Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211 ADVANCED_CONTEXT = 0,
212 LEGACY_32B_CONTEXT,
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
220 enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
228 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
229
230 static int intel_lr_context_pin(struct intel_context *ctx,
231 struct intel_engine_cs *engine);
232
233 /**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245 WARN_ON(i915.enable_ppgtt == -1);
246
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
256 if (enable_execlists == 0)
257 return 0;
258
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
261 return 1;
262
263 return 0;
264 }
265
266 static void
267 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268 {
269 struct drm_device *dev = engine->dev;
270
271 if (IS_GEN8(dev) || IS_GEN9(dev))
272 engine->idle_lite_restore_wa = ~0;
273
274 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
275 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
276 (engine->id == VCS || engine->id == VCS2);
277
278 engine->ctx_desc_template = GEN8_CTX_VALID;
279 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
280 GEN8_CTX_ADDRESSING_MODE_SHIFT;
281 if (IS_GEN8(dev))
282 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
283 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
284
285 /* TODO: WaDisableLiteRestore when we start using semaphore
286 * signalling between Command Streamers */
287 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
288
289 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
290 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
291 if (engine->disable_lite_restore_wa)
292 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
293 }
294
295 /**
296 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
297 * descriptor for a pinned context
298 *
299 * @ctx: Context to work on
300 * @ring: Engine the descriptor will be used with
301 *
302 * The context descriptor encodes various attributes of a context,
303 * including its GTT address and some flags. Because it's fairly
304 * expensive to calculate, we'll just do it once and cache the result,
305 * which remains valid until the context is unpinned.
306 *
307 * This is what a descriptor looks like, from LSB to MSB:
308 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
309 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
310 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
311 * bits 52-63: reserved, may encode the engine ID (for GuC)
312 */
313 static void
314 intel_lr_context_descriptor_update(struct intel_context *ctx,
315 struct intel_engine_cs *engine)
316 {
317 uint64_t lrca, desc;
318
319 lrca = ctx->engine[engine->id].lrc_vma->node.start +
320 LRC_PPHWSP_PN * PAGE_SIZE;
321
322 desc = engine->ctx_desc_template; /* bits 0-11 */
323 desc |= lrca; /* bits 12-31 */
324 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
325
326 ctx->engine[engine->id].lrc_desc = desc;
327 }
328
329 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
330 struct intel_engine_cs *engine)
331 {
332 return ctx->engine[engine->id].lrc_desc;
333 }
334
335 /**
336 * intel_execlists_ctx_id() - get the Execlists Context ID
337 * @ctx: Context to get the ID for
338 * @ring: Engine to get the ID for
339 *
340 * Do not confuse with ctx->id! Unfortunately we have a name overload
341 * here: the old context ID we pass to userspace as a handler so that
342 * they can refer to a context, and the new context ID we pass to the
343 * ELSP so that the GPU can inform us of the context status via
344 * interrupts.
345 *
346 * The context ID is a portion of the context descriptor, so we can
347 * just extract the required part from the cached descriptor.
348 *
349 * Return: 20-bits globally unique context ID.
350 */
351 u32 intel_execlists_ctx_id(struct intel_context *ctx,
352 struct intel_engine_cs *engine)
353 {
354 return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
355 }
356
357 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
358 struct drm_i915_gem_request *rq1)
359 {
360
361 struct intel_engine_cs *engine = rq0->engine;
362 struct drm_device *dev = engine->dev;
363 struct drm_i915_private *dev_priv = dev->dev_private;
364 uint64_t desc[2];
365
366 if (rq1) {
367 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
368 rq1->elsp_submitted++;
369 } else {
370 desc[1] = 0;
371 }
372
373 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
374 rq0->elsp_submitted++;
375
376 /* You must always write both descriptors in the order below. */
377 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
378 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
379
380 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
381 /* The context is automatically loaded after the following */
382 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
383
384 /* ELSP is a wo register, use another nearby reg for posting */
385 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
386 }
387
388 static void
389 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
390 {
391 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
392 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
393 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
394 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
395 }
396
397 static void execlists_update_context(struct drm_i915_gem_request *rq)
398 {
399 struct intel_engine_cs *engine = rq->engine;
400 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
401 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
402
403 reg_state[CTX_RING_TAIL+1] = rq->tail;
404
405 /* True 32b PPGTT with dynamic page allocation: update PDP
406 * registers and point the unallocated PDPs to scratch page.
407 * PML4 is allocated during ppgtt init, so this is not needed
408 * in 48-bit mode.
409 */
410 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
411 execlists_update_context_pdps(ppgtt, reg_state);
412 }
413
414 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
415 struct drm_i915_gem_request *rq1)
416 {
417 struct drm_i915_private *dev_priv = rq0->i915;
418 unsigned int fw_domains = rq0->engine->fw_domains;
419
420 execlists_update_context(rq0);
421
422 if (rq1)
423 execlists_update_context(rq1);
424
425 spin_lock_irq(&dev_priv->uncore.lock);
426 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
427
428 execlists_elsp_write(rq0, rq1);
429
430 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
431 spin_unlock_irq(&dev_priv->uncore.lock);
432 }
433
434 static void execlists_context_unqueue(struct intel_engine_cs *engine)
435 {
436 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
437 struct drm_i915_gem_request *cursor, *tmp;
438
439 assert_spin_locked(&engine->execlist_lock);
440
441 /*
442 * If irqs are not active generate a warning as batches that finish
443 * without the irqs may get lost and a GPU Hang may occur.
444 */
445 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
446
447 /* Try to read in pairs */
448 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
449 execlist_link) {
450 if (!req0) {
451 req0 = cursor;
452 } else if (req0->ctx == cursor->ctx) {
453 /* Same ctx: ignore first request, as second request
454 * will update tail past first request's workload */
455 cursor->elsp_submitted = req0->elsp_submitted;
456 list_move_tail(&req0->execlist_link,
457 &engine->execlist_retired_req_list);
458 req0 = cursor;
459 } else {
460 req1 = cursor;
461 WARN_ON(req1->elsp_submitted);
462 break;
463 }
464 }
465
466 if (unlikely(!req0))
467 return;
468
469 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
470 /*
471 * WaIdleLiteRestore: make sure we never cause a lite restore
472 * with HEAD==TAIL.
473 *
474 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
475 * resubmit the request. See gen8_emit_request() for where we
476 * prepare the padding after the end of the request.
477 */
478 struct intel_ringbuffer *ringbuf;
479
480 ringbuf = req0->ctx->engine[engine->id].ringbuf;
481 req0->tail += 8;
482 req0->tail &= ringbuf->size - 1;
483 }
484
485 execlists_submit_requests(req0, req1);
486 }
487
488 static unsigned int
489 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
490 {
491 struct drm_i915_gem_request *head_req;
492
493 assert_spin_locked(&engine->execlist_lock);
494
495 head_req = list_first_entry_or_null(&engine->execlist_queue,
496 struct drm_i915_gem_request,
497 execlist_link);
498
499 if (!head_req)
500 return 0;
501
502 if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
503 return 0;
504
505 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
506
507 if (--head_req->elsp_submitted > 0)
508 return 0;
509
510 list_move_tail(&head_req->execlist_link,
511 &engine->execlist_retired_req_list);
512
513 return 1;
514 }
515
516 static u32
517 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
518 u32 *context_id)
519 {
520 struct drm_i915_private *dev_priv = engine->dev->dev_private;
521 u32 status;
522
523 read_pointer %= GEN8_CSB_ENTRIES;
524
525 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
526
527 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
528 return 0;
529
530 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
531 read_pointer));
532
533 return status;
534 }
535
536 /**
537 * intel_lrc_irq_handler() - handle Context Switch interrupts
538 * @engine: Engine Command Streamer to handle.
539 *
540 * Check the unread Context Status Buffers and manage the submission of new
541 * contexts to the ELSP accordingly.
542 */
543 static void intel_lrc_irq_handler(unsigned long data)
544 {
545 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546 struct drm_i915_private *dev_priv = engine->dev->dev_private;
547 u32 status_pointer;
548 unsigned int read_pointer, write_pointer;
549 u32 csb[GEN8_CSB_ENTRIES][2];
550 unsigned int csb_read = 0, i;
551 unsigned int submit_contexts = 0;
552
553 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554
555 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556
557 read_pointer = engine->next_context_status_buffer;
558 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559 if (read_pointer > write_pointer)
560 write_pointer += GEN8_CSB_ENTRIES;
561
562 while (read_pointer < write_pointer) {
563 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564 break;
565 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566 &csb[csb_read][1]);
567 csb_read++;
568 }
569
570 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571
572 /* Update the read pointer to the old write pointer. Manual ringbuffer
573 * management ftw </sarcasm> */
574 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576 engine->next_context_status_buffer << 8));
577
578 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579
580 spin_lock(&engine->execlist_lock);
581
582 for (i = 0; i < csb_read; i++) {
583 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585 if (execlists_check_remove_request(engine, csb[i][1]))
586 WARN(1, "Lite Restored request removed from queue\n");
587 } else
588 WARN(1, "Preemption without Lite Restore\n");
589 }
590
591 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592 GEN8_CTX_STATUS_ELEMENT_SWITCH))
593 submit_contexts +=
594 execlists_check_remove_request(engine, csb[i][1]);
595 }
596
597 if (submit_contexts) {
598 if (!engine->disable_lite_restore_wa ||
599 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
600 execlists_context_unqueue(engine);
601 }
602
603 spin_unlock(&engine->execlist_lock);
604
605 if (unlikely(submit_contexts > 2))
606 DRM_ERROR("More than two context complete events?\n");
607 }
608
609 static void execlists_context_queue(struct drm_i915_gem_request *request)
610 {
611 struct intel_engine_cs *engine = request->engine;
612 struct drm_i915_gem_request *cursor;
613 int num_elements = 0;
614
615 if (request->ctx != request->i915->kernel_context)
616 intel_lr_context_pin(request->ctx, engine);
617
618 i915_gem_request_reference(request);
619
620 spin_lock_bh(&engine->execlist_lock);
621
622 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
623 if (++num_elements > 2)
624 break;
625
626 if (num_elements > 2) {
627 struct drm_i915_gem_request *tail_req;
628
629 tail_req = list_last_entry(&engine->execlist_queue,
630 struct drm_i915_gem_request,
631 execlist_link);
632
633 if (request->ctx == tail_req->ctx) {
634 WARN(tail_req->elsp_submitted != 0,
635 "More than 2 already-submitted reqs queued\n");
636 list_move_tail(&tail_req->execlist_link,
637 &engine->execlist_retired_req_list);
638 }
639 }
640
641 list_add_tail(&request->execlist_link, &engine->execlist_queue);
642 if (num_elements == 0)
643 execlists_context_unqueue(engine);
644
645 spin_unlock_bh(&engine->execlist_lock);
646 }
647
648 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
649 {
650 struct intel_engine_cs *engine = req->engine;
651 uint32_t flush_domains;
652 int ret;
653
654 flush_domains = 0;
655 if (engine->gpu_caches_dirty)
656 flush_domains = I915_GEM_GPU_DOMAINS;
657
658 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
659 if (ret)
660 return ret;
661
662 engine->gpu_caches_dirty = false;
663 return 0;
664 }
665
666 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
667 struct list_head *vmas)
668 {
669 const unsigned other_rings = ~intel_engine_flag(req->engine);
670 struct i915_vma *vma;
671 uint32_t flush_domains = 0;
672 bool flush_chipset = false;
673 int ret;
674
675 list_for_each_entry(vma, vmas, exec_list) {
676 struct drm_i915_gem_object *obj = vma->obj;
677
678 if (obj->active & other_rings) {
679 ret = i915_gem_object_sync(obj, req->engine, &req);
680 if (ret)
681 return ret;
682 }
683
684 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
685 flush_chipset |= i915_gem_clflush_object(obj, false);
686
687 flush_domains |= obj->base.write_domain;
688 }
689
690 if (flush_domains & I915_GEM_DOMAIN_GTT)
691 wmb();
692
693 /* Unconditionally invalidate gpu caches and ensure that we do flush
694 * any residual writes from the previous batch.
695 */
696 return logical_ring_invalidate_all_caches(req);
697 }
698
699 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
700 {
701 int ret = 0;
702
703 request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
704
705 if (i915.enable_guc_submission) {
706 /*
707 * Check that the GuC has space for the request before
708 * going any further, as the i915_add_request() call
709 * later on mustn't fail ...
710 */
711 struct intel_guc *guc = &request->i915->guc;
712
713 ret = i915_guc_wq_check_space(guc->execbuf_client);
714 if (ret)
715 return ret;
716 }
717
718 if (request->ctx != request->i915->kernel_context)
719 ret = intel_lr_context_pin(request->ctx, request->engine);
720
721 return ret;
722 }
723
724 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
725 int bytes)
726 {
727 struct intel_ringbuffer *ringbuf = req->ringbuf;
728 struct intel_engine_cs *engine = req->engine;
729 struct drm_i915_gem_request *target;
730 unsigned space;
731 int ret;
732
733 if (intel_ring_space(ringbuf) >= bytes)
734 return 0;
735
736 /* The whole point of reserving space is to not wait! */
737 WARN_ON(ringbuf->reserved_in_use);
738
739 list_for_each_entry(target, &engine->request_list, list) {
740 /*
741 * The request queue is per-engine, so can contain requests
742 * from multiple ringbuffers. Here, we must ignore any that
743 * aren't from the ringbuffer we're considering.
744 */
745 if (target->ringbuf != ringbuf)
746 continue;
747
748 /* Would completion of this request free enough space? */
749 space = __intel_ring_space(target->postfix, ringbuf->tail,
750 ringbuf->size);
751 if (space >= bytes)
752 break;
753 }
754
755 if (WARN_ON(&target->list == &engine->request_list))
756 return -ENOSPC;
757
758 ret = i915_wait_request(target);
759 if (ret)
760 return ret;
761
762 ringbuf->space = space;
763 return 0;
764 }
765
766 /*
767 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
768 * @request: Request to advance the logical ringbuffer of.
769 *
770 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
771 * really happens during submission is that the context and current tail will be placed
772 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
773 * point, the tail *inside* the context is updated and the ELSP written to.
774 */
775 static int
776 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
777 {
778 struct intel_ringbuffer *ringbuf = request->ringbuf;
779 struct drm_i915_private *dev_priv = request->i915;
780 struct intel_engine_cs *engine = request->engine;
781
782 intel_logical_ring_advance(ringbuf);
783 request->tail = ringbuf->tail;
784
785 /*
786 * Here we add two extra NOOPs as padding to avoid
787 * lite restore of a context with HEAD==TAIL.
788 *
789 * Caller must reserve WA_TAIL_DWORDS for us!
790 */
791 intel_logical_ring_emit(ringbuf, MI_NOOP);
792 intel_logical_ring_emit(ringbuf, MI_NOOP);
793 intel_logical_ring_advance(ringbuf);
794
795 if (intel_engine_stopped(engine))
796 return 0;
797
798 if (engine->last_context != request->ctx) {
799 if (engine->last_context)
800 intel_lr_context_unpin(engine->last_context, engine);
801 if (request->ctx != request->i915->kernel_context) {
802 intel_lr_context_pin(request->ctx, engine);
803 engine->last_context = request->ctx;
804 } else {
805 engine->last_context = NULL;
806 }
807 }
808
809 if (dev_priv->guc.execbuf_client)
810 i915_guc_submit(dev_priv->guc.execbuf_client, request);
811 else
812 execlists_context_queue(request);
813
814 return 0;
815 }
816
817 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
818 {
819 uint32_t __iomem *virt;
820 int rem = ringbuf->size - ringbuf->tail;
821
822 virt = ringbuf->virtual_start + ringbuf->tail;
823 rem /= 4;
824 while (rem--)
825 iowrite32(MI_NOOP, virt++);
826
827 ringbuf->tail = 0;
828 intel_ring_update_space(ringbuf);
829 }
830
831 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
832 {
833 struct intel_ringbuffer *ringbuf = req->ringbuf;
834 int remain_usable = ringbuf->effective_size - ringbuf->tail;
835 int remain_actual = ringbuf->size - ringbuf->tail;
836 int ret, total_bytes, wait_bytes = 0;
837 bool need_wrap = false;
838
839 if (ringbuf->reserved_in_use)
840 total_bytes = bytes;
841 else
842 total_bytes = bytes + ringbuf->reserved_size;
843
844 if (unlikely(bytes > remain_usable)) {
845 /*
846 * Not enough space for the basic request. So need to flush
847 * out the remainder and then wait for base + reserved.
848 */
849 wait_bytes = remain_actual + total_bytes;
850 need_wrap = true;
851 } else {
852 if (unlikely(total_bytes > remain_usable)) {
853 /*
854 * The base request will fit but the reserved space
855 * falls off the end. So don't need an immediate wrap
856 * and only need to effectively wait for the reserved
857 * size space from the start of ringbuffer.
858 */
859 wait_bytes = remain_actual + ringbuf->reserved_size;
860 } else if (total_bytes > ringbuf->space) {
861 /* No wrapping required, just waiting. */
862 wait_bytes = total_bytes;
863 }
864 }
865
866 if (wait_bytes) {
867 ret = logical_ring_wait_for_space(req, wait_bytes);
868 if (unlikely(ret))
869 return ret;
870
871 if (need_wrap)
872 __wrap_ring_buffer(ringbuf);
873 }
874
875 return 0;
876 }
877
878 /**
879 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
880 *
881 * @req: The request to start some new work for
882 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
883 *
884 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
885 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
886 * and also preallocates a request (every workload submission is still mediated through
887 * requests, same as it did with legacy ringbuffer submission).
888 *
889 * Return: non-zero if the ringbuffer is not ready to be written to.
890 */
891 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
892 {
893 int ret;
894
895 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
896 if (ret)
897 return ret;
898
899 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
900 return 0;
901 }
902
903 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
904 {
905 /*
906 * The first call merely notes the reserve request and is common for
907 * all back ends. The subsequent localised _begin() call actually
908 * ensures that the reservation is available. Without the begin, if
909 * the request creator immediately submitted the request without
910 * adding any commands to it then there might not actually be
911 * sufficient room for the submission commands.
912 */
913 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
914
915 return intel_logical_ring_begin(request, 0);
916 }
917
918 /**
919 * execlists_submission() - submit a batchbuffer for execution, Execlists style
920 * @dev: DRM device.
921 * @file: DRM file.
922 * @ring: Engine Command Streamer to submit to.
923 * @ctx: Context to employ for this submission.
924 * @args: execbuffer call arguments.
925 * @vmas: list of vmas.
926 * @batch_obj: the batchbuffer to submit.
927 * @exec_start: batchbuffer start virtual address pointer.
928 * @dispatch_flags: translated execbuffer call flags.
929 *
930 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
931 * away the submission details of the execbuffer ioctl call.
932 *
933 * Return: non-zero if the submission fails.
934 */
935 int intel_execlists_submission(struct i915_execbuffer_params *params,
936 struct drm_i915_gem_execbuffer2 *args,
937 struct list_head *vmas)
938 {
939 struct drm_device *dev = params->dev;
940 struct intel_engine_cs *engine = params->engine;
941 struct drm_i915_private *dev_priv = dev->dev_private;
942 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
943 u64 exec_start;
944 int instp_mode;
945 u32 instp_mask;
946 int ret;
947
948 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
949 instp_mask = I915_EXEC_CONSTANTS_MASK;
950 switch (instp_mode) {
951 case I915_EXEC_CONSTANTS_REL_GENERAL:
952 case I915_EXEC_CONSTANTS_ABSOLUTE:
953 case I915_EXEC_CONSTANTS_REL_SURFACE:
954 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
955 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
956 return -EINVAL;
957 }
958
959 if (instp_mode != dev_priv->relative_constants_mode) {
960 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
961 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
962 return -EINVAL;
963 }
964
965 /* The HW changed the meaning on this bit on gen6 */
966 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
967 }
968 break;
969 default:
970 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
971 return -EINVAL;
972 }
973
974 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
975 DRM_DEBUG("sol reset is gen7 only\n");
976 return -EINVAL;
977 }
978
979 ret = execlists_move_to_gpu(params->request, vmas);
980 if (ret)
981 return ret;
982
983 if (engine == &dev_priv->engine[RCS] &&
984 instp_mode != dev_priv->relative_constants_mode) {
985 ret = intel_logical_ring_begin(params->request, 4);
986 if (ret)
987 return ret;
988
989 intel_logical_ring_emit(ringbuf, MI_NOOP);
990 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
991 intel_logical_ring_emit_reg(ringbuf, INSTPM);
992 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
993 intel_logical_ring_advance(ringbuf);
994
995 dev_priv->relative_constants_mode = instp_mode;
996 }
997
998 exec_start = params->batch_obj_vm_offset +
999 args->batch_start_offset;
1000
1001 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1002 if (ret)
1003 return ret;
1004
1005 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1006
1007 i915_gem_execbuffer_move_to_active(vmas, params->request);
1008
1009 return 0;
1010 }
1011
1012 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
1013 {
1014 struct drm_i915_gem_request *req, *tmp;
1015 struct list_head retired_list;
1016
1017 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1018 if (list_empty(&engine->execlist_retired_req_list))
1019 return;
1020
1021 INIT_LIST_HEAD(&retired_list);
1022 spin_lock_bh(&engine->execlist_lock);
1023 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1024 spin_unlock_bh(&engine->execlist_lock);
1025
1026 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1027 struct intel_context *ctx = req->ctx;
1028 struct drm_i915_gem_object *ctx_obj =
1029 ctx->engine[engine->id].state;
1030
1031 if (ctx_obj && (ctx != req->i915->kernel_context))
1032 intel_lr_context_unpin(ctx, engine);
1033
1034 list_del(&req->execlist_link);
1035 i915_gem_request_unreference(req);
1036 }
1037 }
1038
1039 void intel_logical_ring_stop(struct intel_engine_cs *engine)
1040 {
1041 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1042 int ret;
1043
1044 if (!intel_engine_initialized(engine))
1045 return;
1046
1047 ret = intel_engine_idle(engine);
1048 if (ret)
1049 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1050 engine->name, ret);
1051
1052 /* TODO: Is this correct with Execlists enabled? */
1053 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
1054 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
1055 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
1056 return;
1057 }
1058 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
1059 }
1060
1061 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1062 {
1063 struct intel_engine_cs *engine = req->engine;
1064 int ret;
1065
1066 if (!engine->gpu_caches_dirty)
1067 return 0;
1068
1069 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1070 if (ret)
1071 return ret;
1072
1073 engine->gpu_caches_dirty = false;
1074 return 0;
1075 }
1076
1077 static int intel_lr_context_do_pin(struct intel_context *ctx,
1078 struct intel_engine_cs *engine)
1079 {
1080 struct drm_device *dev = engine->dev;
1081 struct drm_i915_private *dev_priv = dev->dev_private;
1082 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1083 struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
1084 void *vaddr;
1085 u32 *lrc_reg_state;
1086 int ret;
1087
1088 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1089
1090 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1091 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1092 if (ret)
1093 return ret;
1094
1095 vaddr = i915_gem_object_pin_map(ctx_obj);
1096 if (IS_ERR(vaddr)) {
1097 ret = PTR_ERR(vaddr);
1098 goto unpin_ctx_obj;
1099 }
1100
1101 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1102
1103 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
1104 if (ret)
1105 goto unpin_map;
1106
1107 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1108 intel_lr_context_descriptor_update(ctx, engine);
1109 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1110 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
1111 ctx_obj->dirty = true;
1112
1113 /* Invalidate GuC TLB. */
1114 if (i915.enable_guc_submission)
1115 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1116
1117 return ret;
1118
1119 unpin_map:
1120 i915_gem_object_unpin_map(ctx_obj);
1121 unpin_ctx_obj:
1122 i915_gem_object_ggtt_unpin(ctx_obj);
1123
1124 return ret;
1125 }
1126
1127 static int intel_lr_context_pin(struct intel_context *ctx,
1128 struct intel_engine_cs *engine)
1129 {
1130 int ret = 0;
1131
1132 if (ctx->engine[engine->id].pin_count++ == 0) {
1133 ret = intel_lr_context_do_pin(ctx, engine);
1134 if (ret)
1135 goto reset_pin_count;
1136
1137 i915_gem_context_reference(ctx);
1138 }
1139 return ret;
1140
1141 reset_pin_count:
1142 ctx->engine[engine->id].pin_count = 0;
1143 return ret;
1144 }
1145
1146 void intel_lr_context_unpin(struct intel_context *ctx,
1147 struct intel_engine_cs *engine)
1148 {
1149 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1150
1151 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1152 if (--ctx->engine[engine->id].pin_count == 0) {
1153 i915_gem_object_unpin_map(ctx_obj);
1154 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1155 i915_gem_object_ggtt_unpin(ctx_obj);
1156 ctx->engine[engine->id].lrc_vma = NULL;
1157 ctx->engine[engine->id].lrc_desc = 0;
1158 ctx->engine[engine->id].lrc_reg_state = NULL;
1159
1160 i915_gem_context_unreference(ctx);
1161 }
1162 }
1163
1164 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1165 {
1166 int ret, i;
1167 struct intel_engine_cs *engine = req->engine;
1168 struct intel_ringbuffer *ringbuf = req->ringbuf;
1169 struct drm_device *dev = engine->dev;
1170 struct drm_i915_private *dev_priv = dev->dev_private;
1171 struct i915_workarounds *w = &dev_priv->workarounds;
1172
1173 if (w->count == 0)
1174 return 0;
1175
1176 engine->gpu_caches_dirty = true;
1177 ret = logical_ring_flush_all_caches(req);
1178 if (ret)
1179 return ret;
1180
1181 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1182 if (ret)
1183 return ret;
1184
1185 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1186 for (i = 0; i < w->count; i++) {
1187 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1188 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1189 }
1190 intel_logical_ring_emit(ringbuf, MI_NOOP);
1191
1192 intel_logical_ring_advance(ringbuf);
1193
1194 engine->gpu_caches_dirty = true;
1195 ret = logical_ring_flush_all_caches(req);
1196 if (ret)
1197 return ret;
1198
1199 return 0;
1200 }
1201
1202 #define wa_ctx_emit(batch, index, cmd) \
1203 do { \
1204 int __index = (index)++; \
1205 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1206 return -ENOSPC; \
1207 } \
1208 batch[__index] = (cmd); \
1209 } while (0)
1210
1211 #define wa_ctx_emit_reg(batch, index, reg) \
1212 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1213
1214 /*
1215 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1216 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1217 * but there is a slight complication as this is applied in WA batch where the
1218 * values are only initialized once so we cannot take register value at the
1219 * beginning and reuse it further; hence we save its value to memory, upload a
1220 * constant value with bit21 set and then we restore it back with the saved value.
1221 * To simplify the WA, a constant value is formed by using the default value
1222 * of this register. This shouldn't be a problem because we are only modifying
1223 * it for a short period and this batch in non-premptible. We can ofcourse
1224 * use additional instructions that read the actual value of the register
1225 * at that time and set our bit of interest but it makes the WA complicated.
1226 *
1227 * This WA is also required for Gen9 so extracting as a function avoids
1228 * code duplication.
1229 */
1230 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1231 uint32_t *const batch,
1232 uint32_t index)
1233 {
1234 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1235
1236 /*
1237 * WaDisableLSQCROPERFforOCL:skl
1238 * This WA is implemented in skl_init_clock_gating() but since
1239 * this batch updates GEN8_L3SQCREG4 with default value we need to
1240 * set this bit here to retain the WA during flush.
1241 */
1242 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1243 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1244
1245 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1246 MI_SRM_LRM_GLOBAL_GTT));
1247 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1248 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1249 wa_ctx_emit(batch, index, 0);
1250
1251 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1252 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1253 wa_ctx_emit(batch, index, l3sqc4_flush);
1254
1255 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1256 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1257 PIPE_CONTROL_DC_FLUSH_ENABLE));
1258 wa_ctx_emit(batch, index, 0);
1259 wa_ctx_emit(batch, index, 0);
1260 wa_ctx_emit(batch, index, 0);
1261 wa_ctx_emit(batch, index, 0);
1262
1263 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1264 MI_SRM_LRM_GLOBAL_GTT));
1265 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1266 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1267 wa_ctx_emit(batch, index, 0);
1268
1269 return index;
1270 }
1271
1272 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1273 uint32_t offset,
1274 uint32_t start_alignment)
1275 {
1276 return wa_ctx->offset = ALIGN(offset, start_alignment);
1277 }
1278
1279 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1280 uint32_t offset,
1281 uint32_t size_alignment)
1282 {
1283 wa_ctx->size = offset - wa_ctx->offset;
1284
1285 WARN(wa_ctx->size % size_alignment,
1286 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1287 wa_ctx->size, size_alignment);
1288 return 0;
1289 }
1290
1291 /**
1292 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1293 *
1294 * @ring: only applicable for RCS
1295 * @wa_ctx: structure representing wa_ctx
1296 * offset: specifies start of the batch, should be cache-aligned. This is updated
1297 * with the offset value received as input.
1298 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1299 * @batch: page in which WA are loaded
1300 * @offset: This field specifies the start of the batch, it should be
1301 * cache-aligned otherwise it is adjusted accordingly.
1302 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1303 * initialized at the beginning and shared across all contexts but this field
1304 * helps us to have multiple batches at different offsets and select them based
1305 * on a criteria. At the moment this batch always start at the beginning of the page
1306 * and at this point we don't have multiple wa_ctx batch buffers.
1307 *
1308 * The number of WA applied are not known at the beginning; we use this field
1309 * to return the no of DWORDS written.
1310 *
1311 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1312 * so it adds NOOPs as padding to make it cacheline aligned.
1313 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1314 * makes a complete batch buffer.
1315 *
1316 * Return: non-zero if we exceed the PAGE_SIZE limit.
1317 */
1318
1319 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1320 struct i915_wa_ctx_bb *wa_ctx,
1321 uint32_t *const batch,
1322 uint32_t *offset)
1323 {
1324 uint32_t scratch_addr;
1325 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1326
1327 /* WaDisableCtxRestoreArbitration:bdw,chv */
1328 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1329
1330 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1331 if (IS_BROADWELL(engine->dev)) {
1332 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1333 if (rc < 0)
1334 return rc;
1335 index = rc;
1336 }
1337
1338 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1339 /* Actual scratch location is at 128 bytes offset */
1340 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1341
1342 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1343 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1344 PIPE_CONTROL_GLOBAL_GTT_IVB |
1345 PIPE_CONTROL_CS_STALL |
1346 PIPE_CONTROL_QW_WRITE));
1347 wa_ctx_emit(batch, index, scratch_addr);
1348 wa_ctx_emit(batch, index, 0);
1349 wa_ctx_emit(batch, index, 0);
1350 wa_ctx_emit(batch, index, 0);
1351
1352 /* Pad to end of cacheline */
1353 while (index % CACHELINE_DWORDS)
1354 wa_ctx_emit(batch, index, MI_NOOP);
1355
1356 /*
1357 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1358 * execution depends on the length specified in terms of cache lines
1359 * in the register CTX_RCS_INDIRECT_CTX
1360 */
1361
1362 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1363 }
1364
1365 /**
1366 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1367 *
1368 * @ring: only applicable for RCS
1369 * @wa_ctx: structure representing wa_ctx
1370 * offset: specifies start of the batch, should be cache-aligned.
1371 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1372 * @batch: page in which WA are loaded
1373 * @offset: This field specifies the start of this batch.
1374 * This batch is started immediately after indirect_ctx batch. Since we ensure
1375 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1376 *
1377 * The number of DWORDS written are returned using this field.
1378 *
1379 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1380 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1381 */
1382 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1383 struct i915_wa_ctx_bb *wa_ctx,
1384 uint32_t *const batch,
1385 uint32_t *offset)
1386 {
1387 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1388
1389 /* WaDisableCtxRestoreArbitration:bdw,chv */
1390 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1391
1392 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1393
1394 return wa_ctx_end(wa_ctx, *offset = index, 1);
1395 }
1396
1397 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1398 struct i915_wa_ctx_bb *wa_ctx,
1399 uint32_t *const batch,
1400 uint32_t *offset)
1401 {
1402 int ret;
1403 struct drm_device *dev = engine->dev;
1404 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1405
1406 /* WaDisableCtxRestoreArbitration:skl,bxt */
1407 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1408 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1409 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1410
1411 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1412 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1413 if (ret < 0)
1414 return ret;
1415 index = ret;
1416
1417 /* Pad to end of cacheline */
1418 while (index % CACHELINE_DWORDS)
1419 wa_ctx_emit(batch, index, MI_NOOP);
1420
1421 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1422 }
1423
1424 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1425 struct i915_wa_ctx_bb *wa_ctx,
1426 uint32_t *const batch,
1427 uint32_t *offset)
1428 {
1429 struct drm_device *dev = engine->dev;
1430 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1431
1432 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1433 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1434 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1435 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1436 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1437 wa_ctx_emit(batch, index,
1438 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1439 wa_ctx_emit(batch, index, MI_NOOP);
1440 }
1441
1442 /* WaClearTdlStateAckDirtyBits:bxt */
1443 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1444 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1445
1446 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1447 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1448
1449 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1450 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1451
1452 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1453 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1454
1455 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1456 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1457 wa_ctx_emit(batch, index, 0x0);
1458 wa_ctx_emit(batch, index, MI_NOOP);
1459 }
1460
1461 /* WaDisableCtxRestoreArbitration:skl,bxt */
1462 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1463 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1464 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1465
1466 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1467
1468 return wa_ctx_end(wa_ctx, *offset = index, 1);
1469 }
1470
1471 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1472 {
1473 int ret;
1474
1475 engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1476 PAGE_ALIGN(size));
1477 if (!engine->wa_ctx.obj) {
1478 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1479 return -ENOMEM;
1480 }
1481
1482 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1483 if (ret) {
1484 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1485 ret);
1486 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1487 return ret;
1488 }
1489
1490 return 0;
1491 }
1492
1493 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1494 {
1495 if (engine->wa_ctx.obj) {
1496 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1497 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1498 engine->wa_ctx.obj = NULL;
1499 }
1500 }
1501
1502 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1503 {
1504 int ret;
1505 uint32_t *batch;
1506 uint32_t offset;
1507 struct page *page;
1508 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1509
1510 WARN_ON(engine->id != RCS);
1511
1512 /* update this when WA for higher Gen are added */
1513 if (INTEL_INFO(engine->dev)->gen > 9) {
1514 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1515 INTEL_INFO(engine->dev)->gen);
1516 return 0;
1517 }
1518
1519 /* some WA perform writes to scratch page, ensure it is valid */
1520 if (engine->scratch.obj == NULL) {
1521 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1522 return -EINVAL;
1523 }
1524
1525 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1526 if (ret) {
1527 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1528 return ret;
1529 }
1530
1531 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1532 batch = kmap_atomic(page);
1533 offset = 0;
1534
1535 if (INTEL_INFO(engine->dev)->gen == 8) {
1536 ret = gen8_init_indirectctx_bb(engine,
1537 &wa_ctx->indirect_ctx,
1538 batch,
1539 &offset);
1540 if (ret)
1541 goto out;
1542
1543 ret = gen8_init_perctx_bb(engine,
1544 &wa_ctx->per_ctx,
1545 batch,
1546 &offset);
1547 if (ret)
1548 goto out;
1549 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1550 ret = gen9_init_indirectctx_bb(engine,
1551 &wa_ctx->indirect_ctx,
1552 batch,
1553 &offset);
1554 if (ret)
1555 goto out;
1556
1557 ret = gen9_init_perctx_bb(engine,
1558 &wa_ctx->per_ctx,
1559 batch,
1560 &offset);
1561 if (ret)
1562 goto out;
1563 }
1564
1565 out:
1566 kunmap_atomic(batch);
1567 if (ret)
1568 lrc_destroy_wa_ctx_obj(engine);
1569
1570 return ret;
1571 }
1572
1573 static void lrc_init_hws(struct intel_engine_cs *engine)
1574 {
1575 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1576
1577 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1578 (u32)engine->status_page.gfx_addr);
1579 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1580 }
1581
1582 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1583 {
1584 struct drm_device *dev = engine->dev;
1585 struct drm_i915_private *dev_priv = dev->dev_private;
1586 unsigned int next_context_status_buffer_hw;
1587
1588 lrc_init_hws(engine);
1589
1590 I915_WRITE_IMR(engine,
1591 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1592 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1593
1594 I915_WRITE(RING_MODE_GEN7(engine),
1595 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1596 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1597 POSTING_READ(RING_MODE_GEN7(engine));
1598
1599 /*
1600 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1601 * zero, we need to read the write pointer from hardware and use its
1602 * value because "this register is power context save restored".
1603 * Effectively, these states have been observed:
1604 *
1605 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1606 * BDW | CSB regs not reset | CSB regs reset |
1607 * CHT | CSB regs not reset | CSB regs not reset |
1608 * SKL | ? | ? |
1609 * BXT | ? | ? |
1610 */
1611 next_context_status_buffer_hw =
1612 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1613
1614 /*
1615 * When the CSB registers are reset (also after power-up / gpu reset),
1616 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1617 * this special case, so the first element read is CSB[0].
1618 */
1619 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1620 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1621
1622 engine->next_context_status_buffer = next_context_status_buffer_hw;
1623 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1624
1625 intel_engine_init_hangcheck(engine);
1626
1627 return intel_mocs_init_engine(engine);
1628 }
1629
1630 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1631 {
1632 struct drm_device *dev = engine->dev;
1633 struct drm_i915_private *dev_priv = dev->dev_private;
1634 int ret;
1635
1636 ret = gen8_init_common_ring(engine);
1637 if (ret)
1638 return ret;
1639
1640 /* We need to disable the AsyncFlip performance optimisations in order
1641 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1642 * programmed to '1' on all products.
1643 *
1644 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1645 */
1646 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1647
1648 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1649
1650 return init_workarounds_ring(engine);
1651 }
1652
1653 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1654 {
1655 int ret;
1656
1657 ret = gen8_init_common_ring(engine);
1658 if (ret)
1659 return ret;
1660
1661 return init_workarounds_ring(engine);
1662 }
1663
1664 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1665 {
1666 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1667 struct intel_engine_cs *engine = req->engine;
1668 struct intel_ringbuffer *ringbuf = req->ringbuf;
1669 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1670 int i, ret;
1671
1672 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1673 if (ret)
1674 return ret;
1675
1676 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1677 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1678 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1679
1680 intel_logical_ring_emit_reg(ringbuf,
1681 GEN8_RING_PDP_UDW(engine, i));
1682 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1683 intel_logical_ring_emit_reg(ringbuf,
1684 GEN8_RING_PDP_LDW(engine, i));
1685 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1686 }
1687
1688 intel_logical_ring_emit(ringbuf, MI_NOOP);
1689 intel_logical_ring_advance(ringbuf);
1690
1691 return 0;
1692 }
1693
1694 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1695 u64 offset, unsigned dispatch_flags)
1696 {
1697 struct intel_ringbuffer *ringbuf = req->ringbuf;
1698 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1699 int ret;
1700
1701 /* Don't rely in hw updating PDPs, specially in lite-restore.
1702 * Ideally, we should set Force PD Restore in ctx descriptor,
1703 * but we can't. Force Restore would be a second option, but
1704 * it is unsafe in case of lite-restore (because the ctx is
1705 * not idle). PML4 is allocated during ppgtt init so this is
1706 * not needed in 48-bit.*/
1707 if (req->ctx->ppgtt &&
1708 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1709 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1710 !intel_vgpu_active(req->i915->dev)) {
1711 ret = intel_logical_ring_emit_pdps(req);
1712 if (ret)
1713 return ret;
1714 }
1715
1716 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1717 }
1718
1719 ret = intel_logical_ring_begin(req, 4);
1720 if (ret)
1721 return ret;
1722
1723 /* FIXME(BDW): Address space and security selectors. */
1724 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1725 (ppgtt<<8) |
1726 (dispatch_flags & I915_DISPATCH_RS ?
1727 MI_BATCH_RESOURCE_STREAMER : 0));
1728 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1729 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1730 intel_logical_ring_emit(ringbuf, MI_NOOP);
1731 intel_logical_ring_advance(ringbuf);
1732
1733 return 0;
1734 }
1735
1736 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1737 {
1738 struct drm_device *dev = engine->dev;
1739 struct drm_i915_private *dev_priv = dev->dev_private;
1740 unsigned long flags;
1741
1742 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1743 return false;
1744
1745 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1746 if (engine->irq_refcount++ == 0) {
1747 I915_WRITE_IMR(engine,
1748 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1749 POSTING_READ(RING_IMR(engine->mmio_base));
1750 }
1751 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1752
1753 return true;
1754 }
1755
1756 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1757 {
1758 struct drm_device *dev = engine->dev;
1759 struct drm_i915_private *dev_priv = dev->dev_private;
1760 unsigned long flags;
1761
1762 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1763 if (--engine->irq_refcount == 0) {
1764 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1765 POSTING_READ(RING_IMR(engine->mmio_base));
1766 }
1767 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1768 }
1769
1770 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1771 u32 invalidate_domains,
1772 u32 unused)
1773 {
1774 struct intel_ringbuffer *ringbuf = request->ringbuf;
1775 struct intel_engine_cs *engine = ringbuf->engine;
1776 struct drm_device *dev = engine->dev;
1777 struct drm_i915_private *dev_priv = dev->dev_private;
1778 uint32_t cmd;
1779 int ret;
1780
1781 ret = intel_logical_ring_begin(request, 4);
1782 if (ret)
1783 return ret;
1784
1785 cmd = MI_FLUSH_DW + 1;
1786
1787 /* We always require a command barrier so that subsequent
1788 * commands, such as breadcrumb interrupts, are strictly ordered
1789 * wrt the contents of the write cache being flushed to memory
1790 * (and thus being coherent from the CPU).
1791 */
1792 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1793
1794 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1795 cmd |= MI_INVALIDATE_TLB;
1796 if (engine == &dev_priv->engine[VCS])
1797 cmd |= MI_INVALIDATE_BSD;
1798 }
1799
1800 intel_logical_ring_emit(ringbuf, cmd);
1801 intel_logical_ring_emit(ringbuf,
1802 I915_GEM_HWS_SCRATCH_ADDR |
1803 MI_FLUSH_DW_USE_GTT);
1804 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1805 intel_logical_ring_emit(ringbuf, 0); /* value */
1806 intel_logical_ring_advance(ringbuf);
1807
1808 return 0;
1809 }
1810
1811 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1812 u32 invalidate_domains,
1813 u32 flush_domains)
1814 {
1815 struct intel_ringbuffer *ringbuf = request->ringbuf;
1816 struct intel_engine_cs *engine = ringbuf->engine;
1817 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1818 bool vf_flush_wa = false;
1819 u32 flags = 0;
1820 int ret;
1821
1822 flags |= PIPE_CONTROL_CS_STALL;
1823
1824 if (flush_domains) {
1825 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1826 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1827 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1828 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1829 }
1830
1831 if (invalidate_domains) {
1832 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1833 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1834 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1835 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1836 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1837 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1838 flags |= PIPE_CONTROL_QW_WRITE;
1839 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1840
1841 /*
1842 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1843 * pipe control.
1844 */
1845 if (IS_GEN9(engine->dev))
1846 vf_flush_wa = true;
1847 }
1848
1849 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1850 if (ret)
1851 return ret;
1852
1853 if (vf_flush_wa) {
1854 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1855 intel_logical_ring_emit(ringbuf, 0);
1856 intel_logical_ring_emit(ringbuf, 0);
1857 intel_logical_ring_emit(ringbuf, 0);
1858 intel_logical_ring_emit(ringbuf, 0);
1859 intel_logical_ring_emit(ringbuf, 0);
1860 }
1861
1862 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1863 intel_logical_ring_emit(ringbuf, flags);
1864 intel_logical_ring_emit(ringbuf, scratch_addr);
1865 intel_logical_ring_emit(ringbuf, 0);
1866 intel_logical_ring_emit(ringbuf, 0);
1867 intel_logical_ring_emit(ringbuf, 0);
1868 intel_logical_ring_advance(ringbuf);
1869
1870 return 0;
1871 }
1872
1873 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1874 {
1875 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1876 }
1877
1878 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1879 {
1880 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1881 }
1882
1883 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1884 {
1885 /*
1886 * On BXT A steppings there is a HW coherency issue whereby the
1887 * MI_STORE_DATA_IMM storing the completed request's seqno
1888 * occasionally doesn't invalidate the CPU cache. Work around this by
1889 * clflushing the corresponding cacheline whenever the caller wants
1890 * the coherency to be guaranteed. Note that this cacheline is known
1891 * to be clean at this point, since we only write it in
1892 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1893 * this clflush in practice becomes an invalidate operation.
1894 */
1895 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1896 }
1897
1898 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1899 {
1900 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1901
1902 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1903 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1904 }
1905
1906 /*
1907 * Reserve space for 2 NOOPs at the end of each request to be
1908 * used as a workaround for not being allowed to do lite
1909 * restore with HEAD==TAIL (WaIdleLiteRestore).
1910 */
1911 #define WA_TAIL_DWORDS 2
1912
1913 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1914 {
1915 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1916 }
1917
1918 static int gen8_emit_request(struct drm_i915_gem_request *request)
1919 {
1920 struct intel_ringbuffer *ringbuf = request->ringbuf;
1921 int ret;
1922
1923 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1924 if (ret)
1925 return ret;
1926
1927 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1928 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1929
1930 intel_logical_ring_emit(ringbuf,
1931 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1932 intel_logical_ring_emit(ringbuf,
1933 hws_seqno_address(request->engine) |
1934 MI_FLUSH_DW_USE_GTT);
1935 intel_logical_ring_emit(ringbuf, 0);
1936 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1937 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1938 intel_logical_ring_emit(ringbuf, MI_NOOP);
1939 return intel_logical_ring_advance_and_submit(request);
1940 }
1941
1942 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1943 {
1944 struct intel_ringbuffer *ringbuf = request->ringbuf;
1945 int ret;
1946
1947 ret = intel_logical_ring_begin(request, 8 + WA_TAIL_DWORDS);
1948 if (ret)
1949 return ret;
1950
1951 /* We're using qword write, seqno should be aligned to 8 bytes. */
1952 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1953
1954 /* w/a for post sync ops following a GPGPU operation we
1955 * need a prior CS_STALL, which is emitted by the flush
1956 * following the batch.
1957 */
1958 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1959 intel_logical_ring_emit(ringbuf,
1960 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1961 PIPE_CONTROL_CS_STALL |
1962 PIPE_CONTROL_QW_WRITE));
1963 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1964 intel_logical_ring_emit(ringbuf, 0);
1965 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1966 /* We're thrashing one dword of HWS. */
1967 intel_logical_ring_emit(ringbuf, 0);
1968 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1969 intel_logical_ring_emit(ringbuf, MI_NOOP);
1970 return intel_logical_ring_advance_and_submit(request);
1971 }
1972
1973 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1974 {
1975 struct render_state so;
1976 int ret;
1977
1978 ret = i915_gem_render_state_prepare(req->engine, &so);
1979 if (ret)
1980 return ret;
1981
1982 if (so.rodata == NULL)
1983 return 0;
1984
1985 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1986 I915_DISPATCH_SECURE);
1987 if (ret)
1988 goto out;
1989
1990 ret = req->engine->emit_bb_start(req,
1991 (so.ggtt_offset + so.aux_batch_offset),
1992 I915_DISPATCH_SECURE);
1993 if (ret)
1994 goto out;
1995
1996 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1997
1998 out:
1999 i915_gem_render_state_fini(&so);
2000 return ret;
2001 }
2002
2003 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
2004 {
2005 int ret;
2006
2007 ret = intel_logical_ring_workarounds_emit(req);
2008 if (ret)
2009 return ret;
2010
2011 ret = intel_rcs_context_init_mocs(req);
2012 /*
2013 * Failing to program the MOCS is non-fatal.The system will not
2014 * run at peak performance. So generate an error and carry on.
2015 */
2016 if (ret)
2017 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2018
2019 return intel_lr_context_render_state_init(req);
2020 }
2021
2022 /**
2023 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2024 *
2025 * @ring: Engine Command Streamer.
2026 *
2027 */
2028 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2029 {
2030 struct drm_i915_private *dev_priv;
2031
2032 if (!intel_engine_initialized(engine))
2033 return;
2034
2035 /*
2036 * Tasklet cannot be active at this point due intel_mark_active/idle
2037 * so this is just for documentation.
2038 */
2039 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
2040 tasklet_kill(&engine->irq_tasklet);
2041
2042 dev_priv = engine->dev->dev_private;
2043
2044 if (engine->buffer) {
2045 intel_logical_ring_stop(engine);
2046 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2047 }
2048
2049 if (engine->cleanup)
2050 engine->cleanup(engine);
2051
2052 i915_cmd_parser_fini_ring(engine);
2053 i915_gem_batch_pool_fini(&engine->batch_pool);
2054
2055 if (engine->status_page.obj) {
2056 i915_gem_object_unpin_map(engine->status_page.obj);
2057 engine->status_page.obj = NULL;
2058 }
2059
2060 engine->idle_lite_restore_wa = 0;
2061 engine->disable_lite_restore_wa = false;
2062 engine->ctx_desc_template = 0;
2063
2064 lrc_destroy_wa_ctx_obj(engine);
2065 engine->dev = NULL;
2066 }
2067
2068 static void
2069 logical_ring_default_vfuncs(struct drm_device *dev,
2070 struct intel_engine_cs *engine)
2071 {
2072 /* Default vfuncs which can be overriden by each engine. */
2073 engine->init_hw = gen8_init_common_ring;
2074 engine->emit_request = gen8_emit_request;
2075 engine->emit_flush = gen8_emit_flush;
2076 engine->irq_get = gen8_logical_ring_get_irq;
2077 engine->irq_put = gen8_logical_ring_put_irq;
2078 engine->emit_bb_start = gen8_emit_bb_start;
2079 engine->get_seqno = gen8_get_seqno;
2080 engine->set_seqno = gen8_set_seqno;
2081 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2082 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
2083 engine->set_seqno = bxt_a_set_seqno;
2084 }
2085 }
2086
2087 static inline void
2088 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2089 {
2090 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2091 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2092 }
2093
2094 static int
2095 lrc_setup_hws(struct intel_engine_cs *engine,
2096 struct drm_i915_gem_object *dctx_obj)
2097 {
2098 void *hws;
2099
2100 /* The HWSP is part of the default context object in LRC mode. */
2101 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
2102 LRC_PPHWSP_PN * PAGE_SIZE;
2103 hws = i915_gem_object_pin_map(dctx_obj);
2104 if (IS_ERR(hws))
2105 return PTR_ERR(hws);
2106 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2107 engine->status_page.obj = dctx_obj;
2108
2109 return 0;
2110 }
2111
2112 static int
2113 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2114 {
2115 struct drm_i915_private *dev_priv = to_i915(dev);
2116 struct intel_context *dctx = dev_priv->kernel_context;
2117 enum forcewake_domains fw_domains;
2118 int ret;
2119
2120 /* Intentionally left blank. */
2121 engine->buffer = NULL;
2122
2123 engine->dev = dev;
2124 INIT_LIST_HEAD(&engine->active_list);
2125 INIT_LIST_HEAD(&engine->request_list);
2126 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2127 init_waitqueue_head(&engine->irq_queue);
2128
2129 INIT_LIST_HEAD(&engine->buffers);
2130 INIT_LIST_HEAD(&engine->execlist_queue);
2131 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2132 spin_lock_init(&engine->execlist_lock);
2133
2134 tasklet_init(&engine->irq_tasklet,
2135 intel_lrc_irq_handler, (unsigned long)engine);
2136
2137 logical_ring_init_platform_invariants(engine);
2138
2139 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2140 RING_ELSP(engine),
2141 FW_REG_WRITE);
2142
2143 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2144 RING_CONTEXT_STATUS_PTR(engine),
2145 FW_REG_READ | FW_REG_WRITE);
2146
2147 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2148 RING_CONTEXT_STATUS_BUF_BASE(engine),
2149 FW_REG_READ);
2150
2151 engine->fw_domains = fw_domains;
2152
2153 ret = i915_cmd_parser_init_ring(engine);
2154 if (ret)
2155 goto error;
2156
2157 ret = intel_lr_context_deferred_alloc(dctx, engine);
2158 if (ret)
2159 goto error;
2160
2161 /* As this is the default context, always pin it */
2162 ret = intel_lr_context_do_pin(dctx, engine);
2163 if (ret) {
2164 DRM_ERROR(
2165 "Failed to pin and map ringbuffer %s: %d\n",
2166 engine->name, ret);
2167 goto error;
2168 }
2169
2170 /* And setup the hardware status page. */
2171 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2172 if (ret) {
2173 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2174 goto error;
2175 }
2176
2177 return 0;
2178
2179 error:
2180 intel_logical_ring_cleanup(engine);
2181 return ret;
2182 }
2183
2184 static int logical_render_ring_init(struct drm_device *dev)
2185 {
2186 struct drm_i915_private *dev_priv = dev->dev_private;
2187 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2188 int ret;
2189
2190 engine->name = "render ring";
2191 engine->id = RCS;
2192 engine->exec_id = I915_EXEC_RENDER;
2193 engine->guc_id = GUC_RENDER_ENGINE;
2194 engine->mmio_base = RENDER_RING_BASE;
2195
2196 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2197 if (HAS_L3_DPF(dev))
2198 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2199
2200 logical_ring_default_vfuncs(dev, engine);
2201
2202 /* Override some for render ring. */
2203 if (INTEL_INFO(dev)->gen >= 9)
2204 engine->init_hw = gen9_init_render_ring;
2205 else
2206 engine->init_hw = gen8_init_render_ring;
2207 engine->init_context = gen8_init_rcs_context;
2208 engine->cleanup = intel_fini_pipe_control;
2209 engine->emit_flush = gen8_emit_flush_render;
2210 engine->emit_request = gen8_emit_request_render;
2211
2212 engine->dev = dev;
2213
2214 ret = intel_init_pipe_control(engine);
2215 if (ret)
2216 return ret;
2217
2218 ret = intel_init_workaround_bb(engine);
2219 if (ret) {
2220 /*
2221 * We continue even if we fail to initialize WA batch
2222 * because we only expect rare glitches but nothing
2223 * critical to prevent us from using GPU
2224 */
2225 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2226 ret);
2227 }
2228
2229 ret = logical_ring_init(dev, engine);
2230 if (ret) {
2231 lrc_destroy_wa_ctx_obj(engine);
2232 }
2233
2234 return ret;
2235 }
2236
2237 static int logical_bsd_ring_init(struct drm_device *dev)
2238 {
2239 struct drm_i915_private *dev_priv = dev->dev_private;
2240 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2241
2242 engine->name = "bsd ring";
2243 engine->id = VCS;
2244 engine->exec_id = I915_EXEC_BSD;
2245 engine->guc_id = GUC_VIDEO_ENGINE;
2246 engine->mmio_base = GEN6_BSD_RING_BASE;
2247
2248 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2249 logical_ring_default_vfuncs(dev, engine);
2250
2251 return logical_ring_init(dev, engine);
2252 }
2253
2254 static int logical_bsd2_ring_init(struct drm_device *dev)
2255 {
2256 struct drm_i915_private *dev_priv = dev->dev_private;
2257 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2258
2259 engine->name = "bsd2 ring";
2260 engine->id = VCS2;
2261 engine->exec_id = I915_EXEC_BSD;
2262 engine->guc_id = GUC_VIDEO_ENGINE2;
2263 engine->mmio_base = GEN8_BSD2_RING_BASE;
2264
2265 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2266 logical_ring_default_vfuncs(dev, engine);
2267
2268 return logical_ring_init(dev, engine);
2269 }
2270
2271 static int logical_blt_ring_init(struct drm_device *dev)
2272 {
2273 struct drm_i915_private *dev_priv = dev->dev_private;
2274 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2275
2276 engine->name = "blitter ring";
2277 engine->id = BCS;
2278 engine->exec_id = I915_EXEC_BLT;
2279 engine->guc_id = GUC_BLITTER_ENGINE;
2280 engine->mmio_base = BLT_RING_BASE;
2281
2282 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2283 logical_ring_default_vfuncs(dev, engine);
2284
2285 return logical_ring_init(dev, engine);
2286 }
2287
2288 static int logical_vebox_ring_init(struct drm_device *dev)
2289 {
2290 struct drm_i915_private *dev_priv = dev->dev_private;
2291 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2292
2293 engine->name = "video enhancement ring";
2294 engine->id = VECS;
2295 engine->exec_id = I915_EXEC_VEBOX;
2296 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2297 engine->mmio_base = VEBOX_RING_BASE;
2298
2299 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2300 logical_ring_default_vfuncs(dev, engine);
2301
2302 return logical_ring_init(dev, engine);
2303 }
2304
2305 /**
2306 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2307 * @dev: DRM device.
2308 *
2309 * This function inits the engines for an Execlists submission style (the equivalent in the
2310 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2311 * those engines that are present in the hardware.
2312 *
2313 * Return: non-zero if the initialization failed.
2314 */
2315 int intel_logical_rings_init(struct drm_device *dev)
2316 {
2317 struct drm_i915_private *dev_priv = dev->dev_private;
2318 int ret;
2319
2320 ret = logical_render_ring_init(dev);
2321 if (ret)
2322 return ret;
2323
2324 if (HAS_BSD(dev)) {
2325 ret = logical_bsd_ring_init(dev);
2326 if (ret)
2327 goto cleanup_render_ring;
2328 }
2329
2330 if (HAS_BLT(dev)) {
2331 ret = logical_blt_ring_init(dev);
2332 if (ret)
2333 goto cleanup_bsd_ring;
2334 }
2335
2336 if (HAS_VEBOX(dev)) {
2337 ret = logical_vebox_ring_init(dev);
2338 if (ret)
2339 goto cleanup_blt_ring;
2340 }
2341
2342 if (HAS_BSD2(dev)) {
2343 ret = logical_bsd2_ring_init(dev);
2344 if (ret)
2345 goto cleanup_vebox_ring;
2346 }
2347
2348 return 0;
2349
2350 cleanup_vebox_ring:
2351 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2352 cleanup_blt_ring:
2353 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2354 cleanup_bsd_ring:
2355 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2356 cleanup_render_ring:
2357 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2358
2359 return ret;
2360 }
2361
2362 static u32
2363 make_rpcs(struct drm_device *dev)
2364 {
2365 u32 rpcs = 0;
2366
2367 /*
2368 * No explicit RPCS request is needed to ensure full
2369 * slice/subslice/EU enablement prior to Gen9.
2370 */
2371 if (INTEL_INFO(dev)->gen < 9)
2372 return 0;
2373
2374 /*
2375 * Starting in Gen9, render power gating can leave
2376 * slice/subslice/EU in a partially enabled state. We
2377 * must make an explicit request through RPCS for full
2378 * enablement.
2379 */
2380 if (INTEL_INFO(dev)->has_slice_pg) {
2381 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2382 rpcs |= INTEL_INFO(dev)->slice_total <<
2383 GEN8_RPCS_S_CNT_SHIFT;
2384 rpcs |= GEN8_RPCS_ENABLE;
2385 }
2386
2387 if (INTEL_INFO(dev)->has_subslice_pg) {
2388 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2389 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2390 GEN8_RPCS_SS_CNT_SHIFT;
2391 rpcs |= GEN8_RPCS_ENABLE;
2392 }
2393
2394 if (INTEL_INFO(dev)->has_eu_pg) {
2395 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2396 GEN8_RPCS_EU_MIN_SHIFT;
2397 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2398 GEN8_RPCS_EU_MAX_SHIFT;
2399 rpcs |= GEN8_RPCS_ENABLE;
2400 }
2401
2402 return rpcs;
2403 }
2404
2405 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2406 {
2407 u32 indirect_ctx_offset;
2408
2409 switch (INTEL_INFO(engine->dev)->gen) {
2410 default:
2411 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2412 /* fall through */
2413 case 9:
2414 indirect_ctx_offset =
2415 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2416 break;
2417 case 8:
2418 indirect_ctx_offset =
2419 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2420 break;
2421 }
2422
2423 return indirect_ctx_offset;
2424 }
2425
2426 static int
2427 populate_lr_context(struct intel_context *ctx,
2428 struct drm_i915_gem_object *ctx_obj,
2429 struct intel_engine_cs *engine,
2430 struct intel_ringbuffer *ringbuf)
2431 {
2432 struct drm_device *dev = engine->dev;
2433 struct drm_i915_private *dev_priv = dev->dev_private;
2434 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2435 void *vaddr;
2436 u32 *reg_state;
2437 int ret;
2438
2439 if (!ppgtt)
2440 ppgtt = dev_priv->mm.aliasing_ppgtt;
2441
2442 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2443 if (ret) {
2444 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2445 return ret;
2446 }
2447
2448 vaddr = i915_gem_object_pin_map(ctx_obj);
2449 if (IS_ERR(vaddr)) {
2450 ret = PTR_ERR(vaddr);
2451 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2452 return ret;
2453 }
2454 ctx_obj->dirty = true;
2455
2456 /* The second page of the context object contains some fields which must
2457 * be set up prior to the first execution. */
2458 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2459
2460 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2461 * commands followed by (reg, value) pairs. The values we are setting here are
2462 * only for the first context restore: on a subsequent save, the GPU will
2463 * recreate this batchbuffer with new values (including all the missing
2464 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2465 reg_state[CTX_LRI_HEADER_0] =
2466 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2467 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2468 RING_CONTEXT_CONTROL(engine),
2469 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2470 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2471 (HAS_RESOURCE_STREAMER(dev) ?
2472 CTX_CTRL_RS_CTX_ENABLE : 0)));
2473 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2474 0);
2475 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2476 0);
2477 /* Ring buffer start address is not known until the buffer is pinned.
2478 * It is written to the context image in execlists_update_context()
2479 */
2480 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2481 RING_START(engine->mmio_base), 0);
2482 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2483 RING_CTL(engine->mmio_base),
2484 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2485 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2486 RING_BBADDR_UDW(engine->mmio_base), 0);
2487 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2488 RING_BBADDR(engine->mmio_base), 0);
2489 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2490 RING_BBSTATE(engine->mmio_base),
2491 RING_BB_PPGTT);
2492 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2493 RING_SBBADDR_UDW(engine->mmio_base), 0);
2494 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2495 RING_SBBADDR(engine->mmio_base), 0);
2496 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2497 RING_SBBSTATE(engine->mmio_base), 0);
2498 if (engine->id == RCS) {
2499 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2500 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2501 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2502 RING_INDIRECT_CTX(engine->mmio_base), 0);
2503 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2504 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2505 if (engine->wa_ctx.obj) {
2506 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2507 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2508
2509 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2510 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2511 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2512
2513 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2514 intel_lr_indirect_ctx_offset(engine) << 6;
2515
2516 reg_state[CTX_BB_PER_CTX_PTR+1] =
2517 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2518 0x01;
2519 }
2520 }
2521 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2522 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2523 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2524 /* PDP values well be assigned later if needed */
2525 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2526 0);
2527 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2528 0);
2529 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2530 0);
2531 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2532 0);
2533 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2534 0);
2535 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2536 0);
2537 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2538 0);
2539 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2540 0);
2541
2542 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2543 /* 64b PPGTT (48bit canonical)
2544 * PDP0_DESCRIPTOR contains the base address to PML4 and
2545 * other PDP Descriptors are ignored.
2546 */
2547 ASSIGN_CTX_PML4(ppgtt, reg_state);
2548 } else {
2549 /* 32b PPGTT
2550 * PDP*_DESCRIPTOR contains the base address of space supported.
2551 * With dynamic page allocation, PDPs may not be allocated at
2552 * this point. Point the unallocated PDPs to the scratch page
2553 */
2554 execlists_update_context_pdps(ppgtt, reg_state);
2555 }
2556
2557 if (engine->id == RCS) {
2558 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2559 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2560 make_rpcs(dev));
2561 }
2562
2563 i915_gem_object_unpin_map(ctx_obj);
2564
2565 return 0;
2566 }
2567
2568 /**
2569 * intel_lr_context_free() - free the LRC specific bits of a context
2570 * @ctx: the LR context to free.
2571 *
2572 * The real context freeing is done in i915_gem_context_free: this only
2573 * takes care of the bits that are LRC related: the per-engine backing
2574 * objects and the logical ringbuffer.
2575 */
2576 void intel_lr_context_free(struct intel_context *ctx)
2577 {
2578 int i;
2579
2580 for (i = I915_NUM_ENGINES; --i >= 0; ) {
2581 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2582 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2583
2584 if (!ctx_obj)
2585 continue;
2586
2587 if (ctx == ctx->i915->kernel_context) {
2588 intel_unpin_ringbuffer_obj(ringbuf);
2589 i915_gem_object_ggtt_unpin(ctx_obj);
2590 i915_gem_object_unpin_map(ctx_obj);
2591 }
2592
2593 WARN_ON(ctx->engine[i].pin_count);
2594 intel_ringbuffer_free(ringbuf);
2595 drm_gem_object_unreference(&ctx_obj->base);
2596 }
2597 }
2598
2599 /**
2600 * intel_lr_context_size() - return the size of the context for an engine
2601 * @ring: which engine to find the context size for
2602 *
2603 * Each engine may require a different amount of space for a context image,
2604 * so when allocating (or copying) an image, this function can be used to
2605 * find the right size for the specific engine.
2606 *
2607 * Return: size (in bytes) of an engine-specific context image
2608 *
2609 * Note: this size includes the HWSP, which is part of the context image
2610 * in LRC mode, but does not include the "shared data page" used with
2611 * GuC submission. The caller should account for this if using the GuC.
2612 */
2613 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2614 {
2615 int ret = 0;
2616
2617 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2618
2619 switch (engine->id) {
2620 case RCS:
2621 if (INTEL_INFO(engine->dev)->gen >= 9)
2622 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2623 else
2624 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2625 break;
2626 case VCS:
2627 case BCS:
2628 case VECS:
2629 case VCS2:
2630 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2631 break;
2632 }
2633
2634 return ret;
2635 }
2636
2637 /**
2638 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2639 * @ctx: LR context to create.
2640 * @ring: engine to be used with the context.
2641 *
2642 * This function can be called more than once, with different engines, if we plan
2643 * to use the context with them. The context backing objects and the ringbuffers
2644 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2645 * the creation is a deferred call: it's better to make sure first that we need to use
2646 * a given ring with the context.
2647 *
2648 * Return: non-zero on error.
2649 */
2650
2651 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2652 struct intel_engine_cs *engine)
2653 {
2654 struct drm_device *dev = engine->dev;
2655 struct drm_i915_gem_object *ctx_obj;
2656 uint32_t context_size;
2657 struct intel_ringbuffer *ringbuf;
2658 int ret;
2659
2660 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2661 WARN_ON(ctx->engine[engine->id].state);
2662
2663 context_size = round_up(intel_lr_context_size(engine), 4096);
2664
2665 /* One extra page as the sharing data between driver and GuC */
2666 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2667
2668 ctx_obj = i915_gem_alloc_object(dev, context_size);
2669 if (!ctx_obj) {
2670 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2671 return -ENOMEM;
2672 }
2673
2674 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2675 if (IS_ERR(ringbuf)) {
2676 ret = PTR_ERR(ringbuf);
2677 goto error_deref_obj;
2678 }
2679
2680 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2681 if (ret) {
2682 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2683 goto error_ringbuf;
2684 }
2685
2686 ctx->engine[engine->id].ringbuf = ringbuf;
2687 ctx->engine[engine->id].state = ctx_obj;
2688
2689 if (ctx != ctx->i915->kernel_context && engine->init_context) {
2690 struct drm_i915_gem_request *req;
2691
2692 req = i915_gem_request_alloc(engine, ctx);
2693 if (IS_ERR(req)) {
2694 ret = PTR_ERR(req);
2695 DRM_ERROR("ring create req: %d\n", ret);
2696 goto error_ringbuf;
2697 }
2698
2699 ret = engine->init_context(req);
2700 i915_add_request_no_flush(req);
2701 if (ret) {
2702 DRM_ERROR("ring init context: %d\n",
2703 ret);
2704 goto error_ringbuf;
2705 }
2706 }
2707 return 0;
2708
2709 error_ringbuf:
2710 intel_ringbuffer_free(ringbuf);
2711 error_deref_obj:
2712 drm_gem_object_unreference(&ctx_obj->base);
2713 ctx->engine[engine->id].ringbuf = NULL;
2714 ctx->engine[engine->id].state = NULL;
2715 return ret;
2716 }
2717
2718 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2719 struct intel_context *ctx)
2720 {
2721 struct intel_engine_cs *engine;
2722
2723 for_each_engine(engine, dev_priv) {
2724 struct drm_i915_gem_object *ctx_obj =
2725 ctx->engine[engine->id].state;
2726 struct intel_ringbuffer *ringbuf =
2727 ctx->engine[engine->id].ringbuf;
2728 void *vaddr;
2729 uint32_t *reg_state;
2730
2731 if (!ctx_obj)
2732 continue;
2733
2734 vaddr = i915_gem_object_pin_map(ctx_obj);
2735 if (WARN_ON(IS_ERR(vaddr)))
2736 continue;
2737
2738 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2739 ctx_obj->dirty = true;
2740
2741 reg_state[CTX_RING_HEAD+1] = 0;
2742 reg_state[CTX_RING_TAIL+1] = 0;
2743
2744 i915_gem_object_unpin_map(ctx_obj);
2745
2746 ringbuf->head = 0;
2747 ringbuf->tail = 0;
2748 }
2749 }
This page took 0.087823 seconds and 6 git commands to generate.