66a70966ed43ff330ded8d43e36355e9a1bab9e9
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage. This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39 *
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
43 *
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
50 */
51 #define INTEL_RC6_ENABLE (1<<0)
52 #define INTEL_RC6p_ENABLE (1<<1)
53 #define INTEL_RC6pp_ENABLE (1<<2)
54
55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57 struct drm_i915_private *dev_priv = dev->dev_private;
58
59 /* WaEnableLbsSlaRetryTimerDecrement:skl */
60 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
61 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62 }
63
64 static void skl_init_clock_gating(struct drm_device *dev)
65 {
66 struct drm_i915_private *dev_priv = dev->dev_private;
67
68 gen9_init_clock_gating(dev);
69
70 if (INTEL_REVID(dev) <= SKL_REVID_B0) {
71 /*
72 * WaDisableSDEUnitClockGating:skl
73 * WaSetGAPSunitClckGateDisable:skl
74 */
75 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
76 GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
77 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
78
79 /* WaDisableVFUnitClockGating:skl */
80 I915_WRITE(GEN6_UCGCTL2, I915_READ(GEN6_UCGCTL2) |
81 GEN6_VFUNIT_CLOCK_GATE_DISABLE);
82 }
83
84 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
85 /* WaDisableHDCInvalidation:skl */
86 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
87 BDW_DISABLE_HDC_INVALIDATION);
88
89 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
90 I915_WRITE(FF_SLICE_CS_CHICKEN2,
91 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
92 }
93
94 if (INTEL_REVID(dev) <= SKL_REVID_E0)
95 /* WaDisableLSQCROPERFforOCL:skl */
96 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
97 GEN8_LQSC_RO_PERF_DIS);
98 }
99
100 static void bxt_init_clock_gating(struct drm_device *dev)
101 {
102 struct drm_i915_private *dev_priv = dev->dev_private;
103
104 gen9_init_clock_gating(dev);
105
106 /*
107 * FIXME:
108 * GEN8_SDEUNIT_CLOCK_GATE_DISABLE applies on A0 only.
109 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
110 */
111 /* WaDisableSDEUnitClockGating:bxt */
112 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
113 GEN8_SDEUNIT_CLOCK_GATE_DISABLE |
114 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
115
116 /* FIXME: apply on A0 only */
117 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
118 }
119
120 static void i915_pineview_get_mem_freq(struct drm_device *dev)
121 {
122 struct drm_i915_private *dev_priv = dev->dev_private;
123 u32 tmp;
124
125 tmp = I915_READ(CLKCFG);
126
127 switch (tmp & CLKCFG_FSB_MASK) {
128 case CLKCFG_FSB_533:
129 dev_priv->fsb_freq = 533; /* 133*4 */
130 break;
131 case CLKCFG_FSB_800:
132 dev_priv->fsb_freq = 800; /* 200*4 */
133 break;
134 case CLKCFG_FSB_667:
135 dev_priv->fsb_freq = 667; /* 167*4 */
136 break;
137 case CLKCFG_FSB_400:
138 dev_priv->fsb_freq = 400; /* 100*4 */
139 break;
140 }
141
142 switch (tmp & CLKCFG_MEM_MASK) {
143 case CLKCFG_MEM_533:
144 dev_priv->mem_freq = 533;
145 break;
146 case CLKCFG_MEM_667:
147 dev_priv->mem_freq = 667;
148 break;
149 case CLKCFG_MEM_800:
150 dev_priv->mem_freq = 800;
151 break;
152 }
153
154 /* detect pineview DDR3 setting */
155 tmp = I915_READ(CSHRDDR3CTL);
156 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
157 }
158
159 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
160 {
161 struct drm_i915_private *dev_priv = dev->dev_private;
162 u16 ddrpll, csipll;
163
164 ddrpll = I915_READ16(DDRMPLL1);
165 csipll = I915_READ16(CSIPLL0);
166
167 switch (ddrpll & 0xff) {
168 case 0xc:
169 dev_priv->mem_freq = 800;
170 break;
171 case 0x10:
172 dev_priv->mem_freq = 1066;
173 break;
174 case 0x14:
175 dev_priv->mem_freq = 1333;
176 break;
177 case 0x18:
178 dev_priv->mem_freq = 1600;
179 break;
180 default:
181 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
182 ddrpll & 0xff);
183 dev_priv->mem_freq = 0;
184 break;
185 }
186
187 dev_priv->ips.r_t = dev_priv->mem_freq;
188
189 switch (csipll & 0x3ff) {
190 case 0x00c:
191 dev_priv->fsb_freq = 3200;
192 break;
193 case 0x00e:
194 dev_priv->fsb_freq = 3733;
195 break;
196 case 0x010:
197 dev_priv->fsb_freq = 4266;
198 break;
199 case 0x012:
200 dev_priv->fsb_freq = 4800;
201 break;
202 case 0x014:
203 dev_priv->fsb_freq = 5333;
204 break;
205 case 0x016:
206 dev_priv->fsb_freq = 5866;
207 break;
208 case 0x018:
209 dev_priv->fsb_freq = 6400;
210 break;
211 default:
212 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
213 csipll & 0x3ff);
214 dev_priv->fsb_freq = 0;
215 break;
216 }
217
218 if (dev_priv->fsb_freq == 3200) {
219 dev_priv->ips.c_m = 0;
220 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
221 dev_priv->ips.c_m = 1;
222 } else {
223 dev_priv->ips.c_m = 2;
224 }
225 }
226
227 static const struct cxsr_latency cxsr_latency_table[] = {
228 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
229 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
230 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
231 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
232 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
233
234 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
235 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
236 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
237 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
238 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
239
240 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
241 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
242 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
243 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
244 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
245
246 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
247 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
248 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
249 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
250 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
251
252 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
253 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
254 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
255 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
256 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
257
258 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
259 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
260 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
261 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
262 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
263 };
264
265 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
266 int is_ddr3,
267 int fsb,
268 int mem)
269 {
270 const struct cxsr_latency *latency;
271 int i;
272
273 if (fsb == 0 || mem == 0)
274 return NULL;
275
276 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
277 latency = &cxsr_latency_table[i];
278 if (is_desktop == latency->is_desktop &&
279 is_ddr3 == latency->is_ddr3 &&
280 fsb == latency->fsb_freq && mem == latency->mem_freq)
281 return latency;
282 }
283
284 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
285
286 return NULL;
287 }
288
289 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
290 {
291 u32 val;
292
293 mutex_lock(&dev_priv->rps.hw_lock);
294
295 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
296 if (enable)
297 val &= ~FORCE_DDR_HIGH_FREQ;
298 else
299 val |= FORCE_DDR_HIGH_FREQ;
300 val &= ~FORCE_DDR_LOW_FREQ;
301 val |= FORCE_DDR_FREQ_REQ_ACK;
302 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
303
304 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
305 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
306 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
307
308 mutex_unlock(&dev_priv->rps.hw_lock);
309 }
310
311 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
312 {
313 u32 val;
314
315 mutex_lock(&dev_priv->rps.hw_lock);
316
317 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
318 if (enable)
319 val |= DSP_MAXFIFO_PM5_ENABLE;
320 else
321 val &= ~DSP_MAXFIFO_PM5_ENABLE;
322 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
323
324 mutex_unlock(&dev_priv->rps.hw_lock);
325 }
326
327 #define FW_WM(value, plane) \
328 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
329
330 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
331 {
332 struct drm_device *dev = dev_priv->dev;
333 u32 val;
334
335 if (IS_VALLEYVIEW(dev)) {
336 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
337 POSTING_READ(FW_BLC_SELF_VLV);
338 if (IS_CHERRYVIEW(dev))
339 chv_set_memory_pm5(dev_priv, enable);
340 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
341 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
342 POSTING_READ(FW_BLC_SELF);
343 } else if (IS_PINEVIEW(dev)) {
344 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
345 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
346 I915_WRITE(DSPFW3, val);
347 POSTING_READ(DSPFW3);
348 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
349 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
350 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
351 I915_WRITE(FW_BLC_SELF, val);
352 POSTING_READ(FW_BLC_SELF);
353 } else if (IS_I915GM(dev)) {
354 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
355 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
356 I915_WRITE(INSTPM, val);
357 POSTING_READ(INSTPM);
358 } else {
359 return;
360 }
361
362 DRM_DEBUG_KMS("memory self-refresh is %s\n",
363 enable ? "enabled" : "disabled");
364 }
365
366
367 /*
368 * Latency for FIFO fetches is dependent on several factors:
369 * - memory configuration (speed, channels)
370 * - chipset
371 * - current MCH state
372 * It can be fairly high in some situations, so here we assume a fairly
373 * pessimal value. It's a tradeoff between extra memory fetches (if we
374 * set this value too high, the FIFO will fetch frequently to stay full)
375 * and power consumption (set it too low to save power and we might see
376 * FIFO underruns and display "flicker").
377 *
378 * A value of 5us seems to be a good balance; safe for very low end
379 * platforms but not overly aggressive on lower latency configs.
380 */
381 static const int pessimal_latency_ns = 5000;
382
383 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
384 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
385
386 static int vlv_get_fifo_size(struct drm_device *dev,
387 enum pipe pipe, int plane)
388 {
389 struct drm_i915_private *dev_priv = dev->dev_private;
390 int sprite0_start, sprite1_start, size;
391
392 switch (pipe) {
393 uint32_t dsparb, dsparb2, dsparb3;
394 case PIPE_A:
395 dsparb = I915_READ(DSPARB);
396 dsparb2 = I915_READ(DSPARB2);
397 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
398 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
399 break;
400 case PIPE_B:
401 dsparb = I915_READ(DSPARB);
402 dsparb2 = I915_READ(DSPARB2);
403 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
404 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
405 break;
406 case PIPE_C:
407 dsparb2 = I915_READ(DSPARB2);
408 dsparb3 = I915_READ(DSPARB3);
409 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
410 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
411 break;
412 default:
413 return 0;
414 }
415
416 switch (plane) {
417 case 0:
418 size = sprite0_start;
419 break;
420 case 1:
421 size = sprite1_start - sprite0_start;
422 break;
423 case 2:
424 size = 512 - 1 - sprite1_start;
425 break;
426 default:
427 return 0;
428 }
429
430 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
431 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
432 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
433 size);
434
435 return size;
436 }
437
438 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
439 {
440 struct drm_i915_private *dev_priv = dev->dev_private;
441 uint32_t dsparb = I915_READ(DSPARB);
442 int size;
443
444 size = dsparb & 0x7f;
445 if (plane)
446 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
447
448 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
449 plane ? "B" : "A", size);
450
451 return size;
452 }
453
454 static int i830_get_fifo_size(struct drm_device *dev, int plane)
455 {
456 struct drm_i915_private *dev_priv = dev->dev_private;
457 uint32_t dsparb = I915_READ(DSPARB);
458 int size;
459
460 size = dsparb & 0x1ff;
461 if (plane)
462 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
463 size >>= 1; /* Convert to cachelines */
464
465 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
466 plane ? "B" : "A", size);
467
468 return size;
469 }
470
471 static int i845_get_fifo_size(struct drm_device *dev, int plane)
472 {
473 struct drm_i915_private *dev_priv = dev->dev_private;
474 uint32_t dsparb = I915_READ(DSPARB);
475 int size;
476
477 size = dsparb & 0x7f;
478 size >>= 2; /* Convert to cachelines */
479
480 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
481 plane ? "B" : "A",
482 size);
483
484 return size;
485 }
486
487 /* Pineview has different values for various configs */
488 static const struct intel_watermark_params pineview_display_wm = {
489 .fifo_size = PINEVIEW_DISPLAY_FIFO,
490 .max_wm = PINEVIEW_MAX_WM,
491 .default_wm = PINEVIEW_DFT_WM,
492 .guard_size = PINEVIEW_GUARD_WM,
493 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
494 };
495 static const struct intel_watermark_params pineview_display_hplloff_wm = {
496 .fifo_size = PINEVIEW_DISPLAY_FIFO,
497 .max_wm = PINEVIEW_MAX_WM,
498 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
499 .guard_size = PINEVIEW_GUARD_WM,
500 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
501 };
502 static const struct intel_watermark_params pineview_cursor_wm = {
503 .fifo_size = PINEVIEW_CURSOR_FIFO,
504 .max_wm = PINEVIEW_CURSOR_MAX_WM,
505 .default_wm = PINEVIEW_CURSOR_DFT_WM,
506 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
507 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
508 };
509 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
510 .fifo_size = PINEVIEW_CURSOR_FIFO,
511 .max_wm = PINEVIEW_CURSOR_MAX_WM,
512 .default_wm = PINEVIEW_CURSOR_DFT_WM,
513 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
514 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
515 };
516 static const struct intel_watermark_params g4x_wm_info = {
517 .fifo_size = G4X_FIFO_SIZE,
518 .max_wm = G4X_MAX_WM,
519 .default_wm = G4X_MAX_WM,
520 .guard_size = 2,
521 .cacheline_size = G4X_FIFO_LINE_SIZE,
522 };
523 static const struct intel_watermark_params g4x_cursor_wm_info = {
524 .fifo_size = I965_CURSOR_FIFO,
525 .max_wm = I965_CURSOR_MAX_WM,
526 .default_wm = I965_CURSOR_DFT_WM,
527 .guard_size = 2,
528 .cacheline_size = G4X_FIFO_LINE_SIZE,
529 };
530 static const struct intel_watermark_params valleyview_wm_info = {
531 .fifo_size = VALLEYVIEW_FIFO_SIZE,
532 .max_wm = VALLEYVIEW_MAX_WM,
533 .default_wm = VALLEYVIEW_MAX_WM,
534 .guard_size = 2,
535 .cacheline_size = G4X_FIFO_LINE_SIZE,
536 };
537 static const struct intel_watermark_params valleyview_cursor_wm_info = {
538 .fifo_size = I965_CURSOR_FIFO,
539 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
540 .default_wm = I965_CURSOR_DFT_WM,
541 .guard_size = 2,
542 .cacheline_size = G4X_FIFO_LINE_SIZE,
543 };
544 static const struct intel_watermark_params i965_cursor_wm_info = {
545 .fifo_size = I965_CURSOR_FIFO,
546 .max_wm = I965_CURSOR_MAX_WM,
547 .default_wm = I965_CURSOR_DFT_WM,
548 .guard_size = 2,
549 .cacheline_size = I915_FIFO_LINE_SIZE,
550 };
551 static const struct intel_watermark_params i945_wm_info = {
552 .fifo_size = I945_FIFO_SIZE,
553 .max_wm = I915_MAX_WM,
554 .default_wm = 1,
555 .guard_size = 2,
556 .cacheline_size = I915_FIFO_LINE_SIZE,
557 };
558 static const struct intel_watermark_params i915_wm_info = {
559 .fifo_size = I915_FIFO_SIZE,
560 .max_wm = I915_MAX_WM,
561 .default_wm = 1,
562 .guard_size = 2,
563 .cacheline_size = I915_FIFO_LINE_SIZE,
564 };
565 static const struct intel_watermark_params i830_a_wm_info = {
566 .fifo_size = I855GM_FIFO_SIZE,
567 .max_wm = I915_MAX_WM,
568 .default_wm = 1,
569 .guard_size = 2,
570 .cacheline_size = I830_FIFO_LINE_SIZE,
571 };
572 static const struct intel_watermark_params i830_bc_wm_info = {
573 .fifo_size = I855GM_FIFO_SIZE,
574 .max_wm = I915_MAX_WM/2,
575 .default_wm = 1,
576 .guard_size = 2,
577 .cacheline_size = I830_FIFO_LINE_SIZE,
578 };
579 static const struct intel_watermark_params i845_wm_info = {
580 .fifo_size = I830_FIFO_SIZE,
581 .max_wm = I915_MAX_WM,
582 .default_wm = 1,
583 .guard_size = 2,
584 .cacheline_size = I830_FIFO_LINE_SIZE,
585 };
586
587 /**
588 * intel_calculate_wm - calculate watermark level
589 * @clock_in_khz: pixel clock
590 * @wm: chip FIFO params
591 * @pixel_size: display pixel size
592 * @latency_ns: memory latency for the platform
593 *
594 * Calculate the watermark level (the level at which the display plane will
595 * start fetching from memory again). Each chip has a different display
596 * FIFO size and allocation, so the caller needs to figure that out and pass
597 * in the correct intel_watermark_params structure.
598 *
599 * As the pixel clock runs, the FIFO will be drained at a rate that depends
600 * on the pixel size. When it reaches the watermark level, it'll start
601 * fetching FIFO line sized based chunks from memory until the FIFO fills
602 * past the watermark point. If the FIFO drains completely, a FIFO underrun
603 * will occur, and a display engine hang could result.
604 */
605 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
606 const struct intel_watermark_params *wm,
607 int fifo_size,
608 int pixel_size,
609 unsigned long latency_ns)
610 {
611 long entries_required, wm_size;
612
613 /*
614 * Note: we need to make sure we don't overflow for various clock &
615 * latency values.
616 * clocks go from a few thousand to several hundred thousand.
617 * latency is usually a few thousand
618 */
619 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
620 1000;
621 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
622
623 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
624
625 wm_size = fifo_size - (entries_required + wm->guard_size);
626
627 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
628
629 /* Don't promote wm_size to unsigned... */
630 if (wm_size > (long)wm->max_wm)
631 wm_size = wm->max_wm;
632 if (wm_size <= 0)
633 wm_size = wm->default_wm;
634
635 /*
636 * Bspec seems to indicate that the value shouldn't be lower than
637 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
638 * Lets go for 8 which is the burst size since certain platforms
639 * already use a hardcoded 8 (which is what the spec says should be
640 * done).
641 */
642 if (wm_size <= 8)
643 wm_size = 8;
644
645 return wm_size;
646 }
647
648 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
649 {
650 struct drm_crtc *crtc, *enabled = NULL;
651
652 for_each_crtc(dev, crtc) {
653 if (intel_crtc_active(crtc)) {
654 if (enabled)
655 return NULL;
656 enabled = crtc;
657 }
658 }
659
660 return enabled;
661 }
662
663 static void pineview_update_wm(struct drm_crtc *unused_crtc)
664 {
665 struct drm_device *dev = unused_crtc->dev;
666 struct drm_i915_private *dev_priv = dev->dev_private;
667 struct drm_crtc *crtc;
668 const struct cxsr_latency *latency;
669 u32 reg;
670 unsigned long wm;
671
672 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
673 dev_priv->fsb_freq, dev_priv->mem_freq);
674 if (!latency) {
675 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
676 intel_set_memory_cxsr(dev_priv, false);
677 return;
678 }
679
680 crtc = single_enabled_crtc(dev);
681 if (crtc) {
682 const struct drm_display_mode *adjusted_mode;
683 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
684 int clock;
685
686 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
687 clock = adjusted_mode->crtc_clock;
688
689 /* Display SR */
690 wm = intel_calculate_wm(clock, &pineview_display_wm,
691 pineview_display_wm.fifo_size,
692 pixel_size, latency->display_sr);
693 reg = I915_READ(DSPFW1);
694 reg &= ~DSPFW_SR_MASK;
695 reg |= FW_WM(wm, SR);
696 I915_WRITE(DSPFW1, reg);
697 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
698
699 /* cursor SR */
700 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
701 pineview_display_wm.fifo_size,
702 pixel_size, latency->cursor_sr);
703 reg = I915_READ(DSPFW3);
704 reg &= ~DSPFW_CURSOR_SR_MASK;
705 reg |= FW_WM(wm, CURSOR_SR);
706 I915_WRITE(DSPFW3, reg);
707
708 /* Display HPLL off SR */
709 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
710 pineview_display_hplloff_wm.fifo_size,
711 pixel_size, latency->display_hpll_disable);
712 reg = I915_READ(DSPFW3);
713 reg &= ~DSPFW_HPLL_SR_MASK;
714 reg |= FW_WM(wm, HPLL_SR);
715 I915_WRITE(DSPFW3, reg);
716
717 /* cursor HPLL off SR */
718 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
719 pineview_display_hplloff_wm.fifo_size,
720 pixel_size, latency->cursor_hpll_disable);
721 reg = I915_READ(DSPFW3);
722 reg &= ~DSPFW_HPLL_CURSOR_MASK;
723 reg |= FW_WM(wm, HPLL_CURSOR);
724 I915_WRITE(DSPFW3, reg);
725 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
726
727 intel_set_memory_cxsr(dev_priv, true);
728 } else {
729 intel_set_memory_cxsr(dev_priv, false);
730 }
731 }
732
733 static bool g4x_compute_wm0(struct drm_device *dev,
734 int plane,
735 const struct intel_watermark_params *display,
736 int display_latency_ns,
737 const struct intel_watermark_params *cursor,
738 int cursor_latency_ns,
739 int *plane_wm,
740 int *cursor_wm)
741 {
742 struct drm_crtc *crtc;
743 const struct drm_display_mode *adjusted_mode;
744 int htotal, hdisplay, clock, pixel_size;
745 int line_time_us, line_count;
746 int entries, tlb_miss;
747
748 crtc = intel_get_crtc_for_plane(dev, plane);
749 if (!intel_crtc_active(crtc)) {
750 *cursor_wm = cursor->guard_size;
751 *plane_wm = display->guard_size;
752 return false;
753 }
754
755 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
756 clock = adjusted_mode->crtc_clock;
757 htotal = adjusted_mode->crtc_htotal;
758 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
759 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
760
761 /* Use the small buffer method to calculate plane watermark */
762 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
763 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
764 if (tlb_miss > 0)
765 entries += tlb_miss;
766 entries = DIV_ROUND_UP(entries, display->cacheline_size);
767 *plane_wm = entries + display->guard_size;
768 if (*plane_wm > (int)display->max_wm)
769 *plane_wm = display->max_wm;
770
771 /* Use the large buffer method to calculate cursor watermark */
772 line_time_us = max(htotal * 1000 / clock, 1);
773 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
774 entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
775 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
776 if (tlb_miss > 0)
777 entries += tlb_miss;
778 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
779 *cursor_wm = entries + cursor->guard_size;
780 if (*cursor_wm > (int)cursor->max_wm)
781 *cursor_wm = (int)cursor->max_wm;
782
783 return true;
784 }
785
786 /*
787 * Check the wm result.
788 *
789 * If any calculated watermark values is larger than the maximum value that
790 * can be programmed into the associated watermark register, that watermark
791 * must be disabled.
792 */
793 static bool g4x_check_srwm(struct drm_device *dev,
794 int display_wm, int cursor_wm,
795 const struct intel_watermark_params *display,
796 const struct intel_watermark_params *cursor)
797 {
798 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
799 display_wm, cursor_wm);
800
801 if (display_wm > display->max_wm) {
802 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
803 display_wm, display->max_wm);
804 return false;
805 }
806
807 if (cursor_wm > cursor->max_wm) {
808 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
809 cursor_wm, cursor->max_wm);
810 return false;
811 }
812
813 if (!(display_wm || cursor_wm)) {
814 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
815 return false;
816 }
817
818 return true;
819 }
820
821 static bool g4x_compute_srwm(struct drm_device *dev,
822 int plane,
823 int latency_ns,
824 const struct intel_watermark_params *display,
825 const struct intel_watermark_params *cursor,
826 int *display_wm, int *cursor_wm)
827 {
828 struct drm_crtc *crtc;
829 const struct drm_display_mode *adjusted_mode;
830 int hdisplay, htotal, pixel_size, clock;
831 unsigned long line_time_us;
832 int line_count, line_size;
833 int small, large;
834 int entries;
835
836 if (!latency_ns) {
837 *display_wm = *cursor_wm = 0;
838 return false;
839 }
840
841 crtc = intel_get_crtc_for_plane(dev, plane);
842 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
843 clock = adjusted_mode->crtc_clock;
844 htotal = adjusted_mode->crtc_htotal;
845 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
846 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
847
848 line_time_us = max(htotal * 1000 / clock, 1);
849 line_count = (latency_ns / line_time_us + 1000) / 1000;
850 line_size = hdisplay * pixel_size;
851
852 /* Use the minimum of the small and large buffer method for primary */
853 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
854 large = line_count * line_size;
855
856 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
857 *display_wm = entries + display->guard_size;
858
859 /* calculate the self-refresh watermark for display cursor */
860 entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
861 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
862 *cursor_wm = entries + cursor->guard_size;
863
864 return g4x_check_srwm(dev,
865 *display_wm, *cursor_wm,
866 display, cursor);
867 }
868
869 #define FW_WM_VLV(value, plane) \
870 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
871
872 static void vlv_write_wm_values(struct intel_crtc *crtc,
873 const struct vlv_wm_values *wm)
874 {
875 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
876 enum pipe pipe = crtc->pipe;
877
878 I915_WRITE(VLV_DDL(pipe),
879 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
880 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
881 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
882 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
883
884 I915_WRITE(DSPFW1,
885 FW_WM(wm->sr.plane, SR) |
886 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
887 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
888 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
889 I915_WRITE(DSPFW2,
890 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
891 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
892 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
893 I915_WRITE(DSPFW3,
894 FW_WM(wm->sr.cursor, CURSOR_SR));
895
896 if (IS_CHERRYVIEW(dev_priv)) {
897 I915_WRITE(DSPFW7_CHV,
898 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
899 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
900 I915_WRITE(DSPFW8_CHV,
901 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
902 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
903 I915_WRITE(DSPFW9_CHV,
904 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
905 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
906 I915_WRITE(DSPHOWM,
907 FW_WM(wm->sr.plane >> 9, SR_HI) |
908 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
909 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
910 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
911 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
912 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
913 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
914 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
915 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
916 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
917 } else {
918 I915_WRITE(DSPFW7,
919 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
920 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
921 I915_WRITE(DSPHOWM,
922 FW_WM(wm->sr.plane >> 9, SR_HI) |
923 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
924 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
925 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
926 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
927 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
928 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
929 }
930
931 POSTING_READ(DSPFW1);
932
933 dev_priv->wm.vlv = *wm;
934 }
935
936 #undef FW_WM_VLV
937
938 static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
939 struct drm_plane *plane)
940 {
941 struct drm_device *dev = crtc->dev;
942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
943 int entries, prec_mult, drain_latency, pixel_size;
944 int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
945 const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
946
947 /*
948 * FIXME the plane might have an fb
949 * but be invisible (eg. due to clipping)
950 */
951 if (!intel_crtc->active || !plane->state->fb)
952 return 0;
953
954 if (WARN(clock == 0, "Pixel clock is zero!\n"))
955 return 0;
956
957 pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);
958
959 if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
960 return 0;
961
962 entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
963
964 prec_mult = high_precision;
965 drain_latency = 64 * prec_mult * 4 / entries;
966
967 if (drain_latency > DRAIN_LATENCY_MASK) {
968 prec_mult /= 2;
969 drain_latency = 64 * prec_mult * 4 / entries;
970 }
971
972 if (drain_latency > DRAIN_LATENCY_MASK)
973 drain_latency = DRAIN_LATENCY_MASK;
974
975 return drain_latency | (prec_mult == high_precision ?
976 DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
977 }
978
979 static int vlv_compute_wm(struct intel_crtc *crtc,
980 struct intel_plane *plane,
981 int fifo_size)
982 {
983 int clock, entries, pixel_size;
984
985 /*
986 * FIXME the plane might have an fb
987 * but be invisible (eg. due to clipping)
988 */
989 if (!crtc->active || !plane->base.state->fb)
990 return 0;
991
992 pixel_size = drm_format_plane_cpp(plane->base.state->fb->pixel_format, 0);
993 clock = crtc->config->base.adjusted_mode.crtc_clock;
994
995 entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
996
997 /*
998 * Set up the watermark such that we don't start issuing memory
999 * requests until we are within PND's max deadline value (256us).
1000 * Idea being to be idle as long as possible while still taking
1001 * advatange of PND's deadline scheduling. The limit of 8
1002 * cachelines (used when the FIFO will anyway drain in less time
1003 * than 256us) should match what we would be done if trickle
1004 * feed were enabled.
1005 */
1006 return fifo_size - clamp(DIV_ROUND_UP(256 * entries, 64), 0, fifo_size - 8);
1007 }
1008
1009 static bool vlv_compute_sr_wm(struct drm_device *dev,
1010 struct vlv_wm_values *wm)
1011 {
1012 struct drm_i915_private *dev_priv = to_i915(dev);
1013 struct drm_crtc *crtc;
1014 enum pipe pipe = INVALID_PIPE;
1015 int num_planes = 0;
1016 int fifo_size = 0;
1017 struct intel_plane *plane;
1018
1019 wm->sr.cursor = wm->sr.plane = 0;
1020
1021 crtc = single_enabled_crtc(dev);
1022 /* maxfifo not supported on pipe C */
1023 if (crtc && to_intel_crtc(crtc)->pipe != PIPE_C) {
1024 pipe = to_intel_crtc(crtc)->pipe;
1025 num_planes = !!wm->pipe[pipe].primary +
1026 !!wm->pipe[pipe].sprite[0] +
1027 !!wm->pipe[pipe].sprite[1];
1028 fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1029 }
1030
1031 if (fifo_size == 0 || num_planes > 1)
1032 return false;
1033
1034 wm->sr.cursor = vlv_compute_wm(to_intel_crtc(crtc),
1035 to_intel_plane(crtc->cursor), 0x3f);
1036
1037 list_for_each_entry(plane, &dev->mode_config.plane_list, base.head) {
1038 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1039 continue;
1040
1041 if (plane->pipe != pipe)
1042 continue;
1043
1044 wm->sr.plane = vlv_compute_wm(to_intel_crtc(crtc),
1045 plane, fifo_size);
1046 if (wm->sr.plane != 0)
1047 break;
1048 }
1049
1050 return true;
1051 }
1052
1053 static void valleyview_update_wm(struct drm_crtc *crtc)
1054 {
1055 struct drm_device *dev = crtc->dev;
1056 struct drm_i915_private *dev_priv = dev->dev_private;
1057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1058 enum pipe pipe = intel_crtc->pipe;
1059 bool cxsr_enabled;
1060 struct vlv_wm_values wm = dev_priv->wm.vlv;
1061
1062 wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
1063 wm.pipe[pipe].primary = vlv_compute_wm(intel_crtc,
1064 to_intel_plane(crtc->primary),
1065 vlv_get_fifo_size(dev, pipe, 0));
1066
1067 wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
1068 wm.pipe[pipe].cursor = vlv_compute_wm(intel_crtc,
1069 to_intel_plane(crtc->cursor),
1070 0x3f);
1071
1072 cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1073
1074 if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
1075 return;
1076
1077 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1078 "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
1079 wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1080 wm.sr.plane, wm.sr.cursor);
1081
1082 /*
1083 * FIXME DDR DVFS introduces massive memory latencies which
1084 * are not known to system agent so any deadline specified
1085 * by the display may not be respected. To support DDR DVFS
1086 * the watermark code needs to be rewritten to essentially
1087 * bypass deadline mechanism and rely solely on the
1088 * watermarks. For now disable DDR DVFS.
1089 */
1090 if (IS_CHERRYVIEW(dev_priv))
1091 chv_set_memory_dvfs(dev_priv, false);
1092
1093 if (!cxsr_enabled)
1094 intel_set_memory_cxsr(dev_priv, false);
1095
1096 vlv_write_wm_values(intel_crtc, &wm);
1097
1098 if (cxsr_enabled)
1099 intel_set_memory_cxsr(dev_priv, true);
1100 }
1101
1102 static void valleyview_update_sprite_wm(struct drm_plane *plane,
1103 struct drm_crtc *crtc,
1104 uint32_t sprite_width,
1105 uint32_t sprite_height,
1106 int pixel_size,
1107 bool enabled, bool scaled)
1108 {
1109 struct drm_device *dev = crtc->dev;
1110 struct drm_i915_private *dev_priv = dev->dev_private;
1111 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1112 enum pipe pipe = intel_crtc->pipe;
1113 int sprite = to_intel_plane(plane)->plane;
1114 bool cxsr_enabled;
1115 struct vlv_wm_values wm = dev_priv->wm.vlv;
1116
1117 if (enabled) {
1118 wm.ddl[pipe].sprite[sprite] =
1119 vlv_compute_drain_latency(crtc, plane);
1120
1121 wm.pipe[pipe].sprite[sprite] =
1122 vlv_compute_wm(intel_crtc,
1123 to_intel_plane(plane),
1124 vlv_get_fifo_size(dev, pipe, sprite+1));
1125 } else {
1126 wm.ddl[pipe].sprite[sprite] = 0;
1127 wm.pipe[pipe].sprite[sprite] = 0;
1128 }
1129
1130 cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1131
1132 if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
1133 return;
1134
1135 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: sprite %c=%d, "
1136 "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
1137 sprite_name(pipe, sprite),
1138 wm.pipe[pipe].sprite[sprite],
1139 wm.sr.plane, wm.sr.cursor);
1140
1141 if (!cxsr_enabled)
1142 intel_set_memory_cxsr(dev_priv, false);
1143
1144 vlv_write_wm_values(intel_crtc, &wm);
1145
1146 if (cxsr_enabled)
1147 intel_set_memory_cxsr(dev_priv, true);
1148 }
1149
1150 #define single_plane_enabled(mask) is_power_of_2(mask)
1151
1152 static void g4x_update_wm(struct drm_crtc *crtc)
1153 {
1154 struct drm_device *dev = crtc->dev;
1155 static const int sr_latency_ns = 12000;
1156 struct drm_i915_private *dev_priv = dev->dev_private;
1157 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1158 int plane_sr, cursor_sr;
1159 unsigned int enabled = 0;
1160 bool cxsr_enabled;
1161
1162 if (g4x_compute_wm0(dev, PIPE_A,
1163 &g4x_wm_info, pessimal_latency_ns,
1164 &g4x_cursor_wm_info, pessimal_latency_ns,
1165 &planea_wm, &cursora_wm))
1166 enabled |= 1 << PIPE_A;
1167
1168 if (g4x_compute_wm0(dev, PIPE_B,
1169 &g4x_wm_info, pessimal_latency_ns,
1170 &g4x_cursor_wm_info, pessimal_latency_ns,
1171 &planeb_wm, &cursorb_wm))
1172 enabled |= 1 << PIPE_B;
1173
1174 if (single_plane_enabled(enabled) &&
1175 g4x_compute_srwm(dev, ffs(enabled) - 1,
1176 sr_latency_ns,
1177 &g4x_wm_info,
1178 &g4x_cursor_wm_info,
1179 &plane_sr, &cursor_sr)) {
1180 cxsr_enabled = true;
1181 } else {
1182 cxsr_enabled = false;
1183 intel_set_memory_cxsr(dev_priv, false);
1184 plane_sr = cursor_sr = 0;
1185 }
1186
1187 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1188 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1189 planea_wm, cursora_wm,
1190 planeb_wm, cursorb_wm,
1191 plane_sr, cursor_sr);
1192
1193 I915_WRITE(DSPFW1,
1194 FW_WM(plane_sr, SR) |
1195 FW_WM(cursorb_wm, CURSORB) |
1196 FW_WM(planeb_wm, PLANEB) |
1197 FW_WM(planea_wm, PLANEA));
1198 I915_WRITE(DSPFW2,
1199 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1200 FW_WM(cursora_wm, CURSORA));
1201 /* HPLL off in SR has some issues on G4x... disable it */
1202 I915_WRITE(DSPFW3,
1203 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1204 FW_WM(cursor_sr, CURSOR_SR));
1205
1206 if (cxsr_enabled)
1207 intel_set_memory_cxsr(dev_priv, true);
1208 }
1209
1210 static void i965_update_wm(struct drm_crtc *unused_crtc)
1211 {
1212 struct drm_device *dev = unused_crtc->dev;
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1214 struct drm_crtc *crtc;
1215 int srwm = 1;
1216 int cursor_sr = 16;
1217 bool cxsr_enabled;
1218
1219 /* Calc sr entries for one plane configs */
1220 crtc = single_enabled_crtc(dev);
1221 if (crtc) {
1222 /* self-refresh has much higher latency */
1223 static const int sr_latency_ns = 12000;
1224 const struct drm_display_mode *adjusted_mode =
1225 &to_intel_crtc(crtc)->config->base.adjusted_mode;
1226 int clock = adjusted_mode->crtc_clock;
1227 int htotal = adjusted_mode->crtc_htotal;
1228 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1229 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1230 unsigned long line_time_us;
1231 int entries;
1232
1233 line_time_us = max(htotal * 1000 / clock, 1);
1234
1235 /* Use ns/us then divide to preserve precision */
1236 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1237 pixel_size * hdisplay;
1238 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1239 srwm = I965_FIFO_SIZE - entries;
1240 if (srwm < 0)
1241 srwm = 1;
1242 srwm &= 0x1ff;
1243 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1244 entries, srwm);
1245
1246 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1247 pixel_size * crtc->cursor->state->crtc_w;
1248 entries = DIV_ROUND_UP(entries,
1249 i965_cursor_wm_info.cacheline_size);
1250 cursor_sr = i965_cursor_wm_info.fifo_size -
1251 (entries + i965_cursor_wm_info.guard_size);
1252
1253 if (cursor_sr > i965_cursor_wm_info.max_wm)
1254 cursor_sr = i965_cursor_wm_info.max_wm;
1255
1256 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1257 "cursor %d\n", srwm, cursor_sr);
1258
1259 cxsr_enabled = true;
1260 } else {
1261 cxsr_enabled = false;
1262 /* Turn off self refresh if both pipes are enabled */
1263 intel_set_memory_cxsr(dev_priv, false);
1264 }
1265
1266 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1267 srwm);
1268
1269 /* 965 has limitations... */
1270 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1271 FW_WM(8, CURSORB) |
1272 FW_WM(8, PLANEB) |
1273 FW_WM(8, PLANEA));
1274 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1275 FW_WM(8, PLANEC_OLD));
1276 /* update cursor SR watermark */
1277 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1278
1279 if (cxsr_enabled)
1280 intel_set_memory_cxsr(dev_priv, true);
1281 }
1282
1283 #undef FW_WM
1284
1285 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1286 {
1287 struct drm_device *dev = unused_crtc->dev;
1288 struct drm_i915_private *dev_priv = dev->dev_private;
1289 const struct intel_watermark_params *wm_info;
1290 uint32_t fwater_lo;
1291 uint32_t fwater_hi;
1292 int cwm, srwm = 1;
1293 int fifo_size;
1294 int planea_wm, planeb_wm;
1295 struct drm_crtc *crtc, *enabled = NULL;
1296
1297 if (IS_I945GM(dev))
1298 wm_info = &i945_wm_info;
1299 else if (!IS_GEN2(dev))
1300 wm_info = &i915_wm_info;
1301 else
1302 wm_info = &i830_a_wm_info;
1303
1304 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1305 crtc = intel_get_crtc_for_plane(dev, 0);
1306 if (intel_crtc_active(crtc)) {
1307 const struct drm_display_mode *adjusted_mode;
1308 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1309 if (IS_GEN2(dev))
1310 cpp = 4;
1311
1312 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1313 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1314 wm_info, fifo_size, cpp,
1315 pessimal_latency_ns);
1316 enabled = crtc;
1317 } else {
1318 planea_wm = fifo_size - wm_info->guard_size;
1319 if (planea_wm > (long)wm_info->max_wm)
1320 planea_wm = wm_info->max_wm;
1321 }
1322
1323 if (IS_GEN2(dev))
1324 wm_info = &i830_bc_wm_info;
1325
1326 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1327 crtc = intel_get_crtc_for_plane(dev, 1);
1328 if (intel_crtc_active(crtc)) {
1329 const struct drm_display_mode *adjusted_mode;
1330 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1331 if (IS_GEN2(dev))
1332 cpp = 4;
1333
1334 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1335 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1336 wm_info, fifo_size, cpp,
1337 pessimal_latency_ns);
1338 if (enabled == NULL)
1339 enabled = crtc;
1340 else
1341 enabled = NULL;
1342 } else {
1343 planeb_wm = fifo_size - wm_info->guard_size;
1344 if (planeb_wm > (long)wm_info->max_wm)
1345 planeb_wm = wm_info->max_wm;
1346 }
1347
1348 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1349
1350 if (IS_I915GM(dev) && enabled) {
1351 struct drm_i915_gem_object *obj;
1352
1353 obj = intel_fb_obj(enabled->primary->state->fb);
1354
1355 /* self-refresh seems busted with untiled */
1356 if (obj->tiling_mode == I915_TILING_NONE)
1357 enabled = NULL;
1358 }
1359
1360 /*
1361 * Overlay gets an aggressive default since video jitter is bad.
1362 */
1363 cwm = 2;
1364
1365 /* Play safe and disable self-refresh before adjusting watermarks. */
1366 intel_set_memory_cxsr(dev_priv, false);
1367
1368 /* Calc sr entries for one plane configs */
1369 if (HAS_FW_BLC(dev) && enabled) {
1370 /* self-refresh has much higher latency */
1371 static const int sr_latency_ns = 6000;
1372 const struct drm_display_mode *adjusted_mode =
1373 &to_intel_crtc(enabled)->config->base.adjusted_mode;
1374 int clock = adjusted_mode->crtc_clock;
1375 int htotal = adjusted_mode->crtc_htotal;
1376 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1377 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1378 unsigned long line_time_us;
1379 int entries;
1380
1381 line_time_us = max(htotal * 1000 / clock, 1);
1382
1383 /* Use ns/us then divide to preserve precision */
1384 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1385 pixel_size * hdisplay;
1386 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1387 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1388 srwm = wm_info->fifo_size - entries;
1389 if (srwm < 0)
1390 srwm = 1;
1391
1392 if (IS_I945G(dev) || IS_I945GM(dev))
1393 I915_WRITE(FW_BLC_SELF,
1394 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1395 else if (IS_I915GM(dev))
1396 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1397 }
1398
1399 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1400 planea_wm, planeb_wm, cwm, srwm);
1401
1402 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1403 fwater_hi = (cwm & 0x1f);
1404
1405 /* Set request length to 8 cachelines per fetch */
1406 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1407 fwater_hi = fwater_hi | (1 << 8);
1408
1409 I915_WRITE(FW_BLC, fwater_lo);
1410 I915_WRITE(FW_BLC2, fwater_hi);
1411
1412 if (enabled)
1413 intel_set_memory_cxsr(dev_priv, true);
1414 }
1415
1416 static void i845_update_wm(struct drm_crtc *unused_crtc)
1417 {
1418 struct drm_device *dev = unused_crtc->dev;
1419 struct drm_i915_private *dev_priv = dev->dev_private;
1420 struct drm_crtc *crtc;
1421 const struct drm_display_mode *adjusted_mode;
1422 uint32_t fwater_lo;
1423 int planea_wm;
1424
1425 crtc = single_enabled_crtc(dev);
1426 if (crtc == NULL)
1427 return;
1428
1429 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1430 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1431 &i845_wm_info,
1432 dev_priv->display.get_fifo_size(dev, 0),
1433 4, pessimal_latency_ns);
1434 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1435 fwater_lo |= (3<<8) | planea_wm;
1436
1437 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1438
1439 I915_WRITE(FW_BLC, fwater_lo);
1440 }
1441
1442 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1443 {
1444 uint32_t pixel_rate;
1445
1446 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1447
1448 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1449 * adjust the pixel_rate here. */
1450
1451 if (pipe_config->pch_pfit.enabled) {
1452 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1453 uint32_t pfit_size = pipe_config->pch_pfit.size;
1454
1455 pipe_w = pipe_config->pipe_src_w;
1456 pipe_h = pipe_config->pipe_src_h;
1457
1458 pfit_w = (pfit_size >> 16) & 0xFFFF;
1459 pfit_h = pfit_size & 0xFFFF;
1460 if (pipe_w < pfit_w)
1461 pipe_w = pfit_w;
1462 if (pipe_h < pfit_h)
1463 pipe_h = pfit_h;
1464
1465 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1466 pfit_w * pfit_h);
1467 }
1468
1469 return pixel_rate;
1470 }
1471
1472 /* latency must be in 0.1us units. */
1473 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1474 uint32_t latency)
1475 {
1476 uint64_t ret;
1477
1478 if (WARN(latency == 0, "Latency value missing\n"))
1479 return UINT_MAX;
1480
1481 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1482 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1483
1484 return ret;
1485 }
1486
1487 /* latency must be in 0.1us units. */
1488 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1489 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1490 uint32_t latency)
1491 {
1492 uint32_t ret;
1493
1494 if (WARN(latency == 0, "Latency value missing\n"))
1495 return UINT_MAX;
1496
1497 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1498 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1499 ret = DIV_ROUND_UP(ret, 64) + 2;
1500 return ret;
1501 }
1502
1503 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1504 uint8_t bytes_per_pixel)
1505 {
1506 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1507 }
1508
1509 struct skl_pipe_wm_parameters {
1510 bool active;
1511 uint32_t pipe_htotal;
1512 uint32_t pixel_rate; /* in KHz */
1513 struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1514 struct intel_plane_wm_parameters cursor;
1515 };
1516
1517 struct ilk_pipe_wm_parameters {
1518 bool active;
1519 uint32_t pipe_htotal;
1520 uint32_t pixel_rate;
1521 struct intel_plane_wm_parameters pri;
1522 struct intel_plane_wm_parameters spr;
1523 struct intel_plane_wm_parameters cur;
1524 };
1525
1526 struct ilk_wm_maximums {
1527 uint16_t pri;
1528 uint16_t spr;
1529 uint16_t cur;
1530 uint16_t fbc;
1531 };
1532
1533 /* used in computing the new watermarks state */
1534 struct intel_wm_config {
1535 unsigned int num_pipes_active;
1536 bool sprites_enabled;
1537 bool sprites_scaled;
1538 };
1539
1540 /*
1541 * For both WM_PIPE and WM_LP.
1542 * mem_value must be in 0.1us units.
1543 */
1544 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1545 uint32_t mem_value,
1546 bool is_lp)
1547 {
1548 uint32_t method1, method2;
1549
1550 if (!params->active || !params->pri.enabled)
1551 return 0;
1552
1553 method1 = ilk_wm_method1(params->pixel_rate,
1554 params->pri.bytes_per_pixel,
1555 mem_value);
1556
1557 if (!is_lp)
1558 return method1;
1559
1560 method2 = ilk_wm_method2(params->pixel_rate,
1561 params->pipe_htotal,
1562 params->pri.horiz_pixels,
1563 params->pri.bytes_per_pixel,
1564 mem_value);
1565
1566 return min(method1, method2);
1567 }
1568
1569 /*
1570 * For both WM_PIPE and WM_LP.
1571 * mem_value must be in 0.1us units.
1572 */
1573 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1574 uint32_t mem_value)
1575 {
1576 uint32_t method1, method2;
1577
1578 if (!params->active || !params->spr.enabled)
1579 return 0;
1580
1581 method1 = ilk_wm_method1(params->pixel_rate,
1582 params->spr.bytes_per_pixel,
1583 mem_value);
1584 method2 = ilk_wm_method2(params->pixel_rate,
1585 params->pipe_htotal,
1586 params->spr.horiz_pixels,
1587 params->spr.bytes_per_pixel,
1588 mem_value);
1589 return min(method1, method2);
1590 }
1591
1592 /*
1593 * For both WM_PIPE and WM_LP.
1594 * mem_value must be in 0.1us units.
1595 */
1596 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1597 uint32_t mem_value)
1598 {
1599 if (!params->active || !params->cur.enabled)
1600 return 0;
1601
1602 return ilk_wm_method2(params->pixel_rate,
1603 params->pipe_htotal,
1604 params->cur.horiz_pixels,
1605 params->cur.bytes_per_pixel,
1606 mem_value);
1607 }
1608
1609 /* Only for WM_LP. */
1610 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1611 uint32_t pri_val)
1612 {
1613 if (!params->active || !params->pri.enabled)
1614 return 0;
1615
1616 return ilk_wm_fbc(pri_val,
1617 params->pri.horiz_pixels,
1618 params->pri.bytes_per_pixel);
1619 }
1620
1621 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1622 {
1623 if (INTEL_INFO(dev)->gen >= 8)
1624 return 3072;
1625 else if (INTEL_INFO(dev)->gen >= 7)
1626 return 768;
1627 else
1628 return 512;
1629 }
1630
1631 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1632 int level, bool is_sprite)
1633 {
1634 if (INTEL_INFO(dev)->gen >= 8)
1635 /* BDW primary/sprite plane watermarks */
1636 return level == 0 ? 255 : 2047;
1637 else if (INTEL_INFO(dev)->gen >= 7)
1638 /* IVB/HSW primary/sprite plane watermarks */
1639 return level == 0 ? 127 : 1023;
1640 else if (!is_sprite)
1641 /* ILK/SNB primary plane watermarks */
1642 return level == 0 ? 127 : 511;
1643 else
1644 /* ILK/SNB sprite plane watermarks */
1645 return level == 0 ? 63 : 255;
1646 }
1647
1648 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1649 int level)
1650 {
1651 if (INTEL_INFO(dev)->gen >= 7)
1652 return level == 0 ? 63 : 255;
1653 else
1654 return level == 0 ? 31 : 63;
1655 }
1656
1657 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1658 {
1659 if (INTEL_INFO(dev)->gen >= 8)
1660 return 31;
1661 else
1662 return 15;
1663 }
1664
1665 /* Calculate the maximum primary/sprite plane watermark */
1666 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1667 int level,
1668 const struct intel_wm_config *config,
1669 enum intel_ddb_partitioning ddb_partitioning,
1670 bool is_sprite)
1671 {
1672 unsigned int fifo_size = ilk_display_fifo_size(dev);
1673
1674 /* if sprites aren't enabled, sprites get nothing */
1675 if (is_sprite && !config->sprites_enabled)
1676 return 0;
1677
1678 /* HSW allows LP1+ watermarks even with multiple pipes */
1679 if (level == 0 || config->num_pipes_active > 1) {
1680 fifo_size /= INTEL_INFO(dev)->num_pipes;
1681
1682 /*
1683 * For some reason the non self refresh
1684 * FIFO size is only half of the self
1685 * refresh FIFO size on ILK/SNB.
1686 */
1687 if (INTEL_INFO(dev)->gen <= 6)
1688 fifo_size /= 2;
1689 }
1690
1691 if (config->sprites_enabled) {
1692 /* level 0 is always calculated with 1:1 split */
1693 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1694 if (is_sprite)
1695 fifo_size *= 5;
1696 fifo_size /= 6;
1697 } else {
1698 fifo_size /= 2;
1699 }
1700 }
1701
1702 /* clamp to max that the registers can hold */
1703 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1704 }
1705
1706 /* Calculate the maximum cursor plane watermark */
1707 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1708 int level,
1709 const struct intel_wm_config *config)
1710 {
1711 /* HSW LP1+ watermarks w/ multiple pipes */
1712 if (level > 0 && config->num_pipes_active > 1)
1713 return 64;
1714
1715 /* otherwise just report max that registers can hold */
1716 return ilk_cursor_wm_reg_max(dev, level);
1717 }
1718
1719 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1720 int level,
1721 const struct intel_wm_config *config,
1722 enum intel_ddb_partitioning ddb_partitioning,
1723 struct ilk_wm_maximums *max)
1724 {
1725 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1726 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1727 max->cur = ilk_cursor_wm_max(dev, level, config);
1728 max->fbc = ilk_fbc_wm_reg_max(dev);
1729 }
1730
1731 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1732 int level,
1733 struct ilk_wm_maximums *max)
1734 {
1735 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1736 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1737 max->cur = ilk_cursor_wm_reg_max(dev, level);
1738 max->fbc = ilk_fbc_wm_reg_max(dev);
1739 }
1740
1741 static bool ilk_validate_wm_level(int level,
1742 const struct ilk_wm_maximums *max,
1743 struct intel_wm_level *result)
1744 {
1745 bool ret;
1746
1747 /* already determined to be invalid? */
1748 if (!result->enable)
1749 return false;
1750
1751 result->enable = result->pri_val <= max->pri &&
1752 result->spr_val <= max->spr &&
1753 result->cur_val <= max->cur;
1754
1755 ret = result->enable;
1756
1757 /*
1758 * HACK until we can pre-compute everything,
1759 * and thus fail gracefully if LP0 watermarks
1760 * are exceeded...
1761 */
1762 if (level == 0 && !result->enable) {
1763 if (result->pri_val > max->pri)
1764 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1765 level, result->pri_val, max->pri);
1766 if (result->spr_val > max->spr)
1767 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1768 level, result->spr_val, max->spr);
1769 if (result->cur_val > max->cur)
1770 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1771 level, result->cur_val, max->cur);
1772
1773 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1774 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1775 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1776 result->enable = true;
1777 }
1778
1779 return ret;
1780 }
1781
1782 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1783 int level,
1784 const struct ilk_pipe_wm_parameters *p,
1785 struct intel_wm_level *result)
1786 {
1787 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1788 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1789 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1790
1791 /* WM1+ latency values stored in 0.5us units */
1792 if (level > 0) {
1793 pri_latency *= 5;
1794 spr_latency *= 5;
1795 cur_latency *= 5;
1796 }
1797
1798 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1799 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1800 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1801 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1802 result->enable = true;
1803 }
1804
1805 static uint32_t
1806 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1807 {
1808 struct drm_i915_private *dev_priv = dev->dev_private;
1809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1810 struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1811 u32 linetime, ips_linetime;
1812
1813 if (!intel_crtc->active)
1814 return 0;
1815
1816 /* The WM are computed with base on how long it takes to fill a single
1817 * row at the given clock rate, multiplied by 8.
1818 * */
1819 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1820 mode->crtc_clock);
1821 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1822 dev_priv->cdclk_freq);
1823
1824 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1825 PIPE_WM_LINETIME_TIME(linetime);
1826 }
1827
1828 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1829 {
1830 struct drm_i915_private *dev_priv = dev->dev_private;
1831
1832 if (IS_GEN9(dev)) {
1833 uint32_t val;
1834 int ret, i;
1835 int level, max_level = ilk_wm_max_level(dev);
1836
1837 /* read the first set of memory latencies[0:3] */
1838 val = 0; /* data0 to be programmed to 0 for first set */
1839 mutex_lock(&dev_priv->rps.hw_lock);
1840 ret = sandybridge_pcode_read(dev_priv,
1841 GEN9_PCODE_READ_MEM_LATENCY,
1842 &val);
1843 mutex_unlock(&dev_priv->rps.hw_lock);
1844
1845 if (ret) {
1846 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1847 return;
1848 }
1849
1850 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1851 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1852 GEN9_MEM_LATENCY_LEVEL_MASK;
1853 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1854 GEN9_MEM_LATENCY_LEVEL_MASK;
1855 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1856 GEN9_MEM_LATENCY_LEVEL_MASK;
1857
1858 /* read the second set of memory latencies[4:7] */
1859 val = 1; /* data0 to be programmed to 1 for second set */
1860 mutex_lock(&dev_priv->rps.hw_lock);
1861 ret = sandybridge_pcode_read(dev_priv,
1862 GEN9_PCODE_READ_MEM_LATENCY,
1863 &val);
1864 mutex_unlock(&dev_priv->rps.hw_lock);
1865 if (ret) {
1866 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1867 return;
1868 }
1869
1870 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1871 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1872 GEN9_MEM_LATENCY_LEVEL_MASK;
1873 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1874 GEN9_MEM_LATENCY_LEVEL_MASK;
1875 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1876 GEN9_MEM_LATENCY_LEVEL_MASK;
1877
1878 /*
1879 * WaWmMemoryReadLatency:skl
1880 *
1881 * punit doesn't take into account the read latency so we need
1882 * to add 2us to the various latency levels we retrieve from
1883 * the punit.
1884 * - W0 is a bit special in that it's the only level that
1885 * can't be disabled if we want to have display working, so
1886 * we always add 2us there.
1887 * - For levels >=1, punit returns 0us latency when they are
1888 * disabled, so we respect that and don't add 2us then
1889 *
1890 * Additionally, if a level n (n > 1) has a 0us latency, all
1891 * levels m (m >= n) need to be disabled. We make sure to
1892 * sanitize the values out of the punit to satisfy this
1893 * requirement.
1894 */
1895 wm[0] += 2;
1896 for (level = 1; level <= max_level; level++)
1897 if (wm[level] != 0)
1898 wm[level] += 2;
1899 else {
1900 for (i = level + 1; i <= max_level; i++)
1901 wm[i] = 0;
1902
1903 break;
1904 }
1905 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1906 uint64_t sskpd = I915_READ64(MCH_SSKPD);
1907
1908 wm[0] = (sskpd >> 56) & 0xFF;
1909 if (wm[0] == 0)
1910 wm[0] = sskpd & 0xF;
1911 wm[1] = (sskpd >> 4) & 0xFF;
1912 wm[2] = (sskpd >> 12) & 0xFF;
1913 wm[3] = (sskpd >> 20) & 0x1FF;
1914 wm[4] = (sskpd >> 32) & 0x1FF;
1915 } else if (INTEL_INFO(dev)->gen >= 6) {
1916 uint32_t sskpd = I915_READ(MCH_SSKPD);
1917
1918 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
1919 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
1920 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
1921 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1922 } else if (INTEL_INFO(dev)->gen >= 5) {
1923 uint32_t mltr = I915_READ(MLTR_ILK);
1924
1925 /* ILK primary LP0 latency is 700 ns */
1926 wm[0] = 7;
1927 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
1928 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1929 }
1930 }
1931
1932 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
1933 {
1934 /* ILK sprite LP0 latency is 1300 ns */
1935 if (INTEL_INFO(dev)->gen == 5)
1936 wm[0] = 13;
1937 }
1938
1939 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
1940 {
1941 /* ILK cursor LP0 latency is 1300 ns */
1942 if (INTEL_INFO(dev)->gen == 5)
1943 wm[0] = 13;
1944
1945 /* WaDoubleCursorLP3Latency:ivb */
1946 if (IS_IVYBRIDGE(dev))
1947 wm[3] *= 2;
1948 }
1949
1950 int ilk_wm_max_level(const struct drm_device *dev)
1951 {
1952 /* how many WM levels are we expecting */
1953 if (INTEL_INFO(dev)->gen >= 9)
1954 return 7;
1955 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1956 return 4;
1957 else if (INTEL_INFO(dev)->gen >= 6)
1958 return 3;
1959 else
1960 return 2;
1961 }
1962
1963 static void intel_print_wm_latency(struct drm_device *dev,
1964 const char *name,
1965 const uint16_t wm[8])
1966 {
1967 int level, max_level = ilk_wm_max_level(dev);
1968
1969 for (level = 0; level <= max_level; level++) {
1970 unsigned int latency = wm[level];
1971
1972 if (latency == 0) {
1973 DRM_ERROR("%s WM%d latency not provided\n",
1974 name, level);
1975 continue;
1976 }
1977
1978 /*
1979 * - latencies are in us on gen9.
1980 * - before then, WM1+ latency values are in 0.5us units
1981 */
1982 if (IS_GEN9(dev))
1983 latency *= 10;
1984 else if (level > 0)
1985 latency *= 5;
1986
1987 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
1988 name, level, wm[level],
1989 latency / 10, latency % 10);
1990 }
1991 }
1992
1993 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
1994 uint16_t wm[5], uint16_t min)
1995 {
1996 int level, max_level = ilk_wm_max_level(dev_priv->dev);
1997
1998 if (wm[0] >= min)
1999 return false;
2000
2001 wm[0] = max(wm[0], min);
2002 for (level = 1; level <= max_level; level++)
2003 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2004
2005 return true;
2006 }
2007
2008 static void snb_wm_latency_quirk(struct drm_device *dev)
2009 {
2010 struct drm_i915_private *dev_priv = dev->dev_private;
2011 bool changed;
2012
2013 /*
2014 * The BIOS provided WM memory latency values are often
2015 * inadequate for high resolution displays. Adjust them.
2016 */
2017 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2018 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2019 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2020
2021 if (!changed)
2022 return;
2023
2024 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2025 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2026 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2027 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2028 }
2029
2030 static void ilk_setup_wm_latency(struct drm_device *dev)
2031 {
2032 struct drm_i915_private *dev_priv = dev->dev_private;
2033
2034 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2035
2036 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2037 sizeof(dev_priv->wm.pri_latency));
2038 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2039 sizeof(dev_priv->wm.pri_latency));
2040
2041 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2042 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2043
2044 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2045 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2046 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2047
2048 if (IS_GEN6(dev))
2049 snb_wm_latency_quirk(dev);
2050 }
2051
2052 static void skl_setup_wm_latency(struct drm_device *dev)
2053 {
2054 struct drm_i915_private *dev_priv = dev->dev_private;
2055
2056 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2057 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2058 }
2059
2060 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2061 struct ilk_pipe_wm_parameters *p)
2062 {
2063 struct drm_device *dev = crtc->dev;
2064 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2065 enum pipe pipe = intel_crtc->pipe;
2066 struct drm_plane *plane;
2067
2068 if (!intel_crtc->active)
2069 return;
2070
2071 p->active = true;
2072 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2073 p->pixel_rate = ilk_pipe_pixel_rate(intel_crtc->config);
2074
2075 if (crtc->primary->state->fb)
2076 p->pri.bytes_per_pixel =
2077 crtc->primary->state->fb->bits_per_pixel / 8;
2078 else
2079 p->pri.bytes_per_pixel = 4;
2080
2081 p->cur.bytes_per_pixel = 4;
2082 /*
2083 * TODO: for now, assume primary and cursor planes are always enabled.
2084 * Setting them to false makes the screen flicker.
2085 */
2086 p->pri.enabled = true;
2087 p->cur.enabled = true;
2088
2089 p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2090 p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2091
2092 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2093 struct intel_plane *intel_plane = to_intel_plane(plane);
2094
2095 if (intel_plane->pipe == pipe) {
2096 p->spr = intel_plane->wm;
2097 break;
2098 }
2099 }
2100 }
2101
2102 static void ilk_compute_wm_config(struct drm_device *dev,
2103 struct intel_wm_config *config)
2104 {
2105 struct intel_crtc *intel_crtc;
2106
2107 /* Compute the currently _active_ config */
2108 for_each_intel_crtc(dev, intel_crtc) {
2109 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2110
2111 if (!wm->pipe_enabled)
2112 continue;
2113
2114 config->sprites_enabled |= wm->sprites_enabled;
2115 config->sprites_scaled |= wm->sprites_scaled;
2116 config->num_pipes_active++;
2117 }
2118 }
2119
2120 /* Compute new watermarks for the pipe */
2121 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2122 const struct ilk_pipe_wm_parameters *params,
2123 struct intel_pipe_wm *pipe_wm)
2124 {
2125 struct drm_device *dev = crtc->dev;
2126 const struct drm_i915_private *dev_priv = dev->dev_private;
2127 int level, max_level = ilk_wm_max_level(dev);
2128 /* LP0 watermark maximums depend on this pipe alone */
2129 struct intel_wm_config config = {
2130 .num_pipes_active = 1,
2131 .sprites_enabled = params->spr.enabled,
2132 .sprites_scaled = params->spr.scaled,
2133 };
2134 struct ilk_wm_maximums max;
2135
2136 pipe_wm->pipe_enabled = params->active;
2137 pipe_wm->sprites_enabled = params->spr.enabled;
2138 pipe_wm->sprites_scaled = params->spr.scaled;
2139
2140 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2141 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2142 max_level = 1;
2143
2144 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2145 if (params->spr.scaled)
2146 max_level = 0;
2147
2148 ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2149
2150 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2151 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2152
2153 /* LP0 watermarks always use 1/2 DDB partitioning */
2154 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2155
2156 /* At least LP0 must be valid */
2157 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2158 return false;
2159
2160 ilk_compute_wm_reg_maximums(dev, 1, &max);
2161
2162 for (level = 1; level <= max_level; level++) {
2163 struct intel_wm_level wm = {};
2164
2165 ilk_compute_wm_level(dev_priv, level, params, &wm);
2166
2167 /*
2168 * Disable any watermark level that exceeds the
2169 * register maximums since such watermarks are
2170 * always invalid.
2171 */
2172 if (!ilk_validate_wm_level(level, &max, &wm))
2173 break;
2174
2175 pipe_wm->wm[level] = wm;
2176 }
2177
2178 return true;
2179 }
2180
2181 /*
2182 * Merge the watermarks from all active pipes for a specific level.
2183 */
2184 static void ilk_merge_wm_level(struct drm_device *dev,
2185 int level,
2186 struct intel_wm_level *ret_wm)
2187 {
2188 const struct intel_crtc *intel_crtc;
2189
2190 ret_wm->enable = true;
2191
2192 for_each_intel_crtc(dev, intel_crtc) {
2193 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2194 const struct intel_wm_level *wm = &active->wm[level];
2195
2196 if (!active->pipe_enabled)
2197 continue;
2198
2199 /*
2200 * The watermark values may have been used in the past,
2201 * so we must maintain them in the registers for some
2202 * time even if the level is now disabled.
2203 */
2204 if (!wm->enable)
2205 ret_wm->enable = false;
2206
2207 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2208 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2209 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2210 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2211 }
2212 }
2213
2214 /*
2215 * Merge all low power watermarks for all active pipes.
2216 */
2217 static void ilk_wm_merge(struct drm_device *dev,
2218 const struct intel_wm_config *config,
2219 const struct ilk_wm_maximums *max,
2220 struct intel_pipe_wm *merged)
2221 {
2222 int level, max_level = ilk_wm_max_level(dev);
2223 int last_enabled_level = max_level;
2224
2225 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2226 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2227 config->num_pipes_active > 1)
2228 return;
2229
2230 /* ILK: FBC WM must be disabled always */
2231 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2232
2233 /* merge each WM1+ level */
2234 for (level = 1; level <= max_level; level++) {
2235 struct intel_wm_level *wm = &merged->wm[level];
2236
2237 ilk_merge_wm_level(dev, level, wm);
2238
2239 if (level > last_enabled_level)
2240 wm->enable = false;
2241 else if (!ilk_validate_wm_level(level, max, wm))
2242 /* make sure all following levels get disabled */
2243 last_enabled_level = level - 1;
2244
2245 /*
2246 * The spec says it is preferred to disable
2247 * FBC WMs instead of disabling a WM level.
2248 */
2249 if (wm->fbc_val > max->fbc) {
2250 if (wm->enable)
2251 merged->fbc_wm_enabled = false;
2252 wm->fbc_val = 0;
2253 }
2254 }
2255
2256 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2257 /*
2258 * FIXME this is racy. FBC might get enabled later.
2259 * What we should check here is whether FBC can be
2260 * enabled sometime later.
2261 */
2262 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2263 for (level = 2; level <= max_level; level++) {
2264 struct intel_wm_level *wm = &merged->wm[level];
2265
2266 wm->enable = false;
2267 }
2268 }
2269 }
2270
2271 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2272 {
2273 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2274 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2275 }
2276
2277 /* The value we need to program into the WM_LPx latency field */
2278 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2279 {
2280 struct drm_i915_private *dev_priv = dev->dev_private;
2281
2282 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2283 return 2 * level;
2284 else
2285 return dev_priv->wm.pri_latency[level];
2286 }
2287
2288 static void ilk_compute_wm_results(struct drm_device *dev,
2289 const struct intel_pipe_wm *merged,
2290 enum intel_ddb_partitioning partitioning,
2291 struct ilk_wm_values *results)
2292 {
2293 struct intel_crtc *intel_crtc;
2294 int level, wm_lp;
2295
2296 results->enable_fbc_wm = merged->fbc_wm_enabled;
2297 results->partitioning = partitioning;
2298
2299 /* LP1+ register values */
2300 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2301 const struct intel_wm_level *r;
2302
2303 level = ilk_wm_lp_to_level(wm_lp, merged);
2304
2305 r = &merged->wm[level];
2306
2307 /*
2308 * Maintain the watermark values even if the level is
2309 * disabled. Doing otherwise could cause underruns.
2310 */
2311 results->wm_lp[wm_lp - 1] =
2312 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2313 (r->pri_val << WM1_LP_SR_SHIFT) |
2314 r->cur_val;
2315
2316 if (r->enable)
2317 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2318
2319 if (INTEL_INFO(dev)->gen >= 8)
2320 results->wm_lp[wm_lp - 1] |=
2321 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2322 else
2323 results->wm_lp[wm_lp - 1] |=
2324 r->fbc_val << WM1_LP_FBC_SHIFT;
2325
2326 /*
2327 * Always set WM1S_LP_EN when spr_val != 0, even if the
2328 * level is disabled. Doing otherwise could cause underruns.
2329 */
2330 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2331 WARN_ON(wm_lp != 1);
2332 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2333 } else
2334 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2335 }
2336
2337 /* LP0 register values */
2338 for_each_intel_crtc(dev, intel_crtc) {
2339 enum pipe pipe = intel_crtc->pipe;
2340 const struct intel_wm_level *r =
2341 &intel_crtc->wm.active.wm[0];
2342
2343 if (WARN_ON(!r->enable))
2344 continue;
2345
2346 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2347
2348 results->wm_pipe[pipe] =
2349 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2350 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2351 r->cur_val;
2352 }
2353 }
2354
2355 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2356 * case both are at the same level. Prefer r1 in case they're the same. */
2357 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2358 struct intel_pipe_wm *r1,
2359 struct intel_pipe_wm *r2)
2360 {
2361 int level, max_level = ilk_wm_max_level(dev);
2362 int level1 = 0, level2 = 0;
2363
2364 for (level = 1; level <= max_level; level++) {
2365 if (r1->wm[level].enable)
2366 level1 = level;
2367 if (r2->wm[level].enable)
2368 level2 = level;
2369 }
2370
2371 if (level1 == level2) {
2372 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2373 return r2;
2374 else
2375 return r1;
2376 } else if (level1 > level2) {
2377 return r1;
2378 } else {
2379 return r2;
2380 }
2381 }
2382
2383 /* dirty bits used to track which watermarks need changes */
2384 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2385 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2386 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2387 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2388 #define WM_DIRTY_FBC (1 << 24)
2389 #define WM_DIRTY_DDB (1 << 25)
2390
2391 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2392 const struct ilk_wm_values *old,
2393 const struct ilk_wm_values *new)
2394 {
2395 unsigned int dirty = 0;
2396 enum pipe pipe;
2397 int wm_lp;
2398
2399 for_each_pipe(dev_priv, pipe) {
2400 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2401 dirty |= WM_DIRTY_LINETIME(pipe);
2402 /* Must disable LP1+ watermarks too */
2403 dirty |= WM_DIRTY_LP_ALL;
2404 }
2405
2406 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2407 dirty |= WM_DIRTY_PIPE(pipe);
2408 /* Must disable LP1+ watermarks too */
2409 dirty |= WM_DIRTY_LP_ALL;
2410 }
2411 }
2412
2413 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2414 dirty |= WM_DIRTY_FBC;
2415 /* Must disable LP1+ watermarks too */
2416 dirty |= WM_DIRTY_LP_ALL;
2417 }
2418
2419 if (old->partitioning != new->partitioning) {
2420 dirty |= WM_DIRTY_DDB;
2421 /* Must disable LP1+ watermarks too */
2422 dirty |= WM_DIRTY_LP_ALL;
2423 }
2424
2425 /* LP1+ watermarks already deemed dirty, no need to continue */
2426 if (dirty & WM_DIRTY_LP_ALL)
2427 return dirty;
2428
2429 /* Find the lowest numbered LP1+ watermark in need of an update... */
2430 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2431 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2432 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2433 break;
2434 }
2435
2436 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2437 for (; wm_lp <= 3; wm_lp++)
2438 dirty |= WM_DIRTY_LP(wm_lp);
2439
2440 return dirty;
2441 }
2442
2443 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2444 unsigned int dirty)
2445 {
2446 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2447 bool changed = false;
2448
2449 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2450 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2451 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2452 changed = true;
2453 }
2454 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2455 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2456 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2457 changed = true;
2458 }
2459 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2460 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2461 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2462 changed = true;
2463 }
2464
2465 /*
2466 * Don't touch WM1S_LP_EN here.
2467 * Doing so could cause underruns.
2468 */
2469
2470 return changed;
2471 }
2472
2473 /*
2474 * The spec says we shouldn't write when we don't need, because every write
2475 * causes WMs to be re-evaluated, expending some power.
2476 */
2477 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2478 struct ilk_wm_values *results)
2479 {
2480 struct drm_device *dev = dev_priv->dev;
2481 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2482 unsigned int dirty;
2483 uint32_t val;
2484
2485 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2486 if (!dirty)
2487 return;
2488
2489 _ilk_disable_lp_wm(dev_priv, dirty);
2490
2491 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2492 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2493 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2494 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2495 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2496 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2497
2498 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2499 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2500 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2501 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2502 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2503 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2504
2505 if (dirty & WM_DIRTY_DDB) {
2506 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2507 val = I915_READ(WM_MISC);
2508 if (results->partitioning == INTEL_DDB_PART_1_2)
2509 val &= ~WM_MISC_DATA_PARTITION_5_6;
2510 else
2511 val |= WM_MISC_DATA_PARTITION_5_6;
2512 I915_WRITE(WM_MISC, val);
2513 } else {
2514 val = I915_READ(DISP_ARB_CTL2);
2515 if (results->partitioning == INTEL_DDB_PART_1_2)
2516 val &= ~DISP_DATA_PARTITION_5_6;
2517 else
2518 val |= DISP_DATA_PARTITION_5_6;
2519 I915_WRITE(DISP_ARB_CTL2, val);
2520 }
2521 }
2522
2523 if (dirty & WM_DIRTY_FBC) {
2524 val = I915_READ(DISP_ARB_CTL);
2525 if (results->enable_fbc_wm)
2526 val &= ~DISP_FBC_WM_DIS;
2527 else
2528 val |= DISP_FBC_WM_DIS;
2529 I915_WRITE(DISP_ARB_CTL, val);
2530 }
2531
2532 if (dirty & WM_DIRTY_LP(1) &&
2533 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2534 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2535
2536 if (INTEL_INFO(dev)->gen >= 7) {
2537 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2538 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2539 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2540 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2541 }
2542
2543 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2544 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2545 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2546 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2547 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2548 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2549
2550 dev_priv->wm.hw = *results;
2551 }
2552
2553 static bool ilk_disable_lp_wm(struct drm_device *dev)
2554 {
2555 struct drm_i915_private *dev_priv = dev->dev_private;
2556
2557 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2558 }
2559
2560 /*
2561 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2562 * different active planes.
2563 */
2564
2565 #define SKL_DDB_SIZE 896 /* in blocks */
2566 #define BXT_DDB_SIZE 512
2567
2568 static void
2569 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2570 struct drm_crtc *for_crtc,
2571 const struct intel_wm_config *config,
2572 const struct skl_pipe_wm_parameters *params,
2573 struct skl_ddb_entry *alloc /* out */)
2574 {
2575 struct drm_crtc *crtc;
2576 unsigned int pipe_size, ddb_size;
2577 int nth_active_pipe;
2578
2579 if (!params->active) {
2580 alloc->start = 0;
2581 alloc->end = 0;
2582 return;
2583 }
2584
2585 if (IS_BROXTON(dev))
2586 ddb_size = BXT_DDB_SIZE;
2587 else
2588 ddb_size = SKL_DDB_SIZE;
2589
2590 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2591
2592 nth_active_pipe = 0;
2593 for_each_crtc(dev, crtc) {
2594 if (!to_intel_crtc(crtc)->active)
2595 continue;
2596
2597 if (crtc == for_crtc)
2598 break;
2599
2600 nth_active_pipe++;
2601 }
2602
2603 pipe_size = ddb_size / config->num_pipes_active;
2604 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2605 alloc->end = alloc->start + pipe_size;
2606 }
2607
2608 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2609 {
2610 if (config->num_pipes_active == 1)
2611 return 32;
2612
2613 return 8;
2614 }
2615
2616 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2617 {
2618 entry->start = reg & 0x3ff;
2619 entry->end = (reg >> 16) & 0x3ff;
2620 if (entry->end)
2621 entry->end += 1;
2622 }
2623
2624 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2625 struct skl_ddb_allocation *ddb /* out */)
2626 {
2627 enum pipe pipe;
2628 int plane;
2629 u32 val;
2630
2631 for_each_pipe(dev_priv, pipe) {
2632 for_each_plane(dev_priv, pipe, plane) {
2633 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2634 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2635 val);
2636 }
2637
2638 val = I915_READ(CUR_BUF_CFG(pipe));
2639 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2640 }
2641 }
2642
2643 static unsigned int
2644 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2645 {
2646
2647 /* for planar format */
2648 if (p->y_bytes_per_pixel) {
2649 if (y) /* y-plane data rate */
2650 return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2651 else /* uv-plane data rate */
2652 return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2653 }
2654
2655 /* for packed formats */
2656 return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2657 }
2658
2659 /*
2660 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2661 * a 8192x4096@32bpp framebuffer:
2662 * 3 * 4096 * 8192 * 4 < 2^32
2663 */
2664 static unsigned int
2665 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2666 const struct skl_pipe_wm_parameters *params)
2667 {
2668 unsigned int total_data_rate = 0;
2669 int plane;
2670
2671 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2672 const struct intel_plane_wm_parameters *p;
2673
2674 p = &params->plane[plane];
2675 if (!p->enabled)
2676 continue;
2677
2678 total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2679 if (p->y_bytes_per_pixel) {
2680 total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2681 }
2682 }
2683
2684 return total_data_rate;
2685 }
2686
2687 static void
2688 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2689 const struct intel_wm_config *config,
2690 const struct skl_pipe_wm_parameters *params,
2691 struct skl_ddb_allocation *ddb /* out */)
2692 {
2693 struct drm_device *dev = crtc->dev;
2694 struct drm_i915_private *dev_priv = dev->dev_private;
2695 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2696 enum pipe pipe = intel_crtc->pipe;
2697 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2698 uint16_t alloc_size, start, cursor_blocks;
2699 uint16_t minimum[I915_MAX_PLANES];
2700 uint16_t y_minimum[I915_MAX_PLANES];
2701 unsigned int total_data_rate;
2702 int plane;
2703
2704 skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2705 alloc_size = skl_ddb_entry_size(alloc);
2706 if (alloc_size == 0) {
2707 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2708 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2709 return;
2710 }
2711
2712 cursor_blocks = skl_cursor_allocation(config);
2713 ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2714 ddb->cursor[pipe].end = alloc->end;
2715
2716 alloc_size -= cursor_blocks;
2717 alloc->end -= cursor_blocks;
2718
2719 /* 1. Allocate the mininum required blocks for each active plane */
2720 for_each_plane(dev_priv, pipe, plane) {
2721 const struct intel_plane_wm_parameters *p;
2722
2723 p = &params->plane[plane];
2724 if (!p->enabled)
2725 continue;
2726
2727 minimum[plane] = 8;
2728 alloc_size -= minimum[plane];
2729 y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2730 alloc_size -= y_minimum[plane];
2731 }
2732
2733 /*
2734 * 2. Distribute the remaining space in proportion to the amount of
2735 * data each plane needs to fetch from memory.
2736 *
2737 * FIXME: we may not allocate every single block here.
2738 */
2739 total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2740
2741 start = alloc->start;
2742 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2743 const struct intel_plane_wm_parameters *p;
2744 unsigned int data_rate, y_data_rate;
2745 uint16_t plane_blocks, y_plane_blocks = 0;
2746
2747 p = &params->plane[plane];
2748 if (!p->enabled)
2749 continue;
2750
2751 data_rate = skl_plane_relative_data_rate(p, 0);
2752
2753 /*
2754 * allocation for (packed formats) or (uv-plane part of planar format):
2755 * promote the expression to 64 bits to avoid overflowing, the
2756 * result is < available as data_rate / total_data_rate < 1
2757 */
2758 plane_blocks = minimum[plane];
2759 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2760 total_data_rate);
2761
2762 ddb->plane[pipe][plane].start = start;
2763 ddb->plane[pipe][plane].end = start + plane_blocks;
2764
2765 start += plane_blocks;
2766
2767 /*
2768 * allocation for y_plane part of planar format:
2769 */
2770 if (p->y_bytes_per_pixel) {
2771 y_data_rate = skl_plane_relative_data_rate(p, 1);
2772 y_plane_blocks = y_minimum[plane];
2773 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
2774 total_data_rate);
2775
2776 ddb->y_plane[pipe][plane].start = start;
2777 ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
2778
2779 start += y_plane_blocks;
2780 }
2781
2782 }
2783
2784 }
2785
2786 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2787 {
2788 /* TODO: Take into account the scalers once we support them */
2789 return config->base.adjusted_mode.crtc_clock;
2790 }
2791
2792 /*
2793 * The max latency should be 257 (max the punit can code is 255 and we add 2us
2794 * for the read latency) and bytes_per_pixel should always be <= 8, so that
2795 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2796 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2797 */
2798 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2799 uint32_t latency)
2800 {
2801 uint32_t wm_intermediate_val, ret;
2802
2803 if (latency == 0)
2804 return UINT_MAX;
2805
2806 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2807 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
2808
2809 return ret;
2810 }
2811
2812 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2813 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2814 uint64_t tiling, uint32_t latency)
2815 {
2816 uint32_t ret;
2817 uint32_t plane_bytes_per_line, plane_blocks_per_line;
2818 uint32_t wm_intermediate_val;
2819
2820 if (latency == 0)
2821 return UINT_MAX;
2822
2823 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2824
2825 if (tiling == I915_FORMAT_MOD_Y_TILED ||
2826 tiling == I915_FORMAT_MOD_Yf_TILED) {
2827 plane_bytes_per_line *= 4;
2828 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2829 plane_blocks_per_line /= 4;
2830 } else {
2831 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2832 }
2833
2834 wm_intermediate_val = latency * pixel_rate;
2835 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2836 plane_blocks_per_line;
2837
2838 return ret;
2839 }
2840
2841 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
2842 const struct intel_crtc *intel_crtc)
2843 {
2844 struct drm_device *dev = intel_crtc->base.dev;
2845 struct drm_i915_private *dev_priv = dev->dev_private;
2846 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
2847 enum pipe pipe = intel_crtc->pipe;
2848
2849 if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
2850 sizeof(new_ddb->plane[pipe])))
2851 return true;
2852
2853 if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
2854 sizeof(new_ddb->cursor[pipe])))
2855 return true;
2856
2857 return false;
2858 }
2859
2860 static void skl_compute_wm_global_parameters(struct drm_device *dev,
2861 struct intel_wm_config *config)
2862 {
2863 struct drm_crtc *crtc;
2864 struct drm_plane *plane;
2865
2866 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2867 config->num_pipes_active += to_intel_crtc(crtc)->active;
2868
2869 /* FIXME: I don't think we need those two global parameters on SKL */
2870 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2871 struct intel_plane *intel_plane = to_intel_plane(plane);
2872
2873 config->sprites_enabled |= intel_plane->wm.enabled;
2874 config->sprites_scaled |= intel_plane->wm.scaled;
2875 }
2876 }
2877
2878 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
2879 struct skl_pipe_wm_parameters *p)
2880 {
2881 struct drm_device *dev = crtc->dev;
2882 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2883 enum pipe pipe = intel_crtc->pipe;
2884 struct drm_plane *plane;
2885 struct drm_framebuffer *fb;
2886 int i = 1; /* Index for sprite planes start */
2887
2888 p->active = intel_crtc->active;
2889 if (p->active) {
2890 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2891 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2892
2893 fb = crtc->primary->state->fb;
2894 /* For planar: Bpp is for uv plane, y_Bpp is for y plane */
2895 if (fb) {
2896 p->plane[0].enabled = true;
2897 p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
2898 drm_format_plane_cpp(fb->pixel_format, 1) : fb->bits_per_pixel / 8;
2899 p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
2900 drm_format_plane_cpp(fb->pixel_format, 0) : 0;
2901 p->plane[0].tiling = fb->modifier[0];
2902 } else {
2903 p->plane[0].enabled = false;
2904 p->plane[0].bytes_per_pixel = 0;
2905 p->plane[0].y_bytes_per_pixel = 0;
2906 p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
2907 }
2908 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
2909 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2910 p->plane[0].rotation = crtc->primary->state->rotation;
2911
2912 fb = crtc->cursor->state->fb;
2913 p->cursor.y_bytes_per_pixel = 0;
2914 if (fb) {
2915 p->cursor.enabled = true;
2916 p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
2917 p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
2918 p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
2919 } else {
2920 p->cursor.enabled = false;
2921 p->cursor.bytes_per_pixel = 0;
2922 p->cursor.horiz_pixels = 64;
2923 p->cursor.vert_pixels = 64;
2924 }
2925 }
2926
2927 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2928 struct intel_plane *intel_plane = to_intel_plane(plane);
2929
2930 if (intel_plane->pipe == pipe &&
2931 plane->type == DRM_PLANE_TYPE_OVERLAY)
2932 p->plane[i++] = intel_plane->wm;
2933 }
2934 }
2935
2936 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
2937 struct skl_pipe_wm_parameters *p,
2938 struct intel_plane_wm_parameters *p_params,
2939 uint16_t ddb_allocation,
2940 int level,
2941 uint16_t *out_blocks, /* out */
2942 uint8_t *out_lines /* out */)
2943 {
2944 uint32_t latency = dev_priv->wm.skl_latency[level];
2945 uint32_t method1, method2;
2946 uint32_t plane_bytes_per_line, plane_blocks_per_line;
2947 uint32_t res_blocks, res_lines;
2948 uint32_t selected_result;
2949 uint8_t bytes_per_pixel;
2950
2951 if (latency == 0 || !p->active || !p_params->enabled)
2952 return false;
2953
2954 bytes_per_pixel = p_params->y_bytes_per_pixel ?
2955 p_params->y_bytes_per_pixel :
2956 p_params->bytes_per_pixel;
2957 method1 = skl_wm_method1(p->pixel_rate,
2958 bytes_per_pixel,
2959 latency);
2960 method2 = skl_wm_method2(p->pixel_rate,
2961 p->pipe_htotal,
2962 p_params->horiz_pixels,
2963 bytes_per_pixel,
2964 p_params->tiling,
2965 latency);
2966
2967 plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
2968 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2969
2970 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2971 p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
2972 uint32_t min_scanlines = 4;
2973 uint32_t y_tile_minimum;
2974 if (intel_rotation_90_or_270(p_params->rotation)) {
2975 switch (p_params->bytes_per_pixel) {
2976 case 1:
2977 min_scanlines = 16;
2978 break;
2979 case 2:
2980 min_scanlines = 8;
2981 break;
2982 case 8:
2983 WARN(1, "Unsupported pixel depth for rotation");
2984 }
2985 }
2986 y_tile_minimum = plane_blocks_per_line * min_scanlines;
2987 selected_result = max(method2, y_tile_minimum);
2988 } else {
2989 if ((ddb_allocation / plane_blocks_per_line) >= 1)
2990 selected_result = min(method1, method2);
2991 else
2992 selected_result = method1;
2993 }
2994
2995 res_blocks = selected_result + 1;
2996 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
2997
2998 if (level >= 1 && level <= 7) {
2999 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3000 p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3001 res_lines += 4;
3002 else
3003 res_blocks++;
3004 }
3005
3006 if (res_blocks >= ddb_allocation || res_lines > 31)
3007 return false;
3008
3009 *out_blocks = res_blocks;
3010 *out_lines = res_lines;
3011
3012 return true;
3013 }
3014
3015 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3016 struct skl_ddb_allocation *ddb,
3017 struct skl_pipe_wm_parameters *p,
3018 enum pipe pipe,
3019 int level,
3020 int num_planes,
3021 struct skl_wm_level *result)
3022 {
3023 uint16_t ddb_blocks;
3024 int i;
3025
3026 for (i = 0; i < num_planes; i++) {
3027 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3028
3029 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3030 p, &p->plane[i],
3031 ddb_blocks,
3032 level,
3033 &result->plane_res_b[i],
3034 &result->plane_res_l[i]);
3035 }
3036
3037 ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
3038 result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
3039 ddb_blocks, level,
3040 &result->cursor_res_b,
3041 &result->cursor_res_l);
3042 }
3043
3044 static uint32_t
3045 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3046 {
3047 if (!to_intel_crtc(crtc)->active)
3048 return 0;
3049
3050 return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3051
3052 }
3053
3054 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3055 struct skl_pipe_wm_parameters *params,
3056 struct skl_wm_level *trans_wm /* out */)
3057 {
3058 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3059 int i;
3060
3061 if (!params->active)
3062 return;
3063
3064 /* Until we know more, just disable transition WMs */
3065 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3066 trans_wm->plane_en[i] = false;
3067 trans_wm->cursor_en = false;
3068 }
3069
3070 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3071 struct skl_ddb_allocation *ddb,
3072 struct skl_pipe_wm_parameters *params,
3073 struct skl_pipe_wm *pipe_wm)
3074 {
3075 struct drm_device *dev = crtc->dev;
3076 const struct drm_i915_private *dev_priv = dev->dev_private;
3077 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3078 int level, max_level = ilk_wm_max_level(dev);
3079
3080 for (level = 0; level <= max_level; level++) {
3081 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3082 level, intel_num_planes(intel_crtc),
3083 &pipe_wm->wm[level]);
3084 }
3085 pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3086
3087 skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3088 }
3089
3090 static void skl_compute_wm_results(struct drm_device *dev,
3091 struct skl_pipe_wm_parameters *p,
3092 struct skl_pipe_wm *p_wm,
3093 struct skl_wm_values *r,
3094 struct intel_crtc *intel_crtc)
3095 {
3096 int level, max_level = ilk_wm_max_level(dev);
3097 enum pipe pipe = intel_crtc->pipe;
3098 uint32_t temp;
3099 int i;
3100
3101 for (level = 0; level <= max_level; level++) {
3102 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3103 temp = 0;
3104
3105 temp |= p_wm->wm[level].plane_res_l[i] <<
3106 PLANE_WM_LINES_SHIFT;
3107 temp |= p_wm->wm[level].plane_res_b[i];
3108 if (p_wm->wm[level].plane_en[i])
3109 temp |= PLANE_WM_EN;
3110
3111 r->plane[pipe][i][level] = temp;
3112 }
3113
3114 temp = 0;
3115
3116 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
3117 temp |= p_wm->wm[level].cursor_res_b;
3118
3119 if (p_wm->wm[level].cursor_en)
3120 temp |= PLANE_WM_EN;
3121
3122 r->cursor[pipe][level] = temp;
3123
3124 }
3125
3126 /* transition WMs */
3127 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3128 temp = 0;
3129 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3130 temp |= p_wm->trans_wm.plane_res_b[i];
3131 if (p_wm->trans_wm.plane_en[i])
3132 temp |= PLANE_WM_EN;
3133
3134 r->plane_trans[pipe][i] = temp;
3135 }
3136
3137 temp = 0;
3138 temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
3139 temp |= p_wm->trans_wm.cursor_res_b;
3140 if (p_wm->trans_wm.cursor_en)
3141 temp |= PLANE_WM_EN;
3142
3143 r->cursor_trans[pipe] = temp;
3144
3145 r->wm_linetime[pipe] = p_wm->linetime;
3146 }
3147
3148 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3149 const struct skl_ddb_entry *entry)
3150 {
3151 if (entry->end)
3152 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3153 else
3154 I915_WRITE(reg, 0);
3155 }
3156
3157 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3158 const struct skl_wm_values *new)
3159 {
3160 struct drm_device *dev = dev_priv->dev;
3161 struct intel_crtc *crtc;
3162
3163 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3164 int i, level, max_level = ilk_wm_max_level(dev);
3165 enum pipe pipe = crtc->pipe;
3166
3167 if (!new->dirty[pipe])
3168 continue;
3169
3170 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3171
3172 for (level = 0; level <= max_level; level++) {
3173 for (i = 0; i < intel_num_planes(crtc); i++)
3174 I915_WRITE(PLANE_WM(pipe, i, level),
3175 new->plane[pipe][i][level]);
3176 I915_WRITE(CUR_WM(pipe, level),
3177 new->cursor[pipe][level]);
3178 }
3179 for (i = 0; i < intel_num_planes(crtc); i++)
3180 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3181 new->plane_trans[pipe][i]);
3182 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3183
3184 for (i = 0; i < intel_num_planes(crtc); i++) {
3185 skl_ddb_entry_write(dev_priv,
3186 PLANE_BUF_CFG(pipe, i),
3187 &new->ddb.plane[pipe][i]);
3188 skl_ddb_entry_write(dev_priv,
3189 PLANE_NV12_BUF_CFG(pipe, i),
3190 &new->ddb.y_plane[pipe][i]);
3191 }
3192
3193 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3194 &new->ddb.cursor[pipe]);
3195 }
3196 }
3197
3198 /*
3199 * When setting up a new DDB allocation arrangement, we need to correctly
3200 * sequence the times at which the new allocations for the pipes are taken into
3201 * account or we'll have pipes fetching from space previously allocated to
3202 * another pipe.
3203 *
3204 * Roughly the sequence looks like:
3205 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3206 * overlapping with a previous light-up pipe (another way to put it is:
3207 * pipes with their new allocation strickly included into their old ones).
3208 * 2. re-allocate the other pipes that get their allocation reduced
3209 * 3. allocate the pipes having their allocation increased
3210 *
3211 * Steps 1. and 2. are here to take care of the following case:
3212 * - Initially DDB looks like this:
3213 * | B | C |
3214 * - enable pipe A.
3215 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3216 * allocation
3217 * | A | B | C |
3218 *
3219 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3220 */
3221
3222 static void
3223 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3224 {
3225 int plane;
3226
3227 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3228
3229 for_each_plane(dev_priv, pipe, plane) {
3230 I915_WRITE(PLANE_SURF(pipe, plane),
3231 I915_READ(PLANE_SURF(pipe, plane)));
3232 }
3233 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3234 }
3235
3236 static bool
3237 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3238 const struct skl_ddb_allocation *new,
3239 enum pipe pipe)
3240 {
3241 uint16_t old_size, new_size;
3242
3243 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3244 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3245
3246 return old_size != new_size &&
3247 new->pipe[pipe].start >= old->pipe[pipe].start &&
3248 new->pipe[pipe].end <= old->pipe[pipe].end;
3249 }
3250
3251 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3252 struct skl_wm_values *new_values)
3253 {
3254 struct drm_device *dev = dev_priv->dev;
3255 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3256 bool reallocated[I915_MAX_PIPES] = {};
3257 struct intel_crtc *crtc;
3258 enum pipe pipe;
3259
3260 new_ddb = &new_values->ddb;
3261 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3262
3263 /*
3264 * First pass: flush the pipes with the new allocation contained into
3265 * the old space.
3266 *
3267 * We'll wait for the vblank on those pipes to ensure we can safely
3268 * re-allocate the freed space without this pipe fetching from it.
3269 */
3270 for_each_intel_crtc(dev, crtc) {
3271 if (!crtc->active)
3272 continue;
3273
3274 pipe = crtc->pipe;
3275
3276 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3277 continue;
3278
3279 skl_wm_flush_pipe(dev_priv, pipe, 1);
3280 intel_wait_for_vblank(dev, pipe);
3281
3282 reallocated[pipe] = true;
3283 }
3284
3285
3286 /*
3287 * Second pass: flush the pipes that are having their allocation
3288 * reduced, but overlapping with a previous allocation.
3289 *
3290 * Here as well we need to wait for the vblank to make sure the freed
3291 * space is not used anymore.
3292 */
3293 for_each_intel_crtc(dev, crtc) {
3294 if (!crtc->active)
3295 continue;
3296
3297 pipe = crtc->pipe;
3298
3299 if (reallocated[pipe])
3300 continue;
3301
3302 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3303 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3304 skl_wm_flush_pipe(dev_priv, pipe, 2);
3305 intel_wait_for_vblank(dev, pipe);
3306 reallocated[pipe] = true;
3307 }
3308 }
3309
3310 /*
3311 * Third pass: flush the pipes that got more space allocated.
3312 *
3313 * We don't need to actively wait for the update here, next vblank
3314 * will just get more DDB space with the correct WM values.
3315 */
3316 for_each_intel_crtc(dev, crtc) {
3317 if (!crtc->active)
3318 continue;
3319
3320 pipe = crtc->pipe;
3321
3322 /*
3323 * At this point, only the pipes more space than before are
3324 * left to re-allocate.
3325 */
3326 if (reallocated[pipe])
3327 continue;
3328
3329 skl_wm_flush_pipe(dev_priv, pipe, 3);
3330 }
3331 }
3332
3333 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3334 struct skl_pipe_wm_parameters *params,
3335 struct intel_wm_config *config,
3336 struct skl_ddb_allocation *ddb, /* out */
3337 struct skl_pipe_wm *pipe_wm /* out */)
3338 {
3339 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3340
3341 skl_compute_wm_pipe_parameters(crtc, params);
3342 skl_allocate_pipe_ddb(crtc, config, params, ddb);
3343 skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3344
3345 if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3346 return false;
3347
3348 intel_crtc->wm.skl_active = *pipe_wm;
3349
3350 return true;
3351 }
3352
3353 static void skl_update_other_pipe_wm(struct drm_device *dev,
3354 struct drm_crtc *crtc,
3355 struct intel_wm_config *config,
3356 struct skl_wm_values *r)
3357 {
3358 struct intel_crtc *intel_crtc;
3359 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3360
3361 /*
3362 * If the WM update hasn't changed the allocation for this_crtc (the
3363 * crtc we are currently computing the new WM values for), other
3364 * enabled crtcs will keep the same allocation and we don't need to
3365 * recompute anything for them.
3366 */
3367 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3368 return;
3369
3370 /*
3371 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3372 * other active pipes need new DDB allocation and WM values.
3373 */
3374 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3375 base.head) {
3376 struct skl_pipe_wm_parameters params = {};
3377 struct skl_pipe_wm pipe_wm = {};
3378 bool wm_changed;
3379
3380 if (this_crtc->pipe == intel_crtc->pipe)
3381 continue;
3382
3383 if (!intel_crtc->active)
3384 continue;
3385
3386 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3387 &params, config,
3388 &r->ddb, &pipe_wm);
3389
3390 /*
3391 * If we end up re-computing the other pipe WM values, it's
3392 * because it was really needed, so we expect the WM values to
3393 * be different.
3394 */
3395 WARN_ON(!wm_changed);
3396
3397 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3398 r->dirty[intel_crtc->pipe] = true;
3399 }
3400 }
3401
3402 static void skl_update_wm(struct drm_crtc *crtc)
3403 {
3404 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3405 struct drm_device *dev = crtc->dev;
3406 struct drm_i915_private *dev_priv = dev->dev_private;
3407 struct skl_pipe_wm_parameters params = {};
3408 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3409 struct skl_pipe_wm pipe_wm = {};
3410 struct intel_wm_config config = {};
3411
3412 memset(results, 0, sizeof(*results));
3413
3414 skl_compute_wm_global_parameters(dev, &config);
3415
3416 if (!skl_update_pipe_wm(crtc, &params, &config,
3417 &results->ddb, &pipe_wm))
3418 return;
3419
3420 skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3421 results->dirty[intel_crtc->pipe] = true;
3422
3423 skl_update_other_pipe_wm(dev, crtc, &config, results);
3424 skl_write_wm_values(dev_priv, results);
3425 skl_flush_wm_values(dev_priv, results);
3426
3427 /* store the new configuration */
3428 dev_priv->wm.skl_hw = *results;
3429 }
3430
3431 static void
3432 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3433 uint32_t sprite_width, uint32_t sprite_height,
3434 int pixel_size, bool enabled, bool scaled)
3435 {
3436 struct intel_plane *intel_plane = to_intel_plane(plane);
3437 struct drm_framebuffer *fb = plane->state->fb;
3438
3439 intel_plane->wm.enabled = enabled;
3440 intel_plane->wm.scaled = scaled;
3441 intel_plane->wm.horiz_pixels = sprite_width;
3442 intel_plane->wm.vert_pixels = sprite_height;
3443 intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3444
3445 /* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3446 intel_plane->wm.bytes_per_pixel =
3447 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3448 drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3449 intel_plane->wm.y_bytes_per_pixel =
3450 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3451 drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3452
3453 /*
3454 * Framebuffer can be NULL on plane disable, but it does not
3455 * matter for watermarks if we assume no tiling in that case.
3456 */
3457 if (fb)
3458 intel_plane->wm.tiling = fb->modifier[0];
3459 intel_plane->wm.rotation = plane->state->rotation;
3460
3461 skl_update_wm(crtc);
3462 }
3463
3464 static void ilk_update_wm(struct drm_crtc *crtc)
3465 {
3466 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3467 struct drm_device *dev = crtc->dev;
3468 struct drm_i915_private *dev_priv = dev->dev_private;
3469 struct ilk_wm_maximums max;
3470 struct ilk_pipe_wm_parameters params = {};
3471 struct ilk_wm_values results = {};
3472 enum intel_ddb_partitioning partitioning;
3473 struct intel_pipe_wm pipe_wm = {};
3474 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3475 struct intel_wm_config config = {};
3476
3477 ilk_compute_wm_parameters(crtc, &params);
3478
3479 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3480
3481 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3482 return;
3483
3484 intel_crtc->wm.active = pipe_wm;
3485
3486 ilk_compute_wm_config(dev, &config);
3487
3488 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3489 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3490
3491 /* 5/6 split only in single pipe config on IVB+ */
3492 if (INTEL_INFO(dev)->gen >= 7 &&
3493 config.num_pipes_active == 1 && config.sprites_enabled) {
3494 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3495 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3496
3497 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3498 } else {
3499 best_lp_wm = &lp_wm_1_2;
3500 }
3501
3502 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3503 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3504
3505 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3506
3507 ilk_write_wm_values(dev_priv, &results);
3508 }
3509
3510 static void
3511 ilk_update_sprite_wm(struct drm_plane *plane,
3512 struct drm_crtc *crtc,
3513 uint32_t sprite_width, uint32_t sprite_height,
3514 int pixel_size, bool enabled, bool scaled)
3515 {
3516 struct drm_device *dev = plane->dev;
3517 struct intel_plane *intel_plane = to_intel_plane(plane);
3518
3519 intel_plane->wm.enabled = enabled;
3520 intel_plane->wm.scaled = scaled;
3521 intel_plane->wm.horiz_pixels = sprite_width;
3522 intel_plane->wm.vert_pixels = sprite_width;
3523 intel_plane->wm.bytes_per_pixel = pixel_size;
3524
3525 /*
3526 * IVB workaround: must disable low power watermarks for at least
3527 * one frame before enabling scaling. LP watermarks can be re-enabled
3528 * when scaling is disabled.
3529 *
3530 * WaCxSRDisabledForSpriteScaling:ivb
3531 */
3532 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3533 intel_wait_for_vblank(dev, intel_plane->pipe);
3534
3535 ilk_update_wm(crtc);
3536 }
3537
3538 static void skl_pipe_wm_active_state(uint32_t val,
3539 struct skl_pipe_wm *active,
3540 bool is_transwm,
3541 bool is_cursor,
3542 int i,
3543 int level)
3544 {
3545 bool is_enabled = (val & PLANE_WM_EN) != 0;
3546
3547 if (!is_transwm) {
3548 if (!is_cursor) {
3549 active->wm[level].plane_en[i] = is_enabled;
3550 active->wm[level].plane_res_b[i] =
3551 val & PLANE_WM_BLOCKS_MASK;
3552 active->wm[level].plane_res_l[i] =
3553 (val >> PLANE_WM_LINES_SHIFT) &
3554 PLANE_WM_LINES_MASK;
3555 } else {
3556 active->wm[level].cursor_en = is_enabled;
3557 active->wm[level].cursor_res_b =
3558 val & PLANE_WM_BLOCKS_MASK;
3559 active->wm[level].cursor_res_l =
3560 (val >> PLANE_WM_LINES_SHIFT) &
3561 PLANE_WM_LINES_MASK;
3562 }
3563 } else {
3564 if (!is_cursor) {
3565 active->trans_wm.plane_en[i] = is_enabled;
3566 active->trans_wm.plane_res_b[i] =
3567 val & PLANE_WM_BLOCKS_MASK;
3568 active->trans_wm.plane_res_l[i] =
3569 (val >> PLANE_WM_LINES_SHIFT) &
3570 PLANE_WM_LINES_MASK;
3571 } else {
3572 active->trans_wm.cursor_en = is_enabled;
3573 active->trans_wm.cursor_res_b =
3574 val & PLANE_WM_BLOCKS_MASK;
3575 active->trans_wm.cursor_res_l =
3576 (val >> PLANE_WM_LINES_SHIFT) &
3577 PLANE_WM_LINES_MASK;
3578 }
3579 }
3580 }
3581
3582 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3583 {
3584 struct drm_device *dev = crtc->dev;
3585 struct drm_i915_private *dev_priv = dev->dev_private;
3586 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3587 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3588 struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3589 enum pipe pipe = intel_crtc->pipe;
3590 int level, i, max_level;
3591 uint32_t temp;
3592
3593 max_level = ilk_wm_max_level(dev);
3594
3595 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3596
3597 for (level = 0; level <= max_level; level++) {
3598 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3599 hw->plane[pipe][i][level] =
3600 I915_READ(PLANE_WM(pipe, i, level));
3601 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3602 }
3603
3604 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3605 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3606 hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3607
3608 if (!intel_crtc->active)
3609 return;
3610
3611 hw->dirty[pipe] = true;
3612
3613 active->linetime = hw->wm_linetime[pipe];
3614
3615 for (level = 0; level <= max_level; level++) {
3616 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3617 temp = hw->plane[pipe][i][level];
3618 skl_pipe_wm_active_state(temp, active, false,
3619 false, i, level);
3620 }
3621 temp = hw->cursor[pipe][level];
3622 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3623 }
3624
3625 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3626 temp = hw->plane_trans[pipe][i];
3627 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3628 }
3629
3630 temp = hw->cursor_trans[pipe];
3631 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3632 }
3633
3634 void skl_wm_get_hw_state(struct drm_device *dev)
3635 {
3636 struct drm_i915_private *dev_priv = dev->dev_private;
3637 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3638 struct drm_crtc *crtc;
3639
3640 skl_ddb_get_hw_state(dev_priv, ddb);
3641 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3642 skl_pipe_wm_get_hw_state(crtc);
3643 }
3644
3645 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3646 {
3647 struct drm_device *dev = crtc->dev;
3648 struct drm_i915_private *dev_priv = dev->dev_private;
3649 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3651 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3652 enum pipe pipe = intel_crtc->pipe;
3653 static const unsigned int wm0_pipe_reg[] = {
3654 [PIPE_A] = WM0_PIPEA_ILK,
3655 [PIPE_B] = WM0_PIPEB_ILK,
3656 [PIPE_C] = WM0_PIPEC_IVB,
3657 };
3658
3659 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3660 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3661 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3662
3663 active->pipe_enabled = intel_crtc->active;
3664
3665 if (active->pipe_enabled) {
3666 u32 tmp = hw->wm_pipe[pipe];
3667
3668 /*
3669 * For active pipes LP0 watermark is marked as
3670 * enabled, and LP1+ watermaks as disabled since
3671 * we can't really reverse compute them in case
3672 * multiple pipes are active.
3673 */
3674 active->wm[0].enable = true;
3675 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3676 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3677 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3678 active->linetime = hw->wm_linetime[pipe];
3679 } else {
3680 int level, max_level = ilk_wm_max_level(dev);
3681
3682 /*
3683 * For inactive pipes, all watermark levels
3684 * should be marked as enabled but zeroed,
3685 * which is what we'd compute them to.
3686 */
3687 for (level = 0; level <= max_level; level++)
3688 active->wm[level].enable = true;
3689 }
3690 }
3691
3692 void ilk_wm_get_hw_state(struct drm_device *dev)
3693 {
3694 struct drm_i915_private *dev_priv = dev->dev_private;
3695 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3696 struct drm_crtc *crtc;
3697
3698 for_each_crtc(dev, crtc)
3699 ilk_pipe_wm_get_hw_state(crtc);
3700
3701 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3702 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3703 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3704
3705 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3706 if (INTEL_INFO(dev)->gen >= 7) {
3707 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3708 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3709 }
3710
3711 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3712 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3713 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3714 else if (IS_IVYBRIDGE(dev))
3715 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3716 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3717
3718 hw->enable_fbc_wm =
3719 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3720 }
3721
3722 /**
3723 * intel_update_watermarks - update FIFO watermark values based on current modes
3724 *
3725 * Calculate watermark values for the various WM regs based on current mode
3726 * and plane configuration.
3727 *
3728 * There are several cases to deal with here:
3729 * - normal (i.e. non-self-refresh)
3730 * - self-refresh (SR) mode
3731 * - lines are large relative to FIFO size (buffer can hold up to 2)
3732 * - lines are small relative to FIFO size (buffer can hold more than 2
3733 * lines), so need to account for TLB latency
3734 *
3735 * The normal calculation is:
3736 * watermark = dotclock * bytes per pixel * latency
3737 * where latency is platform & configuration dependent (we assume pessimal
3738 * values here).
3739 *
3740 * The SR calculation is:
3741 * watermark = (trunc(latency/line time)+1) * surface width *
3742 * bytes per pixel
3743 * where
3744 * line time = htotal / dotclock
3745 * surface width = hdisplay for normal plane and 64 for cursor
3746 * and latency is assumed to be high, as above.
3747 *
3748 * The final value programmed to the register should always be rounded up,
3749 * and include an extra 2 entries to account for clock crossings.
3750 *
3751 * We don't use the sprite, so we can ignore that. And on Crestline we have
3752 * to set the non-SR watermarks to 8.
3753 */
3754 void intel_update_watermarks(struct drm_crtc *crtc)
3755 {
3756 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3757
3758 if (dev_priv->display.update_wm)
3759 dev_priv->display.update_wm(crtc);
3760 }
3761
3762 void intel_update_sprite_watermarks(struct drm_plane *plane,
3763 struct drm_crtc *crtc,
3764 uint32_t sprite_width,
3765 uint32_t sprite_height,
3766 int pixel_size,
3767 bool enabled, bool scaled)
3768 {
3769 struct drm_i915_private *dev_priv = plane->dev->dev_private;
3770
3771 if (dev_priv->display.update_sprite_wm)
3772 dev_priv->display.update_sprite_wm(plane, crtc,
3773 sprite_width, sprite_height,
3774 pixel_size, enabled, scaled);
3775 }
3776
3777 /**
3778 * Lock protecting IPS related data structures
3779 */
3780 DEFINE_SPINLOCK(mchdev_lock);
3781
3782 /* Global for IPS driver to get at the current i915 device. Protected by
3783 * mchdev_lock. */
3784 static struct drm_i915_private *i915_mch_dev;
3785
3786 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3787 {
3788 struct drm_i915_private *dev_priv = dev->dev_private;
3789 u16 rgvswctl;
3790
3791 assert_spin_locked(&mchdev_lock);
3792
3793 rgvswctl = I915_READ16(MEMSWCTL);
3794 if (rgvswctl & MEMCTL_CMD_STS) {
3795 DRM_DEBUG("gpu busy, RCS change rejected\n");
3796 return false; /* still busy with another command */
3797 }
3798
3799 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3800 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3801 I915_WRITE16(MEMSWCTL, rgvswctl);
3802 POSTING_READ16(MEMSWCTL);
3803
3804 rgvswctl |= MEMCTL_CMD_STS;
3805 I915_WRITE16(MEMSWCTL, rgvswctl);
3806
3807 return true;
3808 }
3809
3810 static void ironlake_enable_drps(struct drm_device *dev)
3811 {
3812 struct drm_i915_private *dev_priv = dev->dev_private;
3813 u32 rgvmodectl = I915_READ(MEMMODECTL);
3814 u8 fmax, fmin, fstart, vstart;
3815
3816 spin_lock_irq(&mchdev_lock);
3817
3818 /* Enable temp reporting */
3819 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3820 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3821
3822 /* 100ms RC evaluation intervals */
3823 I915_WRITE(RCUPEI, 100000);
3824 I915_WRITE(RCDNEI, 100000);
3825
3826 /* Set max/min thresholds to 90ms and 80ms respectively */
3827 I915_WRITE(RCBMAXAVG, 90000);
3828 I915_WRITE(RCBMINAVG, 80000);
3829
3830 I915_WRITE(MEMIHYST, 1);
3831
3832 /* Set up min, max, and cur for interrupt handling */
3833 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3834 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3835 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3836 MEMMODE_FSTART_SHIFT;
3837
3838 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3839 PXVFREQ_PX_SHIFT;
3840
3841 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3842 dev_priv->ips.fstart = fstart;
3843
3844 dev_priv->ips.max_delay = fstart;
3845 dev_priv->ips.min_delay = fmin;
3846 dev_priv->ips.cur_delay = fstart;
3847
3848 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3849 fmax, fmin, fstart);
3850
3851 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3852
3853 /*
3854 * Interrupts will be enabled in ironlake_irq_postinstall
3855 */
3856
3857 I915_WRITE(VIDSTART, vstart);
3858 POSTING_READ(VIDSTART);
3859
3860 rgvmodectl |= MEMMODE_SWMODE_EN;
3861 I915_WRITE(MEMMODECTL, rgvmodectl);
3862
3863 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3864 DRM_ERROR("stuck trying to change perf mode\n");
3865 mdelay(1);
3866
3867 ironlake_set_drps(dev, fstart);
3868
3869 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3870 I915_READ(0x112e0);
3871 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3872 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3873 dev_priv->ips.last_time2 = ktime_get_raw_ns();
3874
3875 spin_unlock_irq(&mchdev_lock);
3876 }
3877
3878 static void ironlake_disable_drps(struct drm_device *dev)
3879 {
3880 struct drm_i915_private *dev_priv = dev->dev_private;
3881 u16 rgvswctl;
3882
3883 spin_lock_irq(&mchdev_lock);
3884
3885 rgvswctl = I915_READ16(MEMSWCTL);
3886
3887 /* Ack interrupts, disable EFC interrupt */
3888 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3889 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3890 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3891 I915_WRITE(DEIIR, DE_PCU_EVENT);
3892 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3893
3894 /* Go back to the starting frequency */
3895 ironlake_set_drps(dev, dev_priv->ips.fstart);
3896 mdelay(1);
3897 rgvswctl |= MEMCTL_CMD_STS;
3898 I915_WRITE(MEMSWCTL, rgvswctl);
3899 mdelay(1);
3900
3901 spin_unlock_irq(&mchdev_lock);
3902 }
3903
3904 /* There's a funny hw issue where the hw returns all 0 when reading from
3905 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3906 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3907 * all limits and the gpu stuck at whatever frequency it is at atm).
3908 */
3909 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3910 {
3911 u32 limits;
3912
3913 /* Only set the down limit when we've reached the lowest level to avoid
3914 * getting more interrupts, otherwise leave this clear. This prevents a
3915 * race in the hw when coming out of rc6: There's a tiny window where
3916 * the hw runs at the minimal clock before selecting the desired
3917 * frequency, if the down threshold expires in that window we will not
3918 * receive a down interrupt. */
3919 if (IS_GEN9(dev_priv->dev)) {
3920 limits = (dev_priv->rps.max_freq_softlimit) << 23;
3921 if (val <= dev_priv->rps.min_freq_softlimit)
3922 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
3923 } else {
3924 limits = dev_priv->rps.max_freq_softlimit << 24;
3925 if (val <= dev_priv->rps.min_freq_softlimit)
3926 limits |= dev_priv->rps.min_freq_softlimit << 16;
3927 }
3928
3929 return limits;
3930 }
3931
3932 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3933 {
3934 int new_power;
3935 u32 threshold_up = 0, threshold_down = 0; /* in % */
3936 u32 ei_up = 0, ei_down = 0;
3937
3938 new_power = dev_priv->rps.power;
3939 switch (dev_priv->rps.power) {
3940 case LOW_POWER:
3941 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3942 new_power = BETWEEN;
3943 break;
3944
3945 case BETWEEN:
3946 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3947 new_power = LOW_POWER;
3948 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3949 new_power = HIGH_POWER;
3950 break;
3951
3952 case HIGH_POWER:
3953 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3954 new_power = BETWEEN;
3955 break;
3956 }
3957 /* Max/min bins are special */
3958 if (val <= dev_priv->rps.min_freq_softlimit)
3959 new_power = LOW_POWER;
3960 if (val >= dev_priv->rps.max_freq_softlimit)
3961 new_power = HIGH_POWER;
3962 if (new_power == dev_priv->rps.power)
3963 return;
3964
3965 /* Note the units here are not exactly 1us, but 1280ns. */
3966 switch (new_power) {
3967 case LOW_POWER:
3968 /* Upclock if more than 95% busy over 16ms */
3969 ei_up = 16000;
3970 threshold_up = 95;
3971
3972 /* Downclock if less than 85% busy over 32ms */
3973 ei_down = 32000;
3974 threshold_down = 85;
3975 break;
3976
3977 case BETWEEN:
3978 /* Upclock if more than 90% busy over 13ms */
3979 ei_up = 13000;
3980 threshold_up = 90;
3981
3982 /* Downclock if less than 75% busy over 32ms */
3983 ei_down = 32000;
3984 threshold_down = 75;
3985 break;
3986
3987 case HIGH_POWER:
3988 /* Upclock if more than 85% busy over 10ms */
3989 ei_up = 10000;
3990 threshold_up = 85;
3991
3992 /* Downclock if less than 60% busy over 32ms */
3993 ei_down = 32000;
3994 threshold_down = 60;
3995 break;
3996 }
3997
3998 I915_WRITE(GEN6_RP_UP_EI,
3999 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4000 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4001 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4002
4003 I915_WRITE(GEN6_RP_DOWN_EI,
4004 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4005 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4006 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4007
4008 I915_WRITE(GEN6_RP_CONTROL,
4009 GEN6_RP_MEDIA_TURBO |
4010 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4011 GEN6_RP_MEDIA_IS_GFX |
4012 GEN6_RP_ENABLE |
4013 GEN6_RP_UP_BUSY_AVG |
4014 GEN6_RP_DOWN_IDLE_AVG);
4015
4016 dev_priv->rps.power = new_power;
4017 dev_priv->rps.up_threshold = threshold_up;
4018 dev_priv->rps.down_threshold = threshold_down;
4019 dev_priv->rps.last_adj = 0;
4020 }
4021
4022 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4023 {
4024 u32 mask = 0;
4025
4026 if (val > dev_priv->rps.min_freq_softlimit)
4027 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4028 if (val < dev_priv->rps.max_freq_softlimit)
4029 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4030
4031 mask &= dev_priv->pm_rps_events;
4032
4033 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4034 }
4035
4036 /* gen6_set_rps is called to update the frequency request, but should also be
4037 * called when the range (min_delay and max_delay) is modified so that we can
4038 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4039 static void gen6_set_rps(struct drm_device *dev, u8 val)
4040 {
4041 struct drm_i915_private *dev_priv = dev->dev_private;
4042
4043 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4044 WARN_ON(val > dev_priv->rps.max_freq);
4045 WARN_ON(val < dev_priv->rps.min_freq);
4046
4047 /* min/max delay may still have been modified so be sure to
4048 * write the limits value.
4049 */
4050 if (val != dev_priv->rps.cur_freq) {
4051 gen6_set_rps_thresholds(dev_priv, val);
4052
4053 if (IS_GEN9(dev))
4054 I915_WRITE(GEN6_RPNSWREQ,
4055 GEN9_FREQUENCY(val));
4056 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4057 I915_WRITE(GEN6_RPNSWREQ,
4058 HSW_FREQUENCY(val));
4059 else
4060 I915_WRITE(GEN6_RPNSWREQ,
4061 GEN6_FREQUENCY(val) |
4062 GEN6_OFFSET(0) |
4063 GEN6_AGGRESSIVE_TURBO);
4064 }
4065
4066 /* Make sure we continue to get interrupts
4067 * until we hit the minimum or maximum frequencies.
4068 */
4069 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4070 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4071
4072 POSTING_READ(GEN6_RPNSWREQ);
4073
4074 dev_priv->rps.cur_freq = val;
4075 trace_intel_gpu_freq_change(val * 50);
4076 }
4077
4078 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4079 {
4080 struct drm_i915_private *dev_priv = dev->dev_private;
4081
4082 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4083 WARN_ON(val > dev_priv->rps.max_freq);
4084 WARN_ON(val < dev_priv->rps.min_freq);
4085
4086 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4087 "Odd GPU freq value\n"))
4088 val &= ~1;
4089
4090 if (val != dev_priv->rps.cur_freq) {
4091 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4092 if (!IS_CHERRYVIEW(dev_priv))
4093 gen6_set_rps_thresholds(dev_priv, val);
4094 }
4095
4096 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4097
4098 dev_priv->rps.cur_freq = val;
4099 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4100 }
4101
4102 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4103 *
4104 * * If Gfx is Idle, then
4105 * 1. Forcewake Media well.
4106 * 2. Request idle freq.
4107 * 3. Release Forcewake of Media well.
4108 */
4109 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4110 {
4111 u32 val = dev_priv->rps.idle_freq;
4112
4113 if (dev_priv->rps.cur_freq <= val)
4114 return;
4115
4116 /* Wake up the media well, as that takes a lot less
4117 * power than the Render well. */
4118 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4119 valleyview_set_rps(dev_priv->dev, val);
4120 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4121 }
4122
4123 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4124 {
4125 mutex_lock(&dev_priv->rps.hw_lock);
4126 if (dev_priv->rps.enabled) {
4127 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4128 gen6_rps_reset_ei(dev_priv);
4129 I915_WRITE(GEN6_PMINTRMSK,
4130 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4131 }
4132 mutex_unlock(&dev_priv->rps.hw_lock);
4133 }
4134
4135 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4136 {
4137 struct drm_device *dev = dev_priv->dev;
4138
4139 mutex_lock(&dev_priv->rps.hw_lock);
4140 if (dev_priv->rps.enabled) {
4141 if (IS_VALLEYVIEW(dev))
4142 vlv_set_rps_idle(dev_priv);
4143 else
4144 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4145 dev_priv->rps.last_adj = 0;
4146 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4147 }
4148 mutex_unlock(&dev_priv->rps.hw_lock);
4149
4150 spin_lock(&dev_priv->rps.client_lock);
4151 while (!list_empty(&dev_priv->rps.clients))
4152 list_del_init(dev_priv->rps.clients.next);
4153 spin_unlock(&dev_priv->rps.client_lock);
4154 }
4155
4156 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4157 struct intel_rps_client *rps,
4158 unsigned long submitted)
4159 {
4160 /* This is intentionally racy! We peek at the state here, then
4161 * validate inside the RPS worker.
4162 */
4163 if (!(dev_priv->mm.busy &&
4164 dev_priv->rps.enabled &&
4165 dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4166 return;
4167
4168 /* Force a RPS boost (and don't count it against the client) if
4169 * the GPU is severely congested.
4170 */
4171 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4172 rps = NULL;
4173
4174 spin_lock(&dev_priv->rps.client_lock);
4175 if (rps == NULL || list_empty(&rps->link)) {
4176 spin_lock_irq(&dev_priv->irq_lock);
4177 if (dev_priv->rps.interrupts_enabled) {
4178 dev_priv->rps.client_boost = true;
4179 queue_work(dev_priv->wq, &dev_priv->rps.work);
4180 }
4181 spin_unlock_irq(&dev_priv->irq_lock);
4182
4183 if (rps != NULL) {
4184 list_add(&rps->link, &dev_priv->rps.clients);
4185 rps->boosts++;
4186 } else
4187 dev_priv->rps.boosts++;
4188 }
4189 spin_unlock(&dev_priv->rps.client_lock);
4190 }
4191
4192 void intel_set_rps(struct drm_device *dev, u8 val)
4193 {
4194 if (IS_VALLEYVIEW(dev))
4195 valleyview_set_rps(dev, val);
4196 else
4197 gen6_set_rps(dev, val);
4198 }
4199
4200 static void gen9_disable_rps(struct drm_device *dev)
4201 {
4202 struct drm_i915_private *dev_priv = dev->dev_private;
4203
4204 I915_WRITE(GEN6_RC_CONTROL, 0);
4205 I915_WRITE(GEN9_PG_ENABLE, 0);
4206 }
4207
4208 static void gen6_disable_rps(struct drm_device *dev)
4209 {
4210 struct drm_i915_private *dev_priv = dev->dev_private;
4211
4212 I915_WRITE(GEN6_RC_CONTROL, 0);
4213 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4214 }
4215
4216 static void cherryview_disable_rps(struct drm_device *dev)
4217 {
4218 struct drm_i915_private *dev_priv = dev->dev_private;
4219
4220 I915_WRITE(GEN6_RC_CONTROL, 0);
4221 }
4222
4223 static void valleyview_disable_rps(struct drm_device *dev)
4224 {
4225 struct drm_i915_private *dev_priv = dev->dev_private;
4226
4227 /* we're doing forcewake before Disabling RC6,
4228 * This what the BIOS expects when going into suspend */
4229 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4230
4231 I915_WRITE(GEN6_RC_CONTROL, 0);
4232
4233 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4234 }
4235
4236 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4237 {
4238 if (IS_VALLEYVIEW(dev)) {
4239 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4240 mode = GEN6_RC_CTL_RC6_ENABLE;
4241 else
4242 mode = 0;
4243 }
4244 if (HAS_RC6p(dev))
4245 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4246 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4247 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4248 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4249
4250 else
4251 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4252 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4253 }
4254
4255 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4256 {
4257 /* No RC6 before Ironlake and code is gone for ilk. */
4258 if (INTEL_INFO(dev)->gen < 6)
4259 return 0;
4260
4261 /* Respect the kernel parameter if it is set */
4262 if (enable_rc6 >= 0) {
4263 int mask;
4264
4265 if (HAS_RC6p(dev))
4266 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4267 INTEL_RC6pp_ENABLE;
4268 else
4269 mask = INTEL_RC6_ENABLE;
4270
4271 if ((enable_rc6 & mask) != enable_rc6)
4272 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4273 enable_rc6 & mask, enable_rc6, mask);
4274
4275 return enable_rc6 & mask;
4276 }
4277
4278 if (IS_IVYBRIDGE(dev))
4279 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4280
4281 return INTEL_RC6_ENABLE;
4282 }
4283
4284 int intel_enable_rc6(const struct drm_device *dev)
4285 {
4286 return i915.enable_rc6;
4287 }
4288
4289 static void gen6_init_rps_frequencies(struct drm_device *dev)
4290 {
4291 struct drm_i915_private *dev_priv = dev->dev_private;
4292 uint32_t rp_state_cap;
4293 u32 ddcc_status = 0;
4294 int ret;
4295
4296 /* All of these values are in units of 50MHz */
4297 dev_priv->rps.cur_freq = 0;
4298 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4299 if (IS_BROXTON(dev)) {
4300 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4301 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4302 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4303 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
4304 } else {
4305 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4306 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4307 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4308 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4309 }
4310
4311 if (IS_SKYLAKE(dev)) {
4312 /* Store the frequency values in 16.66 MHZ units, which is
4313 the natural hardware unit for SKL */
4314 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4315 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4316 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4317 }
4318 /* hw_max = RP0 until we check for overclocking */
4319 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4320
4321 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4322 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4323 ret = sandybridge_pcode_read(dev_priv,
4324 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4325 &ddcc_status);
4326 if (0 == ret)
4327 dev_priv->rps.efficient_freq =
4328 clamp_t(u8,
4329 ((ddcc_status >> 8) & 0xff),
4330 dev_priv->rps.min_freq,
4331 dev_priv->rps.max_freq);
4332 }
4333
4334 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4335
4336 /* Preserve min/max settings in case of re-init */
4337 if (dev_priv->rps.max_freq_softlimit == 0)
4338 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4339
4340 if (dev_priv->rps.min_freq_softlimit == 0) {
4341 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4342 dev_priv->rps.min_freq_softlimit =
4343 max_t(int, dev_priv->rps.efficient_freq,
4344 intel_freq_opcode(dev_priv, 450));
4345 else
4346 dev_priv->rps.min_freq_softlimit =
4347 dev_priv->rps.min_freq;
4348 }
4349 }
4350
4351 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4352 static void gen9_enable_rps(struct drm_device *dev)
4353 {
4354 struct drm_i915_private *dev_priv = dev->dev_private;
4355
4356 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4357
4358 gen6_init_rps_frequencies(dev);
4359
4360 /* Program defaults and thresholds for RPS*/
4361 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4362 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4363
4364 /* 1 second timeout*/
4365 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4366 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4367
4368 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4369
4370 /* Leaning on the below call to gen6_set_rps to program/setup the
4371 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4372 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4373 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4374 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4375
4376 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4377 }
4378
4379 static void gen9_enable_rc6(struct drm_device *dev)
4380 {
4381 struct drm_i915_private *dev_priv = dev->dev_private;
4382 struct intel_engine_cs *ring;
4383 uint32_t rc6_mask = 0;
4384 int unused;
4385
4386 /* 1a: Software RC state - RC0 */
4387 I915_WRITE(GEN6_RC_STATE, 0);
4388
4389 /* 1b: Get forcewake during program sequence. Although the driver
4390 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4391 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4392
4393 /* 2a: Disable RC states. */
4394 I915_WRITE(GEN6_RC_CONTROL, 0);
4395
4396 /* 2b: Program RC6 thresholds.*/
4397 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4398 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4399 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4400 for_each_ring(ring, dev_priv, unused)
4401 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4402 I915_WRITE(GEN6_RC_SLEEP, 0);
4403 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4404
4405 /* 2c: Program Coarse Power Gating Policies. */
4406 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4407 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4408
4409 /* 3a: Enable RC6 */
4410 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4411 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4412 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4413 "on" : "off");
4414 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4415 GEN6_RC_CTL_EI_MODE(1) |
4416 rc6_mask);
4417
4418 /*
4419 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4420 * WaDisableRenderPowerGating:skl,bxt - Render PG need to be disabled with RC6.
4421 */
4422 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4423 GEN9_MEDIA_PG_ENABLE : 0);
4424
4425
4426 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4427
4428 }
4429
4430 static void gen8_enable_rps(struct drm_device *dev)
4431 {
4432 struct drm_i915_private *dev_priv = dev->dev_private;
4433 struct intel_engine_cs *ring;
4434 uint32_t rc6_mask = 0;
4435 int unused;
4436
4437 /* 1a: Software RC state - RC0 */
4438 I915_WRITE(GEN6_RC_STATE, 0);
4439
4440 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4441 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4442 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4443
4444 /* 2a: Disable RC states. */
4445 I915_WRITE(GEN6_RC_CONTROL, 0);
4446
4447 /* Initialize rps frequencies */
4448 gen6_init_rps_frequencies(dev);
4449
4450 /* 2b: Program RC6 thresholds.*/
4451 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4452 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4453 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4454 for_each_ring(ring, dev_priv, unused)
4455 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4456 I915_WRITE(GEN6_RC_SLEEP, 0);
4457 if (IS_BROADWELL(dev))
4458 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4459 else
4460 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4461
4462 /* 3: Enable RC6 */
4463 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4464 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4465 intel_print_rc6_info(dev, rc6_mask);
4466 if (IS_BROADWELL(dev))
4467 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4468 GEN7_RC_CTL_TO_MODE |
4469 rc6_mask);
4470 else
4471 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4472 GEN6_RC_CTL_EI_MODE(1) |
4473 rc6_mask);
4474
4475 /* 4 Program defaults and thresholds for RPS*/
4476 I915_WRITE(GEN6_RPNSWREQ,
4477 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4478 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4479 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4480 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4481 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4482
4483 /* Docs recommend 900MHz, and 300 MHz respectively */
4484 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4485 dev_priv->rps.max_freq_softlimit << 24 |
4486 dev_priv->rps.min_freq_softlimit << 16);
4487
4488 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4489 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4490 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4491 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4492
4493 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4494
4495 /* 5: Enable RPS */
4496 I915_WRITE(GEN6_RP_CONTROL,
4497 GEN6_RP_MEDIA_TURBO |
4498 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4499 GEN6_RP_MEDIA_IS_GFX |
4500 GEN6_RP_ENABLE |
4501 GEN6_RP_UP_BUSY_AVG |
4502 GEN6_RP_DOWN_IDLE_AVG);
4503
4504 /* 6: Ring frequency + overclocking (our driver does this later */
4505
4506 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4507 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4508
4509 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4510 }
4511
4512 static void gen6_enable_rps(struct drm_device *dev)
4513 {
4514 struct drm_i915_private *dev_priv = dev->dev_private;
4515 struct intel_engine_cs *ring;
4516 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4517 u32 gtfifodbg;
4518 int rc6_mode;
4519 int i, ret;
4520
4521 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4522
4523 /* Here begins a magic sequence of register writes to enable
4524 * auto-downclocking.
4525 *
4526 * Perhaps there might be some value in exposing these to
4527 * userspace...
4528 */
4529 I915_WRITE(GEN6_RC_STATE, 0);
4530
4531 /* Clear the DBG now so we don't confuse earlier errors */
4532 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4533 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4534 I915_WRITE(GTFIFODBG, gtfifodbg);
4535 }
4536
4537 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4538
4539 /* Initialize rps frequencies */
4540 gen6_init_rps_frequencies(dev);
4541
4542 /* disable the counters and set deterministic thresholds */
4543 I915_WRITE(GEN6_RC_CONTROL, 0);
4544
4545 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4546 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4547 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4548 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4549 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4550
4551 for_each_ring(ring, dev_priv, i)
4552 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4553
4554 I915_WRITE(GEN6_RC_SLEEP, 0);
4555 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4556 if (IS_IVYBRIDGE(dev))
4557 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4558 else
4559 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4560 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4561 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4562
4563 /* Check if we are enabling RC6 */
4564 rc6_mode = intel_enable_rc6(dev_priv->dev);
4565 if (rc6_mode & INTEL_RC6_ENABLE)
4566 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4567
4568 /* We don't use those on Haswell */
4569 if (!IS_HASWELL(dev)) {
4570 if (rc6_mode & INTEL_RC6p_ENABLE)
4571 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4572
4573 if (rc6_mode & INTEL_RC6pp_ENABLE)
4574 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4575 }
4576
4577 intel_print_rc6_info(dev, rc6_mask);
4578
4579 I915_WRITE(GEN6_RC_CONTROL,
4580 rc6_mask |
4581 GEN6_RC_CTL_EI_MODE(1) |
4582 GEN6_RC_CTL_HW_ENABLE);
4583
4584 /* Power down if completely idle for over 50ms */
4585 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4586 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4587
4588 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4589 if (ret)
4590 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4591
4592 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4593 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4594 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4595 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4596 (pcu_mbox & 0xff) * 50);
4597 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4598 }
4599
4600 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4601 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4602
4603 rc6vids = 0;
4604 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4605 if (IS_GEN6(dev) && ret) {
4606 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4607 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4608 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4609 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4610 rc6vids &= 0xffff00;
4611 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4612 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4613 if (ret)
4614 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4615 }
4616
4617 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4618 }
4619
4620 static void __gen6_update_ring_freq(struct drm_device *dev)
4621 {
4622 struct drm_i915_private *dev_priv = dev->dev_private;
4623 int min_freq = 15;
4624 unsigned int gpu_freq;
4625 unsigned int max_ia_freq, min_ring_freq;
4626 int scaling_factor = 180;
4627 struct cpufreq_policy *policy;
4628
4629 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4630
4631 policy = cpufreq_cpu_get(0);
4632 if (policy) {
4633 max_ia_freq = policy->cpuinfo.max_freq;
4634 cpufreq_cpu_put(policy);
4635 } else {
4636 /*
4637 * Default to measured freq if none found, PCU will ensure we
4638 * don't go over
4639 */
4640 max_ia_freq = tsc_khz;
4641 }
4642
4643 /* Convert from kHz to MHz */
4644 max_ia_freq /= 1000;
4645
4646 min_ring_freq = I915_READ(DCLK) & 0xf;
4647 /* convert DDR frequency from units of 266.6MHz to bandwidth */
4648 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4649
4650 /*
4651 * For each potential GPU frequency, load a ring frequency we'd like
4652 * to use for memory access. We do this by specifying the IA frequency
4653 * the PCU should use as a reference to determine the ring frequency.
4654 */
4655 for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4656 gpu_freq--) {
4657 int diff = dev_priv->rps.max_freq - gpu_freq;
4658 unsigned int ia_freq = 0, ring_freq = 0;
4659
4660 if (INTEL_INFO(dev)->gen >= 8) {
4661 /* max(2 * GT, DDR). NB: GT is 50MHz units */
4662 ring_freq = max(min_ring_freq, gpu_freq);
4663 } else if (IS_HASWELL(dev)) {
4664 ring_freq = mult_frac(gpu_freq, 5, 4);
4665 ring_freq = max(min_ring_freq, ring_freq);
4666 /* leave ia_freq as the default, chosen by cpufreq */
4667 } else {
4668 /* On older processors, there is no separate ring
4669 * clock domain, so in order to boost the bandwidth
4670 * of the ring, we need to upclock the CPU (ia_freq).
4671 *
4672 * For GPU frequencies less than 750MHz,
4673 * just use the lowest ring freq.
4674 */
4675 if (gpu_freq < min_freq)
4676 ia_freq = 800;
4677 else
4678 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4679 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4680 }
4681
4682 sandybridge_pcode_write(dev_priv,
4683 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4684 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4685 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4686 gpu_freq);
4687 }
4688 }
4689
4690 void gen6_update_ring_freq(struct drm_device *dev)
4691 {
4692 struct drm_i915_private *dev_priv = dev->dev_private;
4693
4694 if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4695 return;
4696
4697 mutex_lock(&dev_priv->rps.hw_lock);
4698 __gen6_update_ring_freq(dev);
4699 mutex_unlock(&dev_priv->rps.hw_lock);
4700 }
4701
4702 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4703 {
4704 struct drm_device *dev = dev_priv->dev;
4705 u32 val, rp0;
4706
4707 if (dev->pdev->revision >= 0x20) {
4708 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4709
4710 switch (INTEL_INFO(dev)->eu_total) {
4711 case 8:
4712 /* (2 * 4) config */
4713 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
4714 break;
4715 case 12:
4716 /* (2 * 6) config */
4717 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
4718 break;
4719 case 16:
4720 /* (2 * 8) config */
4721 default:
4722 /* Setting (2 * 8) Min RP0 for any other combination */
4723 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
4724 break;
4725 }
4726 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
4727 } else {
4728 /* For pre-production hardware */
4729 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4730 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4731 PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4732 }
4733 return rp0;
4734 }
4735
4736 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4737 {
4738 u32 val, rpe;
4739
4740 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4741 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4742
4743 return rpe;
4744 }
4745
4746 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4747 {
4748 struct drm_device *dev = dev_priv->dev;
4749 u32 val, rp1;
4750
4751 if (dev->pdev->revision >= 0x20) {
4752 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4753 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
4754 } else {
4755 /* For pre-production hardware */
4756 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4757 rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4758 PUNIT_GPU_STATUS_MAX_FREQ_MASK);
4759 }
4760 return rp1;
4761 }
4762
4763 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4764 {
4765 u32 val, rp1;
4766
4767 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4768
4769 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4770
4771 return rp1;
4772 }
4773
4774 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4775 {
4776 u32 val, rp0;
4777
4778 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4779
4780 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4781 /* Clamp to max */
4782 rp0 = min_t(u32, rp0, 0xea);
4783
4784 return rp0;
4785 }
4786
4787 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4788 {
4789 u32 val, rpe;
4790
4791 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4792 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4793 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4794 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4795
4796 return rpe;
4797 }
4798
4799 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4800 {
4801 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4802 }
4803
4804 /* Check that the pctx buffer wasn't move under us. */
4805 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4806 {
4807 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4808
4809 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4810 dev_priv->vlv_pctx->stolen->start);
4811 }
4812
4813
4814 /* Check that the pcbr address is not empty. */
4815 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4816 {
4817 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4818
4819 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4820 }
4821
4822 static void cherryview_setup_pctx(struct drm_device *dev)
4823 {
4824 struct drm_i915_private *dev_priv = dev->dev_private;
4825 unsigned long pctx_paddr, paddr;
4826 struct i915_gtt *gtt = &dev_priv->gtt;
4827 u32 pcbr;
4828 int pctx_size = 32*1024;
4829
4830 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4831
4832 pcbr = I915_READ(VLV_PCBR);
4833 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4834 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4835 paddr = (dev_priv->mm.stolen_base +
4836 (gtt->stolen_size - pctx_size));
4837
4838 pctx_paddr = (paddr & (~4095));
4839 I915_WRITE(VLV_PCBR, pctx_paddr);
4840 }
4841
4842 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4843 }
4844
4845 static void valleyview_setup_pctx(struct drm_device *dev)
4846 {
4847 struct drm_i915_private *dev_priv = dev->dev_private;
4848 struct drm_i915_gem_object *pctx;
4849 unsigned long pctx_paddr;
4850 u32 pcbr;
4851 int pctx_size = 24*1024;
4852
4853 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4854
4855 pcbr = I915_READ(VLV_PCBR);
4856 if (pcbr) {
4857 /* BIOS set it up already, grab the pre-alloc'd space */
4858 int pcbr_offset;
4859
4860 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4861 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4862 pcbr_offset,
4863 I915_GTT_OFFSET_NONE,
4864 pctx_size);
4865 goto out;
4866 }
4867
4868 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4869
4870 /*
4871 * From the Gunit register HAS:
4872 * The Gfx driver is expected to program this register and ensure
4873 * proper allocation within Gfx stolen memory. For example, this
4874 * register should be programmed such than the PCBR range does not
4875 * overlap with other ranges, such as the frame buffer, protected
4876 * memory, or any other relevant ranges.
4877 */
4878 pctx = i915_gem_object_create_stolen(dev, pctx_size);
4879 if (!pctx) {
4880 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4881 return;
4882 }
4883
4884 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4885 I915_WRITE(VLV_PCBR, pctx_paddr);
4886
4887 out:
4888 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4889 dev_priv->vlv_pctx = pctx;
4890 }
4891
4892 static void valleyview_cleanup_pctx(struct drm_device *dev)
4893 {
4894 struct drm_i915_private *dev_priv = dev->dev_private;
4895
4896 if (WARN_ON(!dev_priv->vlv_pctx))
4897 return;
4898
4899 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4900 dev_priv->vlv_pctx = NULL;
4901 }
4902
4903 static void valleyview_init_gt_powersave(struct drm_device *dev)
4904 {
4905 struct drm_i915_private *dev_priv = dev->dev_private;
4906 u32 val;
4907
4908 valleyview_setup_pctx(dev);
4909
4910 mutex_lock(&dev_priv->rps.hw_lock);
4911
4912 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4913 switch ((val >> 6) & 3) {
4914 case 0:
4915 case 1:
4916 dev_priv->mem_freq = 800;
4917 break;
4918 case 2:
4919 dev_priv->mem_freq = 1066;
4920 break;
4921 case 3:
4922 dev_priv->mem_freq = 1333;
4923 break;
4924 }
4925 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4926
4927 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4928 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4929 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4930 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4931 dev_priv->rps.max_freq);
4932
4933 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4934 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4935 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4936 dev_priv->rps.efficient_freq);
4937
4938 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4939 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4940 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4941 dev_priv->rps.rp1_freq);
4942
4943 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4944 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4945 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4946 dev_priv->rps.min_freq);
4947
4948 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4949
4950 /* Preserve min/max settings in case of re-init */
4951 if (dev_priv->rps.max_freq_softlimit == 0)
4952 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4953
4954 if (dev_priv->rps.min_freq_softlimit == 0)
4955 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4956
4957 mutex_unlock(&dev_priv->rps.hw_lock);
4958 }
4959
4960 static void cherryview_init_gt_powersave(struct drm_device *dev)
4961 {
4962 struct drm_i915_private *dev_priv = dev->dev_private;
4963 u32 val;
4964
4965 cherryview_setup_pctx(dev);
4966
4967 mutex_lock(&dev_priv->rps.hw_lock);
4968
4969 mutex_lock(&dev_priv->sb_lock);
4970 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
4971 mutex_unlock(&dev_priv->sb_lock);
4972
4973 switch ((val >> 2) & 0x7) {
4974 case 0:
4975 case 1:
4976 dev_priv->rps.cz_freq = 200;
4977 dev_priv->mem_freq = 1600;
4978 break;
4979 case 2:
4980 dev_priv->rps.cz_freq = 267;
4981 dev_priv->mem_freq = 1600;
4982 break;
4983 case 3:
4984 dev_priv->rps.cz_freq = 333;
4985 dev_priv->mem_freq = 2000;
4986 break;
4987 case 4:
4988 dev_priv->rps.cz_freq = 320;
4989 dev_priv->mem_freq = 1600;
4990 break;
4991 case 5:
4992 dev_priv->rps.cz_freq = 400;
4993 dev_priv->mem_freq = 1600;
4994 break;
4995 }
4996 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4997
4998 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4999 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5000 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5001 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5002 dev_priv->rps.max_freq);
5003
5004 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5005 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5006 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5007 dev_priv->rps.efficient_freq);
5008
5009 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5010 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5011 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5012 dev_priv->rps.rp1_freq);
5013
5014 /* PUnit validated range is only [RPe, RP0] */
5015 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5016 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5017 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5018 dev_priv->rps.min_freq);
5019
5020 WARN_ONCE((dev_priv->rps.max_freq |
5021 dev_priv->rps.efficient_freq |
5022 dev_priv->rps.rp1_freq |
5023 dev_priv->rps.min_freq) & 1,
5024 "Odd GPU freq values\n");
5025
5026 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5027
5028 /* Preserve min/max settings in case of re-init */
5029 if (dev_priv->rps.max_freq_softlimit == 0)
5030 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5031
5032 if (dev_priv->rps.min_freq_softlimit == 0)
5033 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5034
5035 mutex_unlock(&dev_priv->rps.hw_lock);
5036 }
5037
5038 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5039 {
5040 valleyview_cleanup_pctx(dev);
5041 }
5042
5043 static void cherryview_enable_rps(struct drm_device *dev)
5044 {
5045 struct drm_i915_private *dev_priv = dev->dev_private;
5046 struct intel_engine_cs *ring;
5047 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5048 int i;
5049
5050 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5051
5052 gtfifodbg = I915_READ(GTFIFODBG);
5053 if (gtfifodbg) {
5054 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5055 gtfifodbg);
5056 I915_WRITE(GTFIFODBG, gtfifodbg);
5057 }
5058
5059 cherryview_check_pctx(dev_priv);
5060
5061 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5062 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5063 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5064
5065 /* Disable RC states. */
5066 I915_WRITE(GEN6_RC_CONTROL, 0);
5067
5068 /* 2a: Program RC6 thresholds.*/
5069 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5070 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5071 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5072
5073 for_each_ring(ring, dev_priv, i)
5074 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5075 I915_WRITE(GEN6_RC_SLEEP, 0);
5076
5077 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5078 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5079
5080 /* allows RC6 residency counter to work */
5081 I915_WRITE(VLV_COUNTER_CONTROL,
5082 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5083 VLV_MEDIA_RC6_COUNT_EN |
5084 VLV_RENDER_RC6_COUNT_EN));
5085
5086 /* For now we assume BIOS is allocating and populating the PCBR */
5087 pcbr = I915_READ(VLV_PCBR);
5088
5089 /* 3: Enable RC6 */
5090 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5091 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5092 rc6_mode = GEN7_RC_CTL_TO_MODE;
5093
5094 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5095
5096 /* 4 Program defaults and thresholds for RPS*/
5097 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5098 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5099 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5100 I915_WRITE(GEN6_RP_UP_EI, 66000);
5101 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5102
5103 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5104
5105 /* 5: Enable RPS */
5106 I915_WRITE(GEN6_RP_CONTROL,
5107 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5108 GEN6_RP_MEDIA_IS_GFX |
5109 GEN6_RP_ENABLE |
5110 GEN6_RP_UP_BUSY_AVG |
5111 GEN6_RP_DOWN_IDLE_AVG);
5112
5113 /* Setting Fixed Bias */
5114 val = VLV_OVERRIDE_EN |
5115 VLV_SOC_TDP_EN |
5116 CHV_BIAS_CPU_50_SOC_50;
5117 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5118
5119 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5120
5121 /* RPS code assumes GPLL is used */
5122 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5123
5124 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5125 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5126
5127 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5128 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5129 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5130 dev_priv->rps.cur_freq);
5131
5132 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5133 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5134 dev_priv->rps.efficient_freq);
5135
5136 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5137
5138 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5139 }
5140
5141 static void valleyview_enable_rps(struct drm_device *dev)
5142 {
5143 struct drm_i915_private *dev_priv = dev->dev_private;
5144 struct intel_engine_cs *ring;
5145 u32 gtfifodbg, val, rc6_mode = 0;
5146 int i;
5147
5148 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5149
5150 valleyview_check_pctx(dev_priv);
5151
5152 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5153 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5154 gtfifodbg);
5155 I915_WRITE(GTFIFODBG, gtfifodbg);
5156 }
5157
5158 /* If VLV, Forcewake all wells, else re-direct to regular path */
5159 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5160
5161 /* Disable RC states. */
5162 I915_WRITE(GEN6_RC_CONTROL, 0);
5163
5164 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5165 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5166 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5167 I915_WRITE(GEN6_RP_UP_EI, 66000);
5168 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5169
5170 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5171
5172 I915_WRITE(GEN6_RP_CONTROL,
5173 GEN6_RP_MEDIA_TURBO |
5174 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5175 GEN6_RP_MEDIA_IS_GFX |
5176 GEN6_RP_ENABLE |
5177 GEN6_RP_UP_BUSY_AVG |
5178 GEN6_RP_DOWN_IDLE_CONT);
5179
5180 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5181 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5182 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5183
5184 for_each_ring(ring, dev_priv, i)
5185 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5186
5187 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5188
5189 /* allows RC6 residency counter to work */
5190 I915_WRITE(VLV_COUNTER_CONTROL,
5191 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5192 VLV_RENDER_RC0_COUNT_EN |
5193 VLV_MEDIA_RC6_COUNT_EN |
5194 VLV_RENDER_RC6_COUNT_EN));
5195
5196 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5197 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5198
5199 intel_print_rc6_info(dev, rc6_mode);
5200
5201 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5202
5203 /* Setting Fixed Bias */
5204 val = VLV_OVERRIDE_EN |
5205 VLV_SOC_TDP_EN |
5206 VLV_BIAS_CPU_125_SOC_875;
5207 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5208
5209 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5210
5211 /* RPS code assumes GPLL is used */
5212 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5213
5214 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5215 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5216
5217 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5218 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5219 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5220 dev_priv->rps.cur_freq);
5221
5222 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5223 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5224 dev_priv->rps.efficient_freq);
5225
5226 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5227
5228 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5229 }
5230
5231 static unsigned long intel_pxfreq(u32 vidfreq)
5232 {
5233 unsigned long freq;
5234 int div = (vidfreq & 0x3f0000) >> 16;
5235 int post = (vidfreq & 0x3000) >> 12;
5236 int pre = (vidfreq & 0x7);
5237
5238 if (!pre)
5239 return 0;
5240
5241 freq = ((div * 133333) / ((1<<post) * pre));
5242
5243 return freq;
5244 }
5245
5246 static const struct cparams {
5247 u16 i;
5248 u16 t;
5249 u16 m;
5250 u16 c;
5251 } cparams[] = {
5252 { 1, 1333, 301, 28664 },
5253 { 1, 1066, 294, 24460 },
5254 { 1, 800, 294, 25192 },
5255 { 0, 1333, 276, 27605 },
5256 { 0, 1066, 276, 27605 },
5257 { 0, 800, 231, 23784 },
5258 };
5259
5260 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5261 {
5262 u64 total_count, diff, ret;
5263 u32 count1, count2, count3, m = 0, c = 0;
5264 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5265 int i;
5266
5267 assert_spin_locked(&mchdev_lock);
5268
5269 diff1 = now - dev_priv->ips.last_time1;
5270
5271 /* Prevent division-by-zero if we are asking too fast.
5272 * Also, we don't get interesting results if we are polling
5273 * faster than once in 10ms, so just return the saved value
5274 * in such cases.
5275 */
5276 if (diff1 <= 10)
5277 return dev_priv->ips.chipset_power;
5278
5279 count1 = I915_READ(DMIEC);
5280 count2 = I915_READ(DDREC);
5281 count3 = I915_READ(CSIEC);
5282
5283 total_count = count1 + count2 + count3;
5284
5285 /* FIXME: handle per-counter overflow */
5286 if (total_count < dev_priv->ips.last_count1) {
5287 diff = ~0UL - dev_priv->ips.last_count1;
5288 diff += total_count;
5289 } else {
5290 diff = total_count - dev_priv->ips.last_count1;
5291 }
5292
5293 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5294 if (cparams[i].i == dev_priv->ips.c_m &&
5295 cparams[i].t == dev_priv->ips.r_t) {
5296 m = cparams[i].m;
5297 c = cparams[i].c;
5298 break;
5299 }
5300 }
5301
5302 diff = div_u64(diff, diff1);
5303 ret = ((m * diff) + c);
5304 ret = div_u64(ret, 10);
5305
5306 dev_priv->ips.last_count1 = total_count;
5307 dev_priv->ips.last_time1 = now;
5308
5309 dev_priv->ips.chipset_power = ret;
5310
5311 return ret;
5312 }
5313
5314 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5315 {
5316 struct drm_device *dev = dev_priv->dev;
5317 unsigned long val;
5318
5319 if (INTEL_INFO(dev)->gen != 5)
5320 return 0;
5321
5322 spin_lock_irq(&mchdev_lock);
5323
5324 val = __i915_chipset_val(dev_priv);
5325
5326 spin_unlock_irq(&mchdev_lock);
5327
5328 return val;
5329 }
5330
5331 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5332 {
5333 unsigned long m, x, b;
5334 u32 tsfs;
5335
5336 tsfs = I915_READ(TSFS);
5337
5338 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5339 x = I915_READ8(TR1);
5340
5341 b = tsfs & TSFS_INTR_MASK;
5342
5343 return ((m * x) / 127) - b;
5344 }
5345
5346 static int _pxvid_to_vd(u8 pxvid)
5347 {
5348 if (pxvid == 0)
5349 return 0;
5350
5351 if (pxvid >= 8 && pxvid < 31)
5352 pxvid = 31;
5353
5354 return (pxvid + 2) * 125;
5355 }
5356
5357 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5358 {
5359 struct drm_device *dev = dev_priv->dev;
5360 const int vd = _pxvid_to_vd(pxvid);
5361 const int vm = vd - 1125;
5362
5363 if (INTEL_INFO(dev)->is_mobile)
5364 return vm > 0 ? vm : 0;
5365
5366 return vd;
5367 }
5368
5369 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5370 {
5371 u64 now, diff, diffms;
5372 u32 count;
5373
5374 assert_spin_locked(&mchdev_lock);
5375
5376 now = ktime_get_raw_ns();
5377 diffms = now - dev_priv->ips.last_time2;
5378 do_div(diffms, NSEC_PER_MSEC);
5379
5380 /* Don't divide by 0 */
5381 if (!diffms)
5382 return;
5383
5384 count = I915_READ(GFXEC);
5385
5386 if (count < dev_priv->ips.last_count2) {
5387 diff = ~0UL - dev_priv->ips.last_count2;
5388 diff += count;
5389 } else {
5390 diff = count - dev_priv->ips.last_count2;
5391 }
5392
5393 dev_priv->ips.last_count2 = count;
5394 dev_priv->ips.last_time2 = now;
5395
5396 /* More magic constants... */
5397 diff = diff * 1181;
5398 diff = div_u64(diff, diffms * 10);
5399 dev_priv->ips.gfx_power = diff;
5400 }
5401
5402 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5403 {
5404 struct drm_device *dev = dev_priv->dev;
5405
5406 if (INTEL_INFO(dev)->gen != 5)
5407 return;
5408
5409 spin_lock_irq(&mchdev_lock);
5410
5411 __i915_update_gfx_val(dev_priv);
5412
5413 spin_unlock_irq(&mchdev_lock);
5414 }
5415
5416 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5417 {
5418 unsigned long t, corr, state1, corr2, state2;
5419 u32 pxvid, ext_v;
5420
5421 assert_spin_locked(&mchdev_lock);
5422
5423 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5424 pxvid = (pxvid >> 24) & 0x7f;
5425 ext_v = pvid_to_extvid(dev_priv, pxvid);
5426
5427 state1 = ext_v;
5428
5429 t = i915_mch_val(dev_priv);
5430
5431 /* Revel in the empirically derived constants */
5432
5433 /* Correction factor in 1/100000 units */
5434 if (t > 80)
5435 corr = ((t * 2349) + 135940);
5436 else if (t >= 50)
5437 corr = ((t * 964) + 29317);
5438 else /* < 50 */
5439 corr = ((t * 301) + 1004);
5440
5441 corr = corr * ((150142 * state1) / 10000 - 78642);
5442 corr /= 100000;
5443 corr2 = (corr * dev_priv->ips.corr);
5444
5445 state2 = (corr2 * state1) / 10000;
5446 state2 /= 100; /* convert to mW */
5447
5448 __i915_update_gfx_val(dev_priv);
5449
5450 return dev_priv->ips.gfx_power + state2;
5451 }
5452
5453 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5454 {
5455 struct drm_device *dev = dev_priv->dev;
5456 unsigned long val;
5457
5458 if (INTEL_INFO(dev)->gen != 5)
5459 return 0;
5460
5461 spin_lock_irq(&mchdev_lock);
5462
5463 val = __i915_gfx_val(dev_priv);
5464
5465 spin_unlock_irq(&mchdev_lock);
5466
5467 return val;
5468 }
5469
5470 /**
5471 * i915_read_mch_val - return value for IPS use
5472 *
5473 * Calculate and return a value for the IPS driver to use when deciding whether
5474 * we have thermal and power headroom to increase CPU or GPU power budget.
5475 */
5476 unsigned long i915_read_mch_val(void)
5477 {
5478 struct drm_i915_private *dev_priv;
5479 unsigned long chipset_val, graphics_val, ret = 0;
5480
5481 spin_lock_irq(&mchdev_lock);
5482 if (!i915_mch_dev)
5483 goto out_unlock;
5484 dev_priv = i915_mch_dev;
5485
5486 chipset_val = __i915_chipset_val(dev_priv);
5487 graphics_val = __i915_gfx_val(dev_priv);
5488
5489 ret = chipset_val + graphics_val;
5490
5491 out_unlock:
5492 spin_unlock_irq(&mchdev_lock);
5493
5494 return ret;
5495 }
5496 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5497
5498 /**
5499 * i915_gpu_raise - raise GPU frequency limit
5500 *
5501 * Raise the limit; IPS indicates we have thermal headroom.
5502 */
5503 bool i915_gpu_raise(void)
5504 {
5505 struct drm_i915_private *dev_priv;
5506 bool ret = true;
5507
5508 spin_lock_irq(&mchdev_lock);
5509 if (!i915_mch_dev) {
5510 ret = false;
5511 goto out_unlock;
5512 }
5513 dev_priv = i915_mch_dev;
5514
5515 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5516 dev_priv->ips.max_delay--;
5517
5518 out_unlock:
5519 spin_unlock_irq(&mchdev_lock);
5520
5521 return ret;
5522 }
5523 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5524
5525 /**
5526 * i915_gpu_lower - lower GPU frequency limit
5527 *
5528 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5529 * frequency maximum.
5530 */
5531 bool i915_gpu_lower(void)
5532 {
5533 struct drm_i915_private *dev_priv;
5534 bool ret = true;
5535
5536 spin_lock_irq(&mchdev_lock);
5537 if (!i915_mch_dev) {
5538 ret = false;
5539 goto out_unlock;
5540 }
5541 dev_priv = i915_mch_dev;
5542
5543 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5544 dev_priv->ips.max_delay++;
5545
5546 out_unlock:
5547 spin_unlock_irq(&mchdev_lock);
5548
5549 return ret;
5550 }
5551 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5552
5553 /**
5554 * i915_gpu_busy - indicate GPU business to IPS
5555 *
5556 * Tell the IPS driver whether or not the GPU is busy.
5557 */
5558 bool i915_gpu_busy(void)
5559 {
5560 struct drm_i915_private *dev_priv;
5561 struct intel_engine_cs *ring;
5562 bool ret = false;
5563 int i;
5564
5565 spin_lock_irq(&mchdev_lock);
5566 if (!i915_mch_dev)
5567 goto out_unlock;
5568 dev_priv = i915_mch_dev;
5569
5570 for_each_ring(ring, dev_priv, i)
5571 ret |= !list_empty(&ring->request_list);
5572
5573 out_unlock:
5574 spin_unlock_irq(&mchdev_lock);
5575
5576 return ret;
5577 }
5578 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5579
5580 /**
5581 * i915_gpu_turbo_disable - disable graphics turbo
5582 *
5583 * Disable graphics turbo by resetting the max frequency and setting the
5584 * current frequency to the default.
5585 */
5586 bool i915_gpu_turbo_disable(void)
5587 {
5588 struct drm_i915_private *dev_priv;
5589 bool ret = true;
5590
5591 spin_lock_irq(&mchdev_lock);
5592 if (!i915_mch_dev) {
5593 ret = false;
5594 goto out_unlock;
5595 }
5596 dev_priv = i915_mch_dev;
5597
5598 dev_priv->ips.max_delay = dev_priv->ips.fstart;
5599
5600 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5601 ret = false;
5602
5603 out_unlock:
5604 spin_unlock_irq(&mchdev_lock);
5605
5606 return ret;
5607 }
5608 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5609
5610 /**
5611 * Tells the intel_ips driver that the i915 driver is now loaded, if
5612 * IPS got loaded first.
5613 *
5614 * This awkward dance is so that neither module has to depend on the
5615 * other in order for IPS to do the appropriate communication of
5616 * GPU turbo limits to i915.
5617 */
5618 static void
5619 ips_ping_for_i915_load(void)
5620 {
5621 void (*link)(void);
5622
5623 link = symbol_get(ips_link_to_i915_driver);
5624 if (link) {
5625 link();
5626 symbol_put(ips_link_to_i915_driver);
5627 }
5628 }
5629
5630 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5631 {
5632 /* We only register the i915 ips part with intel-ips once everything is
5633 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5634 spin_lock_irq(&mchdev_lock);
5635 i915_mch_dev = dev_priv;
5636 spin_unlock_irq(&mchdev_lock);
5637
5638 ips_ping_for_i915_load();
5639 }
5640
5641 void intel_gpu_ips_teardown(void)
5642 {
5643 spin_lock_irq(&mchdev_lock);
5644 i915_mch_dev = NULL;
5645 spin_unlock_irq(&mchdev_lock);
5646 }
5647
5648 static void intel_init_emon(struct drm_device *dev)
5649 {
5650 struct drm_i915_private *dev_priv = dev->dev_private;
5651 u32 lcfuse;
5652 u8 pxw[16];
5653 int i;
5654
5655 /* Disable to program */
5656 I915_WRITE(ECR, 0);
5657 POSTING_READ(ECR);
5658
5659 /* Program energy weights for various events */
5660 I915_WRITE(SDEW, 0x15040d00);
5661 I915_WRITE(CSIEW0, 0x007f0000);
5662 I915_WRITE(CSIEW1, 0x1e220004);
5663 I915_WRITE(CSIEW2, 0x04000004);
5664
5665 for (i = 0; i < 5; i++)
5666 I915_WRITE(PEW + (i * 4), 0);
5667 for (i = 0; i < 3; i++)
5668 I915_WRITE(DEW + (i * 4), 0);
5669
5670 /* Program P-state weights to account for frequency power adjustment */
5671 for (i = 0; i < 16; i++) {
5672 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5673 unsigned long freq = intel_pxfreq(pxvidfreq);
5674 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5675 PXVFREQ_PX_SHIFT;
5676 unsigned long val;
5677
5678 val = vid * vid;
5679 val *= (freq / 1000);
5680 val *= 255;
5681 val /= (127*127*900);
5682 if (val > 0xff)
5683 DRM_ERROR("bad pxval: %ld\n", val);
5684 pxw[i] = val;
5685 }
5686 /* Render standby states get 0 weight */
5687 pxw[14] = 0;
5688 pxw[15] = 0;
5689
5690 for (i = 0; i < 4; i++) {
5691 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5692 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5693 I915_WRITE(PXW + (i * 4), val);
5694 }
5695
5696 /* Adjust magic regs to magic values (more experimental results) */
5697 I915_WRITE(OGW0, 0);
5698 I915_WRITE(OGW1, 0);
5699 I915_WRITE(EG0, 0x00007f00);
5700 I915_WRITE(EG1, 0x0000000e);
5701 I915_WRITE(EG2, 0x000e0000);
5702 I915_WRITE(EG3, 0x68000300);
5703 I915_WRITE(EG4, 0x42000000);
5704 I915_WRITE(EG5, 0x00140031);
5705 I915_WRITE(EG6, 0);
5706 I915_WRITE(EG7, 0);
5707
5708 for (i = 0; i < 8; i++)
5709 I915_WRITE(PXWL + (i * 4), 0);
5710
5711 /* Enable PMON + select events */
5712 I915_WRITE(ECR, 0x80000019);
5713
5714 lcfuse = I915_READ(LCFUSE02);
5715
5716 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5717 }
5718
5719 void intel_init_gt_powersave(struct drm_device *dev)
5720 {
5721 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5722
5723 if (IS_CHERRYVIEW(dev))
5724 cherryview_init_gt_powersave(dev);
5725 else if (IS_VALLEYVIEW(dev))
5726 valleyview_init_gt_powersave(dev);
5727 }
5728
5729 void intel_cleanup_gt_powersave(struct drm_device *dev)
5730 {
5731 if (IS_CHERRYVIEW(dev))
5732 return;
5733 else if (IS_VALLEYVIEW(dev))
5734 valleyview_cleanup_gt_powersave(dev);
5735 }
5736
5737 static void gen6_suspend_rps(struct drm_device *dev)
5738 {
5739 struct drm_i915_private *dev_priv = dev->dev_private;
5740
5741 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5742
5743 gen6_disable_rps_interrupts(dev);
5744 }
5745
5746 /**
5747 * intel_suspend_gt_powersave - suspend PM work and helper threads
5748 * @dev: drm device
5749 *
5750 * We don't want to disable RC6 or other features here, we just want
5751 * to make sure any work we've queued has finished and won't bother
5752 * us while we're suspended.
5753 */
5754 void intel_suspend_gt_powersave(struct drm_device *dev)
5755 {
5756 struct drm_i915_private *dev_priv = dev->dev_private;
5757
5758 if (INTEL_INFO(dev)->gen < 6)
5759 return;
5760
5761 gen6_suspend_rps(dev);
5762
5763 /* Force GPU to min freq during suspend */
5764 gen6_rps_idle(dev_priv);
5765 }
5766
5767 void intel_disable_gt_powersave(struct drm_device *dev)
5768 {
5769 struct drm_i915_private *dev_priv = dev->dev_private;
5770
5771 if (IS_IRONLAKE_M(dev)) {
5772 ironlake_disable_drps(dev);
5773 } else if (INTEL_INFO(dev)->gen >= 6) {
5774 intel_suspend_gt_powersave(dev);
5775
5776 mutex_lock(&dev_priv->rps.hw_lock);
5777 if (INTEL_INFO(dev)->gen >= 9)
5778 gen9_disable_rps(dev);
5779 else if (IS_CHERRYVIEW(dev))
5780 cherryview_disable_rps(dev);
5781 else if (IS_VALLEYVIEW(dev))
5782 valleyview_disable_rps(dev);
5783 else
5784 gen6_disable_rps(dev);
5785
5786 dev_priv->rps.enabled = false;
5787 mutex_unlock(&dev_priv->rps.hw_lock);
5788 }
5789 }
5790
5791 static void intel_gen6_powersave_work(struct work_struct *work)
5792 {
5793 struct drm_i915_private *dev_priv =
5794 container_of(work, struct drm_i915_private,
5795 rps.delayed_resume_work.work);
5796 struct drm_device *dev = dev_priv->dev;
5797
5798 mutex_lock(&dev_priv->rps.hw_lock);
5799
5800 gen6_reset_rps_interrupts(dev);
5801
5802 if (IS_CHERRYVIEW(dev)) {
5803 cherryview_enable_rps(dev);
5804 } else if (IS_VALLEYVIEW(dev)) {
5805 valleyview_enable_rps(dev);
5806 } else if (INTEL_INFO(dev)->gen >= 9) {
5807 gen9_enable_rc6(dev);
5808 gen9_enable_rps(dev);
5809 __gen6_update_ring_freq(dev);
5810 } else if (IS_BROADWELL(dev)) {
5811 gen8_enable_rps(dev);
5812 __gen6_update_ring_freq(dev);
5813 } else {
5814 gen6_enable_rps(dev);
5815 __gen6_update_ring_freq(dev);
5816 }
5817
5818 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
5819 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
5820
5821 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
5822 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
5823
5824 dev_priv->rps.enabled = true;
5825
5826 gen6_enable_rps_interrupts(dev);
5827
5828 mutex_unlock(&dev_priv->rps.hw_lock);
5829
5830 intel_runtime_pm_put(dev_priv);
5831 }
5832
5833 void intel_enable_gt_powersave(struct drm_device *dev)
5834 {
5835 struct drm_i915_private *dev_priv = dev->dev_private;
5836
5837 /* Powersaving is controlled by the host when inside a VM */
5838 if (intel_vgpu_active(dev))
5839 return;
5840
5841 if (IS_IRONLAKE_M(dev)) {
5842 mutex_lock(&dev->struct_mutex);
5843 ironlake_enable_drps(dev);
5844 intel_init_emon(dev);
5845 mutex_unlock(&dev->struct_mutex);
5846 } else if (INTEL_INFO(dev)->gen >= 6) {
5847 /*
5848 * PCU communication is slow and this doesn't need to be
5849 * done at any specific time, so do this out of our fast path
5850 * to make resume and init faster.
5851 *
5852 * We depend on the HW RC6 power context save/restore
5853 * mechanism when entering D3 through runtime PM suspend. So
5854 * disable RPM until RPS/RC6 is properly setup. We can only
5855 * get here via the driver load/system resume/runtime resume
5856 * paths, so the _noresume version is enough (and in case of
5857 * runtime resume it's necessary).
5858 */
5859 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5860 round_jiffies_up_relative(HZ)))
5861 intel_runtime_pm_get_noresume(dev_priv);
5862 }
5863 }
5864
5865 void intel_reset_gt_powersave(struct drm_device *dev)
5866 {
5867 struct drm_i915_private *dev_priv = dev->dev_private;
5868
5869 if (INTEL_INFO(dev)->gen < 6)
5870 return;
5871
5872 gen6_suspend_rps(dev);
5873 dev_priv->rps.enabled = false;
5874 }
5875
5876 static void ibx_init_clock_gating(struct drm_device *dev)
5877 {
5878 struct drm_i915_private *dev_priv = dev->dev_private;
5879
5880 /*
5881 * On Ibex Peak and Cougar Point, we need to disable clock
5882 * gating for the panel power sequencer or it will fail to
5883 * start up when no ports are active.
5884 */
5885 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5886 }
5887
5888 static void g4x_disable_trickle_feed(struct drm_device *dev)
5889 {
5890 struct drm_i915_private *dev_priv = dev->dev_private;
5891 enum pipe pipe;
5892
5893 for_each_pipe(dev_priv, pipe) {
5894 I915_WRITE(DSPCNTR(pipe),
5895 I915_READ(DSPCNTR(pipe)) |
5896 DISPPLANE_TRICKLE_FEED_DISABLE);
5897
5898 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
5899 POSTING_READ(DSPSURF(pipe));
5900 }
5901 }
5902
5903 static void ilk_init_lp_watermarks(struct drm_device *dev)
5904 {
5905 struct drm_i915_private *dev_priv = dev->dev_private;
5906
5907 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5908 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5909 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5910
5911 /*
5912 * Don't touch WM1S_LP_EN here.
5913 * Doing so could cause underruns.
5914 */
5915 }
5916
5917 static void ironlake_init_clock_gating(struct drm_device *dev)
5918 {
5919 struct drm_i915_private *dev_priv = dev->dev_private;
5920 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5921
5922 /*
5923 * Required for FBC
5924 * WaFbcDisableDpfcClockGating:ilk
5925 */
5926 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5927 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5928 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5929
5930 I915_WRITE(PCH_3DCGDIS0,
5931 MARIUNIT_CLOCK_GATE_DISABLE |
5932 SVSMUNIT_CLOCK_GATE_DISABLE);
5933 I915_WRITE(PCH_3DCGDIS1,
5934 VFMUNIT_CLOCK_GATE_DISABLE);
5935
5936 /*
5937 * According to the spec the following bits should be set in
5938 * order to enable memory self-refresh
5939 * The bit 22/21 of 0x42004
5940 * The bit 5 of 0x42020
5941 * The bit 15 of 0x45000
5942 */
5943 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5944 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5945 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5946 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5947 I915_WRITE(DISP_ARB_CTL,
5948 (I915_READ(DISP_ARB_CTL) |
5949 DISP_FBC_WM_DIS));
5950
5951 ilk_init_lp_watermarks(dev);
5952
5953 /*
5954 * Based on the document from hardware guys the following bits
5955 * should be set unconditionally in order to enable FBC.
5956 * The bit 22 of 0x42000
5957 * The bit 22 of 0x42004
5958 * The bit 7,8,9 of 0x42020.
5959 */
5960 if (IS_IRONLAKE_M(dev)) {
5961 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5962 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5963 I915_READ(ILK_DISPLAY_CHICKEN1) |
5964 ILK_FBCQ_DIS);
5965 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5966 I915_READ(ILK_DISPLAY_CHICKEN2) |
5967 ILK_DPARB_GATE);
5968 }
5969
5970 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5971
5972 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5973 I915_READ(ILK_DISPLAY_CHICKEN2) |
5974 ILK_ELPIN_409_SELECT);
5975 I915_WRITE(_3D_CHICKEN2,
5976 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5977 _3D_CHICKEN2_WM_READ_PIPELINED);
5978
5979 /* WaDisableRenderCachePipelinedFlush:ilk */
5980 I915_WRITE(CACHE_MODE_0,
5981 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5982
5983 /* WaDisable_RenderCache_OperationalFlush:ilk */
5984 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5985
5986 g4x_disable_trickle_feed(dev);
5987
5988 ibx_init_clock_gating(dev);
5989 }
5990
5991 static void cpt_init_clock_gating(struct drm_device *dev)
5992 {
5993 struct drm_i915_private *dev_priv = dev->dev_private;
5994 int pipe;
5995 uint32_t val;
5996
5997 /*
5998 * On Ibex Peak and Cougar Point, we need to disable clock
5999 * gating for the panel power sequencer or it will fail to
6000 * start up when no ports are active.
6001 */
6002 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6003 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6004 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6005 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6006 DPLS_EDP_PPS_FIX_DIS);
6007 /* The below fixes the weird display corruption, a few pixels shifted
6008 * downward, on (only) LVDS of some HP laptops with IVY.
6009 */
6010 for_each_pipe(dev_priv, pipe) {
6011 val = I915_READ(TRANS_CHICKEN2(pipe));
6012 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6013 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6014 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6015 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6016 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6017 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6018 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6019 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6020 }
6021 /* WADP0ClockGatingDisable */
6022 for_each_pipe(dev_priv, pipe) {
6023 I915_WRITE(TRANS_CHICKEN1(pipe),
6024 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6025 }
6026 }
6027
6028 static void gen6_check_mch_setup(struct drm_device *dev)
6029 {
6030 struct drm_i915_private *dev_priv = dev->dev_private;
6031 uint32_t tmp;
6032
6033 tmp = I915_READ(MCH_SSKPD);
6034 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6035 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6036 tmp);
6037 }
6038
6039 static void gen6_init_clock_gating(struct drm_device *dev)
6040 {
6041 struct drm_i915_private *dev_priv = dev->dev_private;
6042 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6043
6044 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6045
6046 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6047 I915_READ(ILK_DISPLAY_CHICKEN2) |
6048 ILK_ELPIN_409_SELECT);
6049
6050 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6051 I915_WRITE(_3D_CHICKEN,
6052 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6053
6054 /* WaDisable_RenderCache_OperationalFlush:snb */
6055 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6056
6057 /*
6058 * BSpec recoomends 8x4 when MSAA is used,
6059 * however in practice 16x4 seems fastest.
6060 *
6061 * Note that PS/WM thread counts depend on the WIZ hashing
6062 * disable bit, which we don't touch here, but it's good
6063 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6064 */
6065 I915_WRITE(GEN6_GT_MODE,
6066 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6067
6068 ilk_init_lp_watermarks(dev);
6069
6070 I915_WRITE(CACHE_MODE_0,
6071 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6072
6073 I915_WRITE(GEN6_UCGCTL1,
6074 I915_READ(GEN6_UCGCTL1) |
6075 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6076 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6077
6078 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6079 * gating disable must be set. Failure to set it results in
6080 * flickering pixels due to Z write ordering failures after
6081 * some amount of runtime in the Mesa "fire" demo, and Unigine
6082 * Sanctuary and Tropics, and apparently anything else with
6083 * alpha test or pixel discard.
6084 *
6085 * According to the spec, bit 11 (RCCUNIT) must also be set,
6086 * but we didn't debug actual testcases to find it out.
6087 *
6088 * WaDisableRCCUnitClockGating:snb
6089 * WaDisableRCPBUnitClockGating:snb
6090 */
6091 I915_WRITE(GEN6_UCGCTL2,
6092 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6093 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6094
6095 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6096 I915_WRITE(_3D_CHICKEN3,
6097 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6098
6099 /*
6100 * Bspec says:
6101 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6102 * 3DSTATE_SF number of SF output attributes is more than 16."
6103 */
6104 I915_WRITE(_3D_CHICKEN3,
6105 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6106
6107 /*
6108 * According to the spec the following bits should be
6109 * set in order to enable memory self-refresh and fbc:
6110 * The bit21 and bit22 of 0x42000
6111 * The bit21 and bit22 of 0x42004
6112 * The bit5 and bit7 of 0x42020
6113 * The bit14 of 0x70180
6114 * The bit14 of 0x71180
6115 *
6116 * WaFbcAsynchFlipDisableFbcQueue:snb
6117 */
6118 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6119 I915_READ(ILK_DISPLAY_CHICKEN1) |
6120 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6121 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6122 I915_READ(ILK_DISPLAY_CHICKEN2) |
6123 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6124 I915_WRITE(ILK_DSPCLK_GATE_D,
6125 I915_READ(ILK_DSPCLK_GATE_D) |
6126 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6127 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6128
6129 g4x_disable_trickle_feed(dev);
6130
6131 cpt_init_clock_gating(dev);
6132
6133 gen6_check_mch_setup(dev);
6134 }
6135
6136 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6137 {
6138 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6139
6140 /*
6141 * WaVSThreadDispatchOverride:ivb,vlv
6142 *
6143 * This actually overrides the dispatch
6144 * mode for all thread types.
6145 */
6146 reg &= ~GEN7_FF_SCHED_MASK;
6147 reg |= GEN7_FF_TS_SCHED_HW;
6148 reg |= GEN7_FF_VS_SCHED_HW;
6149 reg |= GEN7_FF_DS_SCHED_HW;
6150
6151 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6152 }
6153
6154 static void lpt_init_clock_gating(struct drm_device *dev)
6155 {
6156 struct drm_i915_private *dev_priv = dev->dev_private;
6157
6158 /*
6159 * TODO: this bit should only be enabled when really needed, then
6160 * disabled when not needed anymore in order to save power.
6161 */
6162 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
6163 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6164 I915_READ(SOUTH_DSPCLK_GATE_D) |
6165 PCH_LP_PARTITION_LEVEL_DISABLE);
6166
6167 /* WADPOClockGatingDisable:hsw */
6168 I915_WRITE(_TRANSA_CHICKEN1,
6169 I915_READ(_TRANSA_CHICKEN1) |
6170 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6171 }
6172
6173 static void lpt_suspend_hw(struct drm_device *dev)
6174 {
6175 struct drm_i915_private *dev_priv = dev->dev_private;
6176
6177 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6178 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6179
6180 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6181 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6182 }
6183 }
6184
6185 static void broadwell_init_clock_gating(struct drm_device *dev)
6186 {
6187 struct drm_i915_private *dev_priv = dev->dev_private;
6188 enum pipe pipe;
6189 uint32_t misccpctl;
6190
6191 ilk_init_lp_watermarks(dev);
6192
6193 /* WaSwitchSolVfFArbitrationPriority:bdw */
6194 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6195
6196 /* WaPsrDPAMaskVBlankInSRD:bdw */
6197 I915_WRITE(CHICKEN_PAR1_1,
6198 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6199
6200 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6201 for_each_pipe(dev_priv, pipe) {
6202 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6203 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6204 BDW_DPRS_MASK_VBLANK_SRD);
6205 }
6206
6207 /* WaVSRefCountFullforceMissDisable:bdw */
6208 /* WaDSRefCountFullforceMissDisable:bdw */
6209 I915_WRITE(GEN7_FF_THREAD_MODE,
6210 I915_READ(GEN7_FF_THREAD_MODE) &
6211 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6212
6213 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6214 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6215
6216 /* WaDisableSDEUnitClockGating:bdw */
6217 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6218 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6219
6220 /*
6221 * WaProgramL3SqcReg1Default:bdw
6222 * WaTempDisableDOPClkGating:bdw
6223 */
6224 misccpctl = I915_READ(GEN7_MISCCPCTL);
6225 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6226 I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6227 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6228
6229 /*
6230 * WaGttCachingOffByDefault:bdw
6231 * GTT cache may not work with big pages, so if those
6232 * are ever enabled GTT cache may need to be disabled.
6233 */
6234 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6235
6236 lpt_init_clock_gating(dev);
6237 }
6238
6239 static void haswell_init_clock_gating(struct drm_device *dev)
6240 {
6241 struct drm_i915_private *dev_priv = dev->dev_private;
6242
6243 ilk_init_lp_watermarks(dev);
6244
6245 /* L3 caching of data atomics doesn't work -- disable it. */
6246 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6247 I915_WRITE(HSW_ROW_CHICKEN3,
6248 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6249
6250 /* This is required by WaCatErrorRejectionIssue:hsw */
6251 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6252 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6253 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6254
6255 /* WaVSRefCountFullforceMissDisable:hsw */
6256 I915_WRITE(GEN7_FF_THREAD_MODE,
6257 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6258
6259 /* WaDisable_RenderCache_OperationalFlush:hsw */
6260 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6261
6262 /* enable HiZ Raw Stall Optimization */
6263 I915_WRITE(CACHE_MODE_0_GEN7,
6264 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6265
6266 /* WaDisable4x2SubspanOptimization:hsw */
6267 I915_WRITE(CACHE_MODE_1,
6268 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6269
6270 /*
6271 * BSpec recommends 8x4 when MSAA is used,
6272 * however in practice 16x4 seems fastest.
6273 *
6274 * Note that PS/WM thread counts depend on the WIZ hashing
6275 * disable bit, which we don't touch here, but it's good
6276 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6277 */
6278 I915_WRITE(GEN7_GT_MODE,
6279 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6280
6281 /* WaSampleCChickenBitEnable:hsw */
6282 I915_WRITE(HALF_SLICE_CHICKEN3,
6283 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6284
6285 /* WaSwitchSolVfFArbitrationPriority:hsw */
6286 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6287
6288 /* WaRsPkgCStateDisplayPMReq:hsw */
6289 I915_WRITE(CHICKEN_PAR1_1,
6290 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6291
6292 lpt_init_clock_gating(dev);
6293 }
6294
6295 static void ivybridge_init_clock_gating(struct drm_device *dev)
6296 {
6297 struct drm_i915_private *dev_priv = dev->dev_private;
6298 uint32_t snpcr;
6299
6300 ilk_init_lp_watermarks(dev);
6301
6302 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6303
6304 /* WaDisableEarlyCull:ivb */
6305 I915_WRITE(_3D_CHICKEN3,
6306 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6307
6308 /* WaDisableBackToBackFlipFix:ivb */
6309 I915_WRITE(IVB_CHICKEN3,
6310 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6311 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6312
6313 /* WaDisablePSDDualDispatchEnable:ivb */
6314 if (IS_IVB_GT1(dev))
6315 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6316 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6317
6318 /* WaDisable_RenderCache_OperationalFlush:ivb */
6319 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6320
6321 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6322 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6323 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6324
6325 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6326 I915_WRITE(GEN7_L3CNTLREG1,
6327 GEN7_WA_FOR_GEN7_L3_CONTROL);
6328 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6329 GEN7_WA_L3_CHICKEN_MODE);
6330 if (IS_IVB_GT1(dev))
6331 I915_WRITE(GEN7_ROW_CHICKEN2,
6332 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6333 else {
6334 /* must write both registers */
6335 I915_WRITE(GEN7_ROW_CHICKEN2,
6336 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6337 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6338 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6339 }
6340
6341 /* WaForceL3Serialization:ivb */
6342 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6343 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6344
6345 /*
6346 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6347 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6348 */
6349 I915_WRITE(GEN6_UCGCTL2,
6350 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6351
6352 /* This is required by WaCatErrorRejectionIssue:ivb */
6353 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6354 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6355 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6356
6357 g4x_disable_trickle_feed(dev);
6358
6359 gen7_setup_fixed_func_scheduler(dev_priv);
6360
6361 if (0) { /* causes HiZ corruption on ivb:gt1 */
6362 /* enable HiZ Raw Stall Optimization */
6363 I915_WRITE(CACHE_MODE_0_GEN7,
6364 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6365 }
6366
6367 /* WaDisable4x2SubspanOptimization:ivb */
6368 I915_WRITE(CACHE_MODE_1,
6369 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6370
6371 /*
6372 * BSpec recommends 8x4 when MSAA is used,
6373 * however in practice 16x4 seems fastest.
6374 *
6375 * Note that PS/WM thread counts depend on the WIZ hashing
6376 * disable bit, which we don't touch here, but it's good
6377 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6378 */
6379 I915_WRITE(GEN7_GT_MODE,
6380 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6381
6382 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6383 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6384 snpcr |= GEN6_MBC_SNPCR_MED;
6385 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6386
6387 if (!HAS_PCH_NOP(dev))
6388 cpt_init_clock_gating(dev);
6389
6390 gen6_check_mch_setup(dev);
6391 }
6392
6393 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6394 {
6395 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6396
6397 /*
6398 * Disable trickle feed and enable pnd deadline calculation
6399 */
6400 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6401 I915_WRITE(CBR1_VLV, 0);
6402 }
6403
6404 static void valleyview_init_clock_gating(struct drm_device *dev)
6405 {
6406 struct drm_i915_private *dev_priv = dev->dev_private;
6407
6408 vlv_init_display_clock_gating(dev_priv);
6409
6410 /* WaDisableEarlyCull:vlv */
6411 I915_WRITE(_3D_CHICKEN3,
6412 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6413
6414 /* WaDisableBackToBackFlipFix:vlv */
6415 I915_WRITE(IVB_CHICKEN3,
6416 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6417 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6418
6419 /* WaPsdDispatchEnable:vlv */
6420 /* WaDisablePSDDualDispatchEnable:vlv */
6421 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6422 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6423 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6424
6425 /* WaDisable_RenderCache_OperationalFlush:vlv */
6426 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6427
6428 /* WaForceL3Serialization:vlv */
6429 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6430 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6431
6432 /* WaDisableDopClockGating:vlv */
6433 I915_WRITE(GEN7_ROW_CHICKEN2,
6434 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6435
6436 /* This is required by WaCatErrorRejectionIssue:vlv */
6437 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6438 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6439 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6440
6441 gen7_setup_fixed_func_scheduler(dev_priv);
6442
6443 /*
6444 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6445 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6446 */
6447 I915_WRITE(GEN6_UCGCTL2,
6448 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6449
6450 /* WaDisableL3Bank2xClockGate:vlv
6451 * Disabling L3 clock gating- MMIO 940c[25] = 1
6452 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6453 I915_WRITE(GEN7_UCGCTL4,
6454 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6455
6456 /*
6457 * BSpec says this must be set, even though
6458 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6459 */
6460 I915_WRITE(CACHE_MODE_1,
6461 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6462
6463 /*
6464 * BSpec recommends 8x4 when MSAA is used,
6465 * however in practice 16x4 seems fastest.
6466 *
6467 * Note that PS/WM thread counts depend on the WIZ hashing
6468 * disable bit, which we don't touch here, but it's good
6469 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6470 */
6471 I915_WRITE(GEN7_GT_MODE,
6472 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6473
6474 /*
6475 * WaIncreaseL3CreditsForVLVB0:vlv
6476 * This is the hardware default actually.
6477 */
6478 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6479
6480 /*
6481 * WaDisableVLVClockGating_VBIIssue:vlv
6482 * Disable clock gating on th GCFG unit to prevent a delay
6483 * in the reporting of vblank events.
6484 */
6485 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6486 }
6487
6488 static void cherryview_init_clock_gating(struct drm_device *dev)
6489 {
6490 struct drm_i915_private *dev_priv = dev->dev_private;
6491
6492 vlv_init_display_clock_gating(dev_priv);
6493
6494 /* WaVSRefCountFullforceMissDisable:chv */
6495 /* WaDSRefCountFullforceMissDisable:chv */
6496 I915_WRITE(GEN7_FF_THREAD_MODE,
6497 I915_READ(GEN7_FF_THREAD_MODE) &
6498 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6499
6500 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6501 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6502 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6503
6504 /* WaDisableCSUnitClockGating:chv */
6505 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6506 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6507
6508 /* WaDisableSDEUnitClockGating:chv */
6509 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6510 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6511
6512 /*
6513 * GTT cache may not work with big pages, so if those
6514 * are ever enabled GTT cache may need to be disabled.
6515 */
6516 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6517 }
6518
6519 static void g4x_init_clock_gating(struct drm_device *dev)
6520 {
6521 struct drm_i915_private *dev_priv = dev->dev_private;
6522 uint32_t dspclk_gate;
6523
6524 I915_WRITE(RENCLK_GATE_D1, 0);
6525 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6526 GS_UNIT_CLOCK_GATE_DISABLE |
6527 CL_UNIT_CLOCK_GATE_DISABLE);
6528 I915_WRITE(RAMCLK_GATE_D, 0);
6529 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6530 OVRUNIT_CLOCK_GATE_DISABLE |
6531 OVCUNIT_CLOCK_GATE_DISABLE;
6532 if (IS_GM45(dev))
6533 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6534 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6535
6536 /* WaDisableRenderCachePipelinedFlush */
6537 I915_WRITE(CACHE_MODE_0,
6538 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6539
6540 /* WaDisable_RenderCache_OperationalFlush:g4x */
6541 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6542
6543 g4x_disable_trickle_feed(dev);
6544 }
6545
6546 static void crestline_init_clock_gating(struct drm_device *dev)
6547 {
6548 struct drm_i915_private *dev_priv = dev->dev_private;
6549
6550 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6551 I915_WRITE(RENCLK_GATE_D2, 0);
6552 I915_WRITE(DSPCLK_GATE_D, 0);
6553 I915_WRITE(RAMCLK_GATE_D, 0);
6554 I915_WRITE16(DEUC, 0);
6555 I915_WRITE(MI_ARB_STATE,
6556 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6557
6558 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6559 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6560 }
6561
6562 static void broadwater_init_clock_gating(struct drm_device *dev)
6563 {
6564 struct drm_i915_private *dev_priv = dev->dev_private;
6565
6566 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6567 I965_RCC_CLOCK_GATE_DISABLE |
6568 I965_RCPB_CLOCK_GATE_DISABLE |
6569 I965_ISC_CLOCK_GATE_DISABLE |
6570 I965_FBC_CLOCK_GATE_DISABLE);
6571 I915_WRITE(RENCLK_GATE_D2, 0);
6572 I915_WRITE(MI_ARB_STATE,
6573 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6574
6575 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6576 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6577 }
6578
6579 static void gen3_init_clock_gating(struct drm_device *dev)
6580 {
6581 struct drm_i915_private *dev_priv = dev->dev_private;
6582 u32 dstate = I915_READ(D_STATE);
6583
6584 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6585 DSTATE_DOT_CLOCK_GATING;
6586 I915_WRITE(D_STATE, dstate);
6587
6588 if (IS_PINEVIEW(dev))
6589 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6590
6591 /* IIR "flip pending" means done if this bit is set */
6592 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6593
6594 /* interrupts should cause a wake up from C3 */
6595 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6596
6597 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6598 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6599
6600 I915_WRITE(MI_ARB_STATE,
6601 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6602 }
6603
6604 static void i85x_init_clock_gating(struct drm_device *dev)
6605 {
6606 struct drm_i915_private *dev_priv = dev->dev_private;
6607
6608 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6609
6610 /* interrupts should cause a wake up from C3 */
6611 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6612 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6613
6614 I915_WRITE(MEM_MODE,
6615 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6616 }
6617
6618 static void i830_init_clock_gating(struct drm_device *dev)
6619 {
6620 struct drm_i915_private *dev_priv = dev->dev_private;
6621
6622 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6623
6624 I915_WRITE(MEM_MODE,
6625 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6626 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6627 }
6628
6629 void intel_init_clock_gating(struct drm_device *dev)
6630 {
6631 struct drm_i915_private *dev_priv = dev->dev_private;
6632
6633 if (dev_priv->display.init_clock_gating)
6634 dev_priv->display.init_clock_gating(dev);
6635 }
6636
6637 void intel_suspend_hw(struct drm_device *dev)
6638 {
6639 if (HAS_PCH_LPT(dev))
6640 lpt_suspend_hw(dev);
6641 }
6642
6643 /* Set up chip specific power management-related functions */
6644 void intel_init_pm(struct drm_device *dev)
6645 {
6646 struct drm_i915_private *dev_priv = dev->dev_private;
6647
6648 intel_fbc_init(dev_priv);
6649
6650 /* For cxsr */
6651 if (IS_PINEVIEW(dev))
6652 i915_pineview_get_mem_freq(dev);
6653 else if (IS_GEN5(dev))
6654 i915_ironlake_get_mem_freq(dev);
6655
6656 /* For FIFO watermark updates */
6657 if (INTEL_INFO(dev)->gen >= 9) {
6658 skl_setup_wm_latency(dev);
6659
6660 if (IS_BROXTON(dev))
6661 dev_priv->display.init_clock_gating =
6662 bxt_init_clock_gating;
6663 else if (IS_SKYLAKE(dev))
6664 dev_priv->display.init_clock_gating =
6665 skl_init_clock_gating;
6666 dev_priv->display.update_wm = skl_update_wm;
6667 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6668 } else if (HAS_PCH_SPLIT(dev)) {
6669 ilk_setup_wm_latency(dev);
6670
6671 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6672 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6673 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6674 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6675 dev_priv->display.update_wm = ilk_update_wm;
6676 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6677 } else {
6678 DRM_DEBUG_KMS("Failed to read display plane latency. "
6679 "Disable CxSR\n");
6680 }
6681
6682 if (IS_GEN5(dev))
6683 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6684 else if (IS_GEN6(dev))
6685 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6686 else if (IS_IVYBRIDGE(dev))
6687 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6688 else if (IS_HASWELL(dev))
6689 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6690 else if (INTEL_INFO(dev)->gen == 8)
6691 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6692 } else if (IS_CHERRYVIEW(dev)) {
6693 dev_priv->display.update_wm = valleyview_update_wm;
6694 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6695 dev_priv->display.init_clock_gating =
6696 cherryview_init_clock_gating;
6697 } else if (IS_VALLEYVIEW(dev)) {
6698 dev_priv->display.update_wm = valleyview_update_wm;
6699 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6700 dev_priv->display.init_clock_gating =
6701 valleyview_init_clock_gating;
6702 } else if (IS_PINEVIEW(dev)) {
6703 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6704 dev_priv->is_ddr3,
6705 dev_priv->fsb_freq,
6706 dev_priv->mem_freq)) {
6707 DRM_INFO("failed to find known CxSR latency "
6708 "(found ddr%s fsb freq %d, mem freq %d), "
6709 "disabling CxSR\n",
6710 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6711 dev_priv->fsb_freq, dev_priv->mem_freq);
6712 /* Disable CxSR and never update its watermark again */
6713 intel_set_memory_cxsr(dev_priv, false);
6714 dev_priv->display.update_wm = NULL;
6715 } else
6716 dev_priv->display.update_wm = pineview_update_wm;
6717 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6718 } else if (IS_G4X(dev)) {
6719 dev_priv->display.update_wm = g4x_update_wm;
6720 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6721 } else if (IS_GEN4(dev)) {
6722 dev_priv->display.update_wm = i965_update_wm;
6723 if (IS_CRESTLINE(dev))
6724 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6725 else if (IS_BROADWATER(dev))
6726 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6727 } else if (IS_GEN3(dev)) {
6728 dev_priv->display.update_wm = i9xx_update_wm;
6729 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6730 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6731 } else if (IS_GEN2(dev)) {
6732 if (INTEL_INFO(dev)->num_pipes == 1) {
6733 dev_priv->display.update_wm = i845_update_wm;
6734 dev_priv->display.get_fifo_size = i845_get_fifo_size;
6735 } else {
6736 dev_priv->display.update_wm = i9xx_update_wm;
6737 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6738 }
6739
6740 if (IS_I85X(dev) || IS_I865G(dev))
6741 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6742 else
6743 dev_priv->display.init_clock_gating = i830_init_clock_gating;
6744 } else {
6745 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6746 }
6747 }
6748
6749 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
6750 {
6751 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6752
6753 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6754 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6755 return -EAGAIN;
6756 }
6757
6758 I915_WRITE(GEN6_PCODE_DATA, *val);
6759 I915_WRITE(GEN6_PCODE_DATA1, 0);
6760 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6761
6762 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6763 500)) {
6764 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6765 return -ETIMEDOUT;
6766 }
6767
6768 *val = I915_READ(GEN6_PCODE_DATA);
6769 I915_WRITE(GEN6_PCODE_DATA, 0);
6770
6771 return 0;
6772 }
6773
6774 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
6775 {
6776 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6777
6778 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6779 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6780 return -EAGAIN;
6781 }
6782
6783 I915_WRITE(GEN6_PCODE_DATA, val);
6784 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6785
6786 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6787 500)) {
6788 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6789 return -ETIMEDOUT;
6790 }
6791
6792 I915_WRITE(GEN6_PCODE_DATA, 0);
6793
6794 return 0;
6795 }
6796
6797 static int vlv_gpu_freq_div(unsigned int czclk_freq)
6798 {
6799 switch (czclk_freq) {
6800 case 200:
6801 return 10;
6802 case 267:
6803 return 12;
6804 case 320:
6805 case 333:
6806 return 16;
6807 case 400:
6808 return 20;
6809 default:
6810 return -1;
6811 }
6812 }
6813
6814 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6815 {
6816 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6817
6818 div = vlv_gpu_freq_div(czclk_freq);
6819 if (div < 0)
6820 return div;
6821
6822 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6823 }
6824
6825 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6826 {
6827 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6828
6829 mul = vlv_gpu_freq_div(czclk_freq);
6830 if (mul < 0)
6831 return mul;
6832
6833 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6834 }
6835
6836 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6837 {
6838 int div, czclk_freq = dev_priv->rps.cz_freq;
6839
6840 div = vlv_gpu_freq_div(czclk_freq) / 2;
6841 if (div < 0)
6842 return div;
6843
6844 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6845 }
6846
6847 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6848 {
6849 int mul, czclk_freq = dev_priv->rps.cz_freq;
6850
6851 mul = vlv_gpu_freq_div(czclk_freq) / 2;
6852 if (mul < 0)
6853 return mul;
6854
6855 /* CHV needs even values */
6856 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6857 }
6858
6859 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6860 {
6861 if (IS_GEN9(dev_priv->dev))
6862 return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
6863 else if (IS_CHERRYVIEW(dev_priv->dev))
6864 return chv_gpu_freq(dev_priv, val);
6865 else if (IS_VALLEYVIEW(dev_priv->dev))
6866 return byt_gpu_freq(dev_priv, val);
6867 else
6868 return val * GT_FREQUENCY_MULTIPLIER;
6869 }
6870
6871 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
6872 {
6873 if (IS_GEN9(dev_priv->dev))
6874 return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
6875 else if (IS_CHERRYVIEW(dev_priv->dev))
6876 return chv_freq_opcode(dev_priv, val);
6877 else if (IS_VALLEYVIEW(dev_priv->dev))
6878 return byt_freq_opcode(dev_priv, val);
6879 else
6880 return val / GT_FREQUENCY_MULTIPLIER;
6881 }
6882
6883 struct request_boost {
6884 struct work_struct work;
6885 struct drm_i915_gem_request *req;
6886 };
6887
6888 static void __intel_rps_boost_work(struct work_struct *work)
6889 {
6890 struct request_boost *boost = container_of(work, struct request_boost, work);
6891 struct drm_i915_gem_request *req = boost->req;
6892
6893 if (!i915_gem_request_completed(req, true))
6894 gen6_rps_boost(to_i915(req->ring->dev), NULL,
6895 req->emitted_jiffies);
6896
6897 i915_gem_request_unreference__unlocked(req);
6898 kfree(boost);
6899 }
6900
6901 void intel_queue_rps_boost_for_request(struct drm_device *dev,
6902 struct drm_i915_gem_request *req)
6903 {
6904 struct request_boost *boost;
6905
6906 if (req == NULL || INTEL_INFO(dev)->gen < 6)
6907 return;
6908
6909 if (i915_gem_request_completed(req, true))
6910 return;
6911
6912 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
6913 if (boost == NULL)
6914 return;
6915
6916 i915_gem_request_reference(req);
6917 boost->req = req;
6918
6919 INIT_WORK(&boost->work, __intel_rps_boost_work);
6920 queue_work(to_i915(dev)->wq, &boost->work);
6921 }
6922
6923 void intel_pm_setup(struct drm_device *dev)
6924 {
6925 struct drm_i915_private *dev_priv = dev->dev_private;
6926
6927 mutex_init(&dev_priv->rps.hw_lock);
6928 spin_lock_init(&dev_priv->rps.client_lock);
6929
6930 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6931 intel_gen6_powersave_work);
6932 INIT_LIST_HEAD(&dev_priv->rps.clients);
6933 INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
6934 INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
6935
6936 dev_priv->pm.suspended = false;
6937 }
This page took 0.305839 seconds and 4 git commands to generate.