drm/i915: add kerneldoc for intel_lr_context_size()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL (1 << 0x2)
145 #define RING_EXECLIST1_VALID (1 << 0x3)
146 #define RING_EXECLIST0_VALID (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
157
158 #define CTX_LRI_HEADER_0 0x01
159 #define CTX_CONTEXT_CONTROL 0x02
160 #define CTX_RING_HEAD 0x04
161 #define CTX_RING_TAIL 0x06
162 #define CTX_RING_BUFFER_START 0x08
163 #define CTX_RING_BUFFER_CONTROL 0x0a
164 #define CTX_BB_HEAD_U 0x0c
165 #define CTX_BB_HEAD_L 0x0e
166 #define CTX_BB_STATE 0x10
167 #define CTX_SECOND_BB_HEAD_U 0x12
168 #define CTX_SECOND_BB_HEAD_L 0x14
169 #define CTX_SECOND_BB_STATE 0x16
170 #define CTX_BB_PER_CTX_PTR 0x18
171 #define CTX_RCS_INDIRECT_CTX 0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173 #define CTX_LRI_HEADER_1 0x21
174 #define CTX_CTX_TIMESTAMP 0x22
175 #define CTX_PDP3_UDW 0x24
176 #define CTX_PDP3_LDW 0x26
177 #define CTX_PDP2_UDW 0x28
178 #define CTX_PDP2_LDW 0x2a
179 #define CTX_PDP1_UDW 0x2c
180 #define CTX_PDP1_LDW 0x2e
181 #define CTX_PDP0_UDW 0x30
182 #define CTX_PDP0_LDW 0x32
183 #define CTX_LRI_HEADER_2 0x41
184 #define CTX_R_PWR_CLK_STATE 0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 enum {
210 ADVANCED_CONTEXT = 0,
211 LEGACY_32B_CONTEXT,
212 ADVANCED_AD_CONTEXT,
213 LEGACY_64B_CONTEXT
214 };
215 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
217 LEGACY_64B_CONTEXT :\
218 LEGACY_32B_CONTEXT)
219 enum {
220 FAULT_AND_HANG = 0,
221 FAULT_AND_HALT, /* Debug only */
222 FAULT_AND_STREAM,
223 FAULT_AND_CONTINUE /* Unsupported */
224 };
225 #define GEN8_CTX_ID_SHIFT 32
226 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
227
228 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
229 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
230 struct drm_i915_gem_object *default_ctx_obj);
231
232
233 /**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245 WARN_ON(i915.enable_ppgtt == -1);
246
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
256 if (enable_execlists == 0)
257 return 0;
258
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
261 return 1;
262
263 return 0;
264 }
265
266 /**
267 * intel_execlists_ctx_id() - get the Execlists Context ID
268 * @ctx_obj: Logical Ring Context backing object.
269 *
270 * Do not confuse with ctx->id! Unfortunately we have a name overload
271 * here: the old context ID we pass to userspace as a handler so that
272 * they can refer to a context, and the new context ID we pass to the
273 * ELSP so that the GPU can inform us of the context status via
274 * interrupts.
275 *
276 * Return: 20-bits globally unique context ID.
277 */
278 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
279 {
280 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
281 LRC_PPHWSP_PN * PAGE_SIZE;
282
283 /* LRCA is required to be 4K aligned so the more significant 20 bits
284 * are globally unique */
285 return lrca >> 12;
286 }
287
288 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
289 {
290 struct drm_device *dev = ring->dev;
291
292 return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
293 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
294 (ring->id == VCS || ring->id == VCS2);
295 }
296
297 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
298 struct intel_engine_cs *ring)
299 {
300 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
301 uint64_t desc;
302 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
303 LRC_PPHWSP_PN * PAGE_SIZE;
304
305 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
306
307 desc = GEN8_CTX_VALID;
308 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
309 if (IS_GEN8(ctx_obj->base.dev))
310 desc |= GEN8_CTX_L3LLC_COHERENT;
311 desc |= GEN8_CTX_PRIVILEGE;
312 desc |= lrca;
313 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
314
315 /* TODO: WaDisableLiteRestore when we start using semaphore
316 * signalling between Command Streamers */
317 /* desc |= GEN8_CTX_FORCE_RESTORE; */
318
319 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
320 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
321 if (disable_lite_restore_wa(ring))
322 desc |= GEN8_CTX_FORCE_RESTORE;
323
324 return desc;
325 }
326
327 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
328 struct drm_i915_gem_request *rq1)
329 {
330
331 struct intel_engine_cs *ring = rq0->ring;
332 struct drm_device *dev = ring->dev;
333 struct drm_i915_private *dev_priv = dev->dev_private;
334 uint64_t desc[2];
335
336 if (rq1) {
337 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
338 rq1->elsp_submitted++;
339 } else {
340 desc[1] = 0;
341 }
342
343 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
344 rq0->elsp_submitted++;
345
346 /* You must always write both descriptors in the order below. */
347 spin_lock(&dev_priv->uncore.lock);
348 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
349 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
350 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
351
352 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
353 /* The context is automatically loaded after the following */
354 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
355
356 /* ELSP is a wo register, use another nearby reg for posting */
357 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
358 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
359 spin_unlock(&dev_priv->uncore.lock);
360 }
361
362 static int execlists_update_context(struct drm_i915_gem_request *rq)
363 {
364 struct intel_engine_cs *ring = rq->ring;
365 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
367 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
368 struct page *page;
369 uint32_t *reg_state;
370
371 BUG_ON(!ctx_obj);
372 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
373 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
374
375 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
376 reg_state = kmap_atomic(page);
377
378 reg_state[CTX_RING_TAIL+1] = rq->tail;
379 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
380
381 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
382 /* True 32b PPGTT with dynamic page allocation: update PDP
383 * registers and point the unallocated PDPs to scratch page.
384 * PML4 is allocated during ppgtt init, so this is not needed
385 * in 48-bit mode.
386 */
387 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
388 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
389 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
390 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
391 }
392
393 kunmap_atomic(reg_state);
394
395 return 0;
396 }
397
398 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
399 struct drm_i915_gem_request *rq1)
400 {
401 execlists_update_context(rq0);
402
403 if (rq1)
404 execlists_update_context(rq1);
405
406 execlists_elsp_write(rq0, rq1);
407 }
408
409 static void execlists_context_unqueue(struct intel_engine_cs *ring)
410 {
411 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
412 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
413
414 assert_spin_locked(&ring->execlist_lock);
415
416 /*
417 * If irqs are not active generate a warning as batches that finish
418 * without the irqs may get lost and a GPU Hang may occur.
419 */
420 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
421
422 if (list_empty(&ring->execlist_queue))
423 return;
424
425 /* Try to read in pairs */
426 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
427 execlist_link) {
428 if (!req0) {
429 req0 = cursor;
430 } else if (req0->ctx == cursor->ctx) {
431 /* Same ctx: ignore first request, as second request
432 * will update tail past first request's workload */
433 cursor->elsp_submitted = req0->elsp_submitted;
434 list_del(&req0->execlist_link);
435 list_add_tail(&req0->execlist_link,
436 &ring->execlist_retired_req_list);
437 req0 = cursor;
438 } else {
439 req1 = cursor;
440 break;
441 }
442 }
443
444 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
445 /*
446 * WaIdleLiteRestore: make sure we never cause a lite
447 * restore with HEAD==TAIL
448 */
449 if (req0->elsp_submitted) {
450 /*
451 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
452 * as we resubmit the request. See gen8_emit_request()
453 * for where we prepare the padding after the end of the
454 * request.
455 */
456 struct intel_ringbuffer *ringbuf;
457
458 ringbuf = req0->ctx->engine[ring->id].ringbuf;
459 req0->tail += 8;
460 req0->tail &= ringbuf->size - 1;
461 }
462 }
463
464 WARN_ON(req1 && req1->elsp_submitted);
465
466 execlists_submit_requests(req0, req1);
467 }
468
469 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
470 u32 request_id)
471 {
472 struct drm_i915_gem_request *head_req;
473
474 assert_spin_locked(&ring->execlist_lock);
475
476 head_req = list_first_entry_or_null(&ring->execlist_queue,
477 struct drm_i915_gem_request,
478 execlist_link);
479
480 if (head_req != NULL) {
481 struct drm_i915_gem_object *ctx_obj =
482 head_req->ctx->engine[ring->id].state;
483 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
484 WARN(head_req->elsp_submitted == 0,
485 "Never submitted head request\n");
486
487 if (--head_req->elsp_submitted <= 0) {
488 list_del(&head_req->execlist_link);
489 list_add_tail(&head_req->execlist_link,
490 &ring->execlist_retired_req_list);
491 return true;
492 }
493 }
494 }
495
496 return false;
497 }
498
499 /**
500 * intel_lrc_irq_handler() - handle Context Switch interrupts
501 * @ring: Engine Command Streamer to handle.
502 *
503 * Check the unread Context Status Buffers and manage the submission of new
504 * contexts to the ELSP accordingly.
505 */
506 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
507 {
508 struct drm_i915_private *dev_priv = ring->dev->dev_private;
509 u32 status_pointer;
510 u8 read_pointer;
511 u8 write_pointer;
512 u32 status = 0;
513 u32 status_id;
514 u32 submit_contexts = 0;
515
516 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
517
518 read_pointer = ring->next_context_status_buffer;
519 write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
520 if (read_pointer > write_pointer)
521 write_pointer += GEN8_CSB_ENTRIES;
522
523 spin_lock(&ring->execlist_lock);
524
525 while (read_pointer < write_pointer) {
526 read_pointer++;
527 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % GEN8_CSB_ENTRIES));
528 status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % GEN8_CSB_ENTRIES));
529
530 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
531 continue;
532
533 if (status & GEN8_CTX_STATUS_PREEMPTED) {
534 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
535 if (execlists_check_remove_request(ring, status_id))
536 WARN(1, "Lite Restored request removed from queue\n");
537 } else
538 WARN(1, "Preemption without Lite Restore\n");
539 }
540
541 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
542 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
543 if (execlists_check_remove_request(ring, status_id))
544 submit_contexts++;
545 }
546 }
547
548 if (disable_lite_restore_wa(ring)) {
549 /* Prevent a ctx to preempt itself */
550 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
551 (submit_contexts != 0))
552 execlists_context_unqueue(ring);
553 } else if (submit_contexts != 0) {
554 execlists_context_unqueue(ring);
555 }
556
557 spin_unlock(&ring->execlist_lock);
558
559 WARN(submit_contexts > 2, "More than two context complete events?\n");
560 ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
561
562 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
563 _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
564 ((u32)ring->next_context_status_buffer &
565 GEN8_CSB_PTR_MASK) << 8));
566 }
567
568 static int execlists_context_queue(struct drm_i915_gem_request *request)
569 {
570 struct intel_engine_cs *ring = request->ring;
571 struct drm_i915_gem_request *cursor;
572 int num_elements = 0;
573
574 if (request->ctx != ring->default_context)
575 intel_lr_context_pin(request);
576
577 i915_gem_request_reference(request);
578
579 spin_lock_irq(&ring->execlist_lock);
580
581 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
582 if (++num_elements > 2)
583 break;
584
585 if (num_elements > 2) {
586 struct drm_i915_gem_request *tail_req;
587
588 tail_req = list_last_entry(&ring->execlist_queue,
589 struct drm_i915_gem_request,
590 execlist_link);
591
592 if (request->ctx == tail_req->ctx) {
593 WARN(tail_req->elsp_submitted != 0,
594 "More than 2 already-submitted reqs queued\n");
595 list_del(&tail_req->execlist_link);
596 list_add_tail(&tail_req->execlist_link,
597 &ring->execlist_retired_req_list);
598 }
599 }
600
601 list_add_tail(&request->execlist_link, &ring->execlist_queue);
602 if (num_elements == 0)
603 execlists_context_unqueue(ring);
604
605 spin_unlock_irq(&ring->execlist_lock);
606
607 return 0;
608 }
609
610 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
611 {
612 struct intel_engine_cs *ring = req->ring;
613 uint32_t flush_domains;
614 int ret;
615
616 flush_domains = 0;
617 if (ring->gpu_caches_dirty)
618 flush_domains = I915_GEM_GPU_DOMAINS;
619
620 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
621 if (ret)
622 return ret;
623
624 ring->gpu_caches_dirty = false;
625 return 0;
626 }
627
628 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
629 struct list_head *vmas)
630 {
631 const unsigned other_rings = ~intel_ring_flag(req->ring);
632 struct i915_vma *vma;
633 uint32_t flush_domains = 0;
634 bool flush_chipset = false;
635 int ret;
636
637 list_for_each_entry(vma, vmas, exec_list) {
638 struct drm_i915_gem_object *obj = vma->obj;
639
640 if (obj->active & other_rings) {
641 ret = i915_gem_object_sync(obj, req->ring, &req);
642 if (ret)
643 return ret;
644 }
645
646 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
647 flush_chipset |= i915_gem_clflush_object(obj, false);
648
649 flush_domains |= obj->base.write_domain;
650 }
651
652 if (flush_domains & I915_GEM_DOMAIN_GTT)
653 wmb();
654
655 /* Unconditionally invalidate gpu caches and ensure that we do flush
656 * any residual writes from the previous batch.
657 */
658 return logical_ring_invalidate_all_caches(req);
659 }
660
661 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
662 {
663 int ret;
664
665 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
666
667 if (request->ctx != request->ring->default_context) {
668 ret = intel_lr_context_pin(request);
669 if (ret)
670 return ret;
671 }
672
673 if (i915.enable_guc_submission) {
674 /*
675 * Check that the GuC has space for the request before
676 * going any further, as the i915_add_request() call
677 * later on mustn't fail ...
678 */
679 struct intel_guc *guc = &request->i915->guc;
680
681 ret = i915_guc_wq_check_space(guc->execbuf_client);
682 if (ret)
683 return ret;
684 }
685
686 return 0;
687 }
688
689 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
690 int bytes)
691 {
692 struct intel_ringbuffer *ringbuf = req->ringbuf;
693 struct intel_engine_cs *ring = req->ring;
694 struct drm_i915_gem_request *target;
695 unsigned space;
696 int ret;
697
698 if (intel_ring_space(ringbuf) >= bytes)
699 return 0;
700
701 /* The whole point of reserving space is to not wait! */
702 WARN_ON(ringbuf->reserved_in_use);
703
704 list_for_each_entry(target, &ring->request_list, list) {
705 /*
706 * The request queue is per-engine, so can contain requests
707 * from multiple ringbuffers. Here, we must ignore any that
708 * aren't from the ringbuffer we're considering.
709 */
710 if (target->ringbuf != ringbuf)
711 continue;
712
713 /* Would completion of this request free enough space? */
714 space = __intel_ring_space(target->postfix, ringbuf->tail,
715 ringbuf->size);
716 if (space >= bytes)
717 break;
718 }
719
720 if (WARN_ON(&target->list == &ring->request_list))
721 return -ENOSPC;
722
723 ret = i915_wait_request(target);
724 if (ret)
725 return ret;
726
727 ringbuf->space = space;
728 return 0;
729 }
730
731 /*
732 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
733 * @request: Request to advance the logical ringbuffer of.
734 *
735 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
736 * really happens during submission is that the context and current tail will be placed
737 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
738 * point, the tail *inside* the context is updated and the ELSP written to.
739 */
740 static void
741 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
742 {
743 struct intel_engine_cs *ring = request->ring;
744 struct drm_i915_private *dev_priv = request->i915;
745
746 intel_logical_ring_advance(request->ringbuf);
747
748 request->tail = request->ringbuf->tail;
749
750 if (intel_ring_stopped(ring))
751 return;
752
753 if (dev_priv->guc.execbuf_client)
754 i915_guc_submit(dev_priv->guc.execbuf_client, request);
755 else
756 execlists_context_queue(request);
757 }
758
759 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
760 {
761 uint32_t __iomem *virt;
762 int rem = ringbuf->size - ringbuf->tail;
763
764 virt = ringbuf->virtual_start + ringbuf->tail;
765 rem /= 4;
766 while (rem--)
767 iowrite32(MI_NOOP, virt++);
768
769 ringbuf->tail = 0;
770 intel_ring_update_space(ringbuf);
771 }
772
773 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
774 {
775 struct intel_ringbuffer *ringbuf = req->ringbuf;
776 int remain_usable = ringbuf->effective_size - ringbuf->tail;
777 int remain_actual = ringbuf->size - ringbuf->tail;
778 int ret, total_bytes, wait_bytes = 0;
779 bool need_wrap = false;
780
781 if (ringbuf->reserved_in_use)
782 total_bytes = bytes;
783 else
784 total_bytes = bytes + ringbuf->reserved_size;
785
786 if (unlikely(bytes > remain_usable)) {
787 /*
788 * Not enough space for the basic request. So need to flush
789 * out the remainder and then wait for base + reserved.
790 */
791 wait_bytes = remain_actual + total_bytes;
792 need_wrap = true;
793 } else {
794 if (unlikely(total_bytes > remain_usable)) {
795 /*
796 * The base request will fit but the reserved space
797 * falls off the end. So only need to to wait for the
798 * reserved size after flushing out the remainder.
799 */
800 wait_bytes = remain_actual + ringbuf->reserved_size;
801 need_wrap = true;
802 } else if (total_bytes > ringbuf->space) {
803 /* No wrapping required, just waiting. */
804 wait_bytes = total_bytes;
805 }
806 }
807
808 if (wait_bytes) {
809 ret = logical_ring_wait_for_space(req, wait_bytes);
810 if (unlikely(ret))
811 return ret;
812
813 if (need_wrap)
814 __wrap_ring_buffer(ringbuf);
815 }
816
817 return 0;
818 }
819
820 /**
821 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
822 *
823 * @req: The request to start some new work for
824 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
825 *
826 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
827 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
828 * and also preallocates a request (every workload submission is still mediated through
829 * requests, same as it did with legacy ringbuffer submission).
830 *
831 * Return: non-zero if the ringbuffer is not ready to be written to.
832 */
833 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
834 {
835 struct drm_i915_private *dev_priv;
836 int ret;
837
838 WARN_ON(req == NULL);
839 dev_priv = req->ring->dev->dev_private;
840
841 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
842 dev_priv->mm.interruptible);
843 if (ret)
844 return ret;
845
846 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
847 if (ret)
848 return ret;
849
850 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
851 return 0;
852 }
853
854 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
855 {
856 /*
857 * The first call merely notes the reserve request and is common for
858 * all back ends. The subsequent localised _begin() call actually
859 * ensures that the reservation is available. Without the begin, if
860 * the request creator immediately submitted the request without
861 * adding any commands to it then there might not actually be
862 * sufficient room for the submission commands.
863 */
864 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
865
866 return intel_logical_ring_begin(request, 0);
867 }
868
869 /**
870 * execlists_submission() - submit a batchbuffer for execution, Execlists style
871 * @dev: DRM device.
872 * @file: DRM file.
873 * @ring: Engine Command Streamer to submit to.
874 * @ctx: Context to employ for this submission.
875 * @args: execbuffer call arguments.
876 * @vmas: list of vmas.
877 * @batch_obj: the batchbuffer to submit.
878 * @exec_start: batchbuffer start virtual address pointer.
879 * @dispatch_flags: translated execbuffer call flags.
880 *
881 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
882 * away the submission details of the execbuffer ioctl call.
883 *
884 * Return: non-zero if the submission fails.
885 */
886 int intel_execlists_submission(struct i915_execbuffer_params *params,
887 struct drm_i915_gem_execbuffer2 *args,
888 struct list_head *vmas)
889 {
890 struct drm_device *dev = params->dev;
891 struct intel_engine_cs *ring = params->ring;
892 struct drm_i915_private *dev_priv = dev->dev_private;
893 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
894 u64 exec_start;
895 int instp_mode;
896 u32 instp_mask;
897 int ret;
898
899 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
900 instp_mask = I915_EXEC_CONSTANTS_MASK;
901 switch (instp_mode) {
902 case I915_EXEC_CONSTANTS_REL_GENERAL:
903 case I915_EXEC_CONSTANTS_ABSOLUTE:
904 case I915_EXEC_CONSTANTS_REL_SURFACE:
905 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
906 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
907 return -EINVAL;
908 }
909
910 if (instp_mode != dev_priv->relative_constants_mode) {
911 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
912 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
913 return -EINVAL;
914 }
915
916 /* The HW changed the meaning on this bit on gen6 */
917 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
918 }
919 break;
920 default:
921 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
922 return -EINVAL;
923 }
924
925 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
926 DRM_DEBUG("sol reset is gen7 only\n");
927 return -EINVAL;
928 }
929
930 ret = execlists_move_to_gpu(params->request, vmas);
931 if (ret)
932 return ret;
933
934 if (ring == &dev_priv->ring[RCS] &&
935 instp_mode != dev_priv->relative_constants_mode) {
936 ret = intel_logical_ring_begin(params->request, 4);
937 if (ret)
938 return ret;
939
940 intel_logical_ring_emit(ringbuf, MI_NOOP);
941 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
942 intel_logical_ring_emit_reg(ringbuf, INSTPM);
943 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
944 intel_logical_ring_advance(ringbuf);
945
946 dev_priv->relative_constants_mode = instp_mode;
947 }
948
949 exec_start = params->batch_obj_vm_offset +
950 args->batch_start_offset;
951
952 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
953 if (ret)
954 return ret;
955
956 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
957
958 i915_gem_execbuffer_move_to_active(vmas, params->request);
959 i915_gem_execbuffer_retire_commands(params);
960
961 return 0;
962 }
963
964 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
965 {
966 struct drm_i915_gem_request *req, *tmp;
967 struct list_head retired_list;
968
969 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
970 if (list_empty(&ring->execlist_retired_req_list))
971 return;
972
973 INIT_LIST_HEAD(&retired_list);
974 spin_lock_irq(&ring->execlist_lock);
975 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
976 spin_unlock_irq(&ring->execlist_lock);
977
978 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
979 struct intel_context *ctx = req->ctx;
980 struct drm_i915_gem_object *ctx_obj =
981 ctx->engine[ring->id].state;
982
983 if (ctx_obj && (ctx != ring->default_context))
984 intel_lr_context_unpin(req);
985 list_del(&req->execlist_link);
986 i915_gem_request_unreference(req);
987 }
988 }
989
990 void intel_logical_ring_stop(struct intel_engine_cs *ring)
991 {
992 struct drm_i915_private *dev_priv = ring->dev->dev_private;
993 int ret;
994
995 if (!intel_ring_initialized(ring))
996 return;
997
998 ret = intel_ring_idle(ring);
999 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1000 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1001 ring->name, ret);
1002
1003 /* TODO: Is this correct with Execlists enabled? */
1004 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1005 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1006 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1007 return;
1008 }
1009 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1010 }
1011
1012 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1013 {
1014 struct intel_engine_cs *ring = req->ring;
1015 int ret;
1016
1017 if (!ring->gpu_caches_dirty)
1018 return 0;
1019
1020 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1021 if (ret)
1022 return ret;
1023
1024 ring->gpu_caches_dirty = false;
1025 return 0;
1026 }
1027
1028 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1029 struct drm_i915_gem_object *ctx_obj,
1030 struct intel_ringbuffer *ringbuf)
1031 {
1032 struct drm_device *dev = ring->dev;
1033 struct drm_i915_private *dev_priv = dev->dev_private;
1034 int ret = 0;
1035
1036 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1037 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1038 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1039 if (ret)
1040 return ret;
1041
1042 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1043 if (ret)
1044 goto unpin_ctx_obj;
1045
1046 ctx_obj->dirty = true;
1047
1048 /* Invalidate GuC TLB. */
1049 if (i915.enable_guc_submission)
1050 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1051
1052 return ret;
1053
1054 unpin_ctx_obj:
1055 i915_gem_object_ggtt_unpin(ctx_obj);
1056
1057 return ret;
1058 }
1059
1060 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1061 {
1062 int ret = 0;
1063 struct intel_engine_cs *ring = rq->ring;
1064 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1065 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1066
1067 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1068 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1069 if (ret)
1070 goto reset_pin_count;
1071 }
1072 return ret;
1073
1074 reset_pin_count:
1075 rq->ctx->engine[ring->id].pin_count = 0;
1076 return ret;
1077 }
1078
1079 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1080 {
1081 struct intel_engine_cs *ring = rq->ring;
1082 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1083 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1084
1085 if (ctx_obj) {
1086 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1087 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1088 intel_unpin_ringbuffer_obj(ringbuf);
1089 i915_gem_object_ggtt_unpin(ctx_obj);
1090 }
1091 }
1092 }
1093
1094 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1095 {
1096 int ret, i;
1097 struct intel_engine_cs *ring = req->ring;
1098 struct intel_ringbuffer *ringbuf = req->ringbuf;
1099 struct drm_device *dev = ring->dev;
1100 struct drm_i915_private *dev_priv = dev->dev_private;
1101 struct i915_workarounds *w = &dev_priv->workarounds;
1102
1103 if (WARN_ON_ONCE(w->count == 0))
1104 return 0;
1105
1106 ring->gpu_caches_dirty = true;
1107 ret = logical_ring_flush_all_caches(req);
1108 if (ret)
1109 return ret;
1110
1111 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1112 if (ret)
1113 return ret;
1114
1115 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1116 for (i = 0; i < w->count; i++) {
1117 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1118 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1119 }
1120 intel_logical_ring_emit(ringbuf, MI_NOOP);
1121
1122 intel_logical_ring_advance(ringbuf);
1123
1124 ring->gpu_caches_dirty = true;
1125 ret = logical_ring_flush_all_caches(req);
1126 if (ret)
1127 return ret;
1128
1129 return 0;
1130 }
1131
1132 #define wa_ctx_emit(batch, index, cmd) \
1133 do { \
1134 int __index = (index)++; \
1135 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1136 return -ENOSPC; \
1137 } \
1138 batch[__index] = (cmd); \
1139 } while (0)
1140
1141 #define wa_ctx_emit_reg(batch, index, reg) \
1142 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1143
1144 /*
1145 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1146 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1147 * but there is a slight complication as this is applied in WA batch where the
1148 * values are only initialized once so we cannot take register value at the
1149 * beginning and reuse it further; hence we save its value to memory, upload a
1150 * constant value with bit21 set and then we restore it back with the saved value.
1151 * To simplify the WA, a constant value is formed by using the default value
1152 * of this register. This shouldn't be a problem because we are only modifying
1153 * it for a short period and this batch in non-premptible. We can ofcourse
1154 * use additional instructions that read the actual value of the register
1155 * at that time and set our bit of interest but it makes the WA complicated.
1156 *
1157 * This WA is also required for Gen9 so extracting as a function avoids
1158 * code duplication.
1159 */
1160 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1161 uint32_t *const batch,
1162 uint32_t index)
1163 {
1164 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1165
1166 /*
1167 * WaDisableLSQCROPERFforOCL:skl
1168 * This WA is implemented in skl_init_clock_gating() but since
1169 * this batch updates GEN8_L3SQCREG4 with default value we need to
1170 * set this bit here to retain the WA during flush.
1171 */
1172 if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1173 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1174
1175 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1176 MI_SRM_LRM_GLOBAL_GTT));
1177 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1178 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1179 wa_ctx_emit(batch, index, 0);
1180
1181 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1182 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1183 wa_ctx_emit(batch, index, l3sqc4_flush);
1184
1185 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1186 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1187 PIPE_CONTROL_DC_FLUSH_ENABLE));
1188 wa_ctx_emit(batch, index, 0);
1189 wa_ctx_emit(batch, index, 0);
1190 wa_ctx_emit(batch, index, 0);
1191 wa_ctx_emit(batch, index, 0);
1192
1193 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1194 MI_SRM_LRM_GLOBAL_GTT));
1195 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1196 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1197 wa_ctx_emit(batch, index, 0);
1198
1199 return index;
1200 }
1201
1202 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1203 uint32_t offset,
1204 uint32_t start_alignment)
1205 {
1206 return wa_ctx->offset = ALIGN(offset, start_alignment);
1207 }
1208
1209 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1210 uint32_t offset,
1211 uint32_t size_alignment)
1212 {
1213 wa_ctx->size = offset - wa_ctx->offset;
1214
1215 WARN(wa_ctx->size % size_alignment,
1216 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1217 wa_ctx->size, size_alignment);
1218 return 0;
1219 }
1220
1221 /**
1222 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1223 *
1224 * @ring: only applicable for RCS
1225 * @wa_ctx: structure representing wa_ctx
1226 * offset: specifies start of the batch, should be cache-aligned. This is updated
1227 * with the offset value received as input.
1228 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1229 * @batch: page in which WA are loaded
1230 * @offset: This field specifies the start of the batch, it should be
1231 * cache-aligned otherwise it is adjusted accordingly.
1232 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1233 * initialized at the beginning and shared across all contexts but this field
1234 * helps us to have multiple batches at different offsets and select them based
1235 * on a criteria. At the moment this batch always start at the beginning of the page
1236 * and at this point we don't have multiple wa_ctx batch buffers.
1237 *
1238 * The number of WA applied are not known at the beginning; we use this field
1239 * to return the no of DWORDS written.
1240 *
1241 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1242 * so it adds NOOPs as padding to make it cacheline aligned.
1243 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1244 * makes a complete batch buffer.
1245 *
1246 * Return: non-zero if we exceed the PAGE_SIZE limit.
1247 */
1248
1249 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1250 struct i915_wa_ctx_bb *wa_ctx,
1251 uint32_t *const batch,
1252 uint32_t *offset)
1253 {
1254 uint32_t scratch_addr;
1255 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1256
1257 /* WaDisableCtxRestoreArbitration:bdw,chv */
1258 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1259
1260 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1261 if (IS_BROADWELL(ring->dev)) {
1262 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1263 if (rc < 0)
1264 return rc;
1265 index = rc;
1266 }
1267
1268 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1269 /* Actual scratch location is at 128 bytes offset */
1270 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1271
1272 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1273 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1274 PIPE_CONTROL_GLOBAL_GTT_IVB |
1275 PIPE_CONTROL_CS_STALL |
1276 PIPE_CONTROL_QW_WRITE));
1277 wa_ctx_emit(batch, index, scratch_addr);
1278 wa_ctx_emit(batch, index, 0);
1279 wa_ctx_emit(batch, index, 0);
1280 wa_ctx_emit(batch, index, 0);
1281
1282 /* Pad to end of cacheline */
1283 while (index % CACHELINE_DWORDS)
1284 wa_ctx_emit(batch, index, MI_NOOP);
1285
1286 /*
1287 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1288 * execution depends on the length specified in terms of cache lines
1289 * in the register CTX_RCS_INDIRECT_CTX
1290 */
1291
1292 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1293 }
1294
1295 /**
1296 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1297 *
1298 * @ring: only applicable for RCS
1299 * @wa_ctx: structure representing wa_ctx
1300 * offset: specifies start of the batch, should be cache-aligned.
1301 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1302 * @batch: page in which WA are loaded
1303 * @offset: This field specifies the start of this batch.
1304 * This batch is started immediately after indirect_ctx batch. Since we ensure
1305 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1306 *
1307 * The number of DWORDS written are returned using this field.
1308 *
1309 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1310 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1311 */
1312 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1313 struct i915_wa_ctx_bb *wa_ctx,
1314 uint32_t *const batch,
1315 uint32_t *offset)
1316 {
1317 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1318
1319 /* WaDisableCtxRestoreArbitration:bdw,chv */
1320 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1321
1322 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1323
1324 return wa_ctx_end(wa_ctx, *offset = index, 1);
1325 }
1326
1327 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1328 struct i915_wa_ctx_bb *wa_ctx,
1329 uint32_t *const batch,
1330 uint32_t *offset)
1331 {
1332 int ret;
1333 struct drm_device *dev = ring->dev;
1334 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1335
1336 /* WaDisableCtxRestoreArbitration:skl,bxt */
1337 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1338 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1339 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1340
1341 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1342 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1343 if (ret < 0)
1344 return ret;
1345 index = ret;
1346
1347 /* Pad to end of cacheline */
1348 while (index % CACHELINE_DWORDS)
1349 wa_ctx_emit(batch, index, MI_NOOP);
1350
1351 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1352 }
1353
1354 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1355 struct i915_wa_ctx_bb *wa_ctx,
1356 uint32_t *const batch,
1357 uint32_t *offset)
1358 {
1359 struct drm_device *dev = ring->dev;
1360 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1361
1362 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1363 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1364 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1365 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1366 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1367 wa_ctx_emit(batch, index,
1368 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1369 wa_ctx_emit(batch, index, MI_NOOP);
1370 }
1371
1372 /* WaDisableCtxRestoreArbitration:skl,bxt */
1373 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1374 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1375 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1376
1377 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1378
1379 return wa_ctx_end(wa_ctx, *offset = index, 1);
1380 }
1381
1382 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1383 {
1384 int ret;
1385
1386 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1387 if (!ring->wa_ctx.obj) {
1388 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1389 return -ENOMEM;
1390 }
1391
1392 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1393 if (ret) {
1394 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1395 ret);
1396 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1397 return ret;
1398 }
1399
1400 return 0;
1401 }
1402
1403 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1404 {
1405 if (ring->wa_ctx.obj) {
1406 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1407 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1408 ring->wa_ctx.obj = NULL;
1409 }
1410 }
1411
1412 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1413 {
1414 int ret;
1415 uint32_t *batch;
1416 uint32_t offset;
1417 struct page *page;
1418 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1419
1420 WARN_ON(ring->id != RCS);
1421
1422 /* update this when WA for higher Gen are added */
1423 if (INTEL_INFO(ring->dev)->gen > 9) {
1424 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1425 INTEL_INFO(ring->dev)->gen);
1426 return 0;
1427 }
1428
1429 /* some WA perform writes to scratch page, ensure it is valid */
1430 if (ring->scratch.obj == NULL) {
1431 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1432 return -EINVAL;
1433 }
1434
1435 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1436 if (ret) {
1437 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1438 return ret;
1439 }
1440
1441 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1442 batch = kmap_atomic(page);
1443 offset = 0;
1444
1445 if (INTEL_INFO(ring->dev)->gen == 8) {
1446 ret = gen8_init_indirectctx_bb(ring,
1447 &wa_ctx->indirect_ctx,
1448 batch,
1449 &offset);
1450 if (ret)
1451 goto out;
1452
1453 ret = gen8_init_perctx_bb(ring,
1454 &wa_ctx->per_ctx,
1455 batch,
1456 &offset);
1457 if (ret)
1458 goto out;
1459 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1460 ret = gen9_init_indirectctx_bb(ring,
1461 &wa_ctx->indirect_ctx,
1462 batch,
1463 &offset);
1464 if (ret)
1465 goto out;
1466
1467 ret = gen9_init_perctx_bb(ring,
1468 &wa_ctx->per_ctx,
1469 batch,
1470 &offset);
1471 if (ret)
1472 goto out;
1473 }
1474
1475 out:
1476 kunmap_atomic(batch);
1477 if (ret)
1478 lrc_destroy_wa_ctx_obj(ring);
1479
1480 return ret;
1481 }
1482
1483 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1484 {
1485 struct drm_device *dev = ring->dev;
1486 struct drm_i915_private *dev_priv = dev->dev_private;
1487 u8 next_context_status_buffer_hw;
1488
1489 lrc_setup_hardware_status_page(ring,
1490 ring->default_context->engine[ring->id].state);
1491
1492 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1493 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1494
1495 I915_WRITE(RING_MODE_GEN7(ring),
1496 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1497 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1498 POSTING_READ(RING_MODE_GEN7(ring));
1499
1500 /*
1501 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1502 * zero, we need to read the write pointer from hardware and use its
1503 * value because "this register is power context save restored".
1504 * Effectively, these states have been observed:
1505 *
1506 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1507 * BDW | CSB regs not reset | CSB regs reset |
1508 * CHT | CSB regs not reset | CSB regs not reset |
1509 */
1510 next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
1511 & GEN8_CSB_PTR_MASK);
1512
1513 /*
1514 * When the CSB registers are reset (also after power-up / gpu reset),
1515 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1516 * this special case, so the first element read is CSB[0].
1517 */
1518 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1519 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1520
1521 ring->next_context_status_buffer = next_context_status_buffer_hw;
1522 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1523
1524 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1525
1526 return 0;
1527 }
1528
1529 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1530 {
1531 struct drm_device *dev = ring->dev;
1532 struct drm_i915_private *dev_priv = dev->dev_private;
1533 int ret;
1534
1535 ret = gen8_init_common_ring(ring);
1536 if (ret)
1537 return ret;
1538
1539 /* We need to disable the AsyncFlip performance optimisations in order
1540 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1541 * programmed to '1' on all products.
1542 *
1543 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1544 */
1545 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1546
1547 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1548
1549 return init_workarounds_ring(ring);
1550 }
1551
1552 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1553 {
1554 int ret;
1555
1556 ret = gen8_init_common_ring(ring);
1557 if (ret)
1558 return ret;
1559
1560 return init_workarounds_ring(ring);
1561 }
1562
1563 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1564 {
1565 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1566 struct intel_engine_cs *ring = req->ring;
1567 struct intel_ringbuffer *ringbuf = req->ringbuf;
1568 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1569 int i, ret;
1570
1571 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1572 if (ret)
1573 return ret;
1574
1575 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1576 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1577 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1578
1579 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1580 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1581 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1582 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1583 }
1584
1585 intel_logical_ring_emit(ringbuf, MI_NOOP);
1586 intel_logical_ring_advance(ringbuf);
1587
1588 return 0;
1589 }
1590
1591 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1592 u64 offset, unsigned dispatch_flags)
1593 {
1594 struct intel_ringbuffer *ringbuf = req->ringbuf;
1595 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1596 int ret;
1597
1598 /* Don't rely in hw updating PDPs, specially in lite-restore.
1599 * Ideally, we should set Force PD Restore in ctx descriptor,
1600 * but we can't. Force Restore would be a second option, but
1601 * it is unsafe in case of lite-restore (because the ctx is
1602 * not idle). PML4 is allocated during ppgtt init so this is
1603 * not needed in 48-bit.*/
1604 if (req->ctx->ppgtt &&
1605 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1606 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1607 !intel_vgpu_active(req->i915->dev)) {
1608 ret = intel_logical_ring_emit_pdps(req);
1609 if (ret)
1610 return ret;
1611 }
1612
1613 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1614 }
1615
1616 ret = intel_logical_ring_begin(req, 4);
1617 if (ret)
1618 return ret;
1619
1620 /* FIXME(BDW): Address space and security selectors. */
1621 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1622 (ppgtt<<8) |
1623 (dispatch_flags & I915_DISPATCH_RS ?
1624 MI_BATCH_RESOURCE_STREAMER : 0));
1625 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1626 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1627 intel_logical_ring_emit(ringbuf, MI_NOOP);
1628 intel_logical_ring_advance(ringbuf);
1629
1630 return 0;
1631 }
1632
1633 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1634 {
1635 struct drm_device *dev = ring->dev;
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637 unsigned long flags;
1638
1639 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1640 return false;
1641
1642 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1643 if (ring->irq_refcount++ == 0) {
1644 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1645 POSTING_READ(RING_IMR(ring->mmio_base));
1646 }
1647 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1648
1649 return true;
1650 }
1651
1652 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1653 {
1654 struct drm_device *dev = ring->dev;
1655 struct drm_i915_private *dev_priv = dev->dev_private;
1656 unsigned long flags;
1657
1658 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1659 if (--ring->irq_refcount == 0) {
1660 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1661 POSTING_READ(RING_IMR(ring->mmio_base));
1662 }
1663 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1664 }
1665
1666 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1667 u32 invalidate_domains,
1668 u32 unused)
1669 {
1670 struct intel_ringbuffer *ringbuf = request->ringbuf;
1671 struct intel_engine_cs *ring = ringbuf->ring;
1672 struct drm_device *dev = ring->dev;
1673 struct drm_i915_private *dev_priv = dev->dev_private;
1674 uint32_t cmd;
1675 int ret;
1676
1677 ret = intel_logical_ring_begin(request, 4);
1678 if (ret)
1679 return ret;
1680
1681 cmd = MI_FLUSH_DW + 1;
1682
1683 /* We always require a command barrier so that subsequent
1684 * commands, such as breadcrumb interrupts, are strictly ordered
1685 * wrt the contents of the write cache being flushed to memory
1686 * (and thus being coherent from the CPU).
1687 */
1688 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1689
1690 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1691 cmd |= MI_INVALIDATE_TLB;
1692 if (ring == &dev_priv->ring[VCS])
1693 cmd |= MI_INVALIDATE_BSD;
1694 }
1695
1696 intel_logical_ring_emit(ringbuf, cmd);
1697 intel_logical_ring_emit(ringbuf,
1698 I915_GEM_HWS_SCRATCH_ADDR |
1699 MI_FLUSH_DW_USE_GTT);
1700 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1701 intel_logical_ring_emit(ringbuf, 0); /* value */
1702 intel_logical_ring_advance(ringbuf);
1703
1704 return 0;
1705 }
1706
1707 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1708 u32 invalidate_domains,
1709 u32 flush_domains)
1710 {
1711 struct intel_ringbuffer *ringbuf = request->ringbuf;
1712 struct intel_engine_cs *ring = ringbuf->ring;
1713 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1714 bool vf_flush_wa = false;
1715 u32 flags = 0;
1716 int ret;
1717
1718 flags |= PIPE_CONTROL_CS_STALL;
1719
1720 if (flush_domains) {
1721 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1722 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1723 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1724 }
1725
1726 if (invalidate_domains) {
1727 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1728 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1729 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1730 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1731 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1732 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1733 flags |= PIPE_CONTROL_QW_WRITE;
1734 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1735
1736 /*
1737 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1738 * pipe control.
1739 */
1740 if (IS_GEN9(ring->dev))
1741 vf_flush_wa = true;
1742 }
1743
1744 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1745 if (ret)
1746 return ret;
1747
1748 if (vf_flush_wa) {
1749 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1750 intel_logical_ring_emit(ringbuf, 0);
1751 intel_logical_ring_emit(ringbuf, 0);
1752 intel_logical_ring_emit(ringbuf, 0);
1753 intel_logical_ring_emit(ringbuf, 0);
1754 intel_logical_ring_emit(ringbuf, 0);
1755 }
1756
1757 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1758 intel_logical_ring_emit(ringbuf, flags);
1759 intel_logical_ring_emit(ringbuf, scratch_addr);
1760 intel_logical_ring_emit(ringbuf, 0);
1761 intel_logical_ring_emit(ringbuf, 0);
1762 intel_logical_ring_emit(ringbuf, 0);
1763 intel_logical_ring_advance(ringbuf);
1764
1765 return 0;
1766 }
1767
1768 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1769 {
1770 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1771 }
1772
1773 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1774 {
1775 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1776 }
1777
1778 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1779 {
1780
1781 /*
1782 * On BXT A steppings there is a HW coherency issue whereby the
1783 * MI_STORE_DATA_IMM storing the completed request's seqno
1784 * occasionally doesn't invalidate the CPU cache. Work around this by
1785 * clflushing the corresponding cacheline whenever the caller wants
1786 * the coherency to be guaranteed. Note that this cacheline is known
1787 * to be clean at this point, since we only write it in
1788 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1789 * this clflush in practice becomes an invalidate operation.
1790 */
1791
1792 if (!lazy_coherency)
1793 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1794
1795 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1796 }
1797
1798 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1799 {
1800 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1801
1802 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1803 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1804 }
1805
1806 static int gen8_emit_request(struct drm_i915_gem_request *request)
1807 {
1808 struct intel_ringbuffer *ringbuf = request->ringbuf;
1809 struct intel_engine_cs *ring = ringbuf->ring;
1810 u32 cmd;
1811 int ret;
1812
1813 /*
1814 * Reserve space for 2 NOOPs at the end of each request to be
1815 * used as a workaround for not being allowed to do lite
1816 * restore with HEAD==TAIL (WaIdleLiteRestore).
1817 */
1818 ret = intel_logical_ring_begin(request, 8);
1819 if (ret)
1820 return ret;
1821
1822 cmd = MI_STORE_DWORD_IMM_GEN4;
1823 cmd |= MI_GLOBAL_GTT;
1824
1825 intel_logical_ring_emit(ringbuf, cmd);
1826 intel_logical_ring_emit(ringbuf,
1827 (ring->status_page.gfx_addr +
1828 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1829 intel_logical_ring_emit(ringbuf, 0);
1830 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1831 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1832 intel_logical_ring_emit(ringbuf, MI_NOOP);
1833 intel_logical_ring_advance_and_submit(request);
1834
1835 /*
1836 * Here we add two extra NOOPs as padding to avoid
1837 * lite restore of a context with HEAD==TAIL.
1838 */
1839 intel_logical_ring_emit(ringbuf, MI_NOOP);
1840 intel_logical_ring_emit(ringbuf, MI_NOOP);
1841 intel_logical_ring_advance(ringbuf);
1842
1843 return 0;
1844 }
1845
1846 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1847 {
1848 struct render_state so;
1849 int ret;
1850
1851 ret = i915_gem_render_state_prepare(req->ring, &so);
1852 if (ret)
1853 return ret;
1854
1855 if (so.rodata == NULL)
1856 return 0;
1857
1858 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1859 I915_DISPATCH_SECURE);
1860 if (ret)
1861 goto out;
1862
1863 ret = req->ring->emit_bb_start(req,
1864 (so.ggtt_offset + so.aux_batch_offset),
1865 I915_DISPATCH_SECURE);
1866 if (ret)
1867 goto out;
1868
1869 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1870
1871 out:
1872 i915_gem_render_state_fini(&so);
1873 return ret;
1874 }
1875
1876 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1877 {
1878 int ret;
1879
1880 ret = intel_logical_ring_workarounds_emit(req);
1881 if (ret)
1882 return ret;
1883
1884 ret = intel_rcs_context_init_mocs(req);
1885 /*
1886 * Failing to program the MOCS is non-fatal.The system will not
1887 * run at peak performance. So generate an error and carry on.
1888 */
1889 if (ret)
1890 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1891
1892 return intel_lr_context_render_state_init(req);
1893 }
1894
1895 /**
1896 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1897 *
1898 * @ring: Engine Command Streamer.
1899 *
1900 */
1901 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1902 {
1903 struct drm_i915_private *dev_priv;
1904
1905 if (!intel_ring_initialized(ring))
1906 return;
1907
1908 dev_priv = ring->dev->dev_private;
1909
1910 if (ring->buffer) {
1911 intel_logical_ring_stop(ring);
1912 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1913 }
1914
1915 if (ring->cleanup)
1916 ring->cleanup(ring);
1917
1918 i915_cmd_parser_fini_ring(ring);
1919 i915_gem_batch_pool_fini(&ring->batch_pool);
1920
1921 if (ring->status_page.obj) {
1922 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1923 ring->status_page.obj = NULL;
1924 }
1925
1926 lrc_destroy_wa_ctx_obj(ring);
1927 ring->dev = NULL;
1928 }
1929
1930 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1931 {
1932 int ret;
1933
1934 /* Intentionally left blank. */
1935 ring->buffer = NULL;
1936
1937 ring->dev = dev;
1938 INIT_LIST_HEAD(&ring->active_list);
1939 INIT_LIST_HEAD(&ring->request_list);
1940 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1941 init_waitqueue_head(&ring->irq_queue);
1942
1943 INIT_LIST_HEAD(&ring->buffers);
1944 INIT_LIST_HEAD(&ring->execlist_queue);
1945 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1946 spin_lock_init(&ring->execlist_lock);
1947
1948 ret = i915_cmd_parser_init_ring(ring);
1949 if (ret)
1950 goto error;
1951
1952 ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1953 if (ret)
1954 goto error;
1955
1956 /* As this is the default context, always pin it */
1957 ret = intel_lr_context_do_pin(
1958 ring,
1959 ring->default_context->engine[ring->id].state,
1960 ring->default_context->engine[ring->id].ringbuf);
1961 if (ret) {
1962 DRM_ERROR(
1963 "Failed to pin and map ringbuffer %s: %d\n",
1964 ring->name, ret);
1965 goto error;
1966 }
1967
1968 return 0;
1969
1970 error:
1971 intel_logical_ring_cleanup(ring);
1972 return ret;
1973 }
1974
1975 static int logical_render_ring_init(struct drm_device *dev)
1976 {
1977 struct drm_i915_private *dev_priv = dev->dev_private;
1978 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1979 int ret;
1980
1981 ring->name = "render ring";
1982 ring->id = RCS;
1983 ring->mmio_base = RENDER_RING_BASE;
1984 ring->irq_enable_mask =
1985 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1986 ring->irq_keep_mask =
1987 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1988 if (HAS_L3_DPF(dev))
1989 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1990
1991 if (INTEL_INFO(dev)->gen >= 9)
1992 ring->init_hw = gen9_init_render_ring;
1993 else
1994 ring->init_hw = gen8_init_render_ring;
1995 ring->init_context = gen8_init_rcs_context;
1996 ring->cleanup = intel_fini_pipe_control;
1997 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1998 ring->get_seqno = bxt_a_get_seqno;
1999 ring->set_seqno = bxt_a_set_seqno;
2000 } else {
2001 ring->get_seqno = gen8_get_seqno;
2002 ring->set_seqno = gen8_set_seqno;
2003 }
2004 ring->emit_request = gen8_emit_request;
2005 ring->emit_flush = gen8_emit_flush_render;
2006 ring->irq_get = gen8_logical_ring_get_irq;
2007 ring->irq_put = gen8_logical_ring_put_irq;
2008 ring->emit_bb_start = gen8_emit_bb_start;
2009
2010 ring->dev = dev;
2011
2012 ret = intel_init_pipe_control(ring);
2013 if (ret)
2014 return ret;
2015
2016 ret = intel_init_workaround_bb(ring);
2017 if (ret) {
2018 /*
2019 * We continue even if we fail to initialize WA batch
2020 * because we only expect rare glitches but nothing
2021 * critical to prevent us from using GPU
2022 */
2023 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2024 ret);
2025 }
2026
2027 ret = logical_ring_init(dev, ring);
2028 if (ret) {
2029 lrc_destroy_wa_ctx_obj(ring);
2030 }
2031
2032 return ret;
2033 }
2034
2035 static int logical_bsd_ring_init(struct drm_device *dev)
2036 {
2037 struct drm_i915_private *dev_priv = dev->dev_private;
2038 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2039
2040 ring->name = "bsd ring";
2041 ring->id = VCS;
2042 ring->mmio_base = GEN6_BSD_RING_BASE;
2043 ring->irq_enable_mask =
2044 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2045 ring->irq_keep_mask =
2046 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2047
2048 ring->init_hw = gen8_init_common_ring;
2049 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2050 ring->get_seqno = bxt_a_get_seqno;
2051 ring->set_seqno = bxt_a_set_seqno;
2052 } else {
2053 ring->get_seqno = gen8_get_seqno;
2054 ring->set_seqno = gen8_set_seqno;
2055 }
2056 ring->emit_request = gen8_emit_request;
2057 ring->emit_flush = gen8_emit_flush;
2058 ring->irq_get = gen8_logical_ring_get_irq;
2059 ring->irq_put = gen8_logical_ring_put_irq;
2060 ring->emit_bb_start = gen8_emit_bb_start;
2061
2062 return logical_ring_init(dev, ring);
2063 }
2064
2065 static int logical_bsd2_ring_init(struct drm_device *dev)
2066 {
2067 struct drm_i915_private *dev_priv = dev->dev_private;
2068 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2069
2070 ring->name = "bds2 ring";
2071 ring->id = VCS2;
2072 ring->mmio_base = GEN8_BSD2_RING_BASE;
2073 ring->irq_enable_mask =
2074 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2075 ring->irq_keep_mask =
2076 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2077
2078 ring->init_hw = gen8_init_common_ring;
2079 ring->get_seqno = gen8_get_seqno;
2080 ring->set_seqno = gen8_set_seqno;
2081 ring->emit_request = gen8_emit_request;
2082 ring->emit_flush = gen8_emit_flush;
2083 ring->irq_get = gen8_logical_ring_get_irq;
2084 ring->irq_put = gen8_logical_ring_put_irq;
2085 ring->emit_bb_start = gen8_emit_bb_start;
2086
2087 return logical_ring_init(dev, ring);
2088 }
2089
2090 static int logical_blt_ring_init(struct drm_device *dev)
2091 {
2092 struct drm_i915_private *dev_priv = dev->dev_private;
2093 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2094
2095 ring->name = "blitter ring";
2096 ring->id = BCS;
2097 ring->mmio_base = BLT_RING_BASE;
2098 ring->irq_enable_mask =
2099 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2100 ring->irq_keep_mask =
2101 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2102
2103 ring->init_hw = gen8_init_common_ring;
2104 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2105 ring->get_seqno = bxt_a_get_seqno;
2106 ring->set_seqno = bxt_a_set_seqno;
2107 } else {
2108 ring->get_seqno = gen8_get_seqno;
2109 ring->set_seqno = gen8_set_seqno;
2110 }
2111 ring->emit_request = gen8_emit_request;
2112 ring->emit_flush = gen8_emit_flush;
2113 ring->irq_get = gen8_logical_ring_get_irq;
2114 ring->irq_put = gen8_logical_ring_put_irq;
2115 ring->emit_bb_start = gen8_emit_bb_start;
2116
2117 return logical_ring_init(dev, ring);
2118 }
2119
2120 static int logical_vebox_ring_init(struct drm_device *dev)
2121 {
2122 struct drm_i915_private *dev_priv = dev->dev_private;
2123 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2124
2125 ring->name = "video enhancement ring";
2126 ring->id = VECS;
2127 ring->mmio_base = VEBOX_RING_BASE;
2128 ring->irq_enable_mask =
2129 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2130 ring->irq_keep_mask =
2131 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2132
2133 ring->init_hw = gen8_init_common_ring;
2134 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2135 ring->get_seqno = bxt_a_get_seqno;
2136 ring->set_seqno = bxt_a_set_seqno;
2137 } else {
2138 ring->get_seqno = gen8_get_seqno;
2139 ring->set_seqno = gen8_set_seqno;
2140 }
2141 ring->emit_request = gen8_emit_request;
2142 ring->emit_flush = gen8_emit_flush;
2143 ring->irq_get = gen8_logical_ring_get_irq;
2144 ring->irq_put = gen8_logical_ring_put_irq;
2145 ring->emit_bb_start = gen8_emit_bb_start;
2146
2147 return logical_ring_init(dev, ring);
2148 }
2149
2150 /**
2151 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2152 * @dev: DRM device.
2153 *
2154 * This function inits the engines for an Execlists submission style (the equivalent in the
2155 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2156 * those engines that are present in the hardware.
2157 *
2158 * Return: non-zero if the initialization failed.
2159 */
2160 int intel_logical_rings_init(struct drm_device *dev)
2161 {
2162 struct drm_i915_private *dev_priv = dev->dev_private;
2163 int ret;
2164
2165 ret = logical_render_ring_init(dev);
2166 if (ret)
2167 return ret;
2168
2169 if (HAS_BSD(dev)) {
2170 ret = logical_bsd_ring_init(dev);
2171 if (ret)
2172 goto cleanup_render_ring;
2173 }
2174
2175 if (HAS_BLT(dev)) {
2176 ret = logical_blt_ring_init(dev);
2177 if (ret)
2178 goto cleanup_bsd_ring;
2179 }
2180
2181 if (HAS_VEBOX(dev)) {
2182 ret = logical_vebox_ring_init(dev);
2183 if (ret)
2184 goto cleanup_blt_ring;
2185 }
2186
2187 if (HAS_BSD2(dev)) {
2188 ret = logical_bsd2_ring_init(dev);
2189 if (ret)
2190 goto cleanup_vebox_ring;
2191 }
2192
2193 return 0;
2194
2195 cleanup_vebox_ring:
2196 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2197 cleanup_blt_ring:
2198 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2199 cleanup_bsd_ring:
2200 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2201 cleanup_render_ring:
2202 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2203
2204 return ret;
2205 }
2206
2207 static u32
2208 make_rpcs(struct drm_device *dev)
2209 {
2210 u32 rpcs = 0;
2211
2212 /*
2213 * No explicit RPCS request is needed to ensure full
2214 * slice/subslice/EU enablement prior to Gen9.
2215 */
2216 if (INTEL_INFO(dev)->gen < 9)
2217 return 0;
2218
2219 /*
2220 * Starting in Gen9, render power gating can leave
2221 * slice/subslice/EU in a partially enabled state. We
2222 * must make an explicit request through RPCS for full
2223 * enablement.
2224 */
2225 if (INTEL_INFO(dev)->has_slice_pg) {
2226 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2227 rpcs |= INTEL_INFO(dev)->slice_total <<
2228 GEN8_RPCS_S_CNT_SHIFT;
2229 rpcs |= GEN8_RPCS_ENABLE;
2230 }
2231
2232 if (INTEL_INFO(dev)->has_subslice_pg) {
2233 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2234 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2235 GEN8_RPCS_SS_CNT_SHIFT;
2236 rpcs |= GEN8_RPCS_ENABLE;
2237 }
2238
2239 if (INTEL_INFO(dev)->has_eu_pg) {
2240 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2241 GEN8_RPCS_EU_MIN_SHIFT;
2242 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2243 GEN8_RPCS_EU_MAX_SHIFT;
2244 rpcs |= GEN8_RPCS_ENABLE;
2245 }
2246
2247 return rpcs;
2248 }
2249
2250 static int
2251 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2252 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2253 {
2254 struct drm_device *dev = ring->dev;
2255 struct drm_i915_private *dev_priv = dev->dev_private;
2256 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2257 struct page *page;
2258 uint32_t *reg_state;
2259 int ret;
2260
2261 if (!ppgtt)
2262 ppgtt = dev_priv->mm.aliasing_ppgtt;
2263
2264 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2265 if (ret) {
2266 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2267 return ret;
2268 }
2269
2270 ret = i915_gem_object_get_pages(ctx_obj);
2271 if (ret) {
2272 DRM_DEBUG_DRIVER("Could not get object pages\n");
2273 return ret;
2274 }
2275
2276 i915_gem_object_pin_pages(ctx_obj);
2277
2278 /* The second page of the context object contains some fields which must
2279 * be set up prior to the first execution. */
2280 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2281 reg_state = kmap_atomic(page);
2282
2283 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2284 * commands followed by (reg, value) pairs. The values we are setting here are
2285 * only for the first context restore: on a subsequent save, the GPU will
2286 * recreate this batchbuffer with new values (including all the missing
2287 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2288 reg_state[CTX_LRI_HEADER_0] =
2289 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2290 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2291 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2292 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2293 CTX_CTRL_RS_CTX_ENABLE));
2294 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2295 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2296 /* Ring buffer start address is not known until the buffer is pinned.
2297 * It is written to the context image in execlists_update_context()
2298 */
2299 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2300 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2301 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2302 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2303 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2304 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2305 RING_BB_PPGTT);
2306 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2307 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2308 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2309 if (ring->id == RCS) {
2310 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2311 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2312 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2313 if (ring->wa_ctx.obj) {
2314 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2315 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2316
2317 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2318 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2319 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2320
2321 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2322 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2323
2324 reg_state[CTX_BB_PER_CTX_PTR+1] =
2325 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2326 0x01;
2327 }
2328 }
2329 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2330 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2331 /* PDP values well be assigned later if needed */
2332 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2333 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2334 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2335 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2336 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2337 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2338 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2339 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2340
2341 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2342 /* 64b PPGTT (48bit canonical)
2343 * PDP0_DESCRIPTOR contains the base address to PML4 and
2344 * other PDP Descriptors are ignored.
2345 */
2346 ASSIGN_CTX_PML4(ppgtt, reg_state);
2347 } else {
2348 /* 32b PPGTT
2349 * PDP*_DESCRIPTOR contains the base address of space supported.
2350 * With dynamic page allocation, PDPs may not be allocated at
2351 * this point. Point the unallocated PDPs to the scratch page
2352 */
2353 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2354 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2355 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2356 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2357 }
2358
2359 if (ring->id == RCS) {
2360 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2361 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2362 make_rpcs(dev));
2363 }
2364
2365 kunmap_atomic(reg_state);
2366 i915_gem_object_unpin_pages(ctx_obj);
2367
2368 return 0;
2369 }
2370
2371 /**
2372 * intel_lr_context_free() - free the LRC specific bits of a context
2373 * @ctx: the LR context to free.
2374 *
2375 * The real context freeing is done in i915_gem_context_free: this only
2376 * takes care of the bits that are LRC related: the per-engine backing
2377 * objects and the logical ringbuffer.
2378 */
2379 void intel_lr_context_free(struct intel_context *ctx)
2380 {
2381 int i;
2382
2383 for (i = 0; i < I915_NUM_RINGS; i++) {
2384 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2385
2386 if (ctx_obj) {
2387 struct intel_ringbuffer *ringbuf =
2388 ctx->engine[i].ringbuf;
2389 struct intel_engine_cs *ring = ringbuf->ring;
2390
2391 if (ctx == ring->default_context) {
2392 intel_unpin_ringbuffer_obj(ringbuf);
2393 i915_gem_object_ggtt_unpin(ctx_obj);
2394 }
2395 WARN_ON(ctx->engine[ring->id].pin_count);
2396 intel_ringbuffer_free(ringbuf);
2397 drm_gem_object_unreference(&ctx_obj->base);
2398 }
2399 }
2400 }
2401
2402 /**
2403 * intel_lr_context_size() - return the size of the context for an engine
2404 * @ring: which engine to find the context size for
2405 *
2406 * Each engine may require a different amount of space for a context image,
2407 * so when allocating (or copying) an image, this function can be used to
2408 * find the right size for the specific engine.
2409 *
2410 * Return: size (in bytes) of an engine-specific context image
2411 *
2412 * Note: this size includes the HWSP, which is part of the context image
2413 * in LRC mode, but does not include the "shared data page" used with
2414 * GuC submission. The caller should account for this if using the GuC.
2415 */
2416 uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
2417 {
2418 int ret = 0;
2419
2420 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2421
2422 switch (ring->id) {
2423 case RCS:
2424 if (INTEL_INFO(ring->dev)->gen >= 9)
2425 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2426 else
2427 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2428 break;
2429 case VCS:
2430 case BCS:
2431 case VECS:
2432 case VCS2:
2433 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2434 break;
2435 }
2436
2437 return ret;
2438 }
2439
2440 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2441 struct drm_i915_gem_object *default_ctx_obj)
2442 {
2443 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2444 struct page *page;
2445
2446 /* The HWSP is part of the default context object in LRC mode. */
2447 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2448 + LRC_PPHWSP_PN * PAGE_SIZE;
2449 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2450 ring->status_page.page_addr = kmap(page);
2451 ring->status_page.obj = default_ctx_obj;
2452
2453 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2454 (u32)ring->status_page.gfx_addr);
2455 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2456 }
2457
2458 /**
2459 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2460 * @ctx: LR context to create.
2461 * @ring: engine to be used with the context.
2462 *
2463 * This function can be called more than once, with different engines, if we plan
2464 * to use the context with them. The context backing objects and the ringbuffers
2465 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2466 * the creation is a deferred call: it's better to make sure first that we need to use
2467 * a given ring with the context.
2468 *
2469 * Return: non-zero on error.
2470 */
2471
2472 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2473 struct intel_engine_cs *ring)
2474 {
2475 struct drm_device *dev = ring->dev;
2476 struct drm_i915_gem_object *ctx_obj;
2477 uint32_t context_size;
2478 struct intel_ringbuffer *ringbuf;
2479 int ret;
2480
2481 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2482 WARN_ON(ctx->engine[ring->id].state);
2483
2484 context_size = round_up(intel_lr_context_size(ring), 4096);
2485
2486 /* One extra page as the sharing data between driver and GuC */
2487 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2488
2489 ctx_obj = i915_gem_alloc_object(dev, context_size);
2490 if (!ctx_obj) {
2491 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2492 return -ENOMEM;
2493 }
2494
2495 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2496 if (IS_ERR(ringbuf)) {
2497 ret = PTR_ERR(ringbuf);
2498 goto error_deref_obj;
2499 }
2500
2501 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2502 if (ret) {
2503 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2504 goto error_ringbuf;
2505 }
2506
2507 ctx->engine[ring->id].ringbuf = ringbuf;
2508 ctx->engine[ring->id].state = ctx_obj;
2509
2510 if (ctx != ring->default_context && ring->init_context) {
2511 struct drm_i915_gem_request *req;
2512
2513 ret = i915_gem_request_alloc(ring,
2514 ctx, &req);
2515 if (ret) {
2516 DRM_ERROR("ring create req: %d\n",
2517 ret);
2518 goto error_ringbuf;
2519 }
2520
2521 ret = ring->init_context(req);
2522 if (ret) {
2523 DRM_ERROR("ring init context: %d\n",
2524 ret);
2525 i915_gem_request_cancel(req);
2526 goto error_ringbuf;
2527 }
2528 i915_add_request_no_flush(req);
2529 }
2530 return 0;
2531
2532 error_ringbuf:
2533 intel_ringbuffer_free(ringbuf);
2534 error_deref_obj:
2535 drm_gem_object_unreference(&ctx_obj->base);
2536 ctx->engine[ring->id].ringbuf = NULL;
2537 ctx->engine[ring->id].state = NULL;
2538 return ret;
2539 }
2540
2541 void intel_lr_context_reset(struct drm_device *dev,
2542 struct intel_context *ctx)
2543 {
2544 struct drm_i915_private *dev_priv = dev->dev_private;
2545 struct intel_engine_cs *ring;
2546 int i;
2547
2548 for_each_ring(ring, dev_priv, i) {
2549 struct drm_i915_gem_object *ctx_obj =
2550 ctx->engine[ring->id].state;
2551 struct intel_ringbuffer *ringbuf =
2552 ctx->engine[ring->id].ringbuf;
2553 uint32_t *reg_state;
2554 struct page *page;
2555
2556 if (!ctx_obj)
2557 continue;
2558
2559 if (i915_gem_object_get_pages(ctx_obj)) {
2560 WARN(1, "Failed get_pages for context obj\n");
2561 continue;
2562 }
2563 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2564 reg_state = kmap_atomic(page);
2565
2566 reg_state[CTX_RING_HEAD+1] = 0;
2567 reg_state[CTX_RING_TAIL+1] = 0;
2568
2569 kunmap_atomic(reg_state);
2570
2571 ringbuf->head = 0;
2572 ringbuf->tail = 0;
2573 }
2574 }
This page took 0.116377 seconds and 6 git commands to generate.