drm/i915: Limit the auto arming of mmio debugs on vlv/chv
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL (1 << 0x2)
145 #define RING_EXECLIST1_VALID (1 << 0x3)
146 #define RING_EXECLIST0_VALID (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
157
158 #define CTX_LRI_HEADER_0 0x01
159 #define CTX_CONTEXT_CONTROL 0x02
160 #define CTX_RING_HEAD 0x04
161 #define CTX_RING_TAIL 0x06
162 #define CTX_RING_BUFFER_START 0x08
163 #define CTX_RING_BUFFER_CONTROL 0x0a
164 #define CTX_BB_HEAD_U 0x0c
165 #define CTX_BB_HEAD_L 0x0e
166 #define CTX_BB_STATE 0x10
167 #define CTX_SECOND_BB_HEAD_U 0x12
168 #define CTX_SECOND_BB_HEAD_L 0x14
169 #define CTX_SECOND_BB_STATE 0x16
170 #define CTX_BB_PER_CTX_PTR 0x18
171 #define CTX_RCS_INDIRECT_CTX 0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173 #define CTX_LRI_HEADER_1 0x21
174 #define CTX_CTX_TIMESTAMP 0x22
175 #define CTX_PDP3_UDW 0x24
176 #define CTX_PDP3_LDW 0x26
177 #define CTX_PDP2_UDW 0x28
178 #define CTX_PDP2_LDW 0x2a
179 #define CTX_PDP1_UDW 0x2c
180 #define CTX_PDP1_LDW 0x2e
181 #define CTX_PDP0_UDW 0x30
182 #define CTX_PDP0_LDW 0x32
183 #define CTX_LRI_HEADER_2 0x41
184 #define CTX_R_PWR_CLK_STATE 0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 enum {
210 ADVANCED_CONTEXT = 0,
211 LEGACY_32B_CONTEXT,
212 ADVANCED_AD_CONTEXT,
213 LEGACY_64B_CONTEXT
214 };
215 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
217 LEGACY_64B_CONTEXT :\
218 LEGACY_32B_CONTEXT)
219 enum {
220 FAULT_AND_HANG = 0,
221 FAULT_AND_HALT, /* Debug only */
222 FAULT_AND_STREAM,
223 FAULT_AND_CONTINUE /* Unsupported */
224 };
225 #define GEN8_CTX_ID_SHIFT 32
226 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
227
228 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
229 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
230 struct drm_i915_gem_object *default_ctx_obj);
231
232
233 /**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245 WARN_ON(i915.enable_ppgtt == -1);
246
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
256 if (enable_execlists == 0)
257 return 0;
258
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
261 return 1;
262
263 return 0;
264 }
265
266 static void
267 logical_ring_init_platform_invariants(struct intel_engine_cs *ring)
268 {
269 struct drm_device *dev = ring->dev;
270
271 ring->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
272 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
273 (ring->id == VCS || ring->id == VCS2);
274
275 ring->ctx_desc_template = GEN8_CTX_VALID;
276 ring->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
277 GEN8_CTX_ADDRESSING_MODE_SHIFT;
278 if (IS_GEN8(dev))
279 ring->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
280 ring->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
281
282 /* TODO: WaDisableLiteRestore when we start using semaphore
283 * signalling between Command Streamers */
284 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
285
286 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
287 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
288 if (ring->disable_lite_restore_wa)
289 ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
290 }
291
292 /**
293 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
294 * descriptor for a pinned context
295 *
296 * @ctx: Context to work on
297 * @ring: Engine the descriptor will be used with
298 *
299 * The context descriptor encodes various attributes of a context,
300 * including its GTT address and some flags. Because it's fairly
301 * expensive to calculate, we'll just do it once and cache the result,
302 * which remains valid until the context is unpinned.
303 *
304 * This is what a descriptor looks like, from LSB to MSB:
305 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
306 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
307 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
308 * bits 52-63: reserved, may encode the engine ID (for GuC)
309 */
310 static void
311 intel_lr_context_descriptor_update(struct intel_context *ctx,
312 struct intel_engine_cs *ring)
313 {
314 uint64_t lrca, desc;
315
316 lrca = ctx->engine[ring->id].lrc_vma->node.start +
317 LRC_PPHWSP_PN * PAGE_SIZE;
318
319 desc = ring->ctx_desc_template; /* bits 0-11 */
320 desc |= lrca; /* bits 12-31 */
321 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
322
323 ctx->engine[ring->id].lrc_desc = desc;
324 }
325
326 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
327 struct intel_engine_cs *ring)
328 {
329 return ctx->engine[ring->id].lrc_desc;
330 }
331
332 /**
333 * intel_execlists_ctx_id() - get the Execlists Context ID
334 * @ctx: Context to get the ID for
335 * @ring: Engine to get the ID for
336 *
337 * Do not confuse with ctx->id! Unfortunately we have a name overload
338 * here: the old context ID we pass to userspace as a handler so that
339 * they can refer to a context, and the new context ID we pass to the
340 * ELSP so that the GPU can inform us of the context status via
341 * interrupts.
342 *
343 * The context ID is a portion of the context descriptor, so we can
344 * just extract the required part from the cached descriptor.
345 *
346 * Return: 20-bits globally unique context ID.
347 */
348 u32 intel_execlists_ctx_id(struct intel_context *ctx,
349 struct intel_engine_cs *ring)
350 {
351 return intel_lr_context_descriptor(ctx, ring) >> GEN8_CTX_ID_SHIFT;
352 }
353
354 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
355 struct drm_i915_gem_request *rq1)
356 {
357
358 struct intel_engine_cs *ring = rq0->ring;
359 struct drm_device *dev = ring->dev;
360 struct drm_i915_private *dev_priv = dev->dev_private;
361 uint64_t desc[2];
362
363 if (rq1) {
364 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
365 rq1->elsp_submitted++;
366 } else {
367 desc[1] = 0;
368 }
369
370 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
371 rq0->elsp_submitted++;
372
373 /* You must always write both descriptors in the order below. */
374 spin_lock(&dev_priv->uncore.lock);
375 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
376 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
377 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
378
379 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
380 /* The context is automatically loaded after the following */
381 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
382
383 /* ELSP is a wo register, use another nearby reg for posting */
384 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
385 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
386 spin_unlock(&dev_priv->uncore.lock);
387 }
388
389 static int execlists_update_context(struct drm_i915_gem_request *rq)
390 {
391 struct intel_engine_cs *ring = rq->ring;
392 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
393 uint32_t *reg_state = rq->ctx->engine[ring->id].lrc_reg_state;
394
395 reg_state[CTX_RING_TAIL+1] = rq->tail;
396 reg_state[CTX_RING_BUFFER_START+1] = rq->ringbuf->vma->node.start;
397
398 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
399 /* True 32b PPGTT with dynamic page allocation: update PDP
400 * registers and point the unallocated PDPs to scratch page.
401 * PML4 is allocated during ppgtt init, so this is not needed
402 * in 48-bit mode.
403 */
404 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
405 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
406 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
407 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
408 }
409
410 return 0;
411 }
412
413 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
414 struct drm_i915_gem_request *rq1)
415 {
416 execlists_update_context(rq0);
417
418 if (rq1)
419 execlists_update_context(rq1);
420
421 execlists_elsp_write(rq0, rq1);
422 }
423
424 static void execlists_context_unqueue(struct intel_engine_cs *ring)
425 {
426 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
427 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
428
429 assert_spin_locked(&ring->execlist_lock);
430
431 /*
432 * If irqs are not active generate a warning as batches that finish
433 * without the irqs may get lost and a GPU Hang may occur.
434 */
435 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
436
437 if (list_empty(&ring->execlist_queue))
438 return;
439
440 /* Try to read in pairs */
441 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
442 execlist_link) {
443 if (!req0) {
444 req0 = cursor;
445 } else if (req0->ctx == cursor->ctx) {
446 /* Same ctx: ignore first request, as second request
447 * will update tail past first request's workload */
448 cursor->elsp_submitted = req0->elsp_submitted;
449 list_move_tail(&req0->execlist_link,
450 &ring->execlist_retired_req_list);
451 req0 = cursor;
452 } else {
453 req1 = cursor;
454 break;
455 }
456 }
457
458 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
459 /*
460 * WaIdleLiteRestore: make sure we never cause a lite
461 * restore with HEAD==TAIL
462 */
463 if (req0->elsp_submitted) {
464 /*
465 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
466 * as we resubmit the request. See gen8_emit_request()
467 * for where we prepare the padding after the end of the
468 * request.
469 */
470 struct intel_ringbuffer *ringbuf;
471
472 ringbuf = req0->ctx->engine[ring->id].ringbuf;
473 req0->tail += 8;
474 req0->tail &= ringbuf->size - 1;
475 }
476 }
477
478 WARN_ON(req1 && req1->elsp_submitted);
479
480 execlists_submit_requests(req0, req1);
481 }
482
483 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
484 u32 request_id)
485 {
486 struct drm_i915_gem_request *head_req;
487
488 assert_spin_locked(&ring->execlist_lock);
489
490 head_req = list_first_entry_or_null(&ring->execlist_queue,
491 struct drm_i915_gem_request,
492 execlist_link);
493
494 if (head_req != NULL) {
495 if (intel_execlists_ctx_id(head_req->ctx, ring) == request_id) {
496 WARN(head_req->elsp_submitted == 0,
497 "Never submitted head request\n");
498
499 if (--head_req->elsp_submitted <= 0) {
500 list_move_tail(&head_req->execlist_link,
501 &ring->execlist_retired_req_list);
502 return true;
503 }
504 }
505 }
506
507 return false;
508 }
509
510 static void get_context_status(struct intel_engine_cs *ring,
511 u8 read_pointer,
512 u32 *status, u32 *context_id)
513 {
514 struct drm_i915_private *dev_priv = ring->dev->dev_private;
515
516 if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
517 return;
518
519 *status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
520 *context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
521 }
522
523 /**
524 * intel_lrc_irq_handler() - handle Context Switch interrupts
525 * @ring: Engine Command Streamer to handle.
526 *
527 * Check the unread Context Status Buffers and manage the submission of new
528 * contexts to the ELSP accordingly.
529 */
530 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
531 {
532 struct drm_i915_private *dev_priv = ring->dev->dev_private;
533 u32 status_pointer;
534 u8 read_pointer;
535 u8 write_pointer;
536 u32 status = 0;
537 u32 status_id;
538 u32 submit_contexts = 0;
539
540 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
541
542 read_pointer = ring->next_context_status_buffer;
543 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
544 if (read_pointer > write_pointer)
545 write_pointer += GEN8_CSB_ENTRIES;
546
547 spin_lock(&ring->execlist_lock);
548
549 while (read_pointer < write_pointer) {
550
551 get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
552 &status, &status_id);
553
554 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
555 continue;
556
557 if (status & GEN8_CTX_STATUS_PREEMPTED) {
558 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
559 if (execlists_check_remove_request(ring, status_id))
560 WARN(1, "Lite Restored request removed from queue\n");
561 } else
562 WARN(1, "Preemption without Lite Restore\n");
563 }
564
565 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
566 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
567 if (execlists_check_remove_request(ring, status_id))
568 submit_contexts++;
569 }
570 }
571
572 if (ring->disable_lite_restore_wa) {
573 /* Prevent a ctx to preempt itself */
574 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
575 (submit_contexts != 0))
576 execlists_context_unqueue(ring);
577 } else if (submit_contexts != 0) {
578 execlists_context_unqueue(ring);
579 }
580
581 spin_unlock(&ring->execlist_lock);
582
583 if (unlikely(submit_contexts > 2))
584 DRM_ERROR("More than two context complete events?\n");
585
586 ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
587
588 /* Update the read pointer to the old write pointer. Manual ringbuffer
589 * management ftw </sarcasm> */
590 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
591 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
592 ring->next_context_status_buffer << 8));
593 }
594
595 static int execlists_context_queue(struct drm_i915_gem_request *request)
596 {
597 struct intel_engine_cs *ring = request->ring;
598 struct drm_i915_gem_request *cursor;
599 int num_elements = 0;
600
601 if (request->ctx != request->i915->kernel_context)
602 intel_lr_context_pin(request);
603
604 i915_gem_request_reference(request);
605
606 spin_lock_irq(&ring->execlist_lock);
607
608 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
609 if (++num_elements > 2)
610 break;
611
612 if (num_elements > 2) {
613 struct drm_i915_gem_request *tail_req;
614
615 tail_req = list_last_entry(&ring->execlist_queue,
616 struct drm_i915_gem_request,
617 execlist_link);
618
619 if (request->ctx == tail_req->ctx) {
620 WARN(tail_req->elsp_submitted != 0,
621 "More than 2 already-submitted reqs queued\n");
622 list_move_tail(&tail_req->execlist_link,
623 &ring->execlist_retired_req_list);
624 }
625 }
626
627 list_add_tail(&request->execlist_link, &ring->execlist_queue);
628 if (num_elements == 0)
629 execlists_context_unqueue(ring);
630
631 spin_unlock_irq(&ring->execlist_lock);
632
633 return 0;
634 }
635
636 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
637 {
638 struct intel_engine_cs *ring = req->ring;
639 uint32_t flush_domains;
640 int ret;
641
642 flush_domains = 0;
643 if (ring->gpu_caches_dirty)
644 flush_domains = I915_GEM_GPU_DOMAINS;
645
646 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
647 if (ret)
648 return ret;
649
650 ring->gpu_caches_dirty = false;
651 return 0;
652 }
653
654 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
655 struct list_head *vmas)
656 {
657 const unsigned other_rings = ~intel_ring_flag(req->ring);
658 struct i915_vma *vma;
659 uint32_t flush_domains = 0;
660 bool flush_chipset = false;
661 int ret;
662
663 list_for_each_entry(vma, vmas, exec_list) {
664 struct drm_i915_gem_object *obj = vma->obj;
665
666 if (obj->active & other_rings) {
667 ret = i915_gem_object_sync(obj, req->ring, &req);
668 if (ret)
669 return ret;
670 }
671
672 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
673 flush_chipset |= i915_gem_clflush_object(obj, false);
674
675 flush_domains |= obj->base.write_domain;
676 }
677
678 if (flush_domains & I915_GEM_DOMAIN_GTT)
679 wmb();
680
681 /* Unconditionally invalidate gpu caches and ensure that we do flush
682 * any residual writes from the previous batch.
683 */
684 return logical_ring_invalidate_all_caches(req);
685 }
686
687 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
688 {
689 int ret = 0;
690
691 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
692
693 if (i915.enable_guc_submission) {
694 /*
695 * Check that the GuC has space for the request before
696 * going any further, as the i915_add_request() call
697 * later on mustn't fail ...
698 */
699 struct intel_guc *guc = &request->i915->guc;
700
701 ret = i915_guc_wq_check_space(guc->execbuf_client);
702 if (ret)
703 return ret;
704 }
705
706 if (request->ctx != request->i915->kernel_context)
707 ret = intel_lr_context_pin(request);
708
709 return ret;
710 }
711
712 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
713 int bytes)
714 {
715 struct intel_ringbuffer *ringbuf = req->ringbuf;
716 struct intel_engine_cs *ring = req->ring;
717 struct drm_i915_gem_request *target;
718 unsigned space;
719 int ret;
720
721 if (intel_ring_space(ringbuf) >= bytes)
722 return 0;
723
724 /* The whole point of reserving space is to not wait! */
725 WARN_ON(ringbuf->reserved_in_use);
726
727 list_for_each_entry(target, &ring->request_list, list) {
728 /*
729 * The request queue is per-engine, so can contain requests
730 * from multiple ringbuffers. Here, we must ignore any that
731 * aren't from the ringbuffer we're considering.
732 */
733 if (target->ringbuf != ringbuf)
734 continue;
735
736 /* Would completion of this request free enough space? */
737 space = __intel_ring_space(target->postfix, ringbuf->tail,
738 ringbuf->size);
739 if (space >= bytes)
740 break;
741 }
742
743 if (WARN_ON(&target->list == &ring->request_list))
744 return -ENOSPC;
745
746 ret = i915_wait_request(target);
747 if (ret)
748 return ret;
749
750 ringbuf->space = space;
751 return 0;
752 }
753
754 /*
755 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
756 * @request: Request to advance the logical ringbuffer of.
757 *
758 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
759 * really happens during submission is that the context and current tail will be placed
760 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
761 * point, the tail *inside* the context is updated and the ELSP written to.
762 */
763 static void
764 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
765 {
766 struct intel_engine_cs *ring = request->ring;
767 struct drm_i915_private *dev_priv = request->i915;
768
769 intel_logical_ring_advance(request->ringbuf);
770
771 request->tail = request->ringbuf->tail;
772
773 if (intel_ring_stopped(ring))
774 return;
775
776 if (dev_priv->guc.execbuf_client)
777 i915_guc_submit(dev_priv->guc.execbuf_client, request);
778 else
779 execlists_context_queue(request);
780 }
781
782 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
783 {
784 uint32_t __iomem *virt;
785 int rem = ringbuf->size - ringbuf->tail;
786
787 virt = ringbuf->virtual_start + ringbuf->tail;
788 rem /= 4;
789 while (rem--)
790 iowrite32(MI_NOOP, virt++);
791
792 ringbuf->tail = 0;
793 intel_ring_update_space(ringbuf);
794 }
795
796 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
797 {
798 struct intel_ringbuffer *ringbuf = req->ringbuf;
799 int remain_usable = ringbuf->effective_size - ringbuf->tail;
800 int remain_actual = ringbuf->size - ringbuf->tail;
801 int ret, total_bytes, wait_bytes = 0;
802 bool need_wrap = false;
803
804 if (ringbuf->reserved_in_use)
805 total_bytes = bytes;
806 else
807 total_bytes = bytes + ringbuf->reserved_size;
808
809 if (unlikely(bytes > remain_usable)) {
810 /*
811 * Not enough space for the basic request. So need to flush
812 * out the remainder and then wait for base + reserved.
813 */
814 wait_bytes = remain_actual + total_bytes;
815 need_wrap = true;
816 } else {
817 if (unlikely(total_bytes > remain_usable)) {
818 /*
819 * The base request will fit but the reserved space
820 * falls off the end. So only need to to wait for the
821 * reserved size after flushing out the remainder.
822 */
823 wait_bytes = remain_actual + ringbuf->reserved_size;
824 need_wrap = true;
825 } else if (total_bytes > ringbuf->space) {
826 /* No wrapping required, just waiting. */
827 wait_bytes = total_bytes;
828 }
829 }
830
831 if (wait_bytes) {
832 ret = logical_ring_wait_for_space(req, wait_bytes);
833 if (unlikely(ret))
834 return ret;
835
836 if (need_wrap)
837 __wrap_ring_buffer(ringbuf);
838 }
839
840 return 0;
841 }
842
843 /**
844 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
845 *
846 * @req: The request to start some new work for
847 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
848 *
849 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
850 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
851 * and also preallocates a request (every workload submission is still mediated through
852 * requests, same as it did with legacy ringbuffer submission).
853 *
854 * Return: non-zero if the ringbuffer is not ready to be written to.
855 */
856 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
857 {
858 struct drm_i915_private *dev_priv;
859 int ret;
860
861 WARN_ON(req == NULL);
862 dev_priv = req->ring->dev->dev_private;
863
864 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
865 dev_priv->mm.interruptible);
866 if (ret)
867 return ret;
868
869 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
870 if (ret)
871 return ret;
872
873 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
874 return 0;
875 }
876
877 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
878 {
879 /*
880 * The first call merely notes the reserve request and is common for
881 * all back ends. The subsequent localised _begin() call actually
882 * ensures that the reservation is available. Without the begin, if
883 * the request creator immediately submitted the request without
884 * adding any commands to it then there might not actually be
885 * sufficient room for the submission commands.
886 */
887 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
888
889 return intel_logical_ring_begin(request, 0);
890 }
891
892 /**
893 * execlists_submission() - submit a batchbuffer for execution, Execlists style
894 * @dev: DRM device.
895 * @file: DRM file.
896 * @ring: Engine Command Streamer to submit to.
897 * @ctx: Context to employ for this submission.
898 * @args: execbuffer call arguments.
899 * @vmas: list of vmas.
900 * @batch_obj: the batchbuffer to submit.
901 * @exec_start: batchbuffer start virtual address pointer.
902 * @dispatch_flags: translated execbuffer call flags.
903 *
904 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
905 * away the submission details of the execbuffer ioctl call.
906 *
907 * Return: non-zero if the submission fails.
908 */
909 int intel_execlists_submission(struct i915_execbuffer_params *params,
910 struct drm_i915_gem_execbuffer2 *args,
911 struct list_head *vmas)
912 {
913 struct drm_device *dev = params->dev;
914 struct intel_engine_cs *ring = params->ring;
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
917 u64 exec_start;
918 int instp_mode;
919 u32 instp_mask;
920 int ret;
921
922 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
923 instp_mask = I915_EXEC_CONSTANTS_MASK;
924 switch (instp_mode) {
925 case I915_EXEC_CONSTANTS_REL_GENERAL:
926 case I915_EXEC_CONSTANTS_ABSOLUTE:
927 case I915_EXEC_CONSTANTS_REL_SURFACE:
928 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
929 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
930 return -EINVAL;
931 }
932
933 if (instp_mode != dev_priv->relative_constants_mode) {
934 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
935 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
936 return -EINVAL;
937 }
938
939 /* The HW changed the meaning on this bit on gen6 */
940 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
941 }
942 break;
943 default:
944 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
945 return -EINVAL;
946 }
947
948 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
949 DRM_DEBUG("sol reset is gen7 only\n");
950 return -EINVAL;
951 }
952
953 ret = execlists_move_to_gpu(params->request, vmas);
954 if (ret)
955 return ret;
956
957 if (ring == &dev_priv->ring[RCS] &&
958 instp_mode != dev_priv->relative_constants_mode) {
959 ret = intel_logical_ring_begin(params->request, 4);
960 if (ret)
961 return ret;
962
963 intel_logical_ring_emit(ringbuf, MI_NOOP);
964 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
965 intel_logical_ring_emit_reg(ringbuf, INSTPM);
966 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
967 intel_logical_ring_advance(ringbuf);
968
969 dev_priv->relative_constants_mode = instp_mode;
970 }
971
972 exec_start = params->batch_obj_vm_offset +
973 args->batch_start_offset;
974
975 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
976 if (ret)
977 return ret;
978
979 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
980
981 i915_gem_execbuffer_move_to_active(vmas, params->request);
982 i915_gem_execbuffer_retire_commands(params);
983
984 return 0;
985 }
986
987 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
988 {
989 struct drm_i915_gem_request *req, *tmp;
990 struct list_head retired_list;
991
992 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
993 if (list_empty(&ring->execlist_retired_req_list))
994 return;
995
996 INIT_LIST_HEAD(&retired_list);
997 spin_lock_irq(&ring->execlist_lock);
998 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
999 spin_unlock_irq(&ring->execlist_lock);
1000
1001 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1002 struct intel_context *ctx = req->ctx;
1003 struct drm_i915_gem_object *ctx_obj =
1004 ctx->engine[ring->id].state;
1005
1006 if (ctx_obj && (ctx != req->i915->kernel_context))
1007 intel_lr_context_unpin(req);
1008 list_del(&req->execlist_link);
1009 i915_gem_request_unreference(req);
1010 }
1011 }
1012
1013 void intel_logical_ring_stop(struct intel_engine_cs *ring)
1014 {
1015 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1016 int ret;
1017
1018 if (!intel_ring_initialized(ring))
1019 return;
1020
1021 ret = intel_ring_idle(ring);
1022 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1023 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1024 ring->name, ret);
1025
1026 /* TODO: Is this correct with Execlists enabled? */
1027 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1028 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1029 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1030 return;
1031 }
1032 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1033 }
1034
1035 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1036 {
1037 struct intel_engine_cs *ring = req->ring;
1038 int ret;
1039
1040 if (!ring->gpu_caches_dirty)
1041 return 0;
1042
1043 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1044 if (ret)
1045 return ret;
1046
1047 ring->gpu_caches_dirty = false;
1048 return 0;
1049 }
1050
1051 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1052 struct intel_context *ctx)
1053 {
1054 struct drm_device *dev = ring->dev;
1055 struct drm_i915_private *dev_priv = dev->dev_private;
1056 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1057 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1058 struct page *lrc_state_page;
1059 int ret;
1060
1061 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1062
1063 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1064 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1065 if (ret)
1066 return ret;
1067
1068 lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1069 if (WARN_ON(!lrc_state_page)) {
1070 ret = -ENODEV;
1071 goto unpin_ctx_obj;
1072 }
1073
1074 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1075 if (ret)
1076 goto unpin_ctx_obj;
1077
1078 ctx->engine[ring->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1079 intel_lr_context_descriptor_update(ctx, ring);
1080 ctx->engine[ring->id].lrc_reg_state = kmap(lrc_state_page);
1081 ctx_obj->dirty = true;
1082
1083 /* Invalidate GuC TLB. */
1084 if (i915.enable_guc_submission)
1085 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1086
1087 return ret;
1088
1089 unpin_ctx_obj:
1090 i915_gem_object_ggtt_unpin(ctx_obj);
1091
1092 return ret;
1093 }
1094
1095 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1096 {
1097 int ret = 0;
1098 struct intel_engine_cs *ring = rq->ring;
1099
1100 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1101 ret = intel_lr_context_do_pin(ring, rq->ctx);
1102 if (ret)
1103 goto reset_pin_count;
1104 }
1105 return ret;
1106
1107 reset_pin_count:
1108 rq->ctx->engine[ring->id].pin_count = 0;
1109 return ret;
1110 }
1111
1112 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1113 {
1114 struct intel_engine_cs *ring = rq->ring;
1115 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1116 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1117
1118 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1119
1120 if (!ctx_obj)
1121 return;
1122
1123 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1124 kunmap(kmap_to_page(rq->ctx->engine[ring->id].lrc_reg_state));
1125 intel_unpin_ringbuffer_obj(ringbuf);
1126 i915_gem_object_ggtt_unpin(ctx_obj);
1127 rq->ctx->engine[ring->id].lrc_vma = NULL;
1128 rq->ctx->engine[ring->id].lrc_desc = 0;
1129 rq->ctx->engine[ring->id].lrc_reg_state = NULL;
1130 }
1131 }
1132
1133 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1134 {
1135 int ret, i;
1136 struct intel_engine_cs *ring = req->ring;
1137 struct intel_ringbuffer *ringbuf = req->ringbuf;
1138 struct drm_device *dev = ring->dev;
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140 struct i915_workarounds *w = &dev_priv->workarounds;
1141
1142 if (w->count == 0)
1143 return 0;
1144
1145 ring->gpu_caches_dirty = true;
1146 ret = logical_ring_flush_all_caches(req);
1147 if (ret)
1148 return ret;
1149
1150 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1151 if (ret)
1152 return ret;
1153
1154 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1155 for (i = 0; i < w->count; i++) {
1156 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1157 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1158 }
1159 intel_logical_ring_emit(ringbuf, MI_NOOP);
1160
1161 intel_logical_ring_advance(ringbuf);
1162
1163 ring->gpu_caches_dirty = true;
1164 ret = logical_ring_flush_all_caches(req);
1165 if (ret)
1166 return ret;
1167
1168 return 0;
1169 }
1170
1171 #define wa_ctx_emit(batch, index, cmd) \
1172 do { \
1173 int __index = (index)++; \
1174 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1175 return -ENOSPC; \
1176 } \
1177 batch[__index] = (cmd); \
1178 } while (0)
1179
1180 #define wa_ctx_emit_reg(batch, index, reg) \
1181 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1182
1183 /*
1184 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1185 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1186 * but there is a slight complication as this is applied in WA batch where the
1187 * values are only initialized once so we cannot take register value at the
1188 * beginning and reuse it further; hence we save its value to memory, upload a
1189 * constant value with bit21 set and then we restore it back with the saved value.
1190 * To simplify the WA, a constant value is formed by using the default value
1191 * of this register. This shouldn't be a problem because we are only modifying
1192 * it for a short period and this batch in non-premptible. We can ofcourse
1193 * use additional instructions that read the actual value of the register
1194 * at that time and set our bit of interest but it makes the WA complicated.
1195 *
1196 * This WA is also required for Gen9 so extracting as a function avoids
1197 * code duplication.
1198 */
1199 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1200 uint32_t *const batch,
1201 uint32_t index)
1202 {
1203 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1204
1205 /*
1206 * WaDisableLSQCROPERFforOCL:skl
1207 * This WA is implemented in skl_init_clock_gating() but since
1208 * this batch updates GEN8_L3SQCREG4 with default value we need to
1209 * set this bit here to retain the WA during flush.
1210 */
1211 if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1212 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1213
1214 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1215 MI_SRM_LRM_GLOBAL_GTT));
1216 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1217 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1218 wa_ctx_emit(batch, index, 0);
1219
1220 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1221 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1222 wa_ctx_emit(batch, index, l3sqc4_flush);
1223
1224 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1225 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1226 PIPE_CONTROL_DC_FLUSH_ENABLE));
1227 wa_ctx_emit(batch, index, 0);
1228 wa_ctx_emit(batch, index, 0);
1229 wa_ctx_emit(batch, index, 0);
1230 wa_ctx_emit(batch, index, 0);
1231
1232 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1233 MI_SRM_LRM_GLOBAL_GTT));
1234 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1235 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1236 wa_ctx_emit(batch, index, 0);
1237
1238 return index;
1239 }
1240
1241 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1242 uint32_t offset,
1243 uint32_t start_alignment)
1244 {
1245 return wa_ctx->offset = ALIGN(offset, start_alignment);
1246 }
1247
1248 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1249 uint32_t offset,
1250 uint32_t size_alignment)
1251 {
1252 wa_ctx->size = offset - wa_ctx->offset;
1253
1254 WARN(wa_ctx->size % size_alignment,
1255 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1256 wa_ctx->size, size_alignment);
1257 return 0;
1258 }
1259
1260 /**
1261 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1262 *
1263 * @ring: only applicable for RCS
1264 * @wa_ctx: structure representing wa_ctx
1265 * offset: specifies start of the batch, should be cache-aligned. This is updated
1266 * with the offset value received as input.
1267 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1268 * @batch: page in which WA are loaded
1269 * @offset: This field specifies the start of the batch, it should be
1270 * cache-aligned otherwise it is adjusted accordingly.
1271 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1272 * initialized at the beginning and shared across all contexts but this field
1273 * helps us to have multiple batches at different offsets and select them based
1274 * on a criteria. At the moment this batch always start at the beginning of the page
1275 * and at this point we don't have multiple wa_ctx batch buffers.
1276 *
1277 * The number of WA applied are not known at the beginning; we use this field
1278 * to return the no of DWORDS written.
1279 *
1280 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1281 * so it adds NOOPs as padding to make it cacheline aligned.
1282 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1283 * makes a complete batch buffer.
1284 *
1285 * Return: non-zero if we exceed the PAGE_SIZE limit.
1286 */
1287
1288 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1289 struct i915_wa_ctx_bb *wa_ctx,
1290 uint32_t *const batch,
1291 uint32_t *offset)
1292 {
1293 uint32_t scratch_addr;
1294 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1295
1296 /* WaDisableCtxRestoreArbitration:bdw,chv */
1297 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1298
1299 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1300 if (IS_BROADWELL(ring->dev)) {
1301 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1302 if (rc < 0)
1303 return rc;
1304 index = rc;
1305 }
1306
1307 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1308 /* Actual scratch location is at 128 bytes offset */
1309 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1310
1311 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1312 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1313 PIPE_CONTROL_GLOBAL_GTT_IVB |
1314 PIPE_CONTROL_CS_STALL |
1315 PIPE_CONTROL_QW_WRITE));
1316 wa_ctx_emit(batch, index, scratch_addr);
1317 wa_ctx_emit(batch, index, 0);
1318 wa_ctx_emit(batch, index, 0);
1319 wa_ctx_emit(batch, index, 0);
1320
1321 /* Pad to end of cacheline */
1322 while (index % CACHELINE_DWORDS)
1323 wa_ctx_emit(batch, index, MI_NOOP);
1324
1325 /*
1326 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1327 * execution depends on the length specified in terms of cache lines
1328 * in the register CTX_RCS_INDIRECT_CTX
1329 */
1330
1331 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1332 }
1333
1334 /**
1335 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1336 *
1337 * @ring: only applicable for RCS
1338 * @wa_ctx: structure representing wa_ctx
1339 * offset: specifies start of the batch, should be cache-aligned.
1340 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1341 * @batch: page in which WA are loaded
1342 * @offset: This field specifies the start of this batch.
1343 * This batch is started immediately after indirect_ctx batch. Since we ensure
1344 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1345 *
1346 * The number of DWORDS written are returned using this field.
1347 *
1348 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1349 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1350 */
1351 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1352 struct i915_wa_ctx_bb *wa_ctx,
1353 uint32_t *const batch,
1354 uint32_t *offset)
1355 {
1356 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1357
1358 /* WaDisableCtxRestoreArbitration:bdw,chv */
1359 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1360
1361 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1362
1363 return wa_ctx_end(wa_ctx, *offset = index, 1);
1364 }
1365
1366 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1367 struct i915_wa_ctx_bb *wa_ctx,
1368 uint32_t *const batch,
1369 uint32_t *offset)
1370 {
1371 int ret;
1372 struct drm_device *dev = ring->dev;
1373 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1374
1375 /* WaDisableCtxRestoreArbitration:skl,bxt */
1376 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1377 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1378 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1379
1380 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1381 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1382 if (ret < 0)
1383 return ret;
1384 index = ret;
1385
1386 /* Pad to end of cacheline */
1387 while (index % CACHELINE_DWORDS)
1388 wa_ctx_emit(batch, index, MI_NOOP);
1389
1390 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1391 }
1392
1393 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1394 struct i915_wa_ctx_bb *wa_ctx,
1395 uint32_t *const batch,
1396 uint32_t *offset)
1397 {
1398 struct drm_device *dev = ring->dev;
1399 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1400
1401 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1402 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1403 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1404 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1405 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1406 wa_ctx_emit(batch, index,
1407 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1408 wa_ctx_emit(batch, index, MI_NOOP);
1409 }
1410
1411 /* WaDisableCtxRestoreArbitration:skl,bxt */
1412 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1413 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1414 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1415
1416 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1417
1418 return wa_ctx_end(wa_ctx, *offset = index, 1);
1419 }
1420
1421 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1422 {
1423 int ret;
1424
1425 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1426 if (!ring->wa_ctx.obj) {
1427 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1428 return -ENOMEM;
1429 }
1430
1431 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1432 if (ret) {
1433 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1434 ret);
1435 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1436 return ret;
1437 }
1438
1439 return 0;
1440 }
1441
1442 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1443 {
1444 if (ring->wa_ctx.obj) {
1445 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1446 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1447 ring->wa_ctx.obj = NULL;
1448 }
1449 }
1450
1451 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1452 {
1453 int ret;
1454 uint32_t *batch;
1455 uint32_t offset;
1456 struct page *page;
1457 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1458
1459 WARN_ON(ring->id != RCS);
1460
1461 /* update this when WA for higher Gen are added */
1462 if (INTEL_INFO(ring->dev)->gen > 9) {
1463 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1464 INTEL_INFO(ring->dev)->gen);
1465 return 0;
1466 }
1467
1468 /* some WA perform writes to scratch page, ensure it is valid */
1469 if (ring->scratch.obj == NULL) {
1470 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1471 return -EINVAL;
1472 }
1473
1474 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1475 if (ret) {
1476 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1477 return ret;
1478 }
1479
1480 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1481 batch = kmap_atomic(page);
1482 offset = 0;
1483
1484 if (INTEL_INFO(ring->dev)->gen == 8) {
1485 ret = gen8_init_indirectctx_bb(ring,
1486 &wa_ctx->indirect_ctx,
1487 batch,
1488 &offset);
1489 if (ret)
1490 goto out;
1491
1492 ret = gen8_init_perctx_bb(ring,
1493 &wa_ctx->per_ctx,
1494 batch,
1495 &offset);
1496 if (ret)
1497 goto out;
1498 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1499 ret = gen9_init_indirectctx_bb(ring,
1500 &wa_ctx->indirect_ctx,
1501 batch,
1502 &offset);
1503 if (ret)
1504 goto out;
1505
1506 ret = gen9_init_perctx_bb(ring,
1507 &wa_ctx->per_ctx,
1508 batch,
1509 &offset);
1510 if (ret)
1511 goto out;
1512 }
1513
1514 out:
1515 kunmap_atomic(batch);
1516 if (ret)
1517 lrc_destroy_wa_ctx_obj(ring);
1518
1519 return ret;
1520 }
1521
1522 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1523 {
1524 struct drm_device *dev = ring->dev;
1525 struct drm_i915_private *dev_priv = dev->dev_private;
1526 u8 next_context_status_buffer_hw;
1527
1528 lrc_setup_hardware_status_page(ring,
1529 dev_priv->kernel_context->engine[ring->id].state);
1530
1531 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1532 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1533
1534 I915_WRITE(RING_MODE_GEN7(ring),
1535 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1536 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1537 POSTING_READ(RING_MODE_GEN7(ring));
1538
1539 /*
1540 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1541 * zero, we need to read the write pointer from hardware and use its
1542 * value because "this register is power context save restored".
1543 * Effectively, these states have been observed:
1544 *
1545 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1546 * BDW | CSB regs not reset | CSB regs reset |
1547 * CHT | CSB regs not reset | CSB regs not reset |
1548 * SKL | ? | ? |
1549 * BXT | ? | ? |
1550 */
1551 next_context_status_buffer_hw =
1552 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
1553
1554 /*
1555 * When the CSB registers are reset (also after power-up / gpu reset),
1556 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1557 * this special case, so the first element read is CSB[0].
1558 */
1559 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1560 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1561
1562 ring->next_context_status_buffer = next_context_status_buffer_hw;
1563 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1564
1565 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1566
1567 return 0;
1568 }
1569
1570 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1571 {
1572 struct drm_device *dev = ring->dev;
1573 struct drm_i915_private *dev_priv = dev->dev_private;
1574 int ret;
1575
1576 ret = gen8_init_common_ring(ring);
1577 if (ret)
1578 return ret;
1579
1580 /* We need to disable the AsyncFlip performance optimisations in order
1581 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1582 * programmed to '1' on all products.
1583 *
1584 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1585 */
1586 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1587
1588 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1589
1590 return init_workarounds_ring(ring);
1591 }
1592
1593 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1594 {
1595 int ret;
1596
1597 ret = gen8_init_common_ring(ring);
1598 if (ret)
1599 return ret;
1600
1601 return init_workarounds_ring(ring);
1602 }
1603
1604 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1605 {
1606 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1607 struct intel_engine_cs *ring = req->ring;
1608 struct intel_ringbuffer *ringbuf = req->ringbuf;
1609 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1610 int i, ret;
1611
1612 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1613 if (ret)
1614 return ret;
1615
1616 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1617 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1618 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1619
1620 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1621 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1622 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1623 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1624 }
1625
1626 intel_logical_ring_emit(ringbuf, MI_NOOP);
1627 intel_logical_ring_advance(ringbuf);
1628
1629 return 0;
1630 }
1631
1632 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1633 u64 offset, unsigned dispatch_flags)
1634 {
1635 struct intel_ringbuffer *ringbuf = req->ringbuf;
1636 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1637 int ret;
1638
1639 /* Don't rely in hw updating PDPs, specially in lite-restore.
1640 * Ideally, we should set Force PD Restore in ctx descriptor,
1641 * but we can't. Force Restore would be a second option, but
1642 * it is unsafe in case of lite-restore (because the ctx is
1643 * not idle). PML4 is allocated during ppgtt init so this is
1644 * not needed in 48-bit.*/
1645 if (req->ctx->ppgtt &&
1646 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1647 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1648 !intel_vgpu_active(req->i915->dev)) {
1649 ret = intel_logical_ring_emit_pdps(req);
1650 if (ret)
1651 return ret;
1652 }
1653
1654 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1655 }
1656
1657 ret = intel_logical_ring_begin(req, 4);
1658 if (ret)
1659 return ret;
1660
1661 /* FIXME(BDW): Address space and security selectors. */
1662 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1663 (ppgtt<<8) |
1664 (dispatch_flags & I915_DISPATCH_RS ?
1665 MI_BATCH_RESOURCE_STREAMER : 0));
1666 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1667 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1668 intel_logical_ring_emit(ringbuf, MI_NOOP);
1669 intel_logical_ring_advance(ringbuf);
1670
1671 return 0;
1672 }
1673
1674 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1675 {
1676 struct drm_device *dev = ring->dev;
1677 struct drm_i915_private *dev_priv = dev->dev_private;
1678 unsigned long flags;
1679
1680 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1681 return false;
1682
1683 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1684 if (ring->irq_refcount++ == 0) {
1685 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1686 POSTING_READ(RING_IMR(ring->mmio_base));
1687 }
1688 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1689
1690 return true;
1691 }
1692
1693 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1694 {
1695 struct drm_device *dev = ring->dev;
1696 struct drm_i915_private *dev_priv = dev->dev_private;
1697 unsigned long flags;
1698
1699 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1700 if (--ring->irq_refcount == 0) {
1701 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1702 POSTING_READ(RING_IMR(ring->mmio_base));
1703 }
1704 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1705 }
1706
1707 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1708 u32 invalidate_domains,
1709 u32 unused)
1710 {
1711 struct intel_ringbuffer *ringbuf = request->ringbuf;
1712 struct intel_engine_cs *ring = ringbuf->ring;
1713 struct drm_device *dev = ring->dev;
1714 struct drm_i915_private *dev_priv = dev->dev_private;
1715 uint32_t cmd;
1716 int ret;
1717
1718 ret = intel_logical_ring_begin(request, 4);
1719 if (ret)
1720 return ret;
1721
1722 cmd = MI_FLUSH_DW + 1;
1723
1724 /* We always require a command barrier so that subsequent
1725 * commands, such as breadcrumb interrupts, are strictly ordered
1726 * wrt the contents of the write cache being flushed to memory
1727 * (and thus being coherent from the CPU).
1728 */
1729 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1730
1731 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1732 cmd |= MI_INVALIDATE_TLB;
1733 if (ring == &dev_priv->ring[VCS])
1734 cmd |= MI_INVALIDATE_BSD;
1735 }
1736
1737 intel_logical_ring_emit(ringbuf, cmd);
1738 intel_logical_ring_emit(ringbuf,
1739 I915_GEM_HWS_SCRATCH_ADDR |
1740 MI_FLUSH_DW_USE_GTT);
1741 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1742 intel_logical_ring_emit(ringbuf, 0); /* value */
1743 intel_logical_ring_advance(ringbuf);
1744
1745 return 0;
1746 }
1747
1748 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1749 u32 invalidate_domains,
1750 u32 flush_domains)
1751 {
1752 struct intel_ringbuffer *ringbuf = request->ringbuf;
1753 struct intel_engine_cs *ring = ringbuf->ring;
1754 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1755 bool vf_flush_wa = false;
1756 u32 flags = 0;
1757 int ret;
1758
1759 flags |= PIPE_CONTROL_CS_STALL;
1760
1761 if (flush_domains) {
1762 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1763 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1764 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1765 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1766 }
1767
1768 if (invalidate_domains) {
1769 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1770 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1771 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1772 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1773 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1774 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1775 flags |= PIPE_CONTROL_QW_WRITE;
1776 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1777
1778 /*
1779 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1780 * pipe control.
1781 */
1782 if (IS_GEN9(ring->dev))
1783 vf_flush_wa = true;
1784 }
1785
1786 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1787 if (ret)
1788 return ret;
1789
1790 if (vf_flush_wa) {
1791 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1792 intel_logical_ring_emit(ringbuf, 0);
1793 intel_logical_ring_emit(ringbuf, 0);
1794 intel_logical_ring_emit(ringbuf, 0);
1795 intel_logical_ring_emit(ringbuf, 0);
1796 intel_logical_ring_emit(ringbuf, 0);
1797 }
1798
1799 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1800 intel_logical_ring_emit(ringbuf, flags);
1801 intel_logical_ring_emit(ringbuf, scratch_addr);
1802 intel_logical_ring_emit(ringbuf, 0);
1803 intel_logical_ring_emit(ringbuf, 0);
1804 intel_logical_ring_emit(ringbuf, 0);
1805 intel_logical_ring_advance(ringbuf);
1806
1807 return 0;
1808 }
1809
1810 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1811 {
1812 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1813 }
1814
1815 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1816 {
1817 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1818 }
1819
1820 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1821 {
1822
1823 /*
1824 * On BXT A steppings there is a HW coherency issue whereby the
1825 * MI_STORE_DATA_IMM storing the completed request's seqno
1826 * occasionally doesn't invalidate the CPU cache. Work around this by
1827 * clflushing the corresponding cacheline whenever the caller wants
1828 * the coherency to be guaranteed. Note that this cacheline is known
1829 * to be clean at this point, since we only write it in
1830 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1831 * this clflush in practice becomes an invalidate operation.
1832 */
1833
1834 if (!lazy_coherency)
1835 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1836
1837 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1838 }
1839
1840 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1841 {
1842 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1843
1844 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1845 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1846 }
1847
1848 static int gen8_emit_request(struct drm_i915_gem_request *request)
1849 {
1850 struct intel_ringbuffer *ringbuf = request->ringbuf;
1851 struct intel_engine_cs *ring = ringbuf->ring;
1852 u32 cmd;
1853 int ret;
1854
1855 /*
1856 * Reserve space for 2 NOOPs at the end of each request to be
1857 * used as a workaround for not being allowed to do lite
1858 * restore with HEAD==TAIL (WaIdleLiteRestore).
1859 */
1860 ret = intel_logical_ring_begin(request, 8);
1861 if (ret)
1862 return ret;
1863
1864 cmd = MI_STORE_DWORD_IMM_GEN4;
1865 cmd |= MI_GLOBAL_GTT;
1866
1867 intel_logical_ring_emit(ringbuf, cmd);
1868 intel_logical_ring_emit(ringbuf,
1869 (ring->status_page.gfx_addr +
1870 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1871 intel_logical_ring_emit(ringbuf, 0);
1872 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1873 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1874 intel_logical_ring_emit(ringbuf, MI_NOOP);
1875 intel_logical_ring_advance_and_submit(request);
1876
1877 /*
1878 * Here we add two extra NOOPs as padding to avoid
1879 * lite restore of a context with HEAD==TAIL.
1880 */
1881 intel_logical_ring_emit(ringbuf, MI_NOOP);
1882 intel_logical_ring_emit(ringbuf, MI_NOOP);
1883 intel_logical_ring_advance(ringbuf);
1884
1885 return 0;
1886 }
1887
1888 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1889 {
1890 struct render_state so;
1891 int ret;
1892
1893 ret = i915_gem_render_state_prepare(req->ring, &so);
1894 if (ret)
1895 return ret;
1896
1897 if (so.rodata == NULL)
1898 return 0;
1899
1900 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1901 I915_DISPATCH_SECURE);
1902 if (ret)
1903 goto out;
1904
1905 ret = req->ring->emit_bb_start(req,
1906 (so.ggtt_offset + so.aux_batch_offset),
1907 I915_DISPATCH_SECURE);
1908 if (ret)
1909 goto out;
1910
1911 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1912
1913 out:
1914 i915_gem_render_state_fini(&so);
1915 return ret;
1916 }
1917
1918 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1919 {
1920 int ret;
1921
1922 ret = intel_logical_ring_workarounds_emit(req);
1923 if (ret)
1924 return ret;
1925
1926 ret = intel_rcs_context_init_mocs(req);
1927 /*
1928 * Failing to program the MOCS is non-fatal.The system will not
1929 * run at peak performance. So generate an error and carry on.
1930 */
1931 if (ret)
1932 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1933
1934 return intel_lr_context_render_state_init(req);
1935 }
1936
1937 /**
1938 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1939 *
1940 * @ring: Engine Command Streamer.
1941 *
1942 */
1943 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1944 {
1945 struct drm_i915_private *dev_priv;
1946
1947 if (!intel_ring_initialized(ring))
1948 return;
1949
1950 dev_priv = ring->dev->dev_private;
1951
1952 if (ring->buffer) {
1953 intel_logical_ring_stop(ring);
1954 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1955 }
1956
1957 if (ring->cleanup)
1958 ring->cleanup(ring);
1959
1960 i915_cmd_parser_fini_ring(ring);
1961 i915_gem_batch_pool_fini(&ring->batch_pool);
1962
1963 if (ring->status_page.obj) {
1964 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1965 ring->status_page.obj = NULL;
1966 }
1967
1968 ring->disable_lite_restore_wa = false;
1969 ring->ctx_desc_template = 0;
1970
1971 lrc_destroy_wa_ctx_obj(ring);
1972 ring->dev = NULL;
1973 }
1974
1975 static void
1976 logical_ring_default_vfuncs(struct drm_device *dev,
1977 struct intel_engine_cs *ring)
1978 {
1979 /* Default vfuncs which can be overriden by each engine. */
1980 ring->init_hw = gen8_init_common_ring;
1981 ring->emit_request = gen8_emit_request;
1982 ring->emit_flush = gen8_emit_flush;
1983 ring->irq_get = gen8_logical_ring_get_irq;
1984 ring->irq_put = gen8_logical_ring_put_irq;
1985 ring->emit_bb_start = gen8_emit_bb_start;
1986 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1987 ring->get_seqno = bxt_a_get_seqno;
1988 ring->set_seqno = bxt_a_set_seqno;
1989 } else {
1990 ring->get_seqno = gen8_get_seqno;
1991 ring->set_seqno = gen8_set_seqno;
1992 }
1993 }
1994
1995 static inline void
1996 logical_ring_default_irqs(struct intel_engine_cs *ring, unsigned shift)
1997 {
1998 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1999 ring->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2000 }
2001
2002 static int
2003 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
2004 {
2005 struct intel_context *dctx = to_i915(dev)->kernel_context;
2006 int ret;
2007
2008 /* Intentionally left blank. */
2009 ring->buffer = NULL;
2010
2011 ring->dev = dev;
2012 INIT_LIST_HEAD(&ring->active_list);
2013 INIT_LIST_HEAD(&ring->request_list);
2014 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2015 init_waitqueue_head(&ring->irq_queue);
2016
2017 INIT_LIST_HEAD(&ring->buffers);
2018 INIT_LIST_HEAD(&ring->execlist_queue);
2019 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
2020 spin_lock_init(&ring->execlist_lock);
2021
2022 logical_ring_init_platform_invariants(ring);
2023
2024 ret = i915_cmd_parser_init_ring(ring);
2025 if (ret)
2026 goto error;
2027
2028 ret = intel_lr_context_deferred_alloc(dctx, ring);
2029 if (ret)
2030 goto error;
2031
2032 /* As this is the default context, always pin it */
2033 ret = intel_lr_context_do_pin(ring, dctx);
2034 if (ret) {
2035 DRM_ERROR(
2036 "Failed to pin and map ringbuffer %s: %d\n",
2037 ring->name, ret);
2038 goto error;
2039 }
2040
2041 return 0;
2042
2043 error:
2044 intel_logical_ring_cleanup(ring);
2045 return ret;
2046 }
2047
2048 static int logical_render_ring_init(struct drm_device *dev)
2049 {
2050 struct drm_i915_private *dev_priv = dev->dev_private;
2051 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2052 int ret;
2053
2054 ring->name = "render ring";
2055 ring->id = RCS;
2056 ring->mmio_base = RENDER_RING_BASE;
2057
2058 logical_ring_default_irqs(ring, GEN8_RCS_IRQ_SHIFT);
2059 if (HAS_L3_DPF(dev))
2060 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2061
2062 logical_ring_default_vfuncs(dev, ring);
2063
2064 /* Override some for render ring. */
2065 if (INTEL_INFO(dev)->gen >= 9)
2066 ring->init_hw = gen9_init_render_ring;
2067 else
2068 ring->init_hw = gen8_init_render_ring;
2069 ring->init_context = gen8_init_rcs_context;
2070 ring->cleanup = intel_fini_pipe_control;
2071 ring->emit_flush = gen8_emit_flush_render;
2072
2073 ring->dev = dev;
2074
2075 ret = intel_init_pipe_control(ring);
2076 if (ret)
2077 return ret;
2078
2079 ret = intel_init_workaround_bb(ring);
2080 if (ret) {
2081 /*
2082 * We continue even if we fail to initialize WA batch
2083 * because we only expect rare glitches but nothing
2084 * critical to prevent us from using GPU
2085 */
2086 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2087 ret);
2088 }
2089
2090 ret = logical_ring_init(dev, ring);
2091 if (ret) {
2092 lrc_destroy_wa_ctx_obj(ring);
2093 }
2094
2095 return ret;
2096 }
2097
2098 static int logical_bsd_ring_init(struct drm_device *dev)
2099 {
2100 struct drm_i915_private *dev_priv = dev->dev_private;
2101 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2102
2103 ring->name = "bsd ring";
2104 ring->id = VCS;
2105 ring->mmio_base = GEN6_BSD_RING_BASE;
2106
2107 logical_ring_default_irqs(ring, GEN8_VCS1_IRQ_SHIFT);
2108 logical_ring_default_vfuncs(dev, ring);
2109
2110 return logical_ring_init(dev, ring);
2111 }
2112
2113 static int logical_bsd2_ring_init(struct drm_device *dev)
2114 {
2115 struct drm_i915_private *dev_priv = dev->dev_private;
2116 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2117
2118 ring->name = "bsd2 ring";
2119 ring->id = VCS2;
2120 ring->mmio_base = GEN8_BSD2_RING_BASE;
2121
2122 logical_ring_default_irqs(ring, GEN8_VCS2_IRQ_SHIFT);
2123 logical_ring_default_vfuncs(dev, ring);
2124
2125 return logical_ring_init(dev, ring);
2126 }
2127
2128 static int logical_blt_ring_init(struct drm_device *dev)
2129 {
2130 struct drm_i915_private *dev_priv = dev->dev_private;
2131 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2132
2133 ring->name = "blitter ring";
2134 ring->id = BCS;
2135 ring->mmio_base = BLT_RING_BASE;
2136
2137 logical_ring_default_irqs(ring, GEN8_BCS_IRQ_SHIFT);
2138 logical_ring_default_vfuncs(dev, ring);
2139
2140 return logical_ring_init(dev, ring);
2141 }
2142
2143 static int logical_vebox_ring_init(struct drm_device *dev)
2144 {
2145 struct drm_i915_private *dev_priv = dev->dev_private;
2146 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2147
2148 ring->name = "video enhancement ring";
2149 ring->id = VECS;
2150 ring->mmio_base = VEBOX_RING_BASE;
2151
2152 logical_ring_default_irqs(ring, GEN8_VECS_IRQ_SHIFT);
2153 logical_ring_default_vfuncs(dev, ring);
2154
2155 return logical_ring_init(dev, ring);
2156 }
2157
2158 /**
2159 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2160 * @dev: DRM device.
2161 *
2162 * This function inits the engines for an Execlists submission style (the equivalent in the
2163 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2164 * those engines that are present in the hardware.
2165 *
2166 * Return: non-zero if the initialization failed.
2167 */
2168 int intel_logical_rings_init(struct drm_device *dev)
2169 {
2170 struct drm_i915_private *dev_priv = dev->dev_private;
2171 int ret;
2172
2173 ret = logical_render_ring_init(dev);
2174 if (ret)
2175 return ret;
2176
2177 if (HAS_BSD(dev)) {
2178 ret = logical_bsd_ring_init(dev);
2179 if (ret)
2180 goto cleanup_render_ring;
2181 }
2182
2183 if (HAS_BLT(dev)) {
2184 ret = logical_blt_ring_init(dev);
2185 if (ret)
2186 goto cleanup_bsd_ring;
2187 }
2188
2189 if (HAS_VEBOX(dev)) {
2190 ret = logical_vebox_ring_init(dev);
2191 if (ret)
2192 goto cleanup_blt_ring;
2193 }
2194
2195 if (HAS_BSD2(dev)) {
2196 ret = logical_bsd2_ring_init(dev);
2197 if (ret)
2198 goto cleanup_vebox_ring;
2199 }
2200
2201 return 0;
2202
2203 cleanup_vebox_ring:
2204 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2205 cleanup_blt_ring:
2206 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2207 cleanup_bsd_ring:
2208 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2209 cleanup_render_ring:
2210 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2211
2212 return ret;
2213 }
2214
2215 static u32
2216 make_rpcs(struct drm_device *dev)
2217 {
2218 u32 rpcs = 0;
2219
2220 /*
2221 * No explicit RPCS request is needed to ensure full
2222 * slice/subslice/EU enablement prior to Gen9.
2223 */
2224 if (INTEL_INFO(dev)->gen < 9)
2225 return 0;
2226
2227 /*
2228 * Starting in Gen9, render power gating can leave
2229 * slice/subslice/EU in a partially enabled state. We
2230 * must make an explicit request through RPCS for full
2231 * enablement.
2232 */
2233 if (INTEL_INFO(dev)->has_slice_pg) {
2234 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2235 rpcs |= INTEL_INFO(dev)->slice_total <<
2236 GEN8_RPCS_S_CNT_SHIFT;
2237 rpcs |= GEN8_RPCS_ENABLE;
2238 }
2239
2240 if (INTEL_INFO(dev)->has_subslice_pg) {
2241 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2242 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2243 GEN8_RPCS_SS_CNT_SHIFT;
2244 rpcs |= GEN8_RPCS_ENABLE;
2245 }
2246
2247 if (INTEL_INFO(dev)->has_eu_pg) {
2248 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2249 GEN8_RPCS_EU_MIN_SHIFT;
2250 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2251 GEN8_RPCS_EU_MAX_SHIFT;
2252 rpcs |= GEN8_RPCS_ENABLE;
2253 }
2254
2255 return rpcs;
2256 }
2257
2258 static int
2259 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2260 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2261 {
2262 struct drm_device *dev = ring->dev;
2263 struct drm_i915_private *dev_priv = dev->dev_private;
2264 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2265 struct page *page;
2266 uint32_t *reg_state;
2267 int ret;
2268
2269 if (!ppgtt)
2270 ppgtt = dev_priv->mm.aliasing_ppgtt;
2271
2272 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2273 if (ret) {
2274 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2275 return ret;
2276 }
2277
2278 ret = i915_gem_object_get_pages(ctx_obj);
2279 if (ret) {
2280 DRM_DEBUG_DRIVER("Could not get object pages\n");
2281 return ret;
2282 }
2283
2284 i915_gem_object_pin_pages(ctx_obj);
2285
2286 /* The second page of the context object contains some fields which must
2287 * be set up prior to the first execution. */
2288 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2289 reg_state = kmap_atomic(page);
2290
2291 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2292 * commands followed by (reg, value) pairs. The values we are setting here are
2293 * only for the first context restore: on a subsequent save, the GPU will
2294 * recreate this batchbuffer with new values (including all the missing
2295 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2296 reg_state[CTX_LRI_HEADER_0] =
2297 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2298 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2299 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2300 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2301 CTX_CTRL_RS_CTX_ENABLE));
2302 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2303 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2304 /* Ring buffer start address is not known until the buffer is pinned.
2305 * It is written to the context image in execlists_update_context()
2306 */
2307 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2308 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2309 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2310 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2311 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2312 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2313 RING_BB_PPGTT);
2314 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2315 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2316 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2317 if (ring->id == RCS) {
2318 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2319 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2320 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2321 if (ring->wa_ctx.obj) {
2322 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2323 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2324
2325 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2326 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2327 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2328
2329 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2330 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2331
2332 reg_state[CTX_BB_PER_CTX_PTR+1] =
2333 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2334 0x01;
2335 }
2336 }
2337 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2338 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2339 /* PDP values well be assigned later if needed */
2340 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2341 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2342 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2343 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2344 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2345 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2346 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2347 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2348
2349 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2350 /* 64b PPGTT (48bit canonical)
2351 * PDP0_DESCRIPTOR contains the base address to PML4 and
2352 * other PDP Descriptors are ignored.
2353 */
2354 ASSIGN_CTX_PML4(ppgtt, reg_state);
2355 } else {
2356 /* 32b PPGTT
2357 * PDP*_DESCRIPTOR contains the base address of space supported.
2358 * With dynamic page allocation, PDPs may not be allocated at
2359 * this point. Point the unallocated PDPs to the scratch page
2360 */
2361 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2362 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2363 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2364 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2365 }
2366
2367 if (ring->id == RCS) {
2368 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2369 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2370 make_rpcs(dev));
2371 }
2372
2373 kunmap_atomic(reg_state);
2374 i915_gem_object_unpin_pages(ctx_obj);
2375
2376 return 0;
2377 }
2378
2379 /**
2380 * intel_lr_context_free() - free the LRC specific bits of a context
2381 * @ctx: the LR context to free.
2382 *
2383 * The real context freeing is done in i915_gem_context_free: this only
2384 * takes care of the bits that are LRC related: the per-engine backing
2385 * objects and the logical ringbuffer.
2386 */
2387 void intel_lr_context_free(struct intel_context *ctx)
2388 {
2389 int i;
2390
2391 for (i = I915_NUM_RINGS; --i >= 0; ) {
2392 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2393 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2394
2395 if (!ctx_obj)
2396 continue;
2397
2398 if (ctx == ctx->i915->kernel_context) {
2399 intel_unpin_ringbuffer_obj(ringbuf);
2400 i915_gem_object_ggtt_unpin(ctx_obj);
2401 }
2402
2403 WARN_ON(ctx->engine[i].pin_count);
2404 intel_ringbuffer_free(ringbuf);
2405 drm_gem_object_unreference(&ctx_obj->base);
2406 }
2407 }
2408
2409 /**
2410 * intel_lr_context_size() - return the size of the context for an engine
2411 * @ring: which engine to find the context size for
2412 *
2413 * Each engine may require a different amount of space for a context image,
2414 * so when allocating (or copying) an image, this function can be used to
2415 * find the right size for the specific engine.
2416 *
2417 * Return: size (in bytes) of an engine-specific context image
2418 *
2419 * Note: this size includes the HWSP, which is part of the context image
2420 * in LRC mode, but does not include the "shared data page" used with
2421 * GuC submission. The caller should account for this if using the GuC.
2422 */
2423 uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
2424 {
2425 int ret = 0;
2426
2427 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2428
2429 switch (ring->id) {
2430 case RCS:
2431 if (INTEL_INFO(ring->dev)->gen >= 9)
2432 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2433 else
2434 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2435 break;
2436 case VCS:
2437 case BCS:
2438 case VECS:
2439 case VCS2:
2440 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2441 break;
2442 }
2443
2444 return ret;
2445 }
2446
2447 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2448 struct drm_i915_gem_object *default_ctx_obj)
2449 {
2450 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2451 struct page *page;
2452
2453 /* The HWSP is part of the default context object in LRC mode. */
2454 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2455 + LRC_PPHWSP_PN * PAGE_SIZE;
2456 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2457 ring->status_page.page_addr = kmap(page);
2458 ring->status_page.obj = default_ctx_obj;
2459
2460 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2461 (u32)ring->status_page.gfx_addr);
2462 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2463 }
2464
2465 /**
2466 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2467 * @ctx: LR context to create.
2468 * @ring: engine to be used with the context.
2469 *
2470 * This function can be called more than once, with different engines, if we plan
2471 * to use the context with them. The context backing objects and the ringbuffers
2472 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2473 * the creation is a deferred call: it's better to make sure first that we need to use
2474 * a given ring with the context.
2475 *
2476 * Return: non-zero on error.
2477 */
2478
2479 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2480 struct intel_engine_cs *ring)
2481 {
2482 struct drm_device *dev = ring->dev;
2483 struct drm_i915_gem_object *ctx_obj;
2484 uint32_t context_size;
2485 struct intel_ringbuffer *ringbuf;
2486 int ret;
2487
2488 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2489 WARN_ON(ctx->engine[ring->id].state);
2490
2491 context_size = round_up(intel_lr_context_size(ring), 4096);
2492
2493 /* One extra page as the sharing data between driver and GuC */
2494 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2495
2496 ctx_obj = i915_gem_alloc_object(dev, context_size);
2497 if (!ctx_obj) {
2498 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2499 return -ENOMEM;
2500 }
2501
2502 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2503 if (IS_ERR(ringbuf)) {
2504 ret = PTR_ERR(ringbuf);
2505 goto error_deref_obj;
2506 }
2507
2508 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2509 if (ret) {
2510 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2511 goto error_ringbuf;
2512 }
2513
2514 ctx->engine[ring->id].ringbuf = ringbuf;
2515 ctx->engine[ring->id].state = ctx_obj;
2516
2517 if (ctx != ctx->i915->kernel_context && ring->init_context) {
2518 struct drm_i915_gem_request *req;
2519
2520 req = i915_gem_request_alloc(ring, ctx);
2521 if (IS_ERR(req)) {
2522 ret = PTR_ERR(req);
2523 DRM_ERROR("ring create req: %d\n", ret);
2524 goto error_ringbuf;
2525 }
2526
2527 ret = ring->init_context(req);
2528 if (ret) {
2529 DRM_ERROR("ring init context: %d\n",
2530 ret);
2531 i915_gem_request_cancel(req);
2532 goto error_ringbuf;
2533 }
2534 i915_add_request_no_flush(req);
2535 }
2536 return 0;
2537
2538 error_ringbuf:
2539 intel_ringbuffer_free(ringbuf);
2540 error_deref_obj:
2541 drm_gem_object_unreference(&ctx_obj->base);
2542 ctx->engine[ring->id].ringbuf = NULL;
2543 ctx->engine[ring->id].state = NULL;
2544 return ret;
2545 }
2546
2547 void intel_lr_context_reset(struct drm_device *dev,
2548 struct intel_context *ctx)
2549 {
2550 struct drm_i915_private *dev_priv = dev->dev_private;
2551 struct intel_engine_cs *ring;
2552 int i;
2553
2554 for_each_ring(ring, dev_priv, i) {
2555 struct drm_i915_gem_object *ctx_obj =
2556 ctx->engine[ring->id].state;
2557 struct intel_ringbuffer *ringbuf =
2558 ctx->engine[ring->id].ringbuf;
2559 uint32_t *reg_state;
2560 struct page *page;
2561
2562 if (!ctx_obj)
2563 continue;
2564
2565 if (i915_gem_object_get_pages(ctx_obj)) {
2566 WARN(1, "Failed get_pages for context obj\n");
2567 continue;
2568 }
2569 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2570 reg_state = kmap_atomic(page);
2571
2572 reg_state[CTX_RING_HEAD+1] = 0;
2573 reg_state[CTX_RING_TAIL+1] = 0;
2574
2575 kunmap_atomic(reg_state);
2576
2577 ringbuf->head = 0;
2578 ringbuf->tail = 0;
2579 }
2580 }
This page took 0.080612 seconds and 6 git commands to generate.