2029 }
This page took 0.103646 seconds and 6 git commands to generate.