drm/i915: Convert straggling MCHBAR registers
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
34
35 /**
36 * RC6 is a special power stage which allows the GPU to enter an very
37 * low-voltage mode when idle, using down to 0V while at this stage. This
38 * stage is entered automatically when the GPU is idle when RC6 support is
39 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
40 *
41 * There are different RC6 modes available in Intel GPU, which differentiate
42 * among each other with the latency required to enter and leave RC6 and
43 * voltage consumed by the GPU in different states.
44 *
45 * The combination of the following flags define which states GPU is allowed
46 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
47 * RC6pp is deepest RC6. Their support by hardware varies according to the
48 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
49 * which brings the most power savings; deeper states save more power, but
50 * require higher latency to switch to and wake up.
51 */
52 #define INTEL_RC6_ENABLE (1<<0)
53 #define INTEL_RC6p_ENABLE (1<<1)
54 #define INTEL_RC6pp_ENABLE (1<<2)
55
56 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
57 * framebuffer contents in-memory, aiming at reducing the required bandwidth
58 * during in-memory transfers and, therefore, reduce the power packet.
59 *
60 * The benefits of FBC are mostly visible with solid backgrounds and
61 * variation-less patterns.
62 *
63 * FBC-related functionality can be enabled by the means of the
64 * i915.i915_enable_fbc parameter
65 */
66
67 static void i8xx_disable_fbc(struct drm_device *dev)
68 {
69 struct drm_i915_private *dev_priv = dev->dev_private;
70 u32 fbc_ctl;
71
72 /* Disable compression */
73 fbc_ctl = I915_READ(FBC_CONTROL);
74 if ((fbc_ctl & FBC_CTL_EN) == 0)
75 return;
76
77 fbc_ctl &= ~FBC_CTL_EN;
78 I915_WRITE(FBC_CONTROL, fbc_ctl);
79
80 /* Wait for compressing bit to clear */
81 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
82 DRM_DEBUG_KMS("FBC idle timed out\n");
83 return;
84 }
85
86 DRM_DEBUG_KMS("disabled FBC\n");
87 }
88
89 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
90 {
91 struct drm_device *dev = crtc->dev;
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct drm_framebuffer *fb = crtc->fb;
94 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
95 struct drm_i915_gem_object *obj = intel_fb->obj;
96 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
97 int cfb_pitch;
98 int plane, i;
99 u32 fbc_ctl, fbc_ctl2;
100
101 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
102 if (fb->pitches[0] < cfb_pitch)
103 cfb_pitch = fb->pitches[0];
104
105 /* FBC_CTL wants 64B units */
106 cfb_pitch = (cfb_pitch / 64) - 1;
107 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
108
109 /* Clear old tags */
110 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
111 I915_WRITE(FBC_TAG + (i * 4), 0);
112
113 /* Set it up... */
114 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
115 fbc_ctl2 |= plane;
116 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
117 I915_WRITE(FBC_FENCE_OFF, crtc->y);
118
119 /* enable it... */
120 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
121 if (IS_I945GM(dev))
122 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
123 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
124 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
125 fbc_ctl |= obj->fence_reg;
126 I915_WRITE(FBC_CONTROL, fbc_ctl);
127
128 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
129 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
130 }
131
132 static bool i8xx_fbc_enabled(struct drm_device *dev)
133 {
134 struct drm_i915_private *dev_priv = dev->dev_private;
135
136 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
137 }
138
139 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
140 {
141 struct drm_device *dev = crtc->dev;
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 struct drm_framebuffer *fb = crtc->fb;
144 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
145 struct drm_i915_gem_object *obj = intel_fb->obj;
146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
147 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
148 unsigned long stall_watermark = 200;
149 u32 dpfc_ctl;
150
151 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
152 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
153 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
154
155 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
156 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
157 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
158 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
159
160 /* enable it... */
161 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
162
163 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
164 }
165
166 static void g4x_disable_fbc(struct drm_device *dev)
167 {
168 struct drm_i915_private *dev_priv = dev->dev_private;
169 u32 dpfc_ctl;
170
171 /* Disable compression */
172 dpfc_ctl = I915_READ(DPFC_CONTROL);
173 if (dpfc_ctl & DPFC_CTL_EN) {
174 dpfc_ctl &= ~DPFC_CTL_EN;
175 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
176
177 DRM_DEBUG_KMS("disabled FBC\n");
178 }
179 }
180
181 static bool g4x_fbc_enabled(struct drm_device *dev)
182 {
183 struct drm_i915_private *dev_priv = dev->dev_private;
184
185 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
186 }
187
188 static void sandybridge_blit_fbc_update(struct drm_device *dev)
189 {
190 struct drm_i915_private *dev_priv = dev->dev_private;
191 u32 blt_ecoskpd;
192
193 /* Make sure blitter notifies FBC of writes */
194 gen6_gt_force_wake_get(dev_priv);
195 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
196 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
197 GEN6_BLITTER_LOCK_SHIFT;
198 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
199 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
200 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
201 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
202 GEN6_BLITTER_LOCK_SHIFT);
203 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
204 POSTING_READ(GEN6_BLITTER_ECOSKPD);
205 gen6_gt_force_wake_put(dev_priv);
206 }
207
208 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
209 {
210 struct drm_device *dev = crtc->dev;
211 struct drm_i915_private *dev_priv = dev->dev_private;
212 struct drm_framebuffer *fb = crtc->fb;
213 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
214 struct drm_i915_gem_object *obj = intel_fb->obj;
215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
216 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
217 unsigned long stall_watermark = 200;
218 u32 dpfc_ctl;
219
220 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
221 dpfc_ctl &= DPFC_RESERVED;
222 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
223 /* Set persistent mode for front-buffer rendering, ala X. */
224 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
225 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
226 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
227
228 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
229 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
230 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
231 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
232 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
233 /* enable it... */
234 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
235
236 if (IS_GEN6(dev)) {
237 I915_WRITE(SNB_DPFC_CTL_SA,
238 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
239 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
240 sandybridge_blit_fbc_update(dev);
241 }
242
243 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
244 }
245
246 static void ironlake_disable_fbc(struct drm_device *dev)
247 {
248 struct drm_i915_private *dev_priv = dev->dev_private;
249 u32 dpfc_ctl;
250
251 /* Disable compression */
252 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
253 if (dpfc_ctl & DPFC_CTL_EN) {
254 dpfc_ctl &= ~DPFC_CTL_EN;
255 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
256
257 if (IS_IVYBRIDGE(dev))
258 /* WaFbcDisableDpfcClockGating:ivb */
259 I915_WRITE(ILK_DSPCLK_GATE_D,
260 I915_READ(ILK_DSPCLK_GATE_D) &
261 ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
262
263 if (IS_HASWELL(dev))
264 /* WaFbcDisableDpfcClockGating:hsw */
265 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
266 I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
267 ~HSW_DPFC_GATING_DISABLE);
268
269 DRM_DEBUG_KMS("disabled FBC\n");
270 }
271 }
272
273 static bool ironlake_fbc_enabled(struct drm_device *dev)
274 {
275 struct drm_i915_private *dev_priv = dev->dev_private;
276
277 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
278 }
279
280 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
281 {
282 struct drm_device *dev = crtc->dev;
283 struct drm_i915_private *dev_priv = dev->dev_private;
284 struct drm_framebuffer *fb = crtc->fb;
285 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
286 struct drm_i915_gem_object *obj = intel_fb->obj;
287 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
288
289 I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
290
291 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
292 IVB_DPFC_CTL_FENCE_EN |
293 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
294
295 if (IS_IVYBRIDGE(dev)) {
296 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
297 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
298 /* WaFbcDisableDpfcClockGating:ivb */
299 I915_WRITE(ILK_DSPCLK_GATE_D,
300 I915_READ(ILK_DSPCLK_GATE_D) |
301 ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
302 } else {
303 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
304 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
305 HSW_BYPASS_FBC_QUEUE);
306 /* WaFbcDisableDpfcClockGating:hsw */
307 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
308 I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
309 HSW_DPFC_GATING_DISABLE);
310 }
311
312 I915_WRITE(SNB_DPFC_CTL_SA,
313 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
314 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
315
316 sandybridge_blit_fbc_update(dev);
317
318 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
319 }
320
321 bool intel_fbc_enabled(struct drm_device *dev)
322 {
323 struct drm_i915_private *dev_priv = dev->dev_private;
324
325 if (!dev_priv->display.fbc_enabled)
326 return false;
327
328 return dev_priv->display.fbc_enabled(dev);
329 }
330
331 static void intel_fbc_work_fn(struct work_struct *__work)
332 {
333 struct intel_fbc_work *work =
334 container_of(to_delayed_work(__work),
335 struct intel_fbc_work, work);
336 struct drm_device *dev = work->crtc->dev;
337 struct drm_i915_private *dev_priv = dev->dev_private;
338
339 mutex_lock(&dev->struct_mutex);
340 if (work == dev_priv->fbc.fbc_work) {
341 /* Double check that we haven't switched fb without cancelling
342 * the prior work.
343 */
344 if (work->crtc->fb == work->fb) {
345 dev_priv->display.enable_fbc(work->crtc,
346 work->interval);
347
348 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
349 dev_priv->fbc.fb_id = work->crtc->fb->base.id;
350 dev_priv->fbc.y = work->crtc->y;
351 }
352
353 dev_priv->fbc.fbc_work = NULL;
354 }
355 mutex_unlock(&dev->struct_mutex);
356
357 kfree(work);
358 }
359
360 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
361 {
362 if (dev_priv->fbc.fbc_work == NULL)
363 return;
364
365 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
366
367 /* Synchronisation is provided by struct_mutex and checking of
368 * dev_priv->fbc.fbc_work, so we can perform the cancellation
369 * entirely asynchronously.
370 */
371 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
372 /* tasklet was killed before being run, clean up */
373 kfree(dev_priv->fbc.fbc_work);
374
375 /* Mark the work as no longer wanted so that if it does
376 * wake-up (because the work was already running and waiting
377 * for our mutex), it will discover that is no longer
378 * necessary to run.
379 */
380 dev_priv->fbc.fbc_work = NULL;
381 }
382
383 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
384 {
385 struct intel_fbc_work *work;
386 struct drm_device *dev = crtc->dev;
387 struct drm_i915_private *dev_priv = dev->dev_private;
388
389 if (!dev_priv->display.enable_fbc)
390 return;
391
392 intel_cancel_fbc_work(dev_priv);
393
394 work = kzalloc(sizeof(*work), GFP_KERNEL);
395 if (work == NULL) {
396 DRM_ERROR("Failed to allocate FBC work structure\n");
397 dev_priv->display.enable_fbc(crtc, interval);
398 return;
399 }
400
401 work->crtc = crtc;
402 work->fb = crtc->fb;
403 work->interval = interval;
404 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
405
406 dev_priv->fbc.fbc_work = work;
407
408 /* Delay the actual enabling to let pageflipping cease and the
409 * display to settle before starting the compression. Note that
410 * this delay also serves a second purpose: it allows for a
411 * vblank to pass after disabling the FBC before we attempt
412 * to modify the control registers.
413 *
414 * A more complicated solution would involve tracking vblanks
415 * following the termination of the page-flipping sequence
416 * and indeed performing the enable as a co-routine and not
417 * waiting synchronously upon the vblank.
418 *
419 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
420 */
421 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
422 }
423
424 void intel_disable_fbc(struct drm_device *dev)
425 {
426 struct drm_i915_private *dev_priv = dev->dev_private;
427
428 intel_cancel_fbc_work(dev_priv);
429
430 if (!dev_priv->display.disable_fbc)
431 return;
432
433 dev_priv->display.disable_fbc(dev);
434 dev_priv->fbc.plane = -1;
435 }
436
437 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
438 enum no_fbc_reason reason)
439 {
440 if (dev_priv->fbc.no_fbc_reason == reason)
441 return false;
442
443 dev_priv->fbc.no_fbc_reason = reason;
444 return true;
445 }
446
447 /**
448 * intel_update_fbc - enable/disable FBC as needed
449 * @dev: the drm_device
450 *
451 * Set up the framebuffer compression hardware at mode set time. We
452 * enable it if possible:
453 * - plane A only (on pre-965)
454 * - no pixel mulitply/line duplication
455 * - no alpha buffer discard
456 * - no dual wide
457 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
458 *
459 * We can't assume that any compression will take place (worst case),
460 * so the compressed buffer has to be the same size as the uncompressed
461 * one. It also must reside (along with the line length buffer) in
462 * stolen memory.
463 *
464 * We need to enable/disable FBC on a global basis.
465 */
466 void intel_update_fbc(struct drm_device *dev)
467 {
468 struct drm_i915_private *dev_priv = dev->dev_private;
469 struct drm_crtc *crtc = NULL, *tmp_crtc;
470 struct intel_crtc *intel_crtc;
471 struct drm_framebuffer *fb;
472 struct intel_framebuffer *intel_fb;
473 struct drm_i915_gem_object *obj;
474 const struct drm_display_mode *adjusted_mode;
475 unsigned int max_width, max_height;
476
477 if (!I915_HAS_FBC(dev)) {
478 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
479 return;
480 }
481
482 if (!i915_powersave) {
483 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
484 DRM_DEBUG_KMS("fbc disabled per module param\n");
485 return;
486 }
487
488 /*
489 * If FBC is already on, we just have to verify that we can
490 * keep it that way...
491 * Need to disable if:
492 * - more than one pipe is active
493 * - changing FBC params (stride, fence, mode)
494 * - new fb is too large to fit in compressed buffer
495 * - going to an unsupported config (interlace, pixel multiply, etc.)
496 */
497 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
498 if (intel_crtc_active(tmp_crtc) &&
499 to_intel_crtc(tmp_crtc)->primary_enabled) {
500 if (crtc) {
501 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
502 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
503 goto out_disable;
504 }
505 crtc = tmp_crtc;
506 }
507 }
508
509 if (!crtc || crtc->fb == NULL) {
510 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
511 DRM_DEBUG_KMS("no output, disabling\n");
512 goto out_disable;
513 }
514
515 intel_crtc = to_intel_crtc(crtc);
516 fb = crtc->fb;
517 intel_fb = to_intel_framebuffer(fb);
518 obj = intel_fb->obj;
519 adjusted_mode = &intel_crtc->config.adjusted_mode;
520
521 if (i915_enable_fbc < 0 &&
522 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
523 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
524 DRM_DEBUG_KMS("disabled per chip default\n");
525 goto out_disable;
526 }
527 if (!i915_enable_fbc) {
528 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
529 DRM_DEBUG_KMS("fbc disabled per module param\n");
530 goto out_disable;
531 }
532 if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
533 (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
534 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
535 DRM_DEBUG_KMS("mode incompatible with compression, "
536 "disabling\n");
537 goto out_disable;
538 }
539
540 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
541 max_width = 4096;
542 max_height = 2048;
543 } else {
544 max_width = 2048;
545 max_height = 1536;
546 }
547 if (intel_crtc->config.pipe_src_w > max_width ||
548 intel_crtc->config.pipe_src_h > max_height) {
549 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
550 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
551 goto out_disable;
552 }
553 if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
554 intel_crtc->plane != 0) {
555 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
556 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
557 goto out_disable;
558 }
559
560 /* The use of a CPU fence is mandatory in order to detect writes
561 * by the CPU to the scanout and trigger updates to the FBC.
562 */
563 if (obj->tiling_mode != I915_TILING_X ||
564 obj->fence_reg == I915_FENCE_REG_NONE) {
565 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
566 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
567 goto out_disable;
568 }
569
570 /* If the kernel debugger is active, always disable compression */
571 if (in_dbg_master())
572 goto out_disable;
573
574 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
575 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
576 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
577 goto out_disable;
578 }
579
580 /* If the scanout has not changed, don't modify the FBC settings.
581 * Note that we make the fundamental assumption that the fb->obj
582 * cannot be unpinned (and have its GTT offset and fence revoked)
583 * without first being decoupled from the scanout and FBC disabled.
584 */
585 if (dev_priv->fbc.plane == intel_crtc->plane &&
586 dev_priv->fbc.fb_id == fb->base.id &&
587 dev_priv->fbc.y == crtc->y)
588 return;
589
590 if (intel_fbc_enabled(dev)) {
591 /* We update FBC along two paths, after changing fb/crtc
592 * configuration (modeswitching) and after page-flipping
593 * finishes. For the latter, we know that not only did
594 * we disable the FBC at the start of the page-flip
595 * sequence, but also more than one vblank has passed.
596 *
597 * For the former case of modeswitching, it is possible
598 * to switch between two FBC valid configurations
599 * instantaneously so we do need to disable the FBC
600 * before we can modify its control registers. We also
601 * have to wait for the next vblank for that to take
602 * effect. However, since we delay enabling FBC we can
603 * assume that a vblank has passed since disabling and
604 * that we can safely alter the registers in the deferred
605 * callback.
606 *
607 * In the scenario that we go from a valid to invalid
608 * and then back to valid FBC configuration we have
609 * no strict enforcement that a vblank occurred since
610 * disabling the FBC. However, along all current pipe
611 * disabling paths we do need to wait for a vblank at
612 * some point. And we wait before enabling FBC anyway.
613 */
614 DRM_DEBUG_KMS("disabling active FBC for update\n");
615 intel_disable_fbc(dev);
616 }
617
618 intel_enable_fbc(crtc, 500);
619 dev_priv->fbc.no_fbc_reason = FBC_OK;
620 return;
621
622 out_disable:
623 /* Multiple disables should be harmless */
624 if (intel_fbc_enabled(dev)) {
625 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
626 intel_disable_fbc(dev);
627 }
628 i915_gem_stolen_cleanup_compression(dev);
629 }
630
631 static void i915_pineview_get_mem_freq(struct drm_device *dev)
632 {
633 drm_i915_private_t *dev_priv = dev->dev_private;
634 u32 tmp;
635
636 tmp = I915_READ(CLKCFG);
637
638 switch (tmp & CLKCFG_FSB_MASK) {
639 case CLKCFG_FSB_533:
640 dev_priv->fsb_freq = 533; /* 133*4 */
641 break;
642 case CLKCFG_FSB_800:
643 dev_priv->fsb_freq = 800; /* 200*4 */
644 break;
645 case CLKCFG_FSB_667:
646 dev_priv->fsb_freq = 667; /* 167*4 */
647 break;
648 case CLKCFG_FSB_400:
649 dev_priv->fsb_freq = 400; /* 100*4 */
650 break;
651 }
652
653 switch (tmp & CLKCFG_MEM_MASK) {
654 case CLKCFG_MEM_533:
655 dev_priv->mem_freq = 533;
656 break;
657 case CLKCFG_MEM_667:
658 dev_priv->mem_freq = 667;
659 break;
660 case CLKCFG_MEM_800:
661 dev_priv->mem_freq = 800;
662 break;
663 }
664
665 /* detect pineview DDR3 setting */
666 tmp = I915_READ(CSHRDDR3CTL);
667 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
668 }
669
670 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
671 {
672 drm_i915_private_t *dev_priv = dev->dev_private;
673 u16 ddrpll, csipll;
674
675 ddrpll = I915_READ16(DDRMPLL1);
676 csipll = I915_READ16(CSIPLL0);
677
678 switch (ddrpll & 0xff) {
679 case 0xc:
680 dev_priv->mem_freq = 800;
681 break;
682 case 0x10:
683 dev_priv->mem_freq = 1066;
684 break;
685 case 0x14:
686 dev_priv->mem_freq = 1333;
687 break;
688 case 0x18:
689 dev_priv->mem_freq = 1600;
690 break;
691 default:
692 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
693 ddrpll & 0xff);
694 dev_priv->mem_freq = 0;
695 break;
696 }
697
698 dev_priv->ips.r_t = dev_priv->mem_freq;
699
700 switch (csipll & 0x3ff) {
701 case 0x00c:
702 dev_priv->fsb_freq = 3200;
703 break;
704 case 0x00e:
705 dev_priv->fsb_freq = 3733;
706 break;
707 case 0x010:
708 dev_priv->fsb_freq = 4266;
709 break;
710 case 0x012:
711 dev_priv->fsb_freq = 4800;
712 break;
713 case 0x014:
714 dev_priv->fsb_freq = 5333;
715 break;
716 case 0x016:
717 dev_priv->fsb_freq = 5866;
718 break;
719 case 0x018:
720 dev_priv->fsb_freq = 6400;
721 break;
722 default:
723 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
724 csipll & 0x3ff);
725 dev_priv->fsb_freq = 0;
726 break;
727 }
728
729 if (dev_priv->fsb_freq == 3200) {
730 dev_priv->ips.c_m = 0;
731 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
732 dev_priv->ips.c_m = 1;
733 } else {
734 dev_priv->ips.c_m = 2;
735 }
736 }
737
738 static const struct cxsr_latency cxsr_latency_table[] = {
739 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
740 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
741 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
742 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
743 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
744
745 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
746 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
747 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
748 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
749 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
750
751 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
752 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
753 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
754 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
755 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
756
757 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
758 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
759 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
760 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
761 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
762
763 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
764 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
765 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
766 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
767 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
768
769 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
770 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
771 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
772 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
773 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
774 };
775
776 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
777 int is_ddr3,
778 int fsb,
779 int mem)
780 {
781 const struct cxsr_latency *latency;
782 int i;
783
784 if (fsb == 0 || mem == 0)
785 return NULL;
786
787 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
788 latency = &cxsr_latency_table[i];
789 if (is_desktop == latency->is_desktop &&
790 is_ddr3 == latency->is_ddr3 &&
791 fsb == latency->fsb_freq && mem == latency->mem_freq)
792 return latency;
793 }
794
795 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
796
797 return NULL;
798 }
799
800 static void pineview_disable_cxsr(struct drm_device *dev)
801 {
802 struct drm_i915_private *dev_priv = dev->dev_private;
803
804 /* deactivate cxsr */
805 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
806 }
807
808 /*
809 * Latency for FIFO fetches is dependent on several factors:
810 * - memory configuration (speed, channels)
811 * - chipset
812 * - current MCH state
813 * It can be fairly high in some situations, so here we assume a fairly
814 * pessimal value. It's a tradeoff between extra memory fetches (if we
815 * set this value too high, the FIFO will fetch frequently to stay full)
816 * and power consumption (set it too low to save power and we might see
817 * FIFO underruns and display "flicker").
818 *
819 * A value of 5us seems to be a good balance; safe for very low end
820 * platforms but not overly aggressive on lower latency configs.
821 */
822 static const int latency_ns = 5000;
823
824 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
825 {
826 struct drm_i915_private *dev_priv = dev->dev_private;
827 uint32_t dsparb = I915_READ(DSPARB);
828 int size;
829
830 size = dsparb & 0x7f;
831 if (plane)
832 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
833
834 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
835 plane ? "B" : "A", size);
836
837 return size;
838 }
839
840 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
841 {
842 struct drm_i915_private *dev_priv = dev->dev_private;
843 uint32_t dsparb = I915_READ(DSPARB);
844 int size;
845
846 size = dsparb & 0x1ff;
847 if (plane)
848 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
849 size >>= 1; /* Convert to cachelines */
850
851 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
852 plane ? "B" : "A", size);
853
854 return size;
855 }
856
857 static int i845_get_fifo_size(struct drm_device *dev, int plane)
858 {
859 struct drm_i915_private *dev_priv = dev->dev_private;
860 uint32_t dsparb = I915_READ(DSPARB);
861 int size;
862
863 size = dsparb & 0x7f;
864 size >>= 2; /* Convert to cachelines */
865
866 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
867 plane ? "B" : "A",
868 size);
869
870 return size;
871 }
872
873 static int i830_get_fifo_size(struct drm_device *dev, int plane)
874 {
875 struct drm_i915_private *dev_priv = dev->dev_private;
876 uint32_t dsparb = I915_READ(DSPARB);
877 int size;
878
879 size = dsparb & 0x7f;
880 size >>= 1; /* Convert to cachelines */
881
882 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
883 plane ? "B" : "A", size);
884
885 return size;
886 }
887
888 /* Pineview has different values for various configs */
889 static const struct intel_watermark_params pineview_display_wm = {
890 PINEVIEW_DISPLAY_FIFO,
891 PINEVIEW_MAX_WM,
892 PINEVIEW_DFT_WM,
893 PINEVIEW_GUARD_WM,
894 PINEVIEW_FIFO_LINE_SIZE
895 };
896 static const struct intel_watermark_params pineview_display_hplloff_wm = {
897 PINEVIEW_DISPLAY_FIFO,
898 PINEVIEW_MAX_WM,
899 PINEVIEW_DFT_HPLLOFF_WM,
900 PINEVIEW_GUARD_WM,
901 PINEVIEW_FIFO_LINE_SIZE
902 };
903 static const struct intel_watermark_params pineview_cursor_wm = {
904 PINEVIEW_CURSOR_FIFO,
905 PINEVIEW_CURSOR_MAX_WM,
906 PINEVIEW_CURSOR_DFT_WM,
907 PINEVIEW_CURSOR_GUARD_WM,
908 PINEVIEW_FIFO_LINE_SIZE,
909 };
910 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
911 PINEVIEW_CURSOR_FIFO,
912 PINEVIEW_CURSOR_MAX_WM,
913 PINEVIEW_CURSOR_DFT_WM,
914 PINEVIEW_CURSOR_GUARD_WM,
915 PINEVIEW_FIFO_LINE_SIZE
916 };
917 static const struct intel_watermark_params g4x_wm_info = {
918 G4X_FIFO_SIZE,
919 G4X_MAX_WM,
920 G4X_MAX_WM,
921 2,
922 G4X_FIFO_LINE_SIZE,
923 };
924 static const struct intel_watermark_params g4x_cursor_wm_info = {
925 I965_CURSOR_FIFO,
926 I965_CURSOR_MAX_WM,
927 I965_CURSOR_DFT_WM,
928 2,
929 G4X_FIFO_LINE_SIZE,
930 };
931 static const struct intel_watermark_params valleyview_wm_info = {
932 VALLEYVIEW_FIFO_SIZE,
933 VALLEYVIEW_MAX_WM,
934 VALLEYVIEW_MAX_WM,
935 2,
936 G4X_FIFO_LINE_SIZE,
937 };
938 static const struct intel_watermark_params valleyview_cursor_wm_info = {
939 I965_CURSOR_FIFO,
940 VALLEYVIEW_CURSOR_MAX_WM,
941 I965_CURSOR_DFT_WM,
942 2,
943 G4X_FIFO_LINE_SIZE,
944 };
945 static const struct intel_watermark_params i965_cursor_wm_info = {
946 I965_CURSOR_FIFO,
947 I965_CURSOR_MAX_WM,
948 I965_CURSOR_DFT_WM,
949 2,
950 I915_FIFO_LINE_SIZE,
951 };
952 static const struct intel_watermark_params i945_wm_info = {
953 I945_FIFO_SIZE,
954 I915_MAX_WM,
955 1,
956 2,
957 I915_FIFO_LINE_SIZE
958 };
959 static const struct intel_watermark_params i915_wm_info = {
960 I915_FIFO_SIZE,
961 I915_MAX_WM,
962 1,
963 2,
964 I915_FIFO_LINE_SIZE
965 };
966 static const struct intel_watermark_params i855_wm_info = {
967 I855GM_FIFO_SIZE,
968 I915_MAX_WM,
969 1,
970 2,
971 I830_FIFO_LINE_SIZE
972 };
973 static const struct intel_watermark_params i830_wm_info = {
974 I830_FIFO_SIZE,
975 I915_MAX_WM,
976 1,
977 2,
978 I830_FIFO_LINE_SIZE
979 };
980
981 static const struct intel_watermark_params ironlake_display_wm_info = {
982 ILK_DISPLAY_FIFO,
983 ILK_DISPLAY_MAXWM,
984 ILK_DISPLAY_DFTWM,
985 2,
986 ILK_FIFO_LINE_SIZE
987 };
988 static const struct intel_watermark_params ironlake_cursor_wm_info = {
989 ILK_CURSOR_FIFO,
990 ILK_CURSOR_MAXWM,
991 ILK_CURSOR_DFTWM,
992 2,
993 ILK_FIFO_LINE_SIZE
994 };
995 static const struct intel_watermark_params ironlake_display_srwm_info = {
996 ILK_DISPLAY_SR_FIFO,
997 ILK_DISPLAY_MAX_SRWM,
998 ILK_DISPLAY_DFT_SRWM,
999 2,
1000 ILK_FIFO_LINE_SIZE
1001 };
1002 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
1003 ILK_CURSOR_SR_FIFO,
1004 ILK_CURSOR_MAX_SRWM,
1005 ILK_CURSOR_DFT_SRWM,
1006 2,
1007 ILK_FIFO_LINE_SIZE
1008 };
1009
1010 static const struct intel_watermark_params sandybridge_display_wm_info = {
1011 SNB_DISPLAY_FIFO,
1012 SNB_DISPLAY_MAXWM,
1013 SNB_DISPLAY_DFTWM,
1014 2,
1015 SNB_FIFO_LINE_SIZE
1016 };
1017 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1018 SNB_CURSOR_FIFO,
1019 SNB_CURSOR_MAXWM,
1020 SNB_CURSOR_DFTWM,
1021 2,
1022 SNB_FIFO_LINE_SIZE
1023 };
1024 static const struct intel_watermark_params sandybridge_display_srwm_info = {
1025 SNB_DISPLAY_SR_FIFO,
1026 SNB_DISPLAY_MAX_SRWM,
1027 SNB_DISPLAY_DFT_SRWM,
1028 2,
1029 SNB_FIFO_LINE_SIZE
1030 };
1031 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1032 SNB_CURSOR_SR_FIFO,
1033 SNB_CURSOR_MAX_SRWM,
1034 SNB_CURSOR_DFT_SRWM,
1035 2,
1036 SNB_FIFO_LINE_SIZE
1037 };
1038
1039
1040 /**
1041 * intel_calculate_wm - calculate watermark level
1042 * @clock_in_khz: pixel clock
1043 * @wm: chip FIFO params
1044 * @pixel_size: display pixel size
1045 * @latency_ns: memory latency for the platform
1046 *
1047 * Calculate the watermark level (the level at which the display plane will
1048 * start fetching from memory again). Each chip has a different display
1049 * FIFO size and allocation, so the caller needs to figure that out and pass
1050 * in the correct intel_watermark_params structure.
1051 *
1052 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1053 * on the pixel size. When it reaches the watermark level, it'll start
1054 * fetching FIFO line sized based chunks from memory until the FIFO fills
1055 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1056 * will occur, and a display engine hang could result.
1057 */
1058 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1059 const struct intel_watermark_params *wm,
1060 int fifo_size,
1061 int pixel_size,
1062 unsigned long latency_ns)
1063 {
1064 long entries_required, wm_size;
1065
1066 /*
1067 * Note: we need to make sure we don't overflow for various clock &
1068 * latency values.
1069 * clocks go from a few thousand to several hundred thousand.
1070 * latency is usually a few thousand
1071 */
1072 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1073 1000;
1074 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1075
1076 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1077
1078 wm_size = fifo_size - (entries_required + wm->guard_size);
1079
1080 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1081
1082 /* Don't promote wm_size to unsigned... */
1083 if (wm_size > (long)wm->max_wm)
1084 wm_size = wm->max_wm;
1085 if (wm_size <= 0)
1086 wm_size = wm->default_wm;
1087 return wm_size;
1088 }
1089
1090 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1091 {
1092 struct drm_crtc *crtc, *enabled = NULL;
1093
1094 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1095 if (intel_crtc_active(crtc)) {
1096 if (enabled)
1097 return NULL;
1098 enabled = crtc;
1099 }
1100 }
1101
1102 return enabled;
1103 }
1104
1105 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1106 {
1107 struct drm_device *dev = unused_crtc->dev;
1108 struct drm_i915_private *dev_priv = dev->dev_private;
1109 struct drm_crtc *crtc;
1110 const struct cxsr_latency *latency;
1111 u32 reg;
1112 unsigned long wm;
1113
1114 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1115 dev_priv->fsb_freq, dev_priv->mem_freq);
1116 if (!latency) {
1117 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1118 pineview_disable_cxsr(dev);
1119 return;
1120 }
1121
1122 crtc = single_enabled_crtc(dev);
1123 if (crtc) {
1124 const struct drm_display_mode *adjusted_mode;
1125 int pixel_size = crtc->fb->bits_per_pixel / 8;
1126 int clock;
1127
1128 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1129 clock = adjusted_mode->crtc_clock;
1130
1131 /* Display SR */
1132 wm = intel_calculate_wm(clock, &pineview_display_wm,
1133 pineview_display_wm.fifo_size,
1134 pixel_size, latency->display_sr);
1135 reg = I915_READ(DSPFW1);
1136 reg &= ~DSPFW_SR_MASK;
1137 reg |= wm << DSPFW_SR_SHIFT;
1138 I915_WRITE(DSPFW1, reg);
1139 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1140
1141 /* cursor SR */
1142 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1143 pineview_display_wm.fifo_size,
1144 pixel_size, latency->cursor_sr);
1145 reg = I915_READ(DSPFW3);
1146 reg &= ~DSPFW_CURSOR_SR_MASK;
1147 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1148 I915_WRITE(DSPFW3, reg);
1149
1150 /* Display HPLL off SR */
1151 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1152 pineview_display_hplloff_wm.fifo_size,
1153 pixel_size, latency->display_hpll_disable);
1154 reg = I915_READ(DSPFW3);
1155 reg &= ~DSPFW_HPLL_SR_MASK;
1156 reg |= wm & DSPFW_HPLL_SR_MASK;
1157 I915_WRITE(DSPFW3, reg);
1158
1159 /* cursor HPLL off SR */
1160 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1161 pineview_display_hplloff_wm.fifo_size,
1162 pixel_size, latency->cursor_hpll_disable);
1163 reg = I915_READ(DSPFW3);
1164 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1165 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1166 I915_WRITE(DSPFW3, reg);
1167 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1168
1169 /* activate cxsr */
1170 I915_WRITE(DSPFW3,
1171 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1172 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1173 } else {
1174 pineview_disable_cxsr(dev);
1175 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1176 }
1177 }
1178
1179 static bool g4x_compute_wm0(struct drm_device *dev,
1180 int plane,
1181 const struct intel_watermark_params *display,
1182 int display_latency_ns,
1183 const struct intel_watermark_params *cursor,
1184 int cursor_latency_ns,
1185 int *plane_wm,
1186 int *cursor_wm)
1187 {
1188 struct drm_crtc *crtc;
1189 const struct drm_display_mode *adjusted_mode;
1190 int htotal, hdisplay, clock, pixel_size;
1191 int line_time_us, line_count;
1192 int entries, tlb_miss;
1193
1194 crtc = intel_get_crtc_for_plane(dev, plane);
1195 if (!intel_crtc_active(crtc)) {
1196 *cursor_wm = cursor->guard_size;
1197 *plane_wm = display->guard_size;
1198 return false;
1199 }
1200
1201 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1202 clock = adjusted_mode->crtc_clock;
1203 htotal = adjusted_mode->htotal;
1204 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1205 pixel_size = crtc->fb->bits_per_pixel / 8;
1206
1207 /* Use the small buffer method to calculate plane watermark */
1208 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1209 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1210 if (tlb_miss > 0)
1211 entries += tlb_miss;
1212 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1213 *plane_wm = entries + display->guard_size;
1214 if (*plane_wm > (int)display->max_wm)
1215 *plane_wm = display->max_wm;
1216
1217 /* Use the large buffer method to calculate cursor watermark */
1218 line_time_us = ((htotal * 1000) / clock);
1219 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1220 entries = line_count * 64 * pixel_size;
1221 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1222 if (tlb_miss > 0)
1223 entries += tlb_miss;
1224 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1225 *cursor_wm = entries + cursor->guard_size;
1226 if (*cursor_wm > (int)cursor->max_wm)
1227 *cursor_wm = (int)cursor->max_wm;
1228
1229 return true;
1230 }
1231
1232 /*
1233 * Check the wm result.
1234 *
1235 * If any calculated watermark values is larger than the maximum value that
1236 * can be programmed into the associated watermark register, that watermark
1237 * must be disabled.
1238 */
1239 static bool g4x_check_srwm(struct drm_device *dev,
1240 int display_wm, int cursor_wm,
1241 const struct intel_watermark_params *display,
1242 const struct intel_watermark_params *cursor)
1243 {
1244 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1245 display_wm, cursor_wm);
1246
1247 if (display_wm > display->max_wm) {
1248 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1249 display_wm, display->max_wm);
1250 return false;
1251 }
1252
1253 if (cursor_wm > cursor->max_wm) {
1254 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1255 cursor_wm, cursor->max_wm);
1256 return false;
1257 }
1258
1259 if (!(display_wm || cursor_wm)) {
1260 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1261 return false;
1262 }
1263
1264 return true;
1265 }
1266
1267 static bool g4x_compute_srwm(struct drm_device *dev,
1268 int plane,
1269 int latency_ns,
1270 const struct intel_watermark_params *display,
1271 const struct intel_watermark_params *cursor,
1272 int *display_wm, int *cursor_wm)
1273 {
1274 struct drm_crtc *crtc;
1275 const struct drm_display_mode *adjusted_mode;
1276 int hdisplay, htotal, pixel_size, clock;
1277 unsigned long line_time_us;
1278 int line_count, line_size;
1279 int small, large;
1280 int entries;
1281
1282 if (!latency_ns) {
1283 *display_wm = *cursor_wm = 0;
1284 return false;
1285 }
1286
1287 crtc = intel_get_crtc_for_plane(dev, plane);
1288 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1289 clock = adjusted_mode->crtc_clock;
1290 htotal = adjusted_mode->htotal;
1291 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1292 pixel_size = crtc->fb->bits_per_pixel / 8;
1293
1294 line_time_us = (htotal * 1000) / clock;
1295 line_count = (latency_ns / line_time_us + 1000) / 1000;
1296 line_size = hdisplay * pixel_size;
1297
1298 /* Use the minimum of the small and large buffer method for primary */
1299 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1300 large = line_count * line_size;
1301
1302 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1303 *display_wm = entries + display->guard_size;
1304
1305 /* calculate the self-refresh watermark for display cursor */
1306 entries = line_count * pixel_size * 64;
1307 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1308 *cursor_wm = entries + cursor->guard_size;
1309
1310 return g4x_check_srwm(dev,
1311 *display_wm, *cursor_wm,
1312 display, cursor);
1313 }
1314
1315 static bool vlv_compute_drain_latency(struct drm_device *dev,
1316 int plane,
1317 int *plane_prec_mult,
1318 int *plane_dl,
1319 int *cursor_prec_mult,
1320 int *cursor_dl)
1321 {
1322 struct drm_crtc *crtc;
1323 int clock, pixel_size;
1324 int entries;
1325
1326 crtc = intel_get_crtc_for_plane(dev, plane);
1327 if (!intel_crtc_active(crtc))
1328 return false;
1329
1330 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1331 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1332
1333 entries = (clock / 1000) * pixel_size;
1334 *plane_prec_mult = (entries > 256) ?
1335 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1336 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1337 pixel_size);
1338
1339 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1340 *cursor_prec_mult = (entries > 256) ?
1341 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1342 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1343
1344 return true;
1345 }
1346
1347 /*
1348 * Update drain latency registers of memory arbiter
1349 *
1350 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1351 * to be programmed. Each plane has a drain latency multiplier and a drain
1352 * latency value.
1353 */
1354
1355 static void vlv_update_drain_latency(struct drm_device *dev)
1356 {
1357 struct drm_i915_private *dev_priv = dev->dev_private;
1358 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1359 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1360 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1361 either 16 or 32 */
1362
1363 /* For plane A, Cursor A */
1364 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1365 &cursor_prec_mult, &cursora_dl)) {
1366 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1367 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1368 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1369 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1370
1371 I915_WRITE(VLV_DDL1, cursora_prec |
1372 (cursora_dl << DDL_CURSORA_SHIFT) |
1373 planea_prec | planea_dl);
1374 }
1375
1376 /* For plane B, Cursor B */
1377 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1378 &cursor_prec_mult, &cursorb_dl)) {
1379 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1380 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1381 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1382 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1383
1384 I915_WRITE(VLV_DDL2, cursorb_prec |
1385 (cursorb_dl << DDL_CURSORB_SHIFT) |
1386 planeb_prec | planeb_dl);
1387 }
1388 }
1389
1390 #define single_plane_enabled(mask) is_power_of_2(mask)
1391
1392 static void valleyview_update_wm(struct drm_crtc *crtc)
1393 {
1394 struct drm_device *dev = crtc->dev;
1395 static const int sr_latency_ns = 12000;
1396 struct drm_i915_private *dev_priv = dev->dev_private;
1397 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1398 int plane_sr, cursor_sr;
1399 int ignore_plane_sr, ignore_cursor_sr;
1400 unsigned int enabled = 0;
1401
1402 vlv_update_drain_latency(dev);
1403
1404 if (g4x_compute_wm0(dev, PIPE_A,
1405 &valleyview_wm_info, latency_ns,
1406 &valleyview_cursor_wm_info, latency_ns,
1407 &planea_wm, &cursora_wm))
1408 enabled |= 1 << PIPE_A;
1409
1410 if (g4x_compute_wm0(dev, PIPE_B,
1411 &valleyview_wm_info, latency_ns,
1412 &valleyview_cursor_wm_info, latency_ns,
1413 &planeb_wm, &cursorb_wm))
1414 enabled |= 1 << PIPE_B;
1415
1416 if (single_plane_enabled(enabled) &&
1417 g4x_compute_srwm(dev, ffs(enabled) - 1,
1418 sr_latency_ns,
1419 &valleyview_wm_info,
1420 &valleyview_cursor_wm_info,
1421 &plane_sr, &ignore_cursor_sr) &&
1422 g4x_compute_srwm(dev, ffs(enabled) - 1,
1423 2*sr_latency_ns,
1424 &valleyview_wm_info,
1425 &valleyview_cursor_wm_info,
1426 &ignore_plane_sr, &cursor_sr)) {
1427 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1428 } else {
1429 I915_WRITE(FW_BLC_SELF_VLV,
1430 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1431 plane_sr = cursor_sr = 0;
1432 }
1433
1434 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1435 planea_wm, cursora_wm,
1436 planeb_wm, cursorb_wm,
1437 plane_sr, cursor_sr);
1438
1439 I915_WRITE(DSPFW1,
1440 (plane_sr << DSPFW_SR_SHIFT) |
1441 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1442 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1443 planea_wm);
1444 I915_WRITE(DSPFW2,
1445 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1446 (cursora_wm << DSPFW_CURSORA_SHIFT));
1447 I915_WRITE(DSPFW3,
1448 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1449 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1450 }
1451
1452 static void g4x_update_wm(struct drm_crtc *crtc)
1453 {
1454 struct drm_device *dev = crtc->dev;
1455 static const int sr_latency_ns = 12000;
1456 struct drm_i915_private *dev_priv = dev->dev_private;
1457 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1458 int plane_sr, cursor_sr;
1459 unsigned int enabled = 0;
1460
1461 if (g4x_compute_wm0(dev, PIPE_A,
1462 &g4x_wm_info, latency_ns,
1463 &g4x_cursor_wm_info, latency_ns,
1464 &planea_wm, &cursora_wm))
1465 enabled |= 1 << PIPE_A;
1466
1467 if (g4x_compute_wm0(dev, PIPE_B,
1468 &g4x_wm_info, latency_ns,
1469 &g4x_cursor_wm_info, latency_ns,
1470 &planeb_wm, &cursorb_wm))
1471 enabled |= 1 << PIPE_B;
1472
1473 if (single_plane_enabled(enabled) &&
1474 g4x_compute_srwm(dev, ffs(enabled) - 1,
1475 sr_latency_ns,
1476 &g4x_wm_info,
1477 &g4x_cursor_wm_info,
1478 &plane_sr, &cursor_sr)) {
1479 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1480 } else {
1481 I915_WRITE(FW_BLC_SELF,
1482 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1483 plane_sr = cursor_sr = 0;
1484 }
1485
1486 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1487 planea_wm, cursora_wm,
1488 planeb_wm, cursorb_wm,
1489 plane_sr, cursor_sr);
1490
1491 I915_WRITE(DSPFW1,
1492 (plane_sr << DSPFW_SR_SHIFT) |
1493 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1494 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1495 planea_wm);
1496 I915_WRITE(DSPFW2,
1497 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1498 (cursora_wm << DSPFW_CURSORA_SHIFT));
1499 /* HPLL off in SR has some issues on G4x... disable it */
1500 I915_WRITE(DSPFW3,
1501 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1502 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1503 }
1504
1505 static void i965_update_wm(struct drm_crtc *unused_crtc)
1506 {
1507 struct drm_device *dev = unused_crtc->dev;
1508 struct drm_i915_private *dev_priv = dev->dev_private;
1509 struct drm_crtc *crtc;
1510 int srwm = 1;
1511 int cursor_sr = 16;
1512
1513 /* Calc sr entries for one plane configs */
1514 crtc = single_enabled_crtc(dev);
1515 if (crtc) {
1516 /* self-refresh has much higher latency */
1517 static const int sr_latency_ns = 12000;
1518 const struct drm_display_mode *adjusted_mode =
1519 &to_intel_crtc(crtc)->config.adjusted_mode;
1520 int clock = adjusted_mode->crtc_clock;
1521 int htotal = adjusted_mode->htotal;
1522 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1523 int pixel_size = crtc->fb->bits_per_pixel / 8;
1524 unsigned long line_time_us;
1525 int entries;
1526
1527 line_time_us = ((htotal * 1000) / clock);
1528
1529 /* Use ns/us then divide to preserve precision */
1530 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1531 pixel_size * hdisplay;
1532 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1533 srwm = I965_FIFO_SIZE - entries;
1534 if (srwm < 0)
1535 srwm = 1;
1536 srwm &= 0x1ff;
1537 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1538 entries, srwm);
1539
1540 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1541 pixel_size * 64;
1542 entries = DIV_ROUND_UP(entries,
1543 i965_cursor_wm_info.cacheline_size);
1544 cursor_sr = i965_cursor_wm_info.fifo_size -
1545 (entries + i965_cursor_wm_info.guard_size);
1546
1547 if (cursor_sr > i965_cursor_wm_info.max_wm)
1548 cursor_sr = i965_cursor_wm_info.max_wm;
1549
1550 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1551 "cursor %d\n", srwm, cursor_sr);
1552
1553 if (IS_CRESTLINE(dev))
1554 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1555 } else {
1556 /* Turn off self refresh if both pipes are enabled */
1557 if (IS_CRESTLINE(dev))
1558 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1559 & ~FW_BLC_SELF_EN);
1560 }
1561
1562 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1563 srwm);
1564
1565 /* 965 has limitations... */
1566 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1567 (8 << 16) | (8 << 8) | (8 << 0));
1568 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1569 /* update cursor SR watermark */
1570 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1571 }
1572
1573 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1574 {
1575 struct drm_device *dev = unused_crtc->dev;
1576 struct drm_i915_private *dev_priv = dev->dev_private;
1577 const struct intel_watermark_params *wm_info;
1578 uint32_t fwater_lo;
1579 uint32_t fwater_hi;
1580 int cwm, srwm = 1;
1581 int fifo_size;
1582 int planea_wm, planeb_wm;
1583 struct drm_crtc *crtc, *enabled = NULL;
1584
1585 if (IS_I945GM(dev))
1586 wm_info = &i945_wm_info;
1587 else if (!IS_GEN2(dev))
1588 wm_info = &i915_wm_info;
1589 else
1590 wm_info = &i855_wm_info;
1591
1592 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1593 crtc = intel_get_crtc_for_plane(dev, 0);
1594 if (intel_crtc_active(crtc)) {
1595 const struct drm_display_mode *adjusted_mode;
1596 int cpp = crtc->fb->bits_per_pixel / 8;
1597 if (IS_GEN2(dev))
1598 cpp = 4;
1599
1600 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1601 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1602 wm_info, fifo_size, cpp,
1603 latency_ns);
1604 enabled = crtc;
1605 } else
1606 planea_wm = fifo_size - wm_info->guard_size;
1607
1608 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1609 crtc = intel_get_crtc_for_plane(dev, 1);
1610 if (intel_crtc_active(crtc)) {
1611 const struct drm_display_mode *adjusted_mode;
1612 int cpp = crtc->fb->bits_per_pixel / 8;
1613 if (IS_GEN2(dev))
1614 cpp = 4;
1615
1616 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1617 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1618 wm_info, fifo_size, cpp,
1619 latency_ns);
1620 if (enabled == NULL)
1621 enabled = crtc;
1622 else
1623 enabled = NULL;
1624 } else
1625 planeb_wm = fifo_size - wm_info->guard_size;
1626
1627 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1628
1629 /*
1630 * Overlay gets an aggressive default since video jitter is bad.
1631 */
1632 cwm = 2;
1633
1634 /* Play safe and disable self-refresh before adjusting watermarks. */
1635 if (IS_I945G(dev) || IS_I945GM(dev))
1636 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1637 else if (IS_I915GM(dev))
1638 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1639
1640 /* Calc sr entries for one plane configs */
1641 if (HAS_FW_BLC(dev) && enabled) {
1642 /* self-refresh has much higher latency */
1643 static const int sr_latency_ns = 6000;
1644 const struct drm_display_mode *adjusted_mode =
1645 &to_intel_crtc(enabled)->config.adjusted_mode;
1646 int clock = adjusted_mode->crtc_clock;
1647 int htotal = adjusted_mode->htotal;
1648 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1649 int pixel_size = enabled->fb->bits_per_pixel / 8;
1650 unsigned long line_time_us;
1651 int entries;
1652
1653 line_time_us = (htotal * 1000) / clock;
1654
1655 /* Use ns/us then divide to preserve precision */
1656 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1657 pixel_size * hdisplay;
1658 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1659 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1660 srwm = wm_info->fifo_size - entries;
1661 if (srwm < 0)
1662 srwm = 1;
1663
1664 if (IS_I945G(dev) || IS_I945GM(dev))
1665 I915_WRITE(FW_BLC_SELF,
1666 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1667 else if (IS_I915GM(dev))
1668 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1669 }
1670
1671 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1672 planea_wm, planeb_wm, cwm, srwm);
1673
1674 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1675 fwater_hi = (cwm & 0x1f);
1676
1677 /* Set request length to 8 cachelines per fetch */
1678 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1679 fwater_hi = fwater_hi | (1 << 8);
1680
1681 I915_WRITE(FW_BLC, fwater_lo);
1682 I915_WRITE(FW_BLC2, fwater_hi);
1683
1684 if (HAS_FW_BLC(dev)) {
1685 if (enabled) {
1686 if (IS_I945G(dev) || IS_I945GM(dev))
1687 I915_WRITE(FW_BLC_SELF,
1688 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1689 else if (IS_I915GM(dev))
1690 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1691 DRM_DEBUG_KMS("memory self refresh enabled\n");
1692 } else
1693 DRM_DEBUG_KMS("memory self refresh disabled\n");
1694 }
1695 }
1696
1697 static void i830_update_wm(struct drm_crtc *unused_crtc)
1698 {
1699 struct drm_device *dev = unused_crtc->dev;
1700 struct drm_i915_private *dev_priv = dev->dev_private;
1701 struct drm_crtc *crtc;
1702 const struct drm_display_mode *adjusted_mode;
1703 uint32_t fwater_lo;
1704 int planea_wm;
1705
1706 crtc = single_enabled_crtc(dev);
1707 if (crtc == NULL)
1708 return;
1709
1710 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1711 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1712 &i830_wm_info,
1713 dev_priv->display.get_fifo_size(dev, 0),
1714 4, latency_ns);
1715 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1716 fwater_lo |= (3<<8) | planea_wm;
1717
1718 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1719
1720 I915_WRITE(FW_BLC, fwater_lo);
1721 }
1722
1723 /*
1724 * Check the wm result.
1725 *
1726 * If any calculated watermark values is larger than the maximum value that
1727 * can be programmed into the associated watermark register, that watermark
1728 * must be disabled.
1729 */
1730 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1731 int fbc_wm, int display_wm, int cursor_wm,
1732 const struct intel_watermark_params *display,
1733 const struct intel_watermark_params *cursor)
1734 {
1735 struct drm_i915_private *dev_priv = dev->dev_private;
1736
1737 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1738 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1739
1740 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1741 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1742 fbc_wm, SNB_FBC_MAX_SRWM, level);
1743
1744 /* fbc has it's own way to disable FBC WM */
1745 I915_WRITE(DISP_ARB_CTL,
1746 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1747 return false;
1748 } else if (INTEL_INFO(dev)->gen >= 6) {
1749 /* enable FBC WM (except on ILK, where it must remain off) */
1750 I915_WRITE(DISP_ARB_CTL,
1751 I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1752 }
1753
1754 if (display_wm > display->max_wm) {
1755 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1756 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1757 return false;
1758 }
1759
1760 if (cursor_wm > cursor->max_wm) {
1761 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1762 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1763 return false;
1764 }
1765
1766 if (!(fbc_wm || display_wm || cursor_wm)) {
1767 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1768 return false;
1769 }
1770
1771 return true;
1772 }
1773
1774 /*
1775 * Compute watermark values of WM[1-3],
1776 */
1777 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1778 int latency_ns,
1779 const struct intel_watermark_params *display,
1780 const struct intel_watermark_params *cursor,
1781 int *fbc_wm, int *display_wm, int *cursor_wm)
1782 {
1783 struct drm_crtc *crtc;
1784 const struct drm_display_mode *adjusted_mode;
1785 unsigned long line_time_us;
1786 int hdisplay, htotal, pixel_size, clock;
1787 int line_count, line_size;
1788 int small, large;
1789 int entries;
1790
1791 if (!latency_ns) {
1792 *fbc_wm = *display_wm = *cursor_wm = 0;
1793 return false;
1794 }
1795
1796 crtc = intel_get_crtc_for_plane(dev, plane);
1797 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1798 clock = adjusted_mode->crtc_clock;
1799 htotal = adjusted_mode->htotal;
1800 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1801 pixel_size = crtc->fb->bits_per_pixel / 8;
1802
1803 line_time_us = (htotal * 1000) / clock;
1804 line_count = (latency_ns / line_time_us + 1000) / 1000;
1805 line_size = hdisplay * pixel_size;
1806
1807 /* Use the minimum of the small and large buffer method for primary */
1808 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1809 large = line_count * line_size;
1810
1811 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1812 *display_wm = entries + display->guard_size;
1813
1814 /*
1815 * Spec says:
1816 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1817 */
1818 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1819
1820 /* calculate the self-refresh watermark for display cursor */
1821 entries = line_count * pixel_size * 64;
1822 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1823 *cursor_wm = entries + cursor->guard_size;
1824
1825 return ironlake_check_srwm(dev, level,
1826 *fbc_wm, *display_wm, *cursor_wm,
1827 display, cursor);
1828 }
1829
1830 static void ironlake_update_wm(struct drm_crtc *crtc)
1831 {
1832 struct drm_device *dev = crtc->dev;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
1834 int fbc_wm, plane_wm, cursor_wm;
1835 unsigned int enabled;
1836
1837 enabled = 0;
1838 if (g4x_compute_wm0(dev, PIPE_A,
1839 &ironlake_display_wm_info,
1840 dev_priv->wm.pri_latency[0] * 100,
1841 &ironlake_cursor_wm_info,
1842 dev_priv->wm.cur_latency[0] * 100,
1843 &plane_wm, &cursor_wm)) {
1844 I915_WRITE(WM0_PIPEA_ILK,
1845 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1846 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1847 " plane %d, " "cursor: %d\n",
1848 plane_wm, cursor_wm);
1849 enabled |= 1 << PIPE_A;
1850 }
1851
1852 if (g4x_compute_wm0(dev, PIPE_B,
1853 &ironlake_display_wm_info,
1854 dev_priv->wm.pri_latency[0] * 100,
1855 &ironlake_cursor_wm_info,
1856 dev_priv->wm.cur_latency[0] * 100,
1857 &plane_wm, &cursor_wm)) {
1858 I915_WRITE(WM0_PIPEB_ILK,
1859 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1860 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1861 " plane %d, cursor: %d\n",
1862 plane_wm, cursor_wm);
1863 enabled |= 1 << PIPE_B;
1864 }
1865
1866 /*
1867 * Calculate and update the self-refresh watermark only when one
1868 * display plane is used.
1869 */
1870 I915_WRITE(WM3_LP_ILK, 0);
1871 I915_WRITE(WM2_LP_ILK, 0);
1872 I915_WRITE(WM1_LP_ILK, 0);
1873
1874 if (!single_plane_enabled(enabled))
1875 return;
1876 enabled = ffs(enabled) - 1;
1877
1878 /* WM1 */
1879 if (!ironlake_compute_srwm(dev, 1, enabled,
1880 dev_priv->wm.pri_latency[1] * 500,
1881 &ironlake_display_srwm_info,
1882 &ironlake_cursor_srwm_info,
1883 &fbc_wm, &plane_wm, &cursor_wm))
1884 return;
1885
1886 I915_WRITE(WM1_LP_ILK,
1887 WM1_LP_SR_EN |
1888 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1889 (fbc_wm << WM1_LP_FBC_SHIFT) |
1890 (plane_wm << WM1_LP_SR_SHIFT) |
1891 cursor_wm);
1892
1893 /* WM2 */
1894 if (!ironlake_compute_srwm(dev, 2, enabled,
1895 dev_priv->wm.pri_latency[2] * 500,
1896 &ironlake_display_srwm_info,
1897 &ironlake_cursor_srwm_info,
1898 &fbc_wm, &plane_wm, &cursor_wm))
1899 return;
1900
1901 I915_WRITE(WM2_LP_ILK,
1902 WM2_LP_EN |
1903 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1904 (fbc_wm << WM1_LP_FBC_SHIFT) |
1905 (plane_wm << WM1_LP_SR_SHIFT) |
1906 cursor_wm);
1907
1908 /*
1909 * WM3 is unsupported on ILK, probably because we don't have latency
1910 * data for that power state
1911 */
1912 }
1913
1914 static void sandybridge_update_wm(struct drm_crtc *crtc)
1915 {
1916 struct drm_device *dev = crtc->dev;
1917 struct drm_i915_private *dev_priv = dev->dev_private;
1918 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
1919 u32 val;
1920 int fbc_wm, plane_wm, cursor_wm;
1921 unsigned int enabled;
1922
1923 enabled = 0;
1924 if (g4x_compute_wm0(dev, PIPE_A,
1925 &sandybridge_display_wm_info, latency,
1926 &sandybridge_cursor_wm_info, latency,
1927 &plane_wm, &cursor_wm)) {
1928 val = I915_READ(WM0_PIPEA_ILK);
1929 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1930 I915_WRITE(WM0_PIPEA_ILK, val |
1931 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1932 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1933 " plane %d, " "cursor: %d\n",
1934 plane_wm, cursor_wm);
1935 enabled |= 1 << PIPE_A;
1936 }
1937
1938 if (g4x_compute_wm0(dev, PIPE_B,
1939 &sandybridge_display_wm_info, latency,
1940 &sandybridge_cursor_wm_info, latency,
1941 &plane_wm, &cursor_wm)) {
1942 val = I915_READ(WM0_PIPEB_ILK);
1943 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1944 I915_WRITE(WM0_PIPEB_ILK, val |
1945 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1946 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1947 " plane %d, cursor: %d\n",
1948 plane_wm, cursor_wm);
1949 enabled |= 1 << PIPE_B;
1950 }
1951
1952 /*
1953 * Calculate and update the self-refresh watermark only when one
1954 * display plane is used.
1955 *
1956 * SNB support 3 levels of watermark.
1957 *
1958 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1959 * and disabled in the descending order
1960 *
1961 */
1962 I915_WRITE(WM3_LP_ILK, 0);
1963 I915_WRITE(WM2_LP_ILK, 0);
1964 I915_WRITE(WM1_LP_ILK, 0);
1965
1966 if (!single_plane_enabled(enabled) ||
1967 dev_priv->sprite_scaling_enabled)
1968 return;
1969 enabled = ffs(enabled) - 1;
1970
1971 /* WM1 */
1972 if (!ironlake_compute_srwm(dev, 1, enabled,
1973 dev_priv->wm.pri_latency[1] * 500,
1974 &sandybridge_display_srwm_info,
1975 &sandybridge_cursor_srwm_info,
1976 &fbc_wm, &plane_wm, &cursor_wm))
1977 return;
1978
1979 I915_WRITE(WM1_LP_ILK,
1980 WM1_LP_SR_EN |
1981 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1982 (fbc_wm << WM1_LP_FBC_SHIFT) |
1983 (plane_wm << WM1_LP_SR_SHIFT) |
1984 cursor_wm);
1985
1986 /* WM2 */
1987 if (!ironlake_compute_srwm(dev, 2, enabled,
1988 dev_priv->wm.pri_latency[2] * 500,
1989 &sandybridge_display_srwm_info,
1990 &sandybridge_cursor_srwm_info,
1991 &fbc_wm, &plane_wm, &cursor_wm))
1992 return;
1993
1994 I915_WRITE(WM2_LP_ILK,
1995 WM2_LP_EN |
1996 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1997 (fbc_wm << WM1_LP_FBC_SHIFT) |
1998 (plane_wm << WM1_LP_SR_SHIFT) |
1999 cursor_wm);
2000
2001 /* WM3 */
2002 if (!ironlake_compute_srwm(dev, 3, enabled,
2003 dev_priv->wm.pri_latency[3] * 500,
2004 &sandybridge_display_srwm_info,
2005 &sandybridge_cursor_srwm_info,
2006 &fbc_wm, &plane_wm, &cursor_wm))
2007 return;
2008
2009 I915_WRITE(WM3_LP_ILK,
2010 WM3_LP_EN |
2011 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2012 (fbc_wm << WM1_LP_FBC_SHIFT) |
2013 (plane_wm << WM1_LP_SR_SHIFT) |
2014 cursor_wm);
2015 }
2016
2017 static void ivybridge_update_wm(struct drm_crtc *crtc)
2018 {
2019 struct drm_device *dev = crtc->dev;
2020 struct drm_i915_private *dev_priv = dev->dev_private;
2021 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
2022 u32 val;
2023 int fbc_wm, plane_wm, cursor_wm;
2024 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
2025 unsigned int enabled;
2026
2027 enabled = 0;
2028 if (g4x_compute_wm0(dev, PIPE_A,
2029 &sandybridge_display_wm_info, latency,
2030 &sandybridge_cursor_wm_info, latency,
2031 &plane_wm, &cursor_wm)) {
2032 val = I915_READ(WM0_PIPEA_ILK);
2033 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2034 I915_WRITE(WM0_PIPEA_ILK, val |
2035 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2036 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
2037 " plane %d, " "cursor: %d\n",
2038 plane_wm, cursor_wm);
2039 enabled |= 1 << PIPE_A;
2040 }
2041
2042 if (g4x_compute_wm0(dev, PIPE_B,
2043 &sandybridge_display_wm_info, latency,
2044 &sandybridge_cursor_wm_info, latency,
2045 &plane_wm, &cursor_wm)) {
2046 val = I915_READ(WM0_PIPEB_ILK);
2047 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2048 I915_WRITE(WM0_PIPEB_ILK, val |
2049 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2050 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2051 " plane %d, cursor: %d\n",
2052 plane_wm, cursor_wm);
2053 enabled |= 1 << PIPE_B;
2054 }
2055
2056 if (g4x_compute_wm0(dev, PIPE_C,
2057 &sandybridge_display_wm_info, latency,
2058 &sandybridge_cursor_wm_info, latency,
2059 &plane_wm, &cursor_wm)) {
2060 val = I915_READ(WM0_PIPEC_IVB);
2061 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2062 I915_WRITE(WM0_PIPEC_IVB, val |
2063 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2064 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2065 " plane %d, cursor: %d\n",
2066 plane_wm, cursor_wm);
2067 enabled |= 1 << PIPE_C;
2068 }
2069
2070 /*
2071 * Calculate and update the self-refresh watermark only when one
2072 * display plane is used.
2073 *
2074 * SNB support 3 levels of watermark.
2075 *
2076 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2077 * and disabled in the descending order
2078 *
2079 */
2080 I915_WRITE(WM3_LP_ILK, 0);
2081 I915_WRITE(WM2_LP_ILK, 0);
2082 I915_WRITE(WM1_LP_ILK, 0);
2083
2084 if (!single_plane_enabled(enabled) ||
2085 dev_priv->sprite_scaling_enabled)
2086 return;
2087 enabled = ffs(enabled) - 1;
2088
2089 /* WM1 */
2090 if (!ironlake_compute_srwm(dev, 1, enabled,
2091 dev_priv->wm.pri_latency[1] * 500,
2092 &sandybridge_display_srwm_info,
2093 &sandybridge_cursor_srwm_info,
2094 &fbc_wm, &plane_wm, &cursor_wm))
2095 return;
2096
2097 I915_WRITE(WM1_LP_ILK,
2098 WM1_LP_SR_EN |
2099 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
2100 (fbc_wm << WM1_LP_FBC_SHIFT) |
2101 (plane_wm << WM1_LP_SR_SHIFT) |
2102 cursor_wm);
2103
2104 /* WM2 */
2105 if (!ironlake_compute_srwm(dev, 2, enabled,
2106 dev_priv->wm.pri_latency[2] * 500,
2107 &sandybridge_display_srwm_info,
2108 &sandybridge_cursor_srwm_info,
2109 &fbc_wm, &plane_wm, &cursor_wm))
2110 return;
2111
2112 I915_WRITE(WM2_LP_ILK,
2113 WM2_LP_EN |
2114 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
2115 (fbc_wm << WM1_LP_FBC_SHIFT) |
2116 (plane_wm << WM1_LP_SR_SHIFT) |
2117 cursor_wm);
2118
2119 /* WM3, note we have to correct the cursor latency */
2120 if (!ironlake_compute_srwm(dev, 3, enabled,
2121 dev_priv->wm.pri_latency[3] * 500,
2122 &sandybridge_display_srwm_info,
2123 &sandybridge_cursor_srwm_info,
2124 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2125 !ironlake_compute_srwm(dev, 3, enabled,
2126 dev_priv->wm.cur_latency[3] * 500,
2127 &sandybridge_display_srwm_info,
2128 &sandybridge_cursor_srwm_info,
2129 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2130 return;
2131
2132 I915_WRITE(WM3_LP_ILK,
2133 WM3_LP_EN |
2134 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2135 (fbc_wm << WM1_LP_FBC_SHIFT) |
2136 (plane_wm << WM1_LP_SR_SHIFT) |
2137 cursor_wm);
2138 }
2139
2140 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
2141 struct drm_crtc *crtc)
2142 {
2143 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2144 uint32_t pixel_rate;
2145
2146 pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
2147
2148 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2149 * adjust the pixel_rate here. */
2150
2151 if (intel_crtc->config.pch_pfit.enabled) {
2152 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2153 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
2154
2155 pipe_w = intel_crtc->config.pipe_src_w;
2156 pipe_h = intel_crtc->config.pipe_src_h;
2157 pfit_w = (pfit_size >> 16) & 0xFFFF;
2158 pfit_h = pfit_size & 0xFFFF;
2159 if (pipe_w < pfit_w)
2160 pipe_w = pfit_w;
2161 if (pipe_h < pfit_h)
2162 pipe_h = pfit_h;
2163
2164 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2165 pfit_w * pfit_h);
2166 }
2167
2168 return pixel_rate;
2169 }
2170
2171 /* latency must be in 0.1us units. */
2172 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2173 uint32_t latency)
2174 {
2175 uint64_t ret;
2176
2177 if (WARN(latency == 0, "Latency value missing\n"))
2178 return UINT_MAX;
2179
2180 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2181 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2182
2183 return ret;
2184 }
2185
2186 /* latency must be in 0.1us units. */
2187 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2188 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2189 uint32_t latency)
2190 {
2191 uint32_t ret;
2192
2193 if (WARN(latency == 0, "Latency value missing\n"))
2194 return UINT_MAX;
2195
2196 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2197 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2198 ret = DIV_ROUND_UP(ret, 64) + 2;
2199 return ret;
2200 }
2201
2202 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2203 uint8_t bytes_per_pixel)
2204 {
2205 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2206 }
2207
2208 struct hsw_pipe_wm_parameters {
2209 bool active;
2210 uint32_t pipe_htotal;
2211 uint32_t pixel_rate;
2212 struct intel_plane_wm_parameters pri;
2213 struct intel_plane_wm_parameters spr;
2214 struct intel_plane_wm_parameters cur;
2215 };
2216
2217 struct hsw_wm_maximums {
2218 uint16_t pri;
2219 uint16_t spr;
2220 uint16_t cur;
2221 uint16_t fbc;
2222 };
2223
2224 /* used in computing the new watermarks state */
2225 struct intel_wm_config {
2226 unsigned int num_pipes_active;
2227 bool sprites_enabled;
2228 bool sprites_scaled;
2229 };
2230
2231 /*
2232 * For both WM_PIPE and WM_LP.
2233 * mem_value must be in 0.1us units.
2234 */
2235 static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
2236 uint32_t mem_value,
2237 bool is_lp)
2238 {
2239 uint32_t method1, method2;
2240
2241 if (!params->active || !params->pri.enabled)
2242 return 0;
2243
2244 method1 = ilk_wm_method1(params->pixel_rate,
2245 params->pri.bytes_per_pixel,
2246 mem_value);
2247
2248 if (!is_lp)
2249 return method1;
2250
2251 method2 = ilk_wm_method2(params->pixel_rate,
2252 params->pipe_htotal,
2253 params->pri.horiz_pixels,
2254 params->pri.bytes_per_pixel,
2255 mem_value);
2256
2257 return min(method1, method2);
2258 }
2259
2260 /*
2261 * For both WM_PIPE and WM_LP.
2262 * mem_value must be in 0.1us units.
2263 */
2264 static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
2265 uint32_t mem_value)
2266 {
2267 uint32_t method1, method2;
2268
2269 if (!params->active || !params->spr.enabled)
2270 return 0;
2271
2272 method1 = ilk_wm_method1(params->pixel_rate,
2273 params->spr.bytes_per_pixel,
2274 mem_value);
2275 method2 = ilk_wm_method2(params->pixel_rate,
2276 params->pipe_htotal,
2277 params->spr.horiz_pixels,
2278 params->spr.bytes_per_pixel,
2279 mem_value);
2280 return min(method1, method2);
2281 }
2282
2283 /*
2284 * For both WM_PIPE and WM_LP.
2285 * mem_value must be in 0.1us units.
2286 */
2287 static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
2288 uint32_t mem_value)
2289 {
2290 if (!params->active || !params->cur.enabled)
2291 return 0;
2292
2293 return ilk_wm_method2(params->pixel_rate,
2294 params->pipe_htotal,
2295 params->cur.horiz_pixels,
2296 params->cur.bytes_per_pixel,
2297 mem_value);
2298 }
2299
2300 /* Only for WM_LP. */
2301 static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
2302 uint32_t pri_val)
2303 {
2304 if (!params->active || !params->pri.enabled)
2305 return 0;
2306
2307 return ilk_wm_fbc(pri_val,
2308 params->pri.horiz_pixels,
2309 params->pri.bytes_per_pixel);
2310 }
2311
2312 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2313 {
2314 if (INTEL_INFO(dev)->gen >= 7)
2315 return 768;
2316 else
2317 return 512;
2318 }
2319
2320 /* Calculate the maximum primary/sprite plane watermark */
2321 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2322 int level,
2323 const struct intel_wm_config *config,
2324 enum intel_ddb_partitioning ddb_partitioning,
2325 bool is_sprite)
2326 {
2327 unsigned int fifo_size = ilk_display_fifo_size(dev);
2328 unsigned int max;
2329
2330 /* if sprites aren't enabled, sprites get nothing */
2331 if (is_sprite && !config->sprites_enabled)
2332 return 0;
2333
2334 /* HSW allows LP1+ watermarks even with multiple pipes */
2335 if (level == 0 || config->num_pipes_active > 1) {
2336 fifo_size /= INTEL_INFO(dev)->num_pipes;
2337
2338 /*
2339 * For some reason the non self refresh
2340 * FIFO size is only half of the self
2341 * refresh FIFO size on ILK/SNB.
2342 */
2343 if (INTEL_INFO(dev)->gen <= 6)
2344 fifo_size /= 2;
2345 }
2346
2347 if (config->sprites_enabled) {
2348 /* level 0 is always calculated with 1:1 split */
2349 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2350 if (is_sprite)
2351 fifo_size *= 5;
2352 fifo_size /= 6;
2353 } else {
2354 fifo_size /= 2;
2355 }
2356 }
2357
2358 /* clamp to max that the registers can hold */
2359 if (INTEL_INFO(dev)->gen >= 7)
2360 /* IVB/HSW primary/sprite plane watermarks */
2361 max = level == 0 ? 127 : 1023;
2362 else if (!is_sprite)
2363 /* ILK/SNB primary plane watermarks */
2364 max = level == 0 ? 127 : 511;
2365 else
2366 /* ILK/SNB sprite plane watermarks */
2367 max = level == 0 ? 63 : 255;
2368
2369 return min(fifo_size, max);
2370 }
2371
2372 /* Calculate the maximum cursor plane watermark */
2373 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2374 int level,
2375 const struct intel_wm_config *config)
2376 {
2377 /* HSW LP1+ watermarks w/ multiple pipes */
2378 if (level > 0 && config->num_pipes_active > 1)
2379 return 64;
2380
2381 /* otherwise just report max that registers can hold */
2382 if (INTEL_INFO(dev)->gen >= 7)
2383 return level == 0 ? 63 : 255;
2384 else
2385 return level == 0 ? 31 : 63;
2386 }
2387
2388 /* Calculate the maximum FBC watermark */
2389 static unsigned int ilk_fbc_wm_max(void)
2390 {
2391 /* max that registers can hold */
2392 return 15;
2393 }
2394
2395 static void ilk_compute_wm_maximums(struct drm_device *dev,
2396 int level,
2397 const struct intel_wm_config *config,
2398 enum intel_ddb_partitioning ddb_partitioning,
2399 struct hsw_wm_maximums *max)
2400 {
2401 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2402 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2403 max->cur = ilk_cursor_wm_max(dev, level, config);
2404 max->fbc = ilk_fbc_wm_max();
2405 }
2406
2407 static bool ilk_validate_wm_level(int level,
2408 const struct hsw_wm_maximums *max,
2409 struct intel_wm_level *result)
2410 {
2411 bool ret;
2412
2413 /* already determined to be invalid? */
2414 if (!result->enable)
2415 return false;
2416
2417 result->enable = result->pri_val <= max->pri &&
2418 result->spr_val <= max->spr &&
2419 result->cur_val <= max->cur;
2420
2421 ret = result->enable;
2422
2423 /*
2424 * HACK until we can pre-compute everything,
2425 * and thus fail gracefully if LP0 watermarks
2426 * are exceeded...
2427 */
2428 if (level == 0 && !result->enable) {
2429 if (result->pri_val > max->pri)
2430 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2431 level, result->pri_val, max->pri);
2432 if (result->spr_val > max->spr)
2433 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2434 level, result->spr_val, max->spr);
2435 if (result->cur_val > max->cur)
2436 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2437 level, result->cur_val, max->cur);
2438
2439 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2440 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2441 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2442 result->enable = true;
2443 }
2444
2445 return ret;
2446 }
2447
2448 static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
2449 int level,
2450 const struct hsw_pipe_wm_parameters *p,
2451 struct intel_wm_level *result)
2452 {
2453 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2454 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2455 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2456
2457 /* WM1+ latency values stored in 0.5us units */
2458 if (level > 0) {
2459 pri_latency *= 5;
2460 spr_latency *= 5;
2461 cur_latency *= 5;
2462 }
2463
2464 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2465 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2466 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2467 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2468 result->enable = true;
2469 }
2470
2471 static uint32_t
2472 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2473 {
2474 struct drm_i915_private *dev_priv = dev->dev_private;
2475 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2476 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2477 u32 linetime, ips_linetime;
2478
2479 if (!intel_crtc_active(crtc))
2480 return 0;
2481
2482 /* The WM are computed with base on how long it takes to fill a single
2483 * row at the given clock rate, multiplied by 8.
2484 * */
2485 linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2486 ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2487 intel_ddi_get_cdclk_freq(dev_priv));
2488
2489 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2490 PIPE_WM_LINETIME_TIME(linetime);
2491 }
2492
2493 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2494 {
2495 struct drm_i915_private *dev_priv = dev->dev_private;
2496
2497 if (IS_HASWELL(dev)) {
2498 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2499
2500 wm[0] = (sskpd >> 56) & 0xFF;
2501 if (wm[0] == 0)
2502 wm[0] = sskpd & 0xF;
2503 wm[1] = (sskpd >> 4) & 0xFF;
2504 wm[2] = (sskpd >> 12) & 0xFF;
2505 wm[3] = (sskpd >> 20) & 0x1FF;
2506 wm[4] = (sskpd >> 32) & 0x1FF;
2507 } else if (INTEL_INFO(dev)->gen >= 6) {
2508 uint32_t sskpd = I915_READ(MCH_SSKPD);
2509
2510 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2511 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2512 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2513 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2514 } else if (INTEL_INFO(dev)->gen >= 5) {
2515 uint32_t mltr = I915_READ(MLTR_ILK);
2516
2517 /* ILK primary LP0 latency is 700 ns */
2518 wm[0] = 7;
2519 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2520 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2521 }
2522 }
2523
2524 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2525 {
2526 /* ILK sprite LP0 latency is 1300 ns */
2527 if (INTEL_INFO(dev)->gen == 5)
2528 wm[0] = 13;
2529 }
2530
2531 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2532 {
2533 /* ILK cursor LP0 latency is 1300 ns */
2534 if (INTEL_INFO(dev)->gen == 5)
2535 wm[0] = 13;
2536
2537 /* WaDoubleCursorLP3Latency:ivb */
2538 if (IS_IVYBRIDGE(dev))
2539 wm[3] *= 2;
2540 }
2541
2542 static int ilk_wm_max_level(const struct drm_device *dev)
2543 {
2544 /* how many WM levels are we expecting */
2545 if (IS_HASWELL(dev))
2546 return 4;
2547 else if (INTEL_INFO(dev)->gen >= 6)
2548 return 3;
2549 else
2550 return 2;
2551 }
2552
2553 static void intel_print_wm_latency(struct drm_device *dev,
2554 const char *name,
2555 const uint16_t wm[5])
2556 {
2557 int level, max_level = ilk_wm_max_level(dev);
2558
2559 for (level = 0; level <= max_level; level++) {
2560 unsigned int latency = wm[level];
2561
2562 if (latency == 0) {
2563 DRM_ERROR("%s WM%d latency not provided\n",
2564 name, level);
2565 continue;
2566 }
2567
2568 /* WM1+ latency values in 0.5us units */
2569 if (level > 0)
2570 latency *= 5;
2571
2572 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2573 name, level, wm[level],
2574 latency / 10, latency % 10);
2575 }
2576 }
2577
2578 static void intel_setup_wm_latency(struct drm_device *dev)
2579 {
2580 struct drm_i915_private *dev_priv = dev->dev_private;
2581
2582 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2583
2584 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2585 sizeof(dev_priv->wm.pri_latency));
2586 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2587 sizeof(dev_priv->wm.pri_latency));
2588
2589 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2590 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2591
2592 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2593 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2594 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2595 }
2596
2597 static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
2598 struct hsw_pipe_wm_parameters *p,
2599 struct intel_wm_config *config)
2600 {
2601 struct drm_device *dev = crtc->dev;
2602 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2603 enum pipe pipe = intel_crtc->pipe;
2604 struct drm_plane *plane;
2605
2606 p->active = intel_crtc_active(crtc);
2607 if (p->active) {
2608 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2609 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2610 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2611 p->cur.bytes_per_pixel = 4;
2612 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2613 p->cur.horiz_pixels = 64;
2614 /* TODO: for now, assume primary and cursor planes are always enabled. */
2615 p->pri.enabled = true;
2616 p->cur.enabled = true;
2617 }
2618
2619 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2620 config->num_pipes_active += intel_crtc_active(crtc);
2621
2622 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2623 struct intel_plane *intel_plane = to_intel_plane(plane);
2624
2625 if (intel_plane->pipe == pipe)
2626 p->spr = intel_plane->wm;
2627
2628 config->sprites_enabled |= intel_plane->wm.enabled;
2629 config->sprites_scaled |= intel_plane->wm.scaled;
2630 }
2631 }
2632
2633 /* Compute new watermarks for the pipe */
2634 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2635 const struct hsw_pipe_wm_parameters *params,
2636 struct intel_pipe_wm *pipe_wm)
2637 {
2638 struct drm_device *dev = crtc->dev;
2639 struct drm_i915_private *dev_priv = dev->dev_private;
2640 int level, max_level = ilk_wm_max_level(dev);
2641 /* LP0 watermark maximums depend on this pipe alone */
2642 struct intel_wm_config config = {
2643 .num_pipes_active = 1,
2644 .sprites_enabled = params->spr.enabled,
2645 .sprites_scaled = params->spr.scaled,
2646 };
2647 struct hsw_wm_maximums max;
2648
2649 /* LP0 watermarks always use 1/2 DDB partitioning */
2650 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2651
2652 for (level = 0; level <= max_level; level++)
2653 ilk_compute_wm_level(dev_priv, level, params,
2654 &pipe_wm->wm[level]);
2655
2656 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2657
2658 /* At least LP0 must be valid */
2659 return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2660 }
2661
2662 /*
2663 * Merge the watermarks from all active pipes for a specific level.
2664 */
2665 static void ilk_merge_wm_level(struct drm_device *dev,
2666 int level,
2667 struct intel_wm_level *ret_wm)
2668 {
2669 const struct intel_crtc *intel_crtc;
2670
2671 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2672 const struct intel_wm_level *wm =
2673 &intel_crtc->wm.active.wm[level];
2674
2675 if (!wm->enable)
2676 return;
2677
2678 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2679 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2680 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2681 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2682 }
2683
2684 ret_wm->enable = true;
2685 }
2686
2687 /*
2688 * Merge all low power watermarks for all active pipes.
2689 */
2690 static void ilk_wm_merge(struct drm_device *dev,
2691 const struct hsw_wm_maximums *max,
2692 struct intel_pipe_wm *merged)
2693 {
2694 int level, max_level = ilk_wm_max_level(dev);
2695
2696 merged->fbc_wm_enabled = true;
2697
2698 /* merge each WM1+ level */
2699 for (level = 1; level <= max_level; level++) {
2700 struct intel_wm_level *wm = &merged->wm[level];
2701
2702 ilk_merge_wm_level(dev, level, wm);
2703
2704 if (!ilk_validate_wm_level(level, max, wm))
2705 break;
2706
2707 /*
2708 * The spec says it is preferred to disable
2709 * FBC WMs instead of disabling a WM level.
2710 */
2711 if (wm->fbc_val > max->fbc) {
2712 merged->fbc_wm_enabled = false;
2713 wm->fbc_val = 0;
2714 }
2715 }
2716 }
2717
2718 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2719 {
2720 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2721 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2722 }
2723
2724 static void hsw_compute_wm_results(struct drm_device *dev,
2725 const struct intel_pipe_wm *merged,
2726 enum intel_ddb_partitioning partitioning,
2727 struct hsw_wm_values *results)
2728 {
2729 struct intel_crtc *intel_crtc;
2730 int level, wm_lp;
2731
2732 results->enable_fbc_wm = merged->fbc_wm_enabled;
2733 results->partitioning = partitioning;
2734
2735 /* LP1+ register values */
2736 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2737 const struct intel_wm_level *r;
2738
2739 level = ilk_wm_lp_to_level(wm_lp, merged);
2740
2741 r = &merged->wm[level];
2742 if (!r->enable)
2743 break;
2744
2745 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2746 r->fbc_val,
2747 r->pri_val,
2748 r->cur_val);
2749 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2750 }
2751
2752 /* LP0 register values */
2753 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2754 enum pipe pipe = intel_crtc->pipe;
2755 const struct intel_wm_level *r =
2756 &intel_crtc->wm.active.wm[0];
2757
2758 if (WARN_ON(!r->enable))
2759 continue;
2760
2761 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2762
2763 results->wm_pipe[pipe] =
2764 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2765 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2766 r->cur_val;
2767 }
2768 }
2769
2770 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2771 * case both are at the same level. Prefer r1 in case they're the same. */
2772 static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
2773 struct intel_pipe_wm *r1,
2774 struct intel_pipe_wm *r2)
2775 {
2776 int level, max_level = ilk_wm_max_level(dev);
2777 int level1 = 0, level2 = 0;
2778
2779 for (level = 1; level <= max_level; level++) {
2780 if (r1->wm[level].enable)
2781 level1 = level;
2782 if (r2->wm[level].enable)
2783 level2 = level;
2784 }
2785
2786 if (level1 == level2) {
2787 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2788 return r2;
2789 else
2790 return r1;
2791 } else if (level1 > level2) {
2792 return r1;
2793 } else {
2794 return r2;
2795 }
2796 }
2797
2798 /* dirty bits used to track which watermarks need changes */
2799 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2800 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2801 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2802 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2803 #define WM_DIRTY_FBC (1 << 24)
2804 #define WM_DIRTY_DDB (1 << 25)
2805
2806 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2807 const struct hsw_wm_values *old,
2808 const struct hsw_wm_values *new)
2809 {
2810 unsigned int dirty = 0;
2811 enum pipe pipe;
2812 int wm_lp;
2813
2814 for_each_pipe(pipe) {
2815 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2816 dirty |= WM_DIRTY_LINETIME(pipe);
2817 /* Must disable LP1+ watermarks too */
2818 dirty |= WM_DIRTY_LP_ALL;
2819 }
2820
2821 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2822 dirty |= WM_DIRTY_PIPE(pipe);
2823 /* Must disable LP1+ watermarks too */
2824 dirty |= WM_DIRTY_LP_ALL;
2825 }
2826 }
2827
2828 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2829 dirty |= WM_DIRTY_FBC;
2830 /* Must disable LP1+ watermarks too */
2831 dirty |= WM_DIRTY_LP_ALL;
2832 }
2833
2834 if (old->partitioning != new->partitioning) {
2835 dirty |= WM_DIRTY_DDB;
2836 /* Must disable LP1+ watermarks too */
2837 dirty |= WM_DIRTY_LP_ALL;
2838 }
2839
2840 /* LP1+ watermarks already deemed dirty, no need to continue */
2841 if (dirty & WM_DIRTY_LP_ALL)
2842 return dirty;
2843
2844 /* Find the lowest numbered LP1+ watermark in need of an update... */
2845 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2846 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2847 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2848 break;
2849 }
2850
2851 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2852 for (; wm_lp <= 3; wm_lp++)
2853 dirty |= WM_DIRTY_LP(wm_lp);
2854
2855 return dirty;
2856 }
2857
2858 /*
2859 * The spec says we shouldn't write when we don't need, because every write
2860 * causes WMs to be re-evaluated, expending some power.
2861 */
2862 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2863 struct hsw_wm_values *results)
2864 {
2865 struct hsw_wm_values *previous = &dev_priv->wm.hw;
2866 unsigned int dirty;
2867 uint32_t val;
2868
2869 dirty = ilk_compute_wm_dirty(dev_priv->dev, previous, results);
2870 if (!dirty)
2871 return;
2872
2873 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != 0)
2874 I915_WRITE(WM3_LP_ILK, 0);
2875 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != 0)
2876 I915_WRITE(WM2_LP_ILK, 0);
2877 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != 0)
2878 I915_WRITE(WM1_LP_ILK, 0);
2879
2880 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2881 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2882 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2883 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2884 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2885 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2886
2887 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2888 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2889 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2890 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2891 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2892 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2893
2894 if (dirty & WM_DIRTY_DDB) {
2895 val = I915_READ(WM_MISC);
2896 if (results->partitioning == INTEL_DDB_PART_1_2)
2897 val &= ~WM_MISC_DATA_PARTITION_5_6;
2898 else
2899 val |= WM_MISC_DATA_PARTITION_5_6;
2900 I915_WRITE(WM_MISC, val);
2901 }
2902
2903 if (dirty & WM_DIRTY_FBC) {
2904 val = I915_READ(DISP_ARB_CTL);
2905 if (results->enable_fbc_wm)
2906 val &= ~DISP_FBC_WM_DIS;
2907 else
2908 val |= DISP_FBC_WM_DIS;
2909 I915_WRITE(DISP_ARB_CTL, val);
2910 }
2911
2912 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2913 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2914 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2915 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2916 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2917 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2918
2919 if (dirty & WM_DIRTY_LP(1) && results->wm_lp[0] != 0)
2920 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2921 if (dirty & WM_DIRTY_LP(2) && results->wm_lp[1] != 0)
2922 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2923 if (dirty & WM_DIRTY_LP(3) && results->wm_lp[2] != 0)
2924 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2925
2926 dev_priv->wm.hw = *results;
2927 }
2928
2929 static void haswell_update_wm(struct drm_crtc *crtc)
2930 {
2931 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2932 struct drm_device *dev = crtc->dev;
2933 struct drm_i915_private *dev_priv = dev->dev_private;
2934 struct hsw_wm_maximums max;
2935 struct hsw_pipe_wm_parameters params = {};
2936 struct hsw_wm_values results = {};
2937 enum intel_ddb_partitioning partitioning;
2938 struct intel_pipe_wm pipe_wm = {};
2939 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2940 struct intel_wm_config config = {};
2941
2942 hsw_compute_wm_parameters(crtc, &params, &config);
2943
2944 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2945
2946 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2947 return;
2948
2949 intel_crtc->wm.active = pipe_wm;
2950
2951 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2952 ilk_wm_merge(dev, &max, &lp_wm_1_2);
2953
2954 /* 5/6 split only in single pipe config on IVB+ */
2955 if (INTEL_INFO(dev)->gen >= 7 &&
2956 config.num_pipes_active == 1 && config.sprites_enabled) {
2957 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2958 ilk_wm_merge(dev, &max, &lp_wm_5_6);
2959
2960 best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2961 } else {
2962 best_lp_wm = &lp_wm_1_2;
2963 }
2964
2965 partitioning = (best_lp_wm == &lp_wm_1_2) ?
2966 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2967
2968 hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2969
2970 hsw_write_wm_values(dev_priv, &results);
2971 }
2972
2973 static void haswell_update_sprite_wm(struct drm_plane *plane,
2974 struct drm_crtc *crtc,
2975 uint32_t sprite_width, int pixel_size,
2976 bool enabled, bool scaled)
2977 {
2978 struct intel_plane *intel_plane = to_intel_plane(plane);
2979
2980 intel_plane->wm.enabled = enabled;
2981 intel_plane->wm.scaled = scaled;
2982 intel_plane->wm.horiz_pixels = sprite_width;
2983 intel_plane->wm.bytes_per_pixel = pixel_size;
2984
2985 haswell_update_wm(crtc);
2986 }
2987
2988 static bool
2989 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2990 uint32_t sprite_width, int pixel_size,
2991 const struct intel_watermark_params *display,
2992 int display_latency_ns, int *sprite_wm)
2993 {
2994 struct drm_crtc *crtc;
2995 int clock;
2996 int entries, tlb_miss;
2997
2998 crtc = intel_get_crtc_for_plane(dev, plane);
2999 if (!intel_crtc_active(crtc)) {
3000 *sprite_wm = display->guard_size;
3001 return false;
3002 }
3003
3004 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3005
3006 /* Use the small buffer method to calculate the sprite watermark */
3007 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3008 tlb_miss = display->fifo_size*display->cacheline_size -
3009 sprite_width * 8;
3010 if (tlb_miss > 0)
3011 entries += tlb_miss;
3012 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3013 *sprite_wm = entries + display->guard_size;
3014 if (*sprite_wm > (int)display->max_wm)
3015 *sprite_wm = display->max_wm;
3016
3017 return true;
3018 }
3019
3020 static bool
3021 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
3022 uint32_t sprite_width, int pixel_size,
3023 const struct intel_watermark_params *display,
3024 int latency_ns, int *sprite_wm)
3025 {
3026 struct drm_crtc *crtc;
3027 unsigned long line_time_us;
3028 int clock;
3029 int line_count, line_size;
3030 int small, large;
3031 int entries;
3032
3033 if (!latency_ns) {
3034 *sprite_wm = 0;
3035 return false;
3036 }
3037
3038 crtc = intel_get_crtc_for_plane(dev, plane);
3039 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3040 if (!clock) {
3041 *sprite_wm = 0;
3042 return false;
3043 }
3044
3045 line_time_us = (sprite_width * 1000) / clock;
3046 if (!line_time_us) {
3047 *sprite_wm = 0;
3048 return false;
3049 }
3050
3051 line_count = (latency_ns / line_time_us + 1000) / 1000;
3052 line_size = sprite_width * pixel_size;
3053
3054 /* Use the minimum of the small and large buffer method for primary */
3055 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3056 large = line_count * line_size;
3057
3058 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3059 *sprite_wm = entries + display->guard_size;
3060
3061 return *sprite_wm > 0x3ff ? false : true;
3062 }
3063
3064 static void sandybridge_update_sprite_wm(struct drm_plane *plane,
3065 struct drm_crtc *crtc,
3066 uint32_t sprite_width, int pixel_size,
3067 bool enabled, bool scaled)
3068 {
3069 struct drm_device *dev = plane->dev;
3070 struct drm_i915_private *dev_priv = dev->dev_private;
3071 int pipe = to_intel_plane(plane)->pipe;
3072 int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
3073 u32 val;
3074 int sprite_wm, reg;
3075 int ret;
3076
3077 if (!enabled)
3078 return;
3079
3080 switch (pipe) {
3081 case 0:
3082 reg = WM0_PIPEA_ILK;
3083 break;
3084 case 1:
3085 reg = WM0_PIPEB_ILK;
3086 break;
3087 case 2:
3088 reg = WM0_PIPEC_IVB;
3089 break;
3090 default:
3091 return; /* bad pipe */
3092 }
3093
3094 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
3095 &sandybridge_display_wm_info,
3096 latency, &sprite_wm);
3097 if (!ret) {
3098 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
3099 pipe_name(pipe));
3100 return;
3101 }
3102
3103 val = I915_READ(reg);
3104 val &= ~WM0_PIPE_SPRITE_MASK;
3105 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
3106 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
3107
3108
3109 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3110 pixel_size,
3111 &sandybridge_display_srwm_info,
3112 dev_priv->wm.spr_latency[1] * 500,
3113 &sprite_wm);
3114 if (!ret) {
3115 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
3116 pipe_name(pipe));
3117 return;
3118 }
3119 I915_WRITE(WM1S_LP_ILK, sprite_wm);
3120
3121 /* Only IVB has two more LP watermarks for sprite */
3122 if (!IS_IVYBRIDGE(dev))
3123 return;
3124
3125 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3126 pixel_size,
3127 &sandybridge_display_srwm_info,
3128 dev_priv->wm.spr_latency[2] * 500,
3129 &sprite_wm);
3130 if (!ret) {
3131 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
3132 pipe_name(pipe));
3133 return;
3134 }
3135 I915_WRITE(WM2S_LP_IVB, sprite_wm);
3136
3137 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3138 pixel_size,
3139 &sandybridge_display_srwm_info,
3140 dev_priv->wm.spr_latency[3] * 500,
3141 &sprite_wm);
3142 if (!ret) {
3143 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
3144 pipe_name(pipe));
3145 return;
3146 }
3147 I915_WRITE(WM3S_LP_IVB, sprite_wm);
3148 }
3149
3150 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3151 {
3152 struct drm_device *dev = crtc->dev;
3153 struct drm_i915_private *dev_priv = dev->dev_private;
3154 struct hsw_wm_values *hw = &dev_priv->wm.hw;
3155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3156 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3157 enum pipe pipe = intel_crtc->pipe;
3158 static const unsigned int wm0_pipe_reg[] = {
3159 [PIPE_A] = WM0_PIPEA_ILK,
3160 [PIPE_B] = WM0_PIPEB_ILK,
3161 [PIPE_C] = WM0_PIPEC_IVB,
3162 };
3163
3164 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3165 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3166
3167 if (intel_crtc_active(crtc)) {
3168 u32 tmp = hw->wm_pipe[pipe];
3169
3170 /*
3171 * For active pipes LP0 watermark is marked as
3172 * enabled, and LP1+ watermaks as disabled since
3173 * we can't really reverse compute them in case
3174 * multiple pipes are active.
3175 */
3176 active->wm[0].enable = true;
3177 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3178 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3179 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3180 active->linetime = hw->wm_linetime[pipe];
3181 } else {
3182 int level, max_level = ilk_wm_max_level(dev);
3183
3184 /*
3185 * For inactive pipes, all watermark levels
3186 * should be marked as enabled but zeroed,
3187 * which is what we'd compute them to.
3188 */
3189 for (level = 0; level <= max_level; level++)
3190 active->wm[level].enable = true;
3191 }
3192 }
3193
3194 void ilk_wm_get_hw_state(struct drm_device *dev)
3195 {
3196 struct drm_i915_private *dev_priv = dev->dev_private;
3197 struct hsw_wm_values *hw = &dev_priv->wm.hw;
3198 struct drm_crtc *crtc;
3199
3200 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3201 ilk_pipe_wm_get_hw_state(crtc);
3202
3203 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3204 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3205 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3206
3207 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3208 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3209 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3210
3211 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3212 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3213
3214 hw->enable_fbc_wm =
3215 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3216 }
3217
3218 /**
3219 * intel_update_watermarks - update FIFO watermark values based on current modes
3220 *
3221 * Calculate watermark values for the various WM regs based on current mode
3222 * and plane configuration.
3223 *
3224 * There are several cases to deal with here:
3225 * - normal (i.e. non-self-refresh)
3226 * - self-refresh (SR) mode
3227 * - lines are large relative to FIFO size (buffer can hold up to 2)
3228 * - lines are small relative to FIFO size (buffer can hold more than 2
3229 * lines), so need to account for TLB latency
3230 *
3231 * The normal calculation is:
3232 * watermark = dotclock * bytes per pixel * latency
3233 * where latency is platform & configuration dependent (we assume pessimal
3234 * values here).
3235 *
3236 * The SR calculation is:
3237 * watermark = (trunc(latency/line time)+1) * surface width *
3238 * bytes per pixel
3239 * where
3240 * line time = htotal / dotclock
3241 * surface width = hdisplay for normal plane and 64 for cursor
3242 * and latency is assumed to be high, as above.
3243 *
3244 * The final value programmed to the register should always be rounded up,
3245 * and include an extra 2 entries to account for clock crossings.
3246 *
3247 * We don't use the sprite, so we can ignore that. And on Crestline we have
3248 * to set the non-SR watermarks to 8.
3249 */
3250 void intel_update_watermarks(struct drm_crtc *crtc)
3251 {
3252 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3253
3254 if (dev_priv->display.update_wm)
3255 dev_priv->display.update_wm(crtc);
3256 }
3257
3258 void intel_update_sprite_watermarks(struct drm_plane *plane,
3259 struct drm_crtc *crtc,
3260 uint32_t sprite_width, int pixel_size,
3261 bool enabled, bool scaled)
3262 {
3263 struct drm_i915_private *dev_priv = plane->dev->dev_private;
3264
3265 if (dev_priv->display.update_sprite_wm)
3266 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
3267 pixel_size, enabled, scaled);
3268 }
3269
3270 static struct drm_i915_gem_object *
3271 intel_alloc_context_page(struct drm_device *dev)
3272 {
3273 struct drm_i915_gem_object *ctx;
3274 int ret;
3275
3276 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3277
3278 ctx = i915_gem_alloc_object(dev, 4096);
3279 if (!ctx) {
3280 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3281 return NULL;
3282 }
3283
3284 ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3285 if (ret) {
3286 DRM_ERROR("failed to pin power context: %d\n", ret);
3287 goto err_unref;
3288 }
3289
3290 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3291 if (ret) {
3292 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3293 goto err_unpin;
3294 }
3295
3296 return ctx;
3297
3298 err_unpin:
3299 i915_gem_object_unpin(ctx);
3300 err_unref:
3301 drm_gem_object_unreference(&ctx->base);
3302 return NULL;
3303 }
3304
3305 /**
3306 * Lock protecting IPS related data structures
3307 */
3308 DEFINE_SPINLOCK(mchdev_lock);
3309
3310 /* Global for IPS driver to get at the current i915 device. Protected by
3311 * mchdev_lock. */
3312 static struct drm_i915_private *i915_mch_dev;
3313
3314 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3315 {
3316 struct drm_i915_private *dev_priv = dev->dev_private;
3317 u16 rgvswctl;
3318
3319 assert_spin_locked(&mchdev_lock);
3320
3321 rgvswctl = I915_READ16(MEMSWCTL);
3322 if (rgvswctl & MEMCTL_CMD_STS) {
3323 DRM_DEBUG("gpu busy, RCS change rejected\n");
3324 return false; /* still busy with another command */
3325 }
3326
3327 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3328 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3329 I915_WRITE16(MEMSWCTL, rgvswctl);
3330 POSTING_READ16(MEMSWCTL);
3331
3332 rgvswctl |= MEMCTL_CMD_STS;
3333 I915_WRITE16(MEMSWCTL, rgvswctl);
3334
3335 return true;
3336 }
3337
3338 static void ironlake_enable_drps(struct drm_device *dev)
3339 {
3340 struct drm_i915_private *dev_priv = dev->dev_private;
3341 u32 rgvmodectl = I915_READ(MEMMODECTL);
3342 u8 fmax, fmin, fstart, vstart;
3343
3344 spin_lock_irq(&mchdev_lock);
3345
3346 /* Enable temp reporting */
3347 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3348 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3349
3350 /* 100ms RC evaluation intervals */
3351 I915_WRITE(RCUPEI, 100000);
3352 I915_WRITE(RCDNEI, 100000);
3353
3354 /* Set max/min thresholds to 90ms and 80ms respectively */
3355 I915_WRITE(RCBMAXAVG, 90000);
3356 I915_WRITE(RCBMINAVG, 80000);
3357
3358 I915_WRITE(MEMIHYST, 1);
3359
3360 /* Set up min, max, and cur for interrupt handling */
3361 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3362 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3363 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3364 MEMMODE_FSTART_SHIFT;
3365
3366 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3367 PXVFREQ_PX_SHIFT;
3368
3369 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3370 dev_priv->ips.fstart = fstart;
3371
3372 dev_priv->ips.max_delay = fstart;
3373 dev_priv->ips.min_delay = fmin;
3374 dev_priv->ips.cur_delay = fstart;
3375
3376 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3377 fmax, fmin, fstart);
3378
3379 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3380
3381 /*
3382 * Interrupts will be enabled in ironlake_irq_postinstall
3383 */
3384
3385 I915_WRITE(VIDSTART, vstart);
3386 POSTING_READ(VIDSTART);
3387
3388 rgvmodectl |= MEMMODE_SWMODE_EN;
3389 I915_WRITE(MEMMODECTL, rgvmodectl);
3390
3391 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3392 DRM_ERROR("stuck trying to change perf mode\n");
3393 mdelay(1);
3394
3395 ironlake_set_drps(dev, fstart);
3396
3397 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3398 I915_READ(0x112e0);
3399 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3400 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3401 getrawmonotonic(&dev_priv->ips.last_time2);
3402
3403 spin_unlock_irq(&mchdev_lock);
3404 }
3405
3406 static void ironlake_disable_drps(struct drm_device *dev)
3407 {
3408 struct drm_i915_private *dev_priv = dev->dev_private;
3409 u16 rgvswctl;
3410
3411 spin_lock_irq(&mchdev_lock);
3412
3413 rgvswctl = I915_READ16(MEMSWCTL);
3414
3415 /* Ack interrupts, disable EFC interrupt */
3416 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3417 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3418 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3419 I915_WRITE(DEIIR, DE_PCU_EVENT);
3420 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3421
3422 /* Go back to the starting frequency */
3423 ironlake_set_drps(dev, dev_priv->ips.fstart);
3424 mdelay(1);
3425 rgvswctl |= MEMCTL_CMD_STS;
3426 I915_WRITE(MEMSWCTL, rgvswctl);
3427 mdelay(1);
3428
3429 spin_unlock_irq(&mchdev_lock);
3430 }
3431
3432 /* There's a funny hw issue where the hw returns all 0 when reading from
3433 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3434 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3435 * all limits and the gpu stuck at whatever frequency it is at atm).
3436 */
3437 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3438 {
3439 u32 limits;
3440
3441 limits = 0;
3442
3443 if (*val >= dev_priv->rps.max_delay)
3444 *val = dev_priv->rps.max_delay;
3445 limits |= dev_priv->rps.max_delay << 24;
3446
3447 /* Only set the down limit when we've reached the lowest level to avoid
3448 * getting more interrupts, otherwise leave this clear. This prevents a
3449 * race in the hw when coming out of rc6: There's a tiny window where
3450 * the hw runs at the minimal clock before selecting the desired
3451 * frequency, if the down threshold expires in that window we will not
3452 * receive a down interrupt. */
3453 if (*val <= dev_priv->rps.min_delay) {
3454 *val = dev_priv->rps.min_delay;
3455 limits |= dev_priv->rps.min_delay << 16;
3456 }
3457
3458 return limits;
3459 }
3460
3461 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3462 {
3463 int new_power;
3464
3465 new_power = dev_priv->rps.power;
3466 switch (dev_priv->rps.power) {
3467 case LOW_POWER:
3468 if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
3469 new_power = BETWEEN;
3470 break;
3471
3472 case BETWEEN:
3473 if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
3474 new_power = LOW_POWER;
3475 else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
3476 new_power = HIGH_POWER;
3477 break;
3478
3479 case HIGH_POWER:
3480 if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
3481 new_power = BETWEEN;
3482 break;
3483 }
3484 /* Max/min bins are special */
3485 if (val == dev_priv->rps.min_delay)
3486 new_power = LOW_POWER;
3487 if (val == dev_priv->rps.max_delay)
3488 new_power = HIGH_POWER;
3489 if (new_power == dev_priv->rps.power)
3490 return;
3491
3492 /* Note the units here are not exactly 1us, but 1280ns. */
3493 switch (new_power) {
3494 case LOW_POWER:
3495 /* Upclock if more than 95% busy over 16ms */
3496 I915_WRITE(GEN6_RP_UP_EI, 12500);
3497 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3498
3499 /* Downclock if less than 85% busy over 32ms */
3500 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3501 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3502
3503 I915_WRITE(GEN6_RP_CONTROL,
3504 GEN6_RP_MEDIA_TURBO |
3505 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3506 GEN6_RP_MEDIA_IS_GFX |
3507 GEN6_RP_ENABLE |
3508 GEN6_RP_UP_BUSY_AVG |
3509 GEN6_RP_DOWN_IDLE_AVG);
3510 break;
3511
3512 case BETWEEN:
3513 /* Upclock if more than 90% busy over 13ms */
3514 I915_WRITE(GEN6_RP_UP_EI, 10250);
3515 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3516
3517 /* Downclock if less than 75% busy over 32ms */
3518 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3519 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3520
3521 I915_WRITE(GEN6_RP_CONTROL,
3522 GEN6_RP_MEDIA_TURBO |
3523 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3524 GEN6_RP_MEDIA_IS_GFX |
3525 GEN6_RP_ENABLE |
3526 GEN6_RP_UP_BUSY_AVG |
3527 GEN6_RP_DOWN_IDLE_AVG);
3528 break;
3529
3530 case HIGH_POWER:
3531 /* Upclock if more than 85% busy over 10ms */
3532 I915_WRITE(GEN6_RP_UP_EI, 8000);
3533 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3534
3535 /* Downclock if less than 60% busy over 32ms */
3536 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3537 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3538
3539 I915_WRITE(GEN6_RP_CONTROL,
3540 GEN6_RP_MEDIA_TURBO |
3541 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3542 GEN6_RP_MEDIA_IS_GFX |
3543 GEN6_RP_ENABLE |
3544 GEN6_RP_UP_BUSY_AVG |
3545 GEN6_RP_DOWN_IDLE_AVG);
3546 break;
3547 }
3548
3549 dev_priv->rps.power = new_power;
3550 dev_priv->rps.last_adj = 0;
3551 }
3552
3553 void gen6_set_rps(struct drm_device *dev, u8 val)
3554 {
3555 struct drm_i915_private *dev_priv = dev->dev_private;
3556 u32 limits = gen6_rps_limits(dev_priv, &val);
3557
3558 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3559 WARN_ON(val > dev_priv->rps.max_delay);
3560 WARN_ON(val < dev_priv->rps.min_delay);
3561
3562 if (val == dev_priv->rps.cur_delay)
3563 return;
3564
3565 gen6_set_rps_thresholds(dev_priv, val);
3566
3567 if (IS_HASWELL(dev))
3568 I915_WRITE(GEN6_RPNSWREQ,
3569 HSW_FREQUENCY(val));
3570 else
3571 I915_WRITE(GEN6_RPNSWREQ,
3572 GEN6_FREQUENCY(val) |
3573 GEN6_OFFSET(0) |
3574 GEN6_AGGRESSIVE_TURBO);
3575
3576 /* Make sure we continue to get interrupts
3577 * until we hit the minimum or maximum frequencies.
3578 */
3579 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3580
3581 POSTING_READ(GEN6_RPNSWREQ);
3582
3583 dev_priv->rps.cur_delay = val;
3584
3585 trace_intel_gpu_freq_change(val * 50);
3586 }
3587
3588 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3589 {
3590 mutex_lock(&dev_priv->rps.hw_lock);
3591 if (dev_priv->rps.enabled) {
3592 if (dev_priv->info->is_valleyview)
3593 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3594 else
3595 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3596 dev_priv->rps.last_adj = 0;
3597 }
3598 mutex_unlock(&dev_priv->rps.hw_lock);
3599 }
3600
3601 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3602 {
3603 mutex_lock(&dev_priv->rps.hw_lock);
3604 if (dev_priv->rps.enabled) {
3605 if (dev_priv->info->is_valleyview)
3606 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3607 else
3608 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3609 dev_priv->rps.last_adj = 0;
3610 }
3611 mutex_unlock(&dev_priv->rps.hw_lock);
3612 }
3613
3614 /*
3615 * Wait until the previous freq change has completed,
3616 * or the timeout elapsed, and then update our notion
3617 * of the current GPU frequency.
3618 */
3619 static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3620 {
3621 u32 pval;
3622
3623 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3624
3625 if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3626 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3627
3628 pval >>= 8;
3629
3630 if (pval != dev_priv->rps.cur_delay)
3631 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3632 vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3633 dev_priv->rps.cur_delay,
3634 vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3635
3636 dev_priv->rps.cur_delay = pval;
3637 }
3638
3639 void valleyview_set_rps(struct drm_device *dev, u8 val)
3640 {
3641 struct drm_i915_private *dev_priv = dev->dev_private;
3642
3643 gen6_rps_limits(dev_priv, &val);
3644
3645 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3646 WARN_ON(val > dev_priv->rps.max_delay);
3647 WARN_ON(val < dev_priv->rps.min_delay);
3648
3649 vlv_update_rps_cur_delay(dev_priv);
3650
3651 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3652 vlv_gpu_freq(dev_priv->mem_freq,
3653 dev_priv->rps.cur_delay),
3654 dev_priv->rps.cur_delay,
3655 vlv_gpu_freq(dev_priv->mem_freq, val), val);
3656
3657 if (val == dev_priv->rps.cur_delay)
3658 return;
3659
3660 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3661
3662 dev_priv->rps.cur_delay = val;
3663
3664 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3665 }
3666
3667 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3668 {
3669 struct drm_i915_private *dev_priv = dev->dev_private;
3670
3671 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3672 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3673 /* Complete PM interrupt masking here doesn't race with the rps work
3674 * item again unmasking PM interrupts because that is using a different
3675 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3676 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3677
3678 spin_lock_irq(&dev_priv->irq_lock);
3679 dev_priv->rps.pm_iir = 0;
3680 spin_unlock_irq(&dev_priv->irq_lock);
3681
3682 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3683 }
3684
3685 static void gen6_disable_rps(struct drm_device *dev)
3686 {
3687 struct drm_i915_private *dev_priv = dev->dev_private;
3688
3689 I915_WRITE(GEN6_RC_CONTROL, 0);
3690 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3691
3692 gen6_disable_rps_interrupts(dev);
3693 }
3694
3695 static void valleyview_disable_rps(struct drm_device *dev)
3696 {
3697 struct drm_i915_private *dev_priv = dev->dev_private;
3698
3699 I915_WRITE(GEN6_RC_CONTROL, 0);
3700
3701 gen6_disable_rps_interrupts(dev);
3702
3703 if (dev_priv->vlv_pctx) {
3704 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3705 dev_priv->vlv_pctx = NULL;
3706 }
3707 }
3708
3709 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3710 {
3711 if (IS_GEN6(dev))
3712 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3713
3714 if (IS_HASWELL(dev))
3715 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3716
3717 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3718 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3719 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3720 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3721 }
3722
3723 int intel_enable_rc6(const struct drm_device *dev)
3724 {
3725 /* No RC6 before Ironlake */
3726 if (INTEL_INFO(dev)->gen < 5)
3727 return 0;
3728
3729 /* Respect the kernel parameter if it is set */
3730 if (i915_enable_rc6 >= 0)
3731 return i915_enable_rc6;
3732
3733 /* Disable RC6 on Ironlake */
3734 if (INTEL_INFO(dev)->gen == 5)
3735 return 0;
3736
3737 if (IS_HASWELL(dev))
3738 return INTEL_RC6_ENABLE;
3739
3740 /* snb/ivb have more than one rc6 state. */
3741 if (INTEL_INFO(dev)->gen == 6)
3742 return INTEL_RC6_ENABLE;
3743
3744 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3745 }
3746
3747 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3748 {
3749 struct drm_i915_private *dev_priv = dev->dev_private;
3750 u32 enabled_intrs;
3751
3752 spin_lock_irq(&dev_priv->irq_lock);
3753 WARN_ON(dev_priv->rps.pm_iir);
3754 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3755 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3756 spin_unlock_irq(&dev_priv->irq_lock);
3757
3758 /* only unmask PM interrupts we need. Mask all others. */
3759 enabled_intrs = GEN6_PM_RPS_EVENTS;
3760
3761 /* IVB and SNB hard hangs on looping batchbuffer
3762 * if GEN6_PM_UP_EI_EXPIRED is masked.
3763 */
3764 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3765 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3766
3767 I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3768 }
3769
3770 static void gen6_enable_rps(struct drm_device *dev)
3771 {
3772 struct drm_i915_private *dev_priv = dev->dev_private;
3773 struct intel_ring_buffer *ring;
3774 u32 rp_state_cap;
3775 u32 gt_perf_status;
3776 u32 rc6vids, pcu_mbox, rc6_mask = 0;
3777 u32 gtfifodbg;
3778 int rc6_mode;
3779 int i, ret;
3780
3781 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3782
3783 /* Here begins a magic sequence of register writes to enable
3784 * auto-downclocking.
3785 *
3786 * Perhaps there might be some value in exposing these to
3787 * userspace...
3788 */
3789 I915_WRITE(GEN6_RC_STATE, 0);
3790
3791 /* Clear the DBG now so we don't confuse earlier errors */
3792 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3793 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3794 I915_WRITE(GTFIFODBG, gtfifodbg);
3795 }
3796
3797 gen6_gt_force_wake_get(dev_priv);
3798
3799 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3800 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3801
3802 /* In units of 50MHz */
3803 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3804 dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
3805 dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
3806 dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
3807 dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
3808 dev_priv->rps.cur_delay = 0;
3809
3810 /* disable the counters and set deterministic thresholds */
3811 I915_WRITE(GEN6_RC_CONTROL, 0);
3812
3813 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3814 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3815 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3816 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3817 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3818
3819 for_each_ring(ring, dev_priv, i)
3820 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3821
3822 I915_WRITE(GEN6_RC_SLEEP, 0);
3823 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3824 if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
3825 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3826 else
3827 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3828 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3829 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3830
3831 /* Check if we are enabling RC6 */
3832 rc6_mode = intel_enable_rc6(dev_priv->dev);
3833 if (rc6_mode & INTEL_RC6_ENABLE)
3834 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3835
3836 /* We don't use those on Haswell */
3837 if (!IS_HASWELL(dev)) {
3838 if (rc6_mode & INTEL_RC6p_ENABLE)
3839 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3840
3841 if (rc6_mode & INTEL_RC6pp_ENABLE)
3842 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3843 }
3844
3845 intel_print_rc6_info(dev, rc6_mask);
3846
3847 I915_WRITE(GEN6_RC_CONTROL,
3848 rc6_mask |
3849 GEN6_RC_CTL_EI_MODE(1) |
3850 GEN6_RC_CTL_HW_ENABLE);
3851
3852 /* Power down if completely idle for over 50ms */
3853 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3854 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3855
3856 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3857 if (!ret) {
3858 pcu_mbox = 0;
3859 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3860 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3861 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3862 (dev_priv->rps.max_delay & 0xff) * 50,
3863 (pcu_mbox & 0xff) * 50);
3864 dev_priv->rps.hw_max = pcu_mbox & 0xff;
3865 }
3866 } else {
3867 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3868 }
3869
3870 dev_priv->rps.power = HIGH_POWER; /* force a reset */
3871 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3872
3873 gen6_enable_rps_interrupts(dev);
3874
3875 rc6vids = 0;
3876 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3877 if (IS_GEN6(dev) && ret) {
3878 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3879 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3880 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3881 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3882 rc6vids &= 0xffff00;
3883 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3884 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3885 if (ret)
3886 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3887 }
3888
3889 gen6_gt_force_wake_put(dev_priv);
3890 }
3891
3892 void gen6_update_ring_freq(struct drm_device *dev)
3893 {
3894 struct drm_i915_private *dev_priv = dev->dev_private;
3895 int min_freq = 15;
3896 unsigned int gpu_freq;
3897 unsigned int max_ia_freq, min_ring_freq;
3898 int scaling_factor = 180;
3899 struct cpufreq_policy *policy;
3900
3901 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3902
3903 policy = cpufreq_cpu_get(0);
3904 if (policy) {
3905 max_ia_freq = policy->cpuinfo.max_freq;
3906 cpufreq_cpu_put(policy);
3907 } else {
3908 /*
3909 * Default to measured freq if none found, PCU will ensure we
3910 * don't go over
3911 */
3912 max_ia_freq = tsc_khz;
3913 }
3914
3915 /* Convert from kHz to MHz */
3916 max_ia_freq /= 1000;
3917
3918 min_ring_freq = I915_READ(DCLK) & 0xf;
3919 /* convert DDR frequency from units of 266.6MHz to bandwidth */
3920 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3921
3922 /*
3923 * For each potential GPU frequency, load a ring frequency we'd like
3924 * to use for memory access. We do this by specifying the IA frequency
3925 * the PCU should use as a reference to determine the ring frequency.
3926 */
3927 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3928 gpu_freq--) {
3929 int diff = dev_priv->rps.max_delay - gpu_freq;
3930 unsigned int ia_freq = 0, ring_freq = 0;
3931
3932 if (IS_HASWELL(dev)) {
3933 ring_freq = mult_frac(gpu_freq, 5, 4);
3934 ring_freq = max(min_ring_freq, ring_freq);
3935 /* leave ia_freq as the default, chosen by cpufreq */
3936 } else {
3937 /* On older processors, there is no separate ring
3938 * clock domain, so in order to boost the bandwidth
3939 * of the ring, we need to upclock the CPU (ia_freq).
3940 *
3941 * For GPU frequencies less than 750MHz,
3942 * just use the lowest ring freq.
3943 */
3944 if (gpu_freq < min_freq)
3945 ia_freq = 800;
3946 else
3947 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3948 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3949 }
3950
3951 sandybridge_pcode_write(dev_priv,
3952 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3953 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3954 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3955 gpu_freq);
3956 }
3957 }
3958
3959 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3960 {
3961 u32 val, rp0;
3962
3963 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3964
3965 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3966 /* Clamp to max */
3967 rp0 = min_t(u32, rp0, 0xea);
3968
3969 return rp0;
3970 }
3971
3972 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3973 {
3974 u32 val, rpe;
3975
3976 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3977 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3978 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3979 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3980
3981 return rpe;
3982 }
3983
3984 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3985 {
3986 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3987 }
3988
3989 static void valleyview_setup_pctx(struct drm_device *dev)
3990 {
3991 struct drm_i915_private *dev_priv = dev->dev_private;
3992 struct drm_i915_gem_object *pctx;
3993 unsigned long pctx_paddr;
3994 u32 pcbr;
3995 int pctx_size = 24*1024;
3996
3997 pcbr = I915_READ(VLV_PCBR);
3998 if (pcbr) {
3999 /* BIOS set it up already, grab the pre-alloc'd space */
4000 int pcbr_offset;
4001
4002 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4003 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4004 pcbr_offset,
4005 I915_GTT_OFFSET_NONE,
4006 pctx_size);
4007 goto out;
4008 }
4009
4010 /*
4011 * From the Gunit register HAS:
4012 * The Gfx driver is expected to program this register and ensure
4013 * proper allocation within Gfx stolen memory. For example, this
4014 * register should be programmed such than the PCBR range does not
4015 * overlap with other ranges, such as the frame buffer, protected
4016 * memory, or any other relevant ranges.
4017 */
4018 pctx = i915_gem_object_create_stolen(dev, pctx_size);
4019 if (!pctx) {
4020 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4021 return;
4022 }
4023
4024 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4025 I915_WRITE(VLV_PCBR, pctx_paddr);
4026
4027 out:
4028 dev_priv->vlv_pctx = pctx;
4029 }
4030
4031 static void valleyview_enable_rps(struct drm_device *dev)
4032 {
4033 struct drm_i915_private *dev_priv = dev->dev_private;
4034 struct intel_ring_buffer *ring;
4035 u32 gtfifodbg, val, rc6_mode = 0;
4036 int i;
4037
4038 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4039
4040 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4041 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4042 gtfifodbg);
4043 I915_WRITE(GTFIFODBG, gtfifodbg);
4044 }
4045
4046 valleyview_setup_pctx(dev);
4047
4048 gen6_gt_force_wake_get(dev_priv);
4049
4050 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4051 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4052 I915_WRITE(GEN6_RP_UP_EI, 66000);
4053 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4054
4055 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4056
4057 I915_WRITE(GEN6_RP_CONTROL,
4058 GEN6_RP_MEDIA_TURBO |
4059 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4060 GEN6_RP_MEDIA_IS_GFX |
4061 GEN6_RP_ENABLE |
4062 GEN6_RP_UP_BUSY_AVG |
4063 GEN6_RP_DOWN_IDLE_CONT);
4064
4065 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4066 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4067 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4068
4069 for_each_ring(ring, dev_priv, i)
4070 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4071
4072 I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
4073
4074 /* allows RC6 residency counter to work */
4075 I915_WRITE(VLV_COUNTER_CONTROL,
4076 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4077 VLV_MEDIA_RC6_COUNT_EN |
4078 VLV_RENDER_RC6_COUNT_EN));
4079 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4080 rc6_mode = GEN7_RC_CTL_TO_MODE;
4081
4082 intel_print_rc6_info(dev, rc6_mode);
4083
4084 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4085
4086 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4087 switch ((val >> 6) & 3) {
4088 case 0:
4089 case 1:
4090 dev_priv->mem_freq = 800;
4091 break;
4092 case 2:
4093 dev_priv->mem_freq = 1066;
4094 break;
4095 case 3:
4096 dev_priv->mem_freq = 1333;
4097 break;
4098 }
4099 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4100
4101 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4102 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4103
4104 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
4105 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4106 vlv_gpu_freq(dev_priv->mem_freq,
4107 dev_priv->rps.cur_delay),
4108 dev_priv->rps.cur_delay);
4109
4110 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
4111 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
4112 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4113 vlv_gpu_freq(dev_priv->mem_freq,
4114 dev_priv->rps.max_delay),
4115 dev_priv->rps.max_delay);
4116
4117 dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
4118 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4119 vlv_gpu_freq(dev_priv->mem_freq,
4120 dev_priv->rps.rpe_delay),
4121 dev_priv->rps.rpe_delay);
4122
4123 dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
4124 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4125 vlv_gpu_freq(dev_priv->mem_freq,
4126 dev_priv->rps.min_delay),
4127 dev_priv->rps.min_delay);
4128
4129 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4130 vlv_gpu_freq(dev_priv->mem_freq,
4131 dev_priv->rps.rpe_delay),
4132 dev_priv->rps.rpe_delay);
4133
4134 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
4135
4136 gen6_enable_rps_interrupts(dev);
4137
4138 gen6_gt_force_wake_put(dev_priv);
4139 }
4140
4141 void ironlake_teardown_rc6(struct drm_device *dev)
4142 {
4143 struct drm_i915_private *dev_priv = dev->dev_private;
4144
4145 if (dev_priv->ips.renderctx) {
4146 i915_gem_object_unpin(dev_priv->ips.renderctx);
4147 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4148 dev_priv->ips.renderctx = NULL;
4149 }
4150
4151 if (dev_priv->ips.pwrctx) {
4152 i915_gem_object_unpin(dev_priv->ips.pwrctx);
4153 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4154 dev_priv->ips.pwrctx = NULL;
4155 }
4156 }
4157
4158 static void ironlake_disable_rc6(struct drm_device *dev)
4159 {
4160 struct drm_i915_private *dev_priv = dev->dev_private;
4161
4162 if (I915_READ(PWRCTXA)) {
4163 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4164 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4165 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4166 50);
4167
4168 I915_WRITE(PWRCTXA, 0);
4169 POSTING_READ(PWRCTXA);
4170
4171 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4172 POSTING_READ(RSTDBYCTL);
4173 }
4174 }
4175
4176 static int ironlake_setup_rc6(struct drm_device *dev)
4177 {
4178 struct drm_i915_private *dev_priv = dev->dev_private;
4179
4180 if (dev_priv->ips.renderctx == NULL)
4181 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4182 if (!dev_priv->ips.renderctx)
4183 return -ENOMEM;
4184
4185 if (dev_priv->ips.pwrctx == NULL)
4186 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4187 if (!dev_priv->ips.pwrctx) {
4188 ironlake_teardown_rc6(dev);
4189 return -ENOMEM;
4190 }
4191
4192 return 0;
4193 }
4194
4195 static void ironlake_enable_rc6(struct drm_device *dev)
4196 {
4197 struct drm_i915_private *dev_priv = dev->dev_private;
4198 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
4199 bool was_interruptible;
4200 int ret;
4201
4202 /* rc6 disabled by default due to repeated reports of hanging during
4203 * boot and resume.
4204 */
4205 if (!intel_enable_rc6(dev))
4206 return;
4207
4208 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4209
4210 ret = ironlake_setup_rc6(dev);
4211 if (ret)
4212 return;
4213
4214 was_interruptible = dev_priv->mm.interruptible;
4215 dev_priv->mm.interruptible = false;
4216
4217 /*
4218 * GPU can automatically power down the render unit if given a page
4219 * to save state.
4220 */
4221 ret = intel_ring_begin(ring, 6);
4222 if (ret) {
4223 ironlake_teardown_rc6(dev);
4224 dev_priv->mm.interruptible = was_interruptible;
4225 return;
4226 }
4227
4228 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4229 intel_ring_emit(ring, MI_SET_CONTEXT);
4230 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4231 MI_MM_SPACE_GTT |
4232 MI_SAVE_EXT_STATE_EN |
4233 MI_RESTORE_EXT_STATE_EN |
4234 MI_RESTORE_INHIBIT);
4235 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4236 intel_ring_emit(ring, MI_NOOP);
4237 intel_ring_emit(ring, MI_FLUSH);
4238 intel_ring_advance(ring);
4239
4240 /*
4241 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4242 * does an implicit flush, combined with MI_FLUSH above, it should be
4243 * safe to assume that renderctx is valid
4244 */
4245 ret = intel_ring_idle(ring);
4246 dev_priv->mm.interruptible = was_interruptible;
4247 if (ret) {
4248 DRM_ERROR("failed to enable ironlake power savings\n");
4249 ironlake_teardown_rc6(dev);
4250 return;
4251 }
4252
4253 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4254 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4255
4256 intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
4257 }
4258
4259 static unsigned long intel_pxfreq(u32 vidfreq)
4260 {
4261 unsigned long freq;
4262 int div = (vidfreq & 0x3f0000) >> 16;
4263 int post = (vidfreq & 0x3000) >> 12;
4264 int pre = (vidfreq & 0x7);
4265
4266 if (!pre)
4267 return 0;
4268
4269 freq = ((div * 133333) / ((1<<post) * pre));
4270
4271 return freq;
4272 }
4273
4274 static const struct cparams {
4275 u16 i;
4276 u16 t;
4277 u16 m;
4278 u16 c;
4279 } cparams[] = {
4280 { 1, 1333, 301, 28664 },
4281 { 1, 1066, 294, 24460 },
4282 { 1, 800, 294, 25192 },
4283 { 0, 1333, 276, 27605 },
4284 { 0, 1066, 276, 27605 },
4285 { 0, 800, 231, 23784 },
4286 };
4287
4288 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4289 {
4290 u64 total_count, diff, ret;
4291 u32 count1, count2, count3, m = 0, c = 0;
4292 unsigned long now = jiffies_to_msecs(jiffies), diff1;
4293 int i;
4294
4295 assert_spin_locked(&mchdev_lock);
4296
4297 diff1 = now - dev_priv->ips.last_time1;
4298
4299 /* Prevent division-by-zero if we are asking too fast.
4300 * Also, we don't get interesting results if we are polling
4301 * faster than once in 10ms, so just return the saved value
4302 * in such cases.
4303 */
4304 if (diff1 <= 10)
4305 return dev_priv->ips.chipset_power;
4306
4307 count1 = I915_READ(DMIEC);
4308 count2 = I915_READ(DDREC);
4309 count3 = I915_READ(CSIEC);
4310
4311 total_count = count1 + count2 + count3;
4312
4313 /* FIXME: handle per-counter overflow */
4314 if (total_count < dev_priv->ips.last_count1) {
4315 diff = ~0UL - dev_priv->ips.last_count1;
4316 diff += total_count;
4317 } else {
4318 diff = total_count - dev_priv->ips.last_count1;
4319 }
4320
4321 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4322 if (cparams[i].i == dev_priv->ips.c_m &&
4323 cparams[i].t == dev_priv->ips.r_t) {
4324 m = cparams[i].m;
4325 c = cparams[i].c;
4326 break;
4327 }
4328 }
4329
4330 diff = div_u64(diff, diff1);
4331 ret = ((m * diff) + c);
4332 ret = div_u64(ret, 10);
4333
4334 dev_priv->ips.last_count1 = total_count;
4335 dev_priv->ips.last_time1 = now;
4336
4337 dev_priv->ips.chipset_power = ret;
4338
4339 return ret;
4340 }
4341
4342 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4343 {
4344 unsigned long val;
4345
4346 if (dev_priv->info->gen != 5)
4347 return 0;
4348
4349 spin_lock_irq(&mchdev_lock);
4350
4351 val = __i915_chipset_val(dev_priv);
4352
4353 spin_unlock_irq(&mchdev_lock);
4354
4355 return val;
4356 }
4357
4358 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4359 {
4360 unsigned long m, x, b;
4361 u32 tsfs;
4362
4363 tsfs = I915_READ(TSFS);
4364
4365 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4366 x = I915_READ8(TR1);
4367
4368 b = tsfs & TSFS_INTR_MASK;
4369
4370 return ((m * x) / 127) - b;
4371 }
4372
4373 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4374 {
4375 static const struct v_table {
4376 u16 vd; /* in .1 mil */
4377 u16 vm; /* in .1 mil */
4378 } v_table[] = {
4379 { 0, 0, },
4380 { 375, 0, },
4381 { 500, 0, },
4382 { 625, 0, },
4383 { 750, 0, },
4384 { 875, 0, },
4385 { 1000, 0, },
4386 { 1125, 0, },
4387 { 4125, 3000, },
4388 { 4125, 3000, },
4389 { 4125, 3000, },
4390 { 4125, 3000, },
4391 { 4125, 3000, },
4392 { 4125, 3000, },
4393 { 4125, 3000, },
4394 { 4125, 3000, },
4395 { 4125, 3000, },
4396 { 4125, 3000, },
4397 { 4125, 3000, },
4398 { 4125, 3000, },
4399 { 4125, 3000, },
4400 { 4125, 3000, },
4401 { 4125, 3000, },
4402 { 4125, 3000, },
4403 { 4125, 3000, },
4404 { 4125, 3000, },
4405 { 4125, 3000, },
4406 { 4125, 3000, },
4407 { 4125, 3000, },
4408 { 4125, 3000, },
4409 { 4125, 3000, },
4410 { 4125, 3000, },
4411 { 4250, 3125, },
4412 { 4375, 3250, },
4413 { 4500, 3375, },
4414 { 4625, 3500, },
4415 { 4750, 3625, },
4416 { 4875, 3750, },
4417 { 5000, 3875, },
4418 { 5125, 4000, },
4419 { 5250, 4125, },
4420 { 5375, 4250, },
4421 { 5500, 4375, },
4422 { 5625, 4500, },
4423 { 5750, 4625, },
4424 { 5875, 4750, },
4425 { 6000, 4875, },
4426 { 6125, 5000, },
4427 { 6250, 5125, },
4428 { 6375, 5250, },
4429 { 6500, 5375, },
4430 { 6625, 5500, },
4431 { 6750, 5625, },
4432 { 6875, 5750, },
4433 { 7000, 5875, },
4434 { 7125, 6000, },
4435 { 7250, 6125, },
4436 { 7375, 6250, },
4437 { 7500, 6375, },
4438 { 7625, 6500, },
4439 { 7750, 6625, },
4440 { 7875, 6750, },
4441 { 8000, 6875, },
4442 { 8125, 7000, },
4443 { 8250, 7125, },
4444 { 8375, 7250, },
4445 { 8500, 7375, },
4446 { 8625, 7500, },
4447 { 8750, 7625, },
4448 { 8875, 7750, },
4449 { 9000, 7875, },
4450 { 9125, 8000, },
4451 { 9250, 8125, },
4452 { 9375, 8250, },
4453 { 9500, 8375, },
4454 { 9625, 8500, },
4455 { 9750, 8625, },
4456 { 9875, 8750, },
4457 { 10000, 8875, },
4458 { 10125, 9000, },
4459 { 10250, 9125, },
4460 { 10375, 9250, },
4461 { 10500, 9375, },
4462 { 10625, 9500, },
4463 { 10750, 9625, },
4464 { 10875, 9750, },
4465 { 11000, 9875, },
4466 { 11125, 10000, },
4467 { 11250, 10125, },
4468 { 11375, 10250, },
4469 { 11500, 10375, },
4470 { 11625, 10500, },
4471 { 11750, 10625, },
4472 { 11875, 10750, },
4473 { 12000, 10875, },
4474 { 12125, 11000, },
4475 { 12250, 11125, },
4476 { 12375, 11250, },
4477 { 12500, 11375, },
4478 { 12625, 11500, },
4479 { 12750, 11625, },
4480 { 12875, 11750, },
4481 { 13000, 11875, },
4482 { 13125, 12000, },
4483 { 13250, 12125, },
4484 { 13375, 12250, },
4485 { 13500, 12375, },
4486 { 13625, 12500, },
4487 { 13750, 12625, },
4488 { 13875, 12750, },
4489 { 14000, 12875, },
4490 { 14125, 13000, },
4491 { 14250, 13125, },
4492 { 14375, 13250, },
4493 { 14500, 13375, },
4494 { 14625, 13500, },
4495 { 14750, 13625, },
4496 { 14875, 13750, },
4497 { 15000, 13875, },
4498 { 15125, 14000, },
4499 { 15250, 14125, },
4500 { 15375, 14250, },
4501 { 15500, 14375, },
4502 { 15625, 14500, },
4503 { 15750, 14625, },
4504 { 15875, 14750, },
4505 { 16000, 14875, },
4506 { 16125, 15000, },
4507 };
4508 if (dev_priv->info->is_mobile)
4509 return v_table[pxvid].vm;
4510 else
4511 return v_table[pxvid].vd;
4512 }
4513
4514 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4515 {
4516 struct timespec now, diff1;
4517 u64 diff;
4518 unsigned long diffms;
4519 u32 count;
4520
4521 assert_spin_locked(&mchdev_lock);
4522
4523 getrawmonotonic(&now);
4524 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4525
4526 /* Don't divide by 0 */
4527 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4528 if (!diffms)
4529 return;
4530
4531 count = I915_READ(GFXEC);
4532
4533 if (count < dev_priv->ips.last_count2) {
4534 diff = ~0UL - dev_priv->ips.last_count2;
4535 diff += count;
4536 } else {
4537 diff = count - dev_priv->ips.last_count2;
4538 }
4539
4540 dev_priv->ips.last_count2 = count;
4541 dev_priv->ips.last_time2 = now;
4542
4543 /* More magic constants... */
4544 diff = diff * 1181;
4545 diff = div_u64(diff, diffms * 10);
4546 dev_priv->ips.gfx_power = diff;
4547 }
4548
4549 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4550 {
4551 if (dev_priv->info->gen != 5)
4552 return;
4553
4554 spin_lock_irq(&mchdev_lock);
4555
4556 __i915_update_gfx_val(dev_priv);
4557
4558 spin_unlock_irq(&mchdev_lock);
4559 }
4560
4561 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4562 {
4563 unsigned long t, corr, state1, corr2, state2;
4564 u32 pxvid, ext_v;
4565
4566 assert_spin_locked(&mchdev_lock);
4567
4568 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4569 pxvid = (pxvid >> 24) & 0x7f;
4570 ext_v = pvid_to_extvid(dev_priv, pxvid);
4571
4572 state1 = ext_v;
4573
4574 t = i915_mch_val(dev_priv);
4575
4576 /* Revel in the empirically derived constants */
4577
4578 /* Correction factor in 1/100000 units */
4579 if (t > 80)
4580 corr = ((t * 2349) + 135940);
4581 else if (t >= 50)
4582 corr = ((t * 964) + 29317);
4583 else /* < 50 */
4584 corr = ((t * 301) + 1004);
4585
4586 corr = corr * ((150142 * state1) / 10000 - 78642);
4587 corr /= 100000;
4588 corr2 = (corr * dev_priv->ips.corr);
4589
4590 state2 = (corr2 * state1) / 10000;
4591 state2 /= 100; /* convert to mW */
4592
4593 __i915_update_gfx_val(dev_priv);
4594
4595 return dev_priv->ips.gfx_power + state2;
4596 }
4597
4598 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4599 {
4600 unsigned long val;
4601
4602 if (dev_priv->info->gen != 5)
4603 return 0;
4604
4605 spin_lock_irq(&mchdev_lock);
4606
4607 val = __i915_gfx_val(dev_priv);
4608
4609 spin_unlock_irq(&mchdev_lock);
4610
4611 return val;
4612 }
4613
4614 /**
4615 * i915_read_mch_val - return value for IPS use
4616 *
4617 * Calculate and return a value for the IPS driver to use when deciding whether
4618 * we have thermal and power headroom to increase CPU or GPU power budget.
4619 */
4620 unsigned long i915_read_mch_val(void)
4621 {
4622 struct drm_i915_private *dev_priv;
4623 unsigned long chipset_val, graphics_val, ret = 0;
4624
4625 spin_lock_irq(&mchdev_lock);
4626 if (!i915_mch_dev)
4627 goto out_unlock;
4628 dev_priv = i915_mch_dev;
4629
4630 chipset_val = __i915_chipset_val(dev_priv);
4631 graphics_val = __i915_gfx_val(dev_priv);
4632
4633 ret = chipset_val + graphics_val;
4634
4635 out_unlock:
4636 spin_unlock_irq(&mchdev_lock);
4637
4638 return ret;
4639 }
4640 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4641
4642 /**
4643 * i915_gpu_raise - raise GPU frequency limit
4644 *
4645 * Raise the limit; IPS indicates we have thermal headroom.
4646 */
4647 bool i915_gpu_raise(void)
4648 {
4649 struct drm_i915_private *dev_priv;
4650 bool ret = true;
4651
4652 spin_lock_irq(&mchdev_lock);
4653 if (!i915_mch_dev) {
4654 ret = false;
4655 goto out_unlock;
4656 }
4657 dev_priv = i915_mch_dev;
4658
4659 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4660 dev_priv->ips.max_delay--;
4661
4662 out_unlock:
4663 spin_unlock_irq(&mchdev_lock);
4664
4665 return ret;
4666 }
4667 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4668
4669 /**
4670 * i915_gpu_lower - lower GPU frequency limit
4671 *
4672 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4673 * frequency maximum.
4674 */
4675 bool i915_gpu_lower(void)
4676 {
4677 struct drm_i915_private *dev_priv;
4678 bool ret = true;
4679
4680 spin_lock_irq(&mchdev_lock);
4681 if (!i915_mch_dev) {
4682 ret = false;
4683 goto out_unlock;
4684 }
4685 dev_priv = i915_mch_dev;
4686
4687 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4688 dev_priv->ips.max_delay++;
4689
4690 out_unlock:
4691 spin_unlock_irq(&mchdev_lock);
4692
4693 return ret;
4694 }
4695 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4696
4697 /**
4698 * i915_gpu_busy - indicate GPU business to IPS
4699 *
4700 * Tell the IPS driver whether or not the GPU is busy.
4701 */
4702 bool i915_gpu_busy(void)
4703 {
4704 struct drm_i915_private *dev_priv;
4705 struct intel_ring_buffer *ring;
4706 bool ret = false;
4707 int i;
4708
4709 spin_lock_irq(&mchdev_lock);
4710 if (!i915_mch_dev)
4711 goto out_unlock;
4712 dev_priv = i915_mch_dev;
4713
4714 for_each_ring(ring, dev_priv, i)
4715 ret |= !list_empty(&ring->request_list);
4716
4717 out_unlock:
4718 spin_unlock_irq(&mchdev_lock);
4719
4720 return ret;
4721 }
4722 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4723
4724 /**
4725 * i915_gpu_turbo_disable - disable graphics turbo
4726 *
4727 * Disable graphics turbo by resetting the max frequency and setting the
4728 * current frequency to the default.
4729 */
4730 bool i915_gpu_turbo_disable(void)
4731 {
4732 struct drm_i915_private *dev_priv;
4733 bool ret = true;
4734
4735 spin_lock_irq(&mchdev_lock);
4736 if (!i915_mch_dev) {
4737 ret = false;
4738 goto out_unlock;
4739 }
4740 dev_priv = i915_mch_dev;
4741
4742 dev_priv->ips.max_delay = dev_priv->ips.fstart;
4743
4744 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4745 ret = false;
4746
4747 out_unlock:
4748 spin_unlock_irq(&mchdev_lock);
4749
4750 return ret;
4751 }
4752 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4753
4754 /**
4755 * Tells the intel_ips driver that the i915 driver is now loaded, if
4756 * IPS got loaded first.
4757 *
4758 * This awkward dance is so that neither module has to depend on the
4759 * other in order for IPS to do the appropriate communication of
4760 * GPU turbo limits to i915.
4761 */
4762 static void
4763 ips_ping_for_i915_load(void)
4764 {
4765 void (*link)(void);
4766
4767 link = symbol_get(ips_link_to_i915_driver);
4768 if (link) {
4769 link();
4770 symbol_put(ips_link_to_i915_driver);
4771 }
4772 }
4773
4774 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4775 {
4776 /* We only register the i915 ips part with intel-ips once everything is
4777 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4778 spin_lock_irq(&mchdev_lock);
4779 i915_mch_dev = dev_priv;
4780 spin_unlock_irq(&mchdev_lock);
4781
4782 ips_ping_for_i915_load();
4783 }
4784
4785 void intel_gpu_ips_teardown(void)
4786 {
4787 spin_lock_irq(&mchdev_lock);
4788 i915_mch_dev = NULL;
4789 spin_unlock_irq(&mchdev_lock);
4790 }
4791 static void intel_init_emon(struct drm_device *dev)
4792 {
4793 struct drm_i915_private *dev_priv = dev->dev_private;
4794 u32 lcfuse;
4795 u8 pxw[16];
4796 int i;
4797
4798 /* Disable to program */
4799 I915_WRITE(ECR, 0);
4800 POSTING_READ(ECR);
4801
4802 /* Program energy weights for various events */
4803 I915_WRITE(SDEW, 0x15040d00);
4804 I915_WRITE(CSIEW0, 0x007f0000);
4805 I915_WRITE(CSIEW1, 0x1e220004);
4806 I915_WRITE(CSIEW2, 0x04000004);
4807
4808 for (i = 0; i < 5; i++)
4809 I915_WRITE(PEW + (i * 4), 0);
4810 for (i = 0; i < 3; i++)
4811 I915_WRITE(DEW + (i * 4), 0);
4812
4813 /* Program P-state weights to account for frequency power adjustment */
4814 for (i = 0; i < 16; i++) {
4815 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4816 unsigned long freq = intel_pxfreq(pxvidfreq);
4817 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4818 PXVFREQ_PX_SHIFT;
4819 unsigned long val;
4820
4821 val = vid * vid;
4822 val *= (freq / 1000);
4823 val *= 255;
4824 val /= (127*127*900);
4825 if (val > 0xff)
4826 DRM_ERROR("bad pxval: %ld\n", val);
4827 pxw[i] = val;
4828 }
4829 /* Render standby states get 0 weight */
4830 pxw[14] = 0;
4831 pxw[15] = 0;
4832
4833 for (i = 0; i < 4; i++) {
4834 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4835 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4836 I915_WRITE(PXW + (i * 4), val);
4837 }
4838
4839 /* Adjust magic regs to magic values (more experimental results) */
4840 I915_WRITE(OGW0, 0);
4841 I915_WRITE(OGW1, 0);
4842 I915_WRITE(EG0, 0x00007f00);
4843 I915_WRITE(EG1, 0x0000000e);
4844 I915_WRITE(EG2, 0x000e0000);
4845 I915_WRITE(EG3, 0x68000300);
4846 I915_WRITE(EG4, 0x42000000);
4847 I915_WRITE(EG5, 0x00140031);
4848 I915_WRITE(EG6, 0);
4849 I915_WRITE(EG7, 0);
4850
4851 for (i = 0; i < 8; i++)
4852 I915_WRITE(PXWL + (i * 4), 0);
4853
4854 /* Enable PMON + select events */
4855 I915_WRITE(ECR, 0x80000019);
4856
4857 lcfuse = I915_READ(LCFUSE02);
4858
4859 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4860 }
4861
4862 void intel_disable_gt_powersave(struct drm_device *dev)
4863 {
4864 struct drm_i915_private *dev_priv = dev->dev_private;
4865
4866 /* Interrupts should be disabled already to avoid re-arming. */
4867 WARN_ON(dev->irq_enabled);
4868
4869 if (IS_IRONLAKE_M(dev)) {
4870 ironlake_disable_drps(dev);
4871 ironlake_disable_rc6(dev);
4872 } else if (INTEL_INFO(dev)->gen >= 6) {
4873 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4874 cancel_work_sync(&dev_priv->rps.work);
4875 mutex_lock(&dev_priv->rps.hw_lock);
4876 if (IS_VALLEYVIEW(dev))
4877 valleyview_disable_rps(dev);
4878 else
4879 gen6_disable_rps(dev);
4880 dev_priv->rps.enabled = false;
4881 mutex_unlock(&dev_priv->rps.hw_lock);
4882 }
4883 }
4884
4885 static void intel_gen6_powersave_work(struct work_struct *work)
4886 {
4887 struct drm_i915_private *dev_priv =
4888 container_of(work, struct drm_i915_private,
4889 rps.delayed_resume_work.work);
4890 struct drm_device *dev = dev_priv->dev;
4891
4892 mutex_lock(&dev_priv->rps.hw_lock);
4893
4894 if (IS_VALLEYVIEW(dev)) {
4895 valleyview_enable_rps(dev);
4896 } else {
4897 gen6_enable_rps(dev);
4898 gen6_update_ring_freq(dev);
4899 }
4900 dev_priv->rps.enabled = true;
4901 mutex_unlock(&dev_priv->rps.hw_lock);
4902 }
4903
4904 void intel_enable_gt_powersave(struct drm_device *dev)
4905 {
4906 struct drm_i915_private *dev_priv = dev->dev_private;
4907
4908 if (IS_IRONLAKE_M(dev)) {
4909 ironlake_enable_drps(dev);
4910 ironlake_enable_rc6(dev);
4911 intel_init_emon(dev);
4912 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4913 /*
4914 * PCU communication is slow and this doesn't need to be
4915 * done at any specific time, so do this out of our fast path
4916 * to make resume and init faster.
4917 */
4918 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4919 round_jiffies_up_relative(HZ));
4920 }
4921 }
4922
4923 static void ibx_init_clock_gating(struct drm_device *dev)
4924 {
4925 struct drm_i915_private *dev_priv = dev->dev_private;
4926
4927 /*
4928 * On Ibex Peak and Cougar Point, we need to disable clock
4929 * gating for the panel power sequencer or it will fail to
4930 * start up when no ports are active.
4931 */
4932 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4933 }
4934
4935 static void g4x_disable_trickle_feed(struct drm_device *dev)
4936 {
4937 struct drm_i915_private *dev_priv = dev->dev_private;
4938 int pipe;
4939
4940 for_each_pipe(pipe) {
4941 I915_WRITE(DSPCNTR(pipe),
4942 I915_READ(DSPCNTR(pipe)) |
4943 DISPPLANE_TRICKLE_FEED_DISABLE);
4944 intel_flush_primary_plane(dev_priv, pipe);
4945 }
4946 }
4947
4948 static void ironlake_init_clock_gating(struct drm_device *dev)
4949 {
4950 struct drm_i915_private *dev_priv = dev->dev_private;
4951 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4952
4953 /*
4954 * Required for FBC
4955 * WaFbcDisableDpfcClockGating:ilk
4956 */
4957 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4958 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4959 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4960
4961 I915_WRITE(PCH_3DCGDIS0,
4962 MARIUNIT_CLOCK_GATE_DISABLE |
4963 SVSMUNIT_CLOCK_GATE_DISABLE);
4964 I915_WRITE(PCH_3DCGDIS1,
4965 VFMUNIT_CLOCK_GATE_DISABLE);
4966
4967 /*
4968 * According to the spec the following bits should be set in
4969 * order to enable memory self-refresh
4970 * The bit 22/21 of 0x42004
4971 * The bit 5 of 0x42020
4972 * The bit 15 of 0x45000
4973 */
4974 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4975 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4976 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4977 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4978 I915_WRITE(DISP_ARB_CTL,
4979 (I915_READ(DISP_ARB_CTL) |
4980 DISP_FBC_WM_DIS));
4981 I915_WRITE(WM3_LP_ILK, 0);
4982 I915_WRITE(WM2_LP_ILK, 0);
4983 I915_WRITE(WM1_LP_ILK, 0);
4984
4985 /*
4986 * Based on the document from hardware guys the following bits
4987 * should be set unconditionally in order to enable FBC.
4988 * The bit 22 of 0x42000
4989 * The bit 22 of 0x42004
4990 * The bit 7,8,9 of 0x42020.
4991 */
4992 if (IS_IRONLAKE_M(dev)) {
4993 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4994 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4995 I915_READ(ILK_DISPLAY_CHICKEN1) |
4996 ILK_FBCQ_DIS);
4997 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4998 I915_READ(ILK_DISPLAY_CHICKEN2) |
4999 ILK_DPARB_GATE);
5000 }
5001
5002 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5003
5004 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5005 I915_READ(ILK_DISPLAY_CHICKEN2) |
5006 ILK_ELPIN_409_SELECT);
5007 I915_WRITE(_3D_CHICKEN2,
5008 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5009 _3D_CHICKEN2_WM_READ_PIPELINED);
5010
5011 /* WaDisableRenderCachePipelinedFlush:ilk */
5012 I915_WRITE(CACHE_MODE_0,
5013 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5014
5015 g4x_disable_trickle_feed(dev);
5016
5017 ibx_init_clock_gating(dev);
5018 }
5019
5020 static void cpt_init_clock_gating(struct drm_device *dev)
5021 {
5022 struct drm_i915_private *dev_priv = dev->dev_private;
5023 int pipe;
5024 uint32_t val;
5025
5026 /*
5027 * On Ibex Peak and Cougar Point, we need to disable clock
5028 * gating for the panel power sequencer or it will fail to
5029 * start up when no ports are active.
5030 */
5031 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5032 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5033 DPLS_EDP_PPS_FIX_DIS);
5034 /* The below fixes the weird display corruption, a few pixels shifted
5035 * downward, on (only) LVDS of some HP laptops with IVY.
5036 */
5037 for_each_pipe(pipe) {
5038 val = I915_READ(TRANS_CHICKEN2(pipe));
5039 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5040 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5041 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5042 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5043 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5044 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5045 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5046 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5047 }
5048 /* WADP0ClockGatingDisable */
5049 for_each_pipe(pipe) {
5050 I915_WRITE(TRANS_CHICKEN1(pipe),
5051 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5052 }
5053 }
5054
5055 static void gen6_check_mch_setup(struct drm_device *dev)
5056 {
5057 struct drm_i915_private *dev_priv = dev->dev_private;
5058 uint32_t tmp;
5059
5060 tmp = I915_READ(MCH_SSKPD);
5061 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
5062 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
5063 DRM_INFO("This can cause pipe underruns and display issues.\n");
5064 DRM_INFO("Please upgrade your BIOS to fix this.\n");
5065 }
5066 }
5067
5068 static void gen6_init_clock_gating(struct drm_device *dev)
5069 {
5070 struct drm_i915_private *dev_priv = dev->dev_private;
5071 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5072
5073 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5074
5075 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5076 I915_READ(ILK_DISPLAY_CHICKEN2) |
5077 ILK_ELPIN_409_SELECT);
5078
5079 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5080 I915_WRITE(_3D_CHICKEN,
5081 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5082
5083 /* WaSetupGtModeTdRowDispatch:snb */
5084 if (IS_SNB_GT1(dev))
5085 I915_WRITE(GEN6_GT_MODE,
5086 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5087
5088 I915_WRITE(WM3_LP_ILK, 0);
5089 I915_WRITE(WM2_LP_ILK, 0);
5090 I915_WRITE(WM1_LP_ILK, 0);
5091
5092 I915_WRITE(CACHE_MODE_0,
5093 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5094
5095 I915_WRITE(GEN6_UCGCTL1,
5096 I915_READ(GEN6_UCGCTL1) |
5097 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5098 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5099
5100 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5101 * gating disable must be set. Failure to set it results in
5102 * flickering pixels due to Z write ordering failures after
5103 * some amount of runtime in the Mesa "fire" demo, and Unigine
5104 * Sanctuary and Tropics, and apparently anything else with
5105 * alpha test or pixel discard.
5106 *
5107 * According to the spec, bit 11 (RCCUNIT) must also be set,
5108 * but we didn't debug actual testcases to find it out.
5109 *
5110 * Also apply WaDisableVDSUnitClockGating:snb and
5111 * WaDisableRCPBUnitClockGating:snb.
5112 */
5113 I915_WRITE(GEN6_UCGCTL2,
5114 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5115 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5116 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5117
5118 /* Bspec says we need to always set all mask bits. */
5119 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
5120 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
5121
5122 /*
5123 * According to the spec the following bits should be
5124 * set in order to enable memory self-refresh and fbc:
5125 * The bit21 and bit22 of 0x42000
5126 * The bit21 and bit22 of 0x42004
5127 * The bit5 and bit7 of 0x42020
5128 * The bit14 of 0x70180
5129 * The bit14 of 0x71180
5130 *
5131 * WaFbcAsynchFlipDisableFbcQueue:snb
5132 */
5133 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5134 I915_READ(ILK_DISPLAY_CHICKEN1) |
5135 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5136 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5137 I915_READ(ILK_DISPLAY_CHICKEN2) |
5138 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5139 I915_WRITE(ILK_DSPCLK_GATE_D,
5140 I915_READ(ILK_DSPCLK_GATE_D) |
5141 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
5142 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5143
5144 g4x_disable_trickle_feed(dev);
5145
5146 /* The default value should be 0x200 according to docs, but the two
5147 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
5148 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
5149 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
5150
5151 cpt_init_clock_gating(dev);
5152
5153 gen6_check_mch_setup(dev);
5154 }
5155
5156 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5157 {
5158 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5159
5160 reg &= ~GEN7_FF_SCHED_MASK;
5161 reg |= GEN7_FF_TS_SCHED_HW;
5162 reg |= GEN7_FF_VS_SCHED_HW;
5163 reg |= GEN7_FF_DS_SCHED_HW;
5164
5165 if (IS_HASWELL(dev_priv->dev))
5166 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
5167
5168 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5169 }
5170
5171 static void lpt_init_clock_gating(struct drm_device *dev)
5172 {
5173 struct drm_i915_private *dev_priv = dev->dev_private;
5174
5175 /*
5176 * TODO: this bit should only be enabled when really needed, then
5177 * disabled when not needed anymore in order to save power.
5178 */
5179 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5180 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5181 I915_READ(SOUTH_DSPCLK_GATE_D) |
5182 PCH_LP_PARTITION_LEVEL_DISABLE);
5183
5184 /* WADPOClockGatingDisable:hsw */
5185 I915_WRITE(_TRANSA_CHICKEN1,
5186 I915_READ(_TRANSA_CHICKEN1) |
5187 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5188 }
5189
5190 static void lpt_suspend_hw(struct drm_device *dev)
5191 {
5192 struct drm_i915_private *dev_priv = dev->dev_private;
5193
5194 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5195 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5196
5197 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5198 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5199 }
5200 }
5201
5202 static void haswell_init_clock_gating(struct drm_device *dev)
5203 {
5204 struct drm_i915_private *dev_priv = dev->dev_private;
5205
5206 I915_WRITE(WM3_LP_ILK, 0);
5207 I915_WRITE(WM2_LP_ILK, 0);
5208 I915_WRITE(WM1_LP_ILK, 0);
5209
5210 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5211 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
5212 */
5213 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5214
5215 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
5216 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5217 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5218
5219 /* WaApplyL3ControlAndL3ChickenMode:hsw */
5220 I915_WRITE(GEN7_L3CNTLREG1,
5221 GEN7_WA_FOR_GEN7_L3_CONTROL);
5222 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5223 GEN7_WA_L3_CHICKEN_MODE);
5224
5225 /* This is required by WaCatErrorRejectionIssue:hsw */
5226 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5227 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5228 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5229
5230 /* WaVSRefCountFullforceMissDisable:hsw */
5231 gen7_setup_fixed_func_scheduler(dev_priv);
5232
5233 /* WaDisable4x2SubspanOptimization:hsw */
5234 I915_WRITE(CACHE_MODE_1,
5235 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5236
5237 /* WaSwitchSolVfFArbitrationPriority:hsw */
5238 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5239
5240 /* WaRsPkgCStateDisplayPMReq:hsw */
5241 I915_WRITE(CHICKEN_PAR1_1,
5242 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5243
5244 lpt_init_clock_gating(dev);
5245 }
5246
5247 static void ivybridge_init_clock_gating(struct drm_device *dev)
5248 {
5249 struct drm_i915_private *dev_priv = dev->dev_private;
5250 uint32_t snpcr;
5251
5252 I915_WRITE(WM3_LP_ILK, 0);
5253 I915_WRITE(WM2_LP_ILK, 0);
5254 I915_WRITE(WM1_LP_ILK, 0);
5255
5256 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5257
5258 /* WaDisableEarlyCull:ivb */
5259 I915_WRITE(_3D_CHICKEN3,
5260 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5261
5262 /* WaDisableBackToBackFlipFix:ivb */
5263 I915_WRITE(IVB_CHICKEN3,
5264 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5265 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5266
5267 /* WaDisablePSDDualDispatchEnable:ivb */
5268 if (IS_IVB_GT1(dev))
5269 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5270 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5271 else
5272 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
5273 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5274
5275 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5276 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5277 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5278
5279 /* WaApplyL3ControlAndL3ChickenMode:ivb */
5280 I915_WRITE(GEN7_L3CNTLREG1,
5281 GEN7_WA_FOR_GEN7_L3_CONTROL);
5282 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5283 GEN7_WA_L3_CHICKEN_MODE);
5284 if (IS_IVB_GT1(dev))
5285 I915_WRITE(GEN7_ROW_CHICKEN2,
5286 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5287 else
5288 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5289 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5290
5291
5292 /* WaForceL3Serialization:ivb */
5293 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5294 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5295
5296 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5297 * gating disable must be set. Failure to set it results in
5298 * flickering pixels due to Z write ordering failures after
5299 * some amount of runtime in the Mesa "fire" demo, and Unigine
5300 * Sanctuary and Tropics, and apparently anything else with
5301 * alpha test or pixel discard.
5302 *
5303 * According to the spec, bit 11 (RCCUNIT) must also be set,
5304 * but we didn't debug actual testcases to find it out.
5305 *
5306 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5307 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5308 */
5309 I915_WRITE(GEN6_UCGCTL2,
5310 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5311 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5312
5313 /* This is required by WaCatErrorRejectionIssue:ivb */
5314 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5315 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5316 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5317
5318 g4x_disable_trickle_feed(dev);
5319
5320 /* WaVSRefCountFullforceMissDisable:ivb */
5321 gen7_setup_fixed_func_scheduler(dev_priv);
5322
5323 /* WaDisable4x2SubspanOptimization:ivb */
5324 I915_WRITE(CACHE_MODE_1,
5325 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5326
5327 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5328 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5329 snpcr |= GEN6_MBC_SNPCR_MED;
5330 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5331
5332 if (!HAS_PCH_NOP(dev))
5333 cpt_init_clock_gating(dev);
5334
5335 gen6_check_mch_setup(dev);
5336 }
5337
5338 static void valleyview_init_clock_gating(struct drm_device *dev)
5339 {
5340 struct drm_i915_private *dev_priv = dev->dev_private;
5341
5342 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5343
5344 /* WaDisableEarlyCull:vlv */
5345 I915_WRITE(_3D_CHICKEN3,
5346 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5347
5348 /* WaDisableBackToBackFlipFix:vlv */
5349 I915_WRITE(IVB_CHICKEN3,
5350 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5351 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5352
5353 /* WaDisablePSDDualDispatchEnable:vlv */
5354 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5355 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5356 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5357
5358 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
5359 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5360 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5361
5362 /* WaApplyL3ControlAndL3ChickenMode:vlv */
5363 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
5364 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
5365
5366 /* WaForceL3Serialization:vlv */
5367 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5368 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5369
5370 /* WaDisableDopClockGating:vlv */
5371 I915_WRITE(GEN7_ROW_CHICKEN2,
5372 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5373
5374 /* This is required by WaCatErrorRejectionIssue:vlv */
5375 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5376 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5377 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5378
5379 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5380 * gating disable must be set. Failure to set it results in
5381 * flickering pixels due to Z write ordering failures after
5382 * some amount of runtime in the Mesa "fire" demo, and Unigine
5383 * Sanctuary and Tropics, and apparently anything else with
5384 * alpha test or pixel discard.
5385 *
5386 * According to the spec, bit 11 (RCCUNIT) must also be set,
5387 * but we didn't debug actual testcases to find it out.
5388 *
5389 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5390 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5391 *
5392 * Also apply WaDisableVDSUnitClockGating:vlv and
5393 * WaDisableRCPBUnitClockGating:vlv.
5394 */
5395 I915_WRITE(GEN6_UCGCTL2,
5396 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5397 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5398 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5399 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5400 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5401
5402 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5403
5404 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5405
5406 I915_WRITE(CACHE_MODE_1,
5407 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5408
5409 /*
5410 * WaDisableVLVClockGating_VBIIssue:vlv
5411 * Disable clock gating on th GCFG unit to prevent a delay
5412 * in the reporting of vblank events.
5413 */
5414 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
5415
5416 /* Conservative clock gating settings for now */
5417 I915_WRITE(0x9400, 0xffffffff);
5418 I915_WRITE(0x9404, 0xffffffff);
5419 I915_WRITE(0x9408, 0xffffffff);
5420 I915_WRITE(0x940c, 0xffffffff);
5421 I915_WRITE(0x9410, 0xffffffff);
5422 I915_WRITE(0x9414, 0xffffffff);
5423 I915_WRITE(0x9418, 0xffffffff);
5424 }
5425
5426 static void g4x_init_clock_gating(struct drm_device *dev)
5427 {
5428 struct drm_i915_private *dev_priv = dev->dev_private;
5429 uint32_t dspclk_gate;
5430
5431 I915_WRITE(RENCLK_GATE_D1, 0);
5432 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5433 GS_UNIT_CLOCK_GATE_DISABLE |
5434 CL_UNIT_CLOCK_GATE_DISABLE);
5435 I915_WRITE(RAMCLK_GATE_D, 0);
5436 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5437 OVRUNIT_CLOCK_GATE_DISABLE |
5438 OVCUNIT_CLOCK_GATE_DISABLE;
5439 if (IS_GM45(dev))
5440 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5441 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5442
5443 /* WaDisableRenderCachePipelinedFlush */
5444 I915_WRITE(CACHE_MODE_0,
5445 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5446
5447 g4x_disable_trickle_feed(dev);
5448 }
5449
5450 static void crestline_init_clock_gating(struct drm_device *dev)
5451 {
5452 struct drm_i915_private *dev_priv = dev->dev_private;
5453
5454 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5455 I915_WRITE(RENCLK_GATE_D2, 0);
5456 I915_WRITE(DSPCLK_GATE_D, 0);
5457 I915_WRITE(RAMCLK_GATE_D, 0);
5458 I915_WRITE16(DEUC, 0);
5459 I915_WRITE(MI_ARB_STATE,
5460 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5461 }
5462
5463 static void broadwater_init_clock_gating(struct drm_device *dev)
5464 {
5465 struct drm_i915_private *dev_priv = dev->dev_private;
5466
5467 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5468 I965_RCC_CLOCK_GATE_DISABLE |
5469 I965_RCPB_CLOCK_GATE_DISABLE |
5470 I965_ISC_CLOCK_GATE_DISABLE |
5471 I965_FBC_CLOCK_GATE_DISABLE);
5472 I915_WRITE(RENCLK_GATE_D2, 0);
5473 I915_WRITE(MI_ARB_STATE,
5474 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5475 }
5476
5477 static void gen3_init_clock_gating(struct drm_device *dev)
5478 {
5479 struct drm_i915_private *dev_priv = dev->dev_private;
5480 u32 dstate = I915_READ(D_STATE);
5481
5482 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5483 DSTATE_DOT_CLOCK_GATING;
5484 I915_WRITE(D_STATE, dstate);
5485
5486 if (IS_PINEVIEW(dev))
5487 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5488
5489 /* IIR "flip pending" means done if this bit is set */
5490 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5491 }
5492
5493 static void i85x_init_clock_gating(struct drm_device *dev)
5494 {
5495 struct drm_i915_private *dev_priv = dev->dev_private;
5496
5497 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5498 }
5499
5500 static void i830_init_clock_gating(struct drm_device *dev)
5501 {
5502 struct drm_i915_private *dev_priv = dev->dev_private;
5503
5504 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5505 }
5506
5507 void intel_init_clock_gating(struct drm_device *dev)
5508 {
5509 struct drm_i915_private *dev_priv = dev->dev_private;
5510
5511 dev_priv->display.init_clock_gating(dev);
5512 }
5513
5514 void intel_suspend_hw(struct drm_device *dev)
5515 {
5516 if (HAS_PCH_LPT(dev))
5517 lpt_suspend_hw(dev);
5518 }
5519
5520 static bool is_always_on_power_domain(struct drm_device *dev,
5521 enum intel_display_power_domain domain)
5522 {
5523 unsigned long always_on_domains;
5524
5525 BUG_ON(BIT(domain) & ~POWER_DOMAIN_MASK);
5526
5527 if (IS_HASWELL(dev)) {
5528 always_on_domains = HSW_ALWAYS_ON_POWER_DOMAINS;
5529 } else {
5530 WARN_ON(1);
5531 return true;
5532 }
5533
5534 return BIT(domain) & always_on_domains;
5535 }
5536
5537 /**
5538 * We should only use the power well if we explicitly asked the hardware to
5539 * enable it, so check if it's enabled and also check if we've requested it to
5540 * be enabled.
5541 */
5542 bool intel_display_power_enabled(struct drm_device *dev,
5543 enum intel_display_power_domain domain)
5544 {
5545 struct drm_i915_private *dev_priv = dev->dev_private;
5546
5547 if (!HAS_POWER_WELL(dev))
5548 return true;
5549
5550 if (is_always_on_power_domain(dev, domain))
5551 return true;
5552
5553 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5554 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5555 }
5556
5557 static void __intel_set_power_well(struct drm_device *dev, bool enable)
5558 {
5559 struct drm_i915_private *dev_priv = dev->dev_private;
5560 bool is_enabled, enable_requested;
5561 uint32_t tmp;
5562
5563 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5564 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5565 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5566
5567 if (enable) {
5568 if (!enable_requested)
5569 I915_WRITE(HSW_PWR_WELL_DRIVER,
5570 HSW_PWR_WELL_ENABLE_REQUEST);
5571
5572 if (!is_enabled) {
5573 DRM_DEBUG_KMS("Enabling power well\n");
5574 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5575 HSW_PWR_WELL_STATE_ENABLED), 20))
5576 DRM_ERROR("Timeout enabling power well\n");
5577 }
5578 } else {
5579 if (enable_requested) {
5580 unsigned long irqflags;
5581 enum pipe p;
5582
5583 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5584 POSTING_READ(HSW_PWR_WELL_DRIVER);
5585 DRM_DEBUG_KMS("Requesting to disable the power well\n");
5586
5587 /*
5588 * After this, the registers on the pipes that are part
5589 * of the power well will become zero, so we have to
5590 * adjust our counters according to that.
5591 *
5592 * FIXME: Should we do this in general in
5593 * drm_vblank_post_modeset?
5594 */
5595 spin_lock_irqsave(&dev->vbl_lock, irqflags);
5596 for_each_pipe(p)
5597 if (p != PIPE_A)
5598 dev->vblank[p].last = 0;
5599 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5600 }
5601 }
5602 }
5603
5604 static void __intel_power_well_get(struct i915_power_well *power_well)
5605 {
5606 if (!power_well->count++)
5607 __intel_set_power_well(power_well->device, true);
5608 }
5609
5610 static void __intel_power_well_put(struct i915_power_well *power_well)
5611 {
5612 WARN_ON(!power_well->count);
5613 if (!--power_well->count)
5614 __intel_set_power_well(power_well->device, false);
5615 }
5616
5617 void intel_display_power_get(struct drm_device *dev,
5618 enum intel_display_power_domain domain)
5619 {
5620 struct drm_i915_private *dev_priv = dev->dev_private;
5621 struct i915_power_well *power_well = &dev_priv->power_well;
5622
5623 if (!HAS_POWER_WELL(dev))
5624 return;
5625
5626 if (is_always_on_power_domain(dev, domain))
5627 return;
5628
5629 mutex_lock(&power_well->lock);
5630 __intel_power_well_get(power_well);
5631 mutex_unlock(&power_well->lock);
5632 }
5633
5634 void intel_display_power_put(struct drm_device *dev,
5635 enum intel_display_power_domain domain)
5636 {
5637 struct drm_i915_private *dev_priv = dev->dev_private;
5638 struct i915_power_well *power_well = &dev_priv->power_well;
5639
5640 if (!HAS_POWER_WELL(dev))
5641 return;
5642
5643 if (is_always_on_power_domain(dev, domain))
5644 return;
5645
5646 mutex_lock(&power_well->lock);
5647 __intel_power_well_put(power_well);
5648 mutex_unlock(&power_well->lock);
5649 }
5650
5651 static struct i915_power_well *hsw_pwr;
5652
5653 /* Display audio driver power well request */
5654 void i915_request_power_well(void)
5655 {
5656 if (WARN_ON(!hsw_pwr))
5657 return;
5658
5659 mutex_lock(&hsw_pwr->lock);
5660 __intel_power_well_get(hsw_pwr);
5661 mutex_unlock(&hsw_pwr->lock);
5662 }
5663 EXPORT_SYMBOL_GPL(i915_request_power_well);
5664
5665 /* Display audio driver power well release */
5666 void i915_release_power_well(void)
5667 {
5668 if (WARN_ON(!hsw_pwr))
5669 return;
5670
5671 mutex_lock(&hsw_pwr->lock);
5672 __intel_power_well_put(hsw_pwr);
5673 mutex_unlock(&hsw_pwr->lock);
5674 }
5675 EXPORT_SYMBOL_GPL(i915_release_power_well);
5676
5677 int i915_init_power_well(struct drm_device *dev)
5678 {
5679 struct drm_i915_private *dev_priv = dev->dev_private;
5680
5681 hsw_pwr = &dev_priv->power_well;
5682
5683 hsw_pwr->device = dev;
5684 mutex_init(&hsw_pwr->lock);
5685 hsw_pwr->count = 0;
5686
5687 return 0;
5688 }
5689
5690 void i915_remove_power_well(struct drm_device *dev)
5691 {
5692 hsw_pwr = NULL;
5693 }
5694
5695 void intel_set_power_well(struct drm_device *dev, bool enable)
5696 {
5697 struct drm_i915_private *dev_priv = dev->dev_private;
5698 struct i915_power_well *power_well = &dev_priv->power_well;
5699
5700 if (!HAS_POWER_WELL(dev))
5701 return;
5702
5703 if (!i915_disable_power_well && !enable)
5704 return;
5705
5706 mutex_lock(&power_well->lock);
5707
5708 /*
5709 * This function will only ever contribute one
5710 * to the power well reference count. i915_request
5711 * is what tracks whether we have or have not
5712 * added the one to the reference count.
5713 */
5714 if (power_well->i915_request == enable)
5715 goto out;
5716
5717 power_well->i915_request = enable;
5718
5719 if (enable)
5720 __intel_power_well_get(power_well);
5721 else
5722 __intel_power_well_put(power_well);
5723
5724 out:
5725 mutex_unlock(&power_well->lock);
5726 }
5727
5728 static void intel_resume_power_well(struct drm_device *dev)
5729 {
5730 struct drm_i915_private *dev_priv = dev->dev_private;
5731 struct i915_power_well *power_well = &dev_priv->power_well;
5732
5733 if (!HAS_POWER_WELL(dev))
5734 return;
5735
5736 mutex_lock(&power_well->lock);
5737 __intel_set_power_well(dev, power_well->count > 0);
5738 mutex_unlock(&power_well->lock);
5739 }
5740
5741 /*
5742 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5743 * when not needed anymore. We have 4 registers that can request the power well
5744 * to be enabled, and it will only be disabled if none of the registers is
5745 * requesting it to be enabled.
5746 */
5747 void intel_init_power_well(struct drm_device *dev)
5748 {
5749 struct drm_i915_private *dev_priv = dev->dev_private;
5750
5751 if (!HAS_POWER_WELL(dev))
5752 return;
5753
5754 /* For now, we need the power well to be always enabled. */
5755 intel_set_power_well(dev, true);
5756 intel_resume_power_well(dev);
5757
5758 /* We're taking over the BIOS, so clear any requests made by it since
5759 * the driver is in charge now. */
5760 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5761 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5762 }
5763
5764 /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5765 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5766 {
5767 hsw_disable_package_c8(dev_priv);
5768 }
5769
5770 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5771 {
5772 hsw_enable_package_c8(dev_priv);
5773 }
5774
5775 /* Set up chip specific power management-related functions */
5776 void intel_init_pm(struct drm_device *dev)
5777 {
5778 struct drm_i915_private *dev_priv = dev->dev_private;
5779
5780 if (I915_HAS_FBC(dev)) {
5781 if (HAS_PCH_SPLIT(dev)) {
5782 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5783 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5784 dev_priv->display.enable_fbc =
5785 gen7_enable_fbc;
5786 else
5787 dev_priv->display.enable_fbc =
5788 ironlake_enable_fbc;
5789 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5790 } else if (IS_GM45(dev)) {
5791 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5792 dev_priv->display.enable_fbc = g4x_enable_fbc;
5793 dev_priv->display.disable_fbc = g4x_disable_fbc;
5794 } else if (IS_CRESTLINE(dev)) {
5795 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5796 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5797 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5798 }
5799 /* 855GM needs testing */
5800 }
5801
5802 /* For cxsr */
5803 if (IS_PINEVIEW(dev))
5804 i915_pineview_get_mem_freq(dev);
5805 else if (IS_GEN5(dev))
5806 i915_ironlake_get_mem_freq(dev);
5807
5808 /* For FIFO watermark updates */
5809 if (HAS_PCH_SPLIT(dev)) {
5810 intel_setup_wm_latency(dev);
5811
5812 if (IS_GEN5(dev)) {
5813 if (dev_priv->wm.pri_latency[1] &&
5814 dev_priv->wm.spr_latency[1] &&
5815 dev_priv->wm.cur_latency[1])
5816 dev_priv->display.update_wm = ironlake_update_wm;
5817 else {
5818 DRM_DEBUG_KMS("Failed to get proper latency. "
5819 "Disable CxSR\n");
5820 dev_priv->display.update_wm = NULL;
5821 }
5822 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5823 } else if (IS_GEN6(dev)) {
5824 if (dev_priv->wm.pri_latency[0] &&
5825 dev_priv->wm.spr_latency[0] &&
5826 dev_priv->wm.cur_latency[0]) {
5827 dev_priv->display.update_wm = sandybridge_update_wm;
5828 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5829 } else {
5830 DRM_DEBUG_KMS("Failed to read display plane latency. "
5831 "Disable CxSR\n");
5832 dev_priv->display.update_wm = NULL;
5833 }
5834 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5835 } else if (IS_IVYBRIDGE(dev)) {
5836 if (dev_priv->wm.pri_latency[0] &&
5837 dev_priv->wm.spr_latency[0] &&
5838 dev_priv->wm.cur_latency[0]) {
5839 dev_priv->display.update_wm = ivybridge_update_wm;
5840 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5841 } else {
5842 DRM_DEBUG_KMS("Failed to read display plane latency. "
5843 "Disable CxSR\n");
5844 dev_priv->display.update_wm = NULL;
5845 }
5846 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5847 } else if (IS_HASWELL(dev)) {
5848 if (dev_priv->wm.pri_latency[0] &&
5849 dev_priv->wm.spr_latency[0] &&
5850 dev_priv->wm.cur_latency[0]) {
5851 dev_priv->display.update_wm = haswell_update_wm;
5852 dev_priv->display.update_sprite_wm =
5853 haswell_update_sprite_wm;
5854 } else {
5855 DRM_DEBUG_KMS("Failed to read display plane latency. "
5856 "Disable CxSR\n");
5857 dev_priv->display.update_wm = NULL;
5858 }
5859 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5860 } else
5861 dev_priv->display.update_wm = NULL;
5862 } else if (IS_VALLEYVIEW(dev)) {
5863 dev_priv->display.update_wm = valleyview_update_wm;
5864 dev_priv->display.init_clock_gating =
5865 valleyview_init_clock_gating;
5866 } else if (IS_PINEVIEW(dev)) {
5867 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5868 dev_priv->is_ddr3,
5869 dev_priv->fsb_freq,
5870 dev_priv->mem_freq)) {
5871 DRM_INFO("failed to find known CxSR latency "
5872 "(found ddr%s fsb freq %d, mem freq %d), "
5873 "disabling CxSR\n",
5874 (dev_priv->is_ddr3 == 1) ? "3" : "2",
5875 dev_priv->fsb_freq, dev_priv->mem_freq);
5876 /* Disable CxSR and never update its watermark again */
5877 pineview_disable_cxsr(dev);
5878 dev_priv->display.update_wm = NULL;
5879 } else
5880 dev_priv->display.update_wm = pineview_update_wm;
5881 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5882 } else if (IS_G4X(dev)) {
5883 dev_priv->display.update_wm = g4x_update_wm;
5884 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5885 } else if (IS_GEN4(dev)) {
5886 dev_priv->display.update_wm = i965_update_wm;
5887 if (IS_CRESTLINE(dev))
5888 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5889 else if (IS_BROADWATER(dev))
5890 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5891 } else if (IS_GEN3(dev)) {
5892 dev_priv->display.update_wm = i9xx_update_wm;
5893 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5894 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5895 } else if (IS_I865G(dev)) {
5896 dev_priv->display.update_wm = i830_update_wm;
5897 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5898 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5899 } else if (IS_I85X(dev)) {
5900 dev_priv->display.update_wm = i9xx_update_wm;
5901 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5902 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5903 } else {
5904 dev_priv->display.update_wm = i830_update_wm;
5905 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5906 if (IS_845G(dev))
5907 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5908 else
5909 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5910 }
5911 }
5912
5913 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5914 {
5915 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5916
5917 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5918 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5919 return -EAGAIN;
5920 }
5921
5922 I915_WRITE(GEN6_PCODE_DATA, *val);
5923 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5924
5925 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5926 500)) {
5927 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5928 return -ETIMEDOUT;
5929 }
5930
5931 *val = I915_READ(GEN6_PCODE_DATA);
5932 I915_WRITE(GEN6_PCODE_DATA, 0);
5933
5934 return 0;
5935 }
5936
5937 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5938 {
5939 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5940
5941 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5942 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5943 return -EAGAIN;
5944 }
5945
5946 I915_WRITE(GEN6_PCODE_DATA, val);
5947 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5948
5949 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5950 500)) {
5951 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5952 return -ETIMEDOUT;
5953 }
5954
5955 I915_WRITE(GEN6_PCODE_DATA, 0);
5956
5957 return 0;
5958 }
5959
5960 int vlv_gpu_freq(int ddr_freq, int val)
5961 {
5962 int mult, base;
5963
5964 switch (ddr_freq) {
5965 case 800:
5966 mult = 20;
5967 base = 120;
5968 break;
5969 case 1066:
5970 mult = 22;
5971 base = 133;
5972 break;
5973 case 1333:
5974 mult = 21;
5975 base = 125;
5976 break;
5977 default:
5978 return -1;
5979 }
5980
5981 return ((val - 0xbd) * mult) + base;
5982 }
5983
5984 int vlv_freq_opcode(int ddr_freq, int val)
5985 {
5986 int mult, base;
5987
5988 switch (ddr_freq) {
5989 case 800:
5990 mult = 20;
5991 base = 120;
5992 break;
5993 case 1066:
5994 mult = 22;
5995 base = 133;
5996 break;
5997 case 1333:
5998 mult = 21;
5999 base = 125;
6000 break;
6001 default:
6002 return -1;
6003 }
6004
6005 val /= mult;
6006 val -= base / mult;
6007 val += 0xbd;
6008
6009 if (val > 0xea)
6010 val = 0xea;
6011
6012 return val;
6013 }
6014
6015 void intel_pm_init(struct drm_device *dev)
6016 {
6017 struct drm_i915_private *dev_priv = dev->dev_private;
6018
6019 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6020 intel_gen6_powersave_work);
6021 }
6022
This page took 0.158732 seconds and 5 git commands to generate.