drm/i915: Getter/setter for object attributes
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
34
35 #define FORCEWAKE_ACK_TIMEOUT_MS 2
36
37 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
38 * framebuffer contents in-memory, aiming at reducing the required bandwidth
39 * during in-memory transfers and, therefore, reduce the power packet.
40 *
41 * The benefits of FBC are mostly visible with solid backgrounds and
42 * variation-less patterns.
43 *
44 * FBC-related functionality can be enabled by the means of the
45 * i915.i915_enable_fbc parameter
46 */
47
48 static bool intel_crtc_active(struct drm_crtc *crtc)
49 {
50 /* Be paranoid as we can arrive here with only partial
51 * state retrieved from the hardware during setup.
52 */
53 return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
54 }
55
56 static void i8xx_disable_fbc(struct drm_device *dev)
57 {
58 struct drm_i915_private *dev_priv = dev->dev_private;
59 u32 fbc_ctl;
60
61 /* Disable compression */
62 fbc_ctl = I915_READ(FBC_CONTROL);
63 if ((fbc_ctl & FBC_CTL_EN) == 0)
64 return;
65
66 fbc_ctl &= ~FBC_CTL_EN;
67 I915_WRITE(FBC_CONTROL, fbc_ctl);
68
69 /* Wait for compressing bit to clear */
70 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
71 DRM_DEBUG_KMS("FBC idle timed out\n");
72 return;
73 }
74
75 DRM_DEBUG_KMS("disabled FBC\n");
76 }
77
78 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
79 {
80 struct drm_device *dev = crtc->dev;
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct drm_framebuffer *fb = crtc->fb;
83 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
84 struct drm_i915_gem_object *obj = intel_fb->obj;
85 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
86 int cfb_pitch;
87 int plane, i;
88 u32 fbc_ctl, fbc_ctl2;
89
90 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
91 if (fb->pitches[0] < cfb_pitch)
92 cfb_pitch = fb->pitches[0];
93
94 /* FBC_CTL wants 64B units */
95 cfb_pitch = (cfb_pitch / 64) - 1;
96 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
97
98 /* Clear old tags */
99 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
100 I915_WRITE(FBC_TAG + (i * 4), 0);
101
102 /* Set it up... */
103 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
104 fbc_ctl2 |= plane;
105 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
106 I915_WRITE(FBC_FENCE_OFF, crtc->y);
107
108 /* enable it... */
109 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
110 if (IS_I945GM(dev))
111 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
112 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
113 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
114 fbc_ctl |= obj->fence_reg;
115 I915_WRITE(FBC_CONTROL, fbc_ctl);
116
117 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
118 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
119 }
120
121 static bool i8xx_fbc_enabled(struct drm_device *dev)
122 {
123 struct drm_i915_private *dev_priv = dev->dev_private;
124
125 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
126 }
127
128 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
129 {
130 struct drm_device *dev = crtc->dev;
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 struct drm_framebuffer *fb = crtc->fb;
133 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
134 struct drm_i915_gem_object *obj = intel_fb->obj;
135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
136 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
137 unsigned long stall_watermark = 200;
138 u32 dpfc_ctl;
139
140 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
141 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
142 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
143
144 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
145 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
146 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
147 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
148
149 /* enable it... */
150 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
151
152 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
153 }
154
155 static void g4x_disable_fbc(struct drm_device *dev)
156 {
157 struct drm_i915_private *dev_priv = dev->dev_private;
158 u32 dpfc_ctl;
159
160 /* Disable compression */
161 dpfc_ctl = I915_READ(DPFC_CONTROL);
162 if (dpfc_ctl & DPFC_CTL_EN) {
163 dpfc_ctl &= ~DPFC_CTL_EN;
164 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
165
166 DRM_DEBUG_KMS("disabled FBC\n");
167 }
168 }
169
170 static bool g4x_fbc_enabled(struct drm_device *dev)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173
174 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
175 }
176
177 static void sandybridge_blit_fbc_update(struct drm_device *dev)
178 {
179 struct drm_i915_private *dev_priv = dev->dev_private;
180 u32 blt_ecoskpd;
181
182 /* Make sure blitter notifies FBC of writes */
183 gen6_gt_force_wake_get(dev_priv);
184 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
185 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
186 GEN6_BLITTER_LOCK_SHIFT;
187 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
188 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
189 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
190 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
191 GEN6_BLITTER_LOCK_SHIFT);
192 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
193 POSTING_READ(GEN6_BLITTER_ECOSKPD);
194 gen6_gt_force_wake_put(dev_priv);
195 }
196
197 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
198 {
199 struct drm_device *dev = crtc->dev;
200 struct drm_i915_private *dev_priv = dev->dev_private;
201 struct drm_framebuffer *fb = crtc->fb;
202 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
203 struct drm_i915_gem_object *obj = intel_fb->obj;
204 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
205 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
206 unsigned long stall_watermark = 200;
207 u32 dpfc_ctl;
208
209 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
210 dpfc_ctl &= DPFC_RESERVED;
211 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
212 /* Set persistent mode for front-buffer rendering, ala X. */
213 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
214 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
215 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
216
217 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
218 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
219 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
220 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
221 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
222 /* enable it... */
223 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
224
225 if (IS_GEN6(dev)) {
226 I915_WRITE(SNB_DPFC_CTL_SA,
227 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
228 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
229 sandybridge_blit_fbc_update(dev);
230 }
231
232 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
233 }
234
235 static void ironlake_disable_fbc(struct drm_device *dev)
236 {
237 struct drm_i915_private *dev_priv = dev->dev_private;
238 u32 dpfc_ctl;
239
240 /* Disable compression */
241 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
242 if (dpfc_ctl & DPFC_CTL_EN) {
243 dpfc_ctl &= ~DPFC_CTL_EN;
244 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
245
246 if (IS_IVYBRIDGE(dev))
247 /* WaFbcDisableDpfcClockGating:ivb */
248 I915_WRITE(ILK_DSPCLK_GATE_D,
249 I915_READ(ILK_DSPCLK_GATE_D) &
250 ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
251
252 if (IS_HASWELL(dev))
253 /* WaFbcDisableDpfcClockGating:hsw */
254 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
255 I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
256 ~HSW_DPFC_GATING_DISABLE);
257
258 DRM_DEBUG_KMS("disabled FBC\n");
259 }
260 }
261
262 static bool ironlake_fbc_enabled(struct drm_device *dev)
263 {
264 struct drm_i915_private *dev_priv = dev->dev_private;
265
266 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
267 }
268
269 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
270 {
271 struct drm_device *dev = crtc->dev;
272 struct drm_i915_private *dev_priv = dev->dev_private;
273 struct drm_framebuffer *fb = crtc->fb;
274 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
275 struct drm_i915_gem_object *obj = intel_fb->obj;
276 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
277
278 I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
279
280 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
281 IVB_DPFC_CTL_FENCE_EN |
282 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
283
284 if (IS_IVYBRIDGE(dev)) {
285 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
286 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
287 /* WaFbcDisableDpfcClockGating:ivb */
288 I915_WRITE(ILK_DSPCLK_GATE_D,
289 I915_READ(ILK_DSPCLK_GATE_D) |
290 ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
291 } else {
292 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
293 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
294 HSW_BYPASS_FBC_QUEUE);
295 /* WaFbcDisableDpfcClockGating:hsw */
296 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
297 I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
298 HSW_DPFC_GATING_DISABLE);
299 }
300
301 I915_WRITE(SNB_DPFC_CTL_SA,
302 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
303 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
304
305 sandybridge_blit_fbc_update(dev);
306
307 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
308 }
309
310 bool intel_fbc_enabled(struct drm_device *dev)
311 {
312 struct drm_i915_private *dev_priv = dev->dev_private;
313
314 if (!dev_priv->display.fbc_enabled)
315 return false;
316
317 return dev_priv->display.fbc_enabled(dev);
318 }
319
320 static void intel_fbc_work_fn(struct work_struct *__work)
321 {
322 struct intel_fbc_work *work =
323 container_of(to_delayed_work(__work),
324 struct intel_fbc_work, work);
325 struct drm_device *dev = work->crtc->dev;
326 struct drm_i915_private *dev_priv = dev->dev_private;
327
328 mutex_lock(&dev->struct_mutex);
329 if (work == dev_priv->fbc.fbc_work) {
330 /* Double check that we haven't switched fb without cancelling
331 * the prior work.
332 */
333 if (work->crtc->fb == work->fb) {
334 dev_priv->display.enable_fbc(work->crtc,
335 work->interval);
336
337 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
338 dev_priv->fbc.fb_id = work->crtc->fb->base.id;
339 dev_priv->fbc.y = work->crtc->y;
340 }
341
342 dev_priv->fbc.fbc_work = NULL;
343 }
344 mutex_unlock(&dev->struct_mutex);
345
346 kfree(work);
347 }
348
349 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
350 {
351 if (dev_priv->fbc.fbc_work == NULL)
352 return;
353
354 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
355
356 /* Synchronisation is provided by struct_mutex and checking of
357 * dev_priv->fbc.fbc_work, so we can perform the cancellation
358 * entirely asynchronously.
359 */
360 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
361 /* tasklet was killed before being run, clean up */
362 kfree(dev_priv->fbc.fbc_work);
363
364 /* Mark the work as no longer wanted so that if it does
365 * wake-up (because the work was already running and waiting
366 * for our mutex), it will discover that is no longer
367 * necessary to run.
368 */
369 dev_priv->fbc.fbc_work = NULL;
370 }
371
372 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
373 {
374 struct intel_fbc_work *work;
375 struct drm_device *dev = crtc->dev;
376 struct drm_i915_private *dev_priv = dev->dev_private;
377
378 if (!dev_priv->display.enable_fbc)
379 return;
380
381 intel_cancel_fbc_work(dev_priv);
382
383 work = kzalloc(sizeof *work, GFP_KERNEL);
384 if (work == NULL) {
385 DRM_ERROR("Failed to allocate FBC work structure\n");
386 dev_priv->display.enable_fbc(crtc, interval);
387 return;
388 }
389
390 work->crtc = crtc;
391 work->fb = crtc->fb;
392 work->interval = interval;
393 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
394
395 dev_priv->fbc.fbc_work = work;
396
397 /* Delay the actual enabling to let pageflipping cease and the
398 * display to settle before starting the compression. Note that
399 * this delay also serves a second purpose: it allows for a
400 * vblank to pass after disabling the FBC before we attempt
401 * to modify the control registers.
402 *
403 * A more complicated solution would involve tracking vblanks
404 * following the termination of the page-flipping sequence
405 * and indeed performing the enable as a co-routine and not
406 * waiting synchronously upon the vblank.
407 */
408 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
409 }
410
411 void intel_disable_fbc(struct drm_device *dev)
412 {
413 struct drm_i915_private *dev_priv = dev->dev_private;
414
415 intel_cancel_fbc_work(dev_priv);
416
417 if (!dev_priv->display.disable_fbc)
418 return;
419
420 dev_priv->display.disable_fbc(dev);
421 dev_priv->fbc.plane = -1;
422 }
423
424 /**
425 * intel_update_fbc - enable/disable FBC as needed
426 * @dev: the drm_device
427 *
428 * Set up the framebuffer compression hardware at mode set time. We
429 * enable it if possible:
430 * - plane A only (on pre-965)
431 * - no pixel mulitply/line duplication
432 * - no alpha buffer discard
433 * - no dual wide
434 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
435 *
436 * We can't assume that any compression will take place (worst case),
437 * so the compressed buffer has to be the same size as the uncompressed
438 * one. It also must reside (along with the line length buffer) in
439 * stolen memory.
440 *
441 * We need to enable/disable FBC on a global basis.
442 */
443 void intel_update_fbc(struct drm_device *dev)
444 {
445 struct drm_i915_private *dev_priv = dev->dev_private;
446 struct drm_crtc *crtc = NULL, *tmp_crtc;
447 struct intel_crtc *intel_crtc;
448 struct drm_framebuffer *fb;
449 struct intel_framebuffer *intel_fb;
450 struct drm_i915_gem_object *obj;
451 unsigned int max_hdisplay, max_vdisplay;
452
453 if (!i915_powersave)
454 return;
455
456 if (!I915_HAS_FBC(dev))
457 return;
458
459 /*
460 * If FBC is already on, we just have to verify that we can
461 * keep it that way...
462 * Need to disable if:
463 * - more than one pipe is active
464 * - changing FBC params (stride, fence, mode)
465 * - new fb is too large to fit in compressed buffer
466 * - going to an unsupported config (interlace, pixel multiply, etc.)
467 */
468 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
469 if (intel_crtc_active(tmp_crtc) &&
470 !to_intel_crtc(tmp_crtc)->primary_disabled) {
471 if (crtc) {
472 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
473 dev_priv->fbc.no_fbc_reason =
474 FBC_MULTIPLE_PIPES;
475 goto out_disable;
476 }
477 crtc = tmp_crtc;
478 }
479 }
480
481 if (!crtc || crtc->fb == NULL) {
482 DRM_DEBUG_KMS("no output, disabling\n");
483 dev_priv->fbc.no_fbc_reason = FBC_NO_OUTPUT;
484 goto out_disable;
485 }
486
487 intel_crtc = to_intel_crtc(crtc);
488 fb = crtc->fb;
489 intel_fb = to_intel_framebuffer(fb);
490 obj = intel_fb->obj;
491
492 if (i915_enable_fbc < 0 &&
493 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
494 DRM_DEBUG_KMS("disabled per chip default\n");
495 dev_priv->fbc.no_fbc_reason = FBC_CHIP_DEFAULT;
496 goto out_disable;
497 }
498 if (!i915_enable_fbc) {
499 DRM_DEBUG_KMS("fbc disabled per module param\n");
500 dev_priv->fbc.no_fbc_reason = FBC_MODULE_PARAM;
501 goto out_disable;
502 }
503 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
504 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
505 DRM_DEBUG_KMS("mode incompatible with compression, "
506 "disabling\n");
507 dev_priv->fbc.no_fbc_reason = FBC_UNSUPPORTED_MODE;
508 goto out_disable;
509 }
510
511 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
512 max_hdisplay = 4096;
513 max_vdisplay = 2048;
514 } else {
515 max_hdisplay = 2048;
516 max_vdisplay = 1536;
517 }
518 if ((crtc->mode.hdisplay > max_hdisplay) ||
519 (crtc->mode.vdisplay > max_vdisplay)) {
520 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
521 dev_priv->fbc.no_fbc_reason = FBC_MODE_TOO_LARGE;
522 goto out_disable;
523 }
524 if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
525 intel_crtc->plane != 0) {
526 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
527 dev_priv->fbc.no_fbc_reason = FBC_BAD_PLANE;
528 goto out_disable;
529 }
530
531 /* The use of a CPU fence is mandatory in order to detect writes
532 * by the CPU to the scanout and trigger updates to the FBC.
533 */
534 if (obj->tiling_mode != I915_TILING_X ||
535 obj->fence_reg == I915_FENCE_REG_NONE) {
536 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
537 dev_priv->fbc.no_fbc_reason = FBC_NOT_TILED;
538 goto out_disable;
539 }
540
541 /* If the kernel debugger is active, always disable compression */
542 if (in_dbg_master())
543 goto out_disable;
544
545 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
546 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
547 dev_priv->fbc.no_fbc_reason = FBC_STOLEN_TOO_SMALL;
548 goto out_disable;
549 }
550
551 /* If the scanout has not changed, don't modify the FBC settings.
552 * Note that we make the fundamental assumption that the fb->obj
553 * cannot be unpinned (and have its GTT offset and fence revoked)
554 * without first being decoupled from the scanout and FBC disabled.
555 */
556 if (dev_priv->fbc.plane == intel_crtc->plane &&
557 dev_priv->fbc.fb_id == fb->base.id &&
558 dev_priv->fbc.y == crtc->y)
559 return;
560
561 if (intel_fbc_enabled(dev)) {
562 /* We update FBC along two paths, after changing fb/crtc
563 * configuration (modeswitching) and after page-flipping
564 * finishes. For the latter, we know that not only did
565 * we disable the FBC at the start of the page-flip
566 * sequence, but also more than one vblank has passed.
567 *
568 * For the former case of modeswitching, it is possible
569 * to switch between two FBC valid configurations
570 * instantaneously so we do need to disable the FBC
571 * before we can modify its control registers. We also
572 * have to wait for the next vblank for that to take
573 * effect. However, since we delay enabling FBC we can
574 * assume that a vblank has passed since disabling and
575 * that we can safely alter the registers in the deferred
576 * callback.
577 *
578 * In the scenario that we go from a valid to invalid
579 * and then back to valid FBC configuration we have
580 * no strict enforcement that a vblank occurred since
581 * disabling the FBC. However, along all current pipe
582 * disabling paths we do need to wait for a vblank at
583 * some point. And we wait before enabling FBC anyway.
584 */
585 DRM_DEBUG_KMS("disabling active FBC for update\n");
586 intel_disable_fbc(dev);
587 }
588
589 intel_enable_fbc(crtc, 500);
590 return;
591
592 out_disable:
593 /* Multiple disables should be harmless */
594 if (intel_fbc_enabled(dev)) {
595 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
596 intel_disable_fbc(dev);
597 }
598 i915_gem_stolen_cleanup_compression(dev);
599 }
600
601 static void i915_pineview_get_mem_freq(struct drm_device *dev)
602 {
603 drm_i915_private_t *dev_priv = dev->dev_private;
604 u32 tmp;
605
606 tmp = I915_READ(CLKCFG);
607
608 switch (tmp & CLKCFG_FSB_MASK) {
609 case CLKCFG_FSB_533:
610 dev_priv->fsb_freq = 533; /* 133*4 */
611 break;
612 case CLKCFG_FSB_800:
613 dev_priv->fsb_freq = 800; /* 200*4 */
614 break;
615 case CLKCFG_FSB_667:
616 dev_priv->fsb_freq = 667; /* 167*4 */
617 break;
618 case CLKCFG_FSB_400:
619 dev_priv->fsb_freq = 400; /* 100*4 */
620 break;
621 }
622
623 switch (tmp & CLKCFG_MEM_MASK) {
624 case CLKCFG_MEM_533:
625 dev_priv->mem_freq = 533;
626 break;
627 case CLKCFG_MEM_667:
628 dev_priv->mem_freq = 667;
629 break;
630 case CLKCFG_MEM_800:
631 dev_priv->mem_freq = 800;
632 break;
633 }
634
635 /* detect pineview DDR3 setting */
636 tmp = I915_READ(CSHRDDR3CTL);
637 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
638 }
639
640 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
641 {
642 drm_i915_private_t *dev_priv = dev->dev_private;
643 u16 ddrpll, csipll;
644
645 ddrpll = I915_READ16(DDRMPLL1);
646 csipll = I915_READ16(CSIPLL0);
647
648 switch (ddrpll & 0xff) {
649 case 0xc:
650 dev_priv->mem_freq = 800;
651 break;
652 case 0x10:
653 dev_priv->mem_freq = 1066;
654 break;
655 case 0x14:
656 dev_priv->mem_freq = 1333;
657 break;
658 case 0x18:
659 dev_priv->mem_freq = 1600;
660 break;
661 default:
662 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
663 ddrpll & 0xff);
664 dev_priv->mem_freq = 0;
665 break;
666 }
667
668 dev_priv->ips.r_t = dev_priv->mem_freq;
669
670 switch (csipll & 0x3ff) {
671 case 0x00c:
672 dev_priv->fsb_freq = 3200;
673 break;
674 case 0x00e:
675 dev_priv->fsb_freq = 3733;
676 break;
677 case 0x010:
678 dev_priv->fsb_freq = 4266;
679 break;
680 case 0x012:
681 dev_priv->fsb_freq = 4800;
682 break;
683 case 0x014:
684 dev_priv->fsb_freq = 5333;
685 break;
686 case 0x016:
687 dev_priv->fsb_freq = 5866;
688 break;
689 case 0x018:
690 dev_priv->fsb_freq = 6400;
691 break;
692 default:
693 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
694 csipll & 0x3ff);
695 dev_priv->fsb_freq = 0;
696 break;
697 }
698
699 if (dev_priv->fsb_freq == 3200) {
700 dev_priv->ips.c_m = 0;
701 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
702 dev_priv->ips.c_m = 1;
703 } else {
704 dev_priv->ips.c_m = 2;
705 }
706 }
707
708 static const struct cxsr_latency cxsr_latency_table[] = {
709 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
710 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
711 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
712 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
713 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
714
715 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
716 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
717 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
718 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
719 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
720
721 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
722 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
723 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
724 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
725 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
726
727 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
728 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
729 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
730 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
731 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
732
733 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
734 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
735 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
736 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
737 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
738
739 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
740 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
741 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
742 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
743 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
744 };
745
746 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
747 int is_ddr3,
748 int fsb,
749 int mem)
750 {
751 const struct cxsr_latency *latency;
752 int i;
753
754 if (fsb == 0 || mem == 0)
755 return NULL;
756
757 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
758 latency = &cxsr_latency_table[i];
759 if (is_desktop == latency->is_desktop &&
760 is_ddr3 == latency->is_ddr3 &&
761 fsb == latency->fsb_freq && mem == latency->mem_freq)
762 return latency;
763 }
764
765 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
766
767 return NULL;
768 }
769
770 static void pineview_disable_cxsr(struct drm_device *dev)
771 {
772 struct drm_i915_private *dev_priv = dev->dev_private;
773
774 /* deactivate cxsr */
775 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
776 }
777
778 /*
779 * Latency for FIFO fetches is dependent on several factors:
780 * - memory configuration (speed, channels)
781 * - chipset
782 * - current MCH state
783 * It can be fairly high in some situations, so here we assume a fairly
784 * pessimal value. It's a tradeoff between extra memory fetches (if we
785 * set this value too high, the FIFO will fetch frequently to stay full)
786 * and power consumption (set it too low to save power and we might see
787 * FIFO underruns and display "flicker").
788 *
789 * A value of 5us seems to be a good balance; safe for very low end
790 * platforms but not overly aggressive on lower latency configs.
791 */
792 static const int latency_ns = 5000;
793
794 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
795 {
796 struct drm_i915_private *dev_priv = dev->dev_private;
797 uint32_t dsparb = I915_READ(DSPARB);
798 int size;
799
800 size = dsparb & 0x7f;
801 if (plane)
802 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
803
804 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
805 plane ? "B" : "A", size);
806
807 return size;
808 }
809
810 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
811 {
812 struct drm_i915_private *dev_priv = dev->dev_private;
813 uint32_t dsparb = I915_READ(DSPARB);
814 int size;
815
816 size = dsparb & 0x1ff;
817 if (plane)
818 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
819 size >>= 1; /* Convert to cachelines */
820
821 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
822 plane ? "B" : "A", size);
823
824 return size;
825 }
826
827 static int i845_get_fifo_size(struct drm_device *dev, int plane)
828 {
829 struct drm_i915_private *dev_priv = dev->dev_private;
830 uint32_t dsparb = I915_READ(DSPARB);
831 int size;
832
833 size = dsparb & 0x7f;
834 size >>= 2; /* Convert to cachelines */
835
836 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
837 plane ? "B" : "A",
838 size);
839
840 return size;
841 }
842
843 static int i830_get_fifo_size(struct drm_device *dev, int plane)
844 {
845 struct drm_i915_private *dev_priv = dev->dev_private;
846 uint32_t dsparb = I915_READ(DSPARB);
847 int size;
848
849 size = dsparb & 0x7f;
850 size >>= 1; /* Convert to cachelines */
851
852 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
853 plane ? "B" : "A", size);
854
855 return size;
856 }
857
858 /* Pineview has different values for various configs */
859 static const struct intel_watermark_params pineview_display_wm = {
860 PINEVIEW_DISPLAY_FIFO,
861 PINEVIEW_MAX_WM,
862 PINEVIEW_DFT_WM,
863 PINEVIEW_GUARD_WM,
864 PINEVIEW_FIFO_LINE_SIZE
865 };
866 static const struct intel_watermark_params pineview_display_hplloff_wm = {
867 PINEVIEW_DISPLAY_FIFO,
868 PINEVIEW_MAX_WM,
869 PINEVIEW_DFT_HPLLOFF_WM,
870 PINEVIEW_GUARD_WM,
871 PINEVIEW_FIFO_LINE_SIZE
872 };
873 static const struct intel_watermark_params pineview_cursor_wm = {
874 PINEVIEW_CURSOR_FIFO,
875 PINEVIEW_CURSOR_MAX_WM,
876 PINEVIEW_CURSOR_DFT_WM,
877 PINEVIEW_CURSOR_GUARD_WM,
878 PINEVIEW_FIFO_LINE_SIZE,
879 };
880 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
881 PINEVIEW_CURSOR_FIFO,
882 PINEVIEW_CURSOR_MAX_WM,
883 PINEVIEW_CURSOR_DFT_WM,
884 PINEVIEW_CURSOR_GUARD_WM,
885 PINEVIEW_FIFO_LINE_SIZE
886 };
887 static const struct intel_watermark_params g4x_wm_info = {
888 G4X_FIFO_SIZE,
889 G4X_MAX_WM,
890 G4X_MAX_WM,
891 2,
892 G4X_FIFO_LINE_SIZE,
893 };
894 static const struct intel_watermark_params g4x_cursor_wm_info = {
895 I965_CURSOR_FIFO,
896 I965_CURSOR_MAX_WM,
897 I965_CURSOR_DFT_WM,
898 2,
899 G4X_FIFO_LINE_SIZE,
900 };
901 static const struct intel_watermark_params valleyview_wm_info = {
902 VALLEYVIEW_FIFO_SIZE,
903 VALLEYVIEW_MAX_WM,
904 VALLEYVIEW_MAX_WM,
905 2,
906 G4X_FIFO_LINE_SIZE,
907 };
908 static const struct intel_watermark_params valleyview_cursor_wm_info = {
909 I965_CURSOR_FIFO,
910 VALLEYVIEW_CURSOR_MAX_WM,
911 I965_CURSOR_DFT_WM,
912 2,
913 G4X_FIFO_LINE_SIZE,
914 };
915 static const struct intel_watermark_params i965_cursor_wm_info = {
916 I965_CURSOR_FIFO,
917 I965_CURSOR_MAX_WM,
918 I965_CURSOR_DFT_WM,
919 2,
920 I915_FIFO_LINE_SIZE,
921 };
922 static const struct intel_watermark_params i945_wm_info = {
923 I945_FIFO_SIZE,
924 I915_MAX_WM,
925 1,
926 2,
927 I915_FIFO_LINE_SIZE
928 };
929 static const struct intel_watermark_params i915_wm_info = {
930 I915_FIFO_SIZE,
931 I915_MAX_WM,
932 1,
933 2,
934 I915_FIFO_LINE_SIZE
935 };
936 static const struct intel_watermark_params i855_wm_info = {
937 I855GM_FIFO_SIZE,
938 I915_MAX_WM,
939 1,
940 2,
941 I830_FIFO_LINE_SIZE
942 };
943 static const struct intel_watermark_params i830_wm_info = {
944 I830_FIFO_SIZE,
945 I915_MAX_WM,
946 1,
947 2,
948 I830_FIFO_LINE_SIZE
949 };
950
951 static const struct intel_watermark_params ironlake_display_wm_info = {
952 ILK_DISPLAY_FIFO,
953 ILK_DISPLAY_MAXWM,
954 ILK_DISPLAY_DFTWM,
955 2,
956 ILK_FIFO_LINE_SIZE
957 };
958 static const struct intel_watermark_params ironlake_cursor_wm_info = {
959 ILK_CURSOR_FIFO,
960 ILK_CURSOR_MAXWM,
961 ILK_CURSOR_DFTWM,
962 2,
963 ILK_FIFO_LINE_SIZE
964 };
965 static const struct intel_watermark_params ironlake_display_srwm_info = {
966 ILK_DISPLAY_SR_FIFO,
967 ILK_DISPLAY_MAX_SRWM,
968 ILK_DISPLAY_DFT_SRWM,
969 2,
970 ILK_FIFO_LINE_SIZE
971 };
972 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
973 ILK_CURSOR_SR_FIFO,
974 ILK_CURSOR_MAX_SRWM,
975 ILK_CURSOR_DFT_SRWM,
976 2,
977 ILK_FIFO_LINE_SIZE
978 };
979
980 static const struct intel_watermark_params sandybridge_display_wm_info = {
981 SNB_DISPLAY_FIFO,
982 SNB_DISPLAY_MAXWM,
983 SNB_DISPLAY_DFTWM,
984 2,
985 SNB_FIFO_LINE_SIZE
986 };
987 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
988 SNB_CURSOR_FIFO,
989 SNB_CURSOR_MAXWM,
990 SNB_CURSOR_DFTWM,
991 2,
992 SNB_FIFO_LINE_SIZE
993 };
994 static const struct intel_watermark_params sandybridge_display_srwm_info = {
995 SNB_DISPLAY_SR_FIFO,
996 SNB_DISPLAY_MAX_SRWM,
997 SNB_DISPLAY_DFT_SRWM,
998 2,
999 SNB_FIFO_LINE_SIZE
1000 };
1001 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1002 SNB_CURSOR_SR_FIFO,
1003 SNB_CURSOR_MAX_SRWM,
1004 SNB_CURSOR_DFT_SRWM,
1005 2,
1006 SNB_FIFO_LINE_SIZE
1007 };
1008
1009
1010 /**
1011 * intel_calculate_wm - calculate watermark level
1012 * @clock_in_khz: pixel clock
1013 * @wm: chip FIFO params
1014 * @pixel_size: display pixel size
1015 * @latency_ns: memory latency for the platform
1016 *
1017 * Calculate the watermark level (the level at which the display plane will
1018 * start fetching from memory again). Each chip has a different display
1019 * FIFO size and allocation, so the caller needs to figure that out and pass
1020 * in the correct intel_watermark_params structure.
1021 *
1022 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1023 * on the pixel size. When it reaches the watermark level, it'll start
1024 * fetching FIFO line sized based chunks from memory until the FIFO fills
1025 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1026 * will occur, and a display engine hang could result.
1027 */
1028 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1029 const struct intel_watermark_params *wm,
1030 int fifo_size,
1031 int pixel_size,
1032 unsigned long latency_ns)
1033 {
1034 long entries_required, wm_size;
1035
1036 /*
1037 * Note: we need to make sure we don't overflow for various clock &
1038 * latency values.
1039 * clocks go from a few thousand to several hundred thousand.
1040 * latency is usually a few thousand
1041 */
1042 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1043 1000;
1044 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1045
1046 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1047
1048 wm_size = fifo_size - (entries_required + wm->guard_size);
1049
1050 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1051
1052 /* Don't promote wm_size to unsigned... */
1053 if (wm_size > (long)wm->max_wm)
1054 wm_size = wm->max_wm;
1055 if (wm_size <= 0)
1056 wm_size = wm->default_wm;
1057 return wm_size;
1058 }
1059
1060 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1061 {
1062 struct drm_crtc *crtc, *enabled = NULL;
1063
1064 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1065 if (intel_crtc_active(crtc)) {
1066 if (enabled)
1067 return NULL;
1068 enabled = crtc;
1069 }
1070 }
1071
1072 return enabled;
1073 }
1074
1075 static void pineview_update_wm(struct drm_device *dev)
1076 {
1077 struct drm_i915_private *dev_priv = dev->dev_private;
1078 struct drm_crtc *crtc;
1079 const struct cxsr_latency *latency;
1080 u32 reg;
1081 unsigned long wm;
1082
1083 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1084 dev_priv->fsb_freq, dev_priv->mem_freq);
1085 if (!latency) {
1086 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1087 pineview_disable_cxsr(dev);
1088 return;
1089 }
1090
1091 crtc = single_enabled_crtc(dev);
1092 if (crtc) {
1093 int clock = crtc->mode.clock;
1094 int pixel_size = crtc->fb->bits_per_pixel / 8;
1095
1096 /* Display SR */
1097 wm = intel_calculate_wm(clock, &pineview_display_wm,
1098 pineview_display_wm.fifo_size,
1099 pixel_size, latency->display_sr);
1100 reg = I915_READ(DSPFW1);
1101 reg &= ~DSPFW_SR_MASK;
1102 reg |= wm << DSPFW_SR_SHIFT;
1103 I915_WRITE(DSPFW1, reg);
1104 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1105
1106 /* cursor SR */
1107 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1108 pineview_display_wm.fifo_size,
1109 pixel_size, latency->cursor_sr);
1110 reg = I915_READ(DSPFW3);
1111 reg &= ~DSPFW_CURSOR_SR_MASK;
1112 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1113 I915_WRITE(DSPFW3, reg);
1114
1115 /* Display HPLL off SR */
1116 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1117 pineview_display_hplloff_wm.fifo_size,
1118 pixel_size, latency->display_hpll_disable);
1119 reg = I915_READ(DSPFW3);
1120 reg &= ~DSPFW_HPLL_SR_MASK;
1121 reg |= wm & DSPFW_HPLL_SR_MASK;
1122 I915_WRITE(DSPFW3, reg);
1123
1124 /* cursor HPLL off SR */
1125 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1126 pineview_display_hplloff_wm.fifo_size,
1127 pixel_size, latency->cursor_hpll_disable);
1128 reg = I915_READ(DSPFW3);
1129 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1130 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1131 I915_WRITE(DSPFW3, reg);
1132 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1133
1134 /* activate cxsr */
1135 I915_WRITE(DSPFW3,
1136 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1137 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1138 } else {
1139 pineview_disable_cxsr(dev);
1140 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1141 }
1142 }
1143
1144 static bool g4x_compute_wm0(struct drm_device *dev,
1145 int plane,
1146 const struct intel_watermark_params *display,
1147 int display_latency_ns,
1148 const struct intel_watermark_params *cursor,
1149 int cursor_latency_ns,
1150 int *plane_wm,
1151 int *cursor_wm)
1152 {
1153 struct drm_crtc *crtc;
1154 int htotal, hdisplay, clock, pixel_size;
1155 int line_time_us, line_count;
1156 int entries, tlb_miss;
1157
1158 crtc = intel_get_crtc_for_plane(dev, plane);
1159 if (!intel_crtc_active(crtc)) {
1160 *cursor_wm = cursor->guard_size;
1161 *plane_wm = display->guard_size;
1162 return false;
1163 }
1164
1165 htotal = crtc->mode.htotal;
1166 hdisplay = crtc->mode.hdisplay;
1167 clock = crtc->mode.clock;
1168 pixel_size = crtc->fb->bits_per_pixel / 8;
1169
1170 /* Use the small buffer method to calculate plane watermark */
1171 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1172 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1173 if (tlb_miss > 0)
1174 entries += tlb_miss;
1175 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1176 *plane_wm = entries + display->guard_size;
1177 if (*plane_wm > (int)display->max_wm)
1178 *plane_wm = display->max_wm;
1179
1180 /* Use the large buffer method to calculate cursor watermark */
1181 line_time_us = ((htotal * 1000) / clock);
1182 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1183 entries = line_count * 64 * pixel_size;
1184 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1185 if (tlb_miss > 0)
1186 entries += tlb_miss;
1187 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1188 *cursor_wm = entries + cursor->guard_size;
1189 if (*cursor_wm > (int)cursor->max_wm)
1190 *cursor_wm = (int)cursor->max_wm;
1191
1192 return true;
1193 }
1194
1195 /*
1196 * Check the wm result.
1197 *
1198 * If any calculated watermark values is larger than the maximum value that
1199 * can be programmed into the associated watermark register, that watermark
1200 * must be disabled.
1201 */
1202 static bool g4x_check_srwm(struct drm_device *dev,
1203 int display_wm, int cursor_wm,
1204 const struct intel_watermark_params *display,
1205 const struct intel_watermark_params *cursor)
1206 {
1207 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1208 display_wm, cursor_wm);
1209
1210 if (display_wm > display->max_wm) {
1211 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1212 display_wm, display->max_wm);
1213 return false;
1214 }
1215
1216 if (cursor_wm > cursor->max_wm) {
1217 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1218 cursor_wm, cursor->max_wm);
1219 return false;
1220 }
1221
1222 if (!(display_wm || cursor_wm)) {
1223 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1224 return false;
1225 }
1226
1227 return true;
1228 }
1229
1230 static bool g4x_compute_srwm(struct drm_device *dev,
1231 int plane,
1232 int latency_ns,
1233 const struct intel_watermark_params *display,
1234 const struct intel_watermark_params *cursor,
1235 int *display_wm, int *cursor_wm)
1236 {
1237 struct drm_crtc *crtc;
1238 int hdisplay, htotal, pixel_size, clock;
1239 unsigned long line_time_us;
1240 int line_count, line_size;
1241 int small, large;
1242 int entries;
1243
1244 if (!latency_ns) {
1245 *display_wm = *cursor_wm = 0;
1246 return false;
1247 }
1248
1249 crtc = intel_get_crtc_for_plane(dev, plane);
1250 hdisplay = crtc->mode.hdisplay;
1251 htotal = crtc->mode.htotal;
1252 clock = crtc->mode.clock;
1253 pixel_size = crtc->fb->bits_per_pixel / 8;
1254
1255 line_time_us = (htotal * 1000) / clock;
1256 line_count = (latency_ns / line_time_us + 1000) / 1000;
1257 line_size = hdisplay * pixel_size;
1258
1259 /* Use the minimum of the small and large buffer method for primary */
1260 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1261 large = line_count * line_size;
1262
1263 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1264 *display_wm = entries + display->guard_size;
1265
1266 /* calculate the self-refresh watermark for display cursor */
1267 entries = line_count * pixel_size * 64;
1268 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1269 *cursor_wm = entries + cursor->guard_size;
1270
1271 return g4x_check_srwm(dev,
1272 *display_wm, *cursor_wm,
1273 display, cursor);
1274 }
1275
1276 static bool vlv_compute_drain_latency(struct drm_device *dev,
1277 int plane,
1278 int *plane_prec_mult,
1279 int *plane_dl,
1280 int *cursor_prec_mult,
1281 int *cursor_dl)
1282 {
1283 struct drm_crtc *crtc;
1284 int clock, pixel_size;
1285 int entries;
1286
1287 crtc = intel_get_crtc_for_plane(dev, plane);
1288 if (!intel_crtc_active(crtc))
1289 return false;
1290
1291 clock = crtc->mode.clock; /* VESA DOT Clock */
1292 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1293
1294 entries = (clock / 1000) * pixel_size;
1295 *plane_prec_mult = (entries > 256) ?
1296 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1297 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1298 pixel_size);
1299
1300 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1301 *cursor_prec_mult = (entries > 256) ?
1302 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1303 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1304
1305 return true;
1306 }
1307
1308 /*
1309 * Update drain latency registers of memory arbiter
1310 *
1311 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1312 * to be programmed. Each plane has a drain latency multiplier and a drain
1313 * latency value.
1314 */
1315
1316 static void vlv_update_drain_latency(struct drm_device *dev)
1317 {
1318 struct drm_i915_private *dev_priv = dev->dev_private;
1319 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1320 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1321 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1322 either 16 or 32 */
1323
1324 /* For plane A, Cursor A */
1325 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1326 &cursor_prec_mult, &cursora_dl)) {
1327 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1328 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1329 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1330 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1331
1332 I915_WRITE(VLV_DDL1, cursora_prec |
1333 (cursora_dl << DDL_CURSORA_SHIFT) |
1334 planea_prec | planea_dl);
1335 }
1336
1337 /* For plane B, Cursor B */
1338 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1339 &cursor_prec_mult, &cursorb_dl)) {
1340 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1341 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1342 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1343 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1344
1345 I915_WRITE(VLV_DDL2, cursorb_prec |
1346 (cursorb_dl << DDL_CURSORB_SHIFT) |
1347 planeb_prec | planeb_dl);
1348 }
1349 }
1350
1351 #define single_plane_enabled(mask) is_power_of_2(mask)
1352
1353 static void valleyview_update_wm(struct drm_device *dev)
1354 {
1355 static const int sr_latency_ns = 12000;
1356 struct drm_i915_private *dev_priv = dev->dev_private;
1357 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1358 int plane_sr, cursor_sr;
1359 int ignore_plane_sr, ignore_cursor_sr;
1360 unsigned int enabled = 0;
1361
1362 vlv_update_drain_latency(dev);
1363
1364 if (g4x_compute_wm0(dev, PIPE_A,
1365 &valleyview_wm_info, latency_ns,
1366 &valleyview_cursor_wm_info, latency_ns,
1367 &planea_wm, &cursora_wm))
1368 enabled |= 1 << PIPE_A;
1369
1370 if (g4x_compute_wm0(dev, PIPE_B,
1371 &valleyview_wm_info, latency_ns,
1372 &valleyview_cursor_wm_info, latency_ns,
1373 &planeb_wm, &cursorb_wm))
1374 enabled |= 1 << PIPE_B;
1375
1376 if (single_plane_enabled(enabled) &&
1377 g4x_compute_srwm(dev, ffs(enabled) - 1,
1378 sr_latency_ns,
1379 &valleyview_wm_info,
1380 &valleyview_cursor_wm_info,
1381 &plane_sr, &ignore_cursor_sr) &&
1382 g4x_compute_srwm(dev, ffs(enabled) - 1,
1383 2*sr_latency_ns,
1384 &valleyview_wm_info,
1385 &valleyview_cursor_wm_info,
1386 &ignore_plane_sr, &cursor_sr)) {
1387 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1388 } else {
1389 I915_WRITE(FW_BLC_SELF_VLV,
1390 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1391 plane_sr = cursor_sr = 0;
1392 }
1393
1394 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1395 planea_wm, cursora_wm,
1396 planeb_wm, cursorb_wm,
1397 plane_sr, cursor_sr);
1398
1399 I915_WRITE(DSPFW1,
1400 (plane_sr << DSPFW_SR_SHIFT) |
1401 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1402 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1403 planea_wm);
1404 I915_WRITE(DSPFW2,
1405 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1406 (cursora_wm << DSPFW_CURSORA_SHIFT));
1407 I915_WRITE(DSPFW3,
1408 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1409 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1410 }
1411
1412 static void g4x_update_wm(struct drm_device *dev)
1413 {
1414 static const int sr_latency_ns = 12000;
1415 struct drm_i915_private *dev_priv = dev->dev_private;
1416 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1417 int plane_sr, cursor_sr;
1418 unsigned int enabled = 0;
1419
1420 if (g4x_compute_wm0(dev, PIPE_A,
1421 &g4x_wm_info, latency_ns,
1422 &g4x_cursor_wm_info, latency_ns,
1423 &planea_wm, &cursora_wm))
1424 enabled |= 1 << PIPE_A;
1425
1426 if (g4x_compute_wm0(dev, PIPE_B,
1427 &g4x_wm_info, latency_ns,
1428 &g4x_cursor_wm_info, latency_ns,
1429 &planeb_wm, &cursorb_wm))
1430 enabled |= 1 << PIPE_B;
1431
1432 if (single_plane_enabled(enabled) &&
1433 g4x_compute_srwm(dev, ffs(enabled) - 1,
1434 sr_latency_ns,
1435 &g4x_wm_info,
1436 &g4x_cursor_wm_info,
1437 &plane_sr, &cursor_sr)) {
1438 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1439 } else {
1440 I915_WRITE(FW_BLC_SELF,
1441 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1442 plane_sr = cursor_sr = 0;
1443 }
1444
1445 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1446 planea_wm, cursora_wm,
1447 planeb_wm, cursorb_wm,
1448 plane_sr, cursor_sr);
1449
1450 I915_WRITE(DSPFW1,
1451 (plane_sr << DSPFW_SR_SHIFT) |
1452 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1453 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1454 planea_wm);
1455 I915_WRITE(DSPFW2,
1456 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1457 (cursora_wm << DSPFW_CURSORA_SHIFT));
1458 /* HPLL off in SR has some issues on G4x... disable it */
1459 I915_WRITE(DSPFW3,
1460 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1461 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1462 }
1463
1464 static void i965_update_wm(struct drm_device *dev)
1465 {
1466 struct drm_i915_private *dev_priv = dev->dev_private;
1467 struct drm_crtc *crtc;
1468 int srwm = 1;
1469 int cursor_sr = 16;
1470
1471 /* Calc sr entries for one plane configs */
1472 crtc = single_enabled_crtc(dev);
1473 if (crtc) {
1474 /* self-refresh has much higher latency */
1475 static const int sr_latency_ns = 12000;
1476 int clock = crtc->mode.clock;
1477 int htotal = crtc->mode.htotal;
1478 int hdisplay = crtc->mode.hdisplay;
1479 int pixel_size = crtc->fb->bits_per_pixel / 8;
1480 unsigned long line_time_us;
1481 int entries;
1482
1483 line_time_us = ((htotal * 1000) / clock);
1484
1485 /* Use ns/us then divide to preserve precision */
1486 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1487 pixel_size * hdisplay;
1488 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1489 srwm = I965_FIFO_SIZE - entries;
1490 if (srwm < 0)
1491 srwm = 1;
1492 srwm &= 0x1ff;
1493 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1494 entries, srwm);
1495
1496 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1497 pixel_size * 64;
1498 entries = DIV_ROUND_UP(entries,
1499 i965_cursor_wm_info.cacheline_size);
1500 cursor_sr = i965_cursor_wm_info.fifo_size -
1501 (entries + i965_cursor_wm_info.guard_size);
1502
1503 if (cursor_sr > i965_cursor_wm_info.max_wm)
1504 cursor_sr = i965_cursor_wm_info.max_wm;
1505
1506 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1507 "cursor %d\n", srwm, cursor_sr);
1508
1509 if (IS_CRESTLINE(dev))
1510 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1511 } else {
1512 /* Turn off self refresh if both pipes are enabled */
1513 if (IS_CRESTLINE(dev))
1514 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1515 & ~FW_BLC_SELF_EN);
1516 }
1517
1518 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1519 srwm);
1520
1521 /* 965 has limitations... */
1522 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1523 (8 << 16) | (8 << 8) | (8 << 0));
1524 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1525 /* update cursor SR watermark */
1526 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1527 }
1528
1529 static void i9xx_update_wm(struct drm_device *dev)
1530 {
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 const struct intel_watermark_params *wm_info;
1533 uint32_t fwater_lo;
1534 uint32_t fwater_hi;
1535 int cwm, srwm = 1;
1536 int fifo_size;
1537 int planea_wm, planeb_wm;
1538 struct drm_crtc *crtc, *enabled = NULL;
1539
1540 if (IS_I945GM(dev))
1541 wm_info = &i945_wm_info;
1542 else if (!IS_GEN2(dev))
1543 wm_info = &i915_wm_info;
1544 else
1545 wm_info = &i855_wm_info;
1546
1547 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1548 crtc = intel_get_crtc_for_plane(dev, 0);
1549 if (intel_crtc_active(crtc)) {
1550 int cpp = crtc->fb->bits_per_pixel / 8;
1551 if (IS_GEN2(dev))
1552 cpp = 4;
1553
1554 planea_wm = intel_calculate_wm(crtc->mode.clock,
1555 wm_info, fifo_size, cpp,
1556 latency_ns);
1557 enabled = crtc;
1558 } else
1559 planea_wm = fifo_size - wm_info->guard_size;
1560
1561 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1562 crtc = intel_get_crtc_for_plane(dev, 1);
1563 if (intel_crtc_active(crtc)) {
1564 int cpp = crtc->fb->bits_per_pixel / 8;
1565 if (IS_GEN2(dev))
1566 cpp = 4;
1567
1568 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1569 wm_info, fifo_size, cpp,
1570 latency_ns);
1571 if (enabled == NULL)
1572 enabled = crtc;
1573 else
1574 enabled = NULL;
1575 } else
1576 planeb_wm = fifo_size - wm_info->guard_size;
1577
1578 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1579
1580 /*
1581 * Overlay gets an aggressive default since video jitter is bad.
1582 */
1583 cwm = 2;
1584
1585 /* Play safe and disable self-refresh before adjusting watermarks. */
1586 if (IS_I945G(dev) || IS_I945GM(dev))
1587 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1588 else if (IS_I915GM(dev))
1589 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1590
1591 /* Calc sr entries for one plane configs */
1592 if (HAS_FW_BLC(dev) && enabled) {
1593 /* self-refresh has much higher latency */
1594 static const int sr_latency_ns = 6000;
1595 int clock = enabled->mode.clock;
1596 int htotal = enabled->mode.htotal;
1597 int hdisplay = enabled->mode.hdisplay;
1598 int pixel_size = enabled->fb->bits_per_pixel / 8;
1599 unsigned long line_time_us;
1600 int entries;
1601
1602 line_time_us = (htotal * 1000) / clock;
1603
1604 /* Use ns/us then divide to preserve precision */
1605 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1606 pixel_size * hdisplay;
1607 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1608 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1609 srwm = wm_info->fifo_size - entries;
1610 if (srwm < 0)
1611 srwm = 1;
1612
1613 if (IS_I945G(dev) || IS_I945GM(dev))
1614 I915_WRITE(FW_BLC_SELF,
1615 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1616 else if (IS_I915GM(dev))
1617 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1618 }
1619
1620 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1621 planea_wm, planeb_wm, cwm, srwm);
1622
1623 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1624 fwater_hi = (cwm & 0x1f);
1625
1626 /* Set request length to 8 cachelines per fetch */
1627 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1628 fwater_hi = fwater_hi | (1 << 8);
1629
1630 I915_WRITE(FW_BLC, fwater_lo);
1631 I915_WRITE(FW_BLC2, fwater_hi);
1632
1633 if (HAS_FW_BLC(dev)) {
1634 if (enabled) {
1635 if (IS_I945G(dev) || IS_I945GM(dev))
1636 I915_WRITE(FW_BLC_SELF,
1637 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1638 else if (IS_I915GM(dev))
1639 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1640 DRM_DEBUG_KMS("memory self refresh enabled\n");
1641 } else
1642 DRM_DEBUG_KMS("memory self refresh disabled\n");
1643 }
1644 }
1645
1646 static void i830_update_wm(struct drm_device *dev)
1647 {
1648 struct drm_i915_private *dev_priv = dev->dev_private;
1649 struct drm_crtc *crtc;
1650 uint32_t fwater_lo;
1651 int planea_wm;
1652
1653 crtc = single_enabled_crtc(dev);
1654 if (crtc == NULL)
1655 return;
1656
1657 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1658 dev_priv->display.get_fifo_size(dev, 0),
1659 4, latency_ns);
1660 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1661 fwater_lo |= (3<<8) | planea_wm;
1662
1663 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1664
1665 I915_WRITE(FW_BLC, fwater_lo);
1666 }
1667
1668 #define ILK_LP0_PLANE_LATENCY 700
1669 #define ILK_LP0_CURSOR_LATENCY 1300
1670
1671 /*
1672 * Check the wm result.
1673 *
1674 * If any calculated watermark values is larger than the maximum value that
1675 * can be programmed into the associated watermark register, that watermark
1676 * must be disabled.
1677 */
1678 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1679 int fbc_wm, int display_wm, int cursor_wm,
1680 const struct intel_watermark_params *display,
1681 const struct intel_watermark_params *cursor)
1682 {
1683 struct drm_i915_private *dev_priv = dev->dev_private;
1684
1685 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1686 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1687
1688 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1689 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1690 fbc_wm, SNB_FBC_MAX_SRWM, level);
1691
1692 /* fbc has it's own way to disable FBC WM */
1693 I915_WRITE(DISP_ARB_CTL,
1694 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1695 return false;
1696 } else if (INTEL_INFO(dev)->gen >= 6) {
1697 /* enable FBC WM (except on ILK, where it must remain off) */
1698 I915_WRITE(DISP_ARB_CTL,
1699 I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1700 }
1701
1702 if (display_wm > display->max_wm) {
1703 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1704 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1705 return false;
1706 }
1707
1708 if (cursor_wm > cursor->max_wm) {
1709 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1710 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1711 return false;
1712 }
1713
1714 if (!(fbc_wm || display_wm || cursor_wm)) {
1715 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1716 return false;
1717 }
1718
1719 return true;
1720 }
1721
1722 /*
1723 * Compute watermark values of WM[1-3],
1724 */
1725 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1726 int latency_ns,
1727 const struct intel_watermark_params *display,
1728 const struct intel_watermark_params *cursor,
1729 int *fbc_wm, int *display_wm, int *cursor_wm)
1730 {
1731 struct drm_crtc *crtc;
1732 unsigned long line_time_us;
1733 int hdisplay, htotal, pixel_size, clock;
1734 int line_count, line_size;
1735 int small, large;
1736 int entries;
1737
1738 if (!latency_ns) {
1739 *fbc_wm = *display_wm = *cursor_wm = 0;
1740 return false;
1741 }
1742
1743 crtc = intel_get_crtc_for_plane(dev, plane);
1744 hdisplay = crtc->mode.hdisplay;
1745 htotal = crtc->mode.htotal;
1746 clock = crtc->mode.clock;
1747 pixel_size = crtc->fb->bits_per_pixel / 8;
1748
1749 line_time_us = (htotal * 1000) / clock;
1750 line_count = (latency_ns / line_time_us + 1000) / 1000;
1751 line_size = hdisplay * pixel_size;
1752
1753 /* Use the minimum of the small and large buffer method for primary */
1754 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1755 large = line_count * line_size;
1756
1757 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1758 *display_wm = entries + display->guard_size;
1759
1760 /*
1761 * Spec says:
1762 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1763 */
1764 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1765
1766 /* calculate the self-refresh watermark for display cursor */
1767 entries = line_count * pixel_size * 64;
1768 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1769 *cursor_wm = entries + cursor->guard_size;
1770
1771 return ironlake_check_srwm(dev, level,
1772 *fbc_wm, *display_wm, *cursor_wm,
1773 display, cursor);
1774 }
1775
1776 static void ironlake_update_wm(struct drm_device *dev)
1777 {
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 int fbc_wm, plane_wm, cursor_wm;
1780 unsigned int enabled;
1781
1782 enabled = 0;
1783 if (g4x_compute_wm0(dev, PIPE_A,
1784 &ironlake_display_wm_info,
1785 ILK_LP0_PLANE_LATENCY,
1786 &ironlake_cursor_wm_info,
1787 ILK_LP0_CURSOR_LATENCY,
1788 &plane_wm, &cursor_wm)) {
1789 I915_WRITE(WM0_PIPEA_ILK,
1790 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1791 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1792 " plane %d, " "cursor: %d\n",
1793 plane_wm, cursor_wm);
1794 enabled |= 1 << PIPE_A;
1795 }
1796
1797 if (g4x_compute_wm0(dev, PIPE_B,
1798 &ironlake_display_wm_info,
1799 ILK_LP0_PLANE_LATENCY,
1800 &ironlake_cursor_wm_info,
1801 ILK_LP0_CURSOR_LATENCY,
1802 &plane_wm, &cursor_wm)) {
1803 I915_WRITE(WM0_PIPEB_ILK,
1804 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1805 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1806 " plane %d, cursor: %d\n",
1807 plane_wm, cursor_wm);
1808 enabled |= 1 << PIPE_B;
1809 }
1810
1811 /*
1812 * Calculate and update the self-refresh watermark only when one
1813 * display plane is used.
1814 */
1815 I915_WRITE(WM3_LP_ILK, 0);
1816 I915_WRITE(WM2_LP_ILK, 0);
1817 I915_WRITE(WM1_LP_ILK, 0);
1818
1819 if (!single_plane_enabled(enabled))
1820 return;
1821 enabled = ffs(enabled) - 1;
1822
1823 /* WM1 */
1824 if (!ironlake_compute_srwm(dev, 1, enabled,
1825 ILK_READ_WM1_LATENCY() * 500,
1826 &ironlake_display_srwm_info,
1827 &ironlake_cursor_srwm_info,
1828 &fbc_wm, &plane_wm, &cursor_wm))
1829 return;
1830
1831 I915_WRITE(WM1_LP_ILK,
1832 WM1_LP_SR_EN |
1833 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1834 (fbc_wm << WM1_LP_FBC_SHIFT) |
1835 (plane_wm << WM1_LP_SR_SHIFT) |
1836 cursor_wm);
1837
1838 /* WM2 */
1839 if (!ironlake_compute_srwm(dev, 2, enabled,
1840 ILK_READ_WM2_LATENCY() * 500,
1841 &ironlake_display_srwm_info,
1842 &ironlake_cursor_srwm_info,
1843 &fbc_wm, &plane_wm, &cursor_wm))
1844 return;
1845
1846 I915_WRITE(WM2_LP_ILK,
1847 WM2_LP_EN |
1848 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1849 (fbc_wm << WM1_LP_FBC_SHIFT) |
1850 (plane_wm << WM1_LP_SR_SHIFT) |
1851 cursor_wm);
1852
1853 /*
1854 * WM3 is unsupported on ILK, probably because we don't have latency
1855 * data for that power state
1856 */
1857 }
1858
1859 static void sandybridge_update_wm(struct drm_device *dev)
1860 {
1861 struct drm_i915_private *dev_priv = dev->dev_private;
1862 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1863 u32 val;
1864 int fbc_wm, plane_wm, cursor_wm;
1865 unsigned int enabled;
1866
1867 enabled = 0;
1868 if (g4x_compute_wm0(dev, PIPE_A,
1869 &sandybridge_display_wm_info, latency,
1870 &sandybridge_cursor_wm_info, latency,
1871 &plane_wm, &cursor_wm)) {
1872 val = I915_READ(WM0_PIPEA_ILK);
1873 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1874 I915_WRITE(WM0_PIPEA_ILK, val |
1875 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1876 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1877 " plane %d, " "cursor: %d\n",
1878 plane_wm, cursor_wm);
1879 enabled |= 1 << PIPE_A;
1880 }
1881
1882 if (g4x_compute_wm0(dev, PIPE_B,
1883 &sandybridge_display_wm_info, latency,
1884 &sandybridge_cursor_wm_info, latency,
1885 &plane_wm, &cursor_wm)) {
1886 val = I915_READ(WM0_PIPEB_ILK);
1887 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1888 I915_WRITE(WM0_PIPEB_ILK, val |
1889 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1890 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1891 " plane %d, cursor: %d\n",
1892 plane_wm, cursor_wm);
1893 enabled |= 1 << PIPE_B;
1894 }
1895
1896 /*
1897 * Calculate and update the self-refresh watermark only when one
1898 * display plane is used.
1899 *
1900 * SNB support 3 levels of watermark.
1901 *
1902 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1903 * and disabled in the descending order
1904 *
1905 */
1906 I915_WRITE(WM3_LP_ILK, 0);
1907 I915_WRITE(WM2_LP_ILK, 0);
1908 I915_WRITE(WM1_LP_ILK, 0);
1909
1910 if (!single_plane_enabled(enabled) ||
1911 dev_priv->sprite_scaling_enabled)
1912 return;
1913 enabled = ffs(enabled) - 1;
1914
1915 /* WM1 */
1916 if (!ironlake_compute_srwm(dev, 1, enabled,
1917 SNB_READ_WM1_LATENCY() * 500,
1918 &sandybridge_display_srwm_info,
1919 &sandybridge_cursor_srwm_info,
1920 &fbc_wm, &plane_wm, &cursor_wm))
1921 return;
1922
1923 I915_WRITE(WM1_LP_ILK,
1924 WM1_LP_SR_EN |
1925 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1926 (fbc_wm << WM1_LP_FBC_SHIFT) |
1927 (plane_wm << WM1_LP_SR_SHIFT) |
1928 cursor_wm);
1929
1930 /* WM2 */
1931 if (!ironlake_compute_srwm(dev, 2, enabled,
1932 SNB_READ_WM2_LATENCY() * 500,
1933 &sandybridge_display_srwm_info,
1934 &sandybridge_cursor_srwm_info,
1935 &fbc_wm, &plane_wm, &cursor_wm))
1936 return;
1937
1938 I915_WRITE(WM2_LP_ILK,
1939 WM2_LP_EN |
1940 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1941 (fbc_wm << WM1_LP_FBC_SHIFT) |
1942 (plane_wm << WM1_LP_SR_SHIFT) |
1943 cursor_wm);
1944
1945 /* WM3 */
1946 if (!ironlake_compute_srwm(dev, 3, enabled,
1947 SNB_READ_WM3_LATENCY() * 500,
1948 &sandybridge_display_srwm_info,
1949 &sandybridge_cursor_srwm_info,
1950 &fbc_wm, &plane_wm, &cursor_wm))
1951 return;
1952
1953 I915_WRITE(WM3_LP_ILK,
1954 WM3_LP_EN |
1955 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1956 (fbc_wm << WM1_LP_FBC_SHIFT) |
1957 (plane_wm << WM1_LP_SR_SHIFT) |
1958 cursor_wm);
1959 }
1960
1961 static void ivybridge_update_wm(struct drm_device *dev)
1962 {
1963 struct drm_i915_private *dev_priv = dev->dev_private;
1964 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1965 u32 val;
1966 int fbc_wm, plane_wm, cursor_wm;
1967 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1968 unsigned int enabled;
1969
1970 enabled = 0;
1971 if (g4x_compute_wm0(dev, PIPE_A,
1972 &sandybridge_display_wm_info, latency,
1973 &sandybridge_cursor_wm_info, latency,
1974 &plane_wm, &cursor_wm)) {
1975 val = I915_READ(WM0_PIPEA_ILK);
1976 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1977 I915_WRITE(WM0_PIPEA_ILK, val |
1978 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1979 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1980 " plane %d, " "cursor: %d\n",
1981 plane_wm, cursor_wm);
1982 enabled |= 1 << PIPE_A;
1983 }
1984
1985 if (g4x_compute_wm0(dev, PIPE_B,
1986 &sandybridge_display_wm_info, latency,
1987 &sandybridge_cursor_wm_info, latency,
1988 &plane_wm, &cursor_wm)) {
1989 val = I915_READ(WM0_PIPEB_ILK);
1990 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1991 I915_WRITE(WM0_PIPEB_ILK, val |
1992 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1993 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1994 " plane %d, cursor: %d\n",
1995 plane_wm, cursor_wm);
1996 enabled |= 1 << PIPE_B;
1997 }
1998
1999 if (g4x_compute_wm0(dev, PIPE_C,
2000 &sandybridge_display_wm_info, latency,
2001 &sandybridge_cursor_wm_info, latency,
2002 &plane_wm, &cursor_wm)) {
2003 val = I915_READ(WM0_PIPEC_IVB);
2004 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2005 I915_WRITE(WM0_PIPEC_IVB, val |
2006 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2007 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2008 " plane %d, cursor: %d\n",
2009 plane_wm, cursor_wm);
2010 enabled |= 1 << PIPE_C;
2011 }
2012
2013 /*
2014 * Calculate and update the self-refresh watermark only when one
2015 * display plane is used.
2016 *
2017 * SNB support 3 levels of watermark.
2018 *
2019 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2020 * and disabled in the descending order
2021 *
2022 */
2023 I915_WRITE(WM3_LP_ILK, 0);
2024 I915_WRITE(WM2_LP_ILK, 0);
2025 I915_WRITE(WM1_LP_ILK, 0);
2026
2027 if (!single_plane_enabled(enabled) ||
2028 dev_priv->sprite_scaling_enabled)
2029 return;
2030 enabled = ffs(enabled) - 1;
2031
2032 /* WM1 */
2033 if (!ironlake_compute_srwm(dev, 1, enabled,
2034 SNB_READ_WM1_LATENCY() * 500,
2035 &sandybridge_display_srwm_info,
2036 &sandybridge_cursor_srwm_info,
2037 &fbc_wm, &plane_wm, &cursor_wm))
2038 return;
2039
2040 I915_WRITE(WM1_LP_ILK,
2041 WM1_LP_SR_EN |
2042 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2043 (fbc_wm << WM1_LP_FBC_SHIFT) |
2044 (plane_wm << WM1_LP_SR_SHIFT) |
2045 cursor_wm);
2046
2047 /* WM2 */
2048 if (!ironlake_compute_srwm(dev, 2, enabled,
2049 SNB_READ_WM2_LATENCY() * 500,
2050 &sandybridge_display_srwm_info,
2051 &sandybridge_cursor_srwm_info,
2052 &fbc_wm, &plane_wm, &cursor_wm))
2053 return;
2054
2055 I915_WRITE(WM2_LP_ILK,
2056 WM2_LP_EN |
2057 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2058 (fbc_wm << WM1_LP_FBC_SHIFT) |
2059 (plane_wm << WM1_LP_SR_SHIFT) |
2060 cursor_wm);
2061
2062 /* WM3, note we have to correct the cursor latency */
2063 if (!ironlake_compute_srwm(dev, 3, enabled,
2064 SNB_READ_WM3_LATENCY() * 500,
2065 &sandybridge_display_srwm_info,
2066 &sandybridge_cursor_srwm_info,
2067 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2068 !ironlake_compute_srwm(dev, 3, enabled,
2069 2 * SNB_READ_WM3_LATENCY() * 500,
2070 &sandybridge_display_srwm_info,
2071 &sandybridge_cursor_srwm_info,
2072 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2073 return;
2074
2075 I915_WRITE(WM3_LP_ILK,
2076 WM3_LP_EN |
2077 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2078 (fbc_wm << WM1_LP_FBC_SHIFT) |
2079 (plane_wm << WM1_LP_SR_SHIFT) |
2080 cursor_wm);
2081 }
2082
2083 static uint32_t hsw_wm_get_pixel_rate(struct drm_device *dev,
2084 struct drm_crtc *crtc)
2085 {
2086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2087 uint32_t pixel_rate, pfit_size;
2088
2089 pixel_rate = intel_crtc->config.adjusted_mode.clock;
2090
2091 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2092 * adjust the pixel_rate here. */
2093
2094 pfit_size = intel_crtc->config.pch_pfit.size;
2095 if (pfit_size) {
2096 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2097
2098 pipe_w = intel_crtc->config.requested_mode.hdisplay;
2099 pipe_h = intel_crtc->config.requested_mode.vdisplay;
2100 pfit_w = (pfit_size >> 16) & 0xFFFF;
2101 pfit_h = pfit_size & 0xFFFF;
2102 if (pipe_w < pfit_w)
2103 pipe_w = pfit_w;
2104 if (pipe_h < pfit_h)
2105 pipe_h = pfit_h;
2106
2107 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2108 pfit_w * pfit_h);
2109 }
2110
2111 return pixel_rate;
2112 }
2113
2114 static uint32_t hsw_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2115 uint32_t latency)
2116 {
2117 uint64_t ret;
2118
2119 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2120 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2121
2122 return ret;
2123 }
2124
2125 static uint32_t hsw_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2126 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2127 uint32_t latency)
2128 {
2129 uint32_t ret;
2130
2131 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2132 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2133 ret = DIV_ROUND_UP(ret, 64) + 2;
2134 return ret;
2135 }
2136
2137 static uint32_t hsw_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2138 uint8_t bytes_per_pixel)
2139 {
2140 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2141 }
2142
2143 struct hsw_pipe_wm_parameters {
2144 bool active;
2145 bool sprite_enabled;
2146 uint8_t pri_bytes_per_pixel;
2147 uint8_t spr_bytes_per_pixel;
2148 uint8_t cur_bytes_per_pixel;
2149 uint32_t pri_horiz_pixels;
2150 uint32_t spr_horiz_pixels;
2151 uint32_t cur_horiz_pixels;
2152 uint32_t pipe_htotal;
2153 uint32_t pixel_rate;
2154 };
2155
2156 struct hsw_wm_maximums {
2157 uint16_t pri;
2158 uint16_t spr;
2159 uint16_t cur;
2160 uint16_t fbc;
2161 };
2162
2163 struct hsw_lp_wm_result {
2164 bool enable;
2165 bool fbc_enable;
2166 uint32_t pri_val;
2167 uint32_t spr_val;
2168 uint32_t cur_val;
2169 uint32_t fbc_val;
2170 };
2171
2172 struct hsw_wm_values {
2173 uint32_t wm_pipe[3];
2174 uint32_t wm_lp[3];
2175 uint32_t wm_lp_spr[3];
2176 uint32_t wm_linetime[3];
2177 bool enable_fbc_wm;
2178 };
2179
2180 enum hsw_data_buf_partitioning {
2181 HSW_DATA_BUF_PART_1_2,
2182 HSW_DATA_BUF_PART_5_6,
2183 };
2184
2185 /* For both WM_PIPE and WM_LP. */
2186 static uint32_t hsw_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
2187 uint32_t mem_value,
2188 bool is_lp)
2189 {
2190 uint32_t method1, method2;
2191
2192 /* TODO: for now, assume the primary plane is always enabled. */
2193 if (!params->active)
2194 return 0;
2195
2196 method1 = hsw_wm_method1(params->pixel_rate,
2197 params->pri_bytes_per_pixel,
2198 mem_value);
2199
2200 if (!is_lp)
2201 return method1;
2202
2203 method2 = hsw_wm_method2(params->pixel_rate,
2204 params->pipe_htotal,
2205 params->pri_horiz_pixels,
2206 params->pri_bytes_per_pixel,
2207 mem_value);
2208
2209 return min(method1, method2);
2210 }
2211
2212 /* For both WM_PIPE and WM_LP. */
2213 static uint32_t hsw_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
2214 uint32_t mem_value)
2215 {
2216 uint32_t method1, method2;
2217
2218 if (!params->active || !params->sprite_enabled)
2219 return 0;
2220
2221 method1 = hsw_wm_method1(params->pixel_rate,
2222 params->spr_bytes_per_pixel,
2223 mem_value);
2224 method2 = hsw_wm_method2(params->pixel_rate,
2225 params->pipe_htotal,
2226 params->spr_horiz_pixels,
2227 params->spr_bytes_per_pixel,
2228 mem_value);
2229 return min(method1, method2);
2230 }
2231
2232 /* For both WM_PIPE and WM_LP. */
2233 static uint32_t hsw_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
2234 uint32_t mem_value)
2235 {
2236 if (!params->active)
2237 return 0;
2238
2239 return hsw_wm_method2(params->pixel_rate,
2240 params->pipe_htotal,
2241 params->cur_horiz_pixels,
2242 params->cur_bytes_per_pixel,
2243 mem_value);
2244 }
2245
2246 /* Only for WM_LP. */
2247 static uint32_t hsw_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
2248 uint32_t pri_val,
2249 uint32_t mem_value)
2250 {
2251 if (!params->active)
2252 return 0;
2253
2254 return hsw_wm_fbc(pri_val,
2255 params->pri_horiz_pixels,
2256 params->pri_bytes_per_pixel);
2257 }
2258
2259 static bool hsw_compute_lp_wm(uint32_t mem_value, struct hsw_wm_maximums *max,
2260 struct hsw_pipe_wm_parameters *params,
2261 struct hsw_lp_wm_result *result)
2262 {
2263 enum pipe pipe;
2264 uint32_t pri_val[3], spr_val[3], cur_val[3], fbc_val[3];
2265
2266 for (pipe = PIPE_A; pipe <= PIPE_C; pipe++) {
2267 struct hsw_pipe_wm_parameters *p = &params[pipe];
2268
2269 pri_val[pipe] = hsw_compute_pri_wm(p, mem_value, true);
2270 spr_val[pipe] = hsw_compute_spr_wm(p, mem_value);
2271 cur_val[pipe] = hsw_compute_cur_wm(p, mem_value);
2272 fbc_val[pipe] = hsw_compute_fbc_wm(p, pri_val[pipe], mem_value);
2273 }
2274
2275 result->pri_val = max3(pri_val[0], pri_val[1], pri_val[2]);
2276 result->spr_val = max3(spr_val[0], spr_val[1], spr_val[2]);
2277 result->cur_val = max3(cur_val[0], cur_val[1], cur_val[2]);
2278 result->fbc_val = max3(fbc_val[0], fbc_val[1], fbc_val[2]);
2279
2280 if (result->fbc_val > max->fbc) {
2281 result->fbc_enable = false;
2282 result->fbc_val = 0;
2283 } else {
2284 result->fbc_enable = true;
2285 }
2286
2287 result->enable = result->pri_val <= max->pri &&
2288 result->spr_val <= max->spr &&
2289 result->cur_val <= max->cur;
2290 return result->enable;
2291 }
2292
2293 static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
2294 uint32_t mem_value, enum pipe pipe,
2295 struct hsw_pipe_wm_parameters *params)
2296 {
2297 uint32_t pri_val, cur_val, spr_val;
2298
2299 pri_val = hsw_compute_pri_wm(params, mem_value, false);
2300 spr_val = hsw_compute_spr_wm(params, mem_value);
2301 cur_val = hsw_compute_cur_wm(params, mem_value);
2302
2303 WARN(pri_val > 127,
2304 "Primary WM error, mode not supported for pipe %c\n",
2305 pipe_name(pipe));
2306 WARN(spr_val > 127,
2307 "Sprite WM error, mode not supported for pipe %c\n",
2308 pipe_name(pipe));
2309 WARN(cur_val > 63,
2310 "Cursor WM error, mode not supported for pipe %c\n",
2311 pipe_name(pipe));
2312
2313 return (pri_val << WM0_PIPE_PLANE_SHIFT) |
2314 (spr_val << WM0_PIPE_SPRITE_SHIFT) |
2315 cur_val;
2316 }
2317
2318 static uint32_t
2319 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2320 {
2321 struct drm_i915_private *dev_priv = dev->dev_private;
2322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2324 u32 linetime, ips_linetime;
2325
2326 if (!intel_crtc_active(crtc))
2327 return 0;
2328
2329 /* The WM are computed with base on how long it takes to fill a single
2330 * row at the given clock rate, multiplied by 8.
2331 * */
2332 linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2333 ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2334 intel_ddi_get_cdclk_freq(dev_priv));
2335
2336 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2337 PIPE_WM_LINETIME_TIME(linetime);
2338 }
2339
2340 static void hsw_compute_wm_parameters(struct drm_device *dev,
2341 struct hsw_pipe_wm_parameters *params,
2342 uint32_t *wm,
2343 struct hsw_wm_maximums *lp_max_1_2,
2344 struct hsw_wm_maximums *lp_max_5_6)
2345 {
2346 struct drm_i915_private *dev_priv = dev->dev_private;
2347 struct drm_crtc *crtc;
2348 struct drm_plane *plane;
2349 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2350 enum pipe pipe;
2351 int pipes_active = 0, sprites_enabled = 0;
2352
2353 if ((sskpd >> 56) & 0xFF)
2354 wm[0] = (sskpd >> 56) & 0xFF;
2355 else
2356 wm[0] = sskpd & 0xF;
2357 wm[1] = ((sskpd >> 4) & 0xFF) * 5;
2358 wm[2] = ((sskpd >> 12) & 0xFF) * 5;
2359 wm[3] = ((sskpd >> 20) & 0x1FF) * 5;
2360 wm[4] = ((sskpd >> 32) & 0x1FF) * 5;
2361
2362 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2363 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2364 struct hsw_pipe_wm_parameters *p;
2365
2366 pipe = intel_crtc->pipe;
2367 p = &params[pipe];
2368
2369 p->active = intel_crtc_active(crtc);
2370 if (!p->active)
2371 continue;
2372
2373 pipes_active++;
2374
2375 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2376 p->pixel_rate = hsw_wm_get_pixel_rate(dev, crtc);
2377 p->pri_bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2378 p->cur_bytes_per_pixel = 4;
2379 p->pri_horiz_pixels =
2380 intel_crtc->config.requested_mode.hdisplay;
2381 p->cur_horiz_pixels = 64;
2382 }
2383
2384 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2385 struct intel_plane *intel_plane = to_intel_plane(plane);
2386 struct hsw_pipe_wm_parameters *p;
2387
2388 pipe = intel_plane->pipe;
2389 p = &params[pipe];
2390
2391 p->sprite_enabled = intel_plane->wm.enable;
2392 p->spr_bytes_per_pixel = intel_plane->wm.bytes_per_pixel;
2393 p->spr_horiz_pixels = intel_plane->wm.horiz_pixels;
2394
2395 if (p->sprite_enabled)
2396 sprites_enabled++;
2397 }
2398
2399 if (pipes_active > 1) {
2400 lp_max_1_2->pri = lp_max_5_6->pri = sprites_enabled ? 128 : 256;
2401 lp_max_1_2->spr = lp_max_5_6->spr = 128;
2402 lp_max_1_2->cur = lp_max_5_6->cur = 64;
2403 } else {
2404 lp_max_1_2->pri = sprites_enabled ? 384 : 768;
2405 lp_max_5_6->pri = sprites_enabled ? 128 : 768;
2406 lp_max_1_2->spr = 384;
2407 lp_max_5_6->spr = 640;
2408 lp_max_1_2->cur = lp_max_5_6->cur = 255;
2409 }
2410 lp_max_1_2->fbc = lp_max_5_6->fbc = 15;
2411 }
2412
2413 static void hsw_compute_wm_results(struct drm_device *dev,
2414 struct hsw_pipe_wm_parameters *params,
2415 uint32_t *wm,
2416 struct hsw_wm_maximums *lp_maximums,
2417 struct hsw_wm_values *results)
2418 {
2419 struct drm_i915_private *dev_priv = dev->dev_private;
2420 struct drm_crtc *crtc;
2421 struct hsw_lp_wm_result lp_results[4] = {};
2422 enum pipe pipe;
2423 int level, max_level, wm_lp;
2424
2425 for (level = 1; level <= 4; level++)
2426 if (!hsw_compute_lp_wm(wm[level], lp_maximums, params,
2427 &lp_results[level - 1]))
2428 break;
2429 max_level = level - 1;
2430
2431 /* The spec says it is preferred to disable FBC WMs instead of disabling
2432 * a WM level. */
2433 results->enable_fbc_wm = true;
2434 for (level = 1; level <= max_level; level++) {
2435 if (!lp_results[level - 1].fbc_enable) {
2436 results->enable_fbc_wm = false;
2437 break;
2438 }
2439 }
2440
2441 memset(results, 0, sizeof(*results));
2442 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2443 const struct hsw_lp_wm_result *r;
2444
2445 level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
2446 if (level > max_level)
2447 break;
2448
2449 r = &lp_results[level - 1];
2450 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2451 r->fbc_val,
2452 r->pri_val,
2453 r->cur_val);
2454 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2455 }
2456
2457 for_each_pipe(pipe)
2458 results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, wm[0],
2459 pipe,
2460 &params[pipe]);
2461
2462 for_each_pipe(pipe) {
2463 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2464 results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
2465 }
2466 }
2467
2468 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2469 * case both are at the same level. Prefer r1 in case they're the same. */
2470 static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
2471 struct hsw_wm_values *r2)
2472 {
2473 int i, val_r1 = 0, val_r2 = 0;
2474
2475 for (i = 0; i < 3; i++) {
2476 if (r1->wm_lp[i] & WM3_LP_EN)
2477 val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
2478 if (r2->wm_lp[i] & WM3_LP_EN)
2479 val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
2480 }
2481
2482 if (val_r1 == val_r2) {
2483 if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
2484 return r2;
2485 else
2486 return r1;
2487 } else if (val_r1 > val_r2) {
2488 return r1;
2489 } else {
2490 return r2;
2491 }
2492 }
2493
2494 /*
2495 * The spec says we shouldn't write when we don't need, because every write
2496 * causes WMs to be re-evaluated, expending some power.
2497 */
2498 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2499 struct hsw_wm_values *results,
2500 enum hsw_data_buf_partitioning partitioning)
2501 {
2502 struct hsw_wm_values previous;
2503 uint32_t val;
2504 enum hsw_data_buf_partitioning prev_partitioning;
2505 bool prev_enable_fbc_wm;
2506
2507 previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2508 previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2509 previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2510 previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2511 previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2512 previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2513 previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2514 previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2515 previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2516 previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2517 previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2518 previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2519
2520 prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2521 HSW_DATA_BUF_PART_5_6 : HSW_DATA_BUF_PART_1_2;
2522
2523 prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2524
2525 if (memcmp(results->wm_pipe, previous.wm_pipe,
2526 sizeof(results->wm_pipe)) == 0 &&
2527 memcmp(results->wm_lp, previous.wm_lp,
2528 sizeof(results->wm_lp)) == 0 &&
2529 memcmp(results->wm_lp_spr, previous.wm_lp_spr,
2530 sizeof(results->wm_lp_spr)) == 0 &&
2531 memcmp(results->wm_linetime, previous.wm_linetime,
2532 sizeof(results->wm_linetime)) == 0 &&
2533 partitioning == prev_partitioning &&
2534 results->enable_fbc_wm == prev_enable_fbc_wm)
2535 return;
2536
2537 if (previous.wm_lp[2] != 0)
2538 I915_WRITE(WM3_LP_ILK, 0);
2539 if (previous.wm_lp[1] != 0)
2540 I915_WRITE(WM2_LP_ILK, 0);
2541 if (previous.wm_lp[0] != 0)
2542 I915_WRITE(WM1_LP_ILK, 0);
2543
2544 if (previous.wm_pipe[0] != results->wm_pipe[0])
2545 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2546 if (previous.wm_pipe[1] != results->wm_pipe[1])
2547 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2548 if (previous.wm_pipe[2] != results->wm_pipe[2])
2549 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2550
2551 if (previous.wm_linetime[0] != results->wm_linetime[0])
2552 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2553 if (previous.wm_linetime[1] != results->wm_linetime[1])
2554 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2555 if (previous.wm_linetime[2] != results->wm_linetime[2])
2556 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2557
2558 if (prev_partitioning != partitioning) {
2559 val = I915_READ(WM_MISC);
2560 if (partitioning == HSW_DATA_BUF_PART_1_2)
2561 val &= ~WM_MISC_DATA_PARTITION_5_6;
2562 else
2563 val |= WM_MISC_DATA_PARTITION_5_6;
2564 I915_WRITE(WM_MISC, val);
2565 }
2566
2567 if (prev_enable_fbc_wm != results->enable_fbc_wm) {
2568 val = I915_READ(DISP_ARB_CTL);
2569 if (results->enable_fbc_wm)
2570 val &= ~DISP_FBC_WM_DIS;
2571 else
2572 val |= DISP_FBC_WM_DIS;
2573 I915_WRITE(DISP_ARB_CTL, val);
2574 }
2575
2576 if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2577 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2578 if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2579 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2580 if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2581 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2582
2583 if (results->wm_lp[0] != 0)
2584 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2585 if (results->wm_lp[1] != 0)
2586 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2587 if (results->wm_lp[2] != 0)
2588 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2589 }
2590
2591 static void haswell_update_wm(struct drm_device *dev)
2592 {
2593 struct drm_i915_private *dev_priv = dev->dev_private;
2594 struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2595 struct hsw_pipe_wm_parameters params[3];
2596 struct hsw_wm_values results_1_2, results_5_6, *best_results;
2597 uint32_t wm[5];
2598 enum hsw_data_buf_partitioning partitioning;
2599
2600 hsw_compute_wm_parameters(dev, params, wm, &lp_max_1_2, &lp_max_5_6);
2601
2602 hsw_compute_wm_results(dev, params, wm, &lp_max_1_2, &results_1_2);
2603 if (lp_max_1_2.pri != lp_max_5_6.pri) {
2604 hsw_compute_wm_results(dev, params, wm, &lp_max_5_6,
2605 &results_5_6);
2606 best_results = hsw_find_best_result(&results_1_2, &results_5_6);
2607 } else {
2608 best_results = &results_1_2;
2609 }
2610
2611 partitioning = (best_results == &results_1_2) ?
2612 HSW_DATA_BUF_PART_1_2 : HSW_DATA_BUF_PART_5_6;
2613
2614 hsw_write_wm_values(dev_priv, best_results, partitioning);
2615 }
2616
2617 static void haswell_update_sprite_wm(struct drm_device *dev, int pipe,
2618 uint32_t sprite_width, int pixel_size,
2619 bool enable)
2620 {
2621 struct drm_plane *plane;
2622
2623 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2624 struct intel_plane *intel_plane = to_intel_plane(plane);
2625
2626 if (intel_plane->pipe == pipe) {
2627 intel_plane->wm.enable = enable;
2628 intel_plane->wm.horiz_pixels = sprite_width + 1;
2629 intel_plane->wm.bytes_per_pixel = pixel_size;
2630 break;
2631 }
2632 }
2633
2634 haswell_update_wm(dev);
2635 }
2636
2637 static bool
2638 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2639 uint32_t sprite_width, int pixel_size,
2640 const struct intel_watermark_params *display,
2641 int display_latency_ns, int *sprite_wm)
2642 {
2643 struct drm_crtc *crtc;
2644 int clock;
2645 int entries, tlb_miss;
2646
2647 crtc = intel_get_crtc_for_plane(dev, plane);
2648 if (!intel_crtc_active(crtc)) {
2649 *sprite_wm = display->guard_size;
2650 return false;
2651 }
2652
2653 clock = crtc->mode.clock;
2654
2655 /* Use the small buffer method to calculate the sprite watermark */
2656 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2657 tlb_miss = display->fifo_size*display->cacheline_size -
2658 sprite_width * 8;
2659 if (tlb_miss > 0)
2660 entries += tlb_miss;
2661 entries = DIV_ROUND_UP(entries, display->cacheline_size);
2662 *sprite_wm = entries + display->guard_size;
2663 if (*sprite_wm > (int)display->max_wm)
2664 *sprite_wm = display->max_wm;
2665
2666 return true;
2667 }
2668
2669 static bool
2670 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2671 uint32_t sprite_width, int pixel_size,
2672 const struct intel_watermark_params *display,
2673 int latency_ns, int *sprite_wm)
2674 {
2675 struct drm_crtc *crtc;
2676 unsigned long line_time_us;
2677 int clock;
2678 int line_count, line_size;
2679 int small, large;
2680 int entries;
2681
2682 if (!latency_ns) {
2683 *sprite_wm = 0;
2684 return false;
2685 }
2686
2687 crtc = intel_get_crtc_for_plane(dev, plane);
2688 clock = crtc->mode.clock;
2689 if (!clock) {
2690 *sprite_wm = 0;
2691 return false;
2692 }
2693
2694 line_time_us = (sprite_width * 1000) / clock;
2695 if (!line_time_us) {
2696 *sprite_wm = 0;
2697 return false;
2698 }
2699
2700 line_count = (latency_ns / line_time_us + 1000) / 1000;
2701 line_size = sprite_width * pixel_size;
2702
2703 /* Use the minimum of the small and large buffer method for primary */
2704 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2705 large = line_count * line_size;
2706
2707 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2708 *sprite_wm = entries + display->guard_size;
2709
2710 return *sprite_wm > 0x3ff ? false : true;
2711 }
2712
2713 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2714 uint32_t sprite_width, int pixel_size,
2715 bool enable)
2716 {
2717 struct drm_i915_private *dev_priv = dev->dev_private;
2718 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
2719 u32 val;
2720 int sprite_wm, reg;
2721 int ret;
2722
2723 if (!enable)
2724 return;
2725
2726 switch (pipe) {
2727 case 0:
2728 reg = WM0_PIPEA_ILK;
2729 break;
2730 case 1:
2731 reg = WM0_PIPEB_ILK;
2732 break;
2733 case 2:
2734 reg = WM0_PIPEC_IVB;
2735 break;
2736 default:
2737 return; /* bad pipe */
2738 }
2739
2740 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2741 &sandybridge_display_wm_info,
2742 latency, &sprite_wm);
2743 if (!ret) {
2744 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2745 pipe_name(pipe));
2746 return;
2747 }
2748
2749 val = I915_READ(reg);
2750 val &= ~WM0_PIPE_SPRITE_MASK;
2751 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2752 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2753
2754
2755 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2756 pixel_size,
2757 &sandybridge_display_srwm_info,
2758 SNB_READ_WM1_LATENCY() * 500,
2759 &sprite_wm);
2760 if (!ret) {
2761 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
2762 pipe_name(pipe));
2763 return;
2764 }
2765 I915_WRITE(WM1S_LP_ILK, sprite_wm);
2766
2767 /* Only IVB has two more LP watermarks for sprite */
2768 if (!IS_IVYBRIDGE(dev))
2769 return;
2770
2771 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2772 pixel_size,
2773 &sandybridge_display_srwm_info,
2774 SNB_READ_WM2_LATENCY() * 500,
2775 &sprite_wm);
2776 if (!ret) {
2777 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
2778 pipe_name(pipe));
2779 return;
2780 }
2781 I915_WRITE(WM2S_LP_IVB, sprite_wm);
2782
2783 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2784 pixel_size,
2785 &sandybridge_display_srwm_info,
2786 SNB_READ_WM3_LATENCY() * 500,
2787 &sprite_wm);
2788 if (!ret) {
2789 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
2790 pipe_name(pipe));
2791 return;
2792 }
2793 I915_WRITE(WM3S_LP_IVB, sprite_wm);
2794 }
2795
2796 /**
2797 * intel_update_watermarks - update FIFO watermark values based on current modes
2798 *
2799 * Calculate watermark values for the various WM regs based on current mode
2800 * and plane configuration.
2801 *
2802 * There are several cases to deal with here:
2803 * - normal (i.e. non-self-refresh)
2804 * - self-refresh (SR) mode
2805 * - lines are large relative to FIFO size (buffer can hold up to 2)
2806 * - lines are small relative to FIFO size (buffer can hold more than 2
2807 * lines), so need to account for TLB latency
2808 *
2809 * The normal calculation is:
2810 * watermark = dotclock * bytes per pixel * latency
2811 * where latency is platform & configuration dependent (we assume pessimal
2812 * values here).
2813 *
2814 * The SR calculation is:
2815 * watermark = (trunc(latency/line time)+1) * surface width *
2816 * bytes per pixel
2817 * where
2818 * line time = htotal / dotclock
2819 * surface width = hdisplay for normal plane and 64 for cursor
2820 * and latency is assumed to be high, as above.
2821 *
2822 * The final value programmed to the register should always be rounded up,
2823 * and include an extra 2 entries to account for clock crossings.
2824 *
2825 * We don't use the sprite, so we can ignore that. And on Crestline we have
2826 * to set the non-SR watermarks to 8.
2827 */
2828 void intel_update_watermarks(struct drm_device *dev)
2829 {
2830 struct drm_i915_private *dev_priv = dev->dev_private;
2831
2832 if (dev_priv->display.update_wm)
2833 dev_priv->display.update_wm(dev);
2834 }
2835
2836 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2837 uint32_t sprite_width, int pixel_size,
2838 bool enable)
2839 {
2840 struct drm_i915_private *dev_priv = dev->dev_private;
2841
2842 if (dev_priv->display.update_sprite_wm)
2843 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2844 pixel_size, enable);
2845 }
2846
2847 static struct drm_i915_gem_object *
2848 intel_alloc_context_page(struct drm_device *dev)
2849 {
2850 struct drm_i915_gem_object *ctx;
2851 int ret;
2852
2853 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2854
2855 ctx = i915_gem_alloc_object(dev, 4096);
2856 if (!ctx) {
2857 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2858 return NULL;
2859 }
2860
2861 ret = i915_gem_object_pin(ctx, 4096, true, false);
2862 if (ret) {
2863 DRM_ERROR("failed to pin power context: %d\n", ret);
2864 goto err_unref;
2865 }
2866
2867 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2868 if (ret) {
2869 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2870 goto err_unpin;
2871 }
2872
2873 return ctx;
2874
2875 err_unpin:
2876 i915_gem_object_unpin(ctx);
2877 err_unref:
2878 drm_gem_object_unreference(&ctx->base);
2879 return NULL;
2880 }
2881
2882 /**
2883 * Lock protecting IPS related data structures
2884 */
2885 DEFINE_SPINLOCK(mchdev_lock);
2886
2887 /* Global for IPS driver to get at the current i915 device. Protected by
2888 * mchdev_lock. */
2889 static struct drm_i915_private *i915_mch_dev;
2890
2891 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2892 {
2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894 u16 rgvswctl;
2895
2896 assert_spin_locked(&mchdev_lock);
2897
2898 rgvswctl = I915_READ16(MEMSWCTL);
2899 if (rgvswctl & MEMCTL_CMD_STS) {
2900 DRM_DEBUG("gpu busy, RCS change rejected\n");
2901 return false; /* still busy with another command */
2902 }
2903
2904 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2905 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2906 I915_WRITE16(MEMSWCTL, rgvswctl);
2907 POSTING_READ16(MEMSWCTL);
2908
2909 rgvswctl |= MEMCTL_CMD_STS;
2910 I915_WRITE16(MEMSWCTL, rgvswctl);
2911
2912 return true;
2913 }
2914
2915 static void ironlake_enable_drps(struct drm_device *dev)
2916 {
2917 struct drm_i915_private *dev_priv = dev->dev_private;
2918 u32 rgvmodectl = I915_READ(MEMMODECTL);
2919 u8 fmax, fmin, fstart, vstart;
2920
2921 spin_lock_irq(&mchdev_lock);
2922
2923 /* Enable temp reporting */
2924 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2925 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2926
2927 /* 100ms RC evaluation intervals */
2928 I915_WRITE(RCUPEI, 100000);
2929 I915_WRITE(RCDNEI, 100000);
2930
2931 /* Set max/min thresholds to 90ms and 80ms respectively */
2932 I915_WRITE(RCBMAXAVG, 90000);
2933 I915_WRITE(RCBMINAVG, 80000);
2934
2935 I915_WRITE(MEMIHYST, 1);
2936
2937 /* Set up min, max, and cur for interrupt handling */
2938 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2939 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2940 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2941 MEMMODE_FSTART_SHIFT;
2942
2943 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2944 PXVFREQ_PX_SHIFT;
2945
2946 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2947 dev_priv->ips.fstart = fstart;
2948
2949 dev_priv->ips.max_delay = fstart;
2950 dev_priv->ips.min_delay = fmin;
2951 dev_priv->ips.cur_delay = fstart;
2952
2953 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2954 fmax, fmin, fstart);
2955
2956 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2957
2958 /*
2959 * Interrupts will be enabled in ironlake_irq_postinstall
2960 */
2961
2962 I915_WRITE(VIDSTART, vstart);
2963 POSTING_READ(VIDSTART);
2964
2965 rgvmodectl |= MEMMODE_SWMODE_EN;
2966 I915_WRITE(MEMMODECTL, rgvmodectl);
2967
2968 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2969 DRM_ERROR("stuck trying to change perf mode\n");
2970 mdelay(1);
2971
2972 ironlake_set_drps(dev, fstart);
2973
2974 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2975 I915_READ(0x112e0);
2976 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2977 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2978 getrawmonotonic(&dev_priv->ips.last_time2);
2979
2980 spin_unlock_irq(&mchdev_lock);
2981 }
2982
2983 static void ironlake_disable_drps(struct drm_device *dev)
2984 {
2985 struct drm_i915_private *dev_priv = dev->dev_private;
2986 u16 rgvswctl;
2987
2988 spin_lock_irq(&mchdev_lock);
2989
2990 rgvswctl = I915_READ16(MEMSWCTL);
2991
2992 /* Ack interrupts, disable EFC interrupt */
2993 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2994 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2995 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2996 I915_WRITE(DEIIR, DE_PCU_EVENT);
2997 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2998
2999 /* Go back to the starting frequency */
3000 ironlake_set_drps(dev, dev_priv->ips.fstart);
3001 mdelay(1);
3002 rgvswctl |= MEMCTL_CMD_STS;
3003 I915_WRITE(MEMSWCTL, rgvswctl);
3004 mdelay(1);
3005
3006 spin_unlock_irq(&mchdev_lock);
3007 }
3008
3009 /* There's a funny hw issue where the hw returns all 0 when reading from
3010 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3011 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3012 * all limits and the gpu stuck at whatever frequency it is at atm).
3013 */
3014 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3015 {
3016 u32 limits;
3017
3018 limits = 0;
3019
3020 if (*val >= dev_priv->rps.max_delay)
3021 *val = dev_priv->rps.max_delay;
3022 limits |= dev_priv->rps.max_delay << 24;
3023
3024 /* Only set the down limit when we've reached the lowest level to avoid
3025 * getting more interrupts, otherwise leave this clear. This prevents a
3026 * race in the hw when coming out of rc6: There's a tiny window where
3027 * the hw runs at the minimal clock before selecting the desired
3028 * frequency, if the down threshold expires in that window we will not
3029 * receive a down interrupt. */
3030 if (*val <= dev_priv->rps.min_delay) {
3031 *val = dev_priv->rps.min_delay;
3032 limits |= dev_priv->rps.min_delay << 16;
3033 }
3034
3035 return limits;
3036 }
3037
3038 void gen6_set_rps(struct drm_device *dev, u8 val)
3039 {
3040 struct drm_i915_private *dev_priv = dev->dev_private;
3041 u32 limits = gen6_rps_limits(dev_priv, &val);
3042
3043 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3044 WARN_ON(val > dev_priv->rps.max_delay);
3045 WARN_ON(val < dev_priv->rps.min_delay);
3046
3047 if (val == dev_priv->rps.cur_delay)
3048 return;
3049
3050 if (IS_HASWELL(dev))
3051 I915_WRITE(GEN6_RPNSWREQ,
3052 HSW_FREQUENCY(val));
3053 else
3054 I915_WRITE(GEN6_RPNSWREQ,
3055 GEN6_FREQUENCY(val) |
3056 GEN6_OFFSET(0) |
3057 GEN6_AGGRESSIVE_TURBO);
3058
3059 /* Make sure we continue to get interrupts
3060 * until we hit the minimum or maximum frequencies.
3061 */
3062 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3063
3064 POSTING_READ(GEN6_RPNSWREQ);
3065
3066 dev_priv->rps.cur_delay = val;
3067
3068 trace_intel_gpu_freq_change(val * 50);
3069 }
3070
3071 /*
3072 * Wait until the previous freq change has completed,
3073 * or the timeout elapsed, and then update our notion
3074 * of the current GPU frequency.
3075 */
3076 static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3077 {
3078 u32 pval;
3079
3080 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3081
3082 if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3083 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3084
3085 pval >>= 8;
3086
3087 if (pval != dev_priv->rps.cur_delay)
3088 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3089 vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3090 dev_priv->rps.cur_delay,
3091 vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3092
3093 dev_priv->rps.cur_delay = pval;
3094 }
3095
3096 void valleyview_set_rps(struct drm_device *dev, u8 val)
3097 {
3098 struct drm_i915_private *dev_priv = dev->dev_private;
3099
3100 gen6_rps_limits(dev_priv, &val);
3101
3102 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3103 WARN_ON(val > dev_priv->rps.max_delay);
3104 WARN_ON(val < dev_priv->rps.min_delay);
3105
3106 vlv_update_rps_cur_delay(dev_priv);
3107
3108 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3109 vlv_gpu_freq(dev_priv->mem_freq,
3110 dev_priv->rps.cur_delay),
3111 dev_priv->rps.cur_delay,
3112 vlv_gpu_freq(dev_priv->mem_freq, val), val);
3113
3114 if (val == dev_priv->rps.cur_delay)
3115 return;
3116
3117 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3118
3119 dev_priv->rps.cur_delay = val;
3120
3121 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3122 }
3123
3124
3125 static void gen6_disable_rps(struct drm_device *dev)
3126 {
3127 struct drm_i915_private *dev_priv = dev->dev_private;
3128
3129 I915_WRITE(GEN6_RC_CONTROL, 0);
3130 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3131 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3132 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3133 /* Complete PM interrupt masking here doesn't race with the rps work
3134 * item again unmasking PM interrupts because that is using a different
3135 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3136 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3137
3138 spin_lock_irq(&dev_priv->rps.lock);
3139 dev_priv->rps.pm_iir = 0;
3140 spin_unlock_irq(&dev_priv->rps.lock);
3141
3142 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3143 }
3144
3145 static void valleyview_disable_rps(struct drm_device *dev)
3146 {
3147 struct drm_i915_private *dev_priv = dev->dev_private;
3148
3149 I915_WRITE(GEN6_RC_CONTROL, 0);
3150 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3151 I915_WRITE(GEN6_PMIER, 0);
3152 /* Complete PM interrupt masking here doesn't race with the rps work
3153 * item again unmasking PM interrupts because that is using a different
3154 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3155 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3156
3157 spin_lock_irq(&dev_priv->rps.lock);
3158 dev_priv->rps.pm_iir = 0;
3159 spin_unlock_irq(&dev_priv->rps.lock);
3160
3161 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
3162
3163 if (dev_priv->vlv_pctx) {
3164 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3165 dev_priv->vlv_pctx = NULL;
3166 }
3167 }
3168
3169 int intel_enable_rc6(const struct drm_device *dev)
3170 {
3171 /* Respect the kernel parameter if it is set */
3172 if (i915_enable_rc6 >= 0)
3173 return i915_enable_rc6;
3174
3175 /* Disable RC6 on Ironlake */
3176 if (INTEL_INFO(dev)->gen == 5)
3177 return 0;
3178
3179 if (IS_HASWELL(dev)) {
3180 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3181 return INTEL_RC6_ENABLE;
3182 }
3183
3184 /* snb/ivb have more than one rc6 state. */
3185 if (INTEL_INFO(dev)->gen == 6) {
3186 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3187 return INTEL_RC6_ENABLE;
3188 }
3189
3190 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3191 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3192 }
3193
3194 static void gen6_enable_rps(struct drm_device *dev)
3195 {
3196 struct drm_i915_private *dev_priv = dev->dev_private;
3197 struct intel_ring_buffer *ring;
3198 u32 rp_state_cap;
3199 u32 gt_perf_status;
3200 u32 rc6vids, pcu_mbox, rc6_mask = 0;
3201 u32 gtfifodbg;
3202 int rc6_mode;
3203 int i, ret;
3204
3205 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3206
3207 /* Here begins a magic sequence of register writes to enable
3208 * auto-downclocking.
3209 *
3210 * Perhaps there might be some value in exposing these to
3211 * userspace...
3212 */
3213 I915_WRITE(GEN6_RC_STATE, 0);
3214
3215 /* Clear the DBG now so we don't confuse earlier errors */
3216 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3217 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3218 I915_WRITE(GTFIFODBG, gtfifodbg);
3219 }
3220
3221 gen6_gt_force_wake_get(dev_priv);
3222
3223 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3224 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3225
3226 /* In units of 50MHz */
3227 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3228 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
3229 dev_priv->rps.cur_delay = 0;
3230
3231 /* disable the counters and set deterministic thresholds */
3232 I915_WRITE(GEN6_RC_CONTROL, 0);
3233
3234 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3235 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3236 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3237 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3238 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3239
3240 for_each_ring(ring, dev_priv, i)
3241 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3242
3243 I915_WRITE(GEN6_RC_SLEEP, 0);
3244 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3245 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3246 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3247 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3248
3249 /* Check if we are enabling RC6 */
3250 rc6_mode = intel_enable_rc6(dev_priv->dev);
3251 if (rc6_mode & INTEL_RC6_ENABLE)
3252 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3253
3254 /* We don't use those on Haswell */
3255 if (!IS_HASWELL(dev)) {
3256 if (rc6_mode & INTEL_RC6p_ENABLE)
3257 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3258
3259 if (rc6_mode & INTEL_RC6pp_ENABLE)
3260 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3261 }
3262
3263 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3264 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3265 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3266 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3267
3268 I915_WRITE(GEN6_RC_CONTROL,
3269 rc6_mask |
3270 GEN6_RC_CTL_EI_MODE(1) |
3271 GEN6_RC_CTL_HW_ENABLE);
3272
3273 if (IS_HASWELL(dev)) {
3274 I915_WRITE(GEN6_RPNSWREQ,
3275 HSW_FREQUENCY(10));
3276 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3277 HSW_FREQUENCY(12));
3278 } else {
3279 I915_WRITE(GEN6_RPNSWREQ,
3280 GEN6_FREQUENCY(10) |
3281 GEN6_OFFSET(0) |
3282 GEN6_AGGRESSIVE_TURBO);
3283 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3284 GEN6_FREQUENCY(12));
3285 }
3286
3287 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
3288 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3289 dev_priv->rps.max_delay << 24 |
3290 dev_priv->rps.min_delay << 16);
3291
3292 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3293 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3294 I915_WRITE(GEN6_RP_UP_EI, 66000);
3295 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3296
3297 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3298 I915_WRITE(GEN6_RP_CONTROL,
3299 GEN6_RP_MEDIA_TURBO |
3300 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3301 GEN6_RP_MEDIA_IS_GFX |
3302 GEN6_RP_ENABLE |
3303 GEN6_RP_UP_BUSY_AVG |
3304 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3305
3306 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3307 if (!ret) {
3308 pcu_mbox = 0;
3309 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3310 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3311 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3312 (dev_priv->rps.max_delay & 0xff) * 50,
3313 (pcu_mbox & 0xff) * 50);
3314 dev_priv->rps.hw_max = pcu_mbox & 0xff;
3315 }
3316 } else {
3317 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3318 }
3319
3320 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3321
3322 /* requires MSI enabled */
3323 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) | GEN6_PM_RPS_EVENTS);
3324 spin_lock_irq(&dev_priv->rps.lock);
3325 /* FIXME: Our interrupt enabling sequence is bonghits.
3326 * dev_priv->rps.pm_iir really should be 0 here. */
3327 dev_priv->rps.pm_iir = 0;
3328 I915_WRITE(GEN6_PMIMR, I915_READ(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
3329 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3330 spin_unlock_irq(&dev_priv->rps.lock);
3331 /* unmask all PM interrupts */
3332 I915_WRITE(GEN6_PMINTRMSK, 0);
3333
3334 rc6vids = 0;
3335 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3336 if (IS_GEN6(dev) && ret) {
3337 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3338 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3339 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3340 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3341 rc6vids &= 0xffff00;
3342 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3343 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3344 if (ret)
3345 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3346 }
3347
3348 gen6_gt_force_wake_put(dev_priv);
3349 }
3350
3351 static void gen6_update_ring_freq(struct drm_device *dev)
3352 {
3353 struct drm_i915_private *dev_priv = dev->dev_private;
3354 int min_freq = 15;
3355 unsigned int gpu_freq;
3356 unsigned int max_ia_freq, min_ring_freq;
3357 int scaling_factor = 180;
3358
3359 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3360
3361 max_ia_freq = cpufreq_quick_get_max(0);
3362 /*
3363 * Default to measured freq if none found, PCU will ensure we don't go
3364 * over
3365 */
3366 if (!max_ia_freq)
3367 max_ia_freq = tsc_khz;
3368
3369 /* Convert from kHz to MHz */
3370 max_ia_freq /= 1000;
3371
3372 min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
3373 /* convert DDR frequency from units of 133.3MHz to bandwidth */
3374 min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
3375
3376 /*
3377 * For each potential GPU frequency, load a ring frequency we'd like
3378 * to use for memory access. We do this by specifying the IA frequency
3379 * the PCU should use as a reference to determine the ring frequency.
3380 */
3381 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3382 gpu_freq--) {
3383 int diff = dev_priv->rps.max_delay - gpu_freq;
3384 unsigned int ia_freq = 0, ring_freq = 0;
3385
3386 if (IS_HASWELL(dev)) {
3387 ring_freq = (gpu_freq * 5 + 3) / 4;
3388 ring_freq = max(min_ring_freq, ring_freq);
3389 /* leave ia_freq as the default, chosen by cpufreq */
3390 } else {
3391 /* On older processors, there is no separate ring
3392 * clock domain, so in order to boost the bandwidth
3393 * of the ring, we need to upclock the CPU (ia_freq).
3394 *
3395 * For GPU frequencies less than 750MHz,
3396 * just use the lowest ring freq.
3397 */
3398 if (gpu_freq < min_freq)
3399 ia_freq = 800;
3400 else
3401 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3402 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3403 }
3404
3405 sandybridge_pcode_write(dev_priv,
3406 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3407 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3408 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3409 gpu_freq);
3410 }
3411 }
3412
3413 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3414 {
3415 u32 val, rp0;
3416
3417 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3418
3419 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3420 /* Clamp to max */
3421 rp0 = min_t(u32, rp0, 0xea);
3422
3423 return rp0;
3424 }
3425
3426 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3427 {
3428 u32 val, rpe;
3429
3430 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3431 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3432 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3433 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3434
3435 return rpe;
3436 }
3437
3438 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3439 {
3440 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3441 }
3442
3443 static void vlv_rps_timer_work(struct work_struct *work)
3444 {
3445 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3446 rps.vlv_work.work);
3447
3448 /*
3449 * Timer fired, we must be idle. Drop to min voltage state.
3450 * Note: we use RPe here since it should match the
3451 * Vmin we were shooting for. That should give us better
3452 * perf when we come back out of RC6 than if we used the
3453 * min freq available.
3454 */
3455 mutex_lock(&dev_priv->rps.hw_lock);
3456 if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
3457 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3458 mutex_unlock(&dev_priv->rps.hw_lock);
3459 }
3460
3461 static void valleyview_setup_pctx(struct drm_device *dev)
3462 {
3463 struct drm_i915_private *dev_priv = dev->dev_private;
3464 struct drm_i915_gem_object *pctx;
3465 unsigned long pctx_paddr;
3466 u32 pcbr;
3467 int pctx_size = 24*1024;
3468
3469 pcbr = I915_READ(VLV_PCBR);
3470 if (pcbr) {
3471 /* BIOS set it up already, grab the pre-alloc'd space */
3472 int pcbr_offset;
3473
3474 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3475 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3476 pcbr_offset,
3477 I915_GTT_OFFSET_NONE,
3478 pctx_size);
3479 goto out;
3480 }
3481
3482 /*
3483 * From the Gunit register HAS:
3484 * The Gfx driver is expected to program this register and ensure
3485 * proper allocation within Gfx stolen memory. For example, this
3486 * register should be programmed such than the PCBR range does not
3487 * overlap with other ranges, such as the frame buffer, protected
3488 * memory, or any other relevant ranges.
3489 */
3490 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3491 if (!pctx) {
3492 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3493 return;
3494 }
3495
3496 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3497 I915_WRITE(VLV_PCBR, pctx_paddr);
3498
3499 out:
3500 dev_priv->vlv_pctx = pctx;
3501 }
3502
3503 static void valleyview_enable_rps(struct drm_device *dev)
3504 {
3505 struct drm_i915_private *dev_priv = dev->dev_private;
3506 struct intel_ring_buffer *ring;
3507 u32 gtfifodbg, val;
3508 int i;
3509
3510 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3511
3512 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3513 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3514 I915_WRITE(GTFIFODBG, gtfifodbg);
3515 }
3516
3517 valleyview_setup_pctx(dev);
3518
3519 gen6_gt_force_wake_get(dev_priv);
3520
3521 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3522 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3523 I915_WRITE(GEN6_RP_UP_EI, 66000);
3524 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3525
3526 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3527
3528 I915_WRITE(GEN6_RP_CONTROL,
3529 GEN6_RP_MEDIA_TURBO |
3530 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3531 GEN6_RP_MEDIA_IS_GFX |
3532 GEN6_RP_ENABLE |
3533 GEN6_RP_UP_BUSY_AVG |
3534 GEN6_RP_DOWN_IDLE_CONT);
3535
3536 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3537 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3538 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3539
3540 for_each_ring(ring, dev_priv, i)
3541 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3542
3543 I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3544
3545 /* allows RC6 residency counter to work */
3546 I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3547 I915_WRITE(GEN6_RC_CONTROL,
3548 GEN7_RC_CTL_TO_MODE);
3549
3550 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3551 switch ((val >> 6) & 3) {
3552 case 0:
3553 case 1:
3554 dev_priv->mem_freq = 800;
3555 break;
3556 case 2:
3557 dev_priv->mem_freq = 1066;
3558 break;
3559 case 3:
3560 dev_priv->mem_freq = 1333;
3561 break;
3562 }
3563 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3564
3565 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3566 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3567
3568 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3569 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3570 vlv_gpu_freq(dev_priv->mem_freq,
3571 dev_priv->rps.cur_delay),
3572 dev_priv->rps.cur_delay);
3573
3574 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3575 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3576 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3577 vlv_gpu_freq(dev_priv->mem_freq,
3578 dev_priv->rps.max_delay),
3579 dev_priv->rps.max_delay);
3580
3581 dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3582 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3583 vlv_gpu_freq(dev_priv->mem_freq,
3584 dev_priv->rps.rpe_delay),
3585 dev_priv->rps.rpe_delay);
3586
3587 dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3588 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3589 vlv_gpu_freq(dev_priv->mem_freq,
3590 dev_priv->rps.min_delay),
3591 dev_priv->rps.min_delay);
3592
3593 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3594 vlv_gpu_freq(dev_priv->mem_freq,
3595 dev_priv->rps.rpe_delay),
3596 dev_priv->rps.rpe_delay);
3597
3598 INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
3599
3600 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3601
3602 /* requires MSI enabled */
3603 I915_WRITE(GEN6_PMIER, GEN6_PM_RPS_EVENTS);
3604 spin_lock_irq(&dev_priv->rps.lock);
3605 WARN_ON(dev_priv->rps.pm_iir != 0);
3606 I915_WRITE(GEN6_PMIMR, 0);
3607 spin_unlock_irq(&dev_priv->rps.lock);
3608 /* enable all PM interrupts */
3609 I915_WRITE(GEN6_PMINTRMSK, 0);
3610
3611 gen6_gt_force_wake_put(dev_priv);
3612 }
3613
3614 void ironlake_teardown_rc6(struct drm_device *dev)
3615 {
3616 struct drm_i915_private *dev_priv = dev->dev_private;
3617
3618 if (dev_priv->ips.renderctx) {
3619 i915_gem_object_unpin(dev_priv->ips.renderctx);
3620 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3621 dev_priv->ips.renderctx = NULL;
3622 }
3623
3624 if (dev_priv->ips.pwrctx) {
3625 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3626 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3627 dev_priv->ips.pwrctx = NULL;
3628 }
3629 }
3630
3631 static void ironlake_disable_rc6(struct drm_device *dev)
3632 {
3633 struct drm_i915_private *dev_priv = dev->dev_private;
3634
3635 if (I915_READ(PWRCTXA)) {
3636 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3637 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3638 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3639 50);
3640
3641 I915_WRITE(PWRCTXA, 0);
3642 POSTING_READ(PWRCTXA);
3643
3644 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3645 POSTING_READ(RSTDBYCTL);
3646 }
3647 }
3648
3649 static int ironlake_setup_rc6(struct drm_device *dev)
3650 {
3651 struct drm_i915_private *dev_priv = dev->dev_private;
3652
3653 if (dev_priv->ips.renderctx == NULL)
3654 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3655 if (!dev_priv->ips.renderctx)
3656 return -ENOMEM;
3657
3658 if (dev_priv->ips.pwrctx == NULL)
3659 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3660 if (!dev_priv->ips.pwrctx) {
3661 ironlake_teardown_rc6(dev);
3662 return -ENOMEM;
3663 }
3664
3665 return 0;
3666 }
3667
3668 static void ironlake_enable_rc6(struct drm_device *dev)
3669 {
3670 struct drm_i915_private *dev_priv = dev->dev_private;
3671 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3672 bool was_interruptible;
3673 int ret;
3674
3675 /* rc6 disabled by default due to repeated reports of hanging during
3676 * boot and resume.
3677 */
3678 if (!intel_enable_rc6(dev))
3679 return;
3680
3681 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3682
3683 ret = ironlake_setup_rc6(dev);
3684 if (ret)
3685 return;
3686
3687 was_interruptible = dev_priv->mm.interruptible;
3688 dev_priv->mm.interruptible = false;
3689
3690 /*
3691 * GPU can automatically power down the render unit if given a page
3692 * to save state.
3693 */
3694 ret = intel_ring_begin(ring, 6);
3695 if (ret) {
3696 ironlake_teardown_rc6(dev);
3697 dev_priv->mm.interruptible = was_interruptible;
3698 return;
3699 }
3700
3701 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3702 intel_ring_emit(ring, MI_SET_CONTEXT);
3703 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3704 MI_MM_SPACE_GTT |
3705 MI_SAVE_EXT_STATE_EN |
3706 MI_RESTORE_EXT_STATE_EN |
3707 MI_RESTORE_INHIBIT);
3708 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3709 intel_ring_emit(ring, MI_NOOP);
3710 intel_ring_emit(ring, MI_FLUSH);
3711 intel_ring_advance(ring);
3712
3713 /*
3714 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3715 * does an implicit flush, combined with MI_FLUSH above, it should be
3716 * safe to assume that renderctx is valid
3717 */
3718 ret = intel_ring_idle(ring);
3719 dev_priv->mm.interruptible = was_interruptible;
3720 if (ret) {
3721 DRM_ERROR("failed to enable ironlake power savings\n");
3722 ironlake_teardown_rc6(dev);
3723 return;
3724 }
3725
3726 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3727 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3728 }
3729
3730 static unsigned long intel_pxfreq(u32 vidfreq)
3731 {
3732 unsigned long freq;
3733 int div = (vidfreq & 0x3f0000) >> 16;
3734 int post = (vidfreq & 0x3000) >> 12;
3735 int pre = (vidfreq & 0x7);
3736
3737 if (!pre)
3738 return 0;
3739
3740 freq = ((div * 133333) / ((1<<post) * pre));
3741
3742 return freq;
3743 }
3744
3745 static const struct cparams {
3746 u16 i;
3747 u16 t;
3748 u16 m;
3749 u16 c;
3750 } cparams[] = {
3751 { 1, 1333, 301, 28664 },
3752 { 1, 1066, 294, 24460 },
3753 { 1, 800, 294, 25192 },
3754 { 0, 1333, 276, 27605 },
3755 { 0, 1066, 276, 27605 },
3756 { 0, 800, 231, 23784 },
3757 };
3758
3759 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3760 {
3761 u64 total_count, diff, ret;
3762 u32 count1, count2, count3, m = 0, c = 0;
3763 unsigned long now = jiffies_to_msecs(jiffies), diff1;
3764 int i;
3765
3766 assert_spin_locked(&mchdev_lock);
3767
3768 diff1 = now - dev_priv->ips.last_time1;
3769
3770 /* Prevent division-by-zero if we are asking too fast.
3771 * Also, we don't get interesting results if we are polling
3772 * faster than once in 10ms, so just return the saved value
3773 * in such cases.
3774 */
3775 if (diff1 <= 10)
3776 return dev_priv->ips.chipset_power;
3777
3778 count1 = I915_READ(DMIEC);
3779 count2 = I915_READ(DDREC);
3780 count3 = I915_READ(CSIEC);
3781
3782 total_count = count1 + count2 + count3;
3783
3784 /* FIXME: handle per-counter overflow */
3785 if (total_count < dev_priv->ips.last_count1) {
3786 diff = ~0UL - dev_priv->ips.last_count1;
3787 diff += total_count;
3788 } else {
3789 diff = total_count - dev_priv->ips.last_count1;
3790 }
3791
3792 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3793 if (cparams[i].i == dev_priv->ips.c_m &&
3794 cparams[i].t == dev_priv->ips.r_t) {
3795 m = cparams[i].m;
3796 c = cparams[i].c;
3797 break;
3798 }
3799 }
3800
3801 diff = div_u64(diff, diff1);
3802 ret = ((m * diff) + c);
3803 ret = div_u64(ret, 10);
3804
3805 dev_priv->ips.last_count1 = total_count;
3806 dev_priv->ips.last_time1 = now;
3807
3808 dev_priv->ips.chipset_power = ret;
3809
3810 return ret;
3811 }
3812
3813 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3814 {
3815 unsigned long val;
3816
3817 if (dev_priv->info->gen != 5)
3818 return 0;
3819
3820 spin_lock_irq(&mchdev_lock);
3821
3822 val = __i915_chipset_val(dev_priv);
3823
3824 spin_unlock_irq(&mchdev_lock);
3825
3826 return val;
3827 }
3828
3829 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3830 {
3831 unsigned long m, x, b;
3832 u32 tsfs;
3833
3834 tsfs = I915_READ(TSFS);
3835
3836 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3837 x = I915_READ8(TR1);
3838
3839 b = tsfs & TSFS_INTR_MASK;
3840
3841 return ((m * x) / 127) - b;
3842 }
3843
3844 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3845 {
3846 static const struct v_table {
3847 u16 vd; /* in .1 mil */
3848 u16 vm; /* in .1 mil */
3849 } v_table[] = {
3850 { 0, 0, },
3851 { 375, 0, },
3852 { 500, 0, },
3853 { 625, 0, },
3854 { 750, 0, },
3855 { 875, 0, },
3856 { 1000, 0, },
3857 { 1125, 0, },
3858 { 4125, 3000, },
3859 { 4125, 3000, },
3860 { 4125, 3000, },
3861 { 4125, 3000, },
3862 { 4125, 3000, },
3863 { 4125, 3000, },
3864 { 4125, 3000, },
3865 { 4125, 3000, },
3866 { 4125, 3000, },
3867 { 4125, 3000, },
3868 { 4125, 3000, },
3869 { 4125, 3000, },
3870 { 4125, 3000, },
3871 { 4125, 3000, },
3872 { 4125, 3000, },
3873 { 4125, 3000, },
3874 { 4125, 3000, },
3875 { 4125, 3000, },
3876 { 4125, 3000, },
3877 { 4125, 3000, },
3878 { 4125, 3000, },
3879 { 4125, 3000, },
3880 { 4125, 3000, },
3881 { 4125, 3000, },
3882 { 4250, 3125, },
3883 { 4375, 3250, },
3884 { 4500, 3375, },
3885 { 4625, 3500, },
3886 { 4750, 3625, },
3887 { 4875, 3750, },
3888 { 5000, 3875, },
3889 { 5125, 4000, },
3890 { 5250, 4125, },
3891 { 5375, 4250, },
3892 { 5500, 4375, },
3893 { 5625, 4500, },
3894 { 5750, 4625, },
3895 { 5875, 4750, },
3896 { 6000, 4875, },
3897 { 6125, 5000, },
3898 { 6250, 5125, },
3899 { 6375, 5250, },
3900 { 6500, 5375, },
3901 { 6625, 5500, },
3902 { 6750, 5625, },
3903 { 6875, 5750, },
3904 { 7000, 5875, },
3905 { 7125, 6000, },
3906 { 7250, 6125, },
3907 { 7375, 6250, },
3908 { 7500, 6375, },
3909 { 7625, 6500, },
3910 { 7750, 6625, },
3911 { 7875, 6750, },
3912 { 8000, 6875, },
3913 { 8125, 7000, },
3914 { 8250, 7125, },
3915 { 8375, 7250, },
3916 { 8500, 7375, },
3917 { 8625, 7500, },
3918 { 8750, 7625, },
3919 { 8875, 7750, },
3920 { 9000, 7875, },
3921 { 9125, 8000, },
3922 { 9250, 8125, },
3923 { 9375, 8250, },
3924 { 9500, 8375, },
3925 { 9625, 8500, },
3926 { 9750, 8625, },
3927 { 9875, 8750, },
3928 { 10000, 8875, },
3929 { 10125, 9000, },
3930 { 10250, 9125, },
3931 { 10375, 9250, },
3932 { 10500, 9375, },
3933 { 10625, 9500, },
3934 { 10750, 9625, },
3935 { 10875, 9750, },
3936 { 11000, 9875, },
3937 { 11125, 10000, },
3938 { 11250, 10125, },
3939 { 11375, 10250, },
3940 { 11500, 10375, },
3941 { 11625, 10500, },
3942 { 11750, 10625, },
3943 { 11875, 10750, },
3944 { 12000, 10875, },
3945 { 12125, 11000, },
3946 { 12250, 11125, },
3947 { 12375, 11250, },
3948 { 12500, 11375, },
3949 { 12625, 11500, },
3950 { 12750, 11625, },
3951 { 12875, 11750, },
3952 { 13000, 11875, },
3953 { 13125, 12000, },
3954 { 13250, 12125, },
3955 { 13375, 12250, },
3956 { 13500, 12375, },
3957 { 13625, 12500, },
3958 { 13750, 12625, },
3959 { 13875, 12750, },
3960 { 14000, 12875, },
3961 { 14125, 13000, },
3962 { 14250, 13125, },
3963 { 14375, 13250, },
3964 { 14500, 13375, },
3965 { 14625, 13500, },
3966 { 14750, 13625, },
3967 { 14875, 13750, },
3968 { 15000, 13875, },
3969 { 15125, 14000, },
3970 { 15250, 14125, },
3971 { 15375, 14250, },
3972 { 15500, 14375, },
3973 { 15625, 14500, },
3974 { 15750, 14625, },
3975 { 15875, 14750, },
3976 { 16000, 14875, },
3977 { 16125, 15000, },
3978 };
3979 if (dev_priv->info->is_mobile)
3980 return v_table[pxvid].vm;
3981 else
3982 return v_table[pxvid].vd;
3983 }
3984
3985 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3986 {
3987 struct timespec now, diff1;
3988 u64 diff;
3989 unsigned long diffms;
3990 u32 count;
3991
3992 assert_spin_locked(&mchdev_lock);
3993
3994 getrawmonotonic(&now);
3995 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3996
3997 /* Don't divide by 0 */
3998 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3999 if (!diffms)
4000 return;
4001
4002 count = I915_READ(GFXEC);
4003
4004 if (count < dev_priv->ips.last_count2) {
4005 diff = ~0UL - dev_priv->ips.last_count2;
4006 diff += count;
4007 } else {
4008 diff = count - dev_priv->ips.last_count2;
4009 }
4010
4011 dev_priv->ips.last_count2 = count;
4012 dev_priv->ips.last_time2 = now;
4013
4014 /* More magic constants... */
4015 diff = diff * 1181;
4016 diff = div_u64(diff, diffms * 10);
4017 dev_priv->ips.gfx_power = diff;
4018 }
4019
4020 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4021 {
4022 if (dev_priv->info->gen != 5)
4023 return;
4024
4025 spin_lock_irq(&mchdev_lock);
4026
4027 __i915_update_gfx_val(dev_priv);
4028
4029 spin_unlock_irq(&mchdev_lock);
4030 }
4031
4032 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4033 {
4034 unsigned long t, corr, state1, corr2, state2;
4035 u32 pxvid, ext_v;
4036
4037 assert_spin_locked(&mchdev_lock);
4038
4039 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4040 pxvid = (pxvid >> 24) & 0x7f;
4041 ext_v = pvid_to_extvid(dev_priv, pxvid);
4042
4043 state1 = ext_v;
4044
4045 t = i915_mch_val(dev_priv);
4046
4047 /* Revel in the empirically derived constants */
4048
4049 /* Correction factor in 1/100000 units */
4050 if (t > 80)
4051 corr = ((t * 2349) + 135940);
4052 else if (t >= 50)
4053 corr = ((t * 964) + 29317);
4054 else /* < 50 */
4055 corr = ((t * 301) + 1004);
4056
4057 corr = corr * ((150142 * state1) / 10000 - 78642);
4058 corr /= 100000;
4059 corr2 = (corr * dev_priv->ips.corr);
4060
4061 state2 = (corr2 * state1) / 10000;
4062 state2 /= 100; /* convert to mW */
4063
4064 __i915_update_gfx_val(dev_priv);
4065
4066 return dev_priv->ips.gfx_power + state2;
4067 }
4068
4069 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4070 {
4071 unsigned long val;
4072
4073 if (dev_priv->info->gen != 5)
4074 return 0;
4075
4076 spin_lock_irq(&mchdev_lock);
4077
4078 val = __i915_gfx_val(dev_priv);
4079
4080 spin_unlock_irq(&mchdev_lock);
4081
4082 return val;
4083 }
4084
4085 /**
4086 * i915_read_mch_val - return value for IPS use
4087 *
4088 * Calculate and return a value for the IPS driver to use when deciding whether
4089 * we have thermal and power headroom to increase CPU or GPU power budget.
4090 */
4091 unsigned long i915_read_mch_val(void)
4092 {
4093 struct drm_i915_private *dev_priv;
4094 unsigned long chipset_val, graphics_val, ret = 0;
4095
4096 spin_lock_irq(&mchdev_lock);
4097 if (!i915_mch_dev)
4098 goto out_unlock;
4099 dev_priv = i915_mch_dev;
4100
4101 chipset_val = __i915_chipset_val(dev_priv);
4102 graphics_val = __i915_gfx_val(dev_priv);
4103
4104 ret = chipset_val + graphics_val;
4105
4106 out_unlock:
4107 spin_unlock_irq(&mchdev_lock);
4108
4109 return ret;
4110 }
4111 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4112
4113 /**
4114 * i915_gpu_raise - raise GPU frequency limit
4115 *
4116 * Raise the limit; IPS indicates we have thermal headroom.
4117 */
4118 bool i915_gpu_raise(void)
4119 {
4120 struct drm_i915_private *dev_priv;
4121 bool ret = true;
4122
4123 spin_lock_irq(&mchdev_lock);
4124 if (!i915_mch_dev) {
4125 ret = false;
4126 goto out_unlock;
4127 }
4128 dev_priv = i915_mch_dev;
4129
4130 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4131 dev_priv->ips.max_delay--;
4132
4133 out_unlock:
4134 spin_unlock_irq(&mchdev_lock);
4135
4136 return ret;
4137 }
4138 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4139
4140 /**
4141 * i915_gpu_lower - lower GPU frequency limit
4142 *
4143 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4144 * frequency maximum.
4145 */
4146 bool i915_gpu_lower(void)
4147 {
4148 struct drm_i915_private *dev_priv;
4149 bool ret = true;
4150
4151 spin_lock_irq(&mchdev_lock);
4152 if (!i915_mch_dev) {
4153 ret = false;
4154 goto out_unlock;
4155 }
4156 dev_priv = i915_mch_dev;
4157
4158 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4159 dev_priv->ips.max_delay++;
4160
4161 out_unlock:
4162 spin_unlock_irq(&mchdev_lock);
4163
4164 return ret;
4165 }
4166 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4167
4168 /**
4169 * i915_gpu_busy - indicate GPU business to IPS
4170 *
4171 * Tell the IPS driver whether or not the GPU is busy.
4172 */
4173 bool i915_gpu_busy(void)
4174 {
4175 struct drm_i915_private *dev_priv;
4176 struct intel_ring_buffer *ring;
4177 bool ret = false;
4178 int i;
4179
4180 spin_lock_irq(&mchdev_lock);
4181 if (!i915_mch_dev)
4182 goto out_unlock;
4183 dev_priv = i915_mch_dev;
4184
4185 for_each_ring(ring, dev_priv, i)
4186 ret |= !list_empty(&ring->request_list);
4187
4188 out_unlock:
4189 spin_unlock_irq(&mchdev_lock);
4190
4191 return ret;
4192 }
4193 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4194
4195 /**
4196 * i915_gpu_turbo_disable - disable graphics turbo
4197 *
4198 * Disable graphics turbo by resetting the max frequency and setting the
4199 * current frequency to the default.
4200 */
4201 bool i915_gpu_turbo_disable(void)
4202 {
4203 struct drm_i915_private *dev_priv;
4204 bool ret = true;
4205
4206 spin_lock_irq(&mchdev_lock);
4207 if (!i915_mch_dev) {
4208 ret = false;
4209 goto out_unlock;
4210 }
4211 dev_priv = i915_mch_dev;
4212
4213 dev_priv->ips.max_delay = dev_priv->ips.fstart;
4214
4215 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4216 ret = false;
4217
4218 out_unlock:
4219 spin_unlock_irq(&mchdev_lock);
4220
4221 return ret;
4222 }
4223 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4224
4225 /**
4226 * Tells the intel_ips driver that the i915 driver is now loaded, if
4227 * IPS got loaded first.
4228 *
4229 * This awkward dance is so that neither module has to depend on the
4230 * other in order for IPS to do the appropriate communication of
4231 * GPU turbo limits to i915.
4232 */
4233 static void
4234 ips_ping_for_i915_load(void)
4235 {
4236 void (*link)(void);
4237
4238 link = symbol_get(ips_link_to_i915_driver);
4239 if (link) {
4240 link();
4241 symbol_put(ips_link_to_i915_driver);
4242 }
4243 }
4244
4245 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4246 {
4247 /* We only register the i915 ips part with intel-ips once everything is
4248 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4249 spin_lock_irq(&mchdev_lock);
4250 i915_mch_dev = dev_priv;
4251 spin_unlock_irq(&mchdev_lock);
4252
4253 ips_ping_for_i915_load();
4254 }
4255
4256 void intel_gpu_ips_teardown(void)
4257 {
4258 spin_lock_irq(&mchdev_lock);
4259 i915_mch_dev = NULL;
4260 spin_unlock_irq(&mchdev_lock);
4261 }
4262 static void intel_init_emon(struct drm_device *dev)
4263 {
4264 struct drm_i915_private *dev_priv = dev->dev_private;
4265 u32 lcfuse;
4266 u8 pxw[16];
4267 int i;
4268
4269 /* Disable to program */
4270 I915_WRITE(ECR, 0);
4271 POSTING_READ(ECR);
4272
4273 /* Program energy weights for various events */
4274 I915_WRITE(SDEW, 0x15040d00);
4275 I915_WRITE(CSIEW0, 0x007f0000);
4276 I915_WRITE(CSIEW1, 0x1e220004);
4277 I915_WRITE(CSIEW2, 0x04000004);
4278
4279 for (i = 0; i < 5; i++)
4280 I915_WRITE(PEW + (i * 4), 0);
4281 for (i = 0; i < 3; i++)
4282 I915_WRITE(DEW + (i * 4), 0);
4283
4284 /* Program P-state weights to account for frequency power adjustment */
4285 for (i = 0; i < 16; i++) {
4286 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4287 unsigned long freq = intel_pxfreq(pxvidfreq);
4288 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4289 PXVFREQ_PX_SHIFT;
4290 unsigned long val;
4291
4292 val = vid * vid;
4293 val *= (freq / 1000);
4294 val *= 255;
4295 val /= (127*127*900);
4296 if (val > 0xff)
4297 DRM_ERROR("bad pxval: %ld\n", val);
4298 pxw[i] = val;
4299 }
4300 /* Render standby states get 0 weight */
4301 pxw[14] = 0;
4302 pxw[15] = 0;
4303
4304 for (i = 0; i < 4; i++) {
4305 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4306 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4307 I915_WRITE(PXW + (i * 4), val);
4308 }
4309
4310 /* Adjust magic regs to magic values (more experimental results) */
4311 I915_WRITE(OGW0, 0);
4312 I915_WRITE(OGW1, 0);
4313 I915_WRITE(EG0, 0x00007f00);
4314 I915_WRITE(EG1, 0x0000000e);
4315 I915_WRITE(EG2, 0x000e0000);
4316 I915_WRITE(EG3, 0x68000300);
4317 I915_WRITE(EG4, 0x42000000);
4318 I915_WRITE(EG5, 0x00140031);
4319 I915_WRITE(EG6, 0);
4320 I915_WRITE(EG7, 0);
4321
4322 for (i = 0; i < 8; i++)
4323 I915_WRITE(PXWL + (i * 4), 0);
4324
4325 /* Enable PMON + select events */
4326 I915_WRITE(ECR, 0x80000019);
4327
4328 lcfuse = I915_READ(LCFUSE02);
4329
4330 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4331 }
4332
4333 void intel_disable_gt_powersave(struct drm_device *dev)
4334 {
4335 struct drm_i915_private *dev_priv = dev->dev_private;
4336
4337 /* Interrupts should be disabled already to avoid re-arming. */
4338 WARN_ON(dev->irq_enabled);
4339
4340 if (IS_IRONLAKE_M(dev)) {
4341 ironlake_disable_drps(dev);
4342 ironlake_disable_rc6(dev);
4343 } else if (INTEL_INFO(dev)->gen >= 6) {
4344 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4345 cancel_work_sync(&dev_priv->rps.work);
4346 if (IS_VALLEYVIEW(dev))
4347 cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4348 mutex_lock(&dev_priv->rps.hw_lock);
4349 if (IS_VALLEYVIEW(dev))
4350 valleyview_disable_rps(dev);
4351 else
4352 gen6_disable_rps(dev);
4353 mutex_unlock(&dev_priv->rps.hw_lock);
4354 }
4355 }
4356
4357 static void intel_gen6_powersave_work(struct work_struct *work)
4358 {
4359 struct drm_i915_private *dev_priv =
4360 container_of(work, struct drm_i915_private,
4361 rps.delayed_resume_work.work);
4362 struct drm_device *dev = dev_priv->dev;
4363
4364 mutex_lock(&dev_priv->rps.hw_lock);
4365
4366 if (IS_VALLEYVIEW(dev)) {
4367 valleyview_enable_rps(dev);
4368 } else {
4369 gen6_enable_rps(dev);
4370 gen6_update_ring_freq(dev);
4371 }
4372 mutex_unlock(&dev_priv->rps.hw_lock);
4373 }
4374
4375 void intel_enable_gt_powersave(struct drm_device *dev)
4376 {
4377 struct drm_i915_private *dev_priv = dev->dev_private;
4378
4379 if (IS_IRONLAKE_M(dev)) {
4380 ironlake_enable_drps(dev);
4381 ironlake_enable_rc6(dev);
4382 intel_init_emon(dev);
4383 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4384 /*
4385 * PCU communication is slow and this doesn't need to be
4386 * done at any specific time, so do this out of our fast path
4387 * to make resume and init faster.
4388 */
4389 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4390 round_jiffies_up_relative(HZ));
4391 }
4392 }
4393
4394 static void ibx_init_clock_gating(struct drm_device *dev)
4395 {
4396 struct drm_i915_private *dev_priv = dev->dev_private;
4397
4398 /*
4399 * On Ibex Peak and Cougar Point, we need to disable clock
4400 * gating for the panel power sequencer or it will fail to
4401 * start up when no ports are active.
4402 */
4403 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4404 }
4405
4406 static void g4x_disable_trickle_feed(struct drm_device *dev)
4407 {
4408 struct drm_i915_private *dev_priv = dev->dev_private;
4409 int pipe;
4410
4411 for_each_pipe(pipe) {
4412 I915_WRITE(DSPCNTR(pipe),
4413 I915_READ(DSPCNTR(pipe)) |
4414 DISPPLANE_TRICKLE_FEED_DISABLE);
4415 intel_flush_display_plane(dev_priv, pipe);
4416 }
4417 }
4418
4419 static void ironlake_init_clock_gating(struct drm_device *dev)
4420 {
4421 struct drm_i915_private *dev_priv = dev->dev_private;
4422 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4423
4424 /* Required for FBC */
4425 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4426 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4427 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4428
4429 I915_WRITE(PCH_3DCGDIS0,
4430 MARIUNIT_CLOCK_GATE_DISABLE |
4431 SVSMUNIT_CLOCK_GATE_DISABLE);
4432 I915_WRITE(PCH_3DCGDIS1,
4433 VFMUNIT_CLOCK_GATE_DISABLE);
4434
4435 /*
4436 * According to the spec the following bits should be set in
4437 * order to enable memory self-refresh
4438 * The bit 22/21 of 0x42004
4439 * The bit 5 of 0x42020
4440 * The bit 15 of 0x45000
4441 */
4442 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4443 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4444 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4445 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4446 I915_WRITE(DISP_ARB_CTL,
4447 (I915_READ(DISP_ARB_CTL) |
4448 DISP_FBC_WM_DIS));
4449 I915_WRITE(WM3_LP_ILK, 0);
4450 I915_WRITE(WM2_LP_ILK, 0);
4451 I915_WRITE(WM1_LP_ILK, 0);
4452
4453 /*
4454 * Based on the document from hardware guys the following bits
4455 * should be set unconditionally in order to enable FBC.
4456 * The bit 22 of 0x42000
4457 * The bit 22 of 0x42004
4458 * The bit 7,8,9 of 0x42020.
4459 */
4460 if (IS_IRONLAKE_M(dev)) {
4461 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4462 I915_READ(ILK_DISPLAY_CHICKEN1) |
4463 ILK_FBCQ_DIS);
4464 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4465 I915_READ(ILK_DISPLAY_CHICKEN2) |
4466 ILK_DPARB_GATE);
4467 }
4468
4469 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4470
4471 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4472 I915_READ(ILK_DISPLAY_CHICKEN2) |
4473 ILK_ELPIN_409_SELECT);
4474 I915_WRITE(_3D_CHICKEN2,
4475 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4476 _3D_CHICKEN2_WM_READ_PIPELINED);
4477
4478 /* WaDisableRenderCachePipelinedFlush:ilk */
4479 I915_WRITE(CACHE_MODE_0,
4480 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4481
4482 g4x_disable_trickle_feed(dev);
4483
4484 ibx_init_clock_gating(dev);
4485 }
4486
4487 static void cpt_init_clock_gating(struct drm_device *dev)
4488 {
4489 struct drm_i915_private *dev_priv = dev->dev_private;
4490 int pipe;
4491 uint32_t val;
4492
4493 /*
4494 * On Ibex Peak and Cougar Point, we need to disable clock
4495 * gating for the panel power sequencer or it will fail to
4496 * start up when no ports are active.
4497 */
4498 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4499 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4500 DPLS_EDP_PPS_FIX_DIS);
4501 /* The below fixes the weird display corruption, a few pixels shifted
4502 * downward, on (only) LVDS of some HP laptops with IVY.
4503 */
4504 for_each_pipe(pipe) {
4505 val = I915_READ(TRANS_CHICKEN2(pipe));
4506 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4507 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4508 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4509 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4510 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4511 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4512 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4513 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4514 }
4515 /* WADP0ClockGatingDisable */
4516 for_each_pipe(pipe) {
4517 I915_WRITE(TRANS_CHICKEN1(pipe),
4518 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4519 }
4520 }
4521
4522 static void gen6_check_mch_setup(struct drm_device *dev)
4523 {
4524 struct drm_i915_private *dev_priv = dev->dev_private;
4525 uint32_t tmp;
4526
4527 tmp = I915_READ(MCH_SSKPD);
4528 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4529 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4530 DRM_INFO("This can cause pipe underruns and display issues.\n");
4531 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4532 }
4533 }
4534
4535 static void gen6_init_clock_gating(struct drm_device *dev)
4536 {
4537 struct drm_i915_private *dev_priv = dev->dev_private;
4538 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4539
4540 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4541
4542 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4543 I915_READ(ILK_DISPLAY_CHICKEN2) |
4544 ILK_ELPIN_409_SELECT);
4545
4546 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4547 I915_WRITE(_3D_CHICKEN,
4548 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4549
4550 /* WaSetupGtModeTdRowDispatch:snb */
4551 if (IS_SNB_GT1(dev))
4552 I915_WRITE(GEN6_GT_MODE,
4553 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4554
4555 I915_WRITE(WM3_LP_ILK, 0);
4556 I915_WRITE(WM2_LP_ILK, 0);
4557 I915_WRITE(WM1_LP_ILK, 0);
4558
4559 I915_WRITE(CACHE_MODE_0,
4560 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4561
4562 I915_WRITE(GEN6_UCGCTL1,
4563 I915_READ(GEN6_UCGCTL1) |
4564 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4565 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4566
4567 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4568 * gating disable must be set. Failure to set it results in
4569 * flickering pixels due to Z write ordering failures after
4570 * some amount of runtime in the Mesa "fire" demo, and Unigine
4571 * Sanctuary and Tropics, and apparently anything else with
4572 * alpha test or pixel discard.
4573 *
4574 * According to the spec, bit 11 (RCCUNIT) must also be set,
4575 * but we didn't debug actual testcases to find it out.
4576 *
4577 * Also apply WaDisableVDSUnitClockGating:snb and
4578 * WaDisableRCPBUnitClockGating:snb.
4579 */
4580 I915_WRITE(GEN6_UCGCTL2,
4581 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4582 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4583 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4584
4585 /* Bspec says we need to always set all mask bits. */
4586 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4587 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4588
4589 /*
4590 * According to the spec the following bits should be
4591 * set in order to enable memory self-refresh and fbc:
4592 * The bit21 and bit22 of 0x42000
4593 * The bit21 and bit22 of 0x42004
4594 * The bit5 and bit7 of 0x42020
4595 * The bit14 of 0x70180
4596 * The bit14 of 0x71180
4597 */
4598 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4599 I915_READ(ILK_DISPLAY_CHICKEN1) |
4600 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4601 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4602 I915_READ(ILK_DISPLAY_CHICKEN2) |
4603 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4604 I915_WRITE(ILK_DSPCLK_GATE_D,
4605 I915_READ(ILK_DSPCLK_GATE_D) |
4606 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4607 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4608
4609 /* WaMbcDriverBootEnable:snb */
4610 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4611 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4612
4613 g4x_disable_trickle_feed(dev);
4614
4615 /* The default value should be 0x200 according to docs, but the two
4616 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4617 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4618 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4619
4620 cpt_init_clock_gating(dev);
4621
4622 gen6_check_mch_setup(dev);
4623 }
4624
4625 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4626 {
4627 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4628
4629 reg &= ~GEN7_FF_SCHED_MASK;
4630 reg |= GEN7_FF_TS_SCHED_HW;
4631 reg |= GEN7_FF_VS_SCHED_HW;
4632 reg |= GEN7_FF_DS_SCHED_HW;
4633
4634 if (IS_HASWELL(dev_priv->dev))
4635 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4636
4637 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4638 }
4639
4640 static void lpt_init_clock_gating(struct drm_device *dev)
4641 {
4642 struct drm_i915_private *dev_priv = dev->dev_private;
4643
4644 /*
4645 * TODO: this bit should only be enabled when really needed, then
4646 * disabled when not needed anymore in order to save power.
4647 */
4648 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4649 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4650 I915_READ(SOUTH_DSPCLK_GATE_D) |
4651 PCH_LP_PARTITION_LEVEL_DISABLE);
4652
4653 /* WADPOClockGatingDisable:hsw */
4654 I915_WRITE(_TRANSA_CHICKEN1,
4655 I915_READ(_TRANSA_CHICKEN1) |
4656 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4657 }
4658
4659 static void lpt_suspend_hw(struct drm_device *dev)
4660 {
4661 struct drm_i915_private *dev_priv = dev->dev_private;
4662
4663 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4664 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4665
4666 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4667 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4668 }
4669 }
4670
4671 static void haswell_init_clock_gating(struct drm_device *dev)
4672 {
4673 struct drm_i915_private *dev_priv = dev->dev_private;
4674
4675 I915_WRITE(WM3_LP_ILK, 0);
4676 I915_WRITE(WM2_LP_ILK, 0);
4677 I915_WRITE(WM1_LP_ILK, 0);
4678
4679 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4680 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4681 */
4682 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4683
4684 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4685 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4686 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4687
4688 /* WaApplyL3ControlAndL3ChickenMode:hsw */
4689 I915_WRITE(GEN7_L3CNTLREG1,
4690 GEN7_WA_FOR_GEN7_L3_CONTROL);
4691 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4692 GEN7_WA_L3_CHICKEN_MODE);
4693
4694 /* This is required by WaCatErrorRejectionIssue:hsw */
4695 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4696 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4697 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4698
4699 g4x_disable_trickle_feed(dev);
4700
4701 /* WaVSRefCountFullforceMissDisable:hsw */
4702 gen7_setup_fixed_func_scheduler(dev_priv);
4703
4704 /* WaDisable4x2SubspanOptimization:hsw */
4705 I915_WRITE(CACHE_MODE_1,
4706 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4707
4708 /* WaMbcDriverBootEnable:hsw */
4709 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4710 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4711
4712 /* WaSwitchSolVfFArbitrationPriority:hsw */
4713 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4714
4715 /* WaRsPkgCStateDisplayPMReq:hsw */
4716 I915_WRITE(CHICKEN_PAR1_1,
4717 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4718
4719 lpt_init_clock_gating(dev);
4720 }
4721
4722 static void ivybridge_init_clock_gating(struct drm_device *dev)
4723 {
4724 struct drm_i915_private *dev_priv = dev->dev_private;
4725 uint32_t snpcr;
4726
4727 I915_WRITE(WM3_LP_ILK, 0);
4728 I915_WRITE(WM2_LP_ILK, 0);
4729 I915_WRITE(WM1_LP_ILK, 0);
4730
4731 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4732
4733 /* WaDisableEarlyCull:ivb */
4734 I915_WRITE(_3D_CHICKEN3,
4735 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4736
4737 /* WaDisableBackToBackFlipFix:ivb */
4738 I915_WRITE(IVB_CHICKEN3,
4739 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4740 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4741
4742 /* WaDisablePSDDualDispatchEnable:ivb */
4743 if (IS_IVB_GT1(dev))
4744 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4745 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4746 else
4747 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4748 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4749
4750 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4751 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4752 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4753
4754 /* WaApplyL3ControlAndL3ChickenMode:ivb */
4755 I915_WRITE(GEN7_L3CNTLREG1,
4756 GEN7_WA_FOR_GEN7_L3_CONTROL);
4757 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4758 GEN7_WA_L3_CHICKEN_MODE);
4759 if (IS_IVB_GT1(dev))
4760 I915_WRITE(GEN7_ROW_CHICKEN2,
4761 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4762 else
4763 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4764 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4765
4766
4767 /* WaForceL3Serialization:ivb */
4768 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4769 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4770
4771 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4772 * gating disable must be set. Failure to set it results in
4773 * flickering pixels due to Z write ordering failures after
4774 * some amount of runtime in the Mesa "fire" demo, and Unigine
4775 * Sanctuary and Tropics, and apparently anything else with
4776 * alpha test or pixel discard.
4777 *
4778 * According to the spec, bit 11 (RCCUNIT) must also be set,
4779 * but we didn't debug actual testcases to find it out.
4780 *
4781 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4782 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4783 */
4784 I915_WRITE(GEN6_UCGCTL2,
4785 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4786 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4787
4788 /* This is required by WaCatErrorRejectionIssue:ivb */
4789 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4790 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4791 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4792
4793 g4x_disable_trickle_feed(dev);
4794
4795 /* WaMbcDriverBootEnable:ivb */
4796 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4797 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4798
4799 /* WaVSRefCountFullforceMissDisable:ivb */
4800 gen7_setup_fixed_func_scheduler(dev_priv);
4801
4802 /* WaDisable4x2SubspanOptimization:ivb */
4803 I915_WRITE(CACHE_MODE_1,
4804 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4805
4806 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4807 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4808 snpcr |= GEN6_MBC_SNPCR_MED;
4809 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4810
4811 if (!HAS_PCH_NOP(dev))
4812 cpt_init_clock_gating(dev);
4813
4814 gen6_check_mch_setup(dev);
4815 }
4816
4817 static void valleyview_init_clock_gating(struct drm_device *dev)
4818 {
4819 struct drm_i915_private *dev_priv = dev->dev_private;
4820
4821 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
4822
4823 /* WaDisableEarlyCull:vlv */
4824 I915_WRITE(_3D_CHICKEN3,
4825 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4826
4827 /* WaDisableBackToBackFlipFix:vlv */
4828 I915_WRITE(IVB_CHICKEN3,
4829 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4830 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4831
4832 /* WaDisablePSDDualDispatchEnable:vlv */
4833 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4834 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4835 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4836
4837 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4838 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4839 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4840
4841 /* WaApplyL3ControlAndL3ChickenMode:vlv */
4842 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4843 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4844
4845 /* WaForceL3Serialization:vlv */
4846 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4847 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4848
4849 /* WaDisableDopClockGating:vlv */
4850 I915_WRITE(GEN7_ROW_CHICKEN2,
4851 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4852
4853 /* This is required by WaCatErrorRejectionIssue:vlv */
4854 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4855 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4856 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4857
4858 /* WaMbcDriverBootEnable:vlv */
4859 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4860 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4861
4862
4863 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4864 * gating disable must be set. Failure to set it results in
4865 * flickering pixels due to Z write ordering failures after
4866 * some amount of runtime in the Mesa "fire" demo, and Unigine
4867 * Sanctuary and Tropics, and apparently anything else with
4868 * alpha test or pixel discard.
4869 *
4870 * According to the spec, bit 11 (RCCUNIT) must also be set,
4871 * but we didn't debug actual testcases to find it out.
4872 *
4873 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4874 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4875 *
4876 * Also apply WaDisableVDSUnitClockGating:vlv and
4877 * WaDisableRCPBUnitClockGating:vlv.
4878 */
4879 I915_WRITE(GEN6_UCGCTL2,
4880 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4881 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4882 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4883 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4884 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4885
4886 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4887
4888 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
4889
4890 I915_WRITE(CACHE_MODE_1,
4891 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4892
4893 /*
4894 * WaDisableVLVClockGating_VBIIssue:vlv
4895 * Disable clock gating on th GCFG unit to prevent a delay
4896 * in the reporting of vblank events.
4897 */
4898 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4899
4900 /* Conservative clock gating settings for now */
4901 I915_WRITE(0x9400, 0xffffffff);
4902 I915_WRITE(0x9404, 0xffffffff);
4903 I915_WRITE(0x9408, 0xffffffff);
4904 I915_WRITE(0x940c, 0xffffffff);
4905 I915_WRITE(0x9410, 0xffffffff);
4906 I915_WRITE(0x9414, 0xffffffff);
4907 I915_WRITE(0x9418, 0xffffffff);
4908 }
4909
4910 static void g4x_init_clock_gating(struct drm_device *dev)
4911 {
4912 struct drm_i915_private *dev_priv = dev->dev_private;
4913 uint32_t dspclk_gate;
4914
4915 I915_WRITE(RENCLK_GATE_D1, 0);
4916 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4917 GS_UNIT_CLOCK_GATE_DISABLE |
4918 CL_UNIT_CLOCK_GATE_DISABLE);
4919 I915_WRITE(RAMCLK_GATE_D, 0);
4920 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4921 OVRUNIT_CLOCK_GATE_DISABLE |
4922 OVCUNIT_CLOCK_GATE_DISABLE;
4923 if (IS_GM45(dev))
4924 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4925 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4926
4927 /* WaDisableRenderCachePipelinedFlush */
4928 I915_WRITE(CACHE_MODE_0,
4929 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4930
4931 g4x_disable_trickle_feed(dev);
4932 }
4933
4934 static void crestline_init_clock_gating(struct drm_device *dev)
4935 {
4936 struct drm_i915_private *dev_priv = dev->dev_private;
4937
4938 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4939 I915_WRITE(RENCLK_GATE_D2, 0);
4940 I915_WRITE(DSPCLK_GATE_D, 0);
4941 I915_WRITE(RAMCLK_GATE_D, 0);
4942 I915_WRITE16(DEUC, 0);
4943 I915_WRITE(MI_ARB_STATE,
4944 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4945 }
4946
4947 static void broadwater_init_clock_gating(struct drm_device *dev)
4948 {
4949 struct drm_i915_private *dev_priv = dev->dev_private;
4950
4951 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4952 I965_RCC_CLOCK_GATE_DISABLE |
4953 I965_RCPB_CLOCK_GATE_DISABLE |
4954 I965_ISC_CLOCK_GATE_DISABLE |
4955 I965_FBC_CLOCK_GATE_DISABLE);
4956 I915_WRITE(RENCLK_GATE_D2, 0);
4957 I915_WRITE(MI_ARB_STATE,
4958 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4959 }
4960
4961 static void gen3_init_clock_gating(struct drm_device *dev)
4962 {
4963 struct drm_i915_private *dev_priv = dev->dev_private;
4964 u32 dstate = I915_READ(D_STATE);
4965
4966 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4967 DSTATE_DOT_CLOCK_GATING;
4968 I915_WRITE(D_STATE, dstate);
4969
4970 if (IS_PINEVIEW(dev))
4971 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4972
4973 /* IIR "flip pending" means done if this bit is set */
4974 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4975 }
4976
4977 static void i85x_init_clock_gating(struct drm_device *dev)
4978 {
4979 struct drm_i915_private *dev_priv = dev->dev_private;
4980
4981 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4982 }
4983
4984 static void i830_init_clock_gating(struct drm_device *dev)
4985 {
4986 struct drm_i915_private *dev_priv = dev->dev_private;
4987
4988 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4989 }
4990
4991 void intel_init_clock_gating(struct drm_device *dev)
4992 {
4993 struct drm_i915_private *dev_priv = dev->dev_private;
4994
4995 dev_priv->display.init_clock_gating(dev);
4996 }
4997
4998 void intel_suspend_hw(struct drm_device *dev)
4999 {
5000 if (HAS_PCH_LPT(dev))
5001 lpt_suspend_hw(dev);
5002 }
5003
5004 /**
5005 * We should only use the power well if we explicitly asked the hardware to
5006 * enable it, so check if it's enabled and also check if we've requested it to
5007 * be enabled.
5008 */
5009 bool intel_display_power_enabled(struct drm_device *dev,
5010 enum intel_display_power_domain domain)
5011 {
5012 struct drm_i915_private *dev_priv = dev->dev_private;
5013
5014 if (!HAS_POWER_WELL(dev))
5015 return true;
5016
5017 switch (domain) {
5018 case POWER_DOMAIN_PIPE_A:
5019 case POWER_DOMAIN_TRANSCODER_EDP:
5020 return true;
5021 case POWER_DOMAIN_PIPE_B:
5022 case POWER_DOMAIN_PIPE_C:
5023 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5024 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5025 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5026 case POWER_DOMAIN_TRANSCODER_A:
5027 case POWER_DOMAIN_TRANSCODER_B:
5028 case POWER_DOMAIN_TRANSCODER_C:
5029 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5030 (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
5031 default:
5032 BUG();
5033 }
5034 }
5035
5036 static void __intel_set_power_well(struct drm_device *dev, bool enable)
5037 {
5038 struct drm_i915_private *dev_priv = dev->dev_private;
5039 bool is_enabled, enable_requested;
5040 uint32_t tmp;
5041
5042 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5043 is_enabled = tmp & HSW_PWR_WELL_STATE;
5044 enable_requested = tmp & HSW_PWR_WELL_ENABLE;
5045
5046 if (enable) {
5047 if (!enable_requested)
5048 I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
5049
5050 if (!is_enabled) {
5051 DRM_DEBUG_KMS("Enabling power well\n");
5052 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5053 HSW_PWR_WELL_STATE), 20))
5054 DRM_ERROR("Timeout enabling power well\n");
5055 }
5056 } else {
5057 if (enable_requested) {
5058 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5059 DRM_DEBUG_KMS("Requesting to disable the power well\n");
5060 }
5061 }
5062 }
5063
5064 static struct i915_power_well *hsw_pwr;
5065
5066 /* Display audio driver power well request */
5067 void i915_request_power_well(void)
5068 {
5069 if (WARN_ON(!hsw_pwr))
5070 return;
5071
5072 spin_lock_irq(&hsw_pwr->lock);
5073 if (!hsw_pwr->count++ &&
5074 !hsw_pwr->i915_request)
5075 __intel_set_power_well(hsw_pwr->device, true);
5076 spin_unlock_irq(&hsw_pwr->lock);
5077 }
5078 EXPORT_SYMBOL_GPL(i915_request_power_well);
5079
5080 /* Display audio driver power well release */
5081 void i915_release_power_well(void)
5082 {
5083 if (WARN_ON(!hsw_pwr))
5084 return;
5085
5086 spin_lock_irq(&hsw_pwr->lock);
5087 WARN_ON(!hsw_pwr->count);
5088 if (!--hsw_pwr->count &&
5089 !hsw_pwr->i915_request)
5090 __intel_set_power_well(hsw_pwr->device, false);
5091 spin_unlock_irq(&hsw_pwr->lock);
5092 }
5093 EXPORT_SYMBOL_GPL(i915_release_power_well);
5094
5095 int i915_init_power_well(struct drm_device *dev)
5096 {
5097 struct drm_i915_private *dev_priv = dev->dev_private;
5098
5099 hsw_pwr = &dev_priv->power_well;
5100
5101 hsw_pwr->device = dev;
5102 spin_lock_init(&hsw_pwr->lock);
5103 hsw_pwr->count = 0;
5104
5105 return 0;
5106 }
5107
5108 void i915_remove_power_well(struct drm_device *dev)
5109 {
5110 hsw_pwr = NULL;
5111 }
5112
5113 void intel_set_power_well(struct drm_device *dev, bool enable)
5114 {
5115 struct drm_i915_private *dev_priv = dev->dev_private;
5116 struct i915_power_well *power_well = &dev_priv->power_well;
5117
5118 if (!HAS_POWER_WELL(dev))
5119 return;
5120
5121 if (!i915_disable_power_well && !enable)
5122 return;
5123
5124 spin_lock_irq(&power_well->lock);
5125 power_well->i915_request = enable;
5126
5127 /* only reject "disable" power well request */
5128 if (power_well->count && !enable) {
5129 spin_unlock_irq(&power_well->lock);
5130 return;
5131 }
5132
5133 __intel_set_power_well(dev, enable);
5134 spin_unlock_irq(&power_well->lock);
5135 }
5136
5137 /*
5138 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5139 * when not needed anymore. We have 4 registers that can request the power well
5140 * to be enabled, and it will only be disabled if none of the registers is
5141 * requesting it to be enabled.
5142 */
5143 void intel_init_power_well(struct drm_device *dev)
5144 {
5145 struct drm_i915_private *dev_priv = dev->dev_private;
5146
5147 if (!HAS_POWER_WELL(dev))
5148 return;
5149
5150 /* For now, we need the power well to be always enabled. */
5151 intel_set_power_well(dev, true);
5152
5153 /* We're taking over the BIOS, so clear any requests made by it since
5154 * the driver is in charge now. */
5155 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
5156 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5157 }
5158
5159 /* Set up chip specific power management-related functions */
5160 void intel_init_pm(struct drm_device *dev)
5161 {
5162 struct drm_i915_private *dev_priv = dev->dev_private;
5163
5164 if (I915_HAS_FBC(dev)) {
5165 if (HAS_PCH_SPLIT(dev)) {
5166 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5167 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5168 dev_priv->display.enable_fbc =
5169 gen7_enable_fbc;
5170 else
5171 dev_priv->display.enable_fbc =
5172 ironlake_enable_fbc;
5173 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5174 } else if (IS_GM45(dev)) {
5175 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5176 dev_priv->display.enable_fbc = g4x_enable_fbc;
5177 dev_priv->display.disable_fbc = g4x_disable_fbc;
5178 } else if (IS_CRESTLINE(dev)) {
5179 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5180 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5181 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5182 }
5183 /* 855GM needs testing */
5184 }
5185
5186 /* For cxsr */
5187 if (IS_PINEVIEW(dev))
5188 i915_pineview_get_mem_freq(dev);
5189 else if (IS_GEN5(dev))
5190 i915_ironlake_get_mem_freq(dev);
5191
5192 /* For FIFO watermark updates */
5193 if (HAS_PCH_SPLIT(dev)) {
5194 if (IS_GEN5(dev)) {
5195 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5196 dev_priv->display.update_wm = ironlake_update_wm;
5197 else {
5198 DRM_DEBUG_KMS("Failed to get proper latency. "
5199 "Disable CxSR\n");
5200 dev_priv->display.update_wm = NULL;
5201 }
5202 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5203 } else if (IS_GEN6(dev)) {
5204 if (SNB_READ_WM0_LATENCY()) {
5205 dev_priv->display.update_wm = sandybridge_update_wm;
5206 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5207 } else {
5208 DRM_DEBUG_KMS("Failed to read display plane latency. "
5209 "Disable CxSR\n");
5210 dev_priv->display.update_wm = NULL;
5211 }
5212 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5213 } else if (IS_IVYBRIDGE(dev)) {
5214 if (SNB_READ_WM0_LATENCY()) {
5215 dev_priv->display.update_wm = ivybridge_update_wm;
5216 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5217 } else {
5218 DRM_DEBUG_KMS("Failed to read display plane latency. "
5219 "Disable CxSR\n");
5220 dev_priv->display.update_wm = NULL;
5221 }
5222 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5223 } else if (IS_HASWELL(dev)) {
5224 if (I915_READ64(MCH_SSKPD)) {
5225 dev_priv->display.update_wm = haswell_update_wm;
5226 dev_priv->display.update_sprite_wm =
5227 haswell_update_sprite_wm;
5228 } else {
5229 DRM_DEBUG_KMS("Failed to read display plane latency. "
5230 "Disable CxSR\n");
5231 dev_priv->display.update_wm = NULL;
5232 }
5233 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5234 } else
5235 dev_priv->display.update_wm = NULL;
5236 } else if (IS_VALLEYVIEW(dev)) {
5237 dev_priv->display.update_wm = valleyview_update_wm;
5238 dev_priv->display.init_clock_gating =
5239 valleyview_init_clock_gating;
5240 } else if (IS_PINEVIEW(dev)) {
5241 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5242 dev_priv->is_ddr3,
5243 dev_priv->fsb_freq,
5244 dev_priv->mem_freq)) {
5245 DRM_INFO("failed to find known CxSR latency "
5246 "(found ddr%s fsb freq %d, mem freq %d), "
5247 "disabling CxSR\n",
5248 (dev_priv->is_ddr3 == 1) ? "3" : "2",
5249 dev_priv->fsb_freq, dev_priv->mem_freq);
5250 /* Disable CxSR and never update its watermark again */
5251 pineview_disable_cxsr(dev);
5252 dev_priv->display.update_wm = NULL;
5253 } else
5254 dev_priv->display.update_wm = pineview_update_wm;
5255 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5256 } else if (IS_G4X(dev)) {
5257 dev_priv->display.update_wm = g4x_update_wm;
5258 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5259 } else if (IS_GEN4(dev)) {
5260 dev_priv->display.update_wm = i965_update_wm;
5261 if (IS_CRESTLINE(dev))
5262 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5263 else if (IS_BROADWATER(dev))
5264 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5265 } else if (IS_GEN3(dev)) {
5266 dev_priv->display.update_wm = i9xx_update_wm;
5267 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5268 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5269 } else if (IS_I865G(dev)) {
5270 dev_priv->display.update_wm = i830_update_wm;
5271 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5272 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5273 } else if (IS_I85X(dev)) {
5274 dev_priv->display.update_wm = i9xx_update_wm;
5275 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5276 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5277 } else {
5278 dev_priv->display.update_wm = i830_update_wm;
5279 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5280 if (IS_845G(dev))
5281 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5282 else
5283 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5284 }
5285 }
5286
5287 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
5288 {
5289 u32 gt_thread_status_mask;
5290
5291 if (IS_HASWELL(dev_priv->dev))
5292 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
5293 else
5294 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
5295
5296 /* w/a for a sporadic read returning 0 by waiting for the GT
5297 * thread to wake up.
5298 */
5299 if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
5300 DRM_ERROR("GT thread status wait timed out\n");
5301 }
5302
5303 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
5304 {
5305 I915_WRITE_NOTRACE(FORCEWAKE, 0);
5306 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
5307 }
5308
5309 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
5310 {
5311 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
5312 FORCEWAKE_ACK_TIMEOUT_MS))
5313 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5314
5315 I915_WRITE_NOTRACE(FORCEWAKE, 1);
5316 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
5317
5318 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
5319 FORCEWAKE_ACK_TIMEOUT_MS))
5320 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
5321
5322 /* WaRsForcewakeWaitTC0:snb */
5323 __gen6_gt_wait_for_thread_c0(dev_priv);
5324 }
5325
5326 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
5327 {
5328 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
5329 /* something from same cacheline, but !FORCEWAKE_MT */
5330 POSTING_READ(ECOBUS);
5331 }
5332
5333 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
5334 {
5335 u32 forcewake_ack;
5336
5337 if (IS_HASWELL(dev_priv->dev))
5338 forcewake_ack = FORCEWAKE_ACK_HSW;
5339 else
5340 forcewake_ack = FORCEWAKE_MT_ACK;
5341
5342 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
5343 FORCEWAKE_ACK_TIMEOUT_MS))
5344 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5345
5346 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5347 /* something from same cacheline, but !FORCEWAKE_MT */
5348 POSTING_READ(ECOBUS);
5349
5350 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
5351 FORCEWAKE_ACK_TIMEOUT_MS))
5352 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
5353
5354 /* WaRsForcewakeWaitTC0:ivb,hsw */
5355 __gen6_gt_wait_for_thread_c0(dev_priv);
5356 }
5357
5358 /*
5359 * Generally this is called implicitly by the register read function. However,
5360 * if some sequence requires the GT to not power down then this function should
5361 * be called at the beginning of the sequence followed by a call to
5362 * gen6_gt_force_wake_put() at the end of the sequence.
5363 */
5364 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
5365 {
5366 unsigned long irqflags;
5367
5368 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
5369 if (dev_priv->forcewake_count++ == 0)
5370 dev_priv->gt.force_wake_get(dev_priv);
5371 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
5372 }
5373
5374 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
5375 {
5376 u32 gtfifodbg;
5377 gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
5378 if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
5379 "MMIO read or write has been dropped %x\n", gtfifodbg))
5380 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
5381 }
5382
5383 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
5384 {
5385 I915_WRITE_NOTRACE(FORCEWAKE, 0);
5386 /* something from same cacheline, but !FORCEWAKE */
5387 POSTING_READ(ECOBUS);
5388 gen6_gt_check_fifodbg(dev_priv);
5389 }
5390
5391 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
5392 {
5393 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5394 /* something from same cacheline, but !FORCEWAKE_MT */
5395 POSTING_READ(ECOBUS);
5396 gen6_gt_check_fifodbg(dev_priv);
5397 }
5398
5399 /*
5400 * see gen6_gt_force_wake_get()
5401 */
5402 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
5403 {
5404 unsigned long irqflags;
5405
5406 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
5407 if (--dev_priv->forcewake_count == 0)
5408 dev_priv->gt.force_wake_put(dev_priv);
5409 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
5410 }
5411
5412 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
5413 {
5414 int ret = 0;
5415
5416 if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
5417 int loop = 500;
5418 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
5419 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
5420 udelay(10);
5421 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
5422 }
5423 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
5424 ++ret;
5425 dev_priv->gt_fifo_count = fifo;
5426 }
5427 dev_priv->gt_fifo_count--;
5428
5429 return ret;
5430 }
5431
5432 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
5433 {
5434 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
5435 /* something from same cacheline, but !FORCEWAKE_VLV */
5436 POSTING_READ(FORCEWAKE_ACK_VLV);
5437 }
5438
5439 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
5440 {
5441 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
5442 FORCEWAKE_ACK_TIMEOUT_MS))
5443 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5444
5445 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5446 I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
5447 _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5448
5449 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
5450 FORCEWAKE_ACK_TIMEOUT_MS))
5451 DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
5452
5453 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
5454 FORCEWAKE_KERNEL),
5455 FORCEWAKE_ACK_TIMEOUT_MS))
5456 DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
5457
5458 /* WaRsForcewakeWaitTC0:vlv */
5459 __gen6_gt_wait_for_thread_c0(dev_priv);
5460 }
5461
5462 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
5463 {
5464 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5465 I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
5466 _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5467 /* The below doubles as a POSTING_READ */
5468 gen6_gt_check_fifodbg(dev_priv);
5469 }
5470
5471 void intel_gt_reset(struct drm_device *dev)
5472 {
5473 struct drm_i915_private *dev_priv = dev->dev_private;
5474
5475 if (IS_VALLEYVIEW(dev)) {
5476 vlv_force_wake_reset(dev_priv);
5477 } else if (INTEL_INFO(dev)->gen >= 6) {
5478 __gen6_gt_force_wake_reset(dev_priv);
5479 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5480 __gen6_gt_force_wake_mt_reset(dev_priv);
5481 }
5482 }
5483
5484 void intel_gt_init(struct drm_device *dev)
5485 {
5486 struct drm_i915_private *dev_priv = dev->dev_private;
5487
5488 spin_lock_init(&dev_priv->gt_lock);
5489
5490 intel_gt_reset(dev);
5491
5492 if (IS_VALLEYVIEW(dev)) {
5493 dev_priv->gt.force_wake_get = vlv_force_wake_get;
5494 dev_priv->gt.force_wake_put = vlv_force_wake_put;
5495 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5496 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
5497 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
5498 } else if (IS_GEN6(dev)) {
5499 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
5500 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
5501 }
5502 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5503 intel_gen6_powersave_work);
5504 }
5505
5506 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5507 {
5508 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5509
5510 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5511 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5512 return -EAGAIN;
5513 }
5514
5515 I915_WRITE(GEN6_PCODE_DATA, *val);
5516 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5517
5518 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5519 500)) {
5520 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5521 return -ETIMEDOUT;
5522 }
5523
5524 *val = I915_READ(GEN6_PCODE_DATA);
5525 I915_WRITE(GEN6_PCODE_DATA, 0);
5526
5527 return 0;
5528 }
5529
5530 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5531 {
5532 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5533
5534 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5535 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5536 return -EAGAIN;
5537 }
5538
5539 I915_WRITE(GEN6_PCODE_DATA, val);
5540 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5541
5542 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5543 500)) {
5544 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5545 return -ETIMEDOUT;
5546 }
5547
5548 I915_WRITE(GEN6_PCODE_DATA, 0);
5549
5550 return 0;
5551 }
5552
5553 int vlv_gpu_freq(int ddr_freq, int val)
5554 {
5555 int mult, base;
5556
5557 switch (ddr_freq) {
5558 case 800:
5559 mult = 20;
5560 base = 120;
5561 break;
5562 case 1066:
5563 mult = 22;
5564 base = 133;
5565 break;
5566 case 1333:
5567 mult = 21;
5568 base = 125;
5569 break;
5570 default:
5571 return -1;
5572 }
5573
5574 return ((val - 0xbd) * mult) + base;
5575 }
5576
5577 int vlv_freq_opcode(int ddr_freq, int val)
5578 {
5579 int mult, base;
5580
5581 switch (ddr_freq) {
5582 case 800:
5583 mult = 20;
5584 base = 120;
5585 break;
5586 case 1066:
5587 mult = 22;
5588 base = 133;
5589 break;
5590 case 1333:
5591 mult = 21;
5592 base = 125;
5593 break;
5594 default:
5595 return -1;
5596 }
5597
5598 val /= mult;
5599 val -= base / mult;
5600 val += 0xbd;
5601
5602 if (val > 0xea)
5603 val = 0xea;
5604
5605 return val;
5606 }
5607
This page took 0.154957 seconds and 5 git commands to generate.