drm/i915: Make intel_crtc->config a pointer
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage. This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39 *
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
43 *
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
50 */
51 #define INTEL_RC6_ENABLE (1<<0)
52 #define INTEL_RC6p_ENABLE (1<<1)
53 #define INTEL_RC6pp_ENABLE (1<<2)
54
55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57 struct drm_i915_private *dev_priv = dev->dev_private;
58
59 /*
60 * WaDisableSDEUnitClockGating:skl
61 * This seems to be a pre-production w/a.
62 */
63 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
64 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
65
66 /*
67 * WaDisableDgMirrorFixInHalfSliceChicken5:skl
68 * This is a pre-production w/a.
69 */
70 I915_WRITE(GEN9_HALF_SLICE_CHICKEN5,
71 I915_READ(GEN9_HALF_SLICE_CHICKEN5) &
72 ~GEN9_DG_MIRROR_FIX_ENABLE);
73
74 /* Wa4x4STCOptimizationDisable:skl */
75 I915_WRITE(CACHE_MODE_1,
76 _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
77 }
78
79
80 static void i915_pineview_get_mem_freq(struct drm_device *dev)
81 {
82 struct drm_i915_private *dev_priv = dev->dev_private;
83 u32 tmp;
84
85 tmp = I915_READ(CLKCFG);
86
87 switch (tmp & CLKCFG_FSB_MASK) {
88 case CLKCFG_FSB_533:
89 dev_priv->fsb_freq = 533; /* 133*4 */
90 break;
91 case CLKCFG_FSB_800:
92 dev_priv->fsb_freq = 800; /* 200*4 */
93 break;
94 case CLKCFG_FSB_667:
95 dev_priv->fsb_freq = 667; /* 167*4 */
96 break;
97 case CLKCFG_FSB_400:
98 dev_priv->fsb_freq = 400; /* 100*4 */
99 break;
100 }
101
102 switch (tmp & CLKCFG_MEM_MASK) {
103 case CLKCFG_MEM_533:
104 dev_priv->mem_freq = 533;
105 break;
106 case CLKCFG_MEM_667:
107 dev_priv->mem_freq = 667;
108 break;
109 case CLKCFG_MEM_800:
110 dev_priv->mem_freq = 800;
111 break;
112 }
113
114 /* detect pineview DDR3 setting */
115 tmp = I915_READ(CSHRDDR3CTL);
116 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
117 }
118
119 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
120 {
121 struct drm_i915_private *dev_priv = dev->dev_private;
122 u16 ddrpll, csipll;
123
124 ddrpll = I915_READ16(DDRMPLL1);
125 csipll = I915_READ16(CSIPLL0);
126
127 switch (ddrpll & 0xff) {
128 case 0xc:
129 dev_priv->mem_freq = 800;
130 break;
131 case 0x10:
132 dev_priv->mem_freq = 1066;
133 break;
134 case 0x14:
135 dev_priv->mem_freq = 1333;
136 break;
137 case 0x18:
138 dev_priv->mem_freq = 1600;
139 break;
140 default:
141 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
142 ddrpll & 0xff);
143 dev_priv->mem_freq = 0;
144 break;
145 }
146
147 dev_priv->ips.r_t = dev_priv->mem_freq;
148
149 switch (csipll & 0x3ff) {
150 case 0x00c:
151 dev_priv->fsb_freq = 3200;
152 break;
153 case 0x00e:
154 dev_priv->fsb_freq = 3733;
155 break;
156 case 0x010:
157 dev_priv->fsb_freq = 4266;
158 break;
159 case 0x012:
160 dev_priv->fsb_freq = 4800;
161 break;
162 case 0x014:
163 dev_priv->fsb_freq = 5333;
164 break;
165 case 0x016:
166 dev_priv->fsb_freq = 5866;
167 break;
168 case 0x018:
169 dev_priv->fsb_freq = 6400;
170 break;
171 default:
172 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
173 csipll & 0x3ff);
174 dev_priv->fsb_freq = 0;
175 break;
176 }
177
178 if (dev_priv->fsb_freq == 3200) {
179 dev_priv->ips.c_m = 0;
180 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
181 dev_priv->ips.c_m = 1;
182 } else {
183 dev_priv->ips.c_m = 2;
184 }
185 }
186
187 static const struct cxsr_latency cxsr_latency_table[] = {
188 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
189 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
190 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
191 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
192 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
193
194 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
195 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
196 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
197 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
198 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
199
200 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
201 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
202 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
203 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
204 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
205
206 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
207 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
208 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
209 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
210 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
211
212 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
213 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
214 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
215 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
216 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
217
218 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
219 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
220 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
221 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
222 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
223 };
224
225 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
226 int is_ddr3,
227 int fsb,
228 int mem)
229 {
230 const struct cxsr_latency *latency;
231 int i;
232
233 if (fsb == 0 || mem == 0)
234 return NULL;
235
236 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
237 latency = &cxsr_latency_table[i];
238 if (is_desktop == latency->is_desktop &&
239 is_ddr3 == latency->is_ddr3 &&
240 fsb == latency->fsb_freq && mem == latency->mem_freq)
241 return latency;
242 }
243
244 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
245
246 return NULL;
247 }
248
249 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
250 {
251 struct drm_device *dev = dev_priv->dev;
252 u32 val;
253
254 if (IS_VALLEYVIEW(dev)) {
255 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
256 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
257 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
258 } else if (IS_PINEVIEW(dev)) {
259 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
260 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
261 I915_WRITE(DSPFW3, val);
262 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
263 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
264 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
265 I915_WRITE(FW_BLC_SELF, val);
266 } else if (IS_I915GM(dev)) {
267 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
268 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
269 I915_WRITE(INSTPM, val);
270 } else {
271 return;
272 }
273
274 DRM_DEBUG_KMS("memory self-refresh is %s\n",
275 enable ? "enabled" : "disabled");
276 }
277
278 /*
279 * Latency for FIFO fetches is dependent on several factors:
280 * - memory configuration (speed, channels)
281 * - chipset
282 * - current MCH state
283 * It can be fairly high in some situations, so here we assume a fairly
284 * pessimal value. It's a tradeoff between extra memory fetches (if we
285 * set this value too high, the FIFO will fetch frequently to stay full)
286 * and power consumption (set it too low to save power and we might see
287 * FIFO underruns and display "flicker").
288 *
289 * A value of 5us seems to be a good balance; safe for very low end
290 * platforms but not overly aggressive on lower latency configs.
291 */
292 static const int pessimal_latency_ns = 5000;
293
294 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
295 {
296 struct drm_i915_private *dev_priv = dev->dev_private;
297 uint32_t dsparb = I915_READ(DSPARB);
298 int size;
299
300 size = dsparb & 0x7f;
301 if (plane)
302 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
303
304 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
305 plane ? "B" : "A", size);
306
307 return size;
308 }
309
310 static int i830_get_fifo_size(struct drm_device *dev, int plane)
311 {
312 struct drm_i915_private *dev_priv = dev->dev_private;
313 uint32_t dsparb = I915_READ(DSPARB);
314 int size;
315
316 size = dsparb & 0x1ff;
317 if (plane)
318 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
319 size >>= 1; /* Convert to cachelines */
320
321 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
322 plane ? "B" : "A", size);
323
324 return size;
325 }
326
327 static int i845_get_fifo_size(struct drm_device *dev, int plane)
328 {
329 struct drm_i915_private *dev_priv = dev->dev_private;
330 uint32_t dsparb = I915_READ(DSPARB);
331 int size;
332
333 size = dsparb & 0x7f;
334 size >>= 2; /* Convert to cachelines */
335
336 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
337 plane ? "B" : "A",
338 size);
339
340 return size;
341 }
342
343 /* Pineview has different values for various configs */
344 static const struct intel_watermark_params pineview_display_wm = {
345 .fifo_size = PINEVIEW_DISPLAY_FIFO,
346 .max_wm = PINEVIEW_MAX_WM,
347 .default_wm = PINEVIEW_DFT_WM,
348 .guard_size = PINEVIEW_GUARD_WM,
349 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
350 };
351 static const struct intel_watermark_params pineview_display_hplloff_wm = {
352 .fifo_size = PINEVIEW_DISPLAY_FIFO,
353 .max_wm = PINEVIEW_MAX_WM,
354 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
355 .guard_size = PINEVIEW_GUARD_WM,
356 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
357 };
358 static const struct intel_watermark_params pineview_cursor_wm = {
359 .fifo_size = PINEVIEW_CURSOR_FIFO,
360 .max_wm = PINEVIEW_CURSOR_MAX_WM,
361 .default_wm = PINEVIEW_CURSOR_DFT_WM,
362 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
363 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
364 };
365 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
366 .fifo_size = PINEVIEW_CURSOR_FIFO,
367 .max_wm = PINEVIEW_CURSOR_MAX_WM,
368 .default_wm = PINEVIEW_CURSOR_DFT_WM,
369 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
370 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
371 };
372 static const struct intel_watermark_params g4x_wm_info = {
373 .fifo_size = G4X_FIFO_SIZE,
374 .max_wm = G4X_MAX_WM,
375 .default_wm = G4X_MAX_WM,
376 .guard_size = 2,
377 .cacheline_size = G4X_FIFO_LINE_SIZE,
378 };
379 static const struct intel_watermark_params g4x_cursor_wm_info = {
380 .fifo_size = I965_CURSOR_FIFO,
381 .max_wm = I965_CURSOR_MAX_WM,
382 .default_wm = I965_CURSOR_DFT_WM,
383 .guard_size = 2,
384 .cacheline_size = G4X_FIFO_LINE_SIZE,
385 };
386 static const struct intel_watermark_params valleyview_wm_info = {
387 .fifo_size = VALLEYVIEW_FIFO_SIZE,
388 .max_wm = VALLEYVIEW_MAX_WM,
389 .default_wm = VALLEYVIEW_MAX_WM,
390 .guard_size = 2,
391 .cacheline_size = G4X_FIFO_LINE_SIZE,
392 };
393 static const struct intel_watermark_params valleyview_cursor_wm_info = {
394 .fifo_size = I965_CURSOR_FIFO,
395 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
396 .default_wm = I965_CURSOR_DFT_WM,
397 .guard_size = 2,
398 .cacheline_size = G4X_FIFO_LINE_SIZE,
399 };
400 static const struct intel_watermark_params i965_cursor_wm_info = {
401 .fifo_size = I965_CURSOR_FIFO,
402 .max_wm = I965_CURSOR_MAX_WM,
403 .default_wm = I965_CURSOR_DFT_WM,
404 .guard_size = 2,
405 .cacheline_size = I915_FIFO_LINE_SIZE,
406 };
407 static const struct intel_watermark_params i945_wm_info = {
408 .fifo_size = I945_FIFO_SIZE,
409 .max_wm = I915_MAX_WM,
410 .default_wm = 1,
411 .guard_size = 2,
412 .cacheline_size = I915_FIFO_LINE_SIZE,
413 };
414 static const struct intel_watermark_params i915_wm_info = {
415 .fifo_size = I915_FIFO_SIZE,
416 .max_wm = I915_MAX_WM,
417 .default_wm = 1,
418 .guard_size = 2,
419 .cacheline_size = I915_FIFO_LINE_SIZE,
420 };
421 static const struct intel_watermark_params i830_a_wm_info = {
422 .fifo_size = I855GM_FIFO_SIZE,
423 .max_wm = I915_MAX_WM,
424 .default_wm = 1,
425 .guard_size = 2,
426 .cacheline_size = I830_FIFO_LINE_SIZE,
427 };
428 static const struct intel_watermark_params i830_bc_wm_info = {
429 .fifo_size = I855GM_FIFO_SIZE,
430 .max_wm = I915_MAX_WM/2,
431 .default_wm = 1,
432 .guard_size = 2,
433 .cacheline_size = I830_FIFO_LINE_SIZE,
434 };
435 static const struct intel_watermark_params i845_wm_info = {
436 .fifo_size = I830_FIFO_SIZE,
437 .max_wm = I915_MAX_WM,
438 .default_wm = 1,
439 .guard_size = 2,
440 .cacheline_size = I830_FIFO_LINE_SIZE,
441 };
442
443 /**
444 * intel_calculate_wm - calculate watermark level
445 * @clock_in_khz: pixel clock
446 * @wm: chip FIFO params
447 * @pixel_size: display pixel size
448 * @latency_ns: memory latency for the platform
449 *
450 * Calculate the watermark level (the level at which the display plane will
451 * start fetching from memory again). Each chip has a different display
452 * FIFO size and allocation, so the caller needs to figure that out and pass
453 * in the correct intel_watermark_params structure.
454 *
455 * As the pixel clock runs, the FIFO will be drained at a rate that depends
456 * on the pixel size. When it reaches the watermark level, it'll start
457 * fetching FIFO line sized based chunks from memory until the FIFO fills
458 * past the watermark point. If the FIFO drains completely, a FIFO underrun
459 * will occur, and a display engine hang could result.
460 */
461 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
462 const struct intel_watermark_params *wm,
463 int fifo_size,
464 int pixel_size,
465 unsigned long latency_ns)
466 {
467 long entries_required, wm_size;
468
469 /*
470 * Note: we need to make sure we don't overflow for various clock &
471 * latency values.
472 * clocks go from a few thousand to several hundred thousand.
473 * latency is usually a few thousand
474 */
475 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
476 1000;
477 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
478
479 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
480
481 wm_size = fifo_size - (entries_required + wm->guard_size);
482
483 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
484
485 /* Don't promote wm_size to unsigned... */
486 if (wm_size > (long)wm->max_wm)
487 wm_size = wm->max_wm;
488 if (wm_size <= 0)
489 wm_size = wm->default_wm;
490
491 /*
492 * Bspec seems to indicate that the value shouldn't be lower than
493 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
494 * Lets go for 8 which is the burst size since certain platforms
495 * already use a hardcoded 8 (which is what the spec says should be
496 * done).
497 */
498 if (wm_size <= 8)
499 wm_size = 8;
500
501 return wm_size;
502 }
503
504 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
505 {
506 struct drm_crtc *crtc, *enabled = NULL;
507
508 for_each_crtc(dev, crtc) {
509 if (intel_crtc_active(crtc)) {
510 if (enabled)
511 return NULL;
512 enabled = crtc;
513 }
514 }
515
516 return enabled;
517 }
518
519 static void pineview_update_wm(struct drm_crtc *unused_crtc)
520 {
521 struct drm_device *dev = unused_crtc->dev;
522 struct drm_i915_private *dev_priv = dev->dev_private;
523 struct drm_crtc *crtc;
524 const struct cxsr_latency *latency;
525 u32 reg;
526 unsigned long wm;
527
528 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
529 dev_priv->fsb_freq, dev_priv->mem_freq);
530 if (!latency) {
531 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
532 intel_set_memory_cxsr(dev_priv, false);
533 return;
534 }
535
536 crtc = single_enabled_crtc(dev);
537 if (crtc) {
538 const struct drm_display_mode *adjusted_mode;
539 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
540 int clock;
541
542 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
543 clock = adjusted_mode->crtc_clock;
544
545 /* Display SR */
546 wm = intel_calculate_wm(clock, &pineview_display_wm,
547 pineview_display_wm.fifo_size,
548 pixel_size, latency->display_sr);
549 reg = I915_READ(DSPFW1);
550 reg &= ~DSPFW_SR_MASK;
551 reg |= wm << DSPFW_SR_SHIFT;
552 I915_WRITE(DSPFW1, reg);
553 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
554
555 /* cursor SR */
556 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
557 pineview_display_wm.fifo_size,
558 pixel_size, latency->cursor_sr);
559 reg = I915_READ(DSPFW3);
560 reg &= ~DSPFW_CURSOR_SR_MASK;
561 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
562 I915_WRITE(DSPFW3, reg);
563
564 /* Display HPLL off SR */
565 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
566 pineview_display_hplloff_wm.fifo_size,
567 pixel_size, latency->display_hpll_disable);
568 reg = I915_READ(DSPFW3);
569 reg &= ~DSPFW_HPLL_SR_MASK;
570 reg |= wm & DSPFW_HPLL_SR_MASK;
571 I915_WRITE(DSPFW3, reg);
572
573 /* cursor HPLL off SR */
574 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
575 pineview_display_hplloff_wm.fifo_size,
576 pixel_size, latency->cursor_hpll_disable);
577 reg = I915_READ(DSPFW3);
578 reg &= ~DSPFW_HPLL_CURSOR_MASK;
579 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
580 I915_WRITE(DSPFW3, reg);
581 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
582
583 intel_set_memory_cxsr(dev_priv, true);
584 } else {
585 intel_set_memory_cxsr(dev_priv, false);
586 }
587 }
588
589 static bool g4x_compute_wm0(struct drm_device *dev,
590 int plane,
591 const struct intel_watermark_params *display,
592 int display_latency_ns,
593 const struct intel_watermark_params *cursor,
594 int cursor_latency_ns,
595 int *plane_wm,
596 int *cursor_wm)
597 {
598 struct drm_crtc *crtc;
599 const struct drm_display_mode *adjusted_mode;
600 int htotal, hdisplay, clock, pixel_size;
601 int line_time_us, line_count;
602 int entries, tlb_miss;
603
604 crtc = intel_get_crtc_for_plane(dev, plane);
605 if (!intel_crtc_active(crtc)) {
606 *cursor_wm = cursor->guard_size;
607 *plane_wm = display->guard_size;
608 return false;
609 }
610
611 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
612 clock = adjusted_mode->crtc_clock;
613 htotal = adjusted_mode->crtc_htotal;
614 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
615 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
616
617 /* Use the small buffer method to calculate plane watermark */
618 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
619 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
620 if (tlb_miss > 0)
621 entries += tlb_miss;
622 entries = DIV_ROUND_UP(entries, display->cacheline_size);
623 *plane_wm = entries + display->guard_size;
624 if (*plane_wm > (int)display->max_wm)
625 *plane_wm = display->max_wm;
626
627 /* Use the large buffer method to calculate cursor watermark */
628 line_time_us = max(htotal * 1000 / clock, 1);
629 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
630 entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
631 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
632 if (tlb_miss > 0)
633 entries += tlb_miss;
634 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
635 *cursor_wm = entries + cursor->guard_size;
636 if (*cursor_wm > (int)cursor->max_wm)
637 *cursor_wm = (int)cursor->max_wm;
638
639 return true;
640 }
641
642 /*
643 * Check the wm result.
644 *
645 * If any calculated watermark values is larger than the maximum value that
646 * can be programmed into the associated watermark register, that watermark
647 * must be disabled.
648 */
649 static bool g4x_check_srwm(struct drm_device *dev,
650 int display_wm, int cursor_wm,
651 const struct intel_watermark_params *display,
652 const struct intel_watermark_params *cursor)
653 {
654 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
655 display_wm, cursor_wm);
656
657 if (display_wm > display->max_wm) {
658 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
659 display_wm, display->max_wm);
660 return false;
661 }
662
663 if (cursor_wm > cursor->max_wm) {
664 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
665 cursor_wm, cursor->max_wm);
666 return false;
667 }
668
669 if (!(display_wm || cursor_wm)) {
670 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
671 return false;
672 }
673
674 return true;
675 }
676
677 static bool g4x_compute_srwm(struct drm_device *dev,
678 int plane,
679 int latency_ns,
680 const struct intel_watermark_params *display,
681 const struct intel_watermark_params *cursor,
682 int *display_wm, int *cursor_wm)
683 {
684 struct drm_crtc *crtc;
685 const struct drm_display_mode *adjusted_mode;
686 int hdisplay, htotal, pixel_size, clock;
687 unsigned long line_time_us;
688 int line_count, line_size;
689 int small, large;
690 int entries;
691
692 if (!latency_ns) {
693 *display_wm = *cursor_wm = 0;
694 return false;
695 }
696
697 crtc = intel_get_crtc_for_plane(dev, plane);
698 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
699 clock = adjusted_mode->crtc_clock;
700 htotal = adjusted_mode->crtc_htotal;
701 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
702 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
703
704 line_time_us = max(htotal * 1000 / clock, 1);
705 line_count = (latency_ns / line_time_us + 1000) / 1000;
706 line_size = hdisplay * pixel_size;
707
708 /* Use the minimum of the small and large buffer method for primary */
709 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
710 large = line_count * line_size;
711
712 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
713 *display_wm = entries + display->guard_size;
714
715 /* calculate the self-refresh watermark for display cursor */
716 entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
717 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
718 *cursor_wm = entries + cursor->guard_size;
719
720 return g4x_check_srwm(dev,
721 *display_wm, *cursor_wm,
722 display, cursor);
723 }
724
725 static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
726 int pixel_size,
727 int *prec_mult,
728 int *drain_latency)
729 {
730 struct drm_device *dev = crtc->dev;
731 int entries;
732 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
733
734 if (WARN(clock == 0, "Pixel clock is zero!\n"))
735 return false;
736
737 if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
738 return false;
739
740 entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
741 if (IS_CHERRYVIEW(dev))
742 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_32 :
743 DRAIN_LATENCY_PRECISION_16;
744 else
745 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
746 DRAIN_LATENCY_PRECISION_32;
747 *drain_latency = (64 * (*prec_mult) * 4) / entries;
748
749 if (*drain_latency > DRAIN_LATENCY_MASK)
750 *drain_latency = DRAIN_LATENCY_MASK;
751
752 return true;
753 }
754
755 /*
756 * Update drain latency registers of memory arbiter
757 *
758 * Valleyview SoC has a new memory arbiter and needs drain latency registers
759 * to be programmed. Each plane has a drain latency multiplier and a drain
760 * latency value.
761 */
762
763 static void vlv_update_drain_latency(struct drm_crtc *crtc)
764 {
765 struct drm_device *dev = crtc->dev;
766 struct drm_i915_private *dev_priv = dev->dev_private;
767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
768 int pixel_size;
769 int drain_latency;
770 enum pipe pipe = intel_crtc->pipe;
771 int plane_prec, prec_mult, plane_dl;
772 const int high_precision = IS_CHERRYVIEW(dev) ?
773 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
774
775 plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_HIGH |
776 DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_HIGH |
777 (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
778
779 if (!intel_crtc_active(crtc)) {
780 I915_WRITE(VLV_DDL(pipe), plane_dl);
781 return;
782 }
783
784 /* Primary plane Drain Latency */
785 pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
786 if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
787 plane_prec = (prec_mult == high_precision) ?
788 DDL_PLANE_PRECISION_HIGH :
789 DDL_PLANE_PRECISION_LOW;
790 plane_dl |= plane_prec | drain_latency;
791 }
792
793 /* Cursor Drain Latency
794 * BPP is always 4 for cursor
795 */
796 pixel_size = 4;
797
798 /* Program cursor DL only if it is enabled */
799 if (intel_crtc->cursor_base &&
800 vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
801 plane_prec = (prec_mult == high_precision) ?
802 DDL_CURSOR_PRECISION_HIGH :
803 DDL_CURSOR_PRECISION_LOW;
804 plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
805 }
806
807 I915_WRITE(VLV_DDL(pipe), plane_dl);
808 }
809
810 #define single_plane_enabled(mask) is_power_of_2(mask)
811
812 static void valleyview_update_wm(struct drm_crtc *crtc)
813 {
814 struct drm_device *dev = crtc->dev;
815 static const int sr_latency_ns = 12000;
816 struct drm_i915_private *dev_priv = dev->dev_private;
817 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
818 int plane_sr, cursor_sr;
819 int ignore_plane_sr, ignore_cursor_sr;
820 unsigned int enabled = 0;
821 bool cxsr_enabled;
822
823 vlv_update_drain_latency(crtc);
824
825 if (g4x_compute_wm0(dev, PIPE_A,
826 &valleyview_wm_info, pessimal_latency_ns,
827 &valleyview_cursor_wm_info, pessimal_latency_ns,
828 &planea_wm, &cursora_wm))
829 enabled |= 1 << PIPE_A;
830
831 if (g4x_compute_wm0(dev, PIPE_B,
832 &valleyview_wm_info, pessimal_latency_ns,
833 &valleyview_cursor_wm_info, pessimal_latency_ns,
834 &planeb_wm, &cursorb_wm))
835 enabled |= 1 << PIPE_B;
836
837 if (single_plane_enabled(enabled) &&
838 g4x_compute_srwm(dev, ffs(enabled) - 1,
839 sr_latency_ns,
840 &valleyview_wm_info,
841 &valleyview_cursor_wm_info,
842 &plane_sr, &ignore_cursor_sr) &&
843 g4x_compute_srwm(dev, ffs(enabled) - 1,
844 2*sr_latency_ns,
845 &valleyview_wm_info,
846 &valleyview_cursor_wm_info,
847 &ignore_plane_sr, &cursor_sr)) {
848 cxsr_enabled = true;
849 } else {
850 cxsr_enabled = false;
851 intel_set_memory_cxsr(dev_priv, false);
852 plane_sr = cursor_sr = 0;
853 }
854
855 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
856 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
857 planea_wm, cursora_wm,
858 planeb_wm, cursorb_wm,
859 plane_sr, cursor_sr);
860
861 I915_WRITE(DSPFW1,
862 (plane_sr << DSPFW_SR_SHIFT) |
863 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
864 (planeb_wm << DSPFW_PLANEB_SHIFT) |
865 (planea_wm << DSPFW_PLANEA_SHIFT));
866 I915_WRITE(DSPFW2,
867 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
868 (cursora_wm << DSPFW_CURSORA_SHIFT));
869 I915_WRITE(DSPFW3,
870 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
871 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
872
873 if (cxsr_enabled)
874 intel_set_memory_cxsr(dev_priv, true);
875 }
876
877 static void cherryview_update_wm(struct drm_crtc *crtc)
878 {
879 struct drm_device *dev = crtc->dev;
880 static const int sr_latency_ns = 12000;
881 struct drm_i915_private *dev_priv = dev->dev_private;
882 int planea_wm, planeb_wm, planec_wm;
883 int cursora_wm, cursorb_wm, cursorc_wm;
884 int plane_sr, cursor_sr;
885 int ignore_plane_sr, ignore_cursor_sr;
886 unsigned int enabled = 0;
887 bool cxsr_enabled;
888
889 vlv_update_drain_latency(crtc);
890
891 if (g4x_compute_wm0(dev, PIPE_A,
892 &valleyview_wm_info, pessimal_latency_ns,
893 &valleyview_cursor_wm_info, pessimal_latency_ns,
894 &planea_wm, &cursora_wm))
895 enabled |= 1 << PIPE_A;
896
897 if (g4x_compute_wm0(dev, PIPE_B,
898 &valleyview_wm_info, pessimal_latency_ns,
899 &valleyview_cursor_wm_info, pessimal_latency_ns,
900 &planeb_wm, &cursorb_wm))
901 enabled |= 1 << PIPE_B;
902
903 if (g4x_compute_wm0(dev, PIPE_C,
904 &valleyview_wm_info, pessimal_latency_ns,
905 &valleyview_cursor_wm_info, pessimal_latency_ns,
906 &planec_wm, &cursorc_wm))
907 enabled |= 1 << PIPE_C;
908
909 if (single_plane_enabled(enabled) &&
910 g4x_compute_srwm(dev, ffs(enabled) - 1,
911 sr_latency_ns,
912 &valleyview_wm_info,
913 &valleyview_cursor_wm_info,
914 &plane_sr, &ignore_cursor_sr) &&
915 g4x_compute_srwm(dev, ffs(enabled) - 1,
916 2*sr_latency_ns,
917 &valleyview_wm_info,
918 &valleyview_cursor_wm_info,
919 &ignore_plane_sr, &cursor_sr)) {
920 cxsr_enabled = true;
921 } else {
922 cxsr_enabled = false;
923 intel_set_memory_cxsr(dev_priv, false);
924 plane_sr = cursor_sr = 0;
925 }
926
927 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
928 "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
929 "SR: plane=%d, cursor=%d\n",
930 planea_wm, cursora_wm,
931 planeb_wm, cursorb_wm,
932 planec_wm, cursorc_wm,
933 plane_sr, cursor_sr);
934
935 I915_WRITE(DSPFW1,
936 (plane_sr << DSPFW_SR_SHIFT) |
937 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
938 (planeb_wm << DSPFW_PLANEB_SHIFT) |
939 (planea_wm << DSPFW_PLANEA_SHIFT));
940 I915_WRITE(DSPFW2,
941 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
942 (cursora_wm << DSPFW_CURSORA_SHIFT));
943 I915_WRITE(DSPFW3,
944 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
945 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
946 I915_WRITE(DSPFW9_CHV,
947 (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
948 DSPFW_CURSORC_MASK)) |
949 (planec_wm << DSPFW_PLANEC_SHIFT) |
950 (cursorc_wm << DSPFW_CURSORC_SHIFT));
951
952 if (cxsr_enabled)
953 intel_set_memory_cxsr(dev_priv, true);
954 }
955
956 static void valleyview_update_sprite_wm(struct drm_plane *plane,
957 struct drm_crtc *crtc,
958 uint32_t sprite_width,
959 uint32_t sprite_height,
960 int pixel_size,
961 bool enabled, bool scaled)
962 {
963 struct drm_device *dev = crtc->dev;
964 struct drm_i915_private *dev_priv = dev->dev_private;
965 int pipe = to_intel_plane(plane)->pipe;
966 int sprite = to_intel_plane(plane)->plane;
967 int drain_latency;
968 int plane_prec;
969 int sprite_dl;
970 int prec_mult;
971 const int high_precision = IS_CHERRYVIEW(dev) ?
972 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
973
974 sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_HIGH(sprite) |
975 (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
976
977 if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
978 &drain_latency)) {
979 plane_prec = (prec_mult == high_precision) ?
980 DDL_SPRITE_PRECISION_HIGH(sprite) :
981 DDL_SPRITE_PRECISION_LOW(sprite);
982 sprite_dl |= plane_prec |
983 (drain_latency << DDL_SPRITE_SHIFT(sprite));
984 }
985
986 I915_WRITE(VLV_DDL(pipe), sprite_dl);
987 }
988
989 static void g4x_update_wm(struct drm_crtc *crtc)
990 {
991 struct drm_device *dev = crtc->dev;
992 static const int sr_latency_ns = 12000;
993 struct drm_i915_private *dev_priv = dev->dev_private;
994 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
995 int plane_sr, cursor_sr;
996 unsigned int enabled = 0;
997 bool cxsr_enabled;
998
999 if (g4x_compute_wm0(dev, PIPE_A,
1000 &g4x_wm_info, pessimal_latency_ns,
1001 &g4x_cursor_wm_info, pessimal_latency_ns,
1002 &planea_wm, &cursora_wm))
1003 enabled |= 1 << PIPE_A;
1004
1005 if (g4x_compute_wm0(dev, PIPE_B,
1006 &g4x_wm_info, pessimal_latency_ns,
1007 &g4x_cursor_wm_info, pessimal_latency_ns,
1008 &planeb_wm, &cursorb_wm))
1009 enabled |= 1 << PIPE_B;
1010
1011 if (single_plane_enabled(enabled) &&
1012 g4x_compute_srwm(dev, ffs(enabled) - 1,
1013 sr_latency_ns,
1014 &g4x_wm_info,
1015 &g4x_cursor_wm_info,
1016 &plane_sr, &cursor_sr)) {
1017 cxsr_enabled = true;
1018 } else {
1019 cxsr_enabled = false;
1020 intel_set_memory_cxsr(dev_priv, false);
1021 plane_sr = cursor_sr = 0;
1022 }
1023
1024 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1025 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1026 planea_wm, cursora_wm,
1027 planeb_wm, cursorb_wm,
1028 plane_sr, cursor_sr);
1029
1030 I915_WRITE(DSPFW1,
1031 (plane_sr << DSPFW_SR_SHIFT) |
1032 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1033 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1034 (planea_wm << DSPFW_PLANEA_SHIFT));
1035 I915_WRITE(DSPFW2,
1036 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1037 (cursora_wm << DSPFW_CURSORA_SHIFT));
1038 /* HPLL off in SR has some issues on G4x... disable it */
1039 I915_WRITE(DSPFW3,
1040 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1041 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1042
1043 if (cxsr_enabled)
1044 intel_set_memory_cxsr(dev_priv, true);
1045 }
1046
1047 static void i965_update_wm(struct drm_crtc *unused_crtc)
1048 {
1049 struct drm_device *dev = unused_crtc->dev;
1050 struct drm_i915_private *dev_priv = dev->dev_private;
1051 struct drm_crtc *crtc;
1052 int srwm = 1;
1053 int cursor_sr = 16;
1054 bool cxsr_enabled;
1055
1056 /* Calc sr entries for one plane configs */
1057 crtc = single_enabled_crtc(dev);
1058 if (crtc) {
1059 /* self-refresh has much higher latency */
1060 static const int sr_latency_ns = 12000;
1061 const struct drm_display_mode *adjusted_mode =
1062 &to_intel_crtc(crtc)->config->base.adjusted_mode;
1063 int clock = adjusted_mode->crtc_clock;
1064 int htotal = adjusted_mode->crtc_htotal;
1065 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1066 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1067 unsigned long line_time_us;
1068 int entries;
1069
1070 line_time_us = max(htotal * 1000 / clock, 1);
1071
1072 /* Use ns/us then divide to preserve precision */
1073 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1074 pixel_size * hdisplay;
1075 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1076 srwm = I965_FIFO_SIZE - entries;
1077 if (srwm < 0)
1078 srwm = 1;
1079 srwm &= 0x1ff;
1080 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1081 entries, srwm);
1082
1083 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1084 pixel_size * to_intel_crtc(crtc)->cursor_width;
1085 entries = DIV_ROUND_UP(entries,
1086 i965_cursor_wm_info.cacheline_size);
1087 cursor_sr = i965_cursor_wm_info.fifo_size -
1088 (entries + i965_cursor_wm_info.guard_size);
1089
1090 if (cursor_sr > i965_cursor_wm_info.max_wm)
1091 cursor_sr = i965_cursor_wm_info.max_wm;
1092
1093 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1094 "cursor %d\n", srwm, cursor_sr);
1095
1096 cxsr_enabled = true;
1097 } else {
1098 cxsr_enabled = false;
1099 /* Turn off self refresh if both pipes are enabled */
1100 intel_set_memory_cxsr(dev_priv, false);
1101 }
1102
1103 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1104 srwm);
1105
1106 /* 965 has limitations... */
1107 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1108 (8 << DSPFW_CURSORB_SHIFT) |
1109 (8 << DSPFW_PLANEB_SHIFT) |
1110 (8 << DSPFW_PLANEA_SHIFT));
1111 I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1112 (8 << DSPFW_PLANEC_SHIFT_OLD));
1113 /* update cursor SR watermark */
1114 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1115
1116 if (cxsr_enabled)
1117 intel_set_memory_cxsr(dev_priv, true);
1118 }
1119
1120 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1121 {
1122 struct drm_device *dev = unused_crtc->dev;
1123 struct drm_i915_private *dev_priv = dev->dev_private;
1124 const struct intel_watermark_params *wm_info;
1125 uint32_t fwater_lo;
1126 uint32_t fwater_hi;
1127 int cwm, srwm = 1;
1128 int fifo_size;
1129 int planea_wm, planeb_wm;
1130 struct drm_crtc *crtc, *enabled = NULL;
1131
1132 if (IS_I945GM(dev))
1133 wm_info = &i945_wm_info;
1134 else if (!IS_GEN2(dev))
1135 wm_info = &i915_wm_info;
1136 else
1137 wm_info = &i830_a_wm_info;
1138
1139 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1140 crtc = intel_get_crtc_for_plane(dev, 0);
1141 if (intel_crtc_active(crtc)) {
1142 const struct drm_display_mode *adjusted_mode;
1143 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1144 if (IS_GEN2(dev))
1145 cpp = 4;
1146
1147 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1148 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1149 wm_info, fifo_size, cpp,
1150 pessimal_latency_ns);
1151 enabled = crtc;
1152 } else {
1153 planea_wm = fifo_size - wm_info->guard_size;
1154 if (planea_wm > (long)wm_info->max_wm)
1155 planea_wm = wm_info->max_wm;
1156 }
1157
1158 if (IS_GEN2(dev))
1159 wm_info = &i830_bc_wm_info;
1160
1161 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1162 crtc = intel_get_crtc_for_plane(dev, 1);
1163 if (intel_crtc_active(crtc)) {
1164 const struct drm_display_mode *adjusted_mode;
1165 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1166 if (IS_GEN2(dev))
1167 cpp = 4;
1168
1169 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1170 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1171 wm_info, fifo_size, cpp,
1172 pessimal_latency_ns);
1173 if (enabled == NULL)
1174 enabled = crtc;
1175 else
1176 enabled = NULL;
1177 } else {
1178 planeb_wm = fifo_size - wm_info->guard_size;
1179 if (planeb_wm > (long)wm_info->max_wm)
1180 planeb_wm = wm_info->max_wm;
1181 }
1182
1183 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1184
1185 if (IS_I915GM(dev) && enabled) {
1186 struct drm_i915_gem_object *obj;
1187
1188 obj = intel_fb_obj(enabled->primary->fb);
1189
1190 /* self-refresh seems busted with untiled */
1191 if (obj->tiling_mode == I915_TILING_NONE)
1192 enabled = NULL;
1193 }
1194
1195 /*
1196 * Overlay gets an aggressive default since video jitter is bad.
1197 */
1198 cwm = 2;
1199
1200 /* Play safe and disable self-refresh before adjusting watermarks. */
1201 intel_set_memory_cxsr(dev_priv, false);
1202
1203 /* Calc sr entries for one plane configs */
1204 if (HAS_FW_BLC(dev) && enabled) {
1205 /* self-refresh has much higher latency */
1206 static const int sr_latency_ns = 6000;
1207 const struct drm_display_mode *adjusted_mode =
1208 &to_intel_crtc(enabled)->config->base.adjusted_mode;
1209 int clock = adjusted_mode->crtc_clock;
1210 int htotal = adjusted_mode->crtc_htotal;
1211 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1212 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1213 unsigned long line_time_us;
1214 int entries;
1215
1216 line_time_us = max(htotal * 1000 / clock, 1);
1217
1218 /* Use ns/us then divide to preserve precision */
1219 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1220 pixel_size * hdisplay;
1221 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1222 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1223 srwm = wm_info->fifo_size - entries;
1224 if (srwm < 0)
1225 srwm = 1;
1226
1227 if (IS_I945G(dev) || IS_I945GM(dev))
1228 I915_WRITE(FW_BLC_SELF,
1229 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1230 else if (IS_I915GM(dev))
1231 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1232 }
1233
1234 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1235 planea_wm, planeb_wm, cwm, srwm);
1236
1237 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1238 fwater_hi = (cwm & 0x1f);
1239
1240 /* Set request length to 8 cachelines per fetch */
1241 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1242 fwater_hi = fwater_hi | (1 << 8);
1243
1244 I915_WRITE(FW_BLC, fwater_lo);
1245 I915_WRITE(FW_BLC2, fwater_hi);
1246
1247 if (enabled)
1248 intel_set_memory_cxsr(dev_priv, true);
1249 }
1250
1251 static void i845_update_wm(struct drm_crtc *unused_crtc)
1252 {
1253 struct drm_device *dev = unused_crtc->dev;
1254 struct drm_i915_private *dev_priv = dev->dev_private;
1255 struct drm_crtc *crtc;
1256 const struct drm_display_mode *adjusted_mode;
1257 uint32_t fwater_lo;
1258 int planea_wm;
1259
1260 crtc = single_enabled_crtc(dev);
1261 if (crtc == NULL)
1262 return;
1263
1264 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1265 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1266 &i845_wm_info,
1267 dev_priv->display.get_fifo_size(dev, 0),
1268 4, pessimal_latency_ns);
1269 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1270 fwater_lo |= (3<<8) | planea_wm;
1271
1272 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1273
1274 I915_WRITE(FW_BLC, fwater_lo);
1275 }
1276
1277 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1278 struct drm_crtc *crtc)
1279 {
1280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1281 uint32_t pixel_rate;
1282
1283 pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1284
1285 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1286 * adjust the pixel_rate here. */
1287
1288 if (intel_crtc->config->pch_pfit.enabled) {
1289 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1290 uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1291
1292 pipe_w = intel_crtc->config->pipe_src_w;
1293 pipe_h = intel_crtc->config->pipe_src_h;
1294 pfit_w = (pfit_size >> 16) & 0xFFFF;
1295 pfit_h = pfit_size & 0xFFFF;
1296 if (pipe_w < pfit_w)
1297 pipe_w = pfit_w;
1298 if (pipe_h < pfit_h)
1299 pipe_h = pfit_h;
1300
1301 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1302 pfit_w * pfit_h);
1303 }
1304
1305 return pixel_rate;
1306 }
1307
1308 /* latency must be in 0.1us units. */
1309 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1310 uint32_t latency)
1311 {
1312 uint64_t ret;
1313
1314 if (WARN(latency == 0, "Latency value missing\n"))
1315 return UINT_MAX;
1316
1317 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1318 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1319
1320 return ret;
1321 }
1322
1323 /* latency must be in 0.1us units. */
1324 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1325 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1326 uint32_t latency)
1327 {
1328 uint32_t ret;
1329
1330 if (WARN(latency == 0, "Latency value missing\n"))
1331 return UINT_MAX;
1332
1333 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1334 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1335 ret = DIV_ROUND_UP(ret, 64) + 2;
1336 return ret;
1337 }
1338
1339 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1340 uint8_t bytes_per_pixel)
1341 {
1342 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1343 }
1344
1345 struct skl_pipe_wm_parameters {
1346 bool active;
1347 uint32_t pipe_htotal;
1348 uint32_t pixel_rate; /* in KHz */
1349 struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1350 struct intel_plane_wm_parameters cursor;
1351 };
1352
1353 struct ilk_pipe_wm_parameters {
1354 bool active;
1355 uint32_t pipe_htotal;
1356 uint32_t pixel_rate;
1357 struct intel_plane_wm_parameters pri;
1358 struct intel_plane_wm_parameters spr;
1359 struct intel_plane_wm_parameters cur;
1360 };
1361
1362 struct ilk_wm_maximums {
1363 uint16_t pri;
1364 uint16_t spr;
1365 uint16_t cur;
1366 uint16_t fbc;
1367 };
1368
1369 /* used in computing the new watermarks state */
1370 struct intel_wm_config {
1371 unsigned int num_pipes_active;
1372 bool sprites_enabled;
1373 bool sprites_scaled;
1374 };
1375
1376 /*
1377 * For both WM_PIPE and WM_LP.
1378 * mem_value must be in 0.1us units.
1379 */
1380 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1381 uint32_t mem_value,
1382 bool is_lp)
1383 {
1384 uint32_t method1, method2;
1385
1386 if (!params->active || !params->pri.enabled)
1387 return 0;
1388
1389 method1 = ilk_wm_method1(params->pixel_rate,
1390 params->pri.bytes_per_pixel,
1391 mem_value);
1392
1393 if (!is_lp)
1394 return method1;
1395
1396 method2 = ilk_wm_method2(params->pixel_rate,
1397 params->pipe_htotal,
1398 params->pri.horiz_pixels,
1399 params->pri.bytes_per_pixel,
1400 mem_value);
1401
1402 return min(method1, method2);
1403 }
1404
1405 /*
1406 * For both WM_PIPE and WM_LP.
1407 * mem_value must be in 0.1us units.
1408 */
1409 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1410 uint32_t mem_value)
1411 {
1412 uint32_t method1, method2;
1413
1414 if (!params->active || !params->spr.enabled)
1415 return 0;
1416
1417 method1 = ilk_wm_method1(params->pixel_rate,
1418 params->spr.bytes_per_pixel,
1419 mem_value);
1420 method2 = ilk_wm_method2(params->pixel_rate,
1421 params->pipe_htotal,
1422 params->spr.horiz_pixels,
1423 params->spr.bytes_per_pixel,
1424 mem_value);
1425 return min(method1, method2);
1426 }
1427
1428 /*
1429 * For both WM_PIPE and WM_LP.
1430 * mem_value must be in 0.1us units.
1431 */
1432 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1433 uint32_t mem_value)
1434 {
1435 if (!params->active || !params->cur.enabled)
1436 return 0;
1437
1438 return ilk_wm_method2(params->pixel_rate,
1439 params->pipe_htotal,
1440 params->cur.horiz_pixels,
1441 params->cur.bytes_per_pixel,
1442 mem_value);
1443 }
1444
1445 /* Only for WM_LP. */
1446 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1447 uint32_t pri_val)
1448 {
1449 if (!params->active || !params->pri.enabled)
1450 return 0;
1451
1452 return ilk_wm_fbc(pri_val,
1453 params->pri.horiz_pixels,
1454 params->pri.bytes_per_pixel);
1455 }
1456
1457 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1458 {
1459 if (INTEL_INFO(dev)->gen >= 8)
1460 return 3072;
1461 else if (INTEL_INFO(dev)->gen >= 7)
1462 return 768;
1463 else
1464 return 512;
1465 }
1466
1467 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1468 int level, bool is_sprite)
1469 {
1470 if (INTEL_INFO(dev)->gen >= 8)
1471 /* BDW primary/sprite plane watermarks */
1472 return level == 0 ? 255 : 2047;
1473 else if (INTEL_INFO(dev)->gen >= 7)
1474 /* IVB/HSW primary/sprite plane watermarks */
1475 return level == 0 ? 127 : 1023;
1476 else if (!is_sprite)
1477 /* ILK/SNB primary plane watermarks */
1478 return level == 0 ? 127 : 511;
1479 else
1480 /* ILK/SNB sprite plane watermarks */
1481 return level == 0 ? 63 : 255;
1482 }
1483
1484 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1485 int level)
1486 {
1487 if (INTEL_INFO(dev)->gen >= 7)
1488 return level == 0 ? 63 : 255;
1489 else
1490 return level == 0 ? 31 : 63;
1491 }
1492
1493 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1494 {
1495 if (INTEL_INFO(dev)->gen >= 8)
1496 return 31;
1497 else
1498 return 15;
1499 }
1500
1501 /* Calculate the maximum primary/sprite plane watermark */
1502 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1503 int level,
1504 const struct intel_wm_config *config,
1505 enum intel_ddb_partitioning ddb_partitioning,
1506 bool is_sprite)
1507 {
1508 unsigned int fifo_size = ilk_display_fifo_size(dev);
1509
1510 /* if sprites aren't enabled, sprites get nothing */
1511 if (is_sprite && !config->sprites_enabled)
1512 return 0;
1513
1514 /* HSW allows LP1+ watermarks even with multiple pipes */
1515 if (level == 0 || config->num_pipes_active > 1) {
1516 fifo_size /= INTEL_INFO(dev)->num_pipes;
1517
1518 /*
1519 * For some reason the non self refresh
1520 * FIFO size is only half of the self
1521 * refresh FIFO size on ILK/SNB.
1522 */
1523 if (INTEL_INFO(dev)->gen <= 6)
1524 fifo_size /= 2;
1525 }
1526
1527 if (config->sprites_enabled) {
1528 /* level 0 is always calculated with 1:1 split */
1529 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1530 if (is_sprite)
1531 fifo_size *= 5;
1532 fifo_size /= 6;
1533 } else {
1534 fifo_size /= 2;
1535 }
1536 }
1537
1538 /* clamp to max that the registers can hold */
1539 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1540 }
1541
1542 /* Calculate the maximum cursor plane watermark */
1543 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1544 int level,
1545 const struct intel_wm_config *config)
1546 {
1547 /* HSW LP1+ watermarks w/ multiple pipes */
1548 if (level > 0 && config->num_pipes_active > 1)
1549 return 64;
1550
1551 /* otherwise just report max that registers can hold */
1552 return ilk_cursor_wm_reg_max(dev, level);
1553 }
1554
1555 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1556 int level,
1557 const struct intel_wm_config *config,
1558 enum intel_ddb_partitioning ddb_partitioning,
1559 struct ilk_wm_maximums *max)
1560 {
1561 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1562 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1563 max->cur = ilk_cursor_wm_max(dev, level, config);
1564 max->fbc = ilk_fbc_wm_reg_max(dev);
1565 }
1566
1567 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1568 int level,
1569 struct ilk_wm_maximums *max)
1570 {
1571 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1572 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1573 max->cur = ilk_cursor_wm_reg_max(dev, level);
1574 max->fbc = ilk_fbc_wm_reg_max(dev);
1575 }
1576
1577 static bool ilk_validate_wm_level(int level,
1578 const struct ilk_wm_maximums *max,
1579 struct intel_wm_level *result)
1580 {
1581 bool ret;
1582
1583 /* already determined to be invalid? */
1584 if (!result->enable)
1585 return false;
1586
1587 result->enable = result->pri_val <= max->pri &&
1588 result->spr_val <= max->spr &&
1589 result->cur_val <= max->cur;
1590
1591 ret = result->enable;
1592
1593 /*
1594 * HACK until we can pre-compute everything,
1595 * and thus fail gracefully if LP0 watermarks
1596 * are exceeded...
1597 */
1598 if (level == 0 && !result->enable) {
1599 if (result->pri_val > max->pri)
1600 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1601 level, result->pri_val, max->pri);
1602 if (result->spr_val > max->spr)
1603 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1604 level, result->spr_val, max->spr);
1605 if (result->cur_val > max->cur)
1606 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1607 level, result->cur_val, max->cur);
1608
1609 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1610 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1611 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1612 result->enable = true;
1613 }
1614
1615 return ret;
1616 }
1617
1618 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1619 int level,
1620 const struct ilk_pipe_wm_parameters *p,
1621 struct intel_wm_level *result)
1622 {
1623 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1624 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1625 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1626
1627 /* WM1+ latency values stored in 0.5us units */
1628 if (level > 0) {
1629 pri_latency *= 5;
1630 spr_latency *= 5;
1631 cur_latency *= 5;
1632 }
1633
1634 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1635 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1636 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1637 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1638 result->enable = true;
1639 }
1640
1641 static uint32_t
1642 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1643 {
1644 struct drm_i915_private *dev_priv = dev->dev_private;
1645 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1646 struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1647 u32 linetime, ips_linetime;
1648
1649 if (!intel_crtc_active(crtc))
1650 return 0;
1651
1652 /* The WM are computed with base on how long it takes to fill a single
1653 * row at the given clock rate, multiplied by 8.
1654 * */
1655 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1656 mode->crtc_clock);
1657 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1658 intel_ddi_get_cdclk_freq(dev_priv));
1659
1660 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1661 PIPE_WM_LINETIME_TIME(linetime);
1662 }
1663
1664 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1665 {
1666 struct drm_i915_private *dev_priv = dev->dev_private;
1667
1668 if (IS_GEN9(dev)) {
1669 uint32_t val;
1670 int ret, i;
1671 int level, max_level = ilk_wm_max_level(dev);
1672
1673 /* read the first set of memory latencies[0:3] */
1674 val = 0; /* data0 to be programmed to 0 for first set */
1675 mutex_lock(&dev_priv->rps.hw_lock);
1676 ret = sandybridge_pcode_read(dev_priv,
1677 GEN9_PCODE_READ_MEM_LATENCY,
1678 &val);
1679 mutex_unlock(&dev_priv->rps.hw_lock);
1680
1681 if (ret) {
1682 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1683 return;
1684 }
1685
1686 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1687 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1688 GEN9_MEM_LATENCY_LEVEL_MASK;
1689 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1690 GEN9_MEM_LATENCY_LEVEL_MASK;
1691 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1692 GEN9_MEM_LATENCY_LEVEL_MASK;
1693
1694 /* read the second set of memory latencies[4:7] */
1695 val = 1; /* data0 to be programmed to 1 for second set */
1696 mutex_lock(&dev_priv->rps.hw_lock);
1697 ret = sandybridge_pcode_read(dev_priv,
1698 GEN9_PCODE_READ_MEM_LATENCY,
1699 &val);
1700 mutex_unlock(&dev_priv->rps.hw_lock);
1701 if (ret) {
1702 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1703 return;
1704 }
1705
1706 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1707 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1708 GEN9_MEM_LATENCY_LEVEL_MASK;
1709 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1710 GEN9_MEM_LATENCY_LEVEL_MASK;
1711 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1712 GEN9_MEM_LATENCY_LEVEL_MASK;
1713
1714 /*
1715 * punit doesn't take into account the read latency so we need
1716 * to add 2us to the various latency levels we retrieve from
1717 * the punit.
1718 * - W0 is a bit special in that it's the only level that
1719 * can't be disabled if we want to have display working, so
1720 * we always add 2us there.
1721 * - For levels >=1, punit returns 0us latency when they are
1722 * disabled, so we respect that and don't add 2us then
1723 *
1724 * Additionally, if a level n (n > 1) has a 0us latency, all
1725 * levels m (m >= n) need to be disabled. We make sure to
1726 * sanitize the values out of the punit to satisfy this
1727 * requirement.
1728 */
1729 wm[0] += 2;
1730 for (level = 1; level <= max_level; level++)
1731 if (wm[level] != 0)
1732 wm[level] += 2;
1733 else {
1734 for (i = level + 1; i <= max_level; i++)
1735 wm[i] = 0;
1736
1737 break;
1738 }
1739 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1740 uint64_t sskpd = I915_READ64(MCH_SSKPD);
1741
1742 wm[0] = (sskpd >> 56) & 0xFF;
1743 if (wm[0] == 0)
1744 wm[0] = sskpd & 0xF;
1745 wm[1] = (sskpd >> 4) & 0xFF;
1746 wm[2] = (sskpd >> 12) & 0xFF;
1747 wm[3] = (sskpd >> 20) & 0x1FF;
1748 wm[4] = (sskpd >> 32) & 0x1FF;
1749 } else if (INTEL_INFO(dev)->gen >= 6) {
1750 uint32_t sskpd = I915_READ(MCH_SSKPD);
1751
1752 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
1753 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
1754 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
1755 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1756 } else if (INTEL_INFO(dev)->gen >= 5) {
1757 uint32_t mltr = I915_READ(MLTR_ILK);
1758
1759 /* ILK primary LP0 latency is 700 ns */
1760 wm[0] = 7;
1761 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
1762 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1763 }
1764 }
1765
1766 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
1767 {
1768 /* ILK sprite LP0 latency is 1300 ns */
1769 if (INTEL_INFO(dev)->gen == 5)
1770 wm[0] = 13;
1771 }
1772
1773 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
1774 {
1775 /* ILK cursor LP0 latency is 1300 ns */
1776 if (INTEL_INFO(dev)->gen == 5)
1777 wm[0] = 13;
1778
1779 /* WaDoubleCursorLP3Latency:ivb */
1780 if (IS_IVYBRIDGE(dev))
1781 wm[3] *= 2;
1782 }
1783
1784 int ilk_wm_max_level(const struct drm_device *dev)
1785 {
1786 /* how many WM levels are we expecting */
1787 if (IS_GEN9(dev))
1788 return 7;
1789 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1790 return 4;
1791 else if (INTEL_INFO(dev)->gen >= 6)
1792 return 3;
1793 else
1794 return 2;
1795 }
1796
1797 static void intel_print_wm_latency(struct drm_device *dev,
1798 const char *name,
1799 const uint16_t wm[8])
1800 {
1801 int level, max_level = ilk_wm_max_level(dev);
1802
1803 for (level = 0; level <= max_level; level++) {
1804 unsigned int latency = wm[level];
1805
1806 if (latency == 0) {
1807 DRM_ERROR("%s WM%d latency not provided\n",
1808 name, level);
1809 continue;
1810 }
1811
1812 /*
1813 * - latencies are in us on gen9.
1814 * - before then, WM1+ latency values are in 0.5us units
1815 */
1816 if (IS_GEN9(dev))
1817 latency *= 10;
1818 else if (level > 0)
1819 latency *= 5;
1820
1821 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
1822 name, level, wm[level],
1823 latency / 10, latency % 10);
1824 }
1825 }
1826
1827 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
1828 uint16_t wm[5], uint16_t min)
1829 {
1830 int level, max_level = ilk_wm_max_level(dev_priv->dev);
1831
1832 if (wm[0] >= min)
1833 return false;
1834
1835 wm[0] = max(wm[0], min);
1836 for (level = 1; level <= max_level; level++)
1837 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
1838
1839 return true;
1840 }
1841
1842 static void snb_wm_latency_quirk(struct drm_device *dev)
1843 {
1844 struct drm_i915_private *dev_priv = dev->dev_private;
1845 bool changed;
1846
1847 /*
1848 * The BIOS provided WM memory latency values are often
1849 * inadequate for high resolution displays. Adjust them.
1850 */
1851 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
1852 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
1853 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
1854
1855 if (!changed)
1856 return;
1857
1858 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
1859 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1860 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
1861 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1862 }
1863
1864 static void ilk_setup_wm_latency(struct drm_device *dev)
1865 {
1866 struct drm_i915_private *dev_priv = dev->dev_private;
1867
1868 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
1869
1870 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
1871 sizeof(dev_priv->wm.pri_latency));
1872 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
1873 sizeof(dev_priv->wm.pri_latency));
1874
1875 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
1876 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
1877
1878 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1879 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
1880 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1881
1882 if (IS_GEN6(dev))
1883 snb_wm_latency_quirk(dev);
1884 }
1885
1886 static void skl_setup_wm_latency(struct drm_device *dev)
1887 {
1888 struct drm_i915_private *dev_priv = dev->dev_private;
1889
1890 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
1891 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
1892 }
1893
1894 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
1895 struct ilk_pipe_wm_parameters *p)
1896 {
1897 struct drm_device *dev = crtc->dev;
1898 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1899 enum pipe pipe = intel_crtc->pipe;
1900 struct drm_plane *plane;
1901
1902 if (!intel_crtc_active(crtc))
1903 return;
1904
1905 p->active = true;
1906 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
1907 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
1908 p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
1909 p->cur.bytes_per_pixel = 4;
1910 p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
1911 p->cur.horiz_pixels = intel_crtc->cursor_width;
1912 /* TODO: for now, assume primary and cursor planes are always enabled. */
1913 p->pri.enabled = true;
1914 p->cur.enabled = true;
1915
1916 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
1917 struct intel_plane *intel_plane = to_intel_plane(plane);
1918
1919 if (intel_plane->pipe == pipe) {
1920 p->spr = intel_plane->wm;
1921 break;
1922 }
1923 }
1924 }
1925
1926 static void ilk_compute_wm_config(struct drm_device *dev,
1927 struct intel_wm_config *config)
1928 {
1929 struct intel_crtc *intel_crtc;
1930
1931 /* Compute the currently _active_ config */
1932 for_each_intel_crtc(dev, intel_crtc) {
1933 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
1934
1935 if (!wm->pipe_enabled)
1936 continue;
1937
1938 config->sprites_enabled |= wm->sprites_enabled;
1939 config->sprites_scaled |= wm->sprites_scaled;
1940 config->num_pipes_active++;
1941 }
1942 }
1943
1944 /* Compute new watermarks for the pipe */
1945 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
1946 const struct ilk_pipe_wm_parameters *params,
1947 struct intel_pipe_wm *pipe_wm)
1948 {
1949 struct drm_device *dev = crtc->dev;
1950 const struct drm_i915_private *dev_priv = dev->dev_private;
1951 int level, max_level = ilk_wm_max_level(dev);
1952 /* LP0 watermark maximums depend on this pipe alone */
1953 struct intel_wm_config config = {
1954 .num_pipes_active = 1,
1955 .sprites_enabled = params->spr.enabled,
1956 .sprites_scaled = params->spr.scaled,
1957 };
1958 struct ilk_wm_maximums max;
1959
1960 pipe_wm->pipe_enabled = params->active;
1961 pipe_wm->sprites_enabled = params->spr.enabled;
1962 pipe_wm->sprites_scaled = params->spr.scaled;
1963
1964 /* ILK/SNB: LP2+ watermarks only w/o sprites */
1965 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
1966 max_level = 1;
1967
1968 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
1969 if (params->spr.scaled)
1970 max_level = 0;
1971
1972 ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
1973
1974 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1975 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
1976
1977 /* LP0 watermarks always use 1/2 DDB partitioning */
1978 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
1979
1980 /* At least LP0 must be valid */
1981 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
1982 return false;
1983
1984 ilk_compute_wm_reg_maximums(dev, 1, &max);
1985
1986 for (level = 1; level <= max_level; level++) {
1987 struct intel_wm_level wm = {};
1988
1989 ilk_compute_wm_level(dev_priv, level, params, &wm);
1990
1991 /*
1992 * Disable any watermark level that exceeds the
1993 * register maximums since such watermarks are
1994 * always invalid.
1995 */
1996 if (!ilk_validate_wm_level(level, &max, &wm))
1997 break;
1998
1999 pipe_wm->wm[level] = wm;
2000 }
2001
2002 return true;
2003 }
2004
2005 /*
2006 * Merge the watermarks from all active pipes for a specific level.
2007 */
2008 static void ilk_merge_wm_level(struct drm_device *dev,
2009 int level,
2010 struct intel_wm_level *ret_wm)
2011 {
2012 const struct intel_crtc *intel_crtc;
2013
2014 ret_wm->enable = true;
2015
2016 for_each_intel_crtc(dev, intel_crtc) {
2017 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2018 const struct intel_wm_level *wm = &active->wm[level];
2019
2020 if (!active->pipe_enabled)
2021 continue;
2022
2023 /*
2024 * The watermark values may have been used in the past,
2025 * so we must maintain them in the registers for some
2026 * time even if the level is now disabled.
2027 */
2028 if (!wm->enable)
2029 ret_wm->enable = false;
2030
2031 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2032 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2033 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2034 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2035 }
2036 }
2037
2038 /*
2039 * Merge all low power watermarks for all active pipes.
2040 */
2041 static void ilk_wm_merge(struct drm_device *dev,
2042 const struct intel_wm_config *config,
2043 const struct ilk_wm_maximums *max,
2044 struct intel_pipe_wm *merged)
2045 {
2046 int level, max_level = ilk_wm_max_level(dev);
2047 int last_enabled_level = max_level;
2048
2049 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2050 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2051 config->num_pipes_active > 1)
2052 return;
2053
2054 /* ILK: FBC WM must be disabled always */
2055 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2056
2057 /* merge each WM1+ level */
2058 for (level = 1; level <= max_level; level++) {
2059 struct intel_wm_level *wm = &merged->wm[level];
2060
2061 ilk_merge_wm_level(dev, level, wm);
2062
2063 if (level > last_enabled_level)
2064 wm->enable = false;
2065 else if (!ilk_validate_wm_level(level, max, wm))
2066 /* make sure all following levels get disabled */
2067 last_enabled_level = level - 1;
2068
2069 /*
2070 * The spec says it is preferred to disable
2071 * FBC WMs instead of disabling a WM level.
2072 */
2073 if (wm->fbc_val > max->fbc) {
2074 if (wm->enable)
2075 merged->fbc_wm_enabled = false;
2076 wm->fbc_val = 0;
2077 }
2078 }
2079
2080 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2081 /*
2082 * FIXME this is racy. FBC might get enabled later.
2083 * What we should check here is whether FBC can be
2084 * enabled sometime later.
2085 */
2086 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2087 for (level = 2; level <= max_level; level++) {
2088 struct intel_wm_level *wm = &merged->wm[level];
2089
2090 wm->enable = false;
2091 }
2092 }
2093 }
2094
2095 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2096 {
2097 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2098 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2099 }
2100
2101 /* The value we need to program into the WM_LPx latency field */
2102 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2103 {
2104 struct drm_i915_private *dev_priv = dev->dev_private;
2105
2106 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2107 return 2 * level;
2108 else
2109 return dev_priv->wm.pri_latency[level];
2110 }
2111
2112 static void ilk_compute_wm_results(struct drm_device *dev,
2113 const struct intel_pipe_wm *merged,
2114 enum intel_ddb_partitioning partitioning,
2115 struct ilk_wm_values *results)
2116 {
2117 struct intel_crtc *intel_crtc;
2118 int level, wm_lp;
2119
2120 results->enable_fbc_wm = merged->fbc_wm_enabled;
2121 results->partitioning = partitioning;
2122
2123 /* LP1+ register values */
2124 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2125 const struct intel_wm_level *r;
2126
2127 level = ilk_wm_lp_to_level(wm_lp, merged);
2128
2129 r = &merged->wm[level];
2130
2131 /*
2132 * Maintain the watermark values even if the level is
2133 * disabled. Doing otherwise could cause underruns.
2134 */
2135 results->wm_lp[wm_lp - 1] =
2136 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2137 (r->pri_val << WM1_LP_SR_SHIFT) |
2138 r->cur_val;
2139
2140 if (r->enable)
2141 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2142
2143 if (INTEL_INFO(dev)->gen >= 8)
2144 results->wm_lp[wm_lp - 1] |=
2145 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2146 else
2147 results->wm_lp[wm_lp - 1] |=
2148 r->fbc_val << WM1_LP_FBC_SHIFT;
2149
2150 /*
2151 * Always set WM1S_LP_EN when spr_val != 0, even if the
2152 * level is disabled. Doing otherwise could cause underruns.
2153 */
2154 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2155 WARN_ON(wm_lp != 1);
2156 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2157 } else
2158 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2159 }
2160
2161 /* LP0 register values */
2162 for_each_intel_crtc(dev, intel_crtc) {
2163 enum pipe pipe = intel_crtc->pipe;
2164 const struct intel_wm_level *r =
2165 &intel_crtc->wm.active.wm[0];
2166
2167 if (WARN_ON(!r->enable))
2168 continue;
2169
2170 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2171
2172 results->wm_pipe[pipe] =
2173 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2174 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2175 r->cur_val;
2176 }
2177 }
2178
2179 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2180 * case both are at the same level. Prefer r1 in case they're the same. */
2181 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2182 struct intel_pipe_wm *r1,
2183 struct intel_pipe_wm *r2)
2184 {
2185 int level, max_level = ilk_wm_max_level(dev);
2186 int level1 = 0, level2 = 0;
2187
2188 for (level = 1; level <= max_level; level++) {
2189 if (r1->wm[level].enable)
2190 level1 = level;
2191 if (r2->wm[level].enable)
2192 level2 = level;
2193 }
2194
2195 if (level1 == level2) {
2196 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2197 return r2;
2198 else
2199 return r1;
2200 } else if (level1 > level2) {
2201 return r1;
2202 } else {
2203 return r2;
2204 }
2205 }
2206
2207 /* dirty bits used to track which watermarks need changes */
2208 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2209 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2210 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2211 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2212 #define WM_DIRTY_FBC (1 << 24)
2213 #define WM_DIRTY_DDB (1 << 25)
2214
2215 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2216 const struct ilk_wm_values *old,
2217 const struct ilk_wm_values *new)
2218 {
2219 unsigned int dirty = 0;
2220 enum pipe pipe;
2221 int wm_lp;
2222
2223 for_each_pipe(dev_priv, pipe) {
2224 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2225 dirty |= WM_DIRTY_LINETIME(pipe);
2226 /* Must disable LP1+ watermarks too */
2227 dirty |= WM_DIRTY_LP_ALL;
2228 }
2229
2230 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2231 dirty |= WM_DIRTY_PIPE(pipe);
2232 /* Must disable LP1+ watermarks too */
2233 dirty |= WM_DIRTY_LP_ALL;
2234 }
2235 }
2236
2237 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2238 dirty |= WM_DIRTY_FBC;
2239 /* Must disable LP1+ watermarks too */
2240 dirty |= WM_DIRTY_LP_ALL;
2241 }
2242
2243 if (old->partitioning != new->partitioning) {
2244 dirty |= WM_DIRTY_DDB;
2245 /* Must disable LP1+ watermarks too */
2246 dirty |= WM_DIRTY_LP_ALL;
2247 }
2248
2249 /* LP1+ watermarks already deemed dirty, no need to continue */
2250 if (dirty & WM_DIRTY_LP_ALL)
2251 return dirty;
2252
2253 /* Find the lowest numbered LP1+ watermark in need of an update... */
2254 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2255 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2256 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2257 break;
2258 }
2259
2260 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2261 for (; wm_lp <= 3; wm_lp++)
2262 dirty |= WM_DIRTY_LP(wm_lp);
2263
2264 return dirty;
2265 }
2266
2267 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2268 unsigned int dirty)
2269 {
2270 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2271 bool changed = false;
2272
2273 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2274 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2275 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2276 changed = true;
2277 }
2278 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2279 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2280 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2281 changed = true;
2282 }
2283 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2284 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2285 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2286 changed = true;
2287 }
2288
2289 /*
2290 * Don't touch WM1S_LP_EN here.
2291 * Doing so could cause underruns.
2292 */
2293
2294 return changed;
2295 }
2296
2297 /*
2298 * The spec says we shouldn't write when we don't need, because every write
2299 * causes WMs to be re-evaluated, expending some power.
2300 */
2301 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2302 struct ilk_wm_values *results)
2303 {
2304 struct drm_device *dev = dev_priv->dev;
2305 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2306 unsigned int dirty;
2307 uint32_t val;
2308
2309 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2310 if (!dirty)
2311 return;
2312
2313 _ilk_disable_lp_wm(dev_priv, dirty);
2314
2315 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2316 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2317 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2318 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2319 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2320 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2321
2322 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2323 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2324 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2325 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2326 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2327 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2328
2329 if (dirty & WM_DIRTY_DDB) {
2330 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2331 val = I915_READ(WM_MISC);
2332 if (results->partitioning == INTEL_DDB_PART_1_2)
2333 val &= ~WM_MISC_DATA_PARTITION_5_6;
2334 else
2335 val |= WM_MISC_DATA_PARTITION_5_6;
2336 I915_WRITE(WM_MISC, val);
2337 } else {
2338 val = I915_READ(DISP_ARB_CTL2);
2339 if (results->partitioning == INTEL_DDB_PART_1_2)
2340 val &= ~DISP_DATA_PARTITION_5_6;
2341 else
2342 val |= DISP_DATA_PARTITION_5_6;
2343 I915_WRITE(DISP_ARB_CTL2, val);
2344 }
2345 }
2346
2347 if (dirty & WM_DIRTY_FBC) {
2348 val = I915_READ(DISP_ARB_CTL);
2349 if (results->enable_fbc_wm)
2350 val &= ~DISP_FBC_WM_DIS;
2351 else
2352 val |= DISP_FBC_WM_DIS;
2353 I915_WRITE(DISP_ARB_CTL, val);
2354 }
2355
2356 if (dirty & WM_DIRTY_LP(1) &&
2357 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2358 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2359
2360 if (INTEL_INFO(dev)->gen >= 7) {
2361 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2362 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2363 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2364 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2365 }
2366
2367 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2368 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2369 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2370 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2371 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2372 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2373
2374 dev_priv->wm.hw = *results;
2375 }
2376
2377 static bool ilk_disable_lp_wm(struct drm_device *dev)
2378 {
2379 struct drm_i915_private *dev_priv = dev->dev_private;
2380
2381 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2382 }
2383
2384 /*
2385 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2386 * different active planes.
2387 */
2388
2389 #define SKL_DDB_SIZE 896 /* in blocks */
2390
2391 static void
2392 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2393 struct drm_crtc *for_crtc,
2394 const struct intel_wm_config *config,
2395 const struct skl_pipe_wm_parameters *params,
2396 struct skl_ddb_entry *alloc /* out */)
2397 {
2398 struct drm_crtc *crtc;
2399 unsigned int pipe_size, ddb_size;
2400 int nth_active_pipe;
2401
2402 if (!params->active) {
2403 alloc->start = 0;
2404 alloc->end = 0;
2405 return;
2406 }
2407
2408 ddb_size = SKL_DDB_SIZE;
2409
2410 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2411
2412 nth_active_pipe = 0;
2413 for_each_crtc(dev, crtc) {
2414 if (!intel_crtc_active(crtc))
2415 continue;
2416
2417 if (crtc == for_crtc)
2418 break;
2419
2420 nth_active_pipe++;
2421 }
2422
2423 pipe_size = ddb_size / config->num_pipes_active;
2424 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2425 alloc->end = alloc->start + pipe_size;
2426 }
2427
2428 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2429 {
2430 if (config->num_pipes_active == 1)
2431 return 32;
2432
2433 return 8;
2434 }
2435
2436 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2437 {
2438 entry->start = reg & 0x3ff;
2439 entry->end = (reg >> 16) & 0x3ff;
2440 if (entry->end)
2441 entry->end += 1;
2442 }
2443
2444 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2445 struct skl_ddb_allocation *ddb /* out */)
2446 {
2447 struct drm_device *dev = dev_priv->dev;
2448 enum pipe pipe;
2449 int plane;
2450 u32 val;
2451
2452 for_each_pipe(dev_priv, pipe) {
2453 for_each_plane(pipe, plane) {
2454 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2455 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2456 val);
2457 }
2458
2459 val = I915_READ(CUR_BUF_CFG(pipe));
2460 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2461 }
2462 }
2463
2464 static unsigned int
2465 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
2466 {
2467 return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2468 }
2469
2470 /*
2471 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2472 * a 8192x4096@32bpp framebuffer:
2473 * 3 * 4096 * 8192 * 4 < 2^32
2474 */
2475 static unsigned int
2476 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2477 const struct skl_pipe_wm_parameters *params)
2478 {
2479 unsigned int total_data_rate = 0;
2480 int plane;
2481
2482 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2483 const struct intel_plane_wm_parameters *p;
2484
2485 p = &params->plane[plane];
2486 if (!p->enabled)
2487 continue;
2488
2489 total_data_rate += skl_plane_relative_data_rate(p);
2490 }
2491
2492 return total_data_rate;
2493 }
2494
2495 static void
2496 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2497 const struct intel_wm_config *config,
2498 const struct skl_pipe_wm_parameters *params,
2499 struct skl_ddb_allocation *ddb /* out */)
2500 {
2501 struct drm_device *dev = crtc->dev;
2502 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2503 enum pipe pipe = intel_crtc->pipe;
2504 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2505 uint16_t alloc_size, start, cursor_blocks;
2506 unsigned int total_data_rate;
2507 int plane;
2508
2509 skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2510 alloc_size = skl_ddb_entry_size(alloc);
2511 if (alloc_size == 0) {
2512 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2513 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2514 return;
2515 }
2516
2517 cursor_blocks = skl_cursor_allocation(config);
2518 ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2519 ddb->cursor[pipe].end = alloc->end;
2520
2521 alloc_size -= cursor_blocks;
2522 alloc->end -= cursor_blocks;
2523
2524 /*
2525 * Each active plane get a portion of the remaining space, in
2526 * proportion to the amount of data they need to fetch from memory.
2527 *
2528 * FIXME: we may not allocate every single block here.
2529 */
2530 total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2531
2532 start = alloc->start;
2533 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2534 const struct intel_plane_wm_parameters *p;
2535 unsigned int data_rate;
2536 uint16_t plane_blocks;
2537
2538 p = &params->plane[plane];
2539 if (!p->enabled)
2540 continue;
2541
2542 data_rate = skl_plane_relative_data_rate(p);
2543
2544 /*
2545 * promote the expression to 64 bits to avoid overflowing, the
2546 * result is < available as data_rate / total_data_rate < 1
2547 */
2548 plane_blocks = div_u64((uint64_t)alloc_size * data_rate,
2549 total_data_rate);
2550
2551 ddb->plane[pipe][plane].start = start;
2552 ddb->plane[pipe][plane].end = start + plane_blocks;
2553
2554 start += plane_blocks;
2555 }
2556
2557 }
2558
2559 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2560 {
2561 /* TODO: Take into account the scalers once we support them */
2562 return config->base.adjusted_mode.crtc_clock;
2563 }
2564
2565 /*
2566 * The max latency should be 257 (max the punit can code is 255 and we add 2us
2567 * for the read latency) and bytes_per_pixel should always be <= 8, so that
2568 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2569 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2570 */
2571 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2572 uint32_t latency)
2573 {
2574 uint32_t wm_intermediate_val, ret;
2575
2576 if (latency == 0)
2577 return UINT_MAX;
2578
2579 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel;
2580 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
2581
2582 return ret;
2583 }
2584
2585 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2586 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2587 uint32_t latency)
2588 {
2589 uint32_t ret, plane_bytes_per_line, wm_intermediate_val;
2590
2591 if (latency == 0)
2592 return UINT_MAX;
2593
2594 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2595 wm_intermediate_val = latency * pixel_rate;
2596 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2597 plane_bytes_per_line;
2598
2599 return ret;
2600 }
2601
2602 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
2603 const struct intel_crtc *intel_crtc)
2604 {
2605 struct drm_device *dev = intel_crtc->base.dev;
2606 struct drm_i915_private *dev_priv = dev->dev_private;
2607 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
2608 enum pipe pipe = intel_crtc->pipe;
2609
2610 if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
2611 sizeof(new_ddb->plane[pipe])))
2612 return true;
2613
2614 if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
2615 sizeof(new_ddb->cursor[pipe])))
2616 return true;
2617
2618 return false;
2619 }
2620
2621 static void skl_compute_wm_global_parameters(struct drm_device *dev,
2622 struct intel_wm_config *config)
2623 {
2624 struct drm_crtc *crtc;
2625 struct drm_plane *plane;
2626
2627 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2628 config->num_pipes_active += intel_crtc_active(crtc);
2629
2630 /* FIXME: I don't think we need those two global parameters on SKL */
2631 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2632 struct intel_plane *intel_plane = to_intel_plane(plane);
2633
2634 config->sprites_enabled |= intel_plane->wm.enabled;
2635 config->sprites_scaled |= intel_plane->wm.scaled;
2636 }
2637 }
2638
2639 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
2640 struct skl_pipe_wm_parameters *p)
2641 {
2642 struct drm_device *dev = crtc->dev;
2643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2644 enum pipe pipe = intel_crtc->pipe;
2645 struct drm_plane *plane;
2646 int i = 1; /* Index for sprite planes start */
2647
2648 p->active = intel_crtc_active(crtc);
2649 if (p->active) {
2650 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2651 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2652
2653 /*
2654 * For now, assume primary and cursor planes are always enabled.
2655 */
2656 p->plane[0].enabled = true;
2657 p->plane[0].bytes_per_pixel =
2658 crtc->primary->fb->bits_per_pixel / 8;
2659 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
2660 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2661
2662 p->cursor.enabled = true;
2663 p->cursor.bytes_per_pixel = 4;
2664 p->cursor.horiz_pixels = intel_crtc->cursor_width ?
2665 intel_crtc->cursor_width : 64;
2666 }
2667
2668 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2669 struct intel_plane *intel_plane = to_intel_plane(plane);
2670
2671 if (intel_plane->pipe == pipe &&
2672 plane->type == DRM_PLANE_TYPE_OVERLAY)
2673 p->plane[i++] = intel_plane->wm;
2674 }
2675 }
2676
2677 static bool skl_compute_plane_wm(struct skl_pipe_wm_parameters *p,
2678 struct intel_plane_wm_parameters *p_params,
2679 uint16_t ddb_allocation,
2680 uint32_t mem_value,
2681 uint16_t *out_blocks, /* out */
2682 uint8_t *out_lines /* out */)
2683 {
2684 uint32_t method1, method2, plane_bytes_per_line, res_blocks, res_lines;
2685 uint32_t result_bytes;
2686
2687 if (mem_value == 0 || !p->active || !p_params->enabled)
2688 return false;
2689
2690 method1 = skl_wm_method1(p->pixel_rate,
2691 p_params->bytes_per_pixel,
2692 mem_value);
2693 method2 = skl_wm_method2(p->pixel_rate,
2694 p->pipe_htotal,
2695 p_params->horiz_pixels,
2696 p_params->bytes_per_pixel,
2697 mem_value);
2698
2699 plane_bytes_per_line = p_params->horiz_pixels *
2700 p_params->bytes_per_pixel;
2701
2702 /* For now xtile and linear */
2703 if (((ddb_allocation * 512) / plane_bytes_per_line) >= 1)
2704 result_bytes = min(method1, method2);
2705 else
2706 result_bytes = method1;
2707
2708 res_blocks = DIV_ROUND_UP(result_bytes, 512) + 1;
2709 res_lines = DIV_ROUND_UP(result_bytes, plane_bytes_per_line);
2710
2711 if (res_blocks > ddb_allocation || res_lines > 31)
2712 return false;
2713
2714 *out_blocks = res_blocks;
2715 *out_lines = res_lines;
2716
2717 return true;
2718 }
2719
2720 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
2721 struct skl_ddb_allocation *ddb,
2722 struct skl_pipe_wm_parameters *p,
2723 enum pipe pipe,
2724 int level,
2725 int num_planes,
2726 struct skl_wm_level *result)
2727 {
2728 uint16_t latency = dev_priv->wm.skl_latency[level];
2729 uint16_t ddb_blocks;
2730 int i;
2731
2732 for (i = 0; i < num_planes; i++) {
2733 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
2734
2735 result->plane_en[i] = skl_compute_plane_wm(p, &p->plane[i],
2736 ddb_blocks,
2737 latency,
2738 &result->plane_res_b[i],
2739 &result->plane_res_l[i]);
2740 }
2741
2742 ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2743 result->cursor_en = skl_compute_plane_wm(p, &p->cursor, ddb_blocks,
2744 latency, &result->cursor_res_b,
2745 &result->cursor_res_l);
2746 }
2747
2748 static uint32_t
2749 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
2750 {
2751 if (!intel_crtc_active(crtc))
2752 return 0;
2753
2754 return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
2755
2756 }
2757
2758 static void skl_compute_transition_wm(struct drm_crtc *crtc,
2759 struct skl_pipe_wm_parameters *params,
2760 struct skl_wm_level *trans_wm /* out */)
2761 {
2762 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2763 int i;
2764
2765 if (!params->active)
2766 return;
2767
2768 /* Until we know more, just disable transition WMs */
2769 for (i = 0; i < intel_num_planes(intel_crtc); i++)
2770 trans_wm->plane_en[i] = false;
2771 trans_wm->cursor_en = false;
2772 }
2773
2774 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
2775 struct skl_ddb_allocation *ddb,
2776 struct skl_pipe_wm_parameters *params,
2777 struct skl_pipe_wm *pipe_wm)
2778 {
2779 struct drm_device *dev = crtc->dev;
2780 const struct drm_i915_private *dev_priv = dev->dev_private;
2781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2782 int level, max_level = ilk_wm_max_level(dev);
2783
2784 for (level = 0; level <= max_level; level++) {
2785 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
2786 level, intel_num_planes(intel_crtc),
2787 &pipe_wm->wm[level]);
2788 }
2789 pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
2790
2791 skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
2792 }
2793
2794 static void skl_compute_wm_results(struct drm_device *dev,
2795 struct skl_pipe_wm_parameters *p,
2796 struct skl_pipe_wm *p_wm,
2797 struct skl_wm_values *r,
2798 struct intel_crtc *intel_crtc)
2799 {
2800 int level, max_level = ilk_wm_max_level(dev);
2801 enum pipe pipe = intel_crtc->pipe;
2802 uint32_t temp;
2803 int i;
2804
2805 for (level = 0; level <= max_level; level++) {
2806 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
2807 temp = 0;
2808
2809 temp |= p_wm->wm[level].plane_res_l[i] <<
2810 PLANE_WM_LINES_SHIFT;
2811 temp |= p_wm->wm[level].plane_res_b[i];
2812 if (p_wm->wm[level].plane_en[i])
2813 temp |= PLANE_WM_EN;
2814
2815 r->plane[pipe][i][level] = temp;
2816 }
2817
2818 temp = 0;
2819
2820 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
2821 temp |= p_wm->wm[level].cursor_res_b;
2822
2823 if (p_wm->wm[level].cursor_en)
2824 temp |= PLANE_WM_EN;
2825
2826 r->cursor[pipe][level] = temp;
2827
2828 }
2829
2830 /* transition WMs */
2831 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
2832 temp = 0;
2833 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
2834 temp |= p_wm->trans_wm.plane_res_b[i];
2835 if (p_wm->trans_wm.plane_en[i])
2836 temp |= PLANE_WM_EN;
2837
2838 r->plane_trans[pipe][i] = temp;
2839 }
2840
2841 temp = 0;
2842 temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
2843 temp |= p_wm->trans_wm.cursor_res_b;
2844 if (p_wm->trans_wm.cursor_en)
2845 temp |= PLANE_WM_EN;
2846
2847 r->cursor_trans[pipe] = temp;
2848
2849 r->wm_linetime[pipe] = p_wm->linetime;
2850 }
2851
2852 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
2853 const struct skl_ddb_entry *entry)
2854 {
2855 if (entry->end)
2856 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
2857 else
2858 I915_WRITE(reg, 0);
2859 }
2860
2861 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
2862 const struct skl_wm_values *new)
2863 {
2864 struct drm_device *dev = dev_priv->dev;
2865 struct intel_crtc *crtc;
2866
2867 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
2868 int i, level, max_level = ilk_wm_max_level(dev);
2869 enum pipe pipe = crtc->pipe;
2870
2871 if (!new->dirty[pipe])
2872 continue;
2873
2874 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
2875
2876 for (level = 0; level <= max_level; level++) {
2877 for (i = 0; i < intel_num_planes(crtc); i++)
2878 I915_WRITE(PLANE_WM(pipe, i, level),
2879 new->plane[pipe][i][level]);
2880 I915_WRITE(CUR_WM(pipe, level),
2881 new->cursor[pipe][level]);
2882 }
2883 for (i = 0; i < intel_num_planes(crtc); i++)
2884 I915_WRITE(PLANE_WM_TRANS(pipe, i),
2885 new->plane_trans[pipe][i]);
2886 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
2887
2888 for (i = 0; i < intel_num_planes(crtc); i++)
2889 skl_ddb_entry_write(dev_priv,
2890 PLANE_BUF_CFG(pipe, i),
2891 &new->ddb.plane[pipe][i]);
2892
2893 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
2894 &new->ddb.cursor[pipe]);
2895 }
2896 }
2897
2898 /*
2899 * When setting up a new DDB allocation arrangement, we need to correctly
2900 * sequence the times at which the new allocations for the pipes are taken into
2901 * account or we'll have pipes fetching from space previously allocated to
2902 * another pipe.
2903 *
2904 * Roughly the sequence looks like:
2905 * 1. re-allocate the pipe(s) with the allocation being reduced and not
2906 * overlapping with a previous light-up pipe (another way to put it is:
2907 * pipes with their new allocation strickly included into their old ones).
2908 * 2. re-allocate the other pipes that get their allocation reduced
2909 * 3. allocate the pipes having their allocation increased
2910 *
2911 * Steps 1. and 2. are here to take care of the following case:
2912 * - Initially DDB looks like this:
2913 * | B | C |
2914 * - enable pipe A.
2915 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
2916 * allocation
2917 * | A | B | C |
2918 *
2919 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
2920 */
2921
2922 static void
2923 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
2924 {
2925 struct drm_device *dev = dev_priv->dev;
2926 int plane;
2927
2928 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
2929
2930 for_each_plane(pipe, plane) {
2931 I915_WRITE(PLANE_SURF(pipe, plane),
2932 I915_READ(PLANE_SURF(pipe, plane)));
2933 }
2934 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
2935 }
2936
2937 static bool
2938 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
2939 const struct skl_ddb_allocation *new,
2940 enum pipe pipe)
2941 {
2942 uint16_t old_size, new_size;
2943
2944 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
2945 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
2946
2947 return old_size != new_size &&
2948 new->pipe[pipe].start >= old->pipe[pipe].start &&
2949 new->pipe[pipe].end <= old->pipe[pipe].end;
2950 }
2951
2952 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
2953 struct skl_wm_values *new_values)
2954 {
2955 struct drm_device *dev = dev_priv->dev;
2956 struct skl_ddb_allocation *cur_ddb, *new_ddb;
2957 bool reallocated[I915_MAX_PIPES] = {false, false, false};
2958 struct intel_crtc *crtc;
2959 enum pipe pipe;
2960
2961 new_ddb = &new_values->ddb;
2962 cur_ddb = &dev_priv->wm.skl_hw.ddb;
2963
2964 /*
2965 * First pass: flush the pipes with the new allocation contained into
2966 * the old space.
2967 *
2968 * We'll wait for the vblank on those pipes to ensure we can safely
2969 * re-allocate the freed space without this pipe fetching from it.
2970 */
2971 for_each_intel_crtc(dev, crtc) {
2972 if (!crtc->active)
2973 continue;
2974
2975 pipe = crtc->pipe;
2976
2977 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
2978 continue;
2979
2980 skl_wm_flush_pipe(dev_priv, pipe, 1);
2981 intel_wait_for_vblank(dev, pipe);
2982
2983 reallocated[pipe] = true;
2984 }
2985
2986
2987 /*
2988 * Second pass: flush the pipes that are having their allocation
2989 * reduced, but overlapping with a previous allocation.
2990 *
2991 * Here as well we need to wait for the vblank to make sure the freed
2992 * space is not used anymore.
2993 */
2994 for_each_intel_crtc(dev, crtc) {
2995 if (!crtc->active)
2996 continue;
2997
2998 pipe = crtc->pipe;
2999
3000 if (reallocated[pipe])
3001 continue;
3002
3003 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3004 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3005 skl_wm_flush_pipe(dev_priv, pipe, 2);
3006 intel_wait_for_vblank(dev, pipe);
3007 reallocated[pipe] = true;
3008 }
3009 }
3010
3011 /*
3012 * Third pass: flush the pipes that got more space allocated.
3013 *
3014 * We don't need to actively wait for the update here, next vblank
3015 * will just get more DDB space with the correct WM values.
3016 */
3017 for_each_intel_crtc(dev, crtc) {
3018 if (!crtc->active)
3019 continue;
3020
3021 pipe = crtc->pipe;
3022
3023 /*
3024 * At this point, only the pipes more space than before are
3025 * left to re-allocate.
3026 */
3027 if (reallocated[pipe])
3028 continue;
3029
3030 skl_wm_flush_pipe(dev_priv, pipe, 3);
3031 }
3032 }
3033
3034 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3035 struct skl_pipe_wm_parameters *params,
3036 struct intel_wm_config *config,
3037 struct skl_ddb_allocation *ddb, /* out */
3038 struct skl_pipe_wm *pipe_wm /* out */)
3039 {
3040 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3041
3042 skl_compute_wm_pipe_parameters(crtc, params);
3043 skl_allocate_pipe_ddb(crtc, config, params, ddb);
3044 skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3045
3046 if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3047 return false;
3048
3049 intel_crtc->wm.skl_active = *pipe_wm;
3050 return true;
3051 }
3052
3053 static void skl_update_other_pipe_wm(struct drm_device *dev,
3054 struct drm_crtc *crtc,
3055 struct intel_wm_config *config,
3056 struct skl_wm_values *r)
3057 {
3058 struct intel_crtc *intel_crtc;
3059 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3060
3061 /*
3062 * If the WM update hasn't changed the allocation for this_crtc (the
3063 * crtc we are currently computing the new WM values for), other
3064 * enabled crtcs will keep the same allocation and we don't need to
3065 * recompute anything for them.
3066 */
3067 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3068 return;
3069
3070 /*
3071 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3072 * other active pipes need new DDB allocation and WM values.
3073 */
3074 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3075 base.head) {
3076 struct skl_pipe_wm_parameters params = {};
3077 struct skl_pipe_wm pipe_wm = {};
3078 bool wm_changed;
3079
3080 if (this_crtc->pipe == intel_crtc->pipe)
3081 continue;
3082
3083 if (!intel_crtc->active)
3084 continue;
3085
3086 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3087 &params, config,
3088 &r->ddb, &pipe_wm);
3089
3090 /*
3091 * If we end up re-computing the other pipe WM values, it's
3092 * because it was really needed, so we expect the WM values to
3093 * be different.
3094 */
3095 WARN_ON(!wm_changed);
3096
3097 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3098 r->dirty[intel_crtc->pipe] = true;
3099 }
3100 }
3101
3102 static void skl_update_wm(struct drm_crtc *crtc)
3103 {
3104 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3105 struct drm_device *dev = crtc->dev;
3106 struct drm_i915_private *dev_priv = dev->dev_private;
3107 struct skl_pipe_wm_parameters params = {};
3108 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3109 struct skl_pipe_wm pipe_wm = {};
3110 struct intel_wm_config config = {};
3111
3112 memset(results, 0, sizeof(*results));
3113
3114 skl_compute_wm_global_parameters(dev, &config);
3115
3116 if (!skl_update_pipe_wm(crtc, &params, &config,
3117 &results->ddb, &pipe_wm))
3118 return;
3119
3120 skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3121 results->dirty[intel_crtc->pipe] = true;
3122
3123 skl_update_other_pipe_wm(dev, crtc, &config, results);
3124 skl_write_wm_values(dev_priv, results);
3125 skl_flush_wm_values(dev_priv, results);
3126
3127 /* store the new configuration */
3128 dev_priv->wm.skl_hw = *results;
3129 }
3130
3131 static void
3132 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3133 uint32_t sprite_width, uint32_t sprite_height,
3134 int pixel_size, bool enabled, bool scaled)
3135 {
3136 struct intel_plane *intel_plane = to_intel_plane(plane);
3137
3138 intel_plane->wm.enabled = enabled;
3139 intel_plane->wm.scaled = scaled;
3140 intel_plane->wm.horiz_pixels = sprite_width;
3141 intel_plane->wm.vert_pixels = sprite_height;
3142 intel_plane->wm.bytes_per_pixel = pixel_size;
3143
3144 skl_update_wm(crtc);
3145 }
3146
3147 static void ilk_update_wm(struct drm_crtc *crtc)
3148 {
3149 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3150 struct drm_device *dev = crtc->dev;
3151 struct drm_i915_private *dev_priv = dev->dev_private;
3152 struct ilk_wm_maximums max;
3153 struct ilk_pipe_wm_parameters params = {};
3154 struct ilk_wm_values results = {};
3155 enum intel_ddb_partitioning partitioning;
3156 struct intel_pipe_wm pipe_wm = {};
3157 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3158 struct intel_wm_config config = {};
3159
3160 ilk_compute_wm_parameters(crtc, &params);
3161
3162 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3163
3164 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3165 return;
3166
3167 intel_crtc->wm.active = pipe_wm;
3168
3169 ilk_compute_wm_config(dev, &config);
3170
3171 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3172 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3173
3174 /* 5/6 split only in single pipe config on IVB+ */
3175 if (INTEL_INFO(dev)->gen >= 7 &&
3176 config.num_pipes_active == 1 && config.sprites_enabled) {
3177 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3178 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3179
3180 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3181 } else {
3182 best_lp_wm = &lp_wm_1_2;
3183 }
3184
3185 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3186 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3187
3188 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3189
3190 ilk_write_wm_values(dev_priv, &results);
3191 }
3192
3193 static void
3194 ilk_update_sprite_wm(struct drm_plane *plane,
3195 struct drm_crtc *crtc,
3196 uint32_t sprite_width, uint32_t sprite_height,
3197 int pixel_size, bool enabled, bool scaled)
3198 {
3199 struct drm_device *dev = plane->dev;
3200 struct intel_plane *intel_plane = to_intel_plane(plane);
3201
3202 intel_plane->wm.enabled = enabled;
3203 intel_plane->wm.scaled = scaled;
3204 intel_plane->wm.horiz_pixels = sprite_width;
3205 intel_plane->wm.vert_pixels = sprite_width;
3206 intel_plane->wm.bytes_per_pixel = pixel_size;
3207
3208 /*
3209 * IVB workaround: must disable low power watermarks for at least
3210 * one frame before enabling scaling. LP watermarks can be re-enabled
3211 * when scaling is disabled.
3212 *
3213 * WaCxSRDisabledForSpriteScaling:ivb
3214 */
3215 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3216 intel_wait_for_vblank(dev, intel_plane->pipe);
3217
3218 ilk_update_wm(crtc);
3219 }
3220
3221 static void skl_pipe_wm_active_state(uint32_t val,
3222 struct skl_pipe_wm *active,
3223 bool is_transwm,
3224 bool is_cursor,
3225 int i,
3226 int level)
3227 {
3228 bool is_enabled = (val & PLANE_WM_EN) != 0;
3229
3230 if (!is_transwm) {
3231 if (!is_cursor) {
3232 active->wm[level].plane_en[i] = is_enabled;
3233 active->wm[level].plane_res_b[i] =
3234 val & PLANE_WM_BLOCKS_MASK;
3235 active->wm[level].plane_res_l[i] =
3236 (val >> PLANE_WM_LINES_SHIFT) &
3237 PLANE_WM_LINES_MASK;
3238 } else {
3239 active->wm[level].cursor_en = is_enabled;
3240 active->wm[level].cursor_res_b =
3241 val & PLANE_WM_BLOCKS_MASK;
3242 active->wm[level].cursor_res_l =
3243 (val >> PLANE_WM_LINES_SHIFT) &
3244 PLANE_WM_LINES_MASK;
3245 }
3246 } else {
3247 if (!is_cursor) {
3248 active->trans_wm.plane_en[i] = is_enabled;
3249 active->trans_wm.plane_res_b[i] =
3250 val & PLANE_WM_BLOCKS_MASK;
3251 active->trans_wm.plane_res_l[i] =
3252 (val >> PLANE_WM_LINES_SHIFT) &
3253 PLANE_WM_LINES_MASK;
3254 } else {
3255 active->trans_wm.cursor_en = is_enabled;
3256 active->trans_wm.cursor_res_b =
3257 val & PLANE_WM_BLOCKS_MASK;
3258 active->trans_wm.cursor_res_l =
3259 (val >> PLANE_WM_LINES_SHIFT) &
3260 PLANE_WM_LINES_MASK;
3261 }
3262 }
3263 }
3264
3265 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3266 {
3267 struct drm_device *dev = crtc->dev;
3268 struct drm_i915_private *dev_priv = dev->dev_private;
3269 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3271 struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3272 enum pipe pipe = intel_crtc->pipe;
3273 int level, i, max_level;
3274 uint32_t temp;
3275
3276 max_level = ilk_wm_max_level(dev);
3277
3278 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3279
3280 for (level = 0; level <= max_level; level++) {
3281 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3282 hw->plane[pipe][i][level] =
3283 I915_READ(PLANE_WM(pipe, i, level));
3284 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3285 }
3286
3287 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3288 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3289 hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3290
3291 if (!intel_crtc_active(crtc))
3292 return;
3293
3294 hw->dirty[pipe] = true;
3295
3296 active->linetime = hw->wm_linetime[pipe];
3297
3298 for (level = 0; level <= max_level; level++) {
3299 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3300 temp = hw->plane[pipe][i][level];
3301 skl_pipe_wm_active_state(temp, active, false,
3302 false, i, level);
3303 }
3304 temp = hw->cursor[pipe][level];
3305 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3306 }
3307
3308 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3309 temp = hw->plane_trans[pipe][i];
3310 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3311 }
3312
3313 temp = hw->cursor_trans[pipe];
3314 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3315 }
3316
3317 void skl_wm_get_hw_state(struct drm_device *dev)
3318 {
3319 struct drm_i915_private *dev_priv = dev->dev_private;
3320 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3321 struct drm_crtc *crtc;
3322
3323 skl_ddb_get_hw_state(dev_priv, ddb);
3324 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3325 skl_pipe_wm_get_hw_state(crtc);
3326 }
3327
3328 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3329 {
3330 struct drm_device *dev = crtc->dev;
3331 struct drm_i915_private *dev_priv = dev->dev_private;
3332 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3333 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3334 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3335 enum pipe pipe = intel_crtc->pipe;
3336 static const unsigned int wm0_pipe_reg[] = {
3337 [PIPE_A] = WM0_PIPEA_ILK,
3338 [PIPE_B] = WM0_PIPEB_ILK,
3339 [PIPE_C] = WM0_PIPEC_IVB,
3340 };
3341
3342 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3343 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3344 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3345
3346 active->pipe_enabled = intel_crtc_active(crtc);
3347
3348 if (active->pipe_enabled) {
3349 u32 tmp = hw->wm_pipe[pipe];
3350
3351 /*
3352 * For active pipes LP0 watermark is marked as
3353 * enabled, and LP1+ watermaks as disabled since
3354 * we can't really reverse compute them in case
3355 * multiple pipes are active.
3356 */
3357 active->wm[0].enable = true;
3358 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3359 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3360 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3361 active->linetime = hw->wm_linetime[pipe];
3362 } else {
3363 int level, max_level = ilk_wm_max_level(dev);
3364
3365 /*
3366 * For inactive pipes, all watermark levels
3367 * should be marked as enabled but zeroed,
3368 * which is what we'd compute them to.
3369 */
3370 for (level = 0; level <= max_level; level++)
3371 active->wm[level].enable = true;
3372 }
3373 }
3374
3375 void ilk_wm_get_hw_state(struct drm_device *dev)
3376 {
3377 struct drm_i915_private *dev_priv = dev->dev_private;
3378 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3379 struct drm_crtc *crtc;
3380
3381 for_each_crtc(dev, crtc)
3382 ilk_pipe_wm_get_hw_state(crtc);
3383
3384 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3385 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3386 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3387
3388 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3389 if (INTEL_INFO(dev)->gen >= 7) {
3390 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3391 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3392 }
3393
3394 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3395 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3396 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3397 else if (IS_IVYBRIDGE(dev))
3398 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3399 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3400
3401 hw->enable_fbc_wm =
3402 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3403 }
3404
3405 /**
3406 * intel_update_watermarks - update FIFO watermark values based on current modes
3407 *
3408 * Calculate watermark values for the various WM regs based on current mode
3409 * and plane configuration.
3410 *
3411 * There are several cases to deal with here:
3412 * - normal (i.e. non-self-refresh)
3413 * - self-refresh (SR) mode
3414 * - lines are large relative to FIFO size (buffer can hold up to 2)
3415 * - lines are small relative to FIFO size (buffer can hold more than 2
3416 * lines), so need to account for TLB latency
3417 *
3418 * The normal calculation is:
3419 * watermark = dotclock * bytes per pixel * latency
3420 * where latency is platform & configuration dependent (we assume pessimal
3421 * values here).
3422 *
3423 * The SR calculation is:
3424 * watermark = (trunc(latency/line time)+1) * surface width *
3425 * bytes per pixel
3426 * where
3427 * line time = htotal / dotclock
3428 * surface width = hdisplay for normal plane and 64 for cursor
3429 * and latency is assumed to be high, as above.
3430 *
3431 * The final value programmed to the register should always be rounded up,
3432 * and include an extra 2 entries to account for clock crossings.
3433 *
3434 * We don't use the sprite, so we can ignore that. And on Crestline we have
3435 * to set the non-SR watermarks to 8.
3436 */
3437 void intel_update_watermarks(struct drm_crtc *crtc)
3438 {
3439 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3440
3441 if (dev_priv->display.update_wm)
3442 dev_priv->display.update_wm(crtc);
3443 }
3444
3445 void intel_update_sprite_watermarks(struct drm_plane *plane,
3446 struct drm_crtc *crtc,
3447 uint32_t sprite_width,
3448 uint32_t sprite_height,
3449 int pixel_size,
3450 bool enabled, bool scaled)
3451 {
3452 struct drm_i915_private *dev_priv = plane->dev->dev_private;
3453
3454 if (dev_priv->display.update_sprite_wm)
3455 dev_priv->display.update_sprite_wm(plane, crtc,
3456 sprite_width, sprite_height,
3457 pixel_size, enabled, scaled);
3458 }
3459
3460 static struct drm_i915_gem_object *
3461 intel_alloc_context_page(struct drm_device *dev)
3462 {
3463 struct drm_i915_gem_object *ctx;
3464 int ret;
3465
3466 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3467
3468 ctx = i915_gem_alloc_object(dev, 4096);
3469 if (!ctx) {
3470 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3471 return NULL;
3472 }
3473
3474 ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3475 if (ret) {
3476 DRM_ERROR("failed to pin power context: %d\n", ret);
3477 goto err_unref;
3478 }
3479
3480 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3481 if (ret) {
3482 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3483 goto err_unpin;
3484 }
3485
3486 return ctx;
3487
3488 err_unpin:
3489 i915_gem_object_ggtt_unpin(ctx);
3490 err_unref:
3491 drm_gem_object_unreference(&ctx->base);
3492 return NULL;
3493 }
3494
3495 /**
3496 * Lock protecting IPS related data structures
3497 */
3498 DEFINE_SPINLOCK(mchdev_lock);
3499
3500 /* Global for IPS driver to get at the current i915 device. Protected by
3501 * mchdev_lock. */
3502 static struct drm_i915_private *i915_mch_dev;
3503
3504 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3505 {
3506 struct drm_i915_private *dev_priv = dev->dev_private;
3507 u16 rgvswctl;
3508
3509 assert_spin_locked(&mchdev_lock);
3510
3511 rgvswctl = I915_READ16(MEMSWCTL);
3512 if (rgvswctl & MEMCTL_CMD_STS) {
3513 DRM_DEBUG("gpu busy, RCS change rejected\n");
3514 return false; /* still busy with another command */
3515 }
3516
3517 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3518 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3519 I915_WRITE16(MEMSWCTL, rgvswctl);
3520 POSTING_READ16(MEMSWCTL);
3521
3522 rgvswctl |= MEMCTL_CMD_STS;
3523 I915_WRITE16(MEMSWCTL, rgvswctl);
3524
3525 return true;
3526 }
3527
3528 static void ironlake_enable_drps(struct drm_device *dev)
3529 {
3530 struct drm_i915_private *dev_priv = dev->dev_private;
3531 u32 rgvmodectl = I915_READ(MEMMODECTL);
3532 u8 fmax, fmin, fstart, vstart;
3533
3534 spin_lock_irq(&mchdev_lock);
3535
3536 /* Enable temp reporting */
3537 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3538 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3539
3540 /* 100ms RC evaluation intervals */
3541 I915_WRITE(RCUPEI, 100000);
3542 I915_WRITE(RCDNEI, 100000);
3543
3544 /* Set max/min thresholds to 90ms and 80ms respectively */
3545 I915_WRITE(RCBMAXAVG, 90000);
3546 I915_WRITE(RCBMINAVG, 80000);
3547
3548 I915_WRITE(MEMIHYST, 1);
3549
3550 /* Set up min, max, and cur for interrupt handling */
3551 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3552 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3553 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3554 MEMMODE_FSTART_SHIFT;
3555
3556 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3557 PXVFREQ_PX_SHIFT;
3558
3559 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3560 dev_priv->ips.fstart = fstart;
3561
3562 dev_priv->ips.max_delay = fstart;
3563 dev_priv->ips.min_delay = fmin;
3564 dev_priv->ips.cur_delay = fstart;
3565
3566 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3567 fmax, fmin, fstart);
3568
3569 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3570
3571 /*
3572 * Interrupts will be enabled in ironlake_irq_postinstall
3573 */
3574
3575 I915_WRITE(VIDSTART, vstart);
3576 POSTING_READ(VIDSTART);
3577
3578 rgvmodectl |= MEMMODE_SWMODE_EN;
3579 I915_WRITE(MEMMODECTL, rgvmodectl);
3580
3581 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3582 DRM_ERROR("stuck trying to change perf mode\n");
3583 mdelay(1);
3584
3585 ironlake_set_drps(dev, fstart);
3586
3587 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3588 I915_READ(0x112e0);
3589 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3590 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3591 dev_priv->ips.last_time2 = ktime_get_raw_ns();
3592
3593 spin_unlock_irq(&mchdev_lock);
3594 }
3595
3596 static void ironlake_disable_drps(struct drm_device *dev)
3597 {
3598 struct drm_i915_private *dev_priv = dev->dev_private;
3599 u16 rgvswctl;
3600
3601 spin_lock_irq(&mchdev_lock);
3602
3603 rgvswctl = I915_READ16(MEMSWCTL);
3604
3605 /* Ack interrupts, disable EFC interrupt */
3606 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3607 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3608 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3609 I915_WRITE(DEIIR, DE_PCU_EVENT);
3610 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3611
3612 /* Go back to the starting frequency */
3613 ironlake_set_drps(dev, dev_priv->ips.fstart);
3614 mdelay(1);
3615 rgvswctl |= MEMCTL_CMD_STS;
3616 I915_WRITE(MEMSWCTL, rgvswctl);
3617 mdelay(1);
3618
3619 spin_unlock_irq(&mchdev_lock);
3620 }
3621
3622 /* There's a funny hw issue where the hw returns all 0 when reading from
3623 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3624 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3625 * all limits and the gpu stuck at whatever frequency it is at atm).
3626 */
3627 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3628 {
3629 u32 limits;
3630
3631 /* Only set the down limit when we've reached the lowest level to avoid
3632 * getting more interrupts, otherwise leave this clear. This prevents a
3633 * race in the hw when coming out of rc6: There's a tiny window where
3634 * the hw runs at the minimal clock before selecting the desired
3635 * frequency, if the down threshold expires in that window we will not
3636 * receive a down interrupt. */
3637 limits = dev_priv->rps.max_freq_softlimit << 24;
3638 if (val <= dev_priv->rps.min_freq_softlimit)
3639 limits |= dev_priv->rps.min_freq_softlimit << 16;
3640
3641 return limits;
3642 }
3643
3644 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3645 {
3646 int new_power;
3647
3648 new_power = dev_priv->rps.power;
3649 switch (dev_priv->rps.power) {
3650 case LOW_POWER:
3651 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3652 new_power = BETWEEN;
3653 break;
3654
3655 case BETWEEN:
3656 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3657 new_power = LOW_POWER;
3658 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3659 new_power = HIGH_POWER;
3660 break;
3661
3662 case HIGH_POWER:
3663 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3664 new_power = BETWEEN;
3665 break;
3666 }
3667 /* Max/min bins are special */
3668 if (val == dev_priv->rps.min_freq_softlimit)
3669 new_power = LOW_POWER;
3670 if (val == dev_priv->rps.max_freq_softlimit)
3671 new_power = HIGH_POWER;
3672 if (new_power == dev_priv->rps.power)
3673 return;
3674
3675 /* Note the units here are not exactly 1us, but 1280ns. */
3676 switch (new_power) {
3677 case LOW_POWER:
3678 /* Upclock if more than 95% busy over 16ms */
3679 I915_WRITE(GEN6_RP_UP_EI, 12500);
3680 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3681
3682 /* Downclock if less than 85% busy over 32ms */
3683 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3684 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3685
3686 I915_WRITE(GEN6_RP_CONTROL,
3687 GEN6_RP_MEDIA_TURBO |
3688 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3689 GEN6_RP_MEDIA_IS_GFX |
3690 GEN6_RP_ENABLE |
3691 GEN6_RP_UP_BUSY_AVG |
3692 GEN6_RP_DOWN_IDLE_AVG);
3693 break;
3694
3695 case BETWEEN:
3696 /* Upclock if more than 90% busy over 13ms */
3697 I915_WRITE(GEN6_RP_UP_EI, 10250);
3698 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3699
3700 /* Downclock if less than 75% busy over 32ms */
3701 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3702 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3703
3704 I915_WRITE(GEN6_RP_CONTROL,
3705 GEN6_RP_MEDIA_TURBO |
3706 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3707 GEN6_RP_MEDIA_IS_GFX |
3708 GEN6_RP_ENABLE |
3709 GEN6_RP_UP_BUSY_AVG |
3710 GEN6_RP_DOWN_IDLE_AVG);
3711 break;
3712
3713 case HIGH_POWER:
3714 /* Upclock if more than 85% busy over 10ms */
3715 I915_WRITE(GEN6_RP_UP_EI, 8000);
3716 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3717
3718 /* Downclock if less than 60% busy over 32ms */
3719 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3720 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3721
3722 I915_WRITE(GEN6_RP_CONTROL,
3723 GEN6_RP_MEDIA_TURBO |
3724 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3725 GEN6_RP_MEDIA_IS_GFX |
3726 GEN6_RP_ENABLE |
3727 GEN6_RP_UP_BUSY_AVG |
3728 GEN6_RP_DOWN_IDLE_AVG);
3729 break;
3730 }
3731
3732 dev_priv->rps.power = new_power;
3733 dev_priv->rps.last_adj = 0;
3734 }
3735
3736 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3737 {
3738 u32 mask = 0;
3739
3740 if (val > dev_priv->rps.min_freq_softlimit)
3741 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3742 if (val < dev_priv->rps.max_freq_softlimit)
3743 mask |= GEN6_PM_RP_UP_THRESHOLD;
3744
3745 mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3746 mask &= dev_priv->pm_rps_events;
3747
3748 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3749 }
3750
3751 /* gen6_set_rps is called to update the frequency request, but should also be
3752 * called when the range (min_delay and max_delay) is modified so that we can
3753 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3754 void gen6_set_rps(struct drm_device *dev, u8 val)
3755 {
3756 struct drm_i915_private *dev_priv = dev->dev_private;
3757
3758 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3759 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3760 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3761
3762 /* min/max delay may still have been modified so be sure to
3763 * write the limits value.
3764 */
3765 if (val != dev_priv->rps.cur_freq) {
3766 gen6_set_rps_thresholds(dev_priv, val);
3767
3768 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3769 I915_WRITE(GEN6_RPNSWREQ,
3770 HSW_FREQUENCY(val));
3771 else
3772 I915_WRITE(GEN6_RPNSWREQ,
3773 GEN6_FREQUENCY(val) |
3774 GEN6_OFFSET(0) |
3775 GEN6_AGGRESSIVE_TURBO);
3776 }
3777
3778 /* Make sure we continue to get interrupts
3779 * until we hit the minimum or maximum frequencies.
3780 */
3781 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3782 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3783
3784 POSTING_READ(GEN6_RPNSWREQ);
3785
3786 dev_priv->rps.cur_freq = val;
3787 trace_intel_gpu_freq_change(val * 50);
3788 }
3789
3790 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3791 *
3792 * * If Gfx is Idle, then
3793 * 1. Mask Turbo interrupts
3794 * 2. Bring up Gfx clock
3795 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3796 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3797 * 5. Unmask Turbo interrupts
3798 */
3799 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3800 {
3801 struct drm_device *dev = dev_priv->dev;
3802
3803 /* Latest VLV doesn't need to force the gfx clock */
3804 if (dev->pdev->revision >= 0xd) {
3805 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3806 return;
3807 }
3808
3809 /*
3810 * When we are idle. Drop to min voltage state.
3811 */
3812
3813 if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3814 return;
3815
3816 /* Mask turbo interrupt so that they will not come in between */
3817 I915_WRITE(GEN6_PMINTRMSK,
3818 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
3819
3820 vlv_force_gfx_clock(dev_priv, true);
3821
3822 dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3823
3824 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3825 dev_priv->rps.min_freq_softlimit);
3826
3827 if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3828 & GENFREQSTATUS) == 0, 100))
3829 DRM_ERROR("timed out waiting for Punit\n");
3830
3831 vlv_force_gfx_clock(dev_priv, false);
3832
3833 I915_WRITE(GEN6_PMINTRMSK,
3834 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3835 }
3836
3837 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3838 {
3839 struct drm_device *dev = dev_priv->dev;
3840
3841 mutex_lock(&dev_priv->rps.hw_lock);
3842 if (dev_priv->rps.enabled) {
3843 if (IS_CHERRYVIEW(dev))
3844 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3845 else if (IS_VALLEYVIEW(dev))
3846 vlv_set_rps_idle(dev_priv);
3847 else
3848 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3849 dev_priv->rps.last_adj = 0;
3850 }
3851 mutex_unlock(&dev_priv->rps.hw_lock);
3852 }
3853
3854 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3855 {
3856 struct drm_device *dev = dev_priv->dev;
3857
3858 mutex_lock(&dev_priv->rps.hw_lock);
3859 if (dev_priv->rps.enabled) {
3860 if (IS_VALLEYVIEW(dev))
3861 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3862 else
3863 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3864 dev_priv->rps.last_adj = 0;
3865 }
3866 mutex_unlock(&dev_priv->rps.hw_lock);
3867 }
3868
3869 void valleyview_set_rps(struct drm_device *dev, u8 val)
3870 {
3871 struct drm_i915_private *dev_priv = dev->dev_private;
3872
3873 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3874 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3875 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3876
3877 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
3878 "Odd GPU freq value\n"))
3879 val &= ~1;
3880
3881 if (val != dev_priv->rps.cur_freq)
3882 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3883
3884 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3885
3886 dev_priv->rps.cur_freq = val;
3887 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3888 }
3889
3890 static void gen9_disable_rps(struct drm_device *dev)
3891 {
3892 struct drm_i915_private *dev_priv = dev->dev_private;
3893
3894 I915_WRITE(GEN6_RC_CONTROL, 0);
3895 }
3896
3897 static void gen6_disable_rps(struct drm_device *dev)
3898 {
3899 struct drm_i915_private *dev_priv = dev->dev_private;
3900
3901 I915_WRITE(GEN6_RC_CONTROL, 0);
3902 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3903 }
3904
3905 static void cherryview_disable_rps(struct drm_device *dev)
3906 {
3907 struct drm_i915_private *dev_priv = dev->dev_private;
3908
3909 I915_WRITE(GEN6_RC_CONTROL, 0);
3910 }
3911
3912 static void valleyview_disable_rps(struct drm_device *dev)
3913 {
3914 struct drm_i915_private *dev_priv = dev->dev_private;
3915
3916 /* we're doing forcewake before Disabling RC6,
3917 * This what the BIOS expects when going into suspend */
3918 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3919
3920 I915_WRITE(GEN6_RC_CONTROL, 0);
3921
3922 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3923 }
3924
3925 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3926 {
3927 if (IS_VALLEYVIEW(dev)) {
3928 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3929 mode = GEN6_RC_CTL_RC6_ENABLE;
3930 else
3931 mode = 0;
3932 }
3933 if (HAS_RC6p(dev))
3934 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
3935 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3936 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3937 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3938
3939 else
3940 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
3941 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
3942 }
3943
3944 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3945 {
3946 /* No RC6 before Ironlake */
3947 if (INTEL_INFO(dev)->gen < 5)
3948 return 0;
3949
3950 /* RC6 is only on Ironlake mobile not on desktop */
3951 if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3952 return 0;
3953
3954 /* Respect the kernel parameter if it is set */
3955 if (enable_rc6 >= 0) {
3956 int mask;
3957
3958 if (HAS_RC6p(dev))
3959 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3960 INTEL_RC6pp_ENABLE;
3961 else
3962 mask = INTEL_RC6_ENABLE;
3963
3964 if ((enable_rc6 & mask) != enable_rc6)
3965 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3966 enable_rc6 & mask, enable_rc6, mask);
3967
3968 return enable_rc6 & mask;
3969 }
3970
3971 /* Disable RC6 on Ironlake */
3972 if (INTEL_INFO(dev)->gen == 5)
3973 return 0;
3974
3975 if (IS_IVYBRIDGE(dev))
3976 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3977
3978 return INTEL_RC6_ENABLE;
3979 }
3980
3981 int intel_enable_rc6(const struct drm_device *dev)
3982 {
3983 return i915.enable_rc6;
3984 }
3985
3986 static void gen6_init_rps_frequencies(struct drm_device *dev)
3987 {
3988 struct drm_i915_private *dev_priv = dev->dev_private;
3989 uint32_t rp_state_cap;
3990 u32 ddcc_status = 0;
3991 int ret;
3992
3993 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3994 /* All of these values are in units of 50MHz */
3995 dev_priv->rps.cur_freq = 0;
3996 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
3997 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
3998 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
3999 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4000 /* hw_max = RP0 until we check for overclocking */
4001 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4002
4003 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4004 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4005 ret = sandybridge_pcode_read(dev_priv,
4006 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4007 &ddcc_status);
4008 if (0 == ret)
4009 dev_priv->rps.efficient_freq =
4010 (ddcc_status >> 8) & 0xff;
4011 }
4012
4013 /* Preserve min/max settings in case of re-init */
4014 if (dev_priv->rps.max_freq_softlimit == 0)
4015 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4016
4017 if (dev_priv->rps.min_freq_softlimit == 0) {
4018 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4019 dev_priv->rps.min_freq_softlimit =
4020 /* max(RPe, 450 MHz) */
4021 max(dev_priv->rps.efficient_freq, (u8) 9);
4022 else
4023 dev_priv->rps.min_freq_softlimit =
4024 dev_priv->rps.min_freq;
4025 }
4026 }
4027
4028 static void gen9_enable_rps(struct drm_device *dev)
4029 {
4030 struct drm_i915_private *dev_priv = dev->dev_private;
4031 struct intel_engine_cs *ring;
4032 uint32_t rc6_mask = 0;
4033 int unused;
4034
4035 /* 1a: Software RC state - RC0 */
4036 I915_WRITE(GEN6_RC_STATE, 0);
4037
4038 /* 1b: Get forcewake during program sequence. Although the driver
4039 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4040 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4041
4042 /* 2a: Disable RC states. */
4043 I915_WRITE(GEN6_RC_CONTROL, 0);
4044
4045 /* 2b: Program RC6 thresholds.*/
4046 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4047 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4048 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4049 for_each_ring(ring, dev_priv, unused)
4050 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4051 I915_WRITE(GEN6_RC_SLEEP, 0);
4052 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4053
4054 /* 3a: Enable RC6 */
4055 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4056 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4057 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4058 "on" : "off");
4059 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4060 GEN6_RC_CTL_EI_MODE(1) |
4061 rc6_mask);
4062
4063 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4064
4065 }
4066
4067 static void gen8_enable_rps(struct drm_device *dev)
4068 {
4069 struct drm_i915_private *dev_priv = dev->dev_private;
4070 struct intel_engine_cs *ring;
4071 uint32_t rc6_mask = 0;
4072 int unused;
4073
4074 /* 1a: Software RC state - RC0 */
4075 I915_WRITE(GEN6_RC_STATE, 0);
4076
4077 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4078 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4079 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4080
4081 /* 2a: Disable RC states. */
4082 I915_WRITE(GEN6_RC_CONTROL, 0);
4083
4084 /* Initialize rps frequencies */
4085 gen6_init_rps_frequencies(dev);
4086
4087 /* 2b: Program RC6 thresholds.*/
4088 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4089 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4090 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4091 for_each_ring(ring, dev_priv, unused)
4092 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4093 I915_WRITE(GEN6_RC_SLEEP, 0);
4094 if (IS_BROADWELL(dev))
4095 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4096 else
4097 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4098
4099 /* 3: Enable RC6 */
4100 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4101 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4102 intel_print_rc6_info(dev, rc6_mask);
4103 if (IS_BROADWELL(dev))
4104 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4105 GEN7_RC_CTL_TO_MODE |
4106 rc6_mask);
4107 else
4108 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4109 GEN6_RC_CTL_EI_MODE(1) |
4110 rc6_mask);
4111
4112 /* 4 Program defaults and thresholds for RPS*/
4113 I915_WRITE(GEN6_RPNSWREQ,
4114 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4115 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4116 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4117 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4118 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4119
4120 /* Docs recommend 900MHz, and 300 MHz respectively */
4121 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4122 dev_priv->rps.max_freq_softlimit << 24 |
4123 dev_priv->rps.min_freq_softlimit << 16);
4124
4125 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4126 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4127 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4128 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4129
4130 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4131
4132 /* 5: Enable RPS */
4133 I915_WRITE(GEN6_RP_CONTROL,
4134 GEN6_RP_MEDIA_TURBO |
4135 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4136 GEN6_RP_MEDIA_IS_GFX |
4137 GEN6_RP_ENABLE |
4138 GEN6_RP_UP_BUSY_AVG |
4139 GEN6_RP_DOWN_IDLE_AVG);
4140
4141 /* 6: Ring frequency + overclocking (our driver does this later */
4142
4143 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4144 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4145
4146 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4147 }
4148
4149 static void gen6_enable_rps(struct drm_device *dev)
4150 {
4151 struct drm_i915_private *dev_priv = dev->dev_private;
4152 struct intel_engine_cs *ring;
4153 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4154 u32 gtfifodbg;
4155 int rc6_mode;
4156 int i, ret;
4157
4158 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4159
4160 /* Here begins a magic sequence of register writes to enable
4161 * auto-downclocking.
4162 *
4163 * Perhaps there might be some value in exposing these to
4164 * userspace...
4165 */
4166 I915_WRITE(GEN6_RC_STATE, 0);
4167
4168 /* Clear the DBG now so we don't confuse earlier errors */
4169 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4170 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4171 I915_WRITE(GTFIFODBG, gtfifodbg);
4172 }
4173
4174 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4175
4176 /* Initialize rps frequencies */
4177 gen6_init_rps_frequencies(dev);
4178
4179 /* disable the counters and set deterministic thresholds */
4180 I915_WRITE(GEN6_RC_CONTROL, 0);
4181
4182 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4183 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4184 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4185 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4186 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4187
4188 for_each_ring(ring, dev_priv, i)
4189 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4190
4191 I915_WRITE(GEN6_RC_SLEEP, 0);
4192 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4193 if (IS_IVYBRIDGE(dev))
4194 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4195 else
4196 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4197 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4198 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4199
4200 /* Check if we are enabling RC6 */
4201 rc6_mode = intel_enable_rc6(dev_priv->dev);
4202 if (rc6_mode & INTEL_RC6_ENABLE)
4203 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4204
4205 /* We don't use those on Haswell */
4206 if (!IS_HASWELL(dev)) {
4207 if (rc6_mode & INTEL_RC6p_ENABLE)
4208 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4209
4210 if (rc6_mode & INTEL_RC6pp_ENABLE)
4211 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4212 }
4213
4214 intel_print_rc6_info(dev, rc6_mask);
4215
4216 I915_WRITE(GEN6_RC_CONTROL,
4217 rc6_mask |
4218 GEN6_RC_CTL_EI_MODE(1) |
4219 GEN6_RC_CTL_HW_ENABLE);
4220
4221 /* Power down if completely idle for over 50ms */
4222 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4223 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4224
4225 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4226 if (ret)
4227 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4228
4229 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4230 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4231 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4232 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4233 (pcu_mbox & 0xff) * 50);
4234 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4235 }
4236
4237 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4238 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4239
4240 rc6vids = 0;
4241 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4242 if (IS_GEN6(dev) && ret) {
4243 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4244 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4245 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4246 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4247 rc6vids &= 0xffff00;
4248 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4249 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4250 if (ret)
4251 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4252 }
4253
4254 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4255 }
4256
4257 static void __gen6_update_ring_freq(struct drm_device *dev)
4258 {
4259 struct drm_i915_private *dev_priv = dev->dev_private;
4260 int min_freq = 15;
4261 unsigned int gpu_freq;
4262 unsigned int max_ia_freq, min_ring_freq;
4263 int scaling_factor = 180;
4264 struct cpufreq_policy *policy;
4265
4266 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4267
4268 policy = cpufreq_cpu_get(0);
4269 if (policy) {
4270 max_ia_freq = policy->cpuinfo.max_freq;
4271 cpufreq_cpu_put(policy);
4272 } else {
4273 /*
4274 * Default to measured freq if none found, PCU will ensure we
4275 * don't go over
4276 */
4277 max_ia_freq = tsc_khz;
4278 }
4279
4280 /* Convert from kHz to MHz */
4281 max_ia_freq /= 1000;
4282
4283 min_ring_freq = I915_READ(DCLK) & 0xf;
4284 /* convert DDR frequency from units of 266.6MHz to bandwidth */
4285 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4286
4287 /*
4288 * For each potential GPU frequency, load a ring frequency we'd like
4289 * to use for memory access. We do this by specifying the IA frequency
4290 * the PCU should use as a reference to determine the ring frequency.
4291 */
4292 for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4293 gpu_freq--) {
4294 int diff = dev_priv->rps.max_freq - gpu_freq;
4295 unsigned int ia_freq = 0, ring_freq = 0;
4296
4297 if (INTEL_INFO(dev)->gen >= 8) {
4298 /* max(2 * GT, DDR). NB: GT is 50MHz units */
4299 ring_freq = max(min_ring_freq, gpu_freq);
4300 } else if (IS_HASWELL(dev)) {
4301 ring_freq = mult_frac(gpu_freq, 5, 4);
4302 ring_freq = max(min_ring_freq, ring_freq);
4303 /* leave ia_freq as the default, chosen by cpufreq */
4304 } else {
4305 /* On older processors, there is no separate ring
4306 * clock domain, so in order to boost the bandwidth
4307 * of the ring, we need to upclock the CPU (ia_freq).
4308 *
4309 * For GPU frequencies less than 750MHz,
4310 * just use the lowest ring freq.
4311 */
4312 if (gpu_freq < min_freq)
4313 ia_freq = 800;
4314 else
4315 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4316 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4317 }
4318
4319 sandybridge_pcode_write(dev_priv,
4320 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4321 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4322 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4323 gpu_freq);
4324 }
4325 }
4326
4327 void gen6_update_ring_freq(struct drm_device *dev)
4328 {
4329 struct drm_i915_private *dev_priv = dev->dev_private;
4330
4331 if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4332 return;
4333
4334 mutex_lock(&dev_priv->rps.hw_lock);
4335 __gen6_update_ring_freq(dev);
4336 mutex_unlock(&dev_priv->rps.hw_lock);
4337 }
4338
4339 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4340 {
4341 struct drm_device *dev = dev_priv->dev;
4342 u32 val, rp0;
4343
4344 if (dev->pdev->revision >= 0x20) {
4345 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4346
4347 switch (INTEL_INFO(dev)->eu_total) {
4348 case 8:
4349 /* (2 * 4) config */
4350 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
4351 break;
4352 case 12:
4353 /* (2 * 6) config */
4354 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
4355 break;
4356 case 16:
4357 /* (2 * 8) config */
4358 default:
4359 /* Setting (2 * 8) Min RP0 for any other combination */
4360 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
4361 break;
4362 }
4363 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
4364 } else {
4365 /* For pre-production hardware */
4366 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4367 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4368 PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4369 }
4370 return rp0;
4371 }
4372
4373 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4374 {
4375 u32 val, rpe;
4376
4377 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4378 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4379
4380 return rpe;
4381 }
4382
4383 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4384 {
4385 struct drm_device *dev = dev_priv->dev;
4386 u32 val, rp1;
4387
4388 if (dev->pdev->revision >= 0x20) {
4389 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4390 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
4391 } else {
4392 /* For pre-production hardware */
4393 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4394 rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4395 PUNIT_GPU_STATUS_MAX_FREQ_MASK);
4396 }
4397 return rp1;
4398 }
4399
4400 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4401 {
4402 struct drm_device *dev = dev_priv->dev;
4403 u32 val, rpn;
4404
4405 if (dev->pdev->revision >= 0x20) {
4406 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
4407 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
4408 FB_GFX_FREQ_FUSE_MASK);
4409 } else { /* For pre-production hardware */
4410 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4411 rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
4412 PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
4413 }
4414
4415 return rpn;
4416 }
4417
4418 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4419 {
4420 u32 val, rp1;
4421
4422 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4423
4424 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4425
4426 return rp1;
4427 }
4428
4429 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4430 {
4431 u32 val, rp0;
4432
4433 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4434
4435 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4436 /* Clamp to max */
4437 rp0 = min_t(u32, rp0, 0xea);
4438
4439 return rp0;
4440 }
4441
4442 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4443 {
4444 u32 val, rpe;
4445
4446 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4447 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4448 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4449 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4450
4451 return rpe;
4452 }
4453
4454 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4455 {
4456 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4457 }
4458
4459 /* Check that the pctx buffer wasn't move under us. */
4460 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4461 {
4462 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4463
4464 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4465 dev_priv->vlv_pctx->stolen->start);
4466 }
4467
4468
4469 /* Check that the pcbr address is not empty. */
4470 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4471 {
4472 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4473
4474 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4475 }
4476
4477 static void cherryview_setup_pctx(struct drm_device *dev)
4478 {
4479 struct drm_i915_private *dev_priv = dev->dev_private;
4480 unsigned long pctx_paddr, paddr;
4481 struct i915_gtt *gtt = &dev_priv->gtt;
4482 u32 pcbr;
4483 int pctx_size = 32*1024;
4484
4485 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4486
4487 pcbr = I915_READ(VLV_PCBR);
4488 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4489 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4490 paddr = (dev_priv->mm.stolen_base +
4491 (gtt->stolen_size - pctx_size));
4492
4493 pctx_paddr = (paddr & (~4095));
4494 I915_WRITE(VLV_PCBR, pctx_paddr);
4495 }
4496
4497 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4498 }
4499
4500 static void valleyview_setup_pctx(struct drm_device *dev)
4501 {
4502 struct drm_i915_private *dev_priv = dev->dev_private;
4503 struct drm_i915_gem_object *pctx;
4504 unsigned long pctx_paddr;
4505 u32 pcbr;
4506 int pctx_size = 24*1024;
4507
4508 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4509
4510 pcbr = I915_READ(VLV_PCBR);
4511 if (pcbr) {
4512 /* BIOS set it up already, grab the pre-alloc'd space */
4513 int pcbr_offset;
4514
4515 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4516 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4517 pcbr_offset,
4518 I915_GTT_OFFSET_NONE,
4519 pctx_size);
4520 goto out;
4521 }
4522
4523 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4524
4525 /*
4526 * From the Gunit register HAS:
4527 * The Gfx driver is expected to program this register and ensure
4528 * proper allocation within Gfx stolen memory. For example, this
4529 * register should be programmed such than the PCBR range does not
4530 * overlap with other ranges, such as the frame buffer, protected
4531 * memory, or any other relevant ranges.
4532 */
4533 pctx = i915_gem_object_create_stolen(dev, pctx_size);
4534 if (!pctx) {
4535 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4536 return;
4537 }
4538
4539 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4540 I915_WRITE(VLV_PCBR, pctx_paddr);
4541
4542 out:
4543 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4544 dev_priv->vlv_pctx = pctx;
4545 }
4546
4547 static void valleyview_cleanup_pctx(struct drm_device *dev)
4548 {
4549 struct drm_i915_private *dev_priv = dev->dev_private;
4550
4551 if (WARN_ON(!dev_priv->vlv_pctx))
4552 return;
4553
4554 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4555 dev_priv->vlv_pctx = NULL;
4556 }
4557
4558 static void valleyview_init_gt_powersave(struct drm_device *dev)
4559 {
4560 struct drm_i915_private *dev_priv = dev->dev_private;
4561 u32 val;
4562
4563 valleyview_setup_pctx(dev);
4564
4565 mutex_lock(&dev_priv->rps.hw_lock);
4566
4567 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4568 switch ((val >> 6) & 3) {
4569 case 0:
4570 case 1:
4571 dev_priv->mem_freq = 800;
4572 break;
4573 case 2:
4574 dev_priv->mem_freq = 1066;
4575 break;
4576 case 3:
4577 dev_priv->mem_freq = 1333;
4578 break;
4579 }
4580 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4581
4582 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4583 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4584 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4585 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4586 dev_priv->rps.max_freq);
4587
4588 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4589 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4590 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4591 dev_priv->rps.efficient_freq);
4592
4593 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4594 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4595 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4596 dev_priv->rps.rp1_freq);
4597
4598 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4599 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4600 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4601 dev_priv->rps.min_freq);
4602
4603 /* Preserve min/max settings in case of re-init */
4604 if (dev_priv->rps.max_freq_softlimit == 0)
4605 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4606
4607 if (dev_priv->rps.min_freq_softlimit == 0)
4608 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4609
4610 mutex_unlock(&dev_priv->rps.hw_lock);
4611 }
4612
4613 static void cherryview_init_gt_powersave(struct drm_device *dev)
4614 {
4615 struct drm_i915_private *dev_priv = dev->dev_private;
4616 u32 val;
4617
4618 cherryview_setup_pctx(dev);
4619
4620 mutex_lock(&dev_priv->rps.hw_lock);
4621
4622 mutex_lock(&dev_priv->dpio_lock);
4623 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
4624 mutex_unlock(&dev_priv->dpio_lock);
4625
4626 switch ((val >> 2) & 0x7) {
4627 case 0:
4628 case 1:
4629 dev_priv->rps.cz_freq = 200;
4630 dev_priv->mem_freq = 1600;
4631 break;
4632 case 2:
4633 dev_priv->rps.cz_freq = 267;
4634 dev_priv->mem_freq = 1600;
4635 break;
4636 case 3:
4637 dev_priv->rps.cz_freq = 333;
4638 dev_priv->mem_freq = 2000;
4639 break;
4640 case 4:
4641 dev_priv->rps.cz_freq = 320;
4642 dev_priv->mem_freq = 1600;
4643 break;
4644 case 5:
4645 dev_priv->rps.cz_freq = 400;
4646 dev_priv->mem_freq = 1600;
4647 break;
4648 }
4649 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4650
4651 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4652 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4653 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4654 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4655 dev_priv->rps.max_freq);
4656
4657 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4658 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4659 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4660 dev_priv->rps.efficient_freq);
4661
4662 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4663 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4664 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4665 dev_priv->rps.rp1_freq);
4666
4667 dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4668 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4669 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4670 dev_priv->rps.min_freq);
4671
4672 WARN_ONCE((dev_priv->rps.max_freq |
4673 dev_priv->rps.efficient_freq |
4674 dev_priv->rps.rp1_freq |
4675 dev_priv->rps.min_freq) & 1,
4676 "Odd GPU freq values\n");
4677
4678 /* Preserve min/max settings in case of re-init */
4679 if (dev_priv->rps.max_freq_softlimit == 0)
4680 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4681
4682 if (dev_priv->rps.min_freq_softlimit == 0)
4683 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4684
4685 mutex_unlock(&dev_priv->rps.hw_lock);
4686 }
4687
4688 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4689 {
4690 valleyview_cleanup_pctx(dev);
4691 }
4692
4693 static void cherryview_enable_rps(struct drm_device *dev)
4694 {
4695 struct drm_i915_private *dev_priv = dev->dev_private;
4696 struct intel_engine_cs *ring;
4697 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4698 int i;
4699
4700 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4701
4702 gtfifodbg = I915_READ(GTFIFODBG);
4703 if (gtfifodbg) {
4704 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4705 gtfifodbg);
4706 I915_WRITE(GTFIFODBG, gtfifodbg);
4707 }
4708
4709 cherryview_check_pctx(dev_priv);
4710
4711 /* 1a & 1b: Get forcewake during program sequence. Although the driver
4712 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4713 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4714
4715 /* Disable RC states. */
4716 I915_WRITE(GEN6_RC_CONTROL, 0);
4717
4718 /* 2a: Program RC6 thresholds.*/
4719 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4720 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4721 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4722
4723 for_each_ring(ring, dev_priv, i)
4724 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4725 I915_WRITE(GEN6_RC_SLEEP, 0);
4726
4727 /* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
4728 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4729
4730 /* allows RC6 residency counter to work */
4731 I915_WRITE(VLV_COUNTER_CONTROL,
4732 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4733 VLV_MEDIA_RC6_COUNT_EN |
4734 VLV_RENDER_RC6_COUNT_EN));
4735
4736 /* For now we assume BIOS is allocating and populating the PCBR */
4737 pcbr = I915_READ(VLV_PCBR);
4738
4739 /* 3: Enable RC6 */
4740 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4741 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4742 rc6_mode = GEN7_RC_CTL_TO_MODE;
4743
4744 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4745
4746 /* 4 Program defaults and thresholds for RPS*/
4747 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4748 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4749 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4750 I915_WRITE(GEN6_RP_UP_EI, 66000);
4751 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4752
4753 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4754
4755 /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4756 I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4757 I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4758
4759 /* 5: Enable RPS */
4760 I915_WRITE(GEN6_RP_CONTROL,
4761 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4762 GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4763 GEN6_RP_ENABLE |
4764 GEN6_RP_UP_BUSY_AVG |
4765 GEN6_RP_DOWN_IDLE_AVG);
4766
4767 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4768
4769 /* RPS code assumes GPLL is used */
4770 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
4771
4772 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4773 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4774
4775 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4776 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4777 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4778 dev_priv->rps.cur_freq);
4779
4780 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4781 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4782 dev_priv->rps.efficient_freq);
4783
4784 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4785
4786 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4787 }
4788
4789 static void valleyview_enable_rps(struct drm_device *dev)
4790 {
4791 struct drm_i915_private *dev_priv = dev->dev_private;
4792 struct intel_engine_cs *ring;
4793 u32 gtfifodbg, val, rc6_mode = 0;
4794 int i;
4795
4796 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4797
4798 valleyview_check_pctx(dev_priv);
4799
4800 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4801 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4802 gtfifodbg);
4803 I915_WRITE(GTFIFODBG, gtfifodbg);
4804 }
4805
4806 /* If VLV, Forcewake all wells, else re-direct to regular path */
4807 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4808
4809 /* Disable RC states. */
4810 I915_WRITE(GEN6_RC_CONTROL, 0);
4811
4812 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4813 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4814 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4815 I915_WRITE(GEN6_RP_UP_EI, 66000);
4816 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4817
4818 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4819
4820 I915_WRITE(GEN6_RP_CONTROL,
4821 GEN6_RP_MEDIA_TURBO |
4822 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4823 GEN6_RP_MEDIA_IS_GFX |
4824 GEN6_RP_ENABLE |
4825 GEN6_RP_UP_BUSY_AVG |
4826 GEN6_RP_DOWN_IDLE_CONT);
4827
4828 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4829 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4830 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4831
4832 for_each_ring(ring, dev_priv, i)
4833 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4834
4835 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4836
4837 /* allows RC6 residency counter to work */
4838 I915_WRITE(VLV_COUNTER_CONTROL,
4839 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4840 VLV_RENDER_RC0_COUNT_EN |
4841 VLV_MEDIA_RC6_COUNT_EN |
4842 VLV_RENDER_RC6_COUNT_EN));
4843
4844 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4845 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4846
4847 intel_print_rc6_info(dev, rc6_mode);
4848
4849 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4850
4851 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4852
4853 /* RPS code assumes GPLL is used */
4854 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
4855
4856 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4857 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4858
4859 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4860 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4861 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4862 dev_priv->rps.cur_freq);
4863
4864 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4865 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4866 dev_priv->rps.efficient_freq);
4867
4868 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4869
4870 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4871 }
4872
4873 void ironlake_teardown_rc6(struct drm_device *dev)
4874 {
4875 struct drm_i915_private *dev_priv = dev->dev_private;
4876
4877 if (dev_priv->ips.renderctx) {
4878 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4879 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4880 dev_priv->ips.renderctx = NULL;
4881 }
4882
4883 if (dev_priv->ips.pwrctx) {
4884 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4885 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4886 dev_priv->ips.pwrctx = NULL;
4887 }
4888 }
4889
4890 static void ironlake_disable_rc6(struct drm_device *dev)
4891 {
4892 struct drm_i915_private *dev_priv = dev->dev_private;
4893
4894 if (I915_READ(PWRCTXA)) {
4895 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4896 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4897 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4898 50);
4899
4900 I915_WRITE(PWRCTXA, 0);
4901 POSTING_READ(PWRCTXA);
4902
4903 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4904 POSTING_READ(RSTDBYCTL);
4905 }
4906 }
4907
4908 static int ironlake_setup_rc6(struct drm_device *dev)
4909 {
4910 struct drm_i915_private *dev_priv = dev->dev_private;
4911
4912 if (dev_priv->ips.renderctx == NULL)
4913 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4914 if (!dev_priv->ips.renderctx)
4915 return -ENOMEM;
4916
4917 if (dev_priv->ips.pwrctx == NULL)
4918 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4919 if (!dev_priv->ips.pwrctx) {
4920 ironlake_teardown_rc6(dev);
4921 return -ENOMEM;
4922 }
4923
4924 return 0;
4925 }
4926
4927 static void ironlake_enable_rc6(struct drm_device *dev)
4928 {
4929 struct drm_i915_private *dev_priv = dev->dev_private;
4930 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4931 bool was_interruptible;
4932 int ret;
4933
4934 /* rc6 disabled by default due to repeated reports of hanging during
4935 * boot and resume.
4936 */
4937 if (!intel_enable_rc6(dev))
4938 return;
4939
4940 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4941
4942 ret = ironlake_setup_rc6(dev);
4943 if (ret)
4944 return;
4945
4946 was_interruptible = dev_priv->mm.interruptible;
4947 dev_priv->mm.interruptible = false;
4948
4949 /*
4950 * GPU can automatically power down the render unit if given a page
4951 * to save state.
4952 */
4953 ret = intel_ring_begin(ring, 6);
4954 if (ret) {
4955 ironlake_teardown_rc6(dev);
4956 dev_priv->mm.interruptible = was_interruptible;
4957 return;
4958 }
4959
4960 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4961 intel_ring_emit(ring, MI_SET_CONTEXT);
4962 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4963 MI_MM_SPACE_GTT |
4964 MI_SAVE_EXT_STATE_EN |
4965 MI_RESTORE_EXT_STATE_EN |
4966 MI_RESTORE_INHIBIT);
4967 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4968 intel_ring_emit(ring, MI_NOOP);
4969 intel_ring_emit(ring, MI_FLUSH);
4970 intel_ring_advance(ring);
4971
4972 /*
4973 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4974 * does an implicit flush, combined with MI_FLUSH above, it should be
4975 * safe to assume that renderctx is valid
4976 */
4977 ret = intel_ring_idle(ring);
4978 dev_priv->mm.interruptible = was_interruptible;
4979 if (ret) {
4980 DRM_ERROR("failed to enable ironlake power savings\n");
4981 ironlake_teardown_rc6(dev);
4982 return;
4983 }
4984
4985 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4986 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4987
4988 intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4989 }
4990
4991 static unsigned long intel_pxfreq(u32 vidfreq)
4992 {
4993 unsigned long freq;
4994 int div = (vidfreq & 0x3f0000) >> 16;
4995 int post = (vidfreq & 0x3000) >> 12;
4996 int pre = (vidfreq & 0x7);
4997
4998 if (!pre)
4999 return 0;
5000
5001 freq = ((div * 133333) / ((1<<post) * pre));
5002
5003 return freq;
5004 }
5005
5006 static const struct cparams {
5007 u16 i;
5008 u16 t;
5009 u16 m;
5010 u16 c;
5011 } cparams[] = {
5012 { 1, 1333, 301, 28664 },
5013 { 1, 1066, 294, 24460 },
5014 { 1, 800, 294, 25192 },
5015 { 0, 1333, 276, 27605 },
5016 { 0, 1066, 276, 27605 },
5017 { 0, 800, 231, 23784 },
5018 };
5019
5020 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5021 {
5022 u64 total_count, diff, ret;
5023 u32 count1, count2, count3, m = 0, c = 0;
5024 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5025 int i;
5026
5027 assert_spin_locked(&mchdev_lock);
5028
5029 diff1 = now - dev_priv->ips.last_time1;
5030
5031 /* Prevent division-by-zero if we are asking too fast.
5032 * Also, we don't get interesting results if we are polling
5033 * faster than once in 10ms, so just return the saved value
5034 * in such cases.
5035 */
5036 if (diff1 <= 10)
5037 return dev_priv->ips.chipset_power;
5038
5039 count1 = I915_READ(DMIEC);
5040 count2 = I915_READ(DDREC);
5041 count3 = I915_READ(CSIEC);
5042
5043 total_count = count1 + count2 + count3;
5044
5045 /* FIXME: handle per-counter overflow */
5046 if (total_count < dev_priv->ips.last_count1) {
5047 diff = ~0UL - dev_priv->ips.last_count1;
5048 diff += total_count;
5049 } else {
5050 diff = total_count - dev_priv->ips.last_count1;
5051 }
5052
5053 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5054 if (cparams[i].i == dev_priv->ips.c_m &&
5055 cparams[i].t == dev_priv->ips.r_t) {
5056 m = cparams[i].m;
5057 c = cparams[i].c;
5058 break;
5059 }
5060 }
5061
5062 diff = div_u64(diff, diff1);
5063 ret = ((m * diff) + c);
5064 ret = div_u64(ret, 10);
5065
5066 dev_priv->ips.last_count1 = total_count;
5067 dev_priv->ips.last_time1 = now;
5068
5069 dev_priv->ips.chipset_power = ret;
5070
5071 return ret;
5072 }
5073
5074 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5075 {
5076 struct drm_device *dev = dev_priv->dev;
5077 unsigned long val;
5078
5079 if (INTEL_INFO(dev)->gen != 5)
5080 return 0;
5081
5082 spin_lock_irq(&mchdev_lock);
5083
5084 val = __i915_chipset_val(dev_priv);
5085
5086 spin_unlock_irq(&mchdev_lock);
5087
5088 return val;
5089 }
5090
5091 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5092 {
5093 unsigned long m, x, b;
5094 u32 tsfs;
5095
5096 tsfs = I915_READ(TSFS);
5097
5098 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5099 x = I915_READ8(TR1);
5100
5101 b = tsfs & TSFS_INTR_MASK;
5102
5103 return ((m * x) / 127) - b;
5104 }
5105
5106 static int _pxvid_to_vd(u8 pxvid)
5107 {
5108 if (pxvid == 0)
5109 return 0;
5110
5111 if (pxvid >= 8 && pxvid < 31)
5112 pxvid = 31;
5113
5114 return (pxvid + 2) * 125;
5115 }
5116
5117 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5118 {
5119 struct drm_device *dev = dev_priv->dev;
5120 const int vd = _pxvid_to_vd(pxvid);
5121 const int vm = vd - 1125;
5122
5123 if (INTEL_INFO(dev)->is_mobile)
5124 return vm > 0 ? vm : 0;
5125
5126 return vd;
5127 }
5128
5129 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5130 {
5131 u64 now, diff, diffms;
5132 u32 count;
5133
5134 assert_spin_locked(&mchdev_lock);
5135
5136 now = ktime_get_raw_ns();
5137 diffms = now - dev_priv->ips.last_time2;
5138 do_div(diffms, NSEC_PER_MSEC);
5139
5140 /* Don't divide by 0 */
5141 if (!diffms)
5142 return;
5143
5144 count = I915_READ(GFXEC);
5145
5146 if (count < dev_priv->ips.last_count2) {
5147 diff = ~0UL - dev_priv->ips.last_count2;
5148 diff += count;
5149 } else {
5150 diff = count - dev_priv->ips.last_count2;
5151 }
5152
5153 dev_priv->ips.last_count2 = count;
5154 dev_priv->ips.last_time2 = now;
5155
5156 /* More magic constants... */
5157 diff = diff * 1181;
5158 diff = div_u64(diff, diffms * 10);
5159 dev_priv->ips.gfx_power = diff;
5160 }
5161
5162 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5163 {
5164 struct drm_device *dev = dev_priv->dev;
5165
5166 if (INTEL_INFO(dev)->gen != 5)
5167 return;
5168
5169 spin_lock_irq(&mchdev_lock);
5170
5171 __i915_update_gfx_val(dev_priv);
5172
5173 spin_unlock_irq(&mchdev_lock);
5174 }
5175
5176 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5177 {
5178 unsigned long t, corr, state1, corr2, state2;
5179 u32 pxvid, ext_v;
5180
5181 assert_spin_locked(&mchdev_lock);
5182
5183 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5184 pxvid = (pxvid >> 24) & 0x7f;
5185 ext_v = pvid_to_extvid(dev_priv, pxvid);
5186
5187 state1 = ext_v;
5188
5189 t = i915_mch_val(dev_priv);
5190
5191 /* Revel in the empirically derived constants */
5192
5193 /* Correction factor in 1/100000 units */
5194 if (t > 80)
5195 corr = ((t * 2349) + 135940);
5196 else if (t >= 50)
5197 corr = ((t * 964) + 29317);
5198 else /* < 50 */
5199 corr = ((t * 301) + 1004);
5200
5201 corr = corr * ((150142 * state1) / 10000 - 78642);
5202 corr /= 100000;
5203 corr2 = (corr * dev_priv->ips.corr);
5204
5205 state2 = (corr2 * state1) / 10000;
5206 state2 /= 100; /* convert to mW */
5207
5208 __i915_update_gfx_val(dev_priv);
5209
5210 return dev_priv->ips.gfx_power + state2;
5211 }
5212
5213 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5214 {
5215 struct drm_device *dev = dev_priv->dev;
5216 unsigned long val;
5217
5218 if (INTEL_INFO(dev)->gen != 5)
5219 return 0;
5220
5221 spin_lock_irq(&mchdev_lock);
5222
5223 val = __i915_gfx_val(dev_priv);
5224
5225 spin_unlock_irq(&mchdev_lock);
5226
5227 return val;
5228 }
5229
5230 /**
5231 * i915_read_mch_val - return value for IPS use
5232 *
5233 * Calculate and return a value for the IPS driver to use when deciding whether
5234 * we have thermal and power headroom to increase CPU or GPU power budget.
5235 */
5236 unsigned long i915_read_mch_val(void)
5237 {
5238 struct drm_i915_private *dev_priv;
5239 unsigned long chipset_val, graphics_val, ret = 0;
5240
5241 spin_lock_irq(&mchdev_lock);
5242 if (!i915_mch_dev)
5243 goto out_unlock;
5244 dev_priv = i915_mch_dev;
5245
5246 chipset_val = __i915_chipset_val(dev_priv);
5247 graphics_val = __i915_gfx_val(dev_priv);
5248
5249 ret = chipset_val + graphics_val;
5250
5251 out_unlock:
5252 spin_unlock_irq(&mchdev_lock);
5253
5254 return ret;
5255 }
5256 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5257
5258 /**
5259 * i915_gpu_raise - raise GPU frequency limit
5260 *
5261 * Raise the limit; IPS indicates we have thermal headroom.
5262 */
5263 bool i915_gpu_raise(void)
5264 {
5265 struct drm_i915_private *dev_priv;
5266 bool ret = true;
5267
5268 spin_lock_irq(&mchdev_lock);
5269 if (!i915_mch_dev) {
5270 ret = false;
5271 goto out_unlock;
5272 }
5273 dev_priv = i915_mch_dev;
5274
5275 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5276 dev_priv->ips.max_delay--;
5277
5278 out_unlock:
5279 spin_unlock_irq(&mchdev_lock);
5280
5281 return ret;
5282 }
5283 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5284
5285 /**
5286 * i915_gpu_lower - lower GPU frequency limit
5287 *
5288 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5289 * frequency maximum.
5290 */
5291 bool i915_gpu_lower(void)
5292 {
5293 struct drm_i915_private *dev_priv;
5294 bool ret = true;
5295
5296 spin_lock_irq(&mchdev_lock);
5297 if (!i915_mch_dev) {
5298 ret = false;
5299 goto out_unlock;
5300 }
5301 dev_priv = i915_mch_dev;
5302
5303 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5304 dev_priv->ips.max_delay++;
5305
5306 out_unlock:
5307 spin_unlock_irq(&mchdev_lock);
5308
5309 return ret;
5310 }
5311 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5312
5313 /**
5314 * i915_gpu_busy - indicate GPU business to IPS
5315 *
5316 * Tell the IPS driver whether or not the GPU is busy.
5317 */
5318 bool i915_gpu_busy(void)
5319 {
5320 struct drm_i915_private *dev_priv;
5321 struct intel_engine_cs *ring;
5322 bool ret = false;
5323 int i;
5324
5325 spin_lock_irq(&mchdev_lock);
5326 if (!i915_mch_dev)
5327 goto out_unlock;
5328 dev_priv = i915_mch_dev;
5329
5330 for_each_ring(ring, dev_priv, i)
5331 ret |= !list_empty(&ring->request_list);
5332
5333 out_unlock:
5334 spin_unlock_irq(&mchdev_lock);
5335
5336 return ret;
5337 }
5338 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5339
5340 /**
5341 * i915_gpu_turbo_disable - disable graphics turbo
5342 *
5343 * Disable graphics turbo by resetting the max frequency and setting the
5344 * current frequency to the default.
5345 */
5346 bool i915_gpu_turbo_disable(void)
5347 {
5348 struct drm_i915_private *dev_priv;
5349 bool ret = true;
5350
5351 spin_lock_irq(&mchdev_lock);
5352 if (!i915_mch_dev) {
5353 ret = false;
5354 goto out_unlock;
5355 }
5356 dev_priv = i915_mch_dev;
5357
5358 dev_priv->ips.max_delay = dev_priv->ips.fstart;
5359
5360 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5361 ret = false;
5362
5363 out_unlock:
5364 spin_unlock_irq(&mchdev_lock);
5365
5366 return ret;
5367 }
5368 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5369
5370 /**
5371 * Tells the intel_ips driver that the i915 driver is now loaded, if
5372 * IPS got loaded first.
5373 *
5374 * This awkward dance is so that neither module has to depend on the
5375 * other in order for IPS to do the appropriate communication of
5376 * GPU turbo limits to i915.
5377 */
5378 static void
5379 ips_ping_for_i915_load(void)
5380 {
5381 void (*link)(void);
5382
5383 link = symbol_get(ips_link_to_i915_driver);
5384 if (link) {
5385 link();
5386 symbol_put(ips_link_to_i915_driver);
5387 }
5388 }
5389
5390 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5391 {
5392 /* We only register the i915 ips part with intel-ips once everything is
5393 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5394 spin_lock_irq(&mchdev_lock);
5395 i915_mch_dev = dev_priv;
5396 spin_unlock_irq(&mchdev_lock);
5397
5398 ips_ping_for_i915_load();
5399 }
5400
5401 void intel_gpu_ips_teardown(void)
5402 {
5403 spin_lock_irq(&mchdev_lock);
5404 i915_mch_dev = NULL;
5405 spin_unlock_irq(&mchdev_lock);
5406 }
5407
5408 static void intel_init_emon(struct drm_device *dev)
5409 {
5410 struct drm_i915_private *dev_priv = dev->dev_private;
5411 u32 lcfuse;
5412 u8 pxw[16];
5413 int i;
5414
5415 /* Disable to program */
5416 I915_WRITE(ECR, 0);
5417 POSTING_READ(ECR);
5418
5419 /* Program energy weights for various events */
5420 I915_WRITE(SDEW, 0x15040d00);
5421 I915_WRITE(CSIEW0, 0x007f0000);
5422 I915_WRITE(CSIEW1, 0x1e220004);
5423 I915_WRITE(CSIEW2, 0x04000004);
5424
5425 for (i = 0; i < 5; i++)
5426 I915_WRITE(PEW + (i * 4), 0);
5427 for (i = 0; i < 3; i++)
5428 I915_WRITE(DEW + (i * 4), 0);
5429
5430 /* Program P-state weights to account for frequency power adjustment */
5431 for (i = 0; i < 16; i++) {
5432 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5433 unsigned long freq = intel_pxfreq(pxvidfreq);
5434 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5435 PXVFREQ_PX_SHIFT;
5436 unsigned long val;
5437
5438 val = vid * vid;
5439 val *= (freq / 1000);
5440 val *= 255;
5441 val /= (127*127*900);
5442 if (val > 0xff)
5443 DRM_ERROR("bad pxval: %ld\n", val);
5444 pxw[i] = val;
5445 }
5446 /* Render standby states get 0 weight */
5447 pxw[14] = 0;
5448 pxw[15] = 0;
5449
5450 for (i = 0; i < 4; i++) {
5451 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5452 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5453 I915_WRITE(PXW + (i * 4), val);
5454 }
5455
5456 /* Adjust magic regs to magic values (more experimental results) */
5457 I915_WRITE(OGW0, 0);
5458 I915_WRITE(OGW1, 0);
5459 I915_WRITE(EG0, 0x00007f00);
5460 I915_WRITE(EG1, 0x0000000e);
5461 I915_WRITE(EG2, 0x000e0000);
5462 I915_WRITE(EG3, 0x68000300);
5463 I915_WRITE(EG4, 0x42000000);
5464 I915_WRITE(EG5, 0x00140031);
5465 I915_WRITE(EG6, 0);
5466 I915_WRITE(EG7, 0);
5467
5468 for (i = 0; i < 8; i++)
5469 I915_WRITE(PXWL + (i * 4), 0);
5470
5471 /* Enable PMON + select events */
5472 I915_WRITE(ECR, 0x80000019);
5473
5474 lcfuse = I915_READ(LCFUSE02);
5475
5476 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5477 }
5478
5479 void intel_init_gt_powersave(struct drm_device *dev)
5480 {
5481 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5482
5483 if (IS_CHERRYVIEW(dev))
5484 cherryview_init_gt_powersave(dev);
5485 else if (IS_VALLEYVIEW(dev))
5486 valleyview_init_gt_powersave(dev);
5487 }
5488
5489 void intel_cleanup_gt_powersave(struct drm_device *dev)
5490 {
5491 if (IS_CHERRYVIEW(dev))
5492 return;
5493 else if (IS_VALLEYVIEW(dev))
5494 valleyview_cleanup_gt_powersave(dev);
5495 }
5496
5497 static void gen6_suspend_rps(struct drm_device *dev)
5498 {
5499 struct drm_i915_private *dev_priv = dev->dev_private;
5500
5501 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5502
5503 /*
5504 * TODO: disable RPS interrupts on GEN9+ too once RPS support
5505 * is added for it.
5506 */
5507 if (INTEL_INFO(dev)->gen < 9)
5508 gen6_disable_rps_interrupts(dev);
5509 }
5510
5511 /**
5512 * intel_suspend_gt_powersave - suspend PM work and helper threads
5513 * @dev: drm device
5514 *
5515 * We don't want to disable RC6 or other features here, we just want
5516 * to make sure any work we've queued has finished and won't bother
5517 * us while we're suspended.
5518 */
5519 void intel_suspend_gt_powersave(struct drm_device *dev)
5520 {
5521 struct drm_i915_private *dev_priv = dev->dev_private;
5522
5523 if (INTEL_INFO(dev)->gen < 6)
5524 return;
5525
5526 gen6_suspend_rps(dev);
5527
5528 /* Force GPU to min freq during suspend */
5529 gen6_rps_idle(dev_priv);
5530 }
5531
5532 void intel_disable_gt_powersave(struct drm_device *dev)
5533 {
5534 struct drm_i915_private *dev_priv = dev->dev_private;
5535
5536 if (IS_IRONLAKE_M(dev)) {
5537 ironlake_disable_drps(dev);
5538 ironlake_disable_rc6(dev);
5539 } else if (INTEL_INFO(dev)->gen >= 6) {
5540 intel_suspend_gt_powersave(dev);
5541
5542 mutex_lock(&dev_priv->rps.hw_lock);
5543 if (INTEL_INFO(dev)->gen >= 9)
5544 gen9_disable_rps(dev);
5545 else if (IS_CHERRYVIEW(dev))
5546 cherryview_disable_rps(dev);
5547 else if (IS_VALLEYVIEW(dev))
5548 valleyview_disable_rps(dev);
5549 else
5550 gen6_disable_rps(dev);
5551
5552 dev_priv->rps.enabled = false;
5553 mutex_unlock(&dev_priv->rps.hw_lock);
5554 }
5555 }
5556
5557 static void intel_gen6_powersave_work(struct work_struct *work)
5558 {
5559 struct drm_i915_private *dev_priv =
5560 container_of(work, struct drm_i915_private,
5561 rps.delayed_resume_work.work);
5562 struct drm_device *dev = dev_priv->dev;
5563
5564 mutex_lock(&dev_priv->rps.hw_lock);
5565
5566 /*
5567 * TODO: reset/enable RPS interrupts on GEN9+ too, once RPS support is
5568 * added for it.
5569 */
5570 if (INTEL_INFO(dev)->gen < 9)
5571 gen6_reset_rps_interrupts(dev);
5572
5573 if (IS_CHERRYVIEW(dev)) {
5574 cherryview_enable_rps(dev);
5575 } else if (IS_VALLEYVIEW(dev)) {
5576 valleyview_enable_rps(dev);
5577 } else if (INTEL_INFO(dev)->gen >= 9) {
5578 gen9_enable_rps(dev);
5579 } else if (IS_BROADWELL(dev)) {
5580 gen8_enable_rps(dev);
5581 __gen6_update_ring_freq(dev);
5582 } else {
5583 gen6_enable_rps(dev);
5584 __gen6_update_ring_freq(dev);
5585 }
5586 dev_priv->rps.enabled = true;
5587
5588 if (INTEL_INFO(dev)->gen < 9)
5589 gen6_enable_rps_interrupts(dev);
5590
5591 mutex_unlock(&dev_priv->rps.hw_lock);
5592
5593 intel_runtime_pm_put(dev_priv);
5594 }
5595
5596 void intel_enable_gt_powersave(struct drm_device *dev)
5597 {
5598 struct drm_i915_private *dev_priv = dev->dev_private;
5599
5600 if (IS_IRONLAKE_M(dev)) {
5601 mutex_lock(&dev->struct_mutex);
5602 ironlake_enable_drps(dev);
5603 ironlake_enable_rc6(dev);
5604 intel_init_emon(dev);
5605 mutex_unlock(&dev->struct_mutex);
5606 } else if (INTEL_INFO(dev)->gen >= 6) {
5607 /*
5608 * PCU communication is slow and this doesn't need to be
5609 * done at any specific time, so do this out of our fast path
5610 * to make resume and init faster.
5611 *
5612 * We depend on the HW RC6 power context save/restore
5613 * mechanism when entering D3 through runtime PM suspend. So
5614 * disable RPM until RPS/RC6 is properly setup. We can only
5615 * get here via the driver load/system resume/runtime resume
5616 * paths, so the _noresume version is enough (and in case of
5617 * runtime resume it's necessary).
5618 */
5619 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5620 round_jiffies_up_relative(HZ)))
5621 intel_runtime_pm_get_noresume(dev_priv);
5622 }
5623 }
5624
5625 void intel_reset_gt_powersave(struct drm_device *dev)
5626 {
5627 struct drm_i915_private *dev_priv = dev->dev_private;
5628
5629 if (INTEL_INFO(dev)->gen < 6)
5630 return;
5631
5632 gen6_suspend_rps(dev);
5633 dev_priv->rps.enabled = false;
5634 }
5635
5636 static void ibx_init_clock_gating(struct drm_device *dev)
5637 {
5638 struct drm_i915_private *dev_priv = dev->dev_private;
5639
5640 /*
5641 * On Ibex Peak and Cougar Point, we need to disable clock
5642 * gating for the panel power sequencer or it will fail to
5643 * start up when no ports are active.
5644 */
5645 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5646 }
5647
5648 static void g4x_disable_trickle_feed(struct drm_device *dev)
5649 {
5650 struct drm_i915_private *dev_priv = dev->dev_private;
5651 int pipe;
5652
5653 for_each_pipe(dev_priv, pipe) {
5654 I915_WRITE(DSPCNTR(pipe),
5655 I915_READ(DSPCNTR(pipe)) |
5656 DISPPLANE_TRICKLE_FEED_DISABLE);
5657 intel_flush_primary_plane(dev_priv, pipe);
5658 }
5659 }
5660
5661 static void ilk_init_lp_watermarks(struct drm_device *dev)
5662 {
5663 struct drm_i915_private *dev_priv = dev->dev_private;
5664
5665 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5666 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5667 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5668
5669 /*
5670 * Don't touch WM1S_LP_EN here.
5671 * Doing so could cause underruns.
5672 */
5673 }
5674
5675 static void ironlake_init_clock_gating(struct drm_device *dev)
5676 {
5677 struct drm_i915_private *dev_priv = dev->dev_private;
5678 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5679
5680 /*
5681 * Required for FBC
5682 * WaFbcDisableDpfcClockGating:ilk
5683 */
5684 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5685 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5686 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5687
5688 I915_WRITE(PCH_3DCGDIS0,
5689 MARIUNIT_CLOCK_GATE_DISABLE |
5690 SVSMUNIT_CLOCK_GATE_DISABLE);
5691 I915_WRITE(PCH_3DCGDIS1,
5692 VFMUNIT_CLOCK_GATE_DISABLE);
5693
5694 /*
5695 * According to the spec the following bits should be set in
5696 * order to enable memory self-refresh
5697 * The bit 22/21 of 0x42004
5698 * The bit 5 of 0x42020
5699 * The bit 15 of 0x45000
5700 */
5701 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5702 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5703 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5704 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5705 I915_WRITE(DISP_ARB_CTL,
5706 (I915_READ(DISP_ARB_CTL) |
5707 DISP_FBC_WM_DIS));
5708
5709 ilk_init_lp_watermarks(dev);
5710
5711 /*
5712 * Based on the document from hardware guys the following bits
5713 * should be set unconditionally in order to enable FBC.
5714 * The bit 22 of 0x42000
5715 * The bit 22 of 0x42004
5716 * The bit 7,8,9 of 0x42020.
5717 */
5718 if (IS_IRONLAKE_M(dev)) {
5719 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5720 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5721 I915_READ(ILK_DISPLAY_CHICKEN1) |
5722 ILK_FBCQ_DIS);
5723 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5724 I915_READ(ILK_DISPLAY_CHICKEN2) |
5725 ILK_DPARB_GATE);
5726 }
5727
5728 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5729
5730 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5731 I915_READ(ILK_DISPLAY_CHICKEN2) |
5732 ILK_ELPIN_409_SELECT);
5733 I915_WRITE(_3D_CHICKEN2,
5734 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5735 _3D_CHICKEN2_WM_READ_PIPELINED);
5736
5737 /* WaDisableRenderCachePipelinedFlush:ilk */
5738 I915_WRITE(CACHE_MODE_0,
5739 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5740
5741 /* WaDisable_RenderCache_OperationalFlush:ilk */
5742 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5743
5744 g4x_disable_trickle_feed(dev);
5745
5746 ibx_init_clock_gating(dev);
5747 }
5748
5749 static void cpt_init_clock_gating(struct drm_device *dev)
5750 {
5751 struct drm_i915_private *dev_priv = dev->dev_private;
5752 int pipe;
5753 uint32_t val;
5754
5755 /*
5756 * On Ibex Peak and Cougar Point, we need to disable clock
5757 * gating for the panel power sequencer or it will fail to
5758 * start up when no ports are active.
5759 */
5760 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5761 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5762 PCH_CPUNIT_CLOCK_GATE_DISABLE);
5763 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5764 DPLS_EDP_PPS_FIX_DIS);
5765 /* The below fixes the weird display corruption, a few pixels shifted
5766 * downward, on (only) LVDS of some HP laptops with IVY.
5767 */
5768 for_each_pipe(dev_priv, pipe) {
5769 val = I915_READ(TRANS_CHICKEN2(pipe));
5770 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5771 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5772 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5773 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5774 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5775 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5776 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5777 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5778 }
5779 /* WADP0ClockGatingDisable */
5780 for_each_pipe(dev_priv, pipe) {
5781 I915_WRITE(TRANS_CHICKEN1(pipe),
5782 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5783 }
5784 }
5785
5786 static void gen6_check_mch_setup(struct drm_device *dev)
5787 {
5788 struct drm_i915_private *dev_priv = dev->dev_private;
5789 uint32_t tmp;
5790
5791 tmp = I915_READ(MCH_SSKPD);
5792 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5793 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5794 tmp);
5795 }
5796
5797 static void gen6_init_clock_gating(struct drm_device *dev)
5798 {
5799 struct drm_i915_private *dev_priv = dev->dev_private;
5800 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5801
5802 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5803
5804 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5805 I915_READ(ILK_DISPLAY_CHICKEN2) |
5806 ILK_ELPIN_409_SELECT);
5807
5808 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5809 I915_WRITE(_3D_CHICKEN,
5810 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5811
5812 /* WaDisable_RenderCache_OperationalFlush:snb */
5813 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5814
5815 /*
5816 * BSpec recoomends 8x4 when MSAA is used,
5817 * however in practice 16x4 seems fastest.
5818 *
5819 * Note that PS/WM thread counts depend on the WIZ hashing
5820 * disable bit, which we don't touch here, but it's good
5821 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5822 */
5823 I915_WRITE(GEN6_GT_MODE,
5824 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5825
5826 ilk_init_lp_watermarks(dev);
5827
5828 I915_WRITE(CACHE_MODE_0,
5829 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5830
5831 I915_WRITE(GEN6_UCGCTL1,
5832 I915_READ(GEN6_UCGCTL1) |
5833 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5834 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5835
5836 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5837 * gating disable must be set. Failure to set it results in
5838 * flickering pixels due to Z write ordering failures after
5839 * some amount of runtime in the Mesa "fire" demo, and Unigine
5840 * Sanctuary and Tropics, and apparently anything else with
5841 * alpha test or pixel discard.
5842 *
5843 * According to the spec, bit 11 (RCCUNIT) must also be set,
5844 * but we didn't debug actual testcases to find it out.
5845 *
5846 * WaDisableRCCUnitClockGating:snb
5847 * WaDisableRCPBUnitClockGating:snb
5848 */
5849 I915_WRITE(GEN6_UCGCTL2,
5850 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5851 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5852
5853 /* WaStripsFansDisableFastClipPerformanceFix:snb */
5854 I915_WRITE(_3D_CHICKEN3,
5855 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5856
5857 /*
5858 * Bspec says:
5859 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5860 * 3DSTATE_SF number of SF output attributes is more than 16."
5861 */
5862 I915_WRITE(_3D_CHICKEN3,
5863 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5864
5865 /*
5866 * According to the spec the following bits should be
5867 * set in order to enable memory self-refresh and fbc:
5868 * The bit21 and bit22 of 0x42000
5869 * The bit21 and bit22 of 0x42004
5870 * The bit5 and bit7 of 0x42020
5871 * The bit14 of 0x70180
5872 * The bit14 of 0x71180
5873 *
5874 * WaFbcAsynchFlipDisableFbcQueue:snb
5875 */
5876 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5877 I915_READ(ILK_DISPLAY_CHICKEN1) |
5878 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5879 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5880 I915_READ(ILK_DISPLAY_CHICKEN2) |
5881 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5882 I915_WRITE(ILK_DSPCLK_GATE_D,
5883 I915_READ(ILK_DSPCLK_GATE_D) |
5884 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
5885 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5886
5887 g4x_disable_trickle_feed(dev);
5888
5889 cpt_init_clock_gating(dev);
5890
5891 gen6_check_mch_setup(dev);
5892 }
5893
5894 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5895 {
5896 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5897
5898 /*
5899 * WaVSThreadDispatchOverride:ivb,vlv
5900 *
5901 * This actually overrides the dispatch
5902 * mode for all thread types.
5903 */
5904 reg &= ~GEN7_FF_SCHED_MASK;
5905 reg |= GEN7_FF_TS_SCHED_HW;
5906 reg |= GEN7_FF_VS_SCHED_HW;
5907 reg |= GEN7_FF_DS_SCHED_HW;
5908
5909 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5910 }
5911
5912 static void lpt_init_clock_gating(struct drm_device *dev)
5913 {
5914 struct drm_i915_private *dev_priv = dev->dev_private;
5915
5916 /*
5917 * TODO: this bit should only be enabled when really needed, then
5918 * disabled when not needed anymore in order to save power.
5919 */
5920 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5921 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5922 I915_READ(SOUTH_DSPCLK_GATE_D) |
5923 PCH_LP_PARTITION_LEVEL_DISABLE);
5924
5925 /* WADPOClockGatingDisable:hsw */
5926 I915_WRITE(_TRANSA_CHICKEN1,
5927 I915_READ(_TRANSA_CHICKEN1) |
5928 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5929 }
5930
5931 static void lpt_suspend_hw(struct drm_device *dev)
5932 {
5933 struct drm_i915_private *dev_priv = dev->dev_private;
5934
5935 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5936 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5937
5938 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5939 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5940 }
5941 }
5942
5943 static void broadwell_init_clock_gating(struct drm_device *dev)
5944 {
5945 struct drm_i915_private *dev_priv = dev->dev_private;
5946 enum pipe pipe;
5947
5948 I915_WRITE(WM3_LP_ILK, 0);
5949 I915_WRITE(WM2_LP_ILK, 0);
5950 I915_WRITE(WM1_LP_ILK, 0);
5951
5952 /* WaSwitchSolVfFArbitrationPriority:bdw */
5953 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5954
5955 /* WaPsrDPAMaskVBlankInSRD:bdw */
5956 I915_WRITE(CHICKEN_PAR1_1,
5957 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5958
5959 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5960 for_each_pipe(dev_priv, pipe) {
5961 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5962 I915_READ(CHICKEN_PIPESL_1(pipe)) |
5963 BDW_DPRS_MASK_VBLANK_SRD);
5964 }
5965
5966 /* WaVSRefCountFullforceMissDisable:bdw */
5967 /* WaDSRefCountFullforceMissDisable:bdw */
5968 I915_WRITE(GEN7_FF_THREAD_MODE,
5969 I915_READ(GEN7_FF_THREAD_MODE) &
5970 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5971
5972 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5973 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5974
5975 /* WaDisableSDEUnitClockGating:bdw */
5976 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5977 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5978
5979 lpt_init_clock_gating(dev);
5980 }
5981
5982 static void haswell_init_clock_gating(struct drm_device *dev)
5983 {
5984 struct drm_i915_private *dev_priv = dev->dev_private;
5985
5986 ilk_init_lp_watermarks(dev);
5987
5988 /* L3 caching of data atomics doesn't work -- disable it. */
5989 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5990 I915_WRITE(HSW_ROW_CHICKEN3,
5991 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5992
5993 /* This is required by WaCatErrorRejectionIssue:hsw */
5994 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5995 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5996 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5997
5998 /* WaVSRefCountFullforceMissDisable:hsw */
5999 I915_WRITE(GEN7_FF_THREAD_MODE,
6000 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6001
6002 /* WaDisable_RenderCache_OperationalFlush:hsw */
6003 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6004
6005 /* enable HiZ Raw Stall Optimization */
6006 I915_WRITE(CACHE_MODE_0_GEN7,
6007 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6008
6009 /* WaDisable4x2SubspanOptimization:hsw */
6010 I915_WRITE(CACHE_MODE_1,
6011 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6012
6013 /*
6014 * BSpec recommends 8x4 when MSAA is used,
6015 * however in practice 16x4 seems fastest.
6016 *
6017 * Note that PS/WM thread counts depend on the WIZ hashing
6018 * disable bit, which we don't touch here, but it's good
6019 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6020 */
6021 I915_WRITE(GEN7_GT_MODE,
6022 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6023
6024 /* WaSampleCChickenBitEnable:hsw */
6025 I915_WRITE(HALF_SLICE_CHICKEN3,
6026 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6027
6028 /* WaSwitchSolVfFArbitrationPriority:hsw */
6029 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6030
6031 /* WaRsPkgCStateDisplayPMReq:hsw */
6032 I915_WRITE(CHICKEN_PAR1_1,
6033 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6034
6035 lpt_init_clock_gating(dev);
6036 }
6037
6038 static void ivybridge_init_clock_gating(struct drm_device *dev)
6039 {
6040 struct drm_i915_private *dev_priv = dev->dev_private;
6041 uint32_t snpcr;
6042
6043 ilk_init_lp_watermarks(dev);
6044
6045 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6046
6047 /* WaDisableEarlyCull:ivb */
6048 I915_WRITE(_3D_CHICKEN3,
6049 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6050
6051 /* WaDisableBackToBackFlipFix:ivb */
6052 I915_WRITE(IVB_CHICKEN3,
6053 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6054 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6055
6056 /* WaDisablePSDDualDispatchEnable:ivb */
6057 if (IS_IVB_GT1(dev))
6058 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6059 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6060
6061 /* WaDisable_RenderCache_OperationalFlush:ivb */
6062 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6063
6064 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6065 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6066 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6067
6068 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6069 I915_WRITE(GEN7_L3CNTLREG1,
6070 GEN7_WA_FOR_GEN7_L3_CONTROL);
6071 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6072 GEN7_WA_L3_CHICKEN_MODE);
6073 if (IS_IVB_GT1(dev))
6074 I915_WRITE(GEN7_ROW_CHICKEN2,
6075 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6076 else {
6077 /* must write both registers */
6078 I915_WRITE(GEN7_ROW_CHICKEN2,
6079 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6080 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6081 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6082 }
6083
6084 /* WaForceL3Serialization:ivb */
6085 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6086 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6087
6088 /*
6089 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6090 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6091 */
6092 I915_WRITE(GEN6_UCGCTL2,
6093 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6094
6095 /* This is required by WaCatErrorRejectionIssue:ivb */
6096 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6097 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6098 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6099
6100 g4x_disable_trickle_feed(dev);
6101
6102 gen7_setup_fixed_func_scheduler(dev_priv);
6103
6104 if (0) { /* causes HiZ corruption on ivb:gt1 */
6105 /* enable HiZ Raw Stall Optimization */
6106 I915_WRITE(CACHE_MODE_0_GEN7,
6107 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6108 }
6109
6110 /* WaDisable4x2SubspanOptimization:ivb */
6111 I915_WRITE(CACHE_MODE_1,
6112 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6113
6114 /*
6115 * BSpec recommends 8x4 when MSAA is used,
6116 * however in practice 16x4 seems fastest.
6117 *
6118 * Note that PS/WM thread counts depend on the WIZ hashing
6119 * disable bit, which we don't touch here, but it's good
6120 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6121 */
6122 I915_WRITE(GEN7_GT_MODE,
6123 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6124
6125 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6126 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6127 snpcr |= GEN6_MBC_SNPCR_MED;
6128 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6129
6130 if (!HAS_PCH_NOP(dev))
6131 cpt_init_clock_gating(dev);
6132
6133 gen6_check_mch_setup(dev);
6134 }
6135
6136 static void valleyview_init_clock_gating(struct drm_device *dev)
6137 {
6138 struct drm_i915_private *dev_priv = dev->dev_private;
6139
6140 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6141
6142 /* WaDisableEarlyCull:vlv */
6143 I915_WRITE(_3D_CHICKEN3,
6144 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6145
6146 /* WaDisableBackToBackFlipFix:vlv */
6147 I915_WRITE(IVB_CHICKEN3,
6148 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6149 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6150
6151 /* WaPsdDispatchEnable:vlv */
6152 /* WaDisablePSDDualDispatchEnable:vlv */
6153 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6154 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6155 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6156
6157 /* WaDisable_RenderCache_OperationalFlush:vlv */
6158 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6159
6160 /* WaForceL3Serialization:vlv */
6161 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6162 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6163
6164 /* WaDisableDopClockGating:vlv */
6165 I915_WRITE(GEN7_ROW_CHICKEN2,
6166 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6167
6168 /* This is required by WaCatErrorRejectionIssue:vlv */
6169 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6170 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6171 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6172
6173 gen7_setup_fixed_func_scheduler(dev_priv);
6174
6175 /*
6176 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6177 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6178 */
6179 I915_WRITE(GEN6_UCGCTL2,
6180 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6181
6182 /* WaDisableL3Bank2xClockGate:vlv
6183 * Disabling L3 clock gating- MMIO 940c[25] = 1
6184 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6185 I915_WRITE(GEN7_UCGCTL4,
6186 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6187
6188 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6189
6190 /*
6191 * BSpec says this must be set, even though
6192 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6193 */
6194 I915_WRITE(CACHE_MODE_1,
6195 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6196
6197 /*
6198 * WaIncreaseL3CreditsForVLVB0:vlv
6199 * This is the hardware default actually.
6200 */
6201 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6202
6203 /*
6204 * WaDisableVLVClockGating_VBIIssue:vlv
6205 * Disable clock gating on th GCFG unit to prevent a delay
6206 * in the reporting of vblank events.
6207 */
6208 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6209 }
6210
6211 static void cherryview_init_clock_gating(struct drm_device *dev)
6212 {
6213 struct drm_i915_private *dev_priv = dev->dev_private;
6214
6215 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6216
6217 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6218
6219 /* WaVSRefCountFullforceMissDisable:chv */
6220 /* WaDSRefCountFullforceMissDisable:chv */
6221 I915_WRITE(GEN7_FF_THREAD_MODE,
6222 I915_READ(GEN7_FF_THREAD_MODE) &
6223 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6224
6225 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6226 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6227 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6228
6229 /* WaDisableCSUnitClockGating:chv */
6230 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6231 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6232
6233 /* WaDisableSDEUnitClockGating:chv */
6234 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6235 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6236 }
6237
6238 static void g4x_init_clock_gating(struct drm_device *dev)
6239 {
6240 struct drm_i915_private *dev_priv = dev->dev_private;
6241 uint32_t dspclk_gate;
6242
6243 I915_WRITE(RENCLK_GATE_D1, 0);
6244 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6245 GS_UNIT_CLOCK_GATE_DISABLE |
6246 CL_UNIT_CLOCK_GATE_DISABLE);
6247 I915_WRITE(RAMCLK_GATE_D, 0);
6248 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6249 OVRUNIT_CLOCK_GATE_DISABLE |
6250 OVCUNIT_CLOCK_GATE_DISABLE;
6251 if (IS_GM45(dev))
6252 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6253 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6254
6255 /* WaDisableRenderCachePipelinedFlush */
6256 I915_WRITE(CACHE_MODE_0,
6257 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6258
6259 /* WaDisable_RenderCache_OperationalFlush:g4x */
6260 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6261
6262 g4x_disable_trickle_feed(dev);
6263 }
6264
6265 static void crestline_init_clock_gating(struct drm_device *dev)
6266 {
6267 struct drm_i915_private *dev_priv = dev->dev_private;
6268
6269 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6270 I915_WRITE(RENCLK_GATE_D2, 0);
6271 I915_WRITE(DSPCLK_GATE_D, 0);
6272 I915_WRITE(RAMCLK_GATE_D, 0);
6273 I915_WRITE16(DEUC, 0);
6274 I915_WRITE(MI_ARB_STATE,
6275 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6276
6277 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6278 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6279 }
6280
6281 static void broadwater_init_clock_gating(struct drm_device *dev)
6282 {
6283 struct drm_i915_private *dev_priv = dev->dev_private;
6284
6285 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6286 I965_RCC_CLOCK_GATE_DISABLE |
6287 I965_RCPB_CLOCK_GATE_DISABLE |
6288 I965_ISC_CLOCK_GATE_DISABLE |
6289 I965_FBC_CLOCK_GATE_DISABLE);
6290 I915_WRITE(RENCLK_GATE_D2, 0);
6291 I915_WRITE(MI_ARB_STATE,
6292 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6293
6294 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6295 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6296 }
6297
6298 static void gen3_init_clock_gating(struct drm_device *dev)
6299 {
6300 struct drm_i915_private *dev_priv = dev->dev_private;
6301 u32 dstate = I915_READ(D_STATE);
6302
6303 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6304 DSTATE_DOT_CLOCK_GATING;
6305 I915_WRITE(D_STATE, dstate);
6306
6307 if (IS_PINEVIEW(dev))
6308 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6309
6310 /* IIR "flip pending" means done if this bit is set */
6311 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6312
6313 /* interrupts should cause a wake up from C3 */
6314 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6315
6316 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6317 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6318
6319 I915_WRITE(MI_ARB_STATE,
6320 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6321 }
6322
6323 static void i85x_init_clock_gating(struct drm_device *dev)
6324 {
6325 struct drm_i915_private *dev_priv = dev->dev_private;
6326
6327 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6328
6329 /* interrupts should cause a wake up from C3 */
6330 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6331 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6332
6333 I915_WRITE(MEM_MODE,
6334 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6335 }
6336
6337 static void i830_init_clock_gating(struct drm_device *dev)
6338 {
6339 struct drm_i915_private *dev_priv = dev->dev_private;
6340
6341 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6342
6343 I915_WRITE(MEM_MODE,
6344 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6345 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6346 }
6347
6348 void intel_init_clock_gating(struct drm_device *dev)
6349 {
6350 struct drm_i915_private *dev_priv = dev->dev_private;
6351
6352 dev_priv->display.init_clock_gating(dev);
6353 }
6354
6355 void intel_suspend_hw(struct drm_device *dev)
6356 {
6357 if (HAS_PCH_LPT(dev))
6358 lpt_suspend_hw(dev);
6359 }
6360
6361 /* Set up chip specific power management-related functions */
6362 void intel_init_pm(struct drm_device *dev)
6363 {
6364 struct drm_i915_private *dev_priv = dev->dev_private;
6365
6366 intel_fbc_init(dev_priv);
6367
6368 /* For cxsr */
6369 if (IS_PINEVIEW(dev))
6370 i915_pineview_get_mem_freq(dev);
6371 else if (IS_GEN5(dev))
6372 i915_ironlake_get_mem_freq(dev);
6373
6374 /* For FIFO watermark updates */
6375 if (INTEL_INFO(dev)->gen >= 9) {
6376 skl_setup_wm_latency(dev);
6377
6378 dev_priv->display.init_clock_gating = gen9_init_clock_gating;
6379 dev_priv->display.update_wm = skl_update_wm;
6380 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6381 } else if (HAS_PCH_SPLIT(dev)) {
6382 ilk_setup_wm_latency(dev);
6383
6384 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6385 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6386 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6387 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6388 dev_priv->display.update_wm = ilk_update_wm;
6389 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6390 } else {
6391 DRM_DEBUG_KMS("Failed to read display plane latency. "
6392 "Disable CxSR\n");
6393 }
6394
6395 if (IS_GEN5(dev))
6396 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6397 else if (IS_GEN6(dev))
6398 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6399 else if (IS_IVYBRIDGE(dev))
6400 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6401 else if (IS_HASWELL(dev))
6402 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6403 else if (INTEL_INFO(dev)->gen == 8)
6404 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6405 } else if (IS_CHERRYVIEW(dev)) {
6406 dev_priv->display.update_wm = cherryview_update_wm;
6407 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6408 dev_priv->display.init_clock_gating =
6409 cherryview_init_clock_gating;
6410 } else if (IS_VALLEYVIEW(dev)) {
6411 dev_priv->display.update_wm = valleyview_update_wm;
6412 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6413 dev_priv->display.init_clock_gating =
6414 valleyview_init_clock_gating;
6415 } else if (IS_PINEVIEW(dev)) {
6416 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6417 dev_priv->is_ddr3,
6418 dev_priv->fsb_freq,
6419 dev_priv->mem_freq)) {
6420 DRM_INFO("failed to find known CxSR latency "
6421 "(found ddr%s fsb freq %d, mem freq %d), "
6422 "disabling CxSR\n",
6423 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6424 dev_priv->fsb_freq, dev_priv->mem_freq);
6425 /* Disable CxSR and never update its watermark again */
6426 intel_set_memory_cxsr(dev_priv, false);
6427 dev_priv->display.update_wm = NULL;
6428 } else
6429 dev_priv->display.update_wm = pineview_update_wm;
6430 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6431 } else if (IS_G4X(dev)) {
6432 dev_priv->display.update_wm = g4x_update_wm;
6433 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6434 } else if (IS_GEN4(dev)) {
6435 dev_priv->display.update_wm = i965_update_wm;
6436 if (IS_CRESTLINE(dev))
6437 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6438 else if (IS_BROADWATER(dev))
6439 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6440 } else if (IS_GEN3(dev)) {
6441 dev_priv->display.update_wm = i9xx_update_wm;
6442 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6443 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6444 } else if (IS_GEN2(dev)) {
6445 if (INTEL_INFO(dev)->num_pipes == 1) {
6446 dev_priv->display.update_wm = i845_update_wm;
6447 dev_priv->display.get_fifo_size = i845_get_fifo_size;
6448 } else {
6449 dev_priv->display.update_wm = i9xx_update_wm;
6450 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6451 }
6452
6453 if (IS_I85X(dev) || IS_I865G(dev))
6454 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6455 else
6456 dev_priv->display.init_clock_gating = i830_init_clock_gating;
6457 } else {
6458 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6459 }
6460 }
6461
6462 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
6463 {
6464 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6465
6466 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6467 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6468 return -EAGAIN;
6469 }
6470
6471 I915_WRITE(GEN6_PCODE_DATA, *val);
6472 I915_WRITE(GEN6_PCODE_DATA1, 0);
6473 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6474
6475 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6476 500)) {
6477 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6478 return -ETIMEDOUT;
6479 }
6480
6481 *val = I915_READ(GEN6_PCODE_DATA);
6482 I915_WRITE(GEN6_PCODE_DATA, 0);
6483
6484 return 0;
6485 }
6486
6487 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
6488 {
6489 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6490
6491 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6492 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6493 return -EAGAIN;
6494 }
6495
6496 I915_WRITE(GEN6_PCODE_DATA, val);
6497 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6498
6499 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6500 500)) {
6501 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6502 return -ETIMEDOUT;
6503 }
6504
6505 I915_WRITE(GEN6_PCODE_DATA, 0);
6506
6507 return 0;
6508 }
6509
6510 static int vlv_gpu_freq_div(unsigned int czclk_freq)
6511 {
6512 switch (czclk_freq) {
6513 case 200:
6514 return 10;
6515 case 267:
6516 return 12;
6517 case 320:
6518 case 333:
6519 return 16;
6520 case 400:
6521 return 20;
6522 default:
6523 return -1;
6524 }
6525 }
6526
6527 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6528 {
6529 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6530
6531 div = vlv_gpu_freq_div(czclk_freq);
6532 if (div < 0)
6533 return div;
6534
6535 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6536 }
6537
6538 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6539 {
6540 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6541
6542 mul = vlv_gpu_freq_div(czclk_freq);
6543 if (mul < 0)
6544 return mul;
6545
6546 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6547 }
6548
6549 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6550 {
6551 int div, czclk_freq = dev_priv->rps.cz_freq;
6552
6553 div = vlv_gpu_freq_div(czclk_freq) / 2;
6554 if (div < 0)
6555 return div;
6556
6557 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6558 }
6559
6560 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6561 {
6562 int mul, czclk_freq = dev_priv->rps.cz_freq;
6563
6564 mul = vlv_gpu_freq_div(czclk_freq) / 2;
6565 if (mul < 0)
6566 return mul;
6567
6568 /* CHV needs even values */
6569 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6570 }
6571
6572 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6573 {
6574 int ret = -1;
6575
6576 if (IS_CHERRYVIEW(dev_priv->dev))
6577 ret = chv_gpu_freq(dev_priv, val);
6578 else if (IS_VALLEYVIEW(dev_priv->dev))
6579 ret = byt_gpu_freq(dev_priv, val);
6580
6581 return ret;
6582 }
6583
6584 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6585 {
6586 int ret = -1;
6587
6588 if (IS_CHERRYVIEW(dev_priv->dev))
6589 ret = chv_freq_opcode(dev_priv, val);
6590 else if (IS_VALLEYVIEW(dev_priv->dev))
6591 ret = byt_freq_opcode(dev_priv, val);
6592
6593 return ret;
6594 }
6595
6596 void intel_pm_setup(struct drm_device *dev)
6597 {
6598 struct drm_i915_private *dev_priv = dev->dev_private;
6599
6600 mutex_init(&dev_priv->rps.hw_lock);
6601
6602 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6603 intel_gen6_powersave_work);
6604
6605 dev_priv->pm.suspended = false;
6606 }
This page took 0.24168 seconds and 5 git commands to generate.