drm/i915: add support for checking if we hold an RPM reference
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage. This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39 *
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
43 *
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
50 */
51 #define INTEL_RC6_ENABLE (1<<0)
52 #define INTEL_RC6p_ENABLE (1<<1)
53 #define INTEL_RC6pp_ENABLE (1<<2)
54
55 static void bxt_init_clock_gating(struct drm_device *dev)
56 {
57 struct drm_i915_private *dev_priv = dev->dev_private;
58
59 /* WaDisableSDEUnitClockGating:bxt */
60 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
61 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
62
63 /*
64 * FIXME:
65 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
66 */
67 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
69
70 /*
71 * Wa: Backlight PWM may stop in the asserted state, causing backlight
72 * to stay fully on.
73 */
74 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
75 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
76 PWM1_GATING_DIS | PWM2_GATING_DIS);
77 }
78
79 static void i915_pineview_get_mem_freq(struct drm_device *dev)
80 {
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 u32 tmp;
83
84 tmp = I915_READ(CLKCFG);
85
86 switch (tmp & CLKCFG_FSB_MASK) {
87 case CLKCFG_FSB_533:
88 dev_priv->fsb_freq = 533; /* 133*4 */
89 break;
90 case CLKCFG_FSB_800:
91 dev_priv->fsb_freq = 800; /* 200*4 */
92 break;
93 case CLKCFG_FSB_667:
94 dev_priv->fsb_freq = 667; /* 167*4 */
95 break;
96 case CLKCFG_FSB_400:
97 dev_priv->fsb_freq = 400; /* 100*4 */
98 break;
99 }
100
101 switch (tmp & CLKCFG_MEM_MASK) {
102 case CLKCFG_MEM_533:
103 dev_priv->mem_freq = 533;
104 break;
105 case CLKCFG_MEM_667:
106 dev_priv->mem_freq = 667;
107 break;
108 case CLKCFG_MEM_800:
109 dev_priv->mem_freq = 800;
110 break;
111 }
112
113 /* detect pineview DDR3 setting */
114 tmp = I915_READ(CSHRDDR3CTL);
115 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
116 }
117
118 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
119 {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 u16 ddrpll, csipll;
122
123 ddrpll = I915_READ16(DDRMPLL1);
124 csipll = I915_READ16(CSIPLL0);
125
126 switch (ddrpll & 0xff) {
127 case 0xc:
128 dev_priv->mem_freq = 800;
129 break;
130 case 0x10:
131 dev_priv->mem_freq = 1066;
132 break;
133 case 0x14:
134 dev_priv->mem_freq = 1333;
135 break;
136 case 0x18:
137 dev_priv->mem_freq = 1600;
138 break;
139 default:
140 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
141 ddrpll & 0xff);
142 dev_priv->mem_freq = 0;
143 break;
144 }
145
146 dev_priv->ips.r_t = dev_priv->mem_freq;
147
148 switch (csipll & 0x3ff) {
149 case 0x00c:
150 dev_priv->fsb_freq = 3200;
151 break;
152 case 0x00e:
153 dev_priv->fsb_freq = 3733;
154 break;
155 case 0x010:
156 dev_priv->fsb_freq = 4266;
157 break;
158 case 0x012:
159 dev_priv->fsb_freq = 4800;
160 break;
161 case 0x014:
162 dev_priv->fsb_freq = 5333;
163 break;
164 case 0x016:
165 dev_priv->fsb_freq = 5866;
166 break;
167 case 0x018:
168 dev_priv->fsb_freq = 6400;
169 break;
170 default:
171 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
172 csipll & 0x3ff);
173 dev_priv->fsb_freq = 0;
174 break;
175 }
176
177 if (dev_priv->fsb_freq == 3200) {
178 dev_priv->ips.c_m = 0;
179 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
180 dev_priv->ips.c_m = 1;
181 } else {
182 dev_priv->ips.c_m = 2;
183 }
184 }
185
186 static const struct cxsr_latency cxsr_latency_table[] = {
187 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
188 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
189 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
190 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
191 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
192
193 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
194 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
195 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
196 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
197 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
198
199 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
200 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
201 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
202 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
203 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
204
205 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
206 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
207 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
208 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
209 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
210
211 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
212 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
213 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
214 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
215 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
216
217 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
218 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
219 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
220 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
221 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
222 };
223
224 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
225 int is_ddr3,
226 int fsb,
227 int mem)
228 {
229 const struct cxsr_latency *latency;
230 int i;
231
232 if (fsb == 0 || mem == 0)
233 return NULL;
234
235 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
236 latency = &cxsr_latency_table[i];
237 if (is_desktop == latency->is_desktop &&
238 is_ddr3 == latency->is_ddr3 &&
239 fsb == latency->fsb_freq && mem == latency->mem_freq)
240 return latency;
241 }
242
243 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
244
245 return NULL;
246 }
247
248 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
249 {
250 u32 val;
251
252 mutex_lock(&dev_priv->rps.hw_lock);
253
254 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
255 if (enable)
256 val &= ~FORCE_DDR_HIGH_FREQ;
257 else
258 val |= FORCE_DDR_HIGH_FREQ;
259 val &= ~FORCE_DDR_LOW_FREQ;
260 val |= FORCE_DDR_FREQ_REQ_ACK;
261 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
262
263 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
264 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
265 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
266
267 mutex_unlock(&dev_priv->rps.hw_lock);
268 }
269
270 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
271 {
272 u32 val;
273
274 mutex_lock(&dev_priv->rps.hw_lock);
275
276 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
277 if (enable)
278 val |= DSP_MAXFIFO_PM5_ENABLE;
279 else
280 val &= ~DSP_MAXFIFO_PM5_ENABLE;
281 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
282
283 mutex_unlock(&dev_priv->rps.hw_lock);
284 }
285
286 #define FW_WM(value, plane) \
287 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
288
289 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
290 {
291 struct drm_device *dev = dev_priv->dev;
292 u32 val;
293
294 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
295 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
296 POSTING_READ(FW_BLC_SELF_VLV);
297 dev_priv->wm.vlv.cxsr = enable;
298 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
299 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
300 POSTING_READ(FW_BLC_SELF);
301 } else if (IS_PINEVIEW(dev)) {
302 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
303 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
304 I915_WRITE(DSPFW3, val);
305 POSTING_READ(DSPFW3);
306 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
307 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
308 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
309 I915_WRITE(FW_BLC_SELF, val);
310 POSTING_READ(FW_BLC_SELF);
311 } else if (IS_I915GM(dev)) {
312 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
313 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
314 I915_WRITE(INSTPM, val);
315 POSTING_READ(INSTPM);
316 } else {
317 return;
318 }
319
320 DRM_DEBUG_KMS("memory self-refresh is %s\n",
321 enable ? "enabled" : "disabled");
322 }
323
324
325 /*
326 * Latency for FIFO fetches is dependent on several factors:
327 * - memory configuration (speed, channels)
328 * - chipset
329 * - current MCH state
330 * It can be fairly high in some situations, so here we assume a fairly
331 * pessimal value. It's a tradeoff between extra memory fetches (if we
332 * set this value too high, the FIFO will fetch frequently to stay full)
333 * and power consumption (set it too low to save power and we might see
334 * FIFO underruns and display "flicker").
335 *
336 * A value of 5us seems to be a good balance; safe for very low end
337 * platforms but not overly aggressive on lower latency configs.
338 */
339 static const int pessimal_latency_ns = 5000;
340
341 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
342 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
343
344 static int vlv_get_fifo_size(struct drm_device *dev,
345 enum pipe pipe, int plane)
346 {
347 struct drm_i915_private *dev_priv = dev->dev_private;
348 int sprite0_start, sprite1_start, size;
349
350 switch (pipe) {
351 uint32_t dsparb, dsparb2, dsparb3;
352 case PIPE_A:
353 dsparb = I915_READ(DSPARB);
354 dsparb2 = I915_READ(DSPARB2);
355 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
356 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
357 break;
358 case PIPE_B:
359 dsparb = I915_READ(DSPARB);
360 dsparb2 = I915_READ(DSPARB2);
361 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
362 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
363 break;
364 case PIPE_C:
365 dsparb2 = I915_READ(DSPARB2);
366 dsparb3 = I915_READ(DSPARB3);
367 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
368 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
369 break;
370 default:
371 return 0;
372 }
373
374 switch (plane) {
375 case 0:
376 size = sprite0_start;
377 break;
378 case 1:
379 size = sprite1_start - sprite0_start;
380 break;
381 case 2:
382 size = 512 - 1 - sprite1_start;
383 break;
384 default:
385 return 0;
386 }
387
388 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
389 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
390 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
391 size);
392
393 return size;
394 }
395
396 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
397 {
398 struct drm_i915_private *dev_priv = dev->dev_private;
399 uint32_t dsparb = I915_READ(DSPARB);
400 int size;
401
402 size = dsparb & 0x7f;
403 if (plane)
404 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
405
406 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
407 plane ? "B" : "A", size);
408
409 return size;
410 }
411
412 static int i830_get_fifo_size(struct drm_device *dev, int plane)
413 {
414 struct drm_i915_private *dev_priv = dev->dev_private;
415 uint32_t dsparb = I915_READ(DSPARB);
416 int size;
417
418 size = dsparb & 0x1ff;
419 if (plane)
420 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
421 size >>= 1; /* Convert to cachelines */
422
423 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
424 plane ? "B" : "A", size);
425
426 return size;
427 }
428
429 static int i845_get_fifo_size(struct drm_device *dev, int plane)
430 {
431 struct drm_i915_private *dev_priv = dev->dev_private;
432 uint32_t dsparb = I915_READ(DSPARB);
433 int size;
434
435 size = dsparb & 0x7f;
436 size >>= 2; /* Convert to cachelines */
437
438 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
439 plane ? "B" : "A",
440 size);
441
442 return size;
443 }
444
445 /* Pineview has different values for various configs */
446 static const struct intel_watermark_params pineview_display_wm = {
447 .fifo_size = PINEVIEW_DISPLAY_FIFO,
448 .max_wm = PINEVIEW_MAX_WM,
449 .default_wm = PINEVIEW_DFT_WM,
450 .guard_size = PINEVIEW_GUARD_WM,
451 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
452 };
453 static const struct intel_watermark_params pineview_display_hplloff_wm = {
454 .fifo_size = PINEVIEW_DISPLAY_FIFO,
455 .max_wm = PINEVIEW_MAX_WM,
456 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
457 .guard_size = PINEVIEW_GUARD_WM,
458 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
459 };
460 static const struct intel_watermark_params pineview_cursor_wm = {
461 .fifo_size = PINEVIEW_CURSOR_FIFO,
462 .max_wm = PINEVIEW_CURSOR_MAX_WM,
463 .default_wm = PINEVIEW_CURSOR_DFT_WM,
464 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
465 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 };
467 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
468 .fifo_size = PINEVIEW_CURSOR_FIFO,
469 .max_wm = PINEVIEW_CURSOR_MAX_WM,
470 .default_wm = PINEVIEW_CURSOR_DFT_WM,
471 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
472 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 };
474 static const struct intel_watermark_params g4x_wm_info = {
475 .fifo_size = G4X_FIFO_SIZE,
476 .max_wm = G4X_MAX_WM,
477 .default_wm = G4X_MAX_WM,
478 .guard_size = 2,
479 .cacheline_size = G4X_FIFO_LINE_SIZE,
480 };
481 static const struct intel_watermark_params g4x_cursor_wm_info = {
482 .fifo_size = I965_CURSOR_FIFO,
483 .max_wm = I965_CURSOR_MAX_WM,
484 .default_wm = I965_CURSOR_DFT_WM,
485 .guard_size = 2,
486 .cacheline_size = G4X_FIFO_LINE_SIZE,
487 };
488 static const struct intel_watermark_params valleyview_wm_info = {
489 .fifo_size = VALLEYVIEW_FIFO_SIZE,
490 .max_wm = VALLEYVIEW_MAX_WM,
491 .default_wm = VALLEYVIEW_MAX_WM,
492 .guard_size = 2,
493 .cacheline_size = G4X_FIFO_LINE_SIZE,
494 };
495 static const struct intel_watermark_params valleyview_cursor_wm_info = {
496 .fifo_size = I965_CURSOR_FIFO,
497 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
498 .default_wm = I965_CURSOR_DFT_WM,
499 .guard_size = 2,
500 .cacheline_size = G4X_FIFO_LINE_SIZE,
501 };
502 static const struct intel_watermark_params i965_cursor_wm_info = {
503 .fifo_size = I965_CURSOR_FIFO,
504 .max_wm = I965_CURSOR_MAX_WM,
505 .default_wm = I965_CURSOR_DFT_WM,
506 .guard_size = 2,
507 .cacheline_size = I915_FIFO_LINE_SIZE,
508 };
509 static const struct intel_watermark_params i945_wm_info = {
510 .fifo_size = I945_FIFO_SIZE,
511 .max_wm = I915_MAX_WM,
512 .default_wm = 1,
513 .guard_size = 2,
514 .cacheline_size = I915_FIFO_LINE_SIZE,
515 };
516 static const struct intel_watermark_params i915_wm_info = {
517 .fifo_size = I915_FIFO_SIZE,
518 .max_wm = I915_MAX_WM,
519 .default_wm = 1,
520 .guard_size = 2,
521 .cacheline_size = I915_FIFO_LINE_SIZE,
522 };
523 static const struct intel_watermark_params i830_a_wm_info = {
524 .fifo_size = I855GM_FIFO_SIZE,
525 .max_wm = I915_MAX_WM,
526 .default_wm = 1,
527 .guard_size = 2,
528 .cacheline_size = I830_FIFO_LINE_SIZE,
529 };
530 static const struct intel_watermark_params i830_bc_wm_info = {
531 .fifo_size = I855GM_FIFO_SIZE,
532 .max_wm = I915_MAX_WM/2,
533 .default_wm = 1,
534 .guard_size = 2,
535 .cacheline_size = I830_FIFO_LINE_SIZE,
536 };
537 static const struct intel_watermark_params i845_wm_info = {
538 .fifo_size = I830_FIFO_SIZE,
539 .max_wm = I915_MAX_WM,
540 .default_wm = 1,
541 .guard_size = 2,
542 .cacheline_size = I830_FIFO_LINE_SIZE,
543 };
544
545 /**
546 * intel_calculate_wm - calculate watermark level
547 * @clock_in_khz: pixel clock
548 * @wm: chip FIFO params
549 * @pixel_size: display pixel size
550 * @latency_ns: memory latency for the platform
551 *
552 * Calculate the watermark level (the level at which the display plane will
553 * start fetching from memory again). Each chip has a different display
554 * FIFO size and allocation, so the caller needs to figure that out and pass
555 * in the correct intel_watermark_params structure.
556 *
557 * As the pixel clock runs, the FIFO will be drained at a rate that depends
558 * on the pixel size. When it reaches the watermark level, it'll start
559 * fetching FIFO line sized based chunks from memory until the FIFO fills
560 * past the watermark point. If the FIFO drains completely, a FIFO underrun
561 * will occur, and a display engine hang could result.
562 */
563 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
564 const struct intel_watermark_params *wm,
565 int fifo_size,
566 int pixel_size,
567 unsigned long latency_ns)
568 {
569 long entries_required, wm_size;
570
571 /*
572 * Note: we need to make sure we don't overflow for various clock &
573 * latency values.
574 * clocks go from a few thousand to several hundred thousand.
575 * latency is usually a few thousand
576 */
577 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
578 1000;
579 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
580
581 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
582
583 wm_size = fifo_size - (entries_required + wm->guard_size);
584
585 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
586
587 /* Don't promote wm_size to unsigned... */
588 if (wm_size > (long)wm->max_wm)
589 wm_size = wm->max_wm;
590 if (wm_size <= 0)
591 wm_size = wm->default_wm;
592
593 /*
594 * Bspec seems to indicate that the value shouldn't be lower than
595 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
596 * Lets go for 8 which is the burst size since certain platforms
597 * already use a hardcoded 8 (which is what the spec says should be
598 * done).
599 */
600 if (wm_size <= 8)
601 wm_size = 8;
602
603 return wm_size;
604 }
605
606 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
607 {
608 struct drm_crtc *crtc, *enabled = NULL;
609
610 for_each_crtc(dev, crtc) {
611 if (intel_crtc_active(crtc)) {
612 if (enabled)
613 return NULL;
614 enabled = crtc;
615 }
616 }
617
618 return enabled;
619 }
620
621 static void pineview_update_wm(struct drm_crtc *unused_crtc)
622 {
623 struct drm_device *dev = unused_crtc->dev;
624 struct drm_i915_private *dev_priv = dev->dev_private;
625 struct drm_crtc *crtc;
626 const struct cxsr_latency *latency;
627 u32 reg;
628 unsigned long wm;
629
630 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
631 dev_priv->fsb_freq, dev_priv->mem_freq);
632 if (!latency) {
633 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
634 intel_set_memory_cxsr(dev_priv, false);
635 return;
636 }
637
638 crtc = single_enabled_crtc(dev);
639 if (crtc) {
640 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
641 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
642 int clock = adjusted_mode->crtc_clock;
643
644 /* Display SR */
645 wm = intel_calculate_wm(clock, &pineview_display_wm,
646 pineview_display_wm.fifo_size,
647 pixel_size, latency->display_sr);
648 reg = I915_READ(DSPFW1);
649 reg &= ~DSPFW_SR_MASK;
650 reg |= FW_WM(wm, SR);
651 I915_WRITE(DSPFW1, reg);
652 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
653
654 /* cursor SR */
655 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
656 pineview_display_wm.fifo_size,
657 pixel_size, latency->cursor_sr);
658 reg = I915_READ(DSPFW3);
659 reg &= ~DSPFW_CURSOR_SR_MASK;
660 reg |= FW_WM(wm, CURSOR_SR);
661 I915_WRITE(DSPFW3, reg);
662
663 /* Display HPLL off SR */
664 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
665 pineview_display_hplloff_wm.fifo_size,
666 pixel_size, latency->display_hpll_disable);
667 reg = I915_READ(DSPFW3);
668 reg &= ~DSPFW_HPLL_SR_MASK;
669 reg |= FW_WM(wm, HPLL_SR);
670 I915_WRITE(DSPFW3, reg);
671
672 /* cursor HPLL off SR */
673 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
674 pineview_display_hplloff_wm.fifo_size,
675 pixel_size, latency->cursor_hpll_disable);
676 reg = I915_READ(DSPFW3);
677 reg &= ~DSPFW_HPLL_CURSOR_MASK;
678 reg |= FW_WM(wm, HPLL_CURSOR);
679 I915_WRITE(DSPFW3, reg);
680 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
681
682 intel_set_memory_cxsr(dev_priv, true);
683 } else {
684 intel_set_memory_cxsr(dev_priv, false);
685 }
686 }
687
688 static bool g4x_compute_wm0(struct drm_device *dev,
689 int plane,
690 const struct intel_watermark_params *display,
691 int display_latency_ns,
692 const struct intel_watermark_params *cursor,
693 int cursor_latency_ns,
694 int *plane_wm,
695 int *cursor_wm)
696 {
697 struct drm_crtc *crtc;
698 const struct drm_display_mode *adjusted_mode;
699 int htotal, hdisplay, clock, pixel_size;
700 int line_time_us, line_count;
701 int entries, tlb_miss;
702
703 crtc = intel_get_crtc_for_plane(dev, plane);
704 if (!intel_crtc_active(crtc)) {
705 *cursor_wm = cursor->guard_size;
706 *plane_wm = display->guard_size;
707 return false;
708 }
709
710 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
711 clock = adjusted_mode->crtc_clock;
712 htotal = adjusted_mode->crtc_htotal;
713 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
714 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
715
716 /* Use the small buffer method to calculate plane watermark */
717 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
718 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
719 if (tlb_miss > 0)
720 entries += tlb_miss;
721 entries = DIV_ROUND_UP(entries, display->cacheline_size);
722 *plane_wm = entries + display->guard_size;
723 if (*plane_wm > (int)display->max_wm)
724 *plane_wm = display->max_wm;
725
726 /* Use the large buffer method to calculate cursor watermark */
727 line_time_us = max(htotal * 1000 / clock, 1);
728 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
729 entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
730 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
731 if (tlb_miss > 0)
732 entries += tlb_miss;
733 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
734 *cursor_wm = entries + cursor->guard_size;
735 if (*cursor_wm > (int)cursor->max_wm)
736 *cursor_wm = (int)cursor->max_wm;
737
738 return true;
739 }
740
741 /*
742 * Check the wm result.
743 *
744 * If any calculated watermark values is larger than the maximum value that
745 * can be programmed into the associated watermark register, that watermark
746 * must be disabled.
747 */
748 static bool g4x_check_srwm(struct drm_device *dev,
749 int display_wm, int cursor_wm,
750 const struct intel_watermark_params *display,
751 const struct intel_watermark_params *cursor)
752 {
753 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
754 display_wm, cursor_wm);
755
756 if (display_wm > display->max_wm) {
757 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
758 display_wm, display->max_wm);
759 return false;
760 }
761
762 if (cursor_wm > cursor->max_wm) {
763 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
764 cursor_wm, cursor->max_wm);
765 return false;
766 }
767
768 if (!(display_wm || cursor_wm)) {
769 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
770 return false;
771 }
772
773 return true;
774 }
775
776 static bool g4x_compute_srwm(struct drm_device *dev,
777 int plane,
778 int latency_ns,
779 const struct intel_watermark_params *display,
780 const struct intel_watermark_params *cursor,
781 int *display_wm, int *cursor_wm)
782 {
783 struct drm_crtc *crtc;
784 const struct drm_display_mode *adjusted_mode;
785 int hdisplay, htotal, pixel_size, clock;
786 unsigned long line_time_us;
787 int line_count, line_size;
788 int small, large;
789 int entries;
790
791 if (!latency_ns) {
792 *display_wm = *cursor_wm = 0;
793 return false;
794 }
795
796 crtc = intel_get_crtc_for_plane(dev, plane);
797 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
798 clock = adjusted_mode->crtc_clock;
799 htotal = adjusted_mode->crtc_htotal;
800 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
801 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
802
803 line_time_us = max(htotal * 1000 / clock, 1);
804 line_count = (latency_ns / line_time_us + 1000) / 1000;
805 line_size = hdisplay * pixel_size;
806
807 /* Use the minimum of the small and large buffer method for primary */
808 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
809 large = line_count * line_size;
810
811 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
812 *display_wm = entries + display->guard_size;
813
814 /* calculate the self-refresh watermark for display cursor */
815 entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
816 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
817 *cursor_wm = entries + cursor->guard_size;
818
819 return g4x_check_srwm(dev,
820 *display_wm, *cursor_wm,
821 display, cursor);
822 }
823
824 #define FW_WM_VLV(value, plane) \
825 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
826
827 static void vlv_write_wm_values(struct intel_crtc *crtc,
828 const struct vlv_wm_values *wm)
829 {
830 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
831 enum pipe pipe = crtc->pipe;
832
833 I915_WRITE(VLV_DDL(pipe),
834 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
835 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
836 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
837 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
838
839 I915_WRITE(DSPFW1,
840 FW_WM(wm->sr.plane, SR) |
841 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
842 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
843 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
844 I915_WRITE(DSPFW2,
845 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
846 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
847 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
848 I915_WRITE(DSPFW3,
849 FW_WM(wm->sr.cursor, CURSOR_SR));
850
851 if (IS_CHERRYVIEW(dev_priv)) {
852 I915_WRITE(DSPFW7_CHV,
853 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
854 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
855 I915_WRITE(DSPFW8_CHV,
856 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
857 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
858 I915_WRITE(DSPFW9_CHV,
859 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
860 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
861 I915_WRITE(DSPHOWM,
862 FW_WM(wm->sr.plane >> 9, SR_HI) |
863 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
864 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
865 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
866 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
867 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
868 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
869 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
870 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
871 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
872 } else {
873 I915_WRITE(DSPFW7,
874 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
875 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876 I915_WRITE(DSPHOWM,
877 FW_WM(wm->sr.plane >> 9, SR_HI) |
878 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
879 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
880 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
881 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
882 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
883 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
884 }
885
886 /* zero (unused) WM1 watermarks */
887 I915_WRITE(DSPFW4, 0);
888 I915_WRITE(DSPFW5, 0);
889 I915_WRITE(DSPFW6, 0);
890 I915_WRITE(DSPHOWM1, 0);
891
892 POSTING_READ(DSPFW1);
893 }
894
895 #undef FW_WM_VLV
896
897 enum vlv_wm_level {
898 VLV_WM_LEVEL_PM2,
899 VLV_WM_LEVEL_PM5,
900 VLV_WM_LEVEL_DDR_DVFS,
901 };
902
903 /* latency must be in 0.1us units. */
904 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
905 unsigned int pipe_htotal,
906 unsigned int horiz_pixels,
907 unsigned int bytes_per_pixel,
908 unsigned int latency)
909 {
910 unsigned int ret;
911
912 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
913 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
914 ret = DIV_ROUND_UP(ret, 64);
915
916 return ret;
917 }
918
919 static void vlv_setup_wm_latency(struct drm_device *dev)
920 {
921 struct drm_i915_private *dev_priv = dev->dev_private;
922
923 /* all latencies in usec */
924 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
925
926 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
927
928 if (IS_CHERRYVIEW(dev_priv)) {
929 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
930 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
931
932 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
933 }
934 }
935
936 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
937 struct intel_crtc *crtc,
938 const struct intel_plane_state *state,
939 int level)
940 {
941 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
942 int clock, htotal, pixel_size, width, wm;
943
944 if (dev_priv->wm.pri_latency[level] == 0)
945 return USHRT_MAX;
946
947 if (!state->visible)
948 return 0;
949
950 pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
951 clock = crtc->config->base.adjusted_mode.crtc_clock;
952 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
953 width = crtc->config->pipe_src_w;
954 if (WARN_ON(htotal == 0))
955 htotal = 1;
956
957 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
958 /*
959 * FIXME the formula gives values that are
960 * too big for the cursor FIFO, and hence we
961 * would never be able to use cursors. For
962 * now just hardcode the watermark.
963 */
964 wm = 63;
965 } else {
966 wm = vlv_wm_method2(clock, htotal, width, pixel_size,
967 dev_priv->wm.pri_latency[level] * 10);
968 }
969
970 return min_t(int, wm, USHRT_MAX);
971 }
972
973 static void vlv_compute_fifo(struct intel_crtc *crtc)
974 {
975 struct drm_device *dev = crtc->base.dev;
976 struct vlv_wm_state *wm_state = &crtc->wm_state;
977 struct intel_plane *plane;
978 unsigned int total_rate = 0;
979 const int fifo_size = 512 - 1;
980 int fifo_extra, fifo_left = fifo_size;
981
982 for_each_intel_plane_on_crtc(dev, crtc, plane) {
983 struct intel_plane_state *state =
984 to_intel_plane_state(plane->base.state);
985
986 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
987 continue;
988
989 if (state->visible) {
990 wm_state->num_active_planes++;
991 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
992 }
993 }
994
995 for_each_intel_plane_on_crtc(dev, crtc, plane) {
996 struct intel_plane_state *state =
997 to_intel_plane_state(plane->base.state);
998 unsigned int rate;
999
1000 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1001 plane->wm.fifo_size = 63;
1002 continue;
1003 }
1004
1005 if (!state->visible) {
1006 plane->wm.fifo_size = 0;
1007 continue;
1008 }
1009
1010 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1011 plane->wm.fifo_size = fifo_size * rate / total_rate;
1012 fifo_left -= plane->wm.fifo_size;
1013 }
1014
1015 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1016
1017 /* spread the remainder evenly */
1018 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1019 int plane_extra;
1020
1021 if (fifo_left == 0)
1022 break;
1023
1024 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1025 continue;
1026
1027 /* give it all to the first plane if none are active */
1028 if (plane->wm.fifo_size == 0 &&
1029 wm_state->num_active_planes)
1030 continue;
1031
1032 plane_extra = min(fifo_extra, fifo_left);
1033 plane->wm.fifo_size += plane_extra;
1034 fifo_left -= plane_extra;
1035 }
1036
1037 WARN_ON(fifo_left != 0);
1038 }
1039
1040 static void vlv_invert_wms(struct intel_crtc *crtc)
1041 {
1042 struct vlv_wm_state *wm_state = &crtc->wm_state;
1043 int level;
1044
1045 for (level = 0; level < wm_state->num_levels; level++) {
1046 struct drm_device *dev = crtc->base.dev;
1047 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1048 struct intel_plane *plane;
1049
1050 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1051 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1052
1053 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1054 switch (plane->base.type) {
1055 int sprite;
1056 case DRM_PLANE_TYPE_CURSOR:
1057 wm_state->wm[level].cursor = plane->wm.fifo_size -
1058 wm_state->wm[level].cursor;
1059 break;
1060 case DRM_PLANE_TYPE_PRIMARY:
1061 wm_state->wm[level].primary = plane->wm.fifo_size -
1062 wm_state->wm[level].primary;
1063 break;
1064 case DRM_PLANE_TYPE_OVERLAY:
1065 sprite = plane->plane;
1066 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1067 wm_state->wm[level].sprite[sprite];
1068 break;
1069 }
1070 }
1071 }
1072 }
1073
1074 static void vlv_compute_wm(struct intel_crtc *crtc)
1075 {
1076 struct drm_device *dev = crtc->base.dev;
1077 struct vlv_wm_state *wm_state = &crtc->wm_state;
1078 struct intel_plane *plane;
1079 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1080 int level;
1081
1082 memset(wm_state, 0, sizeof(*wm_state));
1083
1084 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1085 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1086
1087 wm_state->num_active_planes = 0;
1088
1089 vlv_compute_fifo(crtc);
1090
1091 if (wm_state->num_active_planes != 1)
1092 wm_state->cxsr = false;
1093
1094 if (wm_state->cxsr) {
1095 for (level = 0; level < wm_state->num_levels; level++) {
1096 wm_state->sr[level].plane = sr_fifo_size;
1097 wm_state->sr[level].cursor = 63;
1098 }
1099 }
1100
1101 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1102 struct intel_plane_state *state =
1103 to_intel_plane_state(plane->base.state);
1104
1105 if (!state->visible)
1106 continue;
1107
1108 /* normal watermarks */
1109 for (level = 0; level < wm_state->num_levels; level++) {
1110 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1111 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1112
1113 /* hack */
1114 if (WARN_ON(level == 0 && wm > max_wm))
1115 wm = max_wm;
1116
1117 if (wm > plane->wm.fifo_size)
1118 break;
1119
1120 switch (plane->base.type) {
1121 int sprite;
1122 case DRM_PLANE_TYPE_CURSOR:
1123 wm_state->wm[level].cursor = wm;
1124 break;
1125 case DRM_PLANE_TYPE_PRIMARY:
1126 wm_state->wm[level].primary = wm;
1127 break;
1128 case DRM_PLANE_TYPE_OVERLAY:
1129 sprite = plane->plane;
1130 wm_state->wm[level].sprite[sprite] = wm;
1131 break;
1132 }
1133 }
1134
1135 wm_state->num_levels = level;
1136
1137 if (!wm_state->cxsr)
1138 continue;
1139
1140 /* maxfifo watermarks */
1141 switch (plane->base.type) {
1142 int sprite, level;
1143 case DRM_PLANE_TYPE_CURSOR:
1144 for (level = 0; level < wm_state->num_levels; level++)
1145 wm_state->sr[level].cursor =
1146 wm_state->wm[level].cursor;
1147 break;
1148 case DRM_PLANE_TYPE_PRIMARY:
1149 for (level = 0; level < wm_state->num_levels; level++)
1150 wm_state->sr[level].plane =
1151 min(wm_state->sr[level].plane,
1152 wm_state->wm[level].primary);
1153 break;
1154 case DRM_PLANE_TYPE_OVERLAY:
1155 sprite = plane->plane;
1156 for (level = 0; level < wm_state->num_levels; level++)
1157 wm_state->sr[level].plane =
1158 min(wm_state->sr[level].plane,
1159 wm_state->wm[level].sprite[sprite]);
1160 break;
1161 }
1162 }
1163
1164 /* clear any (partially) filled invalid levels */
1165 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1166 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1167 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1168 }
1169
1170 vlv_invert_wms(crtc);
1171 }
1172
1173 #define VLV_FIFO(plane, value) \
1174 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1175
1176 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1177 {
1178 struct drm_device *dev = crtc->base.dev;
1179 struct drm_i915_private *dev_priv = to_i915(dev);
1180 struct intel_plane *plane;
1181 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1182
1183 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1184 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1185 WARN_ON(plane->wm.fifo_size != 63);
1186 continue;
1187 }
1188
1189 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1190 sprite0_start = plane->wm.fifo_size;
1191 else if (plane->plane == 0)
1192 sprite1_start = sprite0_start + plane->wm.fifo_size;
1193 else
1194 fifo_size = sprite1_start + plane->wm.fifo_size;
1195 }
1196
1197 WARN_ON(fifo_size != 512 - 1);
1198
1199 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1200 pipe_name(crtc->pipe), sprite0_start,
1201 sprite1_start, fifo_size);
1202
1203 switch (crtc->pipe) {
1204 uint32_t dsparb, dsparb2, dsparb3;
1205 case PIPE_A:
1206 dsparb = I915_READ(DSPARB);
1207 dsparb2 = I915_READ(DSPARB2);
1208
1209 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1210 VLV_FIFO(SPRITEB, 0xff));
1211 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1212 VLV_FIFO(SPRITEB, sprite1_start));
1213
1214 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1215 VLV_FIFO(SPRITEB_HI, 0x1));
1216 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1217 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1218
1219 I915_WRITE(DSPARB, dsparb);
1220 I915_WRITE(DSPARB2, dsparb2);
1221 break;
1222 case PIPE_B:
1223 dsparb = I915_READ(DSPARB);
1224 dsparb2 = I915_READ(DSPARB2);
1225
1226 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1227 VLV_FIFO(SPRITED, 0xff));
1228 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1229 VLV_FIFO(SPRITED, sprite1_start));
1230
1231 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1232 VLV_FIFO(SPRITED_HI, 0xff));
1233 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1234 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1235
1236 I915_WRITE(DSPARB, dsparb);
1237 I915_WRITE(DSPARB2, dsparb2);
1238 break;
1239 case PIPE_C:
1240 dsparb3 = I915_READ(DSPARB3);
1241 dsparb2 = I915_READ(DSPARB2);
1242
1243 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1244 VLV_FIFO(SPRITEF, 0xff));
1245 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1246 VLV_FIFO(SPRITEF, sprite1_start));
1247
1248 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1249 VLV_FIFO(SPRITEF_HI, 0xff));
1250 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1251 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1252
1253 I915_WRITE(DSPARB3, dsparb3);
1254 I915_WRITE(DSPARB2, dsparb2);
1255 break;
1256 default:
1257 break;
1258 }
1259 }
1260
1261 #undef VLV_FIFO
1262
1263 static void vlv_merge_wm(struct drm_device *dev,
1264 struct vlv_wm_values *wm)
1265 {
1266 struct intel_crtc *crtc;
1267 int num_active_crtcs = 0;
1268
1269 wm->level = to_i915(dev)->wm.max_level;
1270 wm->cxsr = true;
1271
1272 for_each_intel_crtc(dev, crtc) {
1273 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1274
1275 if (!crtc->active)
1276 continue;
1277
1278 if (!wm_state->cxsr)
1279 wm->cxsr = false;
1280
1281 num_active_crtcs++;
1282 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1283 }
1284
1285 if (num_active_crtcs != 1)
1286 wm->cxsr = false;
1287
1288 if (num_active_crtcs > 1)
1289 wm->level = VLV_WM_LEVEL_PM2;
1290
1291 for_each_intel_crtc(dev, crtc) {
1292 struct vlv_wm_state *wm_state = &crtc->wm_state;
1293 enum pipe pipe = crtc->pipe;
1294
1295 if (!crtc->active)
1296 continue;
1297
1298 wm->pipe[pipe] = wm_state->wm[wm->level];
1299 if (wm->cxsr)
1300 wm->sr = wm_state->sr[wm->level];
1301
1302 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1303 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1304 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1305 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1306 }
1307 }
1308
1309 static void vlv_update_wm(struct drm_crtc *crtc)
1310 {
1311 struct drm_device *dev = crtc->dev;
1312 struct drm_i915_private *dev_priv = dev->dev_private;
1313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1314 enum pipe pipe = intel_crtc->pipe;
1315 struct vlv_wm_values wm = {};
1316
1317 vlv_compute_wm(intel_crtc);
1318 vlv_merge_wm(dev, &wm);
1319
1320 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1321 /* FIXME should be part of crtc atomic commit */
1322 vlv_pipe_set_fifo_size(intel_crtc);
1323 return;
1324 }
1325
1326 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1327 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1328 chv_set_memory_dvfs(dev_priv, false);
1329
1330 if (wm.level < VLV_WM_LEVEL_PM5 &&
1331 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1332 chv_set_memory_pm5(dev_priv, false);
1333
1334 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1335 intel_set_memory_cxsr(dev_priv, false);
1336
1337 /* FIXME should be part of crtc atomic commit */
1338 vlv_pipe_set_fifo_size(intel_crtc);
1339
1340 vlv_write_wm_values(intel_crtc, &wm);
1341
1342 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1343 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1344 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1345 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1346 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1347
1348 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1349 intel_set_memory_cxsr(dev_priv, true);
1350
1351 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1352 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1353 chv_set_memory_pm5(dev_priv, true);
1354
1355 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1356 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1357 chv_set_memory_dvfs(dev_priv, true);
1358
1359 dev_priv->wm.vlv = wm;
1360 }
1361
1362 #define single_plane_enabled(mask) is_power_of_2(mask)
1363
1364 static void g4x_update_wm(struct drm_crtc *crtc)
1365 {
1366 struct drm_device *dev = crtc->dev;
1367 static const int sr_latency_ns = 12000;
1368 struct drm_i915_private *dev_priv = dev->dev_private;
1369 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1370 int plane_sr, cursor_sr;
1371 unsigned int enabled = 0;
1372 bool cxsr_enabled;
1373
1374 if (g4x_compute_wm0(dev, PIPE_A,
1375 &g4x_wm_info, pessimal_latency_ns,
1376 &g4x_cursor_wm_info, pessimal_latency_ns,
1377 &planea_wm, &cursora_wm))
1378 enabled |= 1 << PIPE_A;
1379
1380 if (g4x_compute_wm0(dev, PIPE_B,
1381 &g4x_wm_info, pessimal_latency_ns,
1382 &g4x_cursor_wm_info, pessimal_latency_ns,
1383 &planeb_wm, &cursorb_wm))
1384 enabled |= 1 << PIPE_B;
1385
1386 if (single_plane_enabled(enabled) &&
1387 g4x_compute_srwm(dev, ffs(enabled) - 1,
1388 sr_latency_ns,
1389 &g4x_wm_info,
1390 &g4x_cursor_wm_info,
1391 &plane_sr, &cursor_sr)) {
1392 cxsr_enabled = true;
1393 } else {
1394 cxsr_enabled = false;
1395 intel_set_memory_cxsr(dev_priv, false);
1396 plane_sr = cursor_sr = 0;
1397 }
1398
1399 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1400 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1401 planea_wm, cursora_wm,
1402 planeb_wm, cursorb_wm,
1403 plane_sr, cursor_sr);
1404
1405 I915_WRITE(DSPFW1,
1406 FW_WM(plane_sr, SR) |
1407 FW_WM(cursorb_wm, CURSORB) |
1408 FW_WM(planeb_wm, PLANEB) |
1409 FW_WM(planea_wm, PLANEA));
1410 I915_WRITE(DSPFW2,
1411 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1412 FW_WM(cursora_wm, CURSORA));
1413 /* HPLL off in SR has some issues on G4x... disable it */
1414 I915_WRITE(DSPFW3,
1415 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1416 FW_WM(cursor_sr, CURSOR_SR));
1417
1418 if (cxsr_enabled)
1419 intel_set_memory_cxsr(dev_priv, true);
1420 }
1421
1422 static void i965_update_wm(struct drm_crtc *unused_crtc)
1423 {
1424 struct drm_device *dev = unused_crtc->dev;
1425 struct drm_i915_private *dev_priv = dev->dev_private;
1426 struct drm_crtc *crtc;
1427 int srwm = 1;
1428 int cursor_sr = 16;
1429 bool cxsr_enabled;
1430
1431 /* Calc sr entries for one plane configs */
1432 crtc = single_enabled_crtc(dev);
1433 if (crtc) {
1434 /* self-refresh has much higher latency */
1435 static const int sr_latency_ns = 12000;
1436 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1437 int clock = adjusted_mode->crtc_clock;
1438 int htotal = adjusted_mode->crtc_htotal;
1439 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1440 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1441 unsigned long line_time_us;
1442 int entries;
1443
1444 line_time_us = max(htotal * 1000 / clock, 1);
1445
1446 /* Use ns/us then divide to preserve precision */
1447 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1448 pixel_size * hdisplay;
1449 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1450 srwm = I965_FIFO_SIZE - entries;
1451 if (srwm < 0)
1452 srwm = 1;
1453 srwm &= 0x1ff;
1454 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1455 entries, srwm);
1456
1457 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1458 pixel_size * crtc->cursor->state->crtc_w;
1459 entries = DIV_ROUND_UP(entries,
1460 i965_cursor_wm_info.cacheline_size);
1461 cursor_sr = i965_cursor_wm_info.fifo_size -
1462 (entries + i965_cursor_wm_info.guard_size);
1463
1464 if (cursor_sr > i965_cursor_wm_info.max_wm)
1465 cursor_sr = i965_cursor_wm_info.max_wm;
1466
1467 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1468 "cursor %d\n", srwm, cursor_sr);
1469
1470 cxsr_enabled = true;
1471 } else {
1472 cxsr_enabled = false;
1473 /* Turn off self refresh if both pipes are enabled */
1474 intel_set_memory_cxsr(dev_priv, false);
1475 }
1476
1477 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1478 srwm);
1479
1480 /* 965 has limitations... */
1481 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1482 FW_WM(8, CURSORB) |
1483 FW_WM(8, PLANEB) |
1484 FW_WM(8, PLANEA));
1485 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1486 FW_WM(8, PLANEC_OLD));
1487 /* update cursor SR watermark */
1488 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1489
1490 if (cxsr_enabled)
1491 intel_set_memory_cxsr(dev_priv, true);
1492 }
1493
1494 #undef FW_WM
1495
1496 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1497 {
1498 struct drm_device *dev = unused_crtc->dev;
1499 struct drm_i915_private *dev_priv = dev->dev_private;
1500 const struct intel_watermark_params *wm_info;
1501 uint32_t fwater_lo;
1502 uint32_t fwater_hi;
1503 int cwm, srwm = 1;
1504 int fifo_size;
1505 int planea_wm, planeb_wm;
1506 struct drm_crtc *crtc, *enabled = NULL;
1507
1508 if (IS_I945GM(dev))
1509 wm_info = &i945_wm_info;
1510 else if (!IS_GEN2(dev))
1511 wm_info = &i915_wm_info;
1512 else
1513 wm_info = &i830_a_wm_info;
1514
1515 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1516 crtc = intel_get_crtc_for_plane(dev, 0);
1517 if (intel_crtc_active(crtc)) {
1518 const struct drm_display_mode *adjusted_mode;
1519 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1520 if (IS_GEN2(dev))
1521 cpp = 4;
1522
1523 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1524 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1525 wm_info, fifo_size, cpp,
1526 pessimal_latency_ns);
1527 enabled = crtc;
1528 } else {
1529 planea_wm = fifo_size - wm_info->guard_size;
1530 if (planea_wm > (long)wm_info->max_wm)
1531 planea_wm = wm_info->max_wm;
1532 }
1533
1534 if (IS_GEN2(dev))
1535 wm_info = &i830_bc_wm_info;
1536
1537 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1538 crtc = intel_get_crtc_for_plane(dev, 1);
1539 if (intel_crtc_active(crtc)) {
1540 const struct drm_display_mode *adjusted_mode;
1541 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1542 if (IS_GEN2(dev))
1543 cpp = 4;
1544
1545 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1546 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1547 wm_info, fifo_size, cpp,
1548 pessimal_latency_ns);
1549 if (enabled == NULL)
1550 enabled = crtc;
1551 else
1552 enabled = NULL;
1553 } else {
1554 planeb_wm = fifo_size - wm_info->guard_size;
1555 if (planeb_wm > (long)wm_info->max_wm)
1556 planeb_wm = wm_info->max_wm;
1557 }
1558
1559 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1560
1561 if (IS_I915GM(dev) && enabled) {
1562 struct drm_i915_gem_object *obj;
1563
1564 obj = intel_fb_obj(enabled->primary->state->fb);
1565
1566 /* self-refresh seems busted with untiled */
1567 if (obj->tiling_mode == I915_TILING_NONE)
1568 enabled = NULL;
1569 }
1570
1571 /*
1572 * Overlay gets an aggressive default since video jitter is bad.
1573 */
1574 cwm = 2;
1575
1576 /* Play safe and disable self-refresh before adjusting watermarks. */
1577 intel_set_memory_cxsr(dev_priv, false);
1578
1579 /* Calc sr entries for one plane configs */
1580 if (HAS_FW_BLC(dev) && enabled) {
1581 /* self-refresh has much higher latency */
1582 static const int sr_latency_ns = 6000;
1583 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1584 int clock = adjusted_mode->crtc_clock;
1585 int htotal = adjusted_mode->crtc_htotal;
1586 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1587 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1588 unsigned long line_time_us;
1589 int entries;
1590
1591 line_time_us = max(htotal * 1000 / clock, 1);
1592
1593 /* Use ns/us then divide to preserve precision */
1594 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1595 pixel_size * hdisplay;
1596 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1597 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1598 srwm = wm_info->fifo_size - entries;
1599 if (srwm < 0)
1600 srwm = 1;
1601
1602 if (IS_I945G(dev) || IS_I945GM(dev))
1603 I915_WRITE(FW_BLC_SELF,
1604 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1605 else if (IS_I915GM(dev))
1606 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1607 }
1608
1609 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1610 planea_wm, planeb_wm, cwm, srwm);
1611
1612 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1613 fwater_hi = (cwm & 0x1f);
1614
1615 /* Set request length to 8 cachelines per fetch */
1616 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1617 fwater_hi = fwater_hi | (1 << 8);
1618
1619 I915_WRITE(FW_BLC, fwater_lo);
1620 I915_WRITE(FW_BLC2, fwater_hi);
1621
1622 if (enabled)
1623 intel_set_memory_cxsr(dev_priv, true);
1624 }
1625
1626 static void i845_update_wm(struct drm_crtc *unused_crtc)
1627 {
1628 struct drm_device *dev = unused_crtc->dev;
1629 struct drm_i915_private *dev_priv = dev->dev_private;
1630 struct drm_crtc *crtc;
1631 const struct drm_display_mode *adjusted_mode;
1632 uint32_t fwater_lo;
1633 int planea_wm;
1634
1635 crtc = single_enabled_crtc(dev);
1636 if (crtc == NULL)
1637 return;
1638
1639 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1640 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641 &i845_wm_info,
1642 dev_priv->display.get_fifo_size(dev, 0),
1643 4, pessimal_latency_ns);
1644 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1645 fwater_lo |= (3<<8) | planea_wm;
1646
1647 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1648
1649 I915_WRITE(FW_BLC, fwater_lo);
1650 }
1651
1652 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1653 {
1654 uint32_t pixel_rate;
1655
1656 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1657
1658 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1659 * adjust the pixel_rate here. */
1660
1661 if (pipe_config->pch_pfit.enabled) {
1662 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1663 uint32_t pfit_size = pipe_config->pch_pfit.size;
1664
1665 pipe_w = pipe_config->pipe_src_w;
1666 pipe_h = pipe_config->pipe_src_h;
1667
1668 pfit_w = (pfit_size >> 16) & 0xFFFF;
1669 pfit_h = pfit_size & 0xFFFF;
1670 if (pipe_w < pfit_w)
1671 pipe_w = pfit_w;
1672 if (pipe_h < pfit_h)
1673 pipe_h = pfit_h;
1674
1675 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1676 pfit_w * pfit_h);
1677 }
1678
1679 return pixel_rate;
1680 }
1681
1682 /* latency must be in 0.1us units. */
1683 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1684 uint32_t latency)
1685 {
1686 uint64_t ret;
1687
1688 if (WARN(latency == 0, "Latency value missing\n"))
1689 return UINT_MAX;
1690
1691 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1692 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1693
1694 return ret;
1695 }
1696
1697 /* latency must be in 0.1us units. */
1698 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1699 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1700 uint32_t latency)
1701 {
1702 uint32_t ret;
1703
1704 if (WARN(latency == 0, "Latency value missing\n"))
1705 return UINT_MAX;
1706
1707 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1708 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1709 ret = DIV_ROUND_UP(ret, 64) + 2;
1710 return ret;
1711 }
1712
1713 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1714 uint8_t bytes_per_pixel)
1715 {
1716 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1717 }
1718
1719 struct ilk_wm_maximums {
1720 uint16_t pri;
1721 uint16_t spr;
1722 uint16_t cur;
1723 uint16_t fbc;
1724 };
1725
1726 /*
1727 * For both WM_PIPE and WM_LP.
1728 * mem_value must be in 0.1us units.
1729 */
1730 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1731 const struct intel_plane_state *pstate,
1732 uint32_t mem_value,
1733 bool is_lp)
1734 {
1735 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1736 uint32_t method1, method2;
1737
1738 if (!cstate->base.active || !pstate->visible)
1739 return 0;
1740
1741 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1742
1743 if (!is_lp)
1744 return method1;
1745
1746 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1747 cstate->base.adjusted_mode.crtc_htotal,
1748 drm_rect_width(&pstate->dst),
1749 bpp,
1750 mem_value);
1751
1752 return min(method1, method2);
1753 }
1754
1755 /*
1756 * For both WM_PIPE and WM_LP.
1757 * mem_value must be in 0.1us units.
1758 */
1759 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1760 const struct intel_plane_state *pstate,
1761 uint32_t mem_value)
1762 {
1763 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1764 uint32_t method1, method2;
1765
1766 if (!cstate->base.active || !pstate->visible)
1767 return 0;
1768
1769 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1770 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1771 cstate->base.adjusted_mode.crtc_htotal,
1772 drm_rect_width(&pstate->dst),
1773 bpp,
1774 mem_value);
1775 return min(method1, method2);
1776 }
1777
1778 /*
1779 * For both WM_PIPE and WM_LP.
1780 * mem_value must be in 0.1us units.
1781 */
1782 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1783 const struct intel_plane_state *pstate,
1784 uint32_t mem_value)
1785 {
1786 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1787
1788 if (!cstate->base.active || !pstate->visible)
1789 return 0;
1790
1791 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1792 cstate->base.adjusted_mode.crtc_htotal,
1793 drm_rect_width(&pstate->dst),
1794 bpp,
1795 mem_value);
1796 }
1797
1798 /* Only for WM_LP. */
1799 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1800 const struct intel_plane_state *pstate,
1801 uint32_t pri_val)
1802 {
1803 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1804
1805 if (!cstate->base.active || !pstate->visible)
1806 return 0;
1807
1808 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1809 }
1810
1811 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1812 {
1813 if (INTEL_INFO(dev)->gen >= 8)
1814 return 3072;
1815 else if (INTEL_INFO(dev)->gen >= 7)
1816 return 768;
1817 else
1818 return 512;
1819 }
1820
1821 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1822 int level, bool is_sprite)
1823 {
1824 if (INTEL_INFO(dev)->gen >= 8)
1825 /* BDW primary/sprite plane watermarks */
1826 return level == 0 ? 255 : 2047;
1827 else if (INTEL_INFO(dev)->gen >= 7)
1828 /* IVB/HSW primary/sprite plane watermarks */
1829 return level == 0 ? 127 : 1023;
1830 else if (!is_sprite)
1831 /* ILK/SNB primary plane watermarks */
1832 return level == 0 ? 127 : 511;
1833 else
1834 /* ILK/SNB sprite plane watermarks */
1835 return level == 0 ? 63 : 255;
1836 }
1837
1838 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1839 int level)
1840 {
1841 if (INTEL_INFO(dev)->gen >= 7)
1842 return level == 0 ? 63 : 255;
1843 else
1844 return level == 0 ? 31 : 63;
1845 }
1846
1847 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1848 {
1849 if (INTEL_INFO(dev)->gen >= 8)
1850 return 31;
1851 else
1852 return 15;
1853 }
1854
1855 /* Calculate the maximum primary/sprite plane watermark */
1856 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1857 int level,
1858 const struct intel_wm_config *config,
1859 enum intel_ddb_partitioning ddb_partitioning,
1860 bool is_sprite)
1861 {
1862 unsigned int fifo_size = ilk_display_fifo_size(dev);
1863
1864 /* if sprites aren't enabled, sprites get nothing */
1865 if (is_sprite && !config->sprites_enabled)
1866 return 0;
1867
1868 /* HSW allows LP1+ watermarks even with multiple pipes */
1869 if (level == 0 || config->num_pipes_active > 1) {
1870 fifo_size /= INTEL_INFO(dev)->num_pipes;
1871
1872 /*
1873 * For some reason the non self refresh
1874 * FIFO size is only half of the self
1875 * refresh FIFO size on ILK/SNB.
1876 */
1877 if (INTEL_INFO(dev)->gen <= 6)
1878 fifo_size /= 2;
1879 }
1880
1881 if (config->sprites_enabled) {
1882 /* level 0 is always calculated with 1:1 split */
1883 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1884 if (is_sprite)
1885 fifo_size *= 5;
1886 fifo_size /= 6;
1887 } else {
1888 fifo_size /= 2;
1889 }
1890 }
1891
1892 /* clamp to max that the registers can hold */
1893 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1894 }
1895
1896 /* Calculate the maximum cursor plane watermark */
1897 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1898 int level,
1899 const struct intel_wm_config *config)
1900 {
1901 /* HSW LP1+ watermarks w/ multiple pipes */
1902 if (level > 0 && config->num_pipes_active > 1)
1903 return 64;
1904
1905 /* otherwise just report max that registers can hold */
1906 return ilk_cursor_wm_reg_max(dev, level);
1907 }
1908
1909 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1910 int level,
1911 const struct intel_wm_config *config,
1912 enum intel_ddb_partitioning ddb_partitioning,
1913 struct ilk_wm_maximums *max)
1914 {
1915 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1916 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1917 max->cur = ilk_cursor_wm_max(dev, level, config);
1918 max->fbc = ilk_fbc_wm_reg_max(dev);
1919 }
1920
1921 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1922 int level,
1923 struct ilk_wm_maximums *max)
1924 {
1925 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1926 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1927 max->cur = ilk_cursor_wm_reg_max(dev, level);
1928 max->fbc = ilk_fbc_wm_reg_max(dev);
1929 }
1930
1931 static bool ilk_validate_wm_level(int level,
1932 const struct ilk_wm_maximums *max,
1933 struct intel_wm_level *result)
1934 {
1935 bool ret;
1936
1937 /* already determined to be invalid? */
1938 if (!result->enable)
1939 return false;
1940
1941 result->enable = result->pri_val <= max->pri &&
1942 result->spr_val <= max->spr &&
1943 result->cur_val <= max->cur;
1944
1945 ret = result->enable;
1946
1947 /*
1948 * HACK until we can pre-compute everything,
1949 * and thus fail gracefully if LP0 watermarks
1950 * are exceeded...
1951 */
1952 if (level == 0 && !result->enable) {
1953 if (result->pri_val > max->pri)
1954 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1955 level, result->pri_val, max->pri);
1956 if (result->spr_val > max->spr)
1957 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1958 level, result->spr_val, max->spr);
1959 if (result->cur_val > max->cur)
1960 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1961 level, result->cur_val, max->cur);
1962
1963 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1964 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1965 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1966 result->enable = true;
1967 }
1968
1969 return ret;
1970 }
1971
1972 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1973 const struct intel_crtc *intel_crtc,
1974 int level,
1975 struct intel_crtc_state *cstate,
1976 struct intel_plane_state *pristate,
1977 struct intel_plane_state *sprstate,
1978 struct intel_plane_state *curstate,
1979 struct intel_wm_level *result)
1980 {
1981 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1982 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1983 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1984
1985 /* WM1+ latency values stored in 0.5us units */
1986 if (level > 0) {
1987 pri_latency *= 5;
1988 spr_latency *= 5;
1989 cur_latency *= 5;
1990 }
1991
1992 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
1993 pri_latency, level);
1994 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
1995 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
1996 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
1997 result->enable = true;
1998 }
1999
2000 static uint32_t
2001 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2002 {
2003 struct drm_i915_private *dev_priv = dev->dev_private;
2004 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2005 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2006 u32 linetime, ips_linetime;
2007
2008 if (!intel_crtc->active)
2009 return 0;
2010
2011 /* The WM are computed with base on how long it takes to fill a single
2012 * row at the given clock rate, multiplied by 8.
2013 * */
2014 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2015 adjusted_mode->crtc_clock);
2016 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2017 dev_priv->cdclk_freq);
2018
2019 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2020 PIPE_WM_LINETIME_TIME(linetime);
2021 }
2022
2023 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2024 {
2025 struct drm_i915_private *dev_priv = dev->dev_private;
2026
2027 if (IS_GEN9(dev)) {
2028 uint32_t val;
2029 int ret, i;
2030 int level, max_level = ilk_wm_max_level(dev);
2031
2032 /* read the first set of memory latencies[0:3] */
2033 val = 0; /* data0 to be programmed to 0 for first set */
2034 mutex_lock(&dev_priv->rps.hw_lock);
2035 ret = sandybridge_pcode_read(dev_priv,
2036 GEN9_PCODE_READ_MEM_LATENCY,
2037 &val);
2038 mutex_unlock(&dev_priv->rps.hw_lock);
2039
2040 if (ret) {
2041 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2042 return;
2043 }
2044
2045 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2046 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2047 GEN9_MEM_LATENCY_LEVEL_MASK;
2048 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2049 GEN9_MEM_LATENCY_LEVEL_MASK;
2050 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2051 GEN9_MEM_LATENCY_LEVEL_MASK;
2052
2053 /* read the second set of memory latencies[4:7] */
2054 val = 1; /* data0 to be programmed to 1 for second set */
2055 mutex_lock(&dev_priv->rps.hw_lock);
2056 ret = sandybridge_pcode_read(dev_priv,
2057 GEN9_PCODE_READ_MEM_LATENCY,
2058 &val);
2059 mutex_unlock(&dev_priv->rps.hw_lock);
2060 if (ret) {
2061 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2062 return;
2063 }
2064
2065 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2066 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2067 GEN9_MEM_LATENCY_LEVEL_MASK;
2068 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2069 GEN9_MEM_LATENCY_LEVEL_MASK;
2070 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2071 GEN9_MEM_LATENCY_LEVEL_MASK;
2072
2073 /*
2074 * WaWmMemoryReadLatency:skl
2075 *
2076 * punit doesn't take into account the read latency so we need
2077 * to add 2us to the various latency levels we retrieve from
2078 * the punit.
2079 * - W0 is a bit special in that it's the only level that
2080 * can't be disabled if we want to have display working, so
2081 * we always add 2us there.
2082 * - For levels >=1, punit returns 0us latency when they are
2083 * disabled, so we respect that and don't add 2us then
2084 *
2085 * Additionally, if a level n (n > 1) has a 0us latency, all
2086 * levels m (m >= n) need to be disabled. We make sure to
2087 * sanitize the values out of the punit to satisfy this
2088 * requirement.
2089 */
2090 wm[0] += 2;
2091 for (level = 1; level <= max_level; level++)
2092 if (wm[level] != 0)
2093 wm[level] += 2;
2094 else {
2095 for (i = level + 1; i <= max_level; i++)
2096 wm[i] = 0;
2097
2098 break;
2099 }
2100 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2101 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2102
2103 wm[0] = (sskpd >> 56) & 0xFF;
2104 if (wm[0] == 0)
2105 wm[0] = sskpd & 0xF;
2106 wm[1] = (sskpd >> 4) & 0xFF;
2107 wm[2] = (sskpd >> 12) & 0xFF;
2108 wm[3] = (sskpd >> 20) & 0x1FF;
2109 wm[4] = (sskpd >> 32) & 0x1FF;
2110 } else if (INTEL_INFO(dev)->gen >= 6) {
2111 uint32_t sskpd = I915_READ(MCH_SSKPD);
2112
2113 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2114 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2115 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2116 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2117 } else if (INTEL_INFO(dev)->gen >= 5) {
2118 uint32_t mltr = I915_READ(MLTR_ILK);
2119
2120 /* ILK primary LP0 latency is 700 ns */
2121 wm[0] = 7;
2122 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2123 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2124 }
2125 }
2126
2127 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2128 {
2129 /* ILK sprite LP0 latency is 1300 ns */
2130 if (INTEL_INFO(dev)->gen == 5)
2131 wm[0] = 13;
2132 }
2133
2134 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2135 {
2136 /* ILK cursor LP0 latency is 1300 ns */
2137 if (INTEL_INFO(dev)->gen == 5)
2138 wm[0] = 13;
2139
2140 /* WaDoubleCursorLP3Latency:ivb */
2141 if (IS_IVYBRIDGE(dev))
2142 wm[3] *= 2;
2143 }
2144
2145 int ilk_wm_max_level(const struct drm_device *dev)
2146 {
2147 /* how many WM levels are we expecting */
2148 if (INTEL_INFO(dev)->gen >= 9)
2149 return 7;
2150 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2151 return 4;
2152 else if (INTEL_INFO(dev)->gen >= 6)
2153 return 3;
2154 else
2155 return 2;
2156 }
2157
2158 static void intel_print_wm_latency(struct drm_device *dev,
2159 const char *name,
2160 const uint16_t wm[8])
2161 {
2162 int level, max_level = ilk_wm_max_level(dev);
2163
2164 for (level = 0; level <= max_level; level++) {
2165 unsigned int latency = wm[level];
2166
2167 if (latency == 0) {
2168 DRM_ERROR("%s WM%d latency not provided\n",
2169 name, level);
2170 continue;
2171 }
2172
2173 /*
2174 * - latencies are in us on gen9.
2175 * - before then, WM1+ latency values are in 0.5us units
2176 */
2177 if (IS_GEN9(dev))
2178 latency *= 10;
2179 else if (level > 0)
2180 latency *= 5;
2181
2182 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2183 name, level, wm[level],
2184 latency / 10, latency % 10);
2185 }
2186 }
2187
2188 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2189 uint16_t wm[5], uint16_t min)
2190 {
2191 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2192
2193 if (wm[0] >= min)
2194 return false;
2195
2196 wm[0] = max(wm[0], min);
2197 for (level = 1; level <= max_level; level++)
2198 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2199
2200 return true;
2201 }
2202
2203 static void snb_wm_latency_quirk(struct drm_device *dev)
2204 {
2205 struct drm_i915_private *dev_priv = dev->dev_private;
2206 bool changed;
2207
2208 /*
2209 * The BIOS provided WM memory latency values are often
2210 * inadequate for high resolution displays. Adjust them.
2211 */
2212 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2213 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2214 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2215
2216 if (!changed)
2217 return;
2218
2219 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2220 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2221 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2222 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2223 }
2224
2225 static void ilk_setup_wm_latency(struct drm_device *dev)
2226 {
2227 struct drm_i915_private *dev_priv = dev->dev_private;
2228
2229 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2230
2231 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2232 sizeof(dev_priv->wm.pri_latency));
2233 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2234 sizeof(dev_priv->wm.pri_latency));
2235
2236 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2237 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2238
2239 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2240 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2241 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2242
2243 if (IS_GEN6(dev))
2244 snb_wm_latency_quirk(dev);
2245 }
2246
2247 static void skl_setup_wm_latency(struct drm_device *dev)
2248 {
2249 struct drm_i915_private *dev_priv = dev->dev_private;
2250
2251 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2252 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2253 }
2254
2255 /* Compute new watermarks for the pipe */
2256 static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2257 struct drm_atomic_state *state)
2258 {
2259 struct intel_pipe_wm *pipe_wm;
2260 struct drm_device *dev = intel_crtc->base.dev;
2261 const struct drm_i915_private *dev_priv = dev->dev_private;
2262 struct intel_crtc_state *cstate = NULL;
2263 struct intel_plane *intel_plane;
2264 struct drm_plane_state *ps;
2265 struct intel_plane_state *pristate = NULL;
2266 struct intel_plane_state *sprstate = NULL;
2267 struct intel_plane_state *curstate = NULL;
2268 int level, max_level = ilk_wm_max_level(dev);
2269 /* LP0 watermark maximums depend on this pipe alone */
2270 struct intel_wm_config config = {
2271 .num_pipes_active = 1,
2272 };
2273 struct ilk_wm_maximums max;
2274
2275 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2276 if (IS_ERR(cstate))
2277 return PTR_ERR(cstate);
2278
2279 pipe_wm = &cstate->wm.optimal.ilk;
2280
2281 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2282 ps = drm_atomic_get_plane_state(state,
2283 &intel_plane->base);
2284 if (IS_ERR(ps))
2285 return PTR_ERR(ps);
2286
2287 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2288 pristate = to_intel_plane_state(ps);
2289 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2290 sprstate = to_intel_plane_state(ps);
2291 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2292 curstate = to_intel_plane_state(ps);
2293 }
2294
2295 config.sprites_enabled = sprstate->visible;
2296 config.sprites_scaled = sprstate->visible &&
2297 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2298 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2299
2300 pipe_wm->pipe_enabled = cstate->base.active;
2301 pipe_wm->sprites_enabled = config.sprites_enabled;
2302 pipe_wm->sprites_scaled = config.sprites_scaled;
2303
2304 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2305 if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2306 max_level = 1;
2307
2308 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2309 if (config.sprites_scaled)
2310 max_level = 0;
2311
2312 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2313 pristate, sprstate, curstate, &pipe_wm->wm[0]);
2314
2315 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2316 pipe_wm->linetime = hsw_compute_linetime_wm(dev,
2317 &intel_crtc->base);
2318
2319 /* LP0 watermarks always use 1/2 DDB partitioning */
2320 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2321
2322 /* At least LP0 must be valid */
2323 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2324 return -EINVAL;
2325
2326 ilk_compute_wm_reg_maximums(dev, 1, &max);
2327
2328 for (level = 1; level <= max_level; level++) {
2329 struct intel_wm_level wm = {};
2330
2331 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2332 pristate, sprstate, curstate, &wm);
2333
2334 /*
2335 * Disable any watermark level that exceeds the
2336 * register maximums since such watermarks are
2337 * always invalid.
2338 */
2339 if (!ilk_validate_wm_level(level, &max, &wm))
2340 break;
2341
2342 pipe_wm->wm[level] = wm;
2343 }
2344
2345 return 0;
2346 }
2347
2348 /*
2349 * Merge the watermarks from all active pipes for a specific level.
2350 */
2351 static void ilk_merge_wm_level(struct drm_device *dev,
2352 int level,
2353 struct intel_wm_level *ret_wm)
2354 {
2355 const struct intel_crtc *intel_crtc;
2356
2357 ret_wm->enable = true;
2358
2359 for_each_intel_crtc(dev, intel_crtc) {
2360 const struct intel_crtc_state *cstate =
2361 to_intel_crtc_state(intel_crtc->base.state);
2362 const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2363 const struct intel_wm_level *wm = &active->wm[level];
2364
2365 if (!active->pipe_enabled)
2366 continue;
2367
2368 /*
2369 * The watermark values may have been used in the past,
2370 * so we must maintain them in the registers for some
2371 * time even if the level is now disabled.
2372 */
2373 if (!wm->enable)
2374 ret_wm->enable = false;
2375
2376 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2377 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2378 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2379 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2380 }
2381 }
2382
2383 /*
2384 * Merge all low power watermarks for all active pipes.
2385 */
2386 static void ilk_wm_merge(struct drm_device *dev,
2387 const struct intel_wm_config *config,
2388 const struct ilk_wm_maximums *max,
2389 struct intel_pipe_wm *merged)
2390 {
2391 struct drm_i915_private *dev_priv = dev->dev_private;
2392 int level, max_level = ilk_wm_max_level(dev);
2393 int last_enabled_level = max_level;
2394
2395 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2396 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2397 config->num_pipes_active > 1)
2398 return;
2399
2400 /* ILK: FBC WM must be disabled always */
2401 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2402
2403 /* merge each WM1+ level */
2404 for (level = 1; level <= max_level; level++) {
2405 struct intel_wm_level *wm = &merged->wm[level];
2406
2407 ilk_merge_wm_level(dev, level, wm);
2408
2409 if (level > last_enabled_level)
2410 wm->enable = false;
2411 else if (!ilk_validate_wm_level(level, max, wm))
2412 /* make sure all following levels get disabled */
2413 last_enabled_level = level - 1;
2414
2415 /*
2416 * The spec says it is preferred to disable
2417 * FBC WMs instead of disabling a WM level.
2418 */
2419 if (wm->fbc_val > max->fbc) {
2420 if (wm->enable)
2421 merged->fbc_wm_enabled = false;
2422 wm->fbc_val = 0;
2423 }
2424 }
2425
2426 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2427 /*
2428 * FIXME this is racy. FBC might get enabled later.
2429 * What we should check here is whether FBC can be
2430 * enabled sometime later.
2431 */
2432 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2433 intel_fbc_is_active(dev_priv)) {
2434 for (level = 2; level <= max_level; level++) {
2435 struct intel_wm_level *wm = &merged->wm[level];
2436
2437 wm->enable = false;
2438 }
2439 }
2440 }
2441
2442 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2443 {
2444 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2445 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2446 }
2447
2448 /* The value we need to program into the WM_LPx latency field */
2449 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2450 {
2451 struct drm_i915_private *dev_priv = dev->dev_private;
2452
2453 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2454 return 2 * level;
2455 else
2456 return dev_priv->wm.pri_latency[level];
2457 }
2458
2459 static void ilk_compute_wm_results(struct drm_device *dev,
2460 const struct intel_pipe_wm *merged,
2461 enum intel_ddb_partitioning partitioning,
2462 struct ilk_wm_values *results)
2463 {
2464 struct intel_crtc *intel_crtc;
2465 int level, wm_lp;
2466
2467 results->enable_fbc_wm = merged->fbc_wm_enabled;
2468 results->partitioning = partitioning;
2469
2470 /* LP1+ register values */
2471 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2472 const struct intel_wm_level *r;
2473
2474 level = ilk_wm_lp_to_level(wm_lp, merged);
2475
2476 r = &merged->wm[level];
2477
2478 /*
2479 * Maintain the watermark values even if the level is
2480 * disabled. Doing otherwise could cause underruns.
2481 */
2482 results->wm_lp[wm_lp - 1] =
2483 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2484 (r->pri_val << WM1_LP_SR_SHIFT) |
2485 r->cur_val;
2486
2487 if (r->enable)
2488 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2489
2490 if (INTEL_INFO(dev)->gen >= 8)
2491 results->wm_lp[wm_lp - 1] |=
2492 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2493 else
2494 results->wm_lp[wm_lp - 1] |=
2495 r->fbc_val << WM1_LP_FBC_SHIFT;
2496
2497 /*
2498 * Always set WM1S_LP_EN when spr_val != 0, even if the
2499 * level is disabled. Doing otherwise could cause underruns.
2500 */
2501 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2502 WARN_ON(wm_lp != 1);
2503 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2504 } else
2505 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2506 }
2507
2508 /* LP0 register values */
2509 for_each_intel_crtc(dev, intel_crtc) {
2510 const struct intel_crtc_state *cstate =
2511 to_intel_crtc_state(intel_crtc->base.state);
2512 enum pipe pipe = intel_crtc->pipe;
2513 const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2514
2515 if (WARN_ON(!r->enable))
2516 continue;
2517
2518 results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2519
2520 results->wm_pipe[pipe] =
2521 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2522 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2523 r->cur_val;
2524 }
2525 }
2526
2527 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2528 * case both are at the same level. Prefer r1 in case they're the same. */
2529 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2530 struct intel_pipe_wm *r1,
2531 struct intel_pipe_wm *r2)
2532 {
2533 int level, max_level = ilk_wm_max_level(dev);
2534 int level1 = 0, level2 = 0;
2535
2536 for (level = 1; level <= max_level; level++) {
2537 if (r1->wm[level].enable)
2538 level1 = level;
2539 if (r2->wm[level].enable)
2540 level2 = level;
2541 }
2542
2543 if (level1 == level2) {
2544 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2545 return r2;
2546 else
2547 return r1;
2548 } else if (level1 > level2) {
2549 return r1;
2550 } else {
2551 return r2;
2552 }
2553 }
2554
2555 /* dirty bits used to track which watermarks need changes */
2556 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2557 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2558 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2559 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2560 #define WM_DIRTY_FBC (1 << 24)
2561 #define WM_DIRTY_DDB (1 << 25)
2562
2563 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2564 const struct ilk_wm_values *old,
2565 const struct ilk_wm_values *new)
2566 {
2567 unsigned int dirty = 0;
2568 enum pipe pipe;
2569 int wm_lp;
2570
2571 for_each_pipe(dev_priv, pipe) {
2572 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2573 dirty |= WM_DIRTY_LINETIME(pipe);
2574 /* Must disable LP1+ watermarks too */
2575 dirty |= WM_DIRTY_LP_ALL;
2576 }
2577
2578 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2579 dirty |= WM_DIRTY_PIPE(pipe);
2580 /* Must disable LP1+ watermarks too */
2581 dirty |= WM_DIRTY_LP_ALL;
2582 }
2583 }
2584
2585 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2586 dirty |= WM_DIRTY_FBC;
2587 /* Must disable LP1+ watermarks too */
2588 dirty |= WM_DIRTY_LP_ALL;
2589 }
2590
2591 if (old->partitioning != new->partitioning) {
2592 dirty |= WM_DIRTY_DDB;
2593 /* Must disable LP1+ watermarks too */
2594 dirty |= WM_DIRTY_LP_ALL;
2595 }
2596
2597 /* LP1+ watermarks already deemed dirty, no need to continue */
2598 if (dirty & WM_DIRTY_LP_ALL)
2599 return dirty;
2600
2601 /* Find the lowest numbered LP1+ watermark in need of an update... */
2602 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2603 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2604 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2605 break;
2606 }
2607
2608 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2609 for (; wm_lp <= 3; wm_lp++)
2610 dirty |= WM_DIRTY_LP(wm_lp);
2611
2612 return dirty;
2613 }
2614
2615 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2616 unsigned int dirty)
2617 {
2618 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2619 bool changed = false;
2620
2621 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2622 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2623 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2624 changed = true;
2625 }
2626 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2627 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2628 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2629 changed = true;
2630 }
2631 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2632 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2633 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2634 changed = true;
2635 }
2636
2637 /*
2638 * Don't touch WM1S_LP_EN here.
2639 * Doing so could cause underruns.
2640 */
2641
2642 return changed;
2643 }
2644
2645 /*
2646 * The spec says we shouldn't write when we don't need, because every write
2647 * causes WMs to be re-evaluated, expending some power.
2648 */
2649 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2650 struct ilk_wm_values *results)
2651 {
2652 struct drm_device *dev = dev_priv->dev;
2653 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2654 unsigned int dirty;
2655 uint32_t val;
2656
2657 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2658 if (!dirty)
2659 return;
2660
2661 _ilk_disable_lp_wm(dev_priv, dirty);
2662
2663 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2664 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2665 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2666 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2667 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2668 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2669
2670 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2671 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2672 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2673 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2674 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2675 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2676
2677 if (dirty & WM_DIRTY_DDB) {
2678 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2679 val = I915_READ(WM_MISC);
2680 if (results->partitioning == INTEL_DDB_PART_1_2)
2681 val &= ~WM_MISC_DATA_PARTITION_5_6;
2682 else
2683 val |= WM_MISC_DATA_PARTITION_5_6;
2684 I915_WRITE(WM_MISC, val);
2685 } else {
2686 val = I915_READ(DISP_ARB_CTL2);
2687 if (results->partitioning == INTEL_DDB_PART_1_2)
2688 val &= ~DISP_DATA_PARTITION_5_6;
2689 else
2690 val |= DISP_DATA_PARTITION_5_6;
2691 I915_WRITE(DISP_ARB_CTL2, val);
2692 }
2693 }
2694
2695 if (dirty & WM_DIRTY_FBC) {
2696 val = I915_READ(DISP_ARB_CTL);
2697 if (results->enable_fbc_wm)
2698 val &= ~DISP_FBC_WM_DIS;
2699 else
2700 val |= DISP_FBC_WM_DIS;
2701 I915_WRITE(DISP_ARB_CTL, val);
2702 }
2703
2704 if (dirty & WM_DIRTY_LP(1) &&
2705 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2706 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2707
2708 if (INTEL_INFO(dev)->gen >= 7) {
2709 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2710 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2711 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2712 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2713 }
2714
2715 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2716 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2717 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2718 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2719 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2720 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2721
2722 dev_priv->wm.hw = *results;
2723 }
2724
2725 static bool ilk_disable_lp_wm(struct drm_device *dev)
2726 {
2727 struct drm_i915_private *dev_priv = dev->dev_private;
2728
2729 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2730 }
2731
2732 /*
2733 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2734 * different active planes.
2735 */
2736
2737 #define SKL_DDB_SIZE 896 /* in blocks */
2738 #define BXT_DDB_SIZE 512
2739
2740 /*
2741 * Return the index of a plane in the SKL DDB and wm result arrays. Primary
2742 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2743 * other universal planes are in indices 1..n. Note that this may leave unused
2744 * indices between the top "sprite" plane and the cursor.
2745 */
2746 static int
2747 skl_wm_plane_id(const struct intel_plane *plane)
2748 {
2749 switch (plane->base.type) {
2750 case DRM_PLANE_TYPE_PRIMARY:
2751 return 0;
2752 case DRM_PLANE_TYPE_CURSOR:
2753 return PLANE_CURSOR;
2754 case DRM_PLANE_TYPE_OVERLAY:
2755 return plane->plane + 1;
2756 default:
2757 MISSING_CASE(plane->base.type);
2758 return plane->plane;
2759 }
2760 }
2761
2762 static void
2763 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2764 const struct intel_crtc_state *cstate,
2765 const struct intel_wm_config *config,
2766 struct skl_ddb_entry *alloc /* out */)
2767 {
2768 struct drm_crtc *for_crtc = cstate->base.crtc;
2769 struct drm_crtc *crtc;
2770 unsigned int pipe_size, ddb_size;
2771 int nth_active_pipe;
2772
2773 if (!cstate->base.active) {
2774 alloc->start = 0;
2775 alloc->end = 0;
2776 return;
2777 }
2778
2779 if (IS_BROXTON(dev))
2780 ddb_size = BXT_DDB_SIZE;
2781 else
2782 ddb_size = SKL_DDB_SIZE;
2783
2784 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2785
2786 nth_active_pipe = 0;
2787 for_each_crtc(dev, crtc) {
2788 if (!to_intel_crtc(crtc)->active)
2789 continue;
2790
2791 if (crtc == for_crtc)
2792 break;
2793
2794 nth_active_pipe++;
2795 }
2796
2797 pipe_size = ddb_size / config->num_pipes_active;
2798 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2799 alloc->end = alloc->start + pipe_size;
2800 }
2801
2802 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2803 {
2804 if (config->num_pipes_active == 1)
2805 return 32;
2806
2807 return 8;
2808 }
2809
2810 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2811 {
2812 entry->start = reg & 0x3ff;
2813 entry->end = (reg >> 16) & 0x3ff;
2814 if (entry->end)
2815 entry->end += 1;
2816 }
2817
2818 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2819 struct skl_ddb_allocation *ddb /* out */)
2820 {
2821 enum pipe pipe;
2822 int plane;
2823 u32 val;
2824
2825 memset(ddb, 0, sizeof(*ddb));
2826
2827 for_each_pipe(dev_priv, pipe) {
2828 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
2829 continue;
2830
2831 for_each_plane(dev_priv, pipe, plane) {
2832 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2833 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2834 val);
2835 }
2836
2837 val = I915_READ(CUR_BUF_CFG(pipe));
2838 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2839 val);
2840 }
2841 }
2842
2843 static unsigned int
2844 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2845 const struct drm_plane_state *pstate,
2846 int y)
2847 {
2848 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2849 struct drm_framebuffer *fb = pstate->fb;
2850
2851 /* for planar format */
2852 if (fb->pixel_format == DRM_FORMAT_NV12) {
2853 if (y) /* y-plane data rate */
2854 return intel_crtc->config->pipe_src_w *
2855 intel_crtc->config->pipe_src_h *
2856 drm_format_plane_cpp(fb->pixel_format, 0);
2857 else /* uv-plane data rate */
2858 return (intel_crtc->config->pipe_src_w/2) *
2859 (intel_crtc->config->pipe_src_h/2) *
2860 drm_format_plane_cpp(fb->pixel_format, 1);
2861 }
2862
2863 /* for packed formats */
2864 return intel_crtc->config->pipe_src_w *
2865 intel_crtc->config->pipe_src_h *
2866 drm_format_plane_cpp(fb->pixel_format, 0);
2867 }
2868
2869 /*
2870 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2871 * a 8192x4096@32bpp framebuffer:
2872 * 3 * 4096 * 8192 * 4 < 2^32
2873 */
2874 static unsigned int
2875 skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2876 {
2877 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2878 struct drm_device *dev = intel_crtc->base.dev;
2879 const struct intel_plane *intel_plane;
2880 unsigned int total_data_rate = 0;
2881
2882 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2883 const struct drm_plane_state *pstate = intel_plane->base.state;
2884
2885 if (pstate->fb == NULL)
2886 continue;
2887
2888 if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2889 continue;
2890
2891 /* packed/uv */
2892 total_data_rate += skl_plane_relative_data_rate(cstate,
2893 pstate,
2894 0);
2895
2896 if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2897 /* y-plane */
2898 total_data_rate += skl_plane_relative_data_rate(cstate,
2899 pstate,
2900 1);
2901 }
2902
2903 return total_data_rate;
2904 }
2905
2906 static void
2907 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2908 struct skl_ddb_allocation *ddb /* out */)
2909 {
2910 struct drm_crtc *crtc = cstate->base.crtc;
2911 struct drm_device *dev = crtc->dev;
2912 struct drm_i915_private *dev_priv = to_i915(dev);
2913 struct intel_wm_config *config = &dev_priv->wm.config;
2914 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2915 struct intel_plane *intel_plane;
2916 enum pipe pipe = intel_crtc->pipe;
2917 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2918 uint16_t alloc_size, start, cursor_blocks;
2919 uint16_t minimum[I915_MAX_PLANES];
2920 uint16_t y_minimum[I915_MAX_PLANES];
2921 unsigned int total_data_rate;
2922
2923 skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2924 alloc_size = skl_ddb_entry_size(alloc);
2925 if (alloc_size == 0) {
2926 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2927 memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2928 sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2929 return;
2930 }
2931
2932 cursor_blocks = skl_cursor_allocation(config);
2933 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2934 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2935
2936 alloc_size -= cursor_blocks;
2937 alloc->end -= cursor_blocks;
2938
2939 /* 1. Allocate the mininum required blocks for each active plane */
2940 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2941 struct drm_plane *plane = &intel_plane->base;
2942 struct drm_framebuffer *fb = plane->state->fb;
2943 int id = skl_wm_plane_id(intel_plane);
2944
2945 if (fb == NULL)
2946 continue;
2947 if (plane->type == DRM_PLANE_TYPE_CURSOR)
2948 continue;
2949
2950 minimum[id] = 8;
2951 alloc_size -= minimum[id];
2952 y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2953 alloc_size -= y_minimum[id];
2954 }
2955
2956 /*
2957 * 2. Distribute the remaining space in proportion to the amount of
2958 * data each plane needs to fetch from memory.
2959 *
2960 * FIXME: we may not allocate every single block here.
2961 */
2962 total_data_rate = skl_get_total_relative_data_rate(cstate);
2963
2964 start = alloc->start;
2965 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2966 struct drm_plane *plane = &intel_plane->base;
2967 struct drm_plane_state *pstate = intel_plane->base.state;
2968 unsigned int data_rate, y_data_rate;
2969 uint16_t plane_blocks, y_plane_blocks = 0;
2970 int id = skl_wm_plane_id(intel_plane);
2971
2972 if (pstate->fb == NULL)
2973 continue;
2974 if (plane->type == DRM_PLANE_TYPE_CURSOR)
2975 continue;
2976
2977 data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
2978
2979 /*
2980 * allocation for (packed formats) or (uv-plane part of planar format):
2981 * promote the expression to 64 bits to avoid overflowing, the
2982 * result is < available as data_rate / total_data_rate < 1
2983 */
2984 plane_blocks = minimum[id];
2985 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2986 total_data_rate);
2987
2988 ddb->plane[pipe][id].start = start;
2989 ddb->plane[pipe][id].end = start + plane_blocks;
2990
2991 start += plane_blocks;
2992
2993 /*
2994 * allocation for y_plane part of planar format:
2995 */
2996 if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
2997 y_data_rate = skl_plane_relative_data_rate(cstate,
2998 pstate,
2999 1);
3000 y_plane_blocks = y_minimum[id];
3001 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3002 total_data_rate);
3003
3004 ddb->y_plane[pipe][id].start = start;
3005 ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3006
3007 start += y_plane_blocks;
3008 }
3009
3010 }
3011
3012 }
3013
3014 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3015 {
3016 /* TODO: Take into account the scalers once we support them */
3017 return config->base.adjusted_mode.crtc_clock;
3018 }
3019
3020 /*
3021 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3022 * for the read latency) and bytes_per_pixel should always be <= 8, so that
3023 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3024 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3025 */
3026 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3027 uint32_t latency)
3028 {
3029 uint32_t wm_intermediate_val, ret;
3030
3031 if (latency == 0)
3032 return UINT_MAX;
3033
3034 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3035 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3036
3037 return ret;
3038 }
3039
3040 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3041 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3042 uint64_t tiling, uint32_t latency)
3043 {
3044 uint32_t ret;
3045 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3046 uint32_t wm_intermediate_val;
3047
3048 if (latency == 0)
3049 return UINT_MAX;
3050
3051 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3052
3053 if (tiling == I915_FORMAT_MOD_Y_TILED ||
3054 tiling == I915_FORMAT_MOD_Yf_TILED) {
3055 plane_bytes_per_line *= 4;
3056 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3057 plane_blocks_per_line /= 4;
3058 } else {
3059 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3060 }
3061
3062 wm_intermediate_val = latency * pixel_rate;
3063 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3064 plane_blocks_per_line;
3065
3066 return ret;
3067 }
3068
3069 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3070 const struct intel_crtc *intel_crtc)
3071 {
3072 struct drm_device *dev = intel_crtc->base.dev;
3073 struct drm_i915_private *dev_priv = dev->dev_private;
3074 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3075
3076 /*
3077 * If ddb allocation of pipes changed, it may require recalculation of
3078 * watermarks
3079 */
3080 if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3081 return true;
3082
3083 return false;
3084 }
3085
3086 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3087 struct intel_crtc_state *cstate,
3088 struct intel_plane *intel_plane,
3089 uint16_t ddb_allocation,
3090 int level,
3091 uint16_t *out_blocks, /* out */
3092 uint8_t *out_lines /* out */)
3093 {
3094 struct drm_plane *plane = &intel_plane->base;
3095 struct drm_framebuffer *fb = plane->state->fb;
3096 uint32_t latency = dev_priv->wm.skl_latency[level];
3097 uint32_t method1, method2;
3098 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3099 uint32_t res_blocks, res_lines;
3100 uint32_t selected_result;
3101 uint8_t bytes_per_pixel;
3102
3103 if (latency == 0 || !cstate->base.active || !fb)
3104 return false;
3105
3106 bytes_per_pixel = drm_format_plane_cpp(fb->pixel_format, 0);
3107 method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3108 bytes_per_pixel,
3109 latency);
3110 method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3111 cstate->base.adjusted_mode.crtc_htotal,
3112 cstate->pipe_src_w,
3113 bytes_per_pixel,
3114 fb->modifier[0],
3115 latency);
3116
3117 plane_bytes_per_line = cstate->pipe_src_w * bytes_per_pixel;
3118 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3119
3120 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3121 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3122 uint32_t min_scanlines = 4;
3123 uint32_t y_tile_minimum;
3124 if (intel_rotation_90_or_270(plane->state->rotation)) {
3125 int bpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3126 drm_format_plane_cpp(fb->pixel_format, 1) :
3127 drm_format_plane_cpp(fb->pixel_format, 0);
3128
3129 switch (bpp) {
3130 case 1:
3131 min_scanlines = 16;
3132 break;
3133 case 2:
3134 min_scanlines = 8;
3135 break;
3136 case 8:
3137 WARN(1, "Unsupported pixel depth for rotation");
3138 }
3139 }
3140 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3141 selected_result = max(method2, y_tile_minimum);
3142 } else {
3143 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3144 selected_result = min(method1, method2);
3145 else
3146 selected_result = method1;
3147 }
3148
3149 res_blocks = selected_result + 1;
3150 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3151
3152 if (level >= 1 && level <= 7) {
3153 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3154 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3155 res_lines += 4;
3156 else
3157 res_blocks++;
3158 }
3159
3160 if (res_blocks >= ddb_allocation || res_lines > 31)
3161 return false;
3162
3163 *out_blocks = res_blocks;
3164 *out_lines = res_lines;
3165
3166 return true;
3167 }
3168
3169 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3170 struct skl_ddb_allocation *ddb,
3171 struct intel_crtc_state *cstate,
3172 int level,
3173 struct skl_wm_level *result)
3174 {
3175 struct drm_device *dev = dev_priv->dev;
3176 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3177 struct intel_plane *intel_plane;
3178 uint16_t ddb_blocks;
3179 enum pipe pipe = intel_crtc->pipe;
3180
3181 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3182 int i = skl_wm_plane_id(intel_plane);
3183
3184 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3185
3186 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3187 cstate,
3188 intel_plane,
3189 ddb_blocks,
3190 level,
3191 &result->plane_res_b[i],
3192 &result->plane_res_l[i]);
3193 }
3194 }
3195
3196 static uint32_t
3197 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3198 {
3199 if (!cstate->base.active)
3200 return 0;
3201
3202 if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3203 return 0;
3204
3205 return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3206 skl_pipe_pixel_rate(cstate));
3207 }
3208
3209 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3210 struct skl_wm_level *trans_wm /* out */)
3211 {
3212 struct drm_crtc *crtc = cstate->base.crtc;
3213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3214 struct intel_plane *intel_plane;
3215
3216 if (!cstate->base.active)
3217 return;
3218
3219 /* Until we know more, just disable transition WMs */
3220 for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3221 int i = skl_wm_plane_id(intel_plane);
3222
3223 trans_wm->plane_en[i] = false;
3224 }
3225 }
3226
3227 static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3228 struct skl_ddb_allocation *ddb,
3229 struct skl_pipe_wm *pipe_wm)
3230 {
3231 struct drm_device *dev = cstate->base.crtc->dev;
3232 const struct drm_i915_private *dev_priv = dev->dev_private;
3233 int level, max_level = ilk_wm_max_level(dev);
3234
3235 for (level = 0; level <= max_level; level++) {
3236 skl_compute_wm_level(dev_priv, ddb, cstate,
3237 level, &pipe_wm->wm[level]);
3238 }
3239 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3240
3241 skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3242 }
3243
3244 static void skl_compute_wm_results(struct drm_device *dev,
3245 struct skl_pipe_wm *p_wm,
3246 struct skl_wm_values *r,
3247 struct intel_crtc *intel_crtc)
3248 {
3249 int level, max_level = ilk_wm_max_level(dev);
3250 enum pipe pipe = intel_crtc->pipe;
3251 uint32_t temp;
3252 int i;
3253
3254 for (level = 0; level <= max_level; level++) {
3255 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3256 temp = 0;
3257
3258 temp |= p_wm->wm[level].plane_res_l[i] <<
3259 PLANE_WM_LINES_SHIFT;
3260 temp |= p_wm->wm[level].plane_res_b[i];
3261 if (p_wm->wm[level].plane_en[i])
3262 temp |= PLANE_WM_EN;
3263
3264 r->plane[pipe][i][level] = temp;
3265 }
3266
3267 temp = 0;
3268
3269 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3270 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3271
3272 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3273 temp |= PLANE_WM_EN;
3274
3275 r->plane[pipe][PLANE_CURSOR][level] = temp;
3276
3277 }
3278
3279 /* transition WMs */
3280 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3281 temp = 0;
3282 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3283 temp |= p_wm->trans_wm.plane_res_b[i];
3284 if (p_wm->trans_wm.plane_en[i])
3285 temp |= PLANE_WM_EN;
3286
3287 r->plane_trans[pipe][i] = temp;
3288 }
3289
3290 temp = 0;
3291 temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3292 temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3293 if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3294 temp |= PLANE_WM_EN;
3295
3296 r->plane_trans[pipe][PLANE_CURSOR] = temp;
3297
3298 r->wm_linetime[pipe] = p_wm->linetime;
3299 }
3300
3301 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3302 i915_reg_t reg,
3303 const struct skl_ddb_entry *entry)
3304 {
3305 if (entry->end)
3306 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3307 else
3308 I915_WRITE(reg, 0);
3309 }
3310
3311 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3312 const struct skl_wm_values *new)
3313 {
3314 struct drm_device *dev = dev_priv->dev;
3315 struct intel_crtc *crtc;
3316
3317 for_each_intel_crtc(dev, crtc) {
3318 int i, level, max_level = ilk_wm_max_level(dev);
3319 enum pipe pipe = crtc->pipe;
3320
3321 if (!new->dirty[pipe])
3322 continue;
3323
3324 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3325
3326 for (level = 0; level <= max_level; level++) {
3327 for (i = 0; i < intel_num_planes(crtc); i++)
3328 I915_WRITE(PLANE_WM(pipe, i, level),
3329 new->plane[pipe][i][level]);
3330 I915_WRITE(CUR_WM(pipe, level),
3331 new->plane[pipe][PLANE_CURSOR][level]);
3332 }
3333 for (i = 0; i < intel_num_planes(crtc); i++)
3334 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3335 new->plane_trans[pipe][i]);
3336 I915_WRITE(CUR_WM_TRANS(pipe),
3337 new->plane_trans[pipe][PLANE_CURSOR]);
3338
3339 for (i = 0; i < intel_num_planes(crtc); i++) {
3340 skl_ddb_entry_write(dev_priv,
3341 PLANE_BUF_CFG(pipe, i),
3342 &new->ddb.plane[pipe][i]);
3343 skl_ddb_entry_write(dev_priv,
3344 PLANE_NV12_BUF_CFG(pipe, i),
3345 &new->ddb.y_plane[pipe][i]);
3346 }
3347
3348 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3349 &new->ddb.plane[pipe][PLANE_CURSOR]);
3350 }
3351 }
3352
3353 /*
3354 * When setting up a new DDB allocation arrangement, we need to correctly
3355 * sequence the times at which the new allocations for the pipes are taken into
3356 * account or we'll have pipes fetching from space previously allocated to
3357 * another pipe.
3358 *
3359 * Roughly the sequence looks like:
3360 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3361 * overlapping with a previous light-up pipe (another way to put it is:
3362 * pipes with their new allocation strickly included into their old ones).
3363 * 2. re-allocate the other pipes that get their allocation reduced
3364 * 3. allocate the pipes having their allocation increased
3365 *
3366 * Steps 1. and 2. are here to take care of the following case:
3367 * - Initially DDB looks like this:
3368 * | B | C |
3369 * - enable pipe A.
3370 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3371 * allocation
3372 * | A | B | C |
3373 *
3374 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3375 */
3376
3377 static void
3378 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3379 {
3380 int plane;
3381
3382 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3383
3384 for_each_plane(dev_priv, pipe, plane) {
3385 I915_WRITE(PLANE_SURF(pipe, plane),
3386 I915_READ(PLANE_SURF(pipe, plane)));
3387 }
3388 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3389 }
3390
3391 static bool
3392 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3393 const struct skl_ddb_allocation *new,
3394 enum pipe pipe)
3395 {
3396 uint16_t old_size, new_size;
3397
3398 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3399 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3400
3401 return old_size != new_size &&
3402 new->pipe[pipe].start >= old->pipe[pipe].start &&
3403 new->pipe[pipe].end <= old->pipe[pipe].end;
3404 }
3405
3406 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3407 struct skl_wm_values *new_values)
3408 {
3409 struct drm_device *dev = dev_priv->dev;
3410 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3411 bool reallocated[I915_MAX_PIPES] = {};
3412 struct intel_crtc *crtc;
3413 enum pipe pipe;
3414
3415 new_ddb = &new_values->ddb;
3416 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3417
3418 /*
3419 * First pass: flush the pipes with the new allocation contained into
3420 * the old space.
3421 *
3422 * We'll wait for the vblank on those pipes to ensure we can safely
3423 * re-allocate the freed space without this pipe fetching from it.
3424 */
3425 for_each_intel_crtc(dev, crtc) {
3426 if (!crtc->active)
3427 continue;
3428
3429 pipe = crtc->pipe;
3430
3431 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3432 continue;
3433
3434 skl_wm_flush_pipe(dev_priv, pipe, 1);
3435 intel_wait_for_vblank(dev, pipe);
3436
3437 reallocated[pipe] = true;
3438 }
3439
3440
3441 /*
3442 * Second pass: flush the pipes that are having their allocation
3443 * reduced, but overlapping with a previous allocation.
3444 *
3445 * Here as well we need to wait for the vblank to make sure the freed
3446 * space is not used anymore.
3447 */
3448 for_each_intel_crtc(dev, crtc) {
3449 if (!crtc->active)
3450 continue;
3451
3452 pipe = crtc->pipe;
3453
3454 if (reallocated[pipe])
3455 continue;
3456
3457 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3458 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3459 skl_wm_flush_pipe(dev_priv, pipe, 2);
3460 intel_wait_for_vblank(dev, pipe);
3461 reallocated[pipe] = true;
3462 }
3463 }
3464
3465 /*
3466 * Third pass: flush the pipes that got more space allocated.
3467 *
3468 * We don't need to actively wait for the update here, next vblank
3469 * will just get more DDB space with the correct WM values.
3470 */
3471 for_each_intel_crtc(dev, crtc) {
3472 if (!crtc->active)
3473 continue;
3474
3475 pipe = crtc->pipe;
3476
3477 /*
3478 * At this point, only the pipes more space than before are
3479 * left to re-allocate.
3480 */
3481 if (reallocated[pipe])
3482 continue;
3483
3484 skl_wm_flush_pipe(dev_priv, pipe, 3);
3485 }
3486 }
3487
3488 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3489 struct skl_ddb_allocation *ddb, /* out */
3490 struct skl_pipe_wm *pipe_wm /* out */)
3491 {
3492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3493 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3494
3495 skl_allocate_pipe_ddb(cstate, ddb);
3496 skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3497
3498 if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3499 return false;
3500
3501 intel_crtc->wm.active.skl = *pipe_wm;
3502
3503 return true;
3504 }
3505
3506 static void skl_update_other_pipe_wm(struct drm_device *dev,
3507 struct drm_crtc *crtc,
3508 struct skl_wm_values *r)
3509 {
3510 struct intel_crtc *intel_crtc;
3511 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3512
3513 /*
3514 * If the WM update hasn't changed the allocation for this_crtc (the
3515 * crtc we are currently computing the new WM values for), other
3516 * enabled crtcs will keep the same allocation and we don't need to
3517 * recompute anything for them.
3518 */
3519 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3520 return;
3521
3522 /*
3523 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3524 * other active pipes need new DDB allocation and WM values.
3525 */
3526 for_each_intel_crtc(dev, intel_crtc) {
3527 struct skl_pipe_wm pipe_wm = {};
3528 bool wm_changed;
3529
3530 if (this_crtc->pipe == intel_crtc->pipe)
3531 continue;
3532
3533 if (!intel_crtc->active)
3534 continue;
3535
3536 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3537 &r->ddb, &pipe_wm);
3538
3539 /*
3540 * If we end up re-computing the other pipe WM values, it's
3541 * because it was really needed, so we expect the WM values to
3542 * be different.
3543 */
3544 WARN_ON(!wm_changed);
3545
3546 skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3547 r->dirty[intel_crtc->pipe] = true;
3548 }
3549 }
3550
3551 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3552 {
3553 watermarks->wm_linetime[pipe] = 0;
3554 memset(watermarks->plane[pipe], 0,
3555 sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3556 memset(watermarks->plane_trans[pipe],
3557 0, sizeof(uint32_t) * I915_MAX_PLANES);
3558 watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3559
3560 /* Clear ddb entries for pipe */
3561 memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3562 memset(&watermarks->ddb.plane[pipe], 0,
3563 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3564 memset(&watermarks->ddb.y_plane[pipe], 0,
3565 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3566 memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3567 sizeof(struct skl_ddb_entry));
3568
3569 }
3570
3571 static void skl_update_wm(struct drm_crtc *crtc)
3572 {
3573 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3574 struct drm_device *dev = crtc->dev;
3575 struct drm_i915_private *dev_priv = dev->dev_private;
3576 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3577 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3578 struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3579
3580
3581 /* Clear all dirty flags */
3582 memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3583
3584 skl_clear_wm(results, intel_crtc->pipe);
3585
3586 if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3587 return;
3588
3589 skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3590 results->dirty[intel_crtc->pipe] = true;
3591
3592 skl_update_other_pipe_wm(dev, crtc, results);
3593 skl_write_wm_values(dev_priv, results);
3594 skl_flush_wm_values(dev_priv, results);
3595
3596 /* store the new configuration */
3597 dev_priv->wm.skl_hw = *results;
3598 }
3599
3600 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3601 {
3602 struct drm_device *dev = dev_priv->dev;
3603 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3604 struct ilk_wm_maximums max;
3605 struct intel_wm_config *config = &dev_priv->wm.config;
3606 struct ilk_wm_values results = {};
3607 enum intel_ddb_partitioning partitioning;
3608
3609 ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_1_2, &max);
3610 ilk_wm_merge(dev, config, &max, &lp_wm_1_2);
3611
3612 /* 5/6 split only in single pipe config on IVB+ */
3613 if (INTEL_INFO(dev)->gen >= 7 &&
3614 config->num_pipes_active == 1 && config->sprites_enabled) {
3615 ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_5_6, &max);
3616 ilk_wm_merge(dev, config, &max, &lp_wm_5_6);
3617
3618 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3619 } else {
3620 best_lp_wm = &lp_wm_1_2;
3621 }
3622
3623 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3624 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3625
3626 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3627
3628 ilk_write_wm_values(dev_priv, &results);
3629 }
3630
3631 static void ilk_update_wm(struct drm_crtc *crtc)
3632 {
3633 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3634 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3635 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3636
3637 WARN_ON(cstate->base.active != intel_crtc->active);
3638
3639 /*
3640 * IVB workaround: must disable low power watermarks for at least
3641 * one frame before enabling scaling. LP watermarks can be re-enabled
3642 * when scaling is disabled.
3643 *
3644 * WaCxSRDisabledForSpriteScaling:ivb
3645 */
3646 if (cstate->disable_lp_wm) {
3647 ilk_disable_lp_wm(crtc->dev);
3648 intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3649 }
3650
3651 intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3652
3653 ilk_program_watermarks(dev_priv);
3654 }
3655
3656 static void skl_pipe_wm_active_state(uint32_t val,
3657 struct skl_pipe_wm *active,
3658 bool is_transwm,
3659 bool is_cursor,
3660 int i,
3661 int level)
3662 {
3663 bool is_enabled = (val & PLANE_WM_EN) != 0;
3664
3665 if (!is_transwm) {
3666 if (!is_cursor) {
3667 active->wm[level].plane_en[i] = is_enabled;
3668 active->wm[level].plane_res_b[i] =
3669 val & PLANE_WM_BLOCKS_MASK;
3670 active->wm[level].plane_res_l[i] =
3671 (val >> PLANE_WM_LINES_SHIFT) &
3672 PLANE_WM_LINES_MASK;
3673 } else {
3674 active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3675 active->wm[level].plane_res_b[PLANE_CURSOR] =
3676 val & PLANE_WM_BLOCKS_MASK;
3677 active->wm[level].plane_res_l[PLANE_CURSOR] =
3678 (val >> PLANE_WM_LINES_SHIFT) &
3679 PLANE_WM_LINES_MASK;
3680 }
3681 } else {
3682 if (!is_cursor) {
3683 active->trans_wm.plane_en[i] = is_enabled;
3684 active->trans_wm.plane_res_b[i] =
3685 val & PLANE_WM_BLOCKS_MASK;
3686 active->trans_wm.plane_res_l[i] =
3687 (val >> PLANE_WM_LINES_SHIFT) &
3688 PLANE_WM_LINES_MASK;
3689 } else {
3690 active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3691 active->trans_wm.plane_res_b[PLANE_CURSOR] =
3692 val & PLANE_WM_BLOCKS_MASK;
3693 active->trans_wm.plane_res_l[PLANE_CURSOR] =
3694 (val >> PLANE_WM_LINES_SHIFT) &
3695 PLANE_WM_LINES_MASK;
3696 }
3697 }
3698 }
3699
3700 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3701 {
3702 struct drm_device *dev = crtc->dev;
3703 struct drm_i915_private *dev_priv = dev->dev_private;
3704 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3705 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3706 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3707 struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3708 enum pipe pipe = intel_crtc->pipe;
3709 int level, i, max_level;
3710 uint32_t temp;
3711
3712 max_level = ilk_wm_max_level(dev);
3713
3714 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3715
3716 for (level = 0; level <= max_level; level++) {
3717 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3718 hw->plane[pipe][i][level] =
3719 I915_READ(PLANE_WM(pipe, i, level));
3720 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3721 }
3722
3723 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3724 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3725 hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3726
3727 if (!intel_crtc->active)
3728 return;
3729
3730 hw->dirty[pipe] = true;
3731
3732 active->linetime = hw->wm_linetime[pipe];
3733
3734 for (level = 0; level <= max_level; level++) {
3735 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3736 temp = hw->plane[pipe][i][level];
3737 skl_pipe_wm_active_state(temp, active, false,
3738 false, i, level);
3739 }
3740 temp = hw->plane[pipe][PLANE_CURSOR][level];
3741 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3742 }
3743
3744 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3745 temp = hw->plane_trans[pipe][i];
3746 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3747 }
3748
3749 temp = hw->plane_trans[pipe][PLANE_CURSOR];
3750 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3751
3752 intel_crtc->wm.active.skl = *active;
3753 }
3754
3755 void skl_wm_get_hw_state(struct drm_device *dev)
3756 {
3757 struct drm_i915_private *dev_priv = dev->dev_private;
3758 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3759 struct drm_crtc *crtc;
3760
3761 skl_ddb_get_hw_state(dev_priv, ddb);
3762 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3763 skl_pipe_wm_get_hw_state(crtc);
3764 }
3765
3766 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3767 {
3768 struct drm_device *dev = crtc->dev;
3769 struct drm_i915_private *dev_priv = dev->dev_private;
3770 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3771 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3772 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3773 struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3774 enum pipe pipe = intel_crtc->pipe;
3775 static const i915_reg_t wm0_pipe_reg[] = {
3776 [PIPE_A] = WM0_PIPEA_ILK,
3777 [PIPE_B] = WM0_PIPEB_ILK,
3778 [PIPE_C] = WM0_PIPEC_IVB,
3779 };
3780
3781 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3782 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3783 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3784
3785 active->pipe_enabled = intel_crtc->active;
3786
3787 if (active->pipe_enabled) {
3788 u32 tmp = hw->wm_pipe[pipe];
3789
3790 /*
3791 * For active pipes LP0 watermark is marked as
3792 * enabled, and LP1+ watermaks as disabled since
3793 * we can't really reverse compute them in case
3794 * multiple pipes are active.
3795 */
3796 active->wm[0].enable = true;
3797 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3798 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3799 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3800 active->linetime = hw->wm_linetime[pipe];
3801 } else {
3802 int level, max_level = ilk_wm_max_level(dev);
3803
3804 /*
3805 * For inactive pipes, all watermark levels
3806 * should be marked as enabled but zeroed,
3807 * which is what we'd compute them to.
3808 */
3809 for (level = 0; level <= max_level; level++)
3810 active->wm[level].enable = true;
3811 }
3812
3813 intel_crtc->wm.active.ilk = *active;
3814 }
3815
3816 #define _FW_WM(value, plane) \
3817 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3818 #define _FW_WM_VLV(value, plane) \
3819 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3820
3821 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3822 struct vlv_wm_values *wm)
3823 {
3824 enum pipe pipe;
3825 uint32_t tmp;
3826
3827 for_each_pipe(dev_priv, pipe) {
3828 tmp = I915_READ(VLV_DDL(pipe));
3829
3830 wm->ddl[pipe].primary =
3831 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3832 wm->ddl[pipe].cursor =
3833 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3834 wm->ddl[pipe].sprite[0] =
3835 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3836 wm->ddl[pipe].sprite[1] =
3837 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3838 }
3839
3840 tmp = I915_READ(DSPFW1);
3841 wm->sr.plane = _FW_WM(tmp, SR);
3842 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3843 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3844 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3845
3846 tmp = I915_READ(DSPFW2);
3847 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3848 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3849 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3850
3851 tmp = I915_READ(DSPFW3);
3852 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3853
3854 if (IS_CHERRYVIEW(dev_priv)) {
3855 tmp = I915_READ(DSPFW7_CHV);
3856 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3857 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3858
3859 tmp = I915_READ(DSPFW8_CHV);
3860 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3861 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3862
3863 tmp = I915_READ(DSPFW9_CHV);
3864 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3865 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3866
3867 tmp = I915_READ(DSPHOWM);
3868 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3869 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3870 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3871 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3872 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3873 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3874 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3875 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3876 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3877 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3878 } else {
3879 tmp = I915_READ(DSPFW7);
3880 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3881 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3882
3883 tmp = I915_READ(DSPHOWM);
3884 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3885 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3886 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3887 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3888 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3889 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3890 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3891 }
3892 }
3893
3894 #undef _FW_WM
3895 #undef _FW_WM_VLV
3896
3897 void vlv_wm_get_hw_state(struct drm_device *dev)
3898 {
3899 struct drm_i915_private *dev_priv = to_i915(dev);
3900 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3901 struct intel_plane *plane;
3902 enum pipe pipe;
3903 u32 val;
3904
3905 vlv_read_wm_values(dev_priv, wm);
3906
3907 for_each_intel_plane(dev, plane) {
3908 switch (plane->base.type) {
3909 int sprite;
3910 case DRM_PLANE_TYPE_CURSOR:
3911 plane->wm.fifo_size = 63;
3912 break;
3913 case DRM_PLANE_TYPE_PRIMARY:
3914 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3915 break;
3916 case DRM_PLANE_TYPE_OVERLAY:
3917 sprite = plane->plane;
3918 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3919 break;
3920 }
3921 }
3922
3923 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3924 wm->level = VLV_WM_LEVEL_PM2;
3925
3926 if (IS_CHERRYVIEW(dev_priv)) {
3927 mutex_lock(&dev_priv->rps.hw_lock);
3928
3929 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3930 if (val & DSP_MAXFIFO_PM5_ENABLE)
3931 wm->level = VLV_WM_LEVEL_PM5;
3932
3933 /*
3934 * If DDR DVFS is disabled in the BIOS, Punit
3935 * will never ack the request. So if that happens
3936 * assume we don't have to enable/disable DDR DVFS
3937 * dynamically. To test that just set the REQ_ACK
3938 * bit to poke the Punit, but don't change the
3939 * HIGH/LOW bits so that we don't actually change
3940 * the current state.
3941 */
3942 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3943 val |= FORCE_DDR_FREQ_REQ_ACK;
3944 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
3945
3946 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
3947 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
3948 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
3949 "assuming DDR DVFS is disabled\n");
3950 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
3951 } else {
3952 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3953 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
3954 wm->level = VLV_WM_LEVEL_DDR_DVFS;
3955 }
3956
3957 mutex_unlock(&dev_priv->rps.hw_lock);
3958 }
3959
3960 for_each_pipe(dev_priv, pipe)
3961 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
3962 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
3963 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
3964
3965 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
3966 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
3967 }
3968
3969 void ilk_wm_get_hw_state(struct drm_device *dev)
3970 {
3971 struct drm_i915_private *dev_priv = dev->dev_private;
3972 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3973 struct drm_crtc *crtc;
3974
3975 for_each_crtc(dev, crtc)
3976 ilk_pipe_wm_get_hw_state(crtc);
3977
3978 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3979 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3980 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3981
3982 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3983 if (INTEL_INFO(dev)->gen >= 7) {
3984 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3985 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3986 }
3987
3988 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3989 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3990 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3991 else if (IS_IVYBRIDGE(dev))
3992 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3993 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3994
3995 hw->enable_fbc_wm =
3996 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3997 }
3998
3999 /**
4000 * intel_update_watermarks - update FIFO watermark values based on current modes
4001 *
4002 * Calculate watermark values for the various WM regs based on current mode
4003 * and plane configuration.
4004 *
4005 * There are several cases to deal with here:
4006 * - normal (i.e. non-self-refresh)
4007 * - self-refresh (SR) mode
4008 * - lines are large relative to FIFO size (buffer can hold up to 2)
4009 * - lines are small relative to FIFO size (buffer can hold more than 2
4010 * lines), so need to account for TLB latency
4011 *
4012 * The normal calculation is:
4013 * watermark = dotclock * bytes per pixel * latency
4014 * where latency is platform & configuration dependent (we assume pessimal
4015 * values here).
4016 *
4017 * The SR calculation is:
4018 * watermark = (trunc(latency/line time)+1) * surface width *
4019 * bytes per pixel
4020 * where
4021 * line time = htotal / dotclock
4022 * surface width = hdisplay for normal plane and 64 for cursor
4023 * and latency is assumed to be high, as above.
4024 *
4025 * The final value programmed to the register should always be rounded up,
4026 * and include an extra 2 entries to account for clock crossings.
4027 *
4028 * We don't use the sprite, so we can ignore that. And on Crestline we have
4029 * to set the non-SR watermarks to 8.
4030 */
4031 void intel_update_watermarks(struct drm_crtc *crtc)
4032 {
4033 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4034
4035 if (dev_priv->display.update_wm)
4036 dev_priv->display.update_wm(crtc);
4037 }
4038
4039 /**
4040 * Lock protecting IPS related data structures
4041 */
4042 DEFINE_SPINLOCK(mchdev_lock);
4043
4044 /* Global for IPS driver to get at the current i915 device. Protected by
4045 * mchdev_lock. */
4046 static struct drm_i915_private *i915_mch_dev;
4047
4048 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4049 {
4050 struct drm_i915_private *dev_priv = dev->dev_private;
4051 u16 rgvswctl;
4052
4053 assert_spin_locked(&mchdev_lock);
4054
4055 rgvswctl = I915_READ16(MEMSWCTL);
4056 if (rgvswctl & MEMCTL_CMD_STS) {
4057 DRM_DEBUG("gpu busy, RCS change rejected\n");
4058 return false; /* still busy with another command */
4059 }
4060
4061 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4062 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4063 I915_WRITE16(MEMSWCTL, rgvswctl);
4064 POSTING_READ16(MEMSWCTL);
4065
4066 rgvswctl |= MEMCTL_CMD_STS;
4067 I915_WRITE16(MEMSWCTL, rgvswctl);
4068
4069 return true;
4070 }
4071
4072 static void ironlake_enable_drps(struct drm_device *dev)
4073 {
4074 struct drm_i915_private *dev_priv = dev->dev_private;
4075 u32 rgvmodectl = I915_READ(MEMMODECTL);
4076 u8 fmax, fmin, fstart, vstart;
4077
4078 spin_lock_irq(&mchdev_lock);
4079
4080 /* Enable temp reporting */
4081 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4082 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4083
4084 /* 100ms RC evaluation intervals */
4085 I915_WRITE(RCUPEI, 100000);
4086 I915_WRITE(RCDNEI, 100000);
4087
4088 /* Set max/min thresholds to 90ms and 80ms respectively */
4089 I915_WRITE(RCBMAXAVG, 90000);
4090 I915_WRITE(RCBMINAVG, 80000);
4091
4092 I915_WRITE(MEMIHYST, 1);
4093
4094 /* Set up min, max, and cur for interrupt handling */
4095 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4096 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4097 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4098 MEMMODE_FSTART_SHIFT;
4099
4100 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4101 PXVFREQ_PX_SHIFT;
4102
4103 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4104 dev_priv->ips.fstart = fstart;
4105
4106 dev_priv->ips.max_delay = fstart;
4107 dev_priv->ips.min_delay = fmin;
4108 dev_priv->ips.cur_delay = fstart;
4109
4110 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4111 fmax, fmin, fstart);
4112
4113 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4114
4115 /*
4116 * Interrupts will be enabled in ironlake_irq_postinstall
4117 */
4118
4119 I915_WRITE(VIDSTART, vstart);
4120 POSTING_READ(VIDSTART);
4121
4122 rgvmodectl |= MEMMODE_SWMODE_EN;
4123 I915_WRITE(MEMMODECTL, rgvmodectl);
4124
4125 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4126 DRM_ERROR("stuck trying to change perf mode\n");
4127 mdelay(1);
4128
4129 ironlake_set_drps(dev, fstart);
4130
4131 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4132 I915_READ(DDREC) + I915_READ(CSIEC);
4133 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4134 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4135 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4136
4137 spin_unlock_irq(&mchdev_lock);
4138 }
4139
4140 static void ironlake_disable_drps(struct drm_device *dev)
4141 {
4142 struct drm_i915_private *dev_priv = dev->dev_private;
4143 u16 rgvswctl;
4144
4145 spin_lock_irq(&mchdev_lock);
4146
4147 rgvswctl = I915_READ16(MEMSWCTL);
4148
4149 /* Ack interrupts, disable EFC interrupt */
4150 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4151 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4152 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4153 I915_WRITE(DEIIR, DE_PCU_EVENT);
4154 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4155
4156 /* Go back to the starting frequency */
4157 ironlake_set_drps(dev, dev_priv->ips.fstart);
4158 mdelay(1);
4159 rgvswctl |= MEMCTL_CMD_STS;
4160 I915_WRITE(MEMSWCTL, rgvswctl);
4161 mdelay(1);
4162
4163 spin_unlock_irq(&mchdev_lock);
4164 }
4165
4166 /* There's a funny hw issue where the hw returns all 0 when reading from
4167 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4168 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4169 * all limits and the gpu stuck at whatever frequency it is at atm).
4170 */
4171 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4172 {
4173 u32 limits;
4174
4175 /* Only set the down limit when we've reached the lowest level to avoid
4176 * getting more interrupts, otherwise leave this clear. This prevents a
4177 * race in the hw when coming out of rc6: There's a tiny window where
4178 * the hw runs at the minimal clock before selecting the desired
4179 * frequency, if the down threshold expires in that window we will not
4180 * receive a down interrupt. */
4181 if (IS_GEN9(dev_priv->dev)) {
4182 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4183 if (val <= dev_priv->rps.min_freq_softlimit)
4184 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4185 } else {
4186 limits = dev_priv->rps.max_freq_softlimit << 24;
4187 if (val <= dev_priv->rps.min_freq_softlimit)
4188 limits |= dev_priv->rps.min_freq_softlimit << 16;
4189 }
4190
4191 return limits;
4192 }
4193
4194 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4195 {
4196 int new_power;
4197 u32 threshold_up = 0, threshold_down = 0; /* in % */
4198 u32 ei_up = 0, ei_down = 0;
4199
4200 new_power = dev_priv->rps.power;
4201 switch (dev_priv->rps.power) {
4202 case LOW_POWER:
4203 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4204 new_power = BETWEEN;
4205 break;
4206
4207 case BETWEEN:
4208 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4209 new_power = LOW_POWER;
4210 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4211 new_power = HIGH_POWER;
4212 break;
4213
4214 case HIGH_POWER:
4215 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4216 new_power = BETWEEN;
4217 break;
4218 }
4219 /* Max/min bins are special */
4220 if (val <= dev_priv->rps.min_freq_softlimit)
4221 new_power = LOW_POWER;
4222 if (val >= dev_priv->rps.max_freq_softlimit)
4223 new_power = HIGH_POWER;
4224 if (new_power == dev_priv->rps.power)
4225 return;
4226
4227 /* Note the units here are not exactly 1us, but 1280ns. */
4228 switch (new_power) {
4229 case LOW_POWER:
4230 /* Upclock if more than 95% busy over 16ms */
4231 ei_up = 16000;
4232 threshold_up = 95;
4233
4234 /* Downclock if less than 85% busy over 32ms */
4235 ei_down = 32000;
4236 threshold_down = 85;
4237 break;
4238
4239 case BETWEEN:
4240 /* Upclock if more than 90% busy over 13ms */
4241 ei_up = 13000;
4242 threshold_up = 90;
4243
4244 /* Downclock if less than 75% busy over 32ms */
4245 ei_down = 32000;
4246 threshold_down = 75;
4247 break;
4248
4249 case HIGH_POWER:
4250 /* Upclock if more than 85% busy over 10ms */
4251 ei_up = 10000;
4252 threshold_up = 85;
4253
4254 /* Downclock if less than 60% busy over 32ms */
4255 ei_down = 32000;
4256 threshold_down = 60;
4257 break;
4258 }
4259
4260 I915_WRITE(GEN6_RP_UP_EI,
4261 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4262 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4263 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4264
4265 I915_WRITE(GEN6_RP_DOWN_EI,
4266 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4267 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4268 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4269
4270 I915_WRITE(GEN6_RP_CONTROL,
4271 GEN6_RP_MEDIA_TURBO |
4272 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4273 GEN6_RP_MEDIA_IS_GFX |
4274 GEN6_RP_ENABLE |
4275 GEN6_RP_UP_BUSY_AVG |
4276 GEN6_RP_DOWN_IDLE_AVG);
4277
4278 dev_priv->rps.power = new_power;
4279 dev_priv->rps.up_threshold = threshold_up;
4280 dev_priv->rps.down_threshold = threshold_down;
4281 dev_priv->rps.last_adj = 0;
4282 }
4283
4284 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4285 {
4286 u32 mask = 0;
4287
4288 if (val > dev_priv->rps.min_freq_softlimit)
4289 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4290 if (val < dev_priv->rps.max_freq_softlimit)
4291 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4292
4293 mask &= dev_priv->pm_rps_events;
4294
4295 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4296 }
4297
4298 /* gen6_set_rps is called to update the frequency request, but should also be
4299 * called when the range (min_delay and max_delay) is modified so that we can
4300 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4301 static void gen6_set_rps(struct drm_device *dev, u8 val)
4302 {
4303 struct drm_i915_private *dev_priv = dev->dev_private;
4304
4305 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4306 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4307 return;
4308
4309 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4310 WARN_ON(val > dev_priv->rps.max_freq);
4311 WARN_ON(val < dev_priv->rps.min_freq);
4312
4313 /* min/max delay may still have been modified so be sure to
4314 * write the limits value.
4315 */
4316 if (val != dev_priv->rps.cur_freq) {
4317 gen6_set_rps_thresholds(dev_priv, val);
4318
4319 if (IS_GEN9(dev))
4320 I915_WRITE(GEN6_RPNSWREQ,
4321 GEN9_FREQUENCY(val));
4322 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4323 I915_WRITE(GEN6_RPNSWREQ,
4324 HSW_FREQUENCY(val));
4325 else
4326 I915_WRITE(GEN6_RPNSWREQ,
4327 GEN6_FREQUENCY(val) |
4328 GEN6_OFFSET(0) |
4329 GEN6_AGGRESSIVE_TURBO);
4330 }
4331
4332 /* Make sure we continue to get interrupts
4333 * until we hit the minimum or maximum frequencies.
4334 */
4335 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4336 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4337
4338 POSTING_READ(GEN6_RPNSWREQ);
4339
4340 dev_priv->rps.cur_freq = val;
4341 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4342 }
4343
4344 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4345 {
4346 struct drm_i915_private *dev_priv = dev->dev_private;
4347
4348 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4349 WARN_ON(val > dev_priv->rps.max_freq);
4350 WARN_ON(val < dev_priv->rps.min_freq);
4351
4352 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4353 "Odd GPU freq value\n"))
4354 val &= ~1;
4355
4356 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4357
4358 if (val != dev_priv->rps.cur_freq) {
4359 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4360 if (!IS_CHERRYVIEW(dev_priv))
4361 gen6_set_rps_thresholds(dev_priv, val);
4362 }
4363
4364 dev_priv->rps.cur_freq = val;
4365 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4366 }
4367
4368 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4369 *
4370 * * If Gfx is Idle, then
4371 * 1. Forcewake Media well.
4372 * 2. Request idle freq.
4373 * 3. Release Forcewake of Media well.
4374 */
4375 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4376 {
4377 u32 val = dev_priv->rps.idle_freq;
4378
4379 if (dev_priv->rps.cur_freq <= val)
4380 return;
4381
4382 /* Wake up the media well, as that takes a lot less
4383 * power than the Render well. */
4384 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4385 valleyview_set_rps(dev_priv->dev, val);
4386 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4387 }
4388
4389 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4390 {
4391 mutex_lock(&dev_priv->rps.hw_lock);
4392 if (dev_priv->rps.enabled) {
4393 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4394 gen6_rps_reset_ei(dev_priv);
4395 I915_WRITE(GEN6_PMINTRMSK,
4396 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4397 }
4398 mutex_unlock(&dev_priv->rps.hw_lock);
4399 }
4400
4401 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4402 {
4403 struct drm_device *dev = dev_priv->dev;
4404
4405 mutex_lock(&dev_priv->rps.hw_lock);
4406 if (dev_priv->rps.enabled) {
4407 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4408 vlv_set_rps_idle(dev_priv);
4409 else
4410 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4411 dev_priv->rps.last_adj = 0;
4412 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4413 }
4414 mutex_unlock(&dev_priv->rps.hw_lock);
4415
4416 spin_lock(&dev_priv->rps.client_lock);
4417 while (!list_empty(&dev_priv->rps.clients))
4418 list_del_init(dev_priv->rps.clients.next);
4419 spin_unlock(&dev_priv->rps.client_lock);
4420 }
4421
4422 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4423 struct intel_rps_client *rps,
4424 unsigned long submitted)
4425 {
4426 /* This is intentionally racy! We peek at the state here, then
4427 * validate inside the RPS worker.
4428 */
4429 if (!(dev_priv->mm.busy &&
4430 dev_priv->rps.enabled &&
4431 dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4432 return;
4433
4434 /* Force a RPS boost (and don't count it against the client) if
4435 * the GPU is severely congested.
4436 */
4437 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4438 rps = NULL;
4439
4440 spin_lock(&dev_priv->rps.client_lock);
4441 if (rps == NULL || list_empty(&rps->link)) {
4442 spin_lock_irq(&dev_priv->irq_lock);
4443 if (dev_priv->rps.interrupts_enabled) {
4444 dev_priv->rps.client_boost = true;
4445 queue_work(dev_priv->wq, &dev_priv->rps.work);
4446 }
4447 spin_unlock_irq(&dev_priv->irq_lock);
4448
4449 if (rps != NULL) {
4450 list_add(&rps->link, &dev_priv->rps.clients);
4451 rps->boosts++;
4452 } else
4453 dev_priv->rps.boosts++;
4454 }
4455 spin_unlock(&dev_priv->rps.client_lock);
4456 }
4457
4458 void intel_set_rps(struct drm_device *dev, u8 val)
4459 {
4460 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4461 valleyview_set_rps(dev, val);
4462 else
4463 gen6_set_rps(dev, val);
4464 }
4465
4466 static void gen9_disable_rps(struct drm_device *dev)
4467 {
4468 struct drm_i915_private *dev_priv = dev->dev_private;
4469
4470 I915_WRITE(GEN6_RC_CONTROL, 0);
4471 I915_WRITE(GEN9_PG_ENABLE, 0);
4472 }
4473
4474 static void gen6_disable_rps(struct drm_device *dev)
4475 {
4476 struct drm_i915_private *dev_priv = dev->dev_private;
4477
4478 I915_WRITE(GEN6_RC_CONTROL, 0);
4479 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4480 }
4481
4482 static void cherryview_disable_rps(struct drm_device *dev)
4483 {
4484 struct drm_i915_private *dev_priv = dev->dev_private;
4485
4486 I915_WRITE(GEN6_RC_CONTROL, 0);
4487 }
4488
4489 static void valleyview_disable_rps(struct drm_device *dev)
4490 {
4491 struct drm_i915_private *dev_priv = dev->dev_private;
4492
4493 /* we're doing forcewake before Disabling RC6,
4494 * This what the BIOS expects when going into suspend */
4495 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4496
4497 I915_WRITE(GEN6_RC_CONTROL, 0);
4498
4499 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4500 }
4501
4502 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4503 {
4504 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4505 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4506 mode = GEN6_RC_CTL_RC6_ENABLE;
4507 else
4508 mode = 0;
4509 }
4510 if (HAS_RC6p(dev))
4511 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4512 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4513 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4514 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4515
4516 else
4517 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4518 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4519 }
4520
4521 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4522 {
4523 /* No RC6 before Ironlake and code is gone for ilk. */
4524 if (INTEL_INFO(dev)->gen < 6)
4525 return 0;
4526
4527 /* Respect the kernel parameter if it is set */
4528 if (enable_rc6 >= 0) {
4529 int mask;
4530
4531 if (HAS_RC6p(dev))
4532 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4533 INTEL_RC6pp_ENABLE;
4534 else
4535 mask = INTEL_RC6_ENABLE;
4536
4537 if ((enable_rc6 & mask) != enable_rc6)
4538 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4539 enable_rc6 & mask, enable_rc6, mask);
4540
4541 return enable_rc6 & mask;
4542 }
4543
4544 if (IS_IVYBRIDGE(dev))
4545 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4546
4547 return INTEL_RC6_ENABLE;
4548 }
4549
4550 int intel_enable_rc6(const struct drm_device *dev)
4551 {
4552 return i915.enable_rc6;
4553 }
4554
4555 static void gen6_init_rps_frequencies(struct drm_device *dev)
4556 {
4557 struct drm_i915_private *dev_priv = dev->dev_private;
4558 uint32_t rp_state_cap;
4559 u32 ddcc_status = 0;
4560 int ret;
4561
4562 /* All of these values are in units of 50MHz */
4563 dev_priv->rps.cur_freq = 0;
4564 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4565 if (IS_BROXTON(dev)) {
4566 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4567 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4568 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4569 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
4570 } else {
4571 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4572 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4573 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4574 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4575 }
4576
4577 /* hw_max = RP0 until we check for overclocking */
4578 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4579
4580 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4581 if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4582 IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4583 ret = sandybridge_pcode_read(dev_priv,
4584 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4585 &ddcc_status);
4586 if (0 == ret)
4587 dev_priv->rps.efficient_freq =
4588 clamp_t(u8,
4589 ((ddcc_status >> 8) & 0xff),
4590 dev_priv->rps.min_freq,
4591 dev_priv->rps.max_freq);
4592 }
4593
4594 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4595 /* Store the frequency values in 16.66 MHZ units, which is
4596 the natural hardware unit for SKL */
4597 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4598 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4599 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4600 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4601 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4602 }
4603
4604 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4605
4606 /* Preserve min/max settings in case of re-init */
4607 if (dev_priv->rps.max_freq_softlimit == 0)
4608 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4609
4610 if (dev_priv->rps.min_freq_softlimit == 0) {
4611 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4612 dev_priv->rps.min_freq_softlimit =
4613 max_t(int, dev_priv->rps.efficient_freq,
4614 intel_freq_opcode(dev_priv, 450));
4615 else
4616 dev_priv->rps.min_freq_softlimit =
4617 dev_priv->rps.min_freq;
4618 }
4619 }
4620
4621 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4622 static void gen9_enable_rps(struct drm_device *dev)
4623 {
4624 struct drm_i915_private *dev_priv = dev->dev_private;
4625
4626 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4627
4628 gen6_init_rps_frequencies(dev);
4629
4630 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4631 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4632 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4633 return;
4634 }
4635
4636 /* Program defaults and thresholds for RPS*/
4637 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4638 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4639
4640 /* 1 second timeout*/
4641 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4642 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4643
4644 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4645
4646 /* Leaning on the below call to gen6_set_rps to program/setup the
4647 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4648 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4649 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4650 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4651
4652 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4653 }
4654
4655 static void gen9_enable_rc6(struct drm_device *dev)
4656 {
4657 struct drm_i915_private *dev_priv = dev->dev_private;
4658 struct intel_engine_cs *ring;
4659 uint32_t rc6_mask = 0;
4660 int unused;
4661
4662 /* 1a: Software RC state - RC0 */
4663 I915_WRITE(GEN6_RC_STATE, 0);
4664
4665 /* 1b: Get forcewake during program sequence. Although the driver
4666 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4667 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4668
4669 /* 2a: Disable RC states. */
4670 I915_WRITE(GEN6_RC_CONTROL, 0);
4671
4672 /* 2b: Program RC6 thresholds.*/
4673
4674 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4675 if (IS_SKYLAKE(dev))
4676 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4677 else
4678 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4679 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4680 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4681 for_each_ring(ring, dev_priv, unused)
4682 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4683
4684 if (HAS_GUC_UCODE(dev))
4685 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4686
4687 I915_WRITE(GEN6_RC_SLEEP, 0);
4688
4689 /* 2c: Program Coarse Power Gating Policies. */
4690 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4691 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4692
4693 /* 3a: Enable RC6 */
4694 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4695 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4696 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4697 "on" : "off");
4698 /* WaRsUseTimeoutMode */
4699 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4700 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4701 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4702 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4703 GEN7_RC_CTL_TO_MODE |
4704 rc6_mask);
4705 } else {
4706 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4707 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4708 GEN6_RC_CTL_EI_MODE(1) |
4709 rc6_mask);
4710 }
4711
4712 /*
4713 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4714 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4715 */
4716 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) ||
4717 ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) &&
4718 IS_SKL_REVID(dev, 0, SKL_REVID_F0)))
4719 I915_WRITE(GEN9_PG_ENABLE, 0);
4720 else
4721 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4722 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4723
4724 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4725
4726 }
4727
4728 static void gen8_enable_rps(struct drm_device *dev)
4729 {
4730 struct drm_i915_private *dev_priv = dev->dev_private;
4731 struct intel_engine_cs *ring;
4732 uint32_t rc6_mask = 0;
4733 int unused;
4734
4735 /* 1a: Software RC state - RC0 */
4736 I915_WRITE(GEN6_RC_STATE, 0);
4737
4738 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4739 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4740 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4741
4742 /* 2a: Disable RC states. */
4743 I915_WRITE(GEN6_RC_CONTROL, 0);
4744
4745 /* Initialize rps frequencies */
4746 gen6_init_rps_frequencies(dev);
4747
4748 /* 2b: Program RC6 thresholds.*/
4749 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4750 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4751 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4752 for_each_ring(ring, dev_priv, unused)
4753 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4754 I915_WRITE(GEN6_RC_SLEEP, 0);
4755 if (IS_BROADWELL(dev))
4756 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4757 else
4758 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4759
4760 /* 3: Enable RC6 */
4761 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4762 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4763 intel_print_rc6_info(dev, rc6_mask);
4764 if (IS_BROADWELL(dev))
4765 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4766 GEN7_RC_CTL_TO_MODE |
4767 rc6_mask);
4768 else
4769 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4770 GEN6_RC_CTL_EI_MODE(1) |
4771 rc6_mask);
4772
4773 /* 4 Program defaults and thresholds for RPS*/
4774 I915_WRITE(GEN6_RPNSWREQ,
4775 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4776 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4777 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4778 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4779 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4780
4781 /* Docs recommend 900MHz, and 300 MHz respectively */
4782 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4783 dev_priv->rps.max_freq_softlimit << 24 |
4784 dev_priv->rps.min_freq_softlimit << 16);
4785
4786 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4787 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4788 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4789 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4790
4791 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4792
4793 /* 5: Enable RPS */
4794 I915_WRITE(GEN6_RP_CONTROL,
4795 GEN6_RP_MEDIA_TURBO |
4796 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4797 GEN6_RP_MEDIA_IS_GFX |
4798 GEN6_RP_ENABLE |
4799 GEN6_RP_UP_BUSY_AVG |
4800 GEN6_RP_DOWN_IDLE_AVG);
4801
4802 /* 6: Ring frequency + overclocking (our driver does this later */
4803
4804 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4805 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4806
4807 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4808 }
4809
4810 static void gen6_enable_rps(struct drm_device *dev)
4811 {
4812 struct drm_i915_private *dev_priv = dev->dev_private;
4813 struct intel_engine_cs *ring;
4814 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4815 u32 gtfifodbg;
4816 int rc6_mode;
4817 int i, ret;
4818
4819 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4820
4821 /* Here begins a magic sequence of register writes to enable
4822 * auto-downclocking.
4823 *
4824 * Perhaps there might be some value in exposing these to
4825 * userspace...
4826 */
4827 I915_WRITE(GEN6_RC_STATE, 0);
4828
4829 /* Clear the DBG now so we don't confuse earlier errors */
4830 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4831 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4832 I915_WRITE(GTFIFODBG, gtfifodbg);
4833 }
4834
4835 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4836
4837 /* Initialize rps frequencies */
4838 gen6_init_rps_frequencies(dev);
4839
4840 /* disable the counters and set deterministic thresholds */
4841 I915_WRITE(GEN6_RC_CONTROL, 0);
4842
4843 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4844 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4845 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4846 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4847 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4848
4849 for_each_ring(ring, dev_priv, i)
4850 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4851
4852 I915_WRITE(GEN6_RC_SLEEP, 0);
4853 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4854 if (IS_IVYBRIDGE(dev))
4855 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4856 else
4857 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4858 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4859 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4860
4861 /* Check if we are enabling RC6 */
4862 rc6_mode = intel_enable_rc6(dev_priv->dev);
4863 if (rc6_mode & INTEL_RC6_ENABLE)
4864 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4865
4866 /* We don't use those on Haswell */
4867 if (!IS_HASWELL(dev)) {
4868 if (rc6_mode & INTEL_RC6p_ENABLE)
4869 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4870
4871 if (rc6_mode & INTEL_RC6pp_ENABLE)
4872 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4873 }
4874
4875 intel_print_rc6_info(dev, rc6_mask);
4876
4877 I915_WRITE(GEN6_RC_CONTROL,
4878 rc6_mask |
4879 GEN6_RC_CTL_EI_MODE(1) |
4880 GEN6_RC_CTL_HW_ENABLE);
4881
4882 /* Power down if completely idle for over 50ms */
4883 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4884 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4885
4886 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4887 if (ret)
4888 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4889
4890 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4891 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4892 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4893 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4894 (pcu_mbox & 0xff) * 50);
4895 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4896 }
4897
4898 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4899 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4900
4901 rc6vids = 0;
4902 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4903 if (IS_GEN6(dev) && ret) {
4904 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4905 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4906 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4907 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4908 rc6vids &= 0xffff00;
4909 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4910 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4911 if (ret)
4912 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4913 }
4914
4915 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4916 }
4917
4918 static void __gen6_update_ring_freq(struct drm_device *dev)
4919 {
4920 struct drm_i915_private *dev_priv = dev->dev_private;
4921 int min_freq = 15;
4922 unsigned int gpu_freq;
4923 unsigned int max_ia_freq, min_ring_freq;
4924 unsigned int max_gpu_freq, min_gpu_freq;
4925 int scaling_factor = 180;
4926 struct cpufreq_policy *policy;
4927
4928 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4929
4930 policy = cpufreq_cpu_get(0);
4931 if (policy) {
4932 max_ia_freq = policy->cpuinfo.max_freq;
4933 cpufreq_cpu_put(policy);
4934 } else {
4935 /*
4936 * Default to measured freq if none found, PCU will ensure we
4937 * don't go over
4938 */
4939 max_ia_freq = tsc_khz;
4940 }
4941
4942 /* Convert from kHz to MHz */
4943 max_ia_freq /= 1000;
4944
4945 min_ring_freq = I915_READ(DCLK) & 0xf;
4946 /* convert DDR frequency from units of 266.6MHz to bandwidth */
4947 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4948
4949 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4950 /* Convert GT frequency to 50 HZ units */
4951 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
4952 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
4953 } else {
4954 min_gpu_freq = dev_priv->rps.min_freq;
4955 max_gpu_freq = dev_priv->rps.max_freq;
4956 }
4957
4958 /*
4959 * For each potential GPU frequency, load a ring frequency we'd like
4960 * to use for memory access. We do this by specifying the IA frequency
4961 * the PCU should use as a reference to determine the ring frequency.
4962 */
4963 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
4964 int diff = max_gpu_freq - gpu_freq;
4965 unsigned int ia_freq = 0, ring_freq = 0;
4966
4967 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4968 /*
4969 * ring_freq = 2 * GT. ring_freq is in 100MHz units
4970 * No floor required for ring frequency on SKL.
4971 */
4972 ring_freq = gpu_freq;
4973 } else if (INTEL_INFO(dev)->gen >= 8) {
4974 /* max(2 * GT, DDR). NB: GT is 50MHz units */
4975 ring_freq = max(min_ring_freq, gpu_freq);
4976 } else if (IS_HASWELL(dev)) {
4977 ring_freq = mult_frac(gpu_freq, 5, 4);
4978 ring_freq = max(min_ring_freq, ring_freq);
4979 /* leave ia_freq as the default, chosen by cpufreq */
4980 } else {
4981 /* On older processors, there is no separate ring
4982 * clock domain, so in order to boost the bandwidth
4983 * of the ring, we need to upclock the CPU (ia_freq).
4984 *
4985 * For GPU frequencies less than 750MHz,
4986 * just use the lowest ring freq.
4987 */
4988 if (gpu_freq < min_freq)
4989 ia_freq = 800;
4990 else
4991 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4992 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4993 }
4994
4995 sandybridge_pcode_write(dev_priv,
4996 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4997 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4998 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4999 gpu_freq);
5000 }
5001 }
5002
5003 void gen6_update_ring_freq(struct drm_device *dev)
5004 {
5005 struct drm_i915_private *dev_priv = dev->dev_private;
5006
5007 if (!HAS_CORE_RING_FREQ(dev))
5008 return;
5009
5010 mutex_lock(&dev_priv->rps.hw_lock);
5011 __gen6_update_ring_freq(dev);
5012 mutex_unlock(&dev_priv->rps.hw_lock);
5013 }
5014
5015 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5016 {
5017 struct drm_device *dev = dev_priv->dev;
5018 u32 val, rp0;
5019
5020 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5021
5022 switch (INTEL_INFO(dev)->eu_total) {
5023 case 8:
5024 /* (2 * 4) config */
5025 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5026 break;
5027 case 12:
5028 /* (2 * 6) config */
5029 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5030 break;
5031 case 16:
5032 /* (2 * 8) config */
5033 default:
5034 /* Setting (2 * 8) Min RP0 for any other combination */
5035 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5036 break;
5037 }
5038
5039 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5040
5041 return rp0;
5042 }
5043
5044 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5045 {
5046 u32 val, rpe;
5047
5048 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5049 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5050
5051 return rpe;
5052 }
5053
5054 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5055 {
5056 u32 val, rp1;
5057
5058 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5059 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5060
5061 return rp1;
5062 }
5063
5064 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5065 {
5066 u32 val, rp1;
5067
5068 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5069
5070 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5071
5072 return rp1;
5073 }
5074
5075 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5076 {
5077 u32 val, rp0;
5078
5079 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5080
5081 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5082 /* Clamp to max */
5083 rp0 = min_t(u32, rp0, 0xea);
5084
5085 return rp0;
5086 }
5087
5088 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5089 {
5090 u32 val, rpe;
5091
5092 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5093 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5094 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5095 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5096
5097 return rpe;
5098 }
5099
5100 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5101 {
5102 u32 val;
5103
5104 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5105 /*
5106 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5107 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5108 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5109 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5110 * to make sure it matches what Punit accepts.
5111 */
5112 return max_t(u32, val, 0xc0);
5113 }
5114
5115 /* Check that the pctx buffer wasn't move under us. */
5116 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5117 {
5118 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5119
5120 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5121 dev_priv->vlv_pctx->stolen->start);
5122 }
5123
5124
5125 /* Check that the pcbr address is not empty. */
5126 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5127 {
5128 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5129
5130 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5131 }
5132
5133 static void cherryview_setup_pctx(struct drm_device *dev)
5134 {
5135 struct drm_i915_private *dev_priv = dev->dev_private;
5136 unsigned long pctx_paddr, paddr;
5137 struct i915_gtt *gtt = &dev_priv->gtt;
5138 u32 pcbr;
5139 int pctx_size = 32*1024;
5140
5141 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5142
5143 pcbr = I915_READ(VLV_PCBR);
5144 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5145 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5146 paddr = (dev_priv->mm.stolen_base +
5147 (gtt->stolen_size - pctx_size));
5148
5149 pctx_paddr = (paddr & (~4095));
5150 I915_WRITE(VLV_PCBR, pctx_paddr);
5151 }
5152
5153 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5154 }
5155
5156 static void valleyview_setup_pctx(struct drm_device *dev)
5157 {
5158 struct drm_i915_private *dev_priv = dev->dev_private;
5159 struct drm_i915_gem_object *pctx;
5160 unsigned long pctx_paddr;
5161 u32 pcbr;
5162 int pctx_size = 24*1024;
5163
5164 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5165
5166 pcbr = I915_READ(VLV_PCBR);
5167 if (pcbr) {
5168 /* BIOS set it up already, grab the pre-alloc'd space */
5169 int pcbr_offset;
5170
5171 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5172 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5173 pcbr_offset,
5174 I915_GTT_OFFSET_NONE,
5175 pctx_size);
5176 goto out;
5177 }
5178
5179 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5180
5181 /*
5182 * From the Gunit register HAS:
5183 * The Gfx driver is expected to program this register and ensure
5184 * proper allocation within Gfx stolen memory. For example, this
5185 * register should be programmed such than the PCBR range does not
5186 * overlap with other ranges, such as the frame buffer, protected
5187 * memory, or any other relevant ranges.
5188 */
5189 pctx = i915_gem_object_create_stolen(dev, pctx_size);
5190 if (!pctx) {
5191 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5192 return;
5193 }
5194
5195 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5196 I915_WRITE(VLV_PCBR, pctx_paddr);
5197
5198 out:
5199 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5200 dev_priv->vlv_pctx = pctx;
5201 }
5202
5203 static void valleyview_cleanup_pctx(struct drm_device *dev)
5204 {
5205 struct drm_i915_private *dev_priv = dev->dev_private;
5206
5207 if (WARN_ON(!dev_priv->vlv_pctx))
5208 return;
5209
5210 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5211 dev_priv->vlv_pctx = NULL;
5212 }
5213
5214 static void valleyview_init_gt_powersave(struct drm_device *dev)
5215 {
5216 struct drm_i915_private *dev_priv = dev->dev_private;
5217 u32 val;
5218
5219 valleyview_setup_pctx(dev);
5220
5221 mutex_lock(&dev_priv->rps.hw_lock);
5222
5223 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5224 switch ((val >> 6) & 3) {
5225 case 0:
5226 case 1:
5227 dev_priv->mem_freq = 800;
5228 break;
5229 case 2:
5230 dev_priv->mem_freq = 1066;
5231 break;
5232 case 3:
5233 dev_priv->mem_freq = 1333;
5234 break;
5235 }
5236 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5237
5238 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5239 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5240 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5241 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5242 dev_priv->rps.max_freq);
5243
5244 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5245 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5246 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5247 dev_priv->rps.efficient_freq);
5248
5249 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5250 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5251 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5252 dev_priv->rps.rp1_freq);
5253
5254 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5255 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5256 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5257 dev_priv->rps.min_freq);
5258
5259 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5260
5261 /* Preserve min/max settings in case of re-init */
5262 if (dev_priv->rps.max_freq_softlimit == 0)
5263 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5264
5265 if (dev_priv->rps.min_freq_softlimit == 0)
5266 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5267
5268 mutex_unlock(&dev_priv->rps.hw_lock);
5269 }
5270
5271 static void cherryview_init_gt_powersave(struct drm_device *dev)
5272 {
5273 struct drm_i915_private *dev_priv = dev->dev_private;
5274 u32 val;
5275
5276 cherryview_setup_pctx(dev);
5277
5278 mutex_lock(&dev_priv->rps.hw_lock);
5279
5280 mutex_lock(&dev_priv->sb_lock);
5281 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5282 mutex_unlock(&dev_priv->sb_lock);
5283
5284 switch ((val >> 2) & 0x7) {
5285 case 3:
5286 dev_priv->mem_freq = 2000;
5287 break;
5288 default:
5289 dev_priv->mem_freq = 1600;
5290 break;
5291 }
5292 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5293
5294 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5295 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5296 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5297 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5298 dev_priv->rps.max_freq);
5299
5300 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5301 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5302 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5303 dev_priv->rps.efficient_freq);
5304
5305 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5306 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5307 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5308 dev_priv->rps.rp1_freq);
5309
5310 /* PUnit validated range is only [RPe, RP0] */
5311 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5312 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5313 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5314 dev_priv->rps.min_freq);
5315
5316 WARN_ONCE((dev_priv->rps.max_freq |
5317 dev_priv->rps.efficient_freq |
5318 dev_priv->rps.rp1_freq |
5319 dev_priv->rps.min_freq) & 1,
5320 "Odd GPU freq values\n");
5321
5322 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5323
5324 /* Preserve min/max settings in case of re-init */
5325 if (dev_priv->rps.max_freq_softlimit == 0)
5326 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5327
5328 if (dev_priv->rps.min_freq_softlimit == 0)
5329 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5330
5331 mutex_unlock(&dev_priv->rps.hw_lock);
5332 }
5333
5334 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5335 {
5336 valleyview_cleanup_pctx(dev);
5337 }
5338
5339 static void cherryview_enable_rps(struct drm_device *dev)
5340 {
5341 struct drm_i915_private *dev_priv = dev->dev_private;
5342 struct intel_engine_cs *ring;
5343 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5344 int i;
5345
5346 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5347
5348 gtfifodbg = I915_READ(GTFIFODBG);
5349 if (gtfifodbg) {
5350 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5351 gtfifodbg);
5352 I915_WRITE(GTFIFODBG, gtfifodbg);
5353 }
5354
5355 cherryview_check_pctx(dev_priv);
5356
5357 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5358 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5359 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5360
5361 /* Disable RC states. */
5362 I915_WRITE(GEN6_RC_CONTROL, 0);
5363
5364 /* 2a: Program RC6 thresholds.*/
5365 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5366 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5367 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5368
5369 for_each_ring(ring, dev_priv, i)
5370 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5371 I915_WRITE(GEN6_RC_SLEEP, 0);
5372
5373 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5374 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5375
5376 /* allows RC6 residency counter to work */
5377 I915_WRITE(VLV_COUNTER_CONTROL,
5378 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5379 VLV_MEDIA_RC6_COUNT_EN |
5380 VLV_RENDER_RC6_COUNT_EN));
5381
5382 /* For now we assume BIOS is allocating and populating the PCBR */
5383 pcbr = I915_READ(VLV_PCBR);
5384
5385 /* 3: Enable RC6 */
5386 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5387 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5388 rc6_mode = GEN7_RC_CTL_TO_MODE;
5389
5390 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5391
5392 /* 4 Program defaults and thresholds for RPS*/
5393 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5394 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5395 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5396 I915_WRITE(GEN6_RP_UP_EI, 66000);
5397 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5398
5399 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5400
5401 /* 5: Enable RPS */
5402 I915_WRITE(GEN6_RP_CONTROL,
5403 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5404 GEN6_RP_MEDIA_IS_GFX |
5405 GEN6_RP_ENABLE |
5406 GEN6_RP_UP_BUSY_AVG |
5407 GEN6_RP_DOWN_IDLE_AVG);
5408
5409 /* Setting Fixed Bias */
5410 val = VLV_OVERRIDE_EN |
5411 VLV_SOC_TDP_EN |
5412 CHV_BIAS_CPU_50_SOC_50;
5413 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5414
5415 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5416
5417 /* RPS code assumes GPLL is used */
5418 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5419
5420 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5421 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5422
5423 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5424 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5425 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5426 dev_priv->rps.cur_freq);
5427
5428 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5429 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5430 dev_priv->rps.efficient_freq);
5431
5432 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5433
5434 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5435 }
5436
5437 static void valleyview_enable_rps(struct drm_device *dev)
5438 {
5439 struct drm_i915_private *dev_priv = dev->dev_private;
5440 struct intel_engine_cs *ring;
5441 u32 gtfifodbg, val, rc6_mode = 0;
5442 int i;
5443
5444 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5445
5446 valleyview_check_pctx(dev_priv);
5447
5448 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5449 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5450 gtfifodbg);
5451 I915_WRITE(GTFIFODBG, gtfifodbg);
5452 }
5453
5454 /* If VLV, Forcewake all wells, else re-direct to regular path */
5455 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5456
5457 /* Disable RC states. */
5458 I915_WRITE(GEN6_RC_CONTROL, 0);
5459
5460 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5461 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5462 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5463 I915_WRITE(GEN6_RP_UP_EI, 66000);
5464 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5465
5466 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5467
5468 I915_WRITE(GEN6_RP_CONTROL,
5469 GEN6_RP_MEDIA_TURBO |
5470 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5471 GEN6_RP_MEDIA_IS_GFX |
5472 GEN6_RP_ENABLE |
5473 GEN6_RP_UP_BUSY_AVG |
5474 GEN6_RP_DOWN_IDLE_CONT);
5475
5476 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5477 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5478 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5479
5480 for_each_ring(ring, dev_priv, i)
5481 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5482
5483 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5484
5485 /* allows RC6 residency counter to work */
5486 I915_WRITE(VLV_COUNTER_CONTROL,
5487 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5488 VLV_RENDER_RC0_COUNT_EN |
5489 VLV_MEDIA_RC6_COUNT_EN |
5490 VLV_RENDER_RC6_COUNT_EN));
5491
5492 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5493 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5494
5495 intel_print_rc6_info(dev, rc6_mode);
5496
5497 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5498
5499 /* Setting Fixed Bias */
5500 val = VLV_OVERRIDE_EN |
5501 VLV_SOC_TDP_EN |
5502 VLV_BIAS_CPU_125_SOC_875;
5503 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5504
5505 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5506
5507 /* RPS code assumes GPLL is used */
5508 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5509
5510 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5511 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5512
5513 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5514 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5515 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5516 dev_priv->rps.cur_freq);
5517
5518 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5519 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5520 dev_priv->rps.efficient_freq);
5521
5522 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5523
5524 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5525 }
5526
5527 static unsigned long intel_pxfreq(u32 vidfreq)
5528 {
5529 unsigned long freq;
5530 int div = (vidfreq & 0x3f0000) >> 16;
5531 int post = (vidfreq & 0x3000) >> 12;
5532 int pre = (vidfreq & 0x7);
5533
5534 if (!pre)
5535 return 0;
5536
5537 freq = ((div * 133333) / ((1<<post) * pre));
5538
5539 return freq;
5540 }
5541
5542 static const struct cparams {
5543 u16 i;
5544 u16 t;
5545 u16 m;
5546 u16 c;
5547 } cparams[] = {
5548 { 1, 1333, 301, 28664 },
5549 { 1, 1066, 294, 24460 },
5550 { 1, 800, 294, 25192 },
5551 { 0, 1333, 276, 27605 },
5552 { 0, 1066, 276, 27605 },
5553 { 0, 800, 231, 23784 },
5554 };
5555
5556 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5557 {
5558 u64 total_count, diff, ret;
5559 u32 count1, count2, count3, m = 0, c = 0;
5560 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5561 int i;
5562
5563 assert_spin_locked(&mchdev_lock);
5564
5565 diff1 = now - dev_priv->ips.last_time1;
5566
5567 /* Prevent division-by-zero if we are asking too fast.
5568 * Also, we don't get interesting results if we are polling
5569 * faster than once in 10ms, so just return the saved value
5570 * in such cases.
5571 */
5572 if (diff1 <= 10)
5573 return dev_priv->ips.chipset_power;
5574
5575 count1 = I915_READ(DMIEC);
5576 count2 = I915_READ(DDREC);
5577 count3 = I915_READ(CSIEC);
5578
5579 total_count = count1 + count2 + count3;
5580
5581 /* FIXME: handle per-counter overflow */
5582 if (total_count < dev_priv->ips.last_count1) {
5583 diff = ~0UL - dev_priv->ips.last_count1;
5584 diff += total_count;
5585 } else {
5586 diff = total_count - dev_priv->ips.last_count1;
5587 }
5588
5589 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5590 if (cparams[i].i == dev_priv->ips.c_m &&
5591 cparams[i].t == dev_priv->ips.r_t) {
5592 m = cparams[i].m;
5593 c = cparams[i].c;
5594 break;
5595 }
5596 }
5597
5598 diff = div_u64(diff, diff1);
5599 ret = ((m * diff) + c);
5600 ret = div_u64(ret, 10);
5601
5602 dev_priv->ips.last_count1 = total_count;
5603 dev_priv->ips.last_time1 = now;
5604
5605 dev_priv->ips.chipset_power = ret;
5606
5607 return ret;
5608 }
5609
5610 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5611 {
5612 struct drm_device *dev = dev_priv->dev;
5613 unsigned long val;
5614
5615 if (INTEL_INFO(dev)->gen != 5)
5616 return 0;
5617
5618 spin_lock_irq(&mchdev_lock);
5619
5620 val = __i915_chipset_val(dev_priv);
5621
5622 spin_unlock_irq(&mchdev_lock);
5623
5624 return val;
5625 }
5626
5627 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5628 {
5629 unsigned long m, x, b;
5630 u32 tsfs;
5631
5632 tsfs = I915_READ(TSFS);
5633
5634 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5635 x = I915_READ8(TR1);
5636
5637 b = tsfs & TSFS_INTR_MASK;
5638
5639 return ((m * x) / 127) - b;
5640 }
5641
5642 static int _pxvid_to_vd(u8 pxvid)
5643 {
5644 if (pxvid == 0)
5645 return 0;
5646
5647 if (pxvid >= 8 && pxvid < 31)
5648 pxvid = 31;
5649
5650 return (pxvid + 2) * 125;
5651 }
5652
5653 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5654 {
5655 struct drm_device *dev = dev_priv->dev;
5656 const int vd = _pxvid_to_vd(pxvid);
5657 const int vm = vd - 1125;
5658
5659 if (INTEL_INFO(dev)->is_mobile)
5660 return vm > 0 ? vm : 0;
5661
5662 return vd;
5663 }
5664
5665 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5666 {
5667 u64 now, diff, diffms;
5668 u32 count;
5669
5670 assert_spin_locked(&mchdev_lock);
5671
5672 now = ktime_get_raw_ns();
5673 diffms = now - dev_priv->ips.last_time2;
5674 do_div(diffms, NSEC_PER_MSEC);
5675
5676 /* Don't divide by 0 */
5677 if (!diffms)
5678 return;
5679
5680 count = I915_READ(GFXEC);
5681
5682 if (count < dev_priv->ips.last_count2) {
5683 diff = ~0UL - dev_priv->ips.last_count2;
5684 diff += count;
5685 } else {
5686 diff = count - dev_priv->ips.last_count2;
5687 }
5688
5689 dev_priv->ips.last_count2 = count;
5690 dev_priv->ips.last_time2 = now;
5691
5692 /* More magic constants... */
5693 diff = diff * 1181;
5694 diff = div_u64(diff, diffms * 10);
5695 dev_priv->ips.gfx_power = diff;
5696 }
5697
5698 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5699 {
5700 struct drm_device *dev = dev_priv->dev;
5701
5702 if (INTEL_INFO(dev)->gen != 5)
5703 return;
5704
5705 spin_lock_irq(&mchdev_lock);
5706
5707 __i915_update_gfx_val(dev_priv);
5708
5709 spin_unlock_irq(&mchdev_lock);
5710 }
5711
5712 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5713 {
5714 unsigned long t, corr, state1, corr2, state2;
5715 u32 pxvid, ext_v;
5716
5717 assert_spin_locked(&mchdev_lock);
5718
5719 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5720 pxvid = (pxvid >> 24) & 0x7f;
5721 ext_v = pvid_to_extvid(dev_priv, pxvid);
5722
5723 state1 = ext_v;
5724
5725 t = i915_mch_val(dev_priv);
5726
5727 /* Revel in the empirically derived constants */
5728
5729 /* Correction factor in 1/100000 units */
5730 if (t > 80)
5731 corr = ((t * 2349) + 135940);
5732 else if (t >= 50)
5733 corr = ((t * 964) + 29317);
5734 else /* < 50 */
5735 corr = ((t * 301) + 1004);
5736
5737 corr = corr * ((150142 * state1) / 10000 - 78642);
5738 corr /= 100000;
5739 corr2 = (corr * dev_priv->ips.corr);
5740
5741 state2 = (corr2 * state1) / 10000;
5742 state2 /= 100; /* convert to mW */
5743
5744 __i915_update_gfx_val(dev_priv);
5745
5746 return dev_priv->ips.gfx_power + state2;
5747 }
5748
5749 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5750 {
5751 struct drm_device *dev = dev_priv->dev;
5752 unsigned long val;
5753
5754 if (INTEL_INFO(dev)->gen != 5)
5755 return 0;
5756
5757 spin_lock_irq(&mchdev_lock);
5758
5759 val = __i915_gfx_val(dev_priv);
5760
5761 spin_unlock_irq(&mchdev_lock);
5762
5763 return val;
5764 }
5765
5766 /**
5767 * i915_read_mch_val - return value for IPS use
5768 *
5769 * Calculate and return a value for the IPS driver to use when deciding whether
5770 * we have thermal and power headroom to increase CPU or GPU power budget.
5771 */
5772 unsigned long i915_read_mch_val(void)
5773 {
5774 struct drm_i915_private *dev_priv;
5775 unsigned long chipset_val, graphics_val, ret = 0;
5776
5777 spin_lock_irq(&mchdev_lock);
5778 if (!i915_mch_dev)
5779 goto out_unlock;
5780 dev_priv = i915_mch_dev;
5781
5782 chipset_val = __i915_chipset_val(dev_priv);
5783 graphics_val = __i915_gfx_val(dev_priv);
5784
5785 ret = chipset_val + graphics_val;
5786
5787 out_unlock:
5788 spin_unlock_irq(&mchdev_lock);
5789
5790 return ret;
5791 }
5792 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5793
5794 /**
5795 * i915_gpu_raise - raise GPU frequency limit
5796 *
5797 * Raise the limit; IPS indicates we have thermal headroom.
5798 */
5799 bool i915_gpu_raise(void)
5800 {
5801 struct drm_i915_private *dev_priv;
5802 bool ret = true;
5803
5804 spin_lock_irq(&mchdev_lock);
5805 if (!i915_mch_dev) {
5806 ret = false;
5807 goto out_unlock;
5808 }
5809 dev_priv = i915_mch_dev;
5810
5811 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5812 dev_priv->ips.max_delay--;
5813
5814 out_unlock:
5815 spin_unlock_irq(&mchdev_lock);
5816
5817 return ret;
5818 }
5819 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5820
5821 /**
5822 * i915_gpu_lower - lower GPU frequency limit
5823 *
5824 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5825 * frequency maximum.
5826 */
5827 bool i915_gpu_lower(void)
5828 {
5829 struct drm_i915_private *dev_priv;
5830 bool ret = true;
5831
5832 spin_lock_irq(&mchdev_lock);
5833 if (!i915_mch_dev) {
5834 ret = false;
5835 goto out_unlock;
5836 }
5837 dev_priv = i915_mch_dev;
5838
5839 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5840 dev_priv->ips.max_delay++;
5841
5842 out_unlock:
5843 spin_unlock_irq(&mchdev_lock);
5844
5845 return ret;
5846 }
5847 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5848
5849 /**
5850 * i915_gpu_busy - indicate GPU business to IPS
5851 *
5852 * Tell the IPS driver whether or not the GPU is busy.
5853 */
5854 bool i915_gpu_busy(void)
5855 {
5856 struct drm_i915_private *dev_priv;
5857 struct intel_engine_cs *ring;
5858 bool ret = false;
5859 int i;
5860
5861 spin_lock_irq(&mchdev_lock);
5862 if (!i915_mch_dev)
5863 goto out_unlock;
5864 dev_priv = i915_mch_dev;
5865
5866 for_each_ring(ring, dev_priv, i)
5867 ret |= !list_empty(&ring->request_list);
5868
5869 out_unlock:
5870 spin_unlock_irq(&mchdev_lock);
5871
5872 return ret;
5873 }
5874 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5875
5876 /**
5877 * i915_gpu_turbo_disable - disable graphics turbo
5878 *
5879 * Disable graphics turbo by resetting the max frequency and setting the
5880 * current frequency to the default.
5881 */
5882 bool i915_gpu_turbo_disable(void)
5883 {
5884 struct drm_i915_private *dev_priv;
5885 bool ret = true;
5886
5887 spin_lock_irq(&mchdev_lock);
5888 if (!i915_mch_dev) {
5889 ret = false;
5890 goto out_unlock;
5891 }
5892 dev_priv = i915_mch_dev;
5893
5894 dev_priv->ips.max_delay = dev_priv->ips.fstart;
5895
5896 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5897 ret = false;
5898
5899 out_unlock:
5900 spin_unlock_irq(&mchdev_lock);
5901
5902 return ret;
5903 }
5904 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5905
5906 /**
5907 * Tells the intel_ips driver that the i915 driver is now loaded, if
5908 * IPS got loaded first.
5909 *
5910 * This awkward dance is so that neither module has to depend on the
5911 * other in order for IPS to do the appropriate communication of
5912 * GPU turbo limits to i915.
5913 */
5914 static void
5915 ips_ping_for_i915_load(void)
5916 {
5917 void (*link)(void);
5918
5919 link = symbol_get(ips_link_to_i915_driver);
5920 if (link) {
5921 link();
5922 symbol_put(ips_link_to_i915_driver);
5923 }
5924 }
5925
5926 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5927 {
5928 /* We only register the i915 ips part with intel-ips once everything is
5929 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5930 spin_lock_irq(&mchdev_lock);
5931 i915_mch_dev = dev_priv;
5932 spin_unlock_irq(&mchdev_lock);
5933
5934 ips_ping_for_i915_load();
5935 }
5936
5937 void intel_gpu_ips_teardown(void)
5938 {
5939 spin_lock_irq(&mchdev_lock);
5940 i915_mch_dev = NULL;
5941 spin_unlock_irq(&mchdev_lock);
5942 }
5943
5944 static void intel_init_emon(struct drm_device *dev)
5945 {
5946 struct drm_i915_private *dev_priv = dev->dev_private;
5947 u32 lcfuse;
5948 u8 pxw[16];
5949 int i;
5950
5951 /* Disable to program */
5952 I915_WRITE(ECR, 0);
5953 POSTING_READ(ECR);
5954
5955 /* Program energy weights for various events */
5956 I915_WRITE(SDEW, 0x15040d00);
5957 I915_WRITE(CSIEW0, 0x007f0000);
5958 I915_WRITE(CSIEW1, 0x1e220004);
5959 I915_WRITE(CSIEW2, 0x04000004);
5960
5961 for (i = 0; i < 5; i++)
5962 I915_WRITE(PEW(i), 0);
5963 for (i = 0; i < 3; i++)
5964 I915_WRITE(DEW(i), 0);
5965
5966 /* Program P-state weights to account for frequency power adjustment */
5967 for (i = 0; i < 16; i++) {
5968 u32 pxvidfreq = I915_READ(PXVFREQ(i));
5969 unsigned long freq = intel_pxfreq(pxvidfreq);
5970 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5971 PXVFREQ_PX_SHIFT;
5972 unsigned long val;
5973
5974 val = vid * vid;
5975 val *= (freq / 1000);
5976 val *= 255;
5977 val /= (127*127*900);
5978 if (val > 0xff)
5979 DRM_ERROR("bad pxval: %ld\n", val);
5980 pxw[i] = val;
5981 }
5982 /* Render standby states get 0 weight */
5983 pxw[14] = 0;
5984 pxw[15] = 0;
5985
5986 for (i = 0; i < 4; i++) {
5987 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5988 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5989 I915_WRITE(PXW(i), val);
5990 }
5991
5992 /* Adjust magic regs to magic values (more experimental results) */
5993 I915_WRITE(OGW0, 0);
5994 I915_WRITE(OGW1, 0);
5995 I915_WRITE(EG0, 0x00007f00);
5996 I915_WRITE(EG1, 0x0000000e);
5997 I915_WRITE(EG2, 0x000e0000);
5998 I915_WRITE(EG3, 0x68000300);
5999 I915_WRITE(EG4, 0x42000000);
6000 I915_WRITE(EG5, 0x00140031);
6001 I915_WRITE(EG6, 0);
6002 I915_WRITE(EG7, 0);
6003
6004 for (i = 0; i < 8; i++)
6005 I915_WRITE(PXWL(i), 0);
6006
6007 /* Enable PMON + select events */
6008 I915_WRITE(ECR, 0x80000019);
6009
6010 lcfuse = I915_READ(LCFUSE02);
6011
6012 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6013 }
6014
6015 void intel_init_gt_powersave(struct drm_device *dev)
6016 {
6017 struct drm_i915_private *dev_priv = dev->dev_private;
6018
6019 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6020 /*
6021 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6022 * requirement.
6023 */
6024 if (!i915.enable_rc6) {
6025 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6026 intel_runtime_pm_get(dev_priv);
6027 }
6028
6029 if (IS_CHERRYVIEW(dev))
6030 cherryview_init_gt_powersave(dev);
6031 else if (IS_VALLEYVIEW(dev))
6032 valleyview_init_gt_powersave(dev);
6033 }
6034
6035 void intel_cleanup_gt_powersave(struct drm_device *dev)
6036 {
6037 struct drm_i915_private *dev_priv = dev->dev_private;
6038
6039 if (IS_CHERRYVIEW(dev))
6040 return;
6041 else if (IS_VALLEYVIEW(dev))
6042 valleyview_cleanup_gt_powersave(dev);
6043
6044 if (!i915.enable_rc6)
6045 intel_runtime_pm_put(dev_priv);
6046 }
6047
6048 static void gen6_suspend_rps(struct drm_device *dev)
6049 {
6050 struct drm_i915_private *dev_priv = dev->dev_private;
6051
6052 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6053
6054 gen6_disable_rps_interrupts(dev);
6055 }
6056
6057 /**
6058 * intel_suspend_gt_powersave - suspend PM work and helper threads
6059 * @dev: drm device
6060 *
6061 * We don't want to disable RC6 or other features here, we just want
6062 * to make sure any work we've queued has finished and won't bother
6063 * us while we're suspended.
6064 */
6065 void intel_suspend_gt_powersave(struct drm_device *dev)
6066 {
6067 struct drm_i915_private *dev_priv = dev->dev_private;
6068
6069 if (INTEL_INFO(dev)->gen < 6)
6070 return;
6071
6072 gen6_suspend_rps(dev);
6073
6074 /* Force GPU to min freq during suspend */
6075 gen6_rps_idle(dev_priv);
6076 }
6077
6078 void intel_disable_gt_powersave(struct drm_device *dev)
6079 {
6080 struct drm_i915_private *dev_priv = dev->dev_private;
6081
6082 if (IS_IRONLAKE_M(dev)) {
6083 ironlake_disable_drps(dev);
6084 } else if (INTEL_INFO(dev)->gen >= 6) {
6085 intel_suspend_gt_powersave(dev);
6086
6087 mutex_lock(&dev_priv->rps.hw_lock);
6088 if (INTEL_INFO(dev)->gen >= 9)
6089 gen9_disable_rps(dev);
6090 else if (IS_CHERRYVIEW(dev))
6091 cherryview_disable_rps(dev);
6092 else if (IS_VALLEYVIEW(dev))
6093 valleyview_disable_rps(dev);
6094 else
6095 gen6_disable_rps(dev);
6096
6097 dev_priv->rps.enabled = false;
6098 mutex_unlock(&dev_priv->rps.hw_lock);
6099 }
6100 }
6101
6102 static void intel_gen6_powersave_work(struct work_struct *work)
6103 {
6104 struct drm_i915_private *dev_priv =
6105 container_of(work, struct drm_i915_private,
6106 rps.delayed_resume_work.work);
6107 struct drm_device *dev = dev_priv->dev;
6108
6109 mutex_lock(&dev_priv->rps.hw_lock);
6110
6111 gen6_reset_rps_interrupts(dev);
6112
6113 if (IS_CHERRYVIEW(dev)) {
6114 cherryview_enable_rps(dev);
6115 } else if (IS_VALLEYVIEW(dev)) {
6116 valleyview_enable_rps(dev);
6117 } else if (INTEL_INFO(dev)->gen >= 9) {
6118 gen9_enable_rc6(dev);
6119 gen9_enable_rps(dev);
6120 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6121 __gen6_update_ring_freq(dev);
6122 } else if (IS_BROADWELL(dev)) {
6123 gen8_enable_rps(dev);
6124 __gen6_update_ring_freq(dev);
6125 } else {
6126 gen6_enable_rps(dev);
6127 __gen6_update_ring_freq(dev);
6128 }
6129
6130 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6131 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6132
6133 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6134 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6135
6136 dev_priv->rps.enabled = true;
6137
6138 gen6_enable_rps_interrupts(dev);
6139
6140 mutex_unlock(&dev_priv->rps.hw_lock);
6141
6142 intel_runtime_pm_put(dev_priv);
6143 }
6144
6145 void intel_enable_gt_powersave(struct drm_device *dev)
6146 {
6147 struct drm_i915_private *dev_priv = dev->dev_private;
6148
6149 /* Powersaving is controlled by the host when inside a VM */
6150 if (intel_vgpu_active(dev))
6151 return;
6152
6153 if (IS_IRONLAKE_M(dev)) {
6154 mutex_lock(&dev->struct_mutex);
6155 ironlake_enable_drps(dev);
6156 intel_init_emon(dev);
6157 mutex_unlock(&dev->struct_mutex);
6158 } else if (INTEL_INFO(dev)->gen >= 6) {
6159 /*
6160 * PCU communication is slow and this doesn't need to be
6161 * done at any specific time, so do this out of our fast path
6162 * to make resume and init faster.
6163 *
6164 * We depend on the HW RC6 power context save/restore
6165 * mechanism when entering D3 through runtime PM suspend. So
6166 * disable RPM until RPS/RC6 is properly setup. We can only
6167 * get here via the driver load/system resume/runtime resume
6168 * paths, so the _noresume version is enough (and in case of
6169 * runtime resume it's necessary).
6170 */
6171 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6172 round_jiffies_up_relative(HZ)))
6173 intel_runtime_pm_get_noresume(dev_priv);
6174 }
6175 }
6176
6177 void intel_reset_gt_powersave(struct drm_device *dev)
6178 {
6179 struct drm_i915_private *dev_priv = dev->dev_private;
6180
6181 if (INTEL_INFO(dev)->gen < 6)
6182 return;
6183
6184 gen6_suspend_rps(dev);
6185 dev_priv->rps.enabled = false;
6186 }
6187
6188 static void ibx_init_clock_gating(struct drm_device *dev)
6189 {
6190 struct drm_i915_private *dev_priv = dev->dev_private;
6191
6192 /*
6193 * On Ibex Peak and Cougar Point, we need to disable clock
6194 * gating for the panel power sequencer or it will fail to
6195 * start up when no ports are active.
6196 */
6197 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6198 }
6199
6200 static void g4x_disable_trickle_feed(struct drm_device *dev)
6201 {
6202 struct drm_i915_private *dev_priv = dev->dev_private;
6203 enum pipe pipe;
6204
6205 for_each_pipe(dev_priv, pipe) {
6206 I915_WRITE(DSPCNTR(pipe),
6207 I915_READ(DSPCNTR(pipe)) |
6208 DISPPLANE_TRICKLE_FEED_DISABLE);
6209
6210 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6211 POSTING_READ(DSPSURF(pipe));
6212 }
6213 }
6214
6215 static void ilk_init_lp_watermarks(struct drm_device *dev)
6216 {
6217 struct drm_i915_private *dev_priv = dev->dev_private;
6218
6219 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6220 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6221 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6222
6223 /*
6224 * Don't touch WM1S_LP_EN here.
6225 * Doing so could cause underruns.
6226 */
6227 }
6228
6229 static void ironlake_init_clock_gating(struct drm_device *dev)
6230 {
6231 struct drm_i915_private *dev_priv = dev->dev_private;
6232 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6233
6234 /*
6235 * Required for FBC
6236 * WaFbcDisableDpfcClockGating:ilk
6237 */
6238 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6239 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6240 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6241
6242 I915_WRITE(PCH_3DCGDIS0,
6243 MARIUNIT_CLOCK_GATE_DISABLE |
6244 SVSMUNIT_CLOCK_GATE_DISABLE);
6245 I915_WRITE(PCH_3DCGDIS1,
6246 VFMUNIT_CLOCK_GATE_DISABLE);
6247
6248 /*
6249 * According to the spec the following bits should be set in
6250 * order to enable memory self-refresh
6251 * The bit 22/21 of 0x42004
6252 * The bit 5 of 0x42020
6253 * The bit 15 of 0x45000
6254 */
6255 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6256 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6257 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6258 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6259 I915_WRITE(DISP_ARB_CTL,
6260 (I915_READ(DISP_ARB_CTL) |
6261 DISP_FBC_WM_DIS));
6262
6263 ilk_init_lp_watermarks(dev);
6264
6265 /*
6266 * Based on the document from hardware guys the following bits
6267 * should be set unconditionally in order to enable FBC.
6268 * The bit 22 of 0x42000
6269 * The bit 22 of 0x42004
6270 * The bit 7,8,9 of 0x42020.
6271 */
6272 if (IS_IRONLAKE_M(dev)) {
6273 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6274 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6275 I915_READ(ILK_DISPLAY_CHICKEN1) |
6276 ILK_FBCQ_DIS);
6277 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6278 I915_READ(ILK_DISPLAY_CHICKEN2) |
6279 ILK_DPARB_GATE);
6280 }
6281
6282 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6283
6284 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6285 I915_READ(ILK_DISPLAY_CHICKEN2) |
6286 ILK_ELPIN_409_SELECT);
6287 I915_WRITE(_3D_CHICKEN2,
6288 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6289 _3D_CHICKEN2_WM_READ_PIPELINED);
6290
6291 /* WaDisableRenderCachePipelinedFlush:ilk */
6292 I915_WRITE(CACHE_MODE_0,
6293 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6294
6295 /* WaDisable_RenderCache_OperationalFlush:ilk */
6296 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6297
6298 g4x_disable_trickle_feed(dev);
6299
6300 ibx_init_clock_gating(dev);
6301 }
6302
6303 static void cpt_init_clock_gating(struct drm_device *dev)
6304 {
6305 struct drm_i915_private *dev_priv = dev->dev_private;
6306 int pipe;
6307 uint32_t val;
6308
6309 /*
6310 * On Ibex Peak and Cougar Point, we need to disable clock
6311 * gating for the panel power sequencer or it will fail to
6312 * start up when no ports are active.
6313 */
6314 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6315 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6316 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6317 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6318 DPLS_EDP_PPS_FIX_DIS);
6319 /* The below fixes the weird display corruption, a few pixels shifted
6320 * downward, on (only) LVDS of some HP laptops with IVY.
6321 */
6322 for_each_pipe(dev_priv, pipe) {
6323 val = I915_READ(TRANS_CHICKEN2(pipe));
6324 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6325 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6326 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6327 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6328 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6329 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6330 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6331 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6332 }
6333 /* WADP0ClockGatingDisable */
6334 for_each_pipe(dev_priv, pipe) {
6335 I915_WRITE(TRANS_CHICKEN1(pipe),
6336 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6337 }
6338 }
6339
6340 static void gen6_check_mch_setup(struct drm_device *dev)
6341 {
6342 struct drm_i915_private *dev_priv = dev->dev_private;
6343 uint32_t tmp;
6344
6345 tmp = I915_READ(MCH_SSKPD);
6346 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6347 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6348 tmp);
6349 }
6350
6351 static void gen6_init_clock_gating(struct drm_device *dev)
6352 {
6353 struct drm_i915_private *dev_priv = dev->dev_private;
6354 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6355
6356 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6357
6358 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6359 I915_READ(ILK_DISPLAY_CHICKEN2) |
6360 ILK_ELPIN_409_SELECT);
6361
6362 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6363 I915_WRITE(_3D_CHICKEN,
6364 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6365
6366 /* WaDisable_RenderCache_OperationalFlush:snb */
6367 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6368
6369 /*
6370 * BSpec recoomends 8x4 when MSAA is used,
6371 * however in practice 16x4 seems fastest.
6372 *
6373 * Note that PS/WM thread counts depend on the WIZ hashing
6374 * disable bit, which we don't touch here, but it's good
6375 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6376 */
6377 I915_WRITE(GEN6_GT_MODE,
6378 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6379
6380 ilk_init_lp_watermarks(dev);
6381
6382 I915_WRITE(CACHE_MODE_0,
6383 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6384
6385 I915_WRITE(GEN6_UCGCTL1,
6386 I915_READ(GEN6_UCGCTL1) |
6387 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6388 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6389
6390 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6391 * gating disable must be set. Failure to set it results in
6392 * flickering pixels due to Z write ordering failures after
6393 * some amount of runtime in the Mesa "fire" demo, and Unigine
6394 * Sanctuary and Tropics, and apparently anything else with
6395 * alpha test or pixel discard.
6396 *
6397 * According to the spec, bit 11 (RCCUNIT) must also be set,
6398 * but we didn't debug actual testcases to find it out.
6399 *
6400 * WaDisableRCCUnitClockGating:snb
6401 * WaDisableRCPBUnitClockGating:snb
6402 */
6403 I915_WRITE(GEN6_UCGCTL2,
6404 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6405 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6406
6407 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6408 I915_WRITE(_3D_CHICKEN3,
6409 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6410
6411 /*
6412 * Bspec says:
6413 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6414 * 3DSTATE_SF number of SF output attributes is more than 16."
6415 */
6416 I915_WRITE(_3D_CHICKEN3,
6417 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6418
6419 /*
6420 * According to the spec the following bits should be
6421 * set in order to enable memory self-refresh and fbc:
6422 * The bit21 and bit22 of 0x42000
6423 * The bit21 and bit22 of 0x42004
6424 * The bit5 and bit7 of 0x42020
6425 * The bit14 of 0x70180
6426 * The bit14 of 0x71180
6427 *
6428 * WaFbcAsynchFlipDisableFbcQueue:snb
6429 */
6430 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6431 I915_READ(ILK_DISPLAY_CHICKEN1) |
6432 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6433 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6434 I915_READ(ILK_DISPLAY_CHICKEN2) |
6435 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6436 I915_WRITE(ILK_DSPCLK_GATE_D,
6437 I915_READ(ILK_DSPCLK_GATE_D) |
6438 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6439 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6440
6441 g4x_disable_trickle_feed(dev);
6442
6443 cpt_init_clock_gating(dev);
6444
6445 gen6_check_mch_setup(dev);
6446 }
6447
6448 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6449 {
6450 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6451
6452 /*
6453 * WaVSThreadDispatchOverride:ivb,vlv
6454 *
6455 * This actually overrides the dispatch
6456 * mode for all thread types.
6457 */
6458 reg &= ~GEN7_FF_SCHED_MASK;
6459 reg |= GEN7_FF_TS_SCHED_HW;
6460 reg |= GEN7_FF_VS_SCHED_HW;
6461 reg |= GEN7_FF_DS_SCHED_HW;
6462
6463 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6464 }
6465
6466 static void lpt_init_clock_gating(struct drm_device *dev)
6467 {
6468 struct drm_i915_private *dev_priv = dev->dev_private;
6469
6470 /*
6471 * TODO: this bit should only be enabled when really needed, then
6472 * disabled when not needed anymore in order to save power.
6473 */
6474 if (HAS_PCH_LPT_LP(dev))
6475 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6476 I915_READ(SOUTH_DSPCLK_GATE_D) |
6477 PCH_LP_PARTITION_LEVEL_DISABLE);
6478
6479 /* WADPOClockGatingDisable:hsw */
6480 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6481 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6482 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6483 }
6484
6485 static void lpt_suspend_hw(struct drm_device *dev)
6486 {
6487 struct drm_i915_private *dev_priv = dev->dev_private;
6488
6489 if (HAS_PCH_LPT_LP(dev)) {
6490 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6491
6492 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6493 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6494 }
6495 }
6496
6497 static void broadwell_init_clock_gating(struct drm_device *dev)
6498 {
6499 struct drm_i915_private *dev_priv = dev->dev_private;
6500 enum pipe pipe;
6501 uint32_t misccpctl;
6502
6503 ilk_init_lp_watermarks(dev);
6504
6505 /* WaSwitchSolVfFArbitrationPriority:bdw */
6506 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6507
6508 /* WaPsrDPAMaskVBlankInSRD:bdw */
6509 I915_WRITE(CHICKEN_PAR1_1,
6510 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6511
6512 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6513 for_each_pipe(dev_priv, pipe) {
6514 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6515 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6516 BDW_DPRS_MASK_VBLANK_SRD);
6517 }
6518
6519 /* WaVSRefCountFullforceMissDisable:bdw */
6520 /* WaDSRefCountFullforceMissDisable:bdw */
6521 I915_WRITE(GEN7_FF_THREAD_MODE,
6522 I915_READ(GEN7_FF_THREAD_MODE) &
6523 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6524
6525 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6526 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6527
6528 /* WaDisableSDEUnitClockGating:bdw */
6529 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6530 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6531
6532 /*
6533 * WaProgramL3SqcReg1Default:bdw
6534 * WaTempDisableDOPClkGating:bdw
6535 */
6536 misccpctl = I915_READ(GEN7_MISCCPCTL);
6537 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6538 I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6539 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6540
6541 /*
6542 * WaGttCachingOffByDefault:bdw
6543 * GTT cache may not work with big pages, so if those
6544 * are ever enabled GTT cache may need to be disabled.
6545 */
6546 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6547
6548 lpt_init_clock_gating(dev);
6549 }
6550
6551 static void haswell_init_clock_gating(struct drm_device *dev)
6552 {
6553 struct drm_i915_private *dev_priv = dev->dev_private;
6554
6555 ilk_init_lp_watermarks(dev);
6556
6557 /* L3 caching of data atomics doesn't work -- disable it. */
6558 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6559 I915_WRITE(HSW_ROW_CHICKEN3,
6560 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6561
6562 /* This is required by WaCatErrorRejectionIssue:hsw */
6563 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6564 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6565 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6566
6567 /* WaVSRefCountFullforceMissDisable:hsw */
6568 I915_WRITE(GEN7_FF_THREAD_MODE,
6569 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6570
6571 /* WaDisable_RenderCache_OperationalFlush:hsw */
6572 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6573
6574 /* enable HiZ Raw Stall Optimization */
6575 I915_WRITE(CACHE_MODE_0_GEN7,
6576 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6577
6578 /* WaDisable4x2SubspanOptimization:hsw */
6579 I915_WRITE(CACHE_MODE_1,
6580 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6581
6582 /*
6583 * BSpec recommends 8x4 when MSAA is used,
6584 * however in practice 16x4 seems fastest.
6585 *
6586 * Note that PS/WM thread counts depend on the WIZ hashing
6587 * disable bit, which we don't touch here, but it's good
6588 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6589 */
6590 I915_WRITE(GEN7_GT_MODE,
6591 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6592
6593 /* WaSampleCChickenBitEnable:hsw */
6594 I915_WRITE(HALF_SLICE_CHICKEN3,
6595 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6596
6597 /* WaSwitchSolVfFArbitrationPriority:hsw */
6598 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6599
6600 /* WaRsPkgCStateDisplayPMReq:hsw */
6601 I915_WRITE(CHICKEN_PAR1_1,
6602 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6603
6604 lpt_init_clock_gating(dev);
6605 }
6606
6607 static void ivybridge_init_clock_gating(struct drm_device *dev)
6608 {
6609 struct drm_i915_private *dev_priv = dev->dev_private;
6610 uint32_t snpcr;
6611
6612 ilk_init_lp_watermarks(dev);
6613
6614 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6615
6616 /* WaDisableEarlyCull:ivb */
6617 I915_WRITE(_3D_CHICKEN3,
6618 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6619
6620 /* WaDisableBackToBackFlipFix:ivb */
6621 I915_WRITE(IVB_CHICKEN3,
6622 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6623 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6624
6625 /* WaDisablePSDDualDispatchEnable:ivb */
6626 if (IS_IVB_GT1(dev))
6627 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6628 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6629
6630 /* WaDisable_RenderCache_OperationalFlush:ivb */
6631 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6632
6633 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6634 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6635 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6636
6637 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6638 I915_WRITE(GEN7_L3CNTLREG1,
6639 GEN7_WA_FOR_GEN7_L3_CONTROL);
6640 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6641 GEN7_WA_L3_CHICKEN_MODE);
6642 if (IS_IVB_GT1(dev))
6643 I915_WRITE(GEN7_ROW_CHICKEN2,
6644 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6645 else {
6646 /* must write both registers */
6647 I915_WRITE(GEN7_ROW_CHICKEN2,
6648 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6649 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6650 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6651 }
6652
6653 /* WaForceL3Serialization:ivb */
6654 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6655 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6656
6657 /*
6658 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6659 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6660 */
6661 I915_WRITE(GEN6_UCGCTL2,
6662 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6663
6664 /* This is required by WaCatErrorRejectionIssue:ivb */
6665 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6666 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6667 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6668
6669 g4x_disable_trickle_feed(dev);
6670
6671 gen7_setup_fixed_func_scheduler(dev_priv);
6672
6673 if (0) { /* causes HiZ corruption on ivb:gt1 */
6674 /* enable HiZ Raw Stall Optimization */
6675 I915_WRITE(CACHE_MODE_0_GEN7,
6676 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6677 }
6678
6679 /* WaDisable4x2SubspanOptimization:ivb */
6680 I915_WRITE(CACHE_MODE_1,
6681 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6682
6683 /*
6684 * BSpec recommends 8x4 when MSAA is used,
6685 * however in practice 16x4 seems fastest.
6686 *
6687 * Note that PS/WM thread counts depend on the WIZ hashing
6688 * disable bit, which we don't touch here, but it's good
6689 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6690 */
6691 I915_WRITE(GEN7_GT_MODE,
6692 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6693
6694 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6695 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6696 snpcr |= GEN6_MBC_SNPCR_MED;
6697 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6698
6699 if (!HAS_PCH_NOP(dev))
6700 cpt_init_clock_gating(dev);
6701
6702 gen6_check_mch_setup(dev);
6703 }
6704
6705 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6706 {
6707 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6708
6709 /*
6710 * Disable trickle feed and enable pnd deadline calculation
6711 */
6712 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6713 I915_WRITE(CBR1_VLV, 0);
6714 }
6715
6716 static void valleyview_init_clock_gating(struct drm_device *dev)
6717 {
6718 struct drm_i915_private *dev_priv = dev->dev_private;
6719
6720 vlv_init_display_clock_gating(dev_priv);
6721
6722 /* WaDisableEarlyCull:vlv */
6723 I915_WRITE(_3D_CHICKEN3,
6724 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6725
6726 /* WaDisableBackToBackFlipFix:vlv */
6727 I915_WRITE(IVB_CHICKEN3,
6728 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6729 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6730
6731 /* WaPsdDispatchEnable:vlv */
6732 /* WaDisablePSDDualDispatchEnable:vlv */
6733 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6734 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6735 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6736
6737 /* WaDisable_RenderCache_OperationalFlush:vlv */
6738 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6739
6740 /* WaForceL3Serialization:vlv */
6741 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6742 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6743
6744 /* WaDisableDopClockGating:vlv */
6745 I915_WRITE(GEN7_ROW_CHICKEN2,
6746 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6747
6748 /* This is required by WaCatErrorRejectionIssue:vlv */
6749 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6750 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6751 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6752
6753 gen7_setup_fixed_func_scheduler(dev_priv);
6754
6755 /*
6756 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6757 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6758 */
6759 I915_WRITE(GEN6_UCGCTL2,
6760 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6761
6762 /* WaDisableL3Bank2xClockGate:vlv
6763 * Disabling L3 clock gating- MMIO 940c[25] = 1
6764 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6765 I915_WRITE(GEN7_UCGCTL4,
6766 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6767
6768 /*
6769 * BSpec says this must be set, even though
6770 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6771 */
6772 I915_WRITE(CACHE_MODE_1,
6773 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6774
6775 /*
6776 * BSpec recommends 8x4 when MSAA is used,
6777 * however in practice 16x4 seems fastest.
6778 *
6779 * Note that PS/WM thread counts depend on the WIZ hashing
6780 * disable bit, which we don't touch here, but it's good
6781 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6782 */
6783 I915_WRITE(GEN7_GT_MODE,
6784 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6785
6786 /*
6787 * WaIncreaseL3CreditsForVLVB0:vlv
6788 * This is the hardware default actually.
6789 */
6790 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6791
6792 /*
6793 * WaDisableVLVClockGating_VBIIssue:vlv
6794 * Disable clock gating on th GCFG unit to prevent a delay
6795 * in the reporting of vblank events.
6796 */
6797 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6798 }
6799
6800 static void cherryview_init_clock_gating(struct drm_device *dev)
6801 {
6802 struct drm_i915_private *dev_priv = dev->dev_private;
6803
6804 vlv_init_display_clock_gating(dev_priv);
6805
6806 /* WaVSRefCountFullforceMissDisable:chv */
6807 /* WaDSRefCountFullforceMissDisable:chv */
6808 I915_WRITE(GEN7_FF_THREAD_MODE,
6809 I915_READ(GEN7_FF_THREAD_MODE) &
6810 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6811
6812 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6813 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6814 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6815
6816 /* WaDisableCSUnitClockGating:chv */
6817 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6818 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6819
6820 /* WaDisableSDEUnitClockGating:chv */
6821 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6822 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6823
6824 /*
6825 * GTT cache may not work with big pages, so if those
6826 * are ever enabled GTT cache may need to be disabled.
6827 */
6828 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6829 }
6830
6831 static void g4x_init_clock_gating(struct drm_device *dev)
6832 {
6833 struct drm_i915_private *dev_priv = dev->dev_private;
6834 uint32_t dspclk_gate;
6835
6836 I915_WRITE(RENCLK_GATE_D1, 0);
6837 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6838 GS_UNIT_CLOCK_GATE_DISABLE |
6839 CL_UNIT_CLOCK_GATE_DISABLE);
6840 I915_WRITE(RAMCLK_GATE_D, 0);
6841 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6842 OVRUNIT_CLOCK_GATE_DISABLE |
6843 OVCUNIT_CLOCK_GATE_DISABLE;
6844 if (IS_GM45(dev))
6845 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6846 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6847
6848 /* WaDisableRenderCachePipelinedFlush */
6849 I915_WRITE(CACHE_MODE_0,
6850 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6851
6852 /* WaDisable_RenderCache_OperationalFlush:g4x */
6853 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6854
6855 g4x_disable_trickle_feed(dev);
6856 }
6857
6858 static void crestline_init_clock_gating(struct drm_device *dev)
6859 {
6860 struct drm_i915_private *dev_priv = dev->dev_private;
6861
6862 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6863 I915_WRITE(RENCLK_GATE_D2, 0);
6864 I915_WRITE(DSPCLK_GATE_D, 0);
6865 I915_WRITE(RAMCLK_GATE_D, 0);
6866 I915_WRITE16(DEUC, 0);
6867 I915_WRITE(MI_ARB_STATE,
6868 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6869
6870 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6871 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6872 }
6873
6874 static void broadwater_init_clock_gating(struct drm_device *dev)
6875 {
6876 struct drm_i915_private *dev_priv = dev->dev_private;
6877
6878 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6879 I965_RCC_CLOCK_GATE_DISABLE |
6880 I965_RCPB_CLOCK_GATE_DISABLE |
6881 I965_ISC_CLOCK_GATE_DISABLE |
6882 I965_FBC_CLOCK_GATE_DISABLE);
6883 I915_WRITE(RENCLK_GATE_D2, 0);
6884 I915_WRITE(MI_ARB_STATE,
6885 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6886
6887 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6888 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6889 }
6890
6891 static void gen3_init_clock_gating(struct drm_device *dev)
6892 {
6893 struct drm_i915_private *dev_priv = dev->dev_private;
6894 u32 dstate = I915_READ(D_STATE);
6895
6896 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6897 DSTATE_DOT_CLOCK_GATING;
6898 I915_WRITE(D_STATE, dstate);
6899
6900 if (IS_PINEVIEW(dev))
6901 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6902
6903 /* IIR "flip pending" means done if this bit is set */
6904 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6905
6906 /* interrupts should cause a wake up from C3 */
6907 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6908
6909 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6910 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6911
6912 I915_WRITE(MI_ARB_STATE,
6913 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6914 }
6915
6916 static void i85x_init_clock_gating(struct drm_device *dev)
6917 {
6918 struct drm_i915_private *dev_priv = dev->dev_private;
6919
6920 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6921
6922 /* interrupts should cause a wake up from C3 */
6923 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6924 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6925
6926 I915_WRITE(MEM_MODE,
6927 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6928 }
6929
6930 static void i830_init_clock_gating(struct drm_device *dev)
6931 {
6932 struct drm_i915_private *dev_priv = dev->dev_private;
6933
6934 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6935
6936 I915_WRITE(MEM_MODE,
6937 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6938 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6939 }
6940
6941 void intel_init_clock_gating(struct drm_device *dev)
6942 {
6943 struct drm_i915_private *dev_priv = dev->dev_private;
6944
6945 if (dev_priv->display.init_clock_gating)
6946 dev_priv->display.init_clock_gating(dev);
6947 }
6948
6949 void intel_suspend_hw(struct drm_device *dev)
6950 {
6951 if (HAS_PCH_LPT(dev))
6952 lpt_suspend_hw(dev);
6953 }
6954
6955 /* Set up chip specific power management-related functions */
6956 void intel_init_pm(struct drm_device *dev)
6957 {
6958 struct drm_i915_private *dev_priv = dev->dev_private;
6959
6960 intel_fbc_init(dev_priv);
6961
6962 /* For cxsr */
6963 if (IS_PINEVIEW(dev))
6964 i915_pineview_get_mem_freq(dev);
6965 else if (IS_GEN5(dev))
6966 i915_ironlake_get_mem_freq(dev);
6967
6968 /* For FIFO watermark updates */
6969 if (INTEL_INFO(dev)->gen >= 9) {
6970 skl_setup_wm_latency(dev);
6971
6972 if (IS_BROXTON(dev))
6973 dev_priv->display.init_clock_gating =
6974 bxt_init_clock_gating;
6975 dev_priv->display.update_wm = skl_update_wm;
6976 } else if (HAS_PCH_SPLIT(dev)) {
6977 ilk_setup_wm_latency(dev);
6978
6979 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6980 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6981 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6982 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6983 dev_priv->display.update_wm = ilk_update_wm;
6984 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
6985 } else {
6986 DRM_DEBUG_KMS("Failed to read display plane latency. "
6987 "Disable CxSR\n");
6988 }
6989
6990 if (IS_GEN5(dev))
6991 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6992 else if (IS_GEN6(dev))
6993 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6994 else if (IS_IVYBRIDGE(dev))
6995 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6996 else if (IS_HASWELL(dev))
6997 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6998 else if (INTEL_INFO(dev)->gen == 8)
6999 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7000 } else if (IS_CHERRYVIEW(dev)) {
7001 vlv_setup_wm_latency(dev);
7002
7003 dev_priv->display.update_wm = vlv_update_wm;
7004 dev_priv->display.init_clock_gating =
7005 cherryview_init_clock_gating;
7006 } else if (IS_VALLEYVIEW(dev)) {
7007 vlv_setup_wm_latency(dev);
7008
7009 dev_priv->display.update_wm = vlv_update_wm;
7010 dev_priv->display.init_clock_gating =
7011 valleyview_init_clock_gating;
7012 } else if (IS_PINEVIEW(dev)) {
7013 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7014 dev_priv->is_ddr3,
7015 dev_priv->fsb_freq,
7016 dev_priv->mem_freq)) {
7017 DRM_INFO("failed to find known CxSR latency "
7018 "(found ddr%s fsb freq %d, mem freq %d), "
7019 "disabling CxSR\n",
7020 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7021 dev_priv->fsb_freq, dev_priv->mem_freq);
7022 /* Disable CxSR and never update its watermark again */
7023 intel_set_memory_cxsr(dev_priv, false);
7024 dev_priv->display.update_wm = NULL;
7025 } else
7026 dev_priv->display.update_wm = pineview_update_wm;
7027 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7028 } else if (IS_G4X(dev)) {
7029 dev_priv->display.update_wm = g4x_update_wm;
7030 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7031 } else if (IS_GEN4(dev)) {
7032 dev_priv->display.update_wm = i965_update_wm;
7033 if (IS_CRESTLINE(dev))
7034 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7035 else if (IS_BROADWATER(dev))
7036 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7037 } else if (IS_GEN3(dev)) {
7038 dev_priv->display.update_wm = i9xx_update_wm;
7039 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7040 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7041 } else if (IS_GEN2(dev)) {
7042 if (INTEL_INFO(dev)->num_pipes == 1) {
7043 dev_priv->display.update_wm = i845_update_wm;
7044 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7045 } else {
7046 dev_priv->display.update_wm = i9xx_update_wm;
7047 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7048 }
7049
7050 if (IS_I85X(dev) || IS_I865G(dev))
7051 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7052 else
7053 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7054 } else {
7055 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7056 }
7057 }
7058
7059 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7060 {
7061 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7062
7063 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7064 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7065 return -EAGAIN;
7066 }
7067
7068 I915_WRITE(GEN6_PCODE_DATA, *val);
7069 I915_WRITE(GEN6_PCODE_DATA1, 0);
7070 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7071
7072 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7073 500)) {
7074 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7075 return -ETIMEDOUT;
7076 }
7077
7078 *val = I915_READ(GEN6_PCODE_DATA);
7079 I915_WRITE(GEN6_PCODE_DATA, 0);
7080
7081 return 0;
7082 }
7083
7084 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7085 {
7086 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7087
7088 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7089 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7090 return -EAGAIN;
7091 }
7092
7093 I915_WRITE(GEN6_PCODE_DATA, val);
7094 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7095
7096 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7097 500)) {
7098 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7099 return -ETIMEDOUT;
7100 }
7101
7102 I915_WRITE(GEN6_PCODE_DATA, 0);
7103
7104 return 0;
7105 }
7106
7107 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7108 {
7109 switch (czclk_freq) {
7110 case 200:
7111 return 10;
7112 case 267:
7113 return 12;
7114 case 320:
7115 case 333:
7116 return 16;
7117 case 400:
7118 return 20;
7119 default:
7120 return -1;
7121 }
7122 }
7123
7124 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7125 {
7126 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7127
7128 div = vlv_gpu_freq_div(czclk_freq);
7129 if (div < 0)
7130 return div;
7131
7132 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7133 }
7134
7135 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7136 {
7137 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7138
7139 mul = vlv_gpu_freq_div(czclk_freq);
7140 if (mul < 0)
7141 return mul;
7142
7143 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7144 }
7145
7146 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7147 {
7148 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7149
7150 div = vlv_gpu_freq_div(czclk_freq) / 2;
7151 if (div < 0)
7152 return div;
7153
7154 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7155 }
7156
7157 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7158 {
7159 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7160
7161 mul = vlv_gpu_freq_div(czclk_freq) / 2;
7162 if (mul < 0)
7163 return mul;
7164
7165 /* CHV needs even values */
7166 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7167 }
7168
7169 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7170 {
7171 if (IS_GEN9(dev_priv->dev))
7172 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7173 GEN9_FREQ_SCALER);
7174 else if (IS_CHERRYVIEW(dev_priv->dev))
7175 return chv_gpu_freq(dev_priv, val);
7176 else if (IS_VALLEYVIEW(dev_priv->dev))
7177 return byt_gpu_freq(dev_priv, val);
7178 else
7179 return val * GT_FREQUENCY_MULTIPLIER;
7180 }
7181
7182 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7183 {
7184 if (IS_GEN9(dev_priv->dev))
7185 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7186 GT_FREQUENCY_MULTIPLIER);
7187 else if (IS_CHERRYVIEW(dev_priv->dev))
7188 return chv_freq_opcode(dev_priv, val);
7189 else if (IS_VALLEYVIEW(dev_priv->dev))
7190 return byt_freq_opcode(dev_priv, val);
7191 else
7192 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7193 }
7194
7195 struct request_boost {
7196 struct work_struct work;
7197 struct drm_i915_gem_request *req;
7198 };
7199
7200 static void __intel_rps_boost_work(struct work_struct *work)
7201 {
7202 struct request_boost *boost = container_of(work, struct request_boost, work);
7203 struct drm_i915_gem_request *req = boost->req;
7204
7205 if (!i915_gem_request_completed(req, true))
7206 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7207 req->emitted_jiffies);
7208
7209 i915_gem_request_unreference__unlocked(req);
7210 kfree(boost);
7211 }
7212
7213 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7214 struct drm_i915_gem_request *req)
7215 {
7216 struct request_boost *boost;
7217
7218 if (req == NULL || INTEL_INFO(dev)->gen < 6)
7219 return;
7220
7221 if (i915_gem_request_completed(req, true))
7222 return;
7223
7224 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7225 if (boost == NULL)
7226 return;
7227
7228 i915_gem_request_reference(req);
7229 boost->req = req;
7230
7231 INIT_WORK(&boost->work, __intel_rps_boost_work);
7232 queue_work(to_i915(dev)->wq, &boost->work);
7233 }
7234
7235 void intel_pm_setup(struct drm_device *dev)
7236 {
7237 struct drm_i915_private *dev_priv = dev->dev_private;
7238
7239 mutex_init(&dev_priv->rps.hw_lock);
7240 spin_lock_init(&dev_priv->rps.client_lock);
7241
7242 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7243 intel_gen6_powersave_work);
7244 INIT_LIST_HEAD(&dev_priv->rps.clients);
7245 INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7246 INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7247
7248 dev_priv->pm.suspended = false;
7249 atomic_set(&dev_priv->pm.wakeref_count, 0);
7250 }
This page took 0.279154 seconds and 5 git commands to generate.