Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211 ADVANCED_CONTEXT = 0,
212 LEGACY_32B_CONTEXT,
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
220 enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
228 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
229
230 static int intel_lr_context_pin(struct intel_context *ctx,
231 struct intel_engine_cs *engine);
232
233 /**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245 WARN_ON(i915.enable_ppgtt == -1);
246
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
256 if (enable_execlists == 0)
257 return 0;
258
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
261 return 1;
262
263 return 0;
264 }
265
266 static void
267 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268 {
269 struct drm_device *dev = engine->dev;
270
271 if (IS_GEN8(dev) || IS_GEN9(dev))
272 engine->idle_lite_restore_wa = ~0;
273
274 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
275 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
276 (engine->id == VCS || engine->id == VCS2);
277
278 engine->ctx_desc_template = GEN8_CTX_VALID;
279 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
280 GEN8_CTX_ADDRESSING_MODE_SHIFT;
281 if (IS_GEN8(dev))
282 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
283 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
284
285 /* TODO: WaDisableLiteRestore when we start using semaphore
286 * signalling between Command Streamers */
287 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
288
289 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
290 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
291 if (engine->disable_lite_restore_wa)
292 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
293 }
294
295 /**
296 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
297 * descriptor for a pinned context
298 *
299 * @ctx: Context to work on
300 * @ring: Engine the descriptor will be used with
301 *
302 * The context descriptor encodes various attributes of a context,
303 * including its GTT address and some flags. Because it's fairly
304 * expensive to calculate, we'll just do it once and cache the result,
305 * which remains valid until the context is unpinned.
306 *
307 * This is what a descriptor looks like, from LSB to MSB:
308 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
309 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
310 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
311 * bits 52-63: reserved, may encode the engine ID (for GuC)
312 */
313 static void
314 intel_lr_context_descriptor_update(struct intel_context *ctx,
315 struct intel_engine_cs *engine)
316 {
317 uint64_t lrca, desc;
318
319 lrca = ctx->engine[engine->id].lrc_vma->node.start +
320 LRC_PPHWSP_PN * PAGE_SIZE;
321
322 desc = engine->ctx_desc_template; /* bits 0-11 */
323 desc |= lrca; /* bits 12-31 */
324 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
325
326 ctx->engine[engine->id].lrc_desc = desc;
327 }
328
329 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
330 struct intel_engine_cs *engine)
331 {
332 return ctx->engine[engine->id].lrc_desc;
333 }
334
335 /**
336 * intel_execlists_ctx_id() - get the Execlists Context ID
337 * @ctx: Context to get the ID for
338 * @ring: Engine to get the ID for
339 *
340 * Do not confuse with ctx->id! Unfortunately we have a name overload
341 * here: the old context ID we pass to userspace as a handler so that
342 * they can refer to a context, and the new context ID we pass to the
343 * ELSP so that the GPU can inform us of the context status via
344 * interrupts.
345 *
346 * The context ID is a portion of the context descriptor, so we can
347 * just extract the required part from the cached descriptor.
348 *
349 * Return: 20-bits globally unique context ID.
350 */
351 u32 intel_execlists_ctx_id(struct intel_context *ctx,
352 struct intel_engine_cs *engine)
353 {
354 return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
355 }
356
357 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
358 struct drm_i915_gem_request *rq1)
359 {
360
361 struct intel_engine_cs *engine = rq0->engine;
362 struct drm_device *dev = engine->dev;
363 struct drm_i915_private *dev_priv = dev->dev_private;
364 uint64_t desc[2];
365
366 if (rq1) {
367 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
368 rq1->elsp_submitted++;
369 } else {
370 desc[1] = 0;
371 }
372
373 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
374 rq0->elsp_submitted++;
375
376 /* You must always write both descriptors in the order below. */
377 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
378 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
379
380 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
381 /* The context is automatically loaded after the following */
382 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
383
384 /* ELSP is a wo register, use another nearby reg for posting */
385 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
386 }
387
388 static void
389 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
390 {
391 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
392 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
393 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
394 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
395 }
396
397 static void execlists_update_context(struct drm_i915_gem_request *rq)
398 {
399 struct intel_engine_cs *engine = rq->engine;
400 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
401 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
402
403 reg_state[CTX_RING_TAIL+1] = rq->tail;
404
405 /* True 32b PPGTT with dynamic page allocation: update PDP
406 * registers and point the unallocated PDPs to scratch page.
407 * PML4 is allocated during ppgtt init, so this is not needed
408 * in 48-bit mode.
409 */
410 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
411 execlists_update_context_pdps(ppgtt, reg_state);
412 }
413
414 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
415 struct drm_i915_gem_request *rq1)
416 {
417 struct drm_i915_private *dev_priv = rq0->i915;
418 unsigned int fw_domains = rq0->engine->fw_domains;
419
420 execlists_update_context(rq0);
421
422 if (rq1)
423 execlists_update_context(rq1);
424
425 spin_lock_irq(&dev_priv->uncore.lock);
426 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
427
428 execlists_elsp_write(rq0, rq1);
429
430 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
431 spin_unlock_irq(&dev_priv->uncore.lock);
432 }
433
434 static void execlists_context_unqueue(struct intel_engine_cs *engine)
435 {
436 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
437 struct drm_i915_gem_request *cursor, *tmp;
438
439 assert_spin_locked(&engine->execlist_lock);
440
441 /*
442 * If irqs are not active generate a warning as batches that finish
443 * without the irqs may get lost and a GPU Hang may occur.
444 */
445 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
446
447 /* Try to read in pairs */
448 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
449 execlist_link) {
450 if (!req0) {
451 req0 = cursor;
452 } else if (req0->ctx == cursor->ctx) {
453 /* Same ctx: ignore first request, as second request
454 * will update tail past first request's workload */
455 cursor->elsp_submitted = req0->elsp_submitted;
456 list_move_tail(&req0->execlist_link,
457 &engine->execlist_retired_req_list);
458 req0 = cursor;
459 } else {
460 req1 = cursor;
461 WARN_ON(req1->elsp_submitted);
462 break;
463 }
464 }
465
466 if (unlikely(!req0))
467 return;
468
469 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
470 /*
471 * WaIdleLiteRestore: make sure we never cause a lite restore
472 * with HEAD==TAIL.
473 *
474 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
475 * resubmit the request. See gen8_emit_request() for where we
476 * prepare the padding after the end of the request.
477 */
478 struct intel_ringbuffer *ringbuf;
479
480 ringbuf = req0->ctx->engine[engine->id].ringbuf;
481 req0->tail += 8;
482 req0->tail &= ringbuf->size - 1;
483 }
484
485 execlists_submit_requests(req0, req1);
486 }
487
488 static unsigned int
489 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
490 {
491 struct drm_i915_gem_request *head_req;
492
493 assert_spin_locked(&engine->execlist_lock);
494
495 head_req = list_first_entry_or_null(&engine->execlist_queue,
496 struct drm_i915_gem_request,
497 execlist_link);
498
499 if (!head_req)
500 return 0;
501
502 if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
503 return 0;
504
505 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
506
507 if (--head_req->elsp_submitted > 0)
508 return 0;
509
510 list_move_tail(&head_req->execlist_link,
511 &engine->execlist_retired_req_list);
512
513 return 1;
514 }
515
516 static u32
517 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
518 u32 *context_id)
519 {
520 struct drm_i915_private *dev_priv = engine->dev->dev_private;
521 u32 status;
522
523 read_pointer %= GEN8_CSB_ENTRIES;
524
525 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
526
527 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
528 return 0;
529
530 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
531 read_pointer));
532
533 return status;
534 }
535
536 /**
537 * intel_lrc_irq_handler() - handle Context Switch interrupts
538 * @engine: Engine Command Streamer to handle.
539 *
540 * Check the unread Context Status Buffers and manage the submission of new
541 * contexts to the ELSP accordingly.
542 */
543 static void intel_lrc_irq_handler(unsigned long data)
544 {
545 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546 struct drm_i915_private *dev_priv = engine->dev->dev_private;
547 u32 status_pointer;
548 unsigned int read_pointer, write_pointer;
549 u32 csb[GEN8_CSB_ENTRIES][2];
550 unsigned int csb_read = 0, i;
551 unsigned int submit_contexts = 0;
552
553 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554
555 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556
557 read_pointer = engine->next_context_status_buffer;
558 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559 if (read_pointer > write_pointer)
560 write_pointer += GEN8_CSB_ENTRIES;
561
562 while (read_pointer < write_pointer) {
563 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564 break;
565 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566 &csb[csb_read][1]);
567 csb_read++;
568 }
569
570 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571
572 /* Update the read pointer to the old write pointer. Manual ringbuffer
573 * management ftw </sarcasm> */
574 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576 engine->next_context_status_buffer << 8));
577
578 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579
580 spin_lock(&engine->execlist_lock);
581
582 for (i = 0; i < csb_read; i++) {
583 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585 if (execlists_check_remove_request(engine, csb[i][1]))
586 WARN(1, "Lite Restored request removed from queue\n");
587 } else
588 WARN(1, "Preemption without Lite Restore\n");
589 }
590
591 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592 GEN8_CTX_STATUS_ELEMENT_SWITCH))
593 submit_contexts +=
594 execlists_check_remove_request(engine, csb[i][1]);
595 }
596
597 if (submit_contexts) {
598 if (!engine->disable_lite_restore_wa ||
599 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
600 execlists_context_unqueue(engine);
601 }
602
603 spin_unlock(&engine->execlist_lock);
604
605 if (unlikely(submit_contexts > 2))
606 DRM_ERROR("More than two context complete events?\n");
607 }
608
609 static void execlists_context_queue(struct drm_i915_gem_request *request)
610 {
611 struct intel_engine_cs *engine = request->engine;
612 struct drm_i915_gem_request *cursor;
613 int num_elements = 0;
614
615 if (request->ctx != request->i915->kernel_context)
616 intel_lr_context_pin(request->ctx, engine);
617
618 i915_gem_request_reference(request);
619
620 spin_lock_bh(&engine->execlist_lock);
621
622 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
623 if (++num_elements > 2)
624 break;
625
626 if (num_elements > 2) {
627 struct drm_i915_gem_request *tail_req;
628
629 tail_req = list_last_entry(&engine->execlist_queue,
630 struct drm_i915_gem_request,
631 execlist_link);
632
633 if (request->ctx == tail_req->ctx) {
634 WARN(tail_req->elsp_submitted != 0,
635 "More than 2 already-submitted reqs queued\n");
636 list_move_tail(&tail_req->execlist_link,
637 &engine->execlist_retired_req_list);
638 }
639 }
640
641 list_add_tail(&request->execlist_link, &engine->execlist_queue);
642 if (num_elements == 0)
643 execlists_context_unqueue(engine);
644
645 spin_unlock_bh(&engine->execlist_lock);
646 }
647
648 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
649 {
650 struct intel_engine_cs *engine = req->engine;
651 uint32_t flush_domains;
652 int ret;
653
654 flush_domains = 0;
655 if (engine->gpu_caches_dirty)
656 flush_domains = I915_GEM_GPU_DOMAINS;
657
658 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
659 if (ret)
660 return ret;
661
662 engine->gpu_caches_dirty = false;
663 return 0;
664 }
665
666 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
667 struct list_head *vmas)
668 {
669 const unsigned other_rings = ~intel_engine_flag(req->engine);
670 struct i915_vma *vma;
671 uint32_t flush_domains = 0;
672 bool flush_chipset = false;
673 int ret;
674
675 list_for_each_entry(vma, vmas, exec_list) {
676 struct drm_i915_gem_object *obj = vma->obj;
677
678 if (obj->active & other_rings) {
679 ret = i915_gem_object_sync(obj, req->engine, &req);
680 if (ret)
681 return ret;
682 }
683
684 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
685 flush_chipset |= i915_gem_clflush_object(obj, false);
686
687 flush_domains |= obj->base.write_domain;
688 }
689
690 if (flush_domains & I915_GEM_DOMAIN_GTT)
691 wmb();
692
693 /* Unconditionally invalidate gpu caches and ensure that we do flush
694 * any residual writes from the previous batch.
695 */
696 return logical_ring_invalidate_all_caches(req);
697 }
698
699 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
700 {
701 int ret = 0;
702
703 request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
704
705 if (i915.enable_guc_submission) {
706 /*
707 * Check that the GuC has space for the request before
708 * going any further, as the i915_add_request() call
709 * later on mustn't fail ...
710 */
711 struct intel_guc *guc = &request->i915->guc;
712
713 ret = i915_guc_wq_check_space(guc->execbuf_client);
714 if (ret)
715 return ret;
716 }
717
718 if (request->ctx != request->i915->kernel_context)
719 ret = intel_lr_context_pin(request->ctx, request->engine);
720
721 return ret;
722 }
723
724 /*
725 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
726 * @request: Request to advance the logical ringbuffer of.
727 *
728 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
729 * really happens during submission is that the context and current tail will be placed
730 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
731 * point, the tail *inside* the context is updated and the ELSP written to.
732 */
733 static int
734 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
735 {
736 struct intel_ringbuffer *ringbuf = request->ringbuf;
737 struct drm_i915_private *dev_priv = request->i915;
738 struct intel_engine_cs *engine = request->engine;
739
740 intel_logical_ring_advance(ringbuf);
741 request->tail = ringbuf->tail;
742
743 /*
744 * Here we add two extra NOOPs as padding to avoid
745 * lite restore of a context with HEAD==TAIL.
746 *
747 * Caller must reserve WA_TAIL_DWORDS for us!
748 */
749 intel_logical_ring_emit(ringbuf, MI_NOOP);
750 intel_logical_ring_emit(ringbuf, MI_NOOP);
751 intel_logical_ring_advance(ringbuf);
752
753 if (intel_engine_stopped(engine))
754 return 0;
755
756 if (engine->last_context != request->ctx) {
757 if (engine->last_context)
758 intel_lr_context_unpin(engine->last_context, engine);
759 if (request->ctx != request->i915->kernel_context) {
760 intel_lr_context_pin(request->ctx, engine);
761 engine->last_context = request->ctx;
762 } else {
763 engine->last_context = NULL;
764 }
765 }
766
767 if (dev_priv->guc.execbuf_client)
768 i915_guc_submit(dev_priv->guc.execbuf_client, request);
769 else
770 execlists_context_queue(request);
771
772 return 0;
773 }
774
775 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
776 {
777 /*
778 * The first call merely notes the reserve request and is common for
779 * all back ends. The subsequent localised _begin() call actually
780 * ensures that the reservation is available. Without the begin, if
781 * the request creator immediately submitted the request without
782 * adding any commands to it then there might not actually be
783 * sufficient room for the submission commands.
784 */
785 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
786
787 return intel_ring_begin(request, 0);
788 }
789
790 /**
791 * execlists_submission() - submit a batchbuffer for execution, Execlists style
792 * @dev: DRM device.
793 * @file: DRM file.
794 * @ring: Engine Command Streamer to submit to.
795 * @ctx: Context to employ for this submission.
796 * @args: execbuffer call arguments.
797 * @vmas: list of vmas.
798 * @batch_obj: the batchbuffer to submit.
799 * @exec_start: batchbuffer start virtual address pointer.
800 * @dispatch_flags: translated execbuffer call flags.
801 *
802 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
803 * away the submission details of the execbuffer ioctl call.
804 *
805 * Return: non-zero if the submission fails.
806 */
807 int intel_execlists_submission(struct i915_execbuffer_params *params,
808 struct drm_i915_gem_execbuffer2 *args,
809 struct list_head *vmas)
810 {
811 struct drm_device *dev = params->dev;
812 struct intel_engine_cs *engine = params->engine;
813 struct drm_i915_private *dev_priv = dev->dev_private;
814 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
815 u64 exec_start;
816 int instp_mode;
817 u32 instp_mask;
818 int ret;
819
820 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
821 instp_mask = I915_EXEC_CONSTANTS_MASK;
822 switch (instp_mode) {
823 case I915_EXEC_CONSTANTS_REL_GENERAL:
824 case I915_EXEC_CONSTANTS_ABSOLUTE:
825 case I915_EXEC_CONSTANTS_REL_SURFACE:
826 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
827 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
828 return -EINVAL;
829 }
830
831 if (instp_mode != dev_priv->relative_constants_mode) {
832 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
833 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
834 return -EINVAL;
835 }
836
837 /* The HW changed the meaning on this bit on gen6 */
838 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
839 }
840 break;
841 default:
842 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
843 return -EINVAL;
844 }
845
846 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
847 DRM_DEBUG("sol reset is gen7 only\n");
848 return -EINVAL;
849 }
850
851 ret = execlists_move_to_gpu(params->request, vmas);
852 if (ret)
853 return ret;
854
855 if (engine == &dev_priv->engine[RCS] &&
856 instp_mode != dev_priv->relative_constants_mode) {
857 ret = intel_ring_begin(params->request, 4);
858 if (ret)
859 return ret;
860
861 intel_logical_ring_emit(ringbuf, MI_NOOP);
862 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
863 intel_logical_ring_emit_reg(ringbuf, INSTPM);
864 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
865 intel_logical_ring_advance(ringbuf);
866
867 dev_priv->relative_constants_mode = instp_mode;
868 }
869
870 exec_start = params->batch_obj_vm_offset +
871 args->batch_start_offset;
872
873 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
874 if (ret)
875 return ret;
876
877 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
878
879 i915_gem_execbuffer_move_to_active(vmas, params->request);
880
881 return 0;
882 }
883
884 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
885 {
886 struct drm_i915_gem_request *req, *tmp;
887 struct list_head retired_list;
888
889 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
890 if (list_empty(&engine->execlist_retired_req_list))
891 return;
892
893 INIT_LIST_HEAD(&retired_list);
894 spin_lock_bh(&engine->execlist_lock);
895 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
896 spin_unlock_bh(&engine->execlist_lock);
897
898 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
899 struct intel_context *ctx = req->ctx;
900 struct drm_i915_gem_object *ctx_obj =
901 ctx->engine[engine->id].state;
902
903 if (ctx_obj && (ctx != req->i915->kernel_context))
904 intel_lr_context_unpin(ctx, engine);
905
906 list_del(&req->execlist_link);
907 i915_gem_request_unreference(req);
908 }
909 }
910
911 void intel_logical_ring_stop(struct intel_engine_cs *engine)
912 {
913 struct drm_i915_private *dev_priv = engine->dev->dev_private;
914 int ret;
915
916 if (!intel_engine_initialized(engine))
917 return;
918
919 ret = intel_engine_idle(engine);
920 if (ret)
921 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
922 engine->name, ret);
923
924 /* TODO: Is this correct with Execlists enabled? */
925 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
926 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
927 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
928 return;
929 }
930 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
931 }
932
933 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
934 {
935 struct intel_engine_cs *engine = req->engine;
936 int ret;
937
938 if (!engine->gpu_caches_dirty)
939 return 0;
940
941 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
942 if (ret)
943 return ret;
944
945 engine->gpu_caches_dirty = false;
946 return 0;
947 }
948
949 static int intel_lr_context_do_pin(struct intel_context *ctx,
950 struct intel_engine_cs *engine)
951 {
952 struct drm_device *dev = engine->dev;
953 struct drm_i915_private *dev_priv = dev->dev_private;
954 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
955 struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
956 void *vaddr;
957 u32 *lrc_reg_state;
958 int ret;
959
960 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
961
962 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
963 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
964 if (ret)
965 return ret;
966
967 vaddr = i915_gem_object_pin_map(ctx_obj);
968 if (IS_ERR(vaddr)) {
969 ret = PTR_ERR(vaddr);
970 goto unpin_ctx_obj;
971 }
972
973 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
974
975 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
976 if (ret)
977 goto unpin_map;
978
979 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
980 intel_lr_context_descriptor_update(ctx, engine);
981 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
982 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
983 ctx_obj->dirty = true;
984
985 /* Invalidate GuC TLB. */
986 if (i915.enable_guc_submission)
987 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
988
989 return ret;
990
991 unpin_map:
992 i915_gem_object_unpin_map(ctx_obj);
993 unpin_ctx_obj:
994 i915_gem_object_ggtt_unpin(ctx_obj);
995
996 return ret;
997 }
998
999 static int intel_lr_context_pin(struct intel_context *ctx,
1000 struct intel_engine_cs *engine)
1001 {
1002 int ret = 0;
1003
1004 if (ctx->engine[engine->id].pin_count++ == 0) {
1005 ret = intel_lr_context_do_pin(ctx, engine);
1006 if (ret)
1007 goto reset_pin_count;
1008
1009 i915_gem_context_reference(ctx);
1010 }
1011 return ret;
1012
1013 reset_pin_count:
1014 ctx->engine[engine->id].pin_count = 0;
1015 return ret;
1016 }
1017
1018 void intel_lr_context_unpin(struct intel_context *ctx,
1019 struct intel_engine_cs *engine)
1020 {
1021 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1022
1023 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1024 if (--ctx->engine[engine->id].pin_count == 0) {
1025 i915_gem_object_unpin_map(ctx_obj);
1026 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1027 i915_gem_object_ggtt_unpin(ctx_obj);
1028 ctx->engine[engine->id].lrc_vma = NULL;
1029 ctx->engine[engine->id].lrc_desc = 0;
1030 ctx->engine[engine->id].lrc_reg_state = NULL;
1031
1032 i915_gem_context_unreference(ctx);
1033 }
1034 }
1035
1036 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1037 {
1038 int ret, i;
1039 struct intel_engine_cs *engine = req->engine;
1040 struct intel_ringbuffer *ringbuf = req->ringbuf;
1041 struct drm_device *dev = engine->dev;
1042 struct drm_i915_private *dev_priv = dev->dev_private;
1043 struct i915_workarounds *w = &dev_priv->workarounds;
1044
1045 if (w->count == 0)
1046 return 0;
1047
1048 engine->gpu_caches_dirty = true;
1049 ret = logical_ring_flush_all_caches(req);
1050 if (ret)
1051 return ret;
1052
1053 ret = intel_ring_begin(req, w->count * 2 + 2);
1054 if (ret)
1055 return ret;
1056
1057 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1058 for (i = 0; i < w->count; i++) {
1059 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1060 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1061 }
1062 intel_logical_ring_emit(ringbuf, MI_NOOP);
1063
1064 intel_logical_ring_advance(ringbuf);
1065
1066 engine->gpu_caches_dirty = true;
1067 ret = logical_ring_flush_all_caches(req);
1068 if (ret)
1069 return ret;
1070
1071 return 0;
1072 }
1073
1074 #define wa_ctx_emit(batch, index, cmd) \
1075 do { \
1076 int __index = (index)++; \
1077 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1078 return -ENOSPC; \
1079 } \
1080 batch[__index] = (cmd); \
1081 } while (0)
1082
1083 #define wa_ctx_emit_reg(batch, index, reg) \
1084 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1085
1086 /*
1087 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1088 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1089 * but there is a slight complication as this is applied in WA batch where the
1090 * values are only initialized once so we cannot take register value at the
1091 * beginning and reuse it further; hence we save its value to memory, upload a
1092 * constant value with bit21 set and then we restore it back with the saved value.
1093 * To simplify the WA, a constant value is formed by using the default value
1094 * of this register. This shouldn't be a problem because we are only modifying
1095 * it for a short period and this batch in non-premptible. We can ofcourse
1096 * use additional instructions that read the actual value of the register
1097 * at that time and set our bit of interest but it makes the WA complicated.
1098 *
1099 * This WA is also required for Gen9 so extracting as a function avoids
1100 * code duplication.
1101 */
1102 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1103 uint32_t *const batch,
1104 uint32_t index)
1105 {
1106 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1107
1108 /*
1109 * WaDisableLSQCROPERFforOCL:skl
1110 * This WA is implemented in skl_init_clock_gating() but since
1111 * this batch updates GEN8_L3SQCREG4 with default value we need to
1112 * set this bit here to retain the WA during flush.
1113 */
1114 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1115 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1116
1117 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1118 MI_SRM_LRM_GLOBAL_GTT));
1119 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1120 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1121 wa_ctx_emit(batch, index, 0);
1122
1123 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1124 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1125 wa_ctx_emit(batch, index, l3sqc4_flush);
1126
1127 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1128 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1129 PIPE_CONTROL_DC_FLUSH_ENABLE));
1130 wa_ctx_emit(batch, index, 0);
1131 wa_ctx_emit(batch, index, 0);
1132 wa_ctx_emit(batch, index, 0);
1133 wa_ctx_emit(batch, index, 0);
1134
1135 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1136 MI_SRM_LRM_GLOBAL_GTT));
1137 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1138 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1139 wa_ctx_emit(batch, index, 0);
1140
1141 return index;
1142 }
1143
1144 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1145 uint32_t offset,
1146 uint32_t start_alignment)
1147 {
1148 return wa_ctx->offset = ALIGN(offset, start_alignment);
1149 }
1150
1151 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1152 uint32_t offset,
1153 uint32_t size_alignment)
1154 {
1155 wa_ctx->size = offset - wa_ctx->offset;
1156
1157 WARN(wa_ctx->size % size_alignment,
1158 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1159 wa_ctx->size, size_alignment);
1160 return 0;
1161 }
1162
1163 /**
1164 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1165 *
1166 * @ring: only applicable for RCS
1167 * @wa_ctx: structure representing wa_ctx
1168 * offset: specifies start of the batch, should be cache-aligned. This is updated
1169 * with the offset value received as input.
1170 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1171 * @batch: page in which WA are loaded
1172 * @offset: This field specifies the start of the batch, it should be
1173 * cache-aligned otherwise it is adjusted accordingly.
1174 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1175 * initialized at the beginning and shared across all contexts but this field
1176 * helps us to have multiple batches at different offsets and select them based
1177 * on a criteria. At the moment this batch always start at the beginning of the page
1178 * and at this point we don't have multiple wa_ctx batch buffers.
1179 *
1180 * The number of WA applied are not known at the beginning; we use this field
1181 * to return the no of DWORDS written.
1182 *
1183 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1184 * so it adds NOOPs as padding to make it cacheline aligned.
1185 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1186 * makes a complete batch buffer.
1187 *
1188 * Return: non-zero if we exceed the PAGE_SIZE limit.
1189 */
1190
1191 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1192 struct i915_wa_ctx_bb *wa_ctx,
1193 uint32_t *const batch,
1194 uint32_t *offset)
1195 {
1196 uint32_t scratch_addr;
1197 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1198
1199 /* WaDisableCtxRestoreArbitration:bdw,chv */
1200 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1201
1202 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1203 if (IS_BROADWELL(engine->dev)) {
1204 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1205 if (rc < 0)
1206 return rc;
1207 index = rc;
1208 }
1209
1210 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1211 /* Actual scratch location is at 128 bytes offset */
1212 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1213
1214 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1215 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1216 PIPE_CONTROL_GLOBAL_GTT_IVB |
1217 PIPE_CONTROL_CS_STALL |
1218 PIPE_CONTROL_QW_WRITE));
1219 wa_ctx_emit(batch, index, scratch_addr);
1220 wa_ctx_emit(batch, index, 0);
1221 wa_ctx_emit(batch, index, 0);
1222 wa_ctx_emit(batch, index, 0);
1223
1224 /* Pad to end of cacheline */
1225 while (index % CACHELINE_DWORDS)
1226 wa_ctx_emit(batch, index, MI_NOOP);
1227
1228 /*
1229 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1230 * execution depends on the length specified in terms of cache lines
1231 * in the register CTX_RCS_INDIRECT_CTX
1232 */
1233
1234 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1235 }
1236
1237 /**
1238 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1239 *
1240 * @ring: only applicable for RCS
1241 * @wa_ctx: structure representing wa_ctx
1242 * offset: specifies start of the batch, should be cache-aligned.
1243 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1244 * @batch: page in which WA are loaded
1245 * @offset: This field specifies the start of this batch.
1246 * This batch is started immediately after indirect_ctx batch. Since we ensure
1247 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1248 *
1249 * The number of DWORDS written are returned using this field.
1250 *
1251 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1252 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1253 */
1254 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1255 struct i915_wa_ctx_bb *wa_ctx,
1256 uint32_t *const batch,
1257 uint32_t *offset)
1258 {
1259 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1260
1261 /* WaDisableCtxRestoreArbitration:bdw,chv */
1262 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1263
1264 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1265
1266 return wa_ctx_end(wa_ctx, *offset = index, 1);
1267 }
1268
1269 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1270 struct i915_wa_ctx_bb *wa_ctx,
1271 uint32_t *const batch,
1272 uint32_t *offset)
1273 {
1274 int ret;
1275 struct drm_device *dev = engine->dev;
1276 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1277
1278 /* WaDisableCtxRestoreArbitration:skl,bxt */
1279 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1280 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1281 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1282
1283 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1284 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1285 if (ret < 0)
1286 return ret;
1287 index = ret;
1288
1289 /* Pad to end of cacheline */
1290 while (index % CACHELINE_DWORDS)
1291 wa_ctx_emit(batch, index, MI_NOOP);
1292
1293 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1294 }
1295
1296 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1297 struct i915_wa_ctx_bb *wa_ctx,
1298 uint32_t *const batch,
1299 uint32_t *offset)
1300 {
1301 struct drm_device *dev = engine->dev;
1302 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1303
1304 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1305 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1306 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1307 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1308 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1309 wa_ctx_emit(batch, index,
1310 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1311 wa_ctx_emit(batch, index, MI_NOOP);
1312 }
1313
1314 /* WaClearTdlStateAckDirtyBits:bxt */
1315 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1316 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1317
1318 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1319 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1320
1321 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1322 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1323
1324 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1325 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1326
1327 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1328 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1329 wa_ctx_emit(batch, index, 0x0);
1330 wa_ctx_emit(batch, index, MI_NOOP);
1331 }
1332
1333 /* WaDisableCtxRestoreArbitration:skl,bxt */
1334 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1335 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1336 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1337
1338 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1339
1340 return wa_ctx_end(wa_ctx, *offset = index, 1);
1341 }
1342
1343 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1344 {
1345 int ret;
1346
1347 engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1348 PAGE_ALIGN(size));
1349 if (!engine->wa_ctx.obj) {
1350 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1351 return -ENOMEM;
1352 }
1353
1354 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1355 if (ret) {
1356 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1357 ret);
1358 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1359 return ret;
1360 }
1361
1362 return 0;
1363 }
1364
1365 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1366 {
1367 if (engine->wa_ctx.obj) {
1368 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1369 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1370 engine->wa_ctx.obj = NULL;
1371 }
1372 }
1373
1374 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1375 {
1376 int ret;
1377 uint32_t *batch;
1378 uint32_t offset;
1379 struct page *page;
1380 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1381
1382 WARN_ON(engine->id != RCS);
1383
1384 /* update this when WA for higher Gen are added */
1385 if (INTEL_INFO(engine->dev)->gen > 9) {
1386 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1387 INTEL_INFO(engine->dev)->gen);
1388 return 0;
1389 }
1390
1391 /* some WA perform writes to scratch page, ensure it is valid */
1392 if (engine->scratch.obj == NULL) {
1393 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1394 return -EINVAL;
1395 }
1396
1397 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1398 if (ret) {
1399 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1400 return ret;
1401 }
1402
1403 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1404 batch = kmap_atomic(page);
1405 offset = 0;
1406
1407 if (INTEL_INFO(engine->dev)->gen == 8) {
1408 ret = gen8_init_indirectctx_bb(engine,
1409 &wa_ctx->indirect_ctx,
1410 batch,
1411 &offset);
1412 if (ret)
1413 goto out;
1414
1415 ret = gen8_init_perctx_bb(engine,
1416 &wa_ctx->per_ctx,
1417 batch,
1418 &offset);
1419 if (ret)
1420 goto out;
1421 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1422 ret = gen9_init_indirectctx_bb(engine,
1423 &wa_ctx->indirect_ctx,
1424 batch,
1425 &offset);
1426 if (ret)
1427 goto out;
1428
1429 ret = gen9_init_perctx_bb(engine,
1430 &wa_ctx->per_ctx,
1431 batch,
1432 &offset);
1433 if (ret)
1434 goto out;
1435 }
1436
1437 out:
1438 kunmap_atomic(batch);
1439 if (ret)
1440 lrc_destroy_wa_ctx_obj(engine);
1441
1442 return ret;
1443 }
1444
1445 static void lrc_init_hws(struct intel_engine_cs *engine)
1446 {
1447 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1448
1449 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1450 (u32)engine->status_page.gfx_addr);
1451 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1452 }
1453
1454 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1455 {
1456 struct drm_device *dev = engine->dev;
1457 struct drm_i915_private *dev_priv = dev->dev_private;
1458 unsigned int next_context_status_buffer_hw;
1459
1460 lrc_init_hws(engine);
1461
1462 I915_WRITE_IMR(engine,
1463 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1464 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1465
1466 I915_WRITE(RING_MODE_GEN7(engine),
1467 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1468 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1469 POSTING_READ(RING_MODE_GEN7(engine));
1470
1471 /*
1472 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1473 * zero, we need to read the write pointer from hardware and use its
1474 * value because "this register is power context save restored".
1475 * Effectively, these states have been observed:
1476 *
1477 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1478 * BDW | CSB regs not reset | CSB regs reset |
1479 * CHT | CSB regs not reset | CSB regs not reset |
1480 * SKL | ? | ? |
1481 * BXT | ? | ? |
1482 */
1483 next_context_status_buffer_hw =
1484 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1485
1486 /*
1487 * When the CSB registers are reset (also after power-up / gpu reset),
1488 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1489 * this special case, so the first element read is CSB[0].
1490 */
1491 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1492 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1493
1494 engine->next_context_status_buffer = next_context_status_buffer_hw;
1495 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1496
1497 intel_engine_init_hangcheck(engine);
1498
1499 return intel_mocs_init_engine(engine);
1500 }
1501
1502 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1503 {
1504 struct drm_device *dev = engine->dev;
1505 struct drm_i915_private *dev_priv = dev->dev_private;
1506 int ret;
1507
1508 ret = gen8_init_common_ring(engine);
1509 if (ret)
1510 return ret;
1511
1512 /* We need to disable the AsyncFlip performance optimisations in order
1513 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1514 * programmed to '1' on all products.
1515 *
1516 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1517 */
1518 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1519
1520 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1521
1522 return init_workarounds_ring(engine);
1523 }
1524
1525 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1526 {
1527 int ret;
1528
1529 ret = gen8_init_common_ring(engine);
1530 if (ret)
1531 return ret;
1532
1533 return init_workarounds_ring(engine);
1534 }
1535
1536 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1537 {
1538 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1539 struct intel_engine_cs *engine = req->engine;
1540 struct intel_ringbuffer *ringbuf = req->ringbuf;
1541 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1542 int i, ret;
1543
1544 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1545 if (ret)
1546 return ret;
1547
1548 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1549 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1550 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1551
1552 intel_logical_ring_emit_reg(ringbuf,
1553 GEN8_RING_PDP_UDW(engine, i));
1554 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1555 intel_logical_ring_emit_reg(ringbuf,
1556 GEN8_RING_PDP_LDW(engine, i));
1557 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1558 }
1559
1560 intel_logical_ring_emit(ringbuf, MI_NOOP);
1561 intel_logical_ring_advance(ringbuf);
1562
1563 return 0;
1564 }
1565
1566 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1567 u64 offset, unsigned dispatch_flags)
1568 {
1569 struct intel_ringbuffer *ringbuf = req->ringbuf;
1570 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1571 int ret;
1572
1573 /* Don't rely in hw updating PDPs, specially in lite-restore.
1574 * Ideally, we should set Force PD Restore in ctx descriptor,
1575 * but we can't. Force Restore would be a second option, but
1576 * it is unsafe in case of lite-restore (because the ctx is
1577 * not idle). PML4 is allocated during ppgtt init so this is
1578 * not needed in 48-bit.*/
1579 if (req->ctx->ppgtt &&
1580 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1581 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1582 !intel_vgpu_active(req->i915->dev)) {
1583 ret = intel_logical_ring_emit_pdps(req);
1584 if (ret)
1585 return ret;
1586 }
1587
1588 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1589 }
1590
1591 ret = intel_ring_begin(req, 4);
1592 if (ret)
1593 return ret;
1594
1595 /* FIXME(BDW): Address space and security selectors. */
1596 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1597 (ppgtt<<8) |
1598 (dispatch_flags & I915_DISPATCH_RS ?
1599 MI_BATCH_RESOURCE_STREAMER : 0));
1600 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1601 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1602 intel_logical_ring_emit(ringbuf, MI_NOOP);
1603 intel_logical_ring_advance(ringbuf);
1604
1605 return 0;
1606 }
1607
1608 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1609 {
1610 struct drm_device *dev = engine->dev;
1611 struct drm_i915_private *dev_priv = dev->dev_private;
1612 unsigned long flags;
1613
1614 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1615 return false;
1616
1617 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1618 if (engine->irq_refcount++ == 0) {
1619 I915_WRITE_IMR(engine,
1620 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1621 POSTING_READ(RING_IMR(engine->mmio_base));
1622 }
1623 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1624
1625 return true;
1626 }
1627
1628 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1629 {
1630 struct drm_device *dev = engine->dev;
1631 struct drm_i915_private *dev_priv = dev->dev_private;
1632 unsigned long flags;
1633
1634 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1635 if (--engine->irq_refcount == 0) {
1636 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1637 POSTING_READ(RING_IMR(engine->mmio_base));
1638 }
1639 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1640 }
1641
1642 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1643 u32 invalidate_domains,
1644 u32 unused)
1645 {
1646 struct intel_ringbuffer *ringbuf = request->ringbuf;
1647 struct intel_engine_cs *engine = ringbuf->engine;
1648 struct drm_device *dev = engine->dev;
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 uint32_t cmd;
1651 int ret;
1652
1653 ret = intel_ring_begin(request, 4);
1654 if (ret)
1655 return ret;
1656
1657 cmd = MI_FLUSH_DW + 1;
1658
1659 /* We always require a command barrier so that subsequent
1660 * commands, such as breadcrumb interrupts, are strictly ordered
1661 * wrt the contents of the write cache being flushed to memory
1662 * (and thus being coherent from the CPU).
1663 */
1664 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1665
1666 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1667 cmd |= MI_INVALIDATE_TLB;
1668 if (engine == &dev_priv->engine[VCS])
1669 cmd |= MI_INVALIDATE_BSD;
1670 }
1671
1672 intel_logical_ring_emit(ringbuf, cmd);
1673 intel_logical_ring_emit(ringbuf,
1674 I915_GEM_HWS_SCRATCH_ADDR |
1675 MI_FLUSH_DW_USE_GTT);
1676 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1677 intel_logical_ring_emit(ringbuf, 0); /* value */
1678 intel_logical_ring_advance(ringbuf);
1679
1680 return 0;
1681 }
1682
1683 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1684 u32 invalidate_domains,
1685 u32 flush_domains)
1686 {
1687 struct intel_ringbuffer *ringbuf = request->ringbuf;
1688 struct intel_engine_cs *engine = ringbuf->engine;
1689 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1690 bool vf_flush_wa = false;
1691 u32 flags = 0;
1692 int ret;
1693
1694 flags |= PIPE_CONTROL_CS_STALL;
1695
1696 if (flush_domains) {
1697 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1698 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1699 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1700 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1701 }
1702
1703 if (invalidate_domains) {
1704 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1705 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1706 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1707 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1708 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1709 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1710 flags |= PIPE_CONTROL_QW_WRITE;
1711 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1712
1713 /*
1714 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1715 * pipe control.
1716 */
1717 if (IS_GEN9(engine->dev))
1718 vf_flush_wa = true;
1719 }
1720
1721 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1722 if (ret)
1723 return ret;
1724
1725 if (vf_flush_wa) {
1726 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1727 intel_logical_ring_emit(ringbuf, 0);
1728 intel_logical_ring_emit(ringbuf, 0);
1729 intel_logical_ring_emit(ringbuf, 0);
1730 intel_logical_ring_emit(ringbuf, 0);
1731 intel_logical_ring_emit(ringbuf, 0);
1732 }
1733
1734 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1735 intel_logical_ring_emit(ringbuf, flags);
1736 intel_logical_ring_emit(ringbuf, scratch_addr);
1737 intel_logical_ring_emit(ringbuf, 0);
1738 intel_logical_ring_emit(ringbuf, 0);
1739 intel_logical_ring_emit(ringbuf, 0);
1740 intel_logical_ring_advance(ringbuf);
1741
1742 return 0;
1743 }
1744
1745 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1746 {
1747 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1748 }
1749
1750 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1751 {
1752 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1753 }
1754
1755 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1756 {
1757 /*
1758 * On BXT A steppings there is a HW coherency issue whereby the
1759 * MI_STORE_DATA_IMM storing the completed request's seqno
1760 * occasionally doesn't invalidate the CPU cache. Work around this by
1761 * clflushing the corresponding cacheline whenever the caller wants
1762 * the coherency to be guaranteed. Note that this cacheline is known
1763 * to be clean at this point, since we only write it in
1764 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1765 * this clflush in practice becomes an invalidate operation.
1766 */
1767 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1768 }
1769
1770 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1771 {
1772 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1773
1774 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1775 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1776 }
1777
1778 /*
1779 * Reserve space for 2 NOOPs at the end of each request to be
1780 * used as a workaround for not being allowed to do lite
1781 * restore with HEAD==TAIL (WaIdleLiteRestore).
1782 */
1783 #define WA_TAIL_DWORDS 2
1784
1785 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1786 {
1787 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1788 }
1789
1790 static int gen8_emit_request(struct drm_i915_gem_request *request)
1791 {
1792 struct intel_ringbuffer *ringbuf = request->ringbuf;
1793 int ret;
1794
1795 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1796 if (ret)
1797 return ret;
1798
1799 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1800 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1801
1802 intel_logical_ring_emit(ringbuf,
1803 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1804 intel_logical_ring_emit(ringbuf,
1805 hws_seqno_address(request->engine) |
1806 MI_FLUSH_DW_USE_GTT);
1807 intel_logical_ring_emit(ringbuf, 0);
1808 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1809 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1810 intel_logical_ring_emit(ringbuf, MI_NOOP);
1811 return intel_logical_ring_advance_and_submit(request);
1812 }
1813
1814 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1815 {
1816 struct intel_ringbuffer *ringbuf = request->ringbuf;
1817 int ret;
1818
1819 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1820 if (ret)
1821 return ret;
1822
1823 /* We're using qword write, seqno should be aligned to 8 bytes. */
1824 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1825
1826 /* w/a for post sync ops following a GPGPU operation we
1827 * need a prior CS_STALL, which is emitted by the flush
1828 * following the batch.
1829 */
1830 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1831 intel_logical_ring_emit(ringbuf,
1832 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1833 PIPE_CONTROL_CS_STALL |
1834 PIPE_CONTROL_QW_WRITE));
1835 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1836 intel_logical_ring_emit(ringbuf, 0);
1837 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1838 /* We're thrashing one dword of HWS. */
1839 intel_logical_ring_emit(ringbuf, 0);
1840 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1841 intel_logical_ring_emit(ringbuf, MI_NOOP);
1842 return intel_logical_ring_advance_and_submit(request);
1843 }
1844
1845 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1846 {
1847 struct render_state so;
1848 int ret;
1849
1850 ret = i915_gem_render_state_prepare(req->engine, &so);
1851 if (ret)
1852 return ret;
1853
1854 if (so.rodata == NULL)
1855 return 0;
1856
1857 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1858 I915_DISPATCH_SECURE);
1859 if (ret)
1860 goto out;
1861
1862 ret = req->engine->emit_bb_start(req,
1863 (so.ggtt_offset + so.aux_batch_offset),
1864 I915_DISPATCH_SECURE);
1865 if (ret)
1866 goto out;
1867
1868 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1869
1870 out:
1871 i915_gem_render_state_fini(&so);
1872 return ret;
1873 }
1874
1875 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1876 {
1877 int ret;
1878
1879 ret = intel_logical_ring_workarounds_emit(req);
1880 if (ret)
1881 return ret;
1882
1883 ret = intel_rcs_context_init_mocs(req);
1884 /*
1885 * Failing to program the MOCS is non-fatal.The system will not
1886 * run at peak performance. So generate an error and carry on.
1887 */
1888 if (ret)
1889 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1890
1891 return intel_lr_context_render_state_init(req);
1892 }
1893
1894 /**
1895 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1896 *
1897 * @ring: Engine Command Streamer.
1898 *
1899 */
1900 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1901 {
1902 struct drm_i915_private *dev_priv;
1903
1904 if (!intel_engine_initialized(engine))
1905 return;
1906
1907 /*
1908 * Tasklet cannot be active at this point due intel_mark_active/idle
1909 * so this is just for documentation.
1910 */
1911 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1912 tasklet_kill(&engine->irq_tasklet);
1913
1914 dev_priv = engine->dev->dev_private;
1915
1916 if (engine->buffer) {
1917 intel_logical_ring_stop(engine);
1918 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1919 }
1920
1921 if (engine->cleanup)
1922 engine->cleanup(engine);
1923
1924 i915_cmd_parser_fini_ring(engine);
1925 i915_gem_batch_pool_fini(&engine->batch_pool);
1926
1927 if (engine->status_page.obj) {
1928 i915_gem_object_unpin_map(engine->status_page.obj);
1929 engine->status_page.obj = NULL;
1930 }
1931
1932 engine->idle_lite_restore_wa = 0;
1933 engine->disable_lite_restore_wa = false;
1934 engine->ctx_desc_template = 0;
1935
1936 lrc_destroy_wa_ctx_obj(engine);
1937 engine->dev = NULL;
1938 }
1939
1940 static void
1941 logical_ring_default_vfuncs(struct drm_device *dev,
1942 struct intel_engine_cs *engine)
1943 {
1944 /* Default vfuncs which can be overriden by each engine. */
1945 engine->init_hw = gen8_init_common_ring;
1946 engine->emit_request = gen8_emit_request;
1947 engine->emit_flush = gen8_emit_flush;
1948 engine->irq_get = gen8_logical_ring_get_irq;
1949 engine->irq_put = gen8_logical_ring_put_irq;
1950 engine->emit_bb_start = gen8_emit_bb_start;
1951 engine->get_seqno = gen8_get_seqno;
1952 engine->set_seqno = gen8_set_seqno;
1953 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1954 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1955 engine->set_seqno = bxt_a_set_seqno;
1956 }
1957 }
1958
1959 static inline void
1960 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1961 {
1962 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1963 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1964 }
1965
1966 static int
1967 lrc_setup_hws(struct intel_engine_cs *engine,
1968 struct drm_i915_gem_object *dctx_obj)
1969 {
1970 void *hws;
1971
1972 /* The HWSP is part of the default context object in LRC mode. */
1973 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1974 LRC_PPHWSP_PN * PAGE_SIZE;
1975 hws = i915_gem_object_pin_map(dctx_obj);
1976 if (IS_ERR(hws))
1977 return PTR_ERR(hws);
1978 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1979 engine->status_page.obj = dctx_obj;
1980
1981 return 0;
1982 }
1983
1984 static int
1985 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
1986 {
1987 struct drm_i915_private *dev_priv = to_i915(dev);
1988 struct intel_context *dctx = dev_priv->kernel_context;
1989 enum forcewake_domains fw_domains;
1990 int ret;
1991
1992 /* Intentionally left blank. */
1993 engine->buffer = NULL;
1994
1995 engine->dev = dev;
1996 INIT_LIST_HEAD(&engine->active_list);
1997 INIT_LIST_HEAD(&engine->request_list);
1998 i915_gem_batch_pool_init(dev, &engine->batch_pool);
1999 init_waitqueue_head(&engine->irq_queue);
2000
2001 INIT_LIST_HEAD(&engine->buffers);
2002 INIT_LIST_HEAD(&engine->execlist_queue);
2003 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2004 spin_lock_init(&engine->execlist_lock);
2005
2006 tasklet_init(&engine->irq_tasklet,
2007 intel_lrc_irq_handler, (unsigned long)engine);
2008
2009 logical_ring_init_platform_invariants(engine);
2010
2011 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2012 RING_ELSP(engine),
2013 FW_REG_WRITE);
2014
2015 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2016 RING_CONTEXT_STATUS_PTR(engine),
2017 FW_REG_READ | FW_REG_WRITE);
2018
2019 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2020 RING_CONTEXT_STATUS_BUF_BASE(engine),
2021 FW_REG_READ);
2022
2023 engine->fw_domains = fw_domains;
2024
2025 ret = i915_cmd_parser_init_ring(engine);
2026 if (ret)
2027 goto error;
2028
2029 ret = intel_lr_context_deferred_alloc(dctx, engine);
2030 if (ret)
2031 goto error;
2032
2033 /* As this is the default context, always pin it */
2034 ret = intel_lr_context_do_pin(dctx, engine);
2035 if (ret) {
2036 DRM_ERROR(
2037 "Failed to pin and map ringbuffer %s: %d\n",
2038 engine->name, ret);
2039 goto error;
2040 }
2041
2042 /* And setup the hardware status page. */
2043 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2044 if (ret) {
2045 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2046 goto error;
2047 }
2048
2049 return 0;
2050
2051 error:
2052 intel_logical_ring_cleanup(engine);
2053 return ret;
2054 }
2055
2056 static int logical_render_ring_init(struct drm_device *dev)
2057 {
2058 struct drm_i915_private *dev_priv = dev->dev_private;
2059 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2060 int ret;
2061
2062 engine->name = "render ring";
2063 engine->id = RCS;
2064 engine->exec_id = I915_EXEC_RENDER;
2065 engine->guc_id = GUC_RENDER_ENGINE;
2066 engine->mmio_base = RENDER_RING_BASE;
2067
2068 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2069 if (HAS_L3_DPF(dev))
2070 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2071
2072 logical_ring_default_vfuncs(dev, engine);
2073
2074 /* Override some for render ring. */
2075 if (INTEL_INFO(dev)->gen >= 9)
2076 engine->init_hw = gen9_init_render_ring;
2077 else
2078 engine->init_hw = gen8_init_render_ring;
2079 engine->init_context = gen8_init_rcs_context;
2080 engine->cleanup = intel_fini_pipe_control;
2081 engine->emit_flush = gen8_emit_flush_render;
2082 engine->emit_request = gen8_emit_request_render;
2083
2084 engine->dev = dev;
2085
2086 ret = intel_init_pipe_control(engine);
2087 if (ret)
2088 return ret;
2089
2090 ret = intel_init_workaround_bb(engine);
2091 if (ret) {
2092 /*
2093 * We continue even if we fail to initialize WA batch
2094 * because we only expect rare glitches but nothing
2095 * critical to prevent us from using GPU
2096 */
2097 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2098 ret);
2099 }
2100
2101 ret = logical_ring_init(dev, engine);
2102 if (ret) {
2103 lrc_destroy_wa_ctx_obj(engine);
2104 }
2105
2106 return ret;
2107 }
2108
2109 static int logical_bsd_ring_init(struct drm_device *dev)
2110 {
2111 struct drm_i915_private *dev_priv = dev->dev_private;
2112 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2113
2114 engine->name = "bsd ring";
2115 engine->id = VCS;
2116 engine->exec_id = I915_EXEC_BSD;
2117 engine->guc_id = GUC_VIDEO_ENGINE;
2118 engine->mmio_base = GEN6_BSD_RING_BASE;
2119
2120 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2121 logical_ring_default_vfuncs(dev, engine);
2122
2123 return logical_ring_init(dev, engine);
2124 }
2125
2126 static int logical_bsd2_ring_init(struct drm_device *dev)
2127 {
2128 struct drm_i915_private *dev_priv = dev->dev_private;
2129 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2130
2131 engine->name = "bsd2 ring";
2132 engine->id = VCS2;
2133 engine->exec_id = I915_EXEC_BSD;
2134 engine->guc_id = GUC_VIDEO_ENGINE2;
2135 engine->mmio_base = GEN8_BSD2_RING_BASE;
2136
2137 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2138 logical_ring_default_vfuncs(dev, engine);
2139
2140 return logical_ring_init(dev, engine);
2141 }
2142
2143 static int logical_blt_ring_init(struct drm_device *dev)
2144 {
2145 struct drm_i915_private *dev_priv = dev->dev_private;
2146 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2147
2148 engine->name = "blitter ring";
2149 engine->id = BCS;
2150 engine->exec_id = I915_EXEC_BLT;
2151 engine->guc_id = GUC_BLITTER_ENGINE;
2152 engine->mmio_base = BLT_RING_BASE;
2153
2154 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2155 logical_ring_default_vfuncs(dev, engine);
2156
2157 return logical_ring_init(dev, engine);
2158 }
2159
2160 static int logical_vebox_ring_init(struct drm_device *dev)
2161 {
2162 struct drm_i915_private *dev_priv = dev->dev_private;
2163 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2164
2165 engine->name = "video enhancement ring";
2166 engine->id = VECS;
2167 engine->exec_id = I915_EXEC_VEBOX;
2168 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2169 engine->mmio_base = VEBOX_RING_BASE;
2170
2171 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2172 logical_ring_default_vfuncs(dev, engine);
2173
2174 return logical_ring_init(dev, engine);
2175 }
2176
2177 /**
2178 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2179 * @dev: DRM device.
2180 *
2181 * This function inits the engines for an Execlists submission style (the equivalent in the
2182 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2183 * those engines that are present in the hardware.
2184 *
2185 * Return: non-zero if the initialization failed.
2186 */
2187 int intel_logical_rings_init(struct drm_device *dev)
2188 {
2189 struct drm_i915_private *dev_priv = dev->dev_private;
2190 int ret;
2191
2192 ret = logical_render_ring_init(dev);
2193 if (ret)
2194 return ret;
2195
2196 if (HAS_BSD(dev)) {
2197 ret = logical_bsd_ring_init(dev);
2198 if (ret)
2199 goto cleanup_render_ring;
2200 }
2201
2202 if (HAS_BLT(dev)) {
2203 ret = logical_blt_ring_init(dev);
2204 if (ret)
2205 goto cleanup_bsd_ring;
2206 }
2207
2208 if (HAS_VEBOX(dev)) {
2209 ret = logical_vebox_ring_init(dev);
2210 if (ret)
2211 goto cleanup_blt_ring;
2212 }
2213
2214 if (HAS_BSD2(dev)) {
2215 ret = logical_bsd2_ring_init(dev);
2216 if (ret)
2217 goto cleanup_vebox_ring;
2218 }
2219
2220 return 0;
2221
2222 cleanup_vebox_ring:
2223 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2224 cleanup_blt_ring:
2225 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2226 cleanup_bsd_ring:
2227 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2228 cleanup_render_ring:
2229 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2230
2231 return ret;
2232 }
2233
2234 static u32
2235 make_rpcs(struct drm_device *dev)
2236 {
2237 u32 rpcs = 0;
2238
2239 /*
2240 * No explicit RPCS request is needed to ensure full
2241 * slice/subslice/EU enablement prior to Gen9.
2242 */
2243 if (INTEL_INFO(dev)->gen < 9)
2244 return 0;
2245
2246 /*
2247 * Starting in Gen9, render power gating can leave
2248 * slice/subslice/EU in a partially enabled state. We
2249 * must make an explicit request through RPCS for full
2250 * enablement.
2251 */
2252 if (INTEL_INFO(dev)->has_slice_pg) {
2253 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2254 rpcs |= INTEL_INFO(dev)->slice_total <<
2255 GEN8_RPCS_S_CNT_SHIFT;
2256 rpcs |= GEN8_RPCS_ENABLE;
2257 }
2258
2259 if (INTEL_INFO(dev)->has_subslice_pg) {
2260 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2261 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2262 GEN8_RPCS_SS_CNT_SHIFT;
2263 rpcs |= GEN8_RPCS_ENABLE;
2264 }
2265
2266 if (INTEL_INFO(dev)->has_eu_pg) {
2267 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2268 GEN8_RPCS_EU_MIN_SHIFT;
2269 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2270 GEN8_RPCS_EU_MAX_SHIFT;
2271 rpcs |= GEN8_RPCS_ENABLE;
2272 }
2273
2274 return rpcs;
2275 }
2276
2277 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2278 {
2279 u32 indirect_ctx_offset;
2280
2281 switch (INTEL_INFO(engine->dev)->gen) {
2282 default:
2283 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2284 /* fall through */
2285 case 9:
2286 indirect_ctx_offset =
2287 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2288 break;
2289 case 8:
2290 indirect_ctx_offset =
2291 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2292 break;
2293 }
2294
2295 return indirect_ctx_offset;
2296 }
2297
2298 static int
2299 populate_lr_context(struct intel_context *ctx,
2300 struct drm_i915_gem_object *ctx_obj,
2301 struct intel_engine_cs *engine,
2302 struct intel_ringbuffer *ringbuf)
2303 {
2304 struct drm_device *dev = engine->dev;
2305 struct drm_i915_private *dev_priv = dev->dev_private;
2306 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2307 void *vaddr;
2308 u32 *reg_state;
2309 int ret;
2310
2311 if (!ppgtt)
2312 ppgtt = dev_priv->mm.aliasing_ppgtt;
2313
2314 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2315 if (ret) {
2316 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2317 return ret;
2318 }
2319
2320 vaddr = i915_gem_object_pin_map(ctx_obj);
2321 if (IS_ERR(vaddr)) {
2322 ret = PTR_ERR(vaddr);
2323 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2324 return ret;
2325 }
2326 ctx_obj->dirty = true;
2327
2328 /* The second page of the context object contains some fields which must
2329 * be set up prior to the first execution. */
2330 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2331
2332 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2333 * commands followed by (reg, value) pairs. The values we are setting here are
2334 * only for the first context restore: on a subsequent save, the GPU will
2335 * recreate this batchbuffer with new values (including all the missing
2336 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2337 reg_state[CTX_LRI_HEADER_0] =
2338 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2339 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2340 RING_CONTEXT_CONTROL(engine),
2341 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2342 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2343 (HAS_RESOURCE_STREAMER(dev) ?
2344 CTX_CTRL_RS_CTX_ENABLE : 0)));
2345 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2346 0);
2347 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2348 0);
2349 /* Ring buffer start address is not known until the buffer is pinned.
2350 * It is written to the context image in execlists_update_context()
2351 */
2352 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2353 RING_START(engine->mmio_base), 0);
2354 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2355 RING_CTL(engine->mmio_base),
2356 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2357 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2358 RING_BBADDR_UDW(engine->mmio_base), 0);
2359 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2360 RING_BBADDR(engine->mmio_base), 0);
2361 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2362 RING_BBSTATE(engine->mmio_base),
2363 RING_BB_PPGTT);
2364 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2365 RING_SBBADDR_UDW(engine->mmio_base), 0);
2366 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2367 RING_SBBADDR(engine->mmio_base), 0);
2368 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2369 RING_SBBSTATE(engine->mmio_base), 0);
2370 if (engine->id == RCS) {
2371 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2372 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2373 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2374 RING_INDIRECT_CTX(engine->mmio_base), 0);
2375 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2376 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2377 if (engine->wa_ctx.obj) {
2378 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2379 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2380
2381 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2382 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2383 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2384
2385 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2386 intel_lr_indirect_ctx_offset(engine) << 6;
2387
2388 reg_state[CTX_BB_PER_CTX_PTR+1] =
2389 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2390 0x01;
2391 }
2392 }
2393 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2394 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2395 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2396 /* PDP values well be assigned later if needed */
2397 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2398 0);
2399 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2400 0);
2401 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2402 0);
2403 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2404 0);
2405 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2406 0);
2407 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2408 0);
2409 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2410 0);
2411 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2412 0);
2413
2414 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2415 /* 64b PPGTT (48bit canonical)
2416 * PDP0_DESCRIPTOR contains the base address to PML4 and
2417 * other PDP Descriptors are ignored.
2418 */
2419 ASSIGN_CTX_PML4(ppgtt, reg_state);
2420 } else {
2421 /* 32b PPGTT
2422 * PDP*_DESCRIPTOR contains the base address of space supported.
2423 * With dynamic page allocation, PDPs may not be allocated at
2424 * this point. Point the unallocated PDPs to the scratch page
2425 */
2426 execlists_update_context_pdps(ppgtt, reg_state);
2427 }
2428
2429 if (engine->id == RCS) {
2430 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2431 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2432 make_rpcs(dev));
2433 }
2434
2435 i915_gem_object_unpin_map(ctx_obj);
2436
2437 return 0;
2438 }
2439
2440 /**
2441 * intel_lr_context_free() - free the LRC specific bits of a context
2442 * @ctx: the LR context to free.
2443 *
2444 * The real context freeing is done in i915_gem_context_free: this only
2445 * takes care of the bits that are LRC related: the per-engine backing
2446 * objects and the logical ringbuffer.
2447 */
2448 void intel_lr_context_free(struct intel_context *ctx)
2449 {
2450 int i;
2451
2452 for (i = I915_NUM_ENGINES; --i >= 0; ) {
2453 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2454 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2455
2456 if (!ctx_obj)
2457 continue;
2458
2459 if (ctx == ctx->i915->kernel_context) {
2460 intel_unpin_ringbuffer_obj(ringbuf);
2461 i915_gem_object_ggtt_unpin(ctx_obj);
2462 i915_gem_object_unpin_map(ctx_obj);
2463 }
2464
2465 WARN_ON(ctx->engine[i].pin_count);
2466 intel_ringbuffer_free(ringbuf);
2467 drm_gem_object_unreference(&ctx_obj->base);
2468 }
2469 }
2470
2471 /**
2472 * intel_lr_context_size() - return the size of the context for an engine
2473 * @ring: which engine to find the context size for
2474 *
2475 * Each engine may require a different amount of space for a context image,
2476 * so when allocating (or copying) an image, this function can be used to
2477 * find the right size for the specific engine.
2478 *
2479 * Return: size (in bytes) of an engine-specific context image
2480 *
2481 * Note: this size includes the HWSP, which is part of the context image
2482 * in LRC mode, but does not include the "shared data page" used with
2483 * GuC submission. The caller should account for this if using the GuC.
2484 */
2485 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2486 {
2487 int ret = 0;
2488
2489 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2490
2491 switch (engine->id) {
2492 case RCS:
2493 if (INTEL_INFO(engine->dev)->gen >= 9)
2494 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2495 else
2496 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2497 break;
2498 case VCS:
2499 case BCS:
2500 case VECS:
2501 case VCS2:
2502 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2503 break;
2504 }
2505
2506 return ret;
2507 }
2508
2509 /**
2510 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2511 * @ctx: LR context to create.
2512 * @ring: engine to be used with the context.
2513 *
2514 * This function can be called more than once, with different engines, if we plan
2515 * to use the context with them. The context backing objects and the ringbuffers
2516 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2517 * the creation is a deferred call: it's better to make sure first that we need to use
2518 * a given ring with the context.
2519 *
2520 * Return: non-zero on error.
2521 */
2522
2523 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2524 struct intel_engine_cs *engine)
2525 {
2526 struct drm_device *dev = engine->dev;
2527 struct drm_i915_gem_object *ctx_obj;
2528 uint32_t context_size;
2529 struct intel_ringbuffer *ringbuf;
2530 int ret;
2531
2532 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2533 WARN_ON(ctx->engine[engine->id].state);
2534
2535 context_size = round_up(intel_lr_context_size(engine), 4096);
2536
2537 /* One extra page as the sharing data between driver and GuC */
2538 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2539
2540 ctx_obj = i915_gem_alloc_object(dev, context_size);
2541 if (!ctx_obj) {
2542 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2543 return -ENOMEM;
2544 }
2545
2546 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2547 if (IS_ERR(ringbuf)) {
2548 ret = PTR_ERR(ringbuf);
2549 goto error_deref_obj;
2550 }
2551
2552 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2553 if (ret) {
2554 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2555 goto error_ringbuf;
2556 }
2557
2558 ctx->engine[engine->id].ringbuf = ringbuf;
2559 ctx->engine[engine->id].state = ctx_obj;
2560
2561 if (ctx != ctx->i915->kernel_context && engine->init_context) {
2562 struct drm_i915_gem_request *req;
2563
2564 req = i915_gem_request_alloc(engine, ctx);
2565 if (IS_ERR(req)) {
2566 ret = PTR_ERR(req);
2567 DRM_ERROR("ring create req: %d\n", ret);
2568 goto error_ringbuf;
2569 }
2570
2571 ret = engine->init_context(req);
2572 i915_add_request_no_flush(req);
2573 if (ret) {
2574 DRM_ERROR("ring init context: %d\n",
2575 ret);
2576 goto error_ringbuf;
2577 }
2578 }
2579 return 0;
2580
2581 error_ringbuf:
2582 intel_ringbuffer_free(ringbuf);
2583 error_deref_obj:
2584 drm_gem_object_unreference(&ctx_obj->base);
2585 ctx->engine[engine->id].ringbuf = NULL;
2586 ctx->engine[engine->id].state = NULL;
2587 return ret;
2588 }
2589
2590 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2591 struct intel_context *ctx)
2592 {
2593 struct intel_engine_cs *engine;
2594
2595 for_each_engine(engine, dev_priv) {
2596 struct drm_i915_gem_object *ctx_obj =
2597 ctx->engine[engine->id].state;
2598 struct intel_ringbuffer *ringbuf =
2599 ctx->engine[engine->id].ringbuf;
2600 void *vaddr;
2601 uint32_t *reg_state;
2602
2603 if (!ctx_obj)
2604 continue;
2605
2606 vaddr = i915_gem_object_pin_map(ctx_obj);
2607 if (WARN_ON(IS_ERR(vaddr)))
2608 continue;
2609
2610 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2611 ctx_obj->dirty = true;
2612
2613 reg_state[CTX_RING_HEAD+1] = 0;
2614 reg_state[CTX_RING_TAIL+1] = 0;
2615
2616 i915_gem_object_unpin_map(ctx_obj);
2617
2618 ringbuf->head = 0;
2619 ringbuf->tail = 0;
2620 }
2621 }
This page took 0.12968 seconds and 6 git commands to generate.