drm/i915: BIOS and power context stolen mem handling for VLV v7
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 #define FORCEWAKE_ACK_TIMEOUT_MS 2
35
36 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
37 * framebuffer contents in-memory, aiming at reducing the required bandwidth
38 * during in-memory transfers and, therefore, reduce the power packet.
39 *
40 * The benefits of FBC are mostly visible with solid backgrounds and
41 * variation-less patterns.
42 *
43 * FBC-related functionality can be enabled by the means of the
44 * i915.i915_enable_fbc parameter
45 */
46
47 static bool intel_crtc_active(struct drm_crtc *crtc)
48 {
49 /* Be paranoid as we can arrive here with only partial
50 * state retrieved from the hardware during setup.
51 */
52 return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
53 }
54
55 static void i8xx_disable_fbc(struct drm_device *dev)
56 {
57 struct drm_i915_private *dev_priv = dev->dev_private;
58 u32 fbc_ctl;
59
60 /* Disable compression */
61 fbc_ctl = I915_READ(FBC_CONTROL);
62 if ((fbc_ctl & FBC_CTL_EN) == 0)
63 return;
64
65 fbc_ctl &= ~FBC_CTL_EN;
66 I915_WRITE(FBC_CONTROL, fbc_ctl);
67
68 /* Wait for compressing bit to clear */
69 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
70 DRM_DEBUG_KMS("FBC idle timed out\n");
71 return;
72 }
73
74 DRM_DEBUG_KMS("disabled FBC\n");
75 }
76
77 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
78 {
79 struct drm_device *dev = crtc->dev;
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct drm_framebuffer *fb = crtc->fb;
82 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
83 struct drm_i915_gem_object *obj = intel_fb->obj;
84 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
85 int cfb_pitch;
86 int plane, i;
87 u32 fbc_ctl, fbc_ctl2;
88
89 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
90 if (fb->pitches[0] < cfb_pitch)
91 cfb_pitch = fb->pitches[0];
92
93 /* FBC_CTL wants 64B units */
94 cfb_pitch = (cfb_pitch / 64) - 1;
95 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
96
97 /* Clear old tags */
98 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
99 I915_WRITE(FBC_TAG + (i * 4), 0);
100
101 /* Set it up... */
102 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
103 fbc_ctl2 |= plane;
104 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
105 I915_WRITE(FBC_FENCE_OFF, crtc->y);
106
107 /* enable it... */
108 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
109 if (IS_I945GM(dev))
110 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
111 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
112 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
113 fbc_ctl |= obj->fence_reg;
114 I915_WRITE(FBC_CONTROL, fbc_ctl);
115
116 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
117 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
118 }
119
120 static bool i8xx_fbc_enabled(struct drm_device *dev)
121 {
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
125 }
126
127 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
128 {
129 struct drm_device *dev = crtc->dev;
130 struct drm_i915_private *dev_priv = dev->dev_private;
131 struct drm_framebuffer *fb = crtc->fb;
132 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
133 struct drm_i915_gem_object *obj = intel_fb->obj;
134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
135 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
136 unsigned long stall_watermark = 200;
137 u32 dpfc_ctl;
138
139 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
140 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
141 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
142
143 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
144 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
145 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
146 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
147
148 /* enable it... */
149 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
150
151 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
152 }
153
154 static void g4x_disable_fbc(struct drm_device *dev)
155 {
156 struct drm_i915_private *dev_priv = dev->dev_private;
157 u32 dpfc_ctl;
158
159 /* Disable compression */
160 dpfc_ctl = I915_READ(DPFC_CONTROL);
161 if (dpfc_ctl & DPFC_CTL_EN) {
162 dpfc_ctl &= ~DPFC_CTL_EN;
163 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
164
165 DRM_DEBUG_KMS("disabled FBC\n");
166 }
167 }
168
169 static bool g4x_fbc_enabled(struct drm_device *dev)
170 {
171 struct drm_i915_private *dev_priv = dev->dev_private;
172
173 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
174 }
175
176 static void sandybridge_blit_fbc_update(struct drm_device *dev)
177 {
178 struct drm_i915_private *dev_priv = dev->dev_private;
179 u32 blt_ecoskpd;
180
181 /* Make sure blitter notifies FBC of writes */
182 gen6_gt_force_wake_get(dev_priv);
183 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
184 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
185 GEN6_BLITTER_LOCK_SHIFT;
186 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
187 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
188 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
189 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
190 GEN6_BLITTER_LOCK_SHIFT);
191 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
192 POSTING_READ(GEN6_BLITTER_ECOSKPD);
193 gen6_gt_force_wake_put(dev_priv);
194 }
195
196 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
197 {
198 struct drm_device *dev = crtc->dev;
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 struct drm_framebuffer *fb = crtc->fb;
201 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
202 struct drm_i915_gem_object *obj = intel_fb->obj;
203 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
204 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
205 unsigned long stall_watermark = 200;
206 u32 dpfc_ctl;
207
208 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
209 dpfc_ctl &= DPFC_RESERVED;
210 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
211 /* Set persistent mode for front-buffer rendering, ala X. */
212 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
213 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
214 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
215
216 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
217 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
218 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
219 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
220 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
221 /* enable it... */
222 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
223
224 if (IS_GEN6(dev)) {
225 I915_WRITE(SNB_DPFC_CTL_SA,
226 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
227 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
228 sandybridge_blit_fbc_update(dev);
229 }
230
231 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
232 }
233
234 static void ironlake_disable_fbc(struct drm_device *dev)
235 {
236 struct drm_i915_private *dev_priv = dev->dev_private;
237 u32 dpfc_ctl;
238
239 /* Disable compression */
240 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
241 if (dpfc_ctl & DPFC_CTL_EN) {
242 dpfc_ctl &= ~DPFC_CTL_EN;
243 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
244
245 DRM_DEBUG_KMS("disabled FBC\n");
246 }
247 }
248
249 static bool ironlake_fbc_enabled(struct drm_device *dev)
250 {
251 struct drm_i915_private *dev_priv = dev->dev_private;
252
253 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
254 }
255
256 bool intel_fbc_enabled(struct drm_device *dev)
257 {
258 struct drm_i915_private *dev_priv = dev->dev_private;
259
260 if (!dev_priv->display.fbc_enabled)
261 return false;
262
263 return dev_priv->display.fbc_enabled(dev);
264 }
265
266 static void intel_fbc_work_fn(struct work_struct *__work)
267 {
268 struct intel_fbc_work *work =
269 container_of(to_delayed_work(__work),
270 struct intel_fbc_work, work);
271 struct drm_device *dev = work->crtc->dev;
272 struct drm_i915_private *dev_priv = dev->dev_private;
273
274 mutex_lock(&dev->struct_mutex);
275 if (work == dev_priv->fbc_work) {
276 /* Double check that we haven't switched fb without cancelling
277 * the prior work.
278 */
279 if (work->crtc->fb == work->fb) {
280 dev_priv->display.enable_fbc(work->crtc,
281 work->interval);
282
283 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
284 dev_priv->cfb_fb = work->crtc->fb->base.id;
285 dev_priv->cfb_y = work->crtc->y;
286 }
287
288 dev_priv->fbc_work = NULL;
289 }
290 mutex_unlock(&dev->struct_mutex);
291
292 kfree(work);
293 }
294
295 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
296 {
297 if (dev_priv->fbc_work == NULL)
298 return;
299
300 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
301
302 /* Synchronisation is provided by struct_mutex and checking of
303 * dev_priv->fbc_work, so we can perform the cancellation
304 * entirely asynchronously.
305 */
306 if (cancel_delayed_work(&dev_priv->fbc_work->work))
307 /* tasklet was killed before being run, clean up */
308 kfree(dev_priv->fbc_work);
309
310 /* Mark the work as no longer wanted so that if it does
311 * wake-up (because the work was already running and waiting
312 * for our mutex), it will discover that is no longer
313 * necessary to run.
314 */
315 dev_priv->fbc_work = NULL;
316 }
317
318 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
319 {
320 struct intel_fbc_work *work;
321 struct drm_device *dev = crtc->dev;
322 struct drm_i915_private *dev_priv = dev->dev_private;
323
324 if (!dev_priv->display.enable_fbc)
325 return;
326
327 intel_cancel_fbc_work(dev_priv);
328
329 work = kzalloc(sizeof *work, GFP_KERNEL);
330 if (work == NULL) {
331 dev_priv->display.enable_fbc(crtc, interval);
332 return;
333 }
334
335 work->crtc = crtc;
336 work->fb = crtc->fb;
337 work->interval = interval;
338 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
339
340 dev_priv->fbc_work = work;
341
342 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
343
344 /* Delay the actual enabling to let pageflipping cease and the
345 * display to settle before starting the compression. Note that
346 * this delay also serves a second purpose: it allows for a
347 * vblank to pass after disabling the FBC before we attempt
348 * to modify the control registers.
349 *
350 * A more complicated solution would involve tracking vblanks
351 * following the termination of the page-flipping sequence
352 * and indeed performing the enable as a co-routine and not
353 * waiting synchronously upon the vblank.
354 */
355 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
356 }
357
358 void intel_disable_fbc(struct drm_device *dev)
359 {
360 struct drm_i915_private *dev_priv = dev->dev_private;
361
362 intel_cancel_fbc_work(dev_priv);
363
364 if (!dev_priv->display.disable_fbc)
365 return;
366
367 dev_priv->display.disable_fbc(dev);
368 dev_priv->cfb_plane = -1;
369 }
370
371 /**
372 * intel_update_fbc - enable/disable FBC as needed
373 * @dev: the drm_device
374 *
375 * Set up the framebuffer compression hardware at mode set time. We
376 * enable it if possible:
377 * - plane A only (on pre-965)
378 * - no pixel mulitply/line duplication
379 * - no alpha buffer discard
380 * - no dual wide
381 * - framebuffer <= 2048 in width, 1536 in height
382 *
383 * We can't assume that any compression will take place (worst case),
384 * so the compressed buffer has to be the same size as the uncompressed
385 * one. It also must reside (along with the line length buffer) in
386 * stolen memory.
387 *
388 * We need to enable/disable FBC on a global basis.
389 */
390 void intel_update_fbc(struct drm_device *dev)
391 {
392 struct drm_i915_private *dev_priv = dev->dev_private;
393 struct drm_crtc *crtc = NULL, *tmp_crtc;
394 struct intel_crtc *intel_crtc;
395 struct drm_framebuffer *fb;
396 struct intel_framebuffer *intel_fb;
397 struct drm_i915_gem_object *obj;
398 int enable_fbc;
399
400 if (!i915_powersave)
401 return;
402
403 if (!I915_HAS_FBC(dev))
404 return;
405
406 /*
407 * If FBC is already on, we just have to verify that we can
408 * keep it that way...
409 * Need to disable if:
410 * - more than one pipe is active
411 * - changing FBC params (stride, fence, mode)
412 * - new fb is too large to fit in compressed buffer
413 * - going to an unsupported config (interlace, pixel multiply, etc.)
414 */
415 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
416 if (intel_crtc_active(tmp_crtc) &&
417 !to_intel_crtc(tmp_crtc)->primary_disabled) {
418 if (crtc) {
419 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
420 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
421 goto out_disable;
422 }
423 crtc = tmp_crtc;
424 }
425 }
426
427 if (!crtc || crtc->fb == NULL) {
428 DRM_DEBUG_KMS("no output, disabling\n");
429 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
430 goto out_disable;
431 }
432
433 intel_crtc = to_intel_crtc(crtc);
434 fb = crtc->fb;
435 intel_fb = to_intel_framebuffer(fb);
436 obj = intel_fb->obj;
437
438 enable_fbc = i915_enable_fbc;
439 if (enable_fbc < 0) {
440 DRM_DEBUG_KMS("fbc set to per-chip default\n");
441 enable_fbc = 1;
442 if (INTEL_INFO(dev)->gen <= 6)
443 enable_fbc = 0;
444 }
445 if (!enable_fbc) {
446 DRM_DEBUG_KMS("fbc disabled per module param\n");
447 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
448 goto out_disable;
449 }
450 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
451 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
452 DRM_DEBUG_KMS("mode incompatible with compression, "
453 "disabling\n");
454 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
455 goto out_disable;
456 }
457 if ((crtc->mode.hdisplay > 2048) ||
458 (crtc->mode.vdisplay > 1536)) {
459 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
460 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
461 goto out_disable;
462 }
463 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
464 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
465 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
466 goto out_disable;
467 }
468
469 /* The use of a CPU fence is mandatory in order to detect writes
470 * by the CPU to the scanout and trigger updates to the FBC.
471 */
472 if (obj->tiling_mode != I915_TILING_X ||
473 obj->fence_reg == I915_FENCE_REG_NONE) {
474 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
475 dev_priv->no_fbc_reason = FBC_NOT_TILED;
476 goto out_disable;
477 }
478
479 /* If the kernel debugger is active, always disable compression */
480 if (in_dbg_master())
481 goto out_disable;
482
483 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
484 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
485 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
486 goto out_disable;
487 }
488
489 /* If the scanout has not changed, don't modify the FBC settings.
490 * Note that we make the fundamental assumption that the fb->obj
491 * cannot be unpinned (and have its GTT offset and fence revoked)
492 * without first being decoupled from the scanout and FBC disabled.
493 */
494 if (dev_priv->cfb_plane == intel_crtc->plane &&
495 dev_priv->cfb_fb == fb->base.id &&
496 dev_priv->cfb_y == crtc->y)
497 return;
498
499 if (intel_fbc_enabled(dev)) {
500 /* We update FBC along two paths, after changing fb/crtc
501 * configuration (modeswitching) and after page-flipping
502 * finishes. For the latter, we know that not only did
503 * we disable the FBC at the start of the page-flip
504 * sequence, but also more than one vblank has passed.
505 *
506 * For the former case of modeswitching, it is possible
507 * to switch between two FBC valid configurations
508 * instantaneously so we do need to disable the FBC
509 * before we can modify its control registers. We also
510 * have to wait for the next vblank for that to take
511 * effect. However, since we delay enabling FBC we can
512 * assume that a vblank has passed since disabling and
513 * that we can safely alter the registers in the deferred
514 * callback.
515 *
516 * In the scenario that we go from a valid to invalid
517 * and then back to valid FBC configuration we have
518 * no strict enforcement that a vblank occurred since
519 * disabling the FBC. However, along all current pipe
520 * disabling paths we do need to wait for a vblank at
521 * some point. And we wait before enabling FBC anyway.
522 */
523 DRM_DEBUG_KMS("disabling active FBC for update\n");
524 intel_disable_fbc(dev);
525 }
526
527 intel_enable_fbc(crtc, 500);
528 return;
529
530 out_disable:
531 /* Multiple disables should be harmless */
532 if (intel_fbc_enabled(dev)) {
533 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
534 intel_disable_fbc(dev);
535 }
536 i915_gem_stolen_cleanup_compression(dev);
537 }
538
539 static void i915_pineview_get_mem_freq(struct drm_device *dev)
540 {
541 drm_i915_private_t *dev_priv = dev->dev_private;
542 u32 tmp;
543
544 tmp = I915_READ(CLKCFG);
545
546 switch (tmp & CLKCFG_FSB_MASK) {
547 case CLKCFG_FSB_533:
548 dev_priv->fsb_freq = 533; /* 133*4 */
549 break;
550 case CLKCFG_FSB_800:
551 dev_priv->fsb_freq = 800; /* 200*4 */
552 break;
553 case CLKCFG_FSB_667:
554 dev_priv->fsb_freq = 667; /* 167*4 */
555 break;
556 case CLKCFG_FSB_400:
557 dev_priv->fsb_freq = 400; /* 100*4 */
558 break;
559 }
560
561 switch (tmp & CLKCFG_MEM_MASK) {
562 case CLKCFG_MEM_533:
563 dev_priv->mem_freq = 533;
564 break;
565 case CLKCFG_MEM_667:
566 dev_priv->mem_freq = 667;
567 break;
568 case CLKCFG_MEM_800:
569 dev_priv->mem_freq = 800;
570 break;
571 }
572
573 /* detect pineview DDR3 setting */
574 tmp = I915_READ(CSHRDDR3CTL);
575 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
576 }
577
578 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
579 {
580 drm_i915_private_t *dev_priv = dev->dev_private;
581 u16 ddrpll, csipll;
582
583 ddrpll = I915_READ16(DDRMPLL1);
584 csipll = I915_READ16(CSIPLL0);
585
586 switch (ddrpll & 0xff) {
587 case 0xc:
588 dev_priv->mem_freq = 800;
589 break;
590 case 0x10:
591 dev_priv->mem_freq = 1066;
592 break;
593 case 0x14:
594 dev_priv->mem_freq = 1333;
595 break;
596 case 0x18:
597 dev_priv->mem_freq = 1600;
598 break;
599 default:
600 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
601 ddrpll & 0xff);
602 dev_priv->mem_freq = 0;
603 break;
604 }
605
606 dev_priv->ips.r_t = dev_priv->mem_freq;
607
608 switch (csipll & 0x3ff) {
609 case 0x00c:
610 dev_priv->fsb_freq = 3200;
611 break;
612 case 0x00e:
613 dev_priv->fsb_freq = 3733;
614 break;
615 case 0x010:
616 dev_priv->fsb_freq = 4266;
617 break;
618 case 0x012:
619 dev_priv->fsb_freq = 4800;
620 break;
621 case 0x014:
622 dev_priv->fsb_freq = 5333;
623 break;
624 case 0x016:
625 dev_priv->fsb_freq = 5866;
626 break;
627 case 0x018:
628 dev_priv->fsb_freq = 6400;
629 break;
630 default:
631 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
632 csipll & 0x3ff);
633 dev_priv->fsb_freq = 0;
634 break;
635 }
636
637 if (dev_priv->fsb_freq == 3200) {
638 dev_priv->ips.c_m = 0;
639 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
640 dev_priv->ips.c_m = 1;
641 } else {
642 dev_priv->ips.c_m = 2;
643 }
644 }
645
646 static const struct cxsr_latency cxsr_latency_table[] = {
647 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
648 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
649 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
650 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
651 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
652
653 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
654 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
655 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
656 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
657 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
658
659 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
660 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
661 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
662 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
663 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
664
665 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
666 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
667 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
668 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
669 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
670
671 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
672 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
673 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
674 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
675 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
676
677 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
678 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
679 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
680 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
681 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
682 };
683
684 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
685 int is_ddr3,
686 int fsb,
687 int mem)
688 {
689 const struct cxsr_latency *latency;
690 int i;
691
692 if (fsb == 0 || mem == 0)
693 return NULL;
694
695 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
696 latency = &cxsr_latency_table[i];
697 if (is_desktop == latency->is_desktop &&
698 is_ddr3 == latency->is_ddr3 &&
699 fsb == latency->fsb_freq && mem == latency->mem_freq)
700 return latency;
701 }
702
703 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
704
705 return NULL;
706 }
707
708 static void pineview_disable_cxsr(struct drm_device *dev)
709 {
710 struct drm_i915_private *dev_priv = dev->dev_private;
711
712 /* deactivate cxsr */
713 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
714 }
715
716 /*
717 * Latency for FIFO fetches is dependent on several factors:
718 * - memory configuration (speed, channels)
719 * - chipset
720 * - current MCH state
721 * It can be fairly high in some situations, so here we assume a fairly
722 * pessimal value. It's a tradeoff between extra memory fetches (if we
723 * set this value too high, the FIFO will fetch frequently to stay full)
724 * and power consumption (set it too low to save power and we might see
725 * FIFO underruns and display "flicker").
726 *
727 * A value of 5us seems to be a good balance; safe for very low end
728 * platforms but not overly aggressive on lower latency configs.
729 */
730 static const int latency_ns = 5000;
731
732 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
733 {
734 struct drm_i915_private *dev_priv = dev->dev_private;
735 uint32_t dsparb = I915_READ(DSPARB);
736 int size;
737
738 size = dsparb & 0x7f;
739 if (plane)
740 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
741
742 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
743 plane ? "B" : "A", size);
744
745 return size;
746 }
747
748 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
749 {
750 struct drm_i915_private *dev_priv = dev->dev_private;
751 uint32_t dsparb = I915_READ(DSPARB);
752 int size;
753
754 size = dsparb & 0x1ff;
755 if (plane)
756 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
757 size >>= 1; /* Convert to cachelines */
758
759 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
760 plane ? "B" : "A", size);
761
762 return size;
763 }
764
765 static int i845_get_fifo_size(struct drm_device *dev, int plane)
766 {
767 struct drm_i915_private *dev_priv = dev->dev_private;
768 uint32_t dsparb = I915_READ(DSPARB);
769 int size;
770
771 size = dsparb & 0x7f;
772 size >>= 2; /* Convert to cachelines */
773
774 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
775 plane ? "B" : "A",
776 size);
777
778 return size;
779 }
780
781 static int i830_get_fifo_size(struct drm_device *dev, int plane)
782 {
783 struct drm_i915_private *dev_priv = dev->dev_private;
784 uint32_t dsparb = I915_READ(DSPARB);
785 int size;
786
787 size = dsparb & 0x7f;
788 size >>= 1; /* Convert to cachelines */
789
790 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
791 plane ? "B" : "A", size);
792
793 return size;
794 }
795
796 /* Pineview has different values for various configs */
797 static const struct intel_watermark_params pineview_display_wm = {
798 PINEVIEW_DISPLAY_FIFO,
799 PINEVIEW_MAX_WM,
800 PINEVIEW_DFT_WM,
801 PINEVIEW_GUARD_WM,
802 PINEVIEW_FIFO_LINE_SIZE
803 };
804 static const struct intel_watermark_params pineview_display_hplloff_wm = {
805 PINEVIEW_DISPLAY_FIFO,
806 PINEVIEW_MAX_WM,
807 PINEVIEW_DFT_HPLLOFF_WM,
808 PINEVIEW_GUARD_WM,
809 PINEVIEW_FIFO_LINE_SIZE
810 };
811 static const struct intel_watermark_params pineview_cursor_wm = {
812 PINEVIEW_CURSOR_FIFO,
813 PINEVIEW_CURSOR_MAX_WM,
814 PINEVIEW_CURSOR_DFT_WM,
815 PINEVIEW_CURSOR_GUARD_WM,
816 PINEVIEW_FIFO_LINE_SIZE,
817 };
818 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
819 PINEVIEW_CURSOR_FIFO,
820 PINEVIEW_CURSOR_MAX_WM,
821 PINEVIEW_CURSOR_DFT_WM,
822 PINEVIEW_CURSOR_GUARD_WM,
823 PINEVIEW_FIFO_LINE_SIZE
824 };
825 static const struct intel_watermark_params g4x_wm_info = {
826 G4X_FIFO_SIZE,
827 G4X_MAX_WM,
828 G4X_MAX_WM,
829 2,
830 G4X_FIFO_LINE_SIZE,
831 };
832 static const struct intel_watermark_params g4x_cursor_wm_info = {
833 I965_CURSOR_FIFO,
834 I965_CURSOR_MAX_WM,
835 I965_CURSOR_DFT_WM,
836 2,
837 G4X_FIFO_LINE_SIZE,
838 };
839 static const struct intel_watermark_params valleyview_wm_info = {
840 VALLEYVIEW_FIFO_SIZE,
841 VALLEYVIEW_MAX_WM,
842 VALLEYVIEW_MAX_WM,
843 2,
844 G4X_FIFO_LINE_SIZE,
845 };
846 static const struct intel_watermark_params valleyview_cursor_wm_info = {
847 I965_CURSOR_FIFO,
848 VALLEYVIEW_CURSOR_MAX_WM,
849 I965_CURSOR_DFT_WM,
850 2,
851 G4X_FIFO_LINE_SIZE,
852 };
853 static const struct intel_watermark_params i965_cursor_wm_info = {
854 I965_CURSOR_FIFO,
855 I965_CURSOR_MAX_WM,
856 I965_CURSOR_DFT_WM,
857 2,
858 I915_FIFO_LINE_SIZE,
859 };
860 static const struct intel_watermark_params i945_wm_info = {
861 I945_FIFO_SIZE,
862 I915_MAX_WM,
863 1,
864 2,
865 I915_FIFO_LINE_SIZE
866 };
867 static const struct intel_watermark_params i915_wm_info = {
868 I915_FIFO_SIZE,
869 I915_MAX_WM,
870 1,
871 2,
872 I915_FIFO_LINE_SIZE
873 };
874 static const struct intel_watermark_params i855_wm_info = {
875 I855GM_FIFO_SIZE,
876 I915_MAX_WM,
877 1,
878 2,
879 I830_FIFO_LINE_SIZE
880 };
881 static const struct intel_watermark_params i830_wm_info = {
882 I830_FIFO_SIZE,
883 I915_MAX_WM,
884 1,
885 2,
886 I830_FIFO_LINE_SIZE
887 };
888
889 static const struct intel_watermark_params ironlake_display_wm_info = {
890 ILK_DISPLAY_FIFO,
891 ILK_DISPLAY_MAXWM,
892 ILK_DISPLAY_DFTWM,
893 2,
894 ILK_FIFO_LINE_SIZE
895 };
896 static const struct intel_watermark_params ironlake_cursor_wm_info = {
897 ILK_CURSOR_FIFO,
898 ILK_CURSOR_MAXWM,
899 ILK_CURSOR_DFTWM,
900 2,
901 ILK_FIFO_LINE_SIZE
902 };
903 static const struct intel_watermark_params ironlake_display_srwm_info = {
904 ILK_DISPLAY_SR_FIFO,
905 ILK_DISPLAY_MAX_SRWM,
906 ILK_DISPLAY_DFT_SRWM,
907 2,
908 ILK_FIFO_LINE_SIZE
909 };
910 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
911 ILK_CURSOR_SR_FIFO,
912 ILK_CURSOR_MAX_SRWM,
913 ILK_CURSOR_DFT_SRWM,
914 2,
915 ILK_FIFO_LINE_SIZE
916 };
917
918 static const struct intel_watermark_params sandybridge_display_wm_info = {
919 SNB_DISPLAY_FIFO,
920 SNB_DISPLAY_MAXWM,
921 SNB_DISPLAY_DFTWM,
922 2,
923 SNB_FIFO_LINE_SIZE
924 };
925 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
926 SNB_CURSOR_FIFO,
927 SNB_CURSOR_MAXWM,
928 SNB_CURSOR_DFTWM,
929 2,
930 SNB_FIFO_LINE_SIZE
931 };
932 static const struct intel_watermark_params sandybridge_display_srwm_info = {
933 SNB_DISPLAY_SR_FIFO,
934 SNB_DISPLAY_MAX_SRWM,
935 SNB_DISPLAY_DFT_SRWM,
936 2,
937 SNB_FIFO_LINE_SIZE
938 };
939 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
940 SNB_CURSOR_SR_FIFO,
941 SNB_CURSOR_MAX_SRWM,
942 SNB_CURSOR_DFT_SRWM,
943 2,
944 SNB_FIFO_LINE_SIZE
945 };
946
947
948 /**
949 * intel_calculate_wm - calculate watermark level
950 * @clock_in_khz: pixel clock
951 * @wm: chip FIFO params
952 * @pixel_size: display pixel size
953 * @latency_ns: memory latency for the platform
954 *
955 * Calculate the watermark level (the level at which the display plane will
956 * start fetching from memory again). Each chip has a different display
957 * FIFO size and allocation, so the caller needs to figure that out and pass
958 * in the correct intel_watermark_params structure.
959 *
960 * As the pixel clock runs, the FIFO will be drained at a rate that depends
961 * on the pixel size. When it reaches the watermark level, it'll start
962 * fetching FIFO line sized based chunks from memory until the FIFO fills
963 * past the watermark point. If the FIFO drains completely, a FIFO underrun
964 * will occur, and a display engine hang could result.
965 */
966 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
967 const struct intel_watermark_params *wm,
968 int fifo_size,
969 int pixel_size,
970 unsigned long latency_ns)
971 {
972 long entries_required, wm_size;
973
974 /*
975 * Note: we need to make sure we don't overflow for various clock &
976 * latency values.
977 * clocks go from a few thousand to several hundred thousand.
978 * latency is usually a few thousand
979 */
980 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
981 1000;
982 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
983
984 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
985
986 wm_size = fifo_size - (entries_required + wm->guard_size);
987
988 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
989
990 /* Don't promote wm_size to unsigned... */
991 if (wm_size > (long)wm->max_wm)
992 wm_size = wm->max_wm;
993 if (wm_size <= 0)
994 wm_size = wm->default_wm;
995 return wm_size;
996 }
997
998 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
999 {
1000 struct drm_crtc *crtc, *enabled = NULL;
1001
1002 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1003 if (intel_crtc_active(crtc)) {
1004 if (enabled)
1005 return NULL;
1006 enabled = crtc;
1007 }
1008 }
1009
1010 return enabled;
1011 }
1012
1013 static void pineview_update_wm(struct drm_device *dev)
1014 {
1015 struct drm_i915_private *dev_priv = dev->dev_private;
1016 struct drm_crtc *crtc;
1017 const struct cxsr_latency *latency;
1018 u32 reg;
1019 unsigned long wm;
1020
1021 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1022 dev_priv->fsb_freq, dev_priv->mem_freq);
1023 if (!latency) {
1024 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1025 pineview_disable_cxsr(dev);
1026 return;
1027 }
1028
1029 crtc = single_enabled_crtc(dev);
1030 if (crtc) {
1031 int clock = crtc->mode.clock;
1032 int pixel_size = crtc->fb->bits_per_pixel / 8;
1033
1034 /* Display SR */
1035 wm = intel_calculate_wm(clock, &pineview_display_wm,
1036 pineview_display_wm.fifo_size,
1037 pixel_size, latency->display_sr);
1038 reg = I915_READ(DSPFW1);
1039 reg &= ~DSPFW_SR_MASK;
1040 reg |= wm << DSPFW_SR_SHIFT;
1041 I915_WRITE(DSPFW1, reg);
1042 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1043
1044 /* cursor SR */
1045 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1046 pineview_display_wm.fifo_size,
1047 pixel_size, latency->cursor_sr);
1048 reg = I915_READ(DSPFW3);
1049 reg &= ~DSPFW_CURSOR_SR_MASK;
1050 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1051 I915_WRITE(DSPFW3, reg);
1052
1053 /* Display HPLL off SR */
1054 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1055 pineview_display_hplloff_wm.fifo_size,
1056 pixel_size, latency->display_hpll_disable);
1057 reg = I915_READ(DSPFW3);
1058 reg &= ~DSPFW_HPLL_SR_MASK;
1059 reg |= wm & DSPFW_HPLL_SR_MASK;
1060 I915_WRITE(DSPFW3, reg);
1061
1062 /* cursor HPLL off SR */
1063 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1064 pineview_display_hplloff_wm.fifo_size,
1065 pixel_size, latency->cursor_hpll_disable);
1066 reg = I915_READ(DSPFW3);
1067 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1068 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1069 I915_WRITE(DSPFW3, reg);
1070 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1071
1072 /* activate cxsr */
1073 I915_WRITE(DSPFW3,
1074 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1075 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1076 } else {
1077 pineview_disable_cxsr(dev);
1078 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1079 }
1080 }
1081
1082 static bool g4x_compute_wm0(struct drm_device *dev,
1083 int plane,
1084 const struct intel_watermark_params *display,
1085 int display_latency_ns,
1086 const struct intel_watermark_params *cursor,
1087 int cursor_latency_ns,
1088 int *plane_wm,
1089 int *cursor_wm)
1090 {
1091 struct drm_crtc *crtc;
1092 int htotal, hdisplay, clock, pixel_size;
1093 int line_time_us, line_count;
1094 int entries, tlb_miss;
1095
1096 crtc = intel_get_crtc_for_plane(dev, plane);
1097 if (!intel_crtc_active(crtc)) {
1098 *cursor_wm = cursor->guard_size;
1099 *plane_wm = display->guard_size;
1100 return false;
1101 }
1102
1103 htotal = crtc->mode.htotal;
1104 hdisplay = crtc->mode.hdisplay;
1105 clock = crtc->mode.clock;
1106 pixel_size = crtc->fb->bits_per_pixel / 8;
1107
1108 /* Use the small buffer method to calculate plane watermark */
1109 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1110 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1111 if (tlb_miss > 0)
1112 entries += tlb_miss;
1113 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1114 *plane_wm = entries + display->guard_size;
1115 if (*plane_wm > (int)display->max_wm)
1116 *plane_wm = display->max_wm;
1117
1118 /* Use the large buffer method to calculate cursor watermark */
1119 line_time_us = ((htotal * 1000) / clock);
1120 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1121 entries = line_count * 64 * pixel_size;
1122 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1123 if (tlb_miss > 0)
1124 entries += tlb_miss;
1125 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1126 *cursor_wm = entries + cursor->guard_size;
1127 if (*cursor_wm > (int)cursor->max_wm)
1128 *cursor_wm = (int)cursor->max_wm;
1129
1130 return true;
1131 }
1132
1133 /*
1134 * Check the wm result.
1135 *
1136 * If any calculated watermark values is larger than the maximum value that
1137 * can be programmed into the associated watermark register, that watermark
1138 * must be disabled.
1139 */
1140 static bool g4x_check_srwm(struct drm_device *dev,
1141 int display_wm, int cursor_wm,
1142 const struct intel_watermark_params *display,
1143 const struct intel_watermark_params *cursor)
1144 {
1145 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1146 display_wm, cursor_wm);
1147
1148 if (display_wm > display->max_wm) {
1149 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1150 display_wm, display->max_wm);
1151 return false;
1152 }
1153
1154 if (cursor_wm > cursor->max_wm) {
1155 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1156 cursor_wm, cursor->max_wm);
1157 return false;
1158 }
1159
1160 if (!(display_wm || cursor_wm)) {
1161 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1162 return false;
1163 }
1164
1165 return true;
1166 }
1167
1168 static bool g4x_compute_srwm(struct drm_device *dev,
1169 int plane,
1170 int latency_ns,
1171 const struct intel_watermark_params *display,
1172 const struct intel_watermark_params *cursor,
1173 int *display_wm, int *cursor_wm)
1174 {
1175 struct drm_crtc *crtc;
1176 int hdisplay, htotal, pixel_size, clock;
1177 unsigned long line_time_us;
1178 int line_count, line_size;
1179 int small, large;
1180 int entries;
1181
1182 if (!latency_ns) {
1183 *display_wm = *cursor_wm = 0;
1184 return false;
1185 }
1186
1187 crtc = intel_get_crtc_for_plane(dev, plane);
1188 hdisplay = crtc->mode.hdisplay;
1189 htotal = crtc->mode.htotal;
1190 clock = crtc->mode.clock;
1191 pixel_size = crtc->fb->bits_per_pixel / 8;
1192
1193 line_time_us = (htotal * 1000) / clock;
1194 line_count = (latency_ns / line_time_us + 1000) / 1000;
1195 line_size = hdisplay * pixel_size;
1196
1197 /* Use the minimum of the small and large buffer method for primary */
1198 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1199 large = line_count * line_size;
1200
1201 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1202 *display_wm = entries + display->guard_size;
1203
1204 /* calculate the self-refresh watermark for display cursor */
1205 entries = line_count * pixel_size * 64;
1206 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1207 *cursor_wm = entries + cursor->guard_size;
1208
1209 return g4x_check_srwm(dev,
1210 *display_wm, *cursor_wm,
1211 display, cursor);
1212 }
1213
1214 static bool vlv_compute_drain_latency(struct drm_device *dev,
1215 int plane,
1216 int *plane_prec_mult,
1217 int *plane_dl,
1218 int *cursor_prec_mult,
1219 int *cursor_dl)
1220 {
1221 struct drm_crtc *crtc;
1222 int clock, pixel_size;
1223 int entries;
1224
1225 crtc = intel_get_crtc_for_plane(dev, plane);
1226 if (!intel_crtc_active(crtc))
1227 return false;
1228
1229 clock = crtc->mode.clock; /* VESA DOT Clock */
1230 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1231
1232 entries = (clock / 1000) * pixel_size;
1233 *plane_prec_mult = (entries > 256) ?
1234 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1235 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1236 pixel_size);
1237
1238 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1239 *cursor_prec_mult = (entries > 256) ?
1240 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1241 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1242
1243 return true;
1244 }
1245
1246 /*
1247 * Update drain latency registers of memory arbiter
1248 *
1249 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1250 * to be programmed. Each plane has a drain latency multiplier and a drain
1251 * latency value.
1252 */
1253
1254 static void vlv_update_drain_latency(struct drm_device *dev)
1255 {
1256 struct drm_i915_private *dev_priv = dev->dev_private;
1257 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1258 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1259 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1260 either 16 or 32 */
1261
1262 /* For plane A, Cursor A */
1263 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1264 &cursor_prec_mult, &cursora_dl)) {
1265 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1266 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1267 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1268 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1269
1270 I915_WRITE(VLV_DDL1, cursora_prec |
1271 (cursora_dl << DDL_CURSORA_SHIFT) |
1272 planea_prec | planea_dl);
1273 }
1274
1275 /* For plane B, Cursor B */
1276 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1277 &cursor_prec_mult, &cursorb_dl)) {
1278 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1279 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1280 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1281 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1282
1283 I915_WRITE(VLV_DDL2, cursorb_prec |
1284 (cursorb_dl << DDL_CURSORB_SHIFT) |
1285 planeb_prec | planeb_dl);
1286 }
1287 }
1288
1289 #define single_plane_enabled(mask) is_power_of_2(mask)
1290
1291 static void valleyview_update_wm(struct drm_device *dev)
1292 {
1293 static const int sr_latency_ns = 12000;
1294 struct drm_i915_private *dev_priv = dev->dev_private;
1295 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1296 int plane_sr, cursor_sr;
1297 int ignore_plane_sr, ignore_cursor_sr;
1298 unsigned int enabled = 0;
1299
1300 vlv_update_drain_latency(dev);
1301
1302 if (g4x_compute_wm0(dev, 0,
1303 &valleyview_wm_info, latency_ns,
1304 &valleyview_cursor_wm_info, latency_ns,
1305 &planea_wm, &cursora_wm))
1306 enabled |= 1;
1307
1308 if (g4x_compute_wm0(dev, 1,
1309 &valleyview_wm_info, latency_ns,
1310 &valleyview_cursor_wm_info, latency_ns,
1311 &planeb_wm, &cursorb_wm))
1312 enabled |= 2;
1313
1314 if (single_plane_enabled(enabled) &&
1315 g4x_compute_srwm(dev, ffs(enabled) - 1,
1316 sr_latency_ns,
1317 &valleyview_wm_info,
1318 &valleyview_cursor_wm_info,
1319 &plane_sr, &ignore_cursor_sr) &&
1320 g4x_compute_srwm(dev, ffs(enabled) - 1,
1321 2*sr_latency_ns,
1322 &valleyview_wm_info,
1323 &valleyview_cursor_wm_info,
1324 &ignore_plane_sr, &cursor_sr)) {
1325 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1326 } else {
1327 I915_WRITE(FW_BLC_SELF_VLV,
1328 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1329 plane_sr = cursor_sr = 0;
1330 }
1331
1332 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1333 planea_wm, cursora_wm,
1334 planeb_wm, cursorb_wm,
1335 plane_sr, cursor_sr);
1336
1337 I915_WRITE(DSPFW1,
1338 (plane_sr << DSPFW_SR_SHIFT) |
1339 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1340 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1341 planea_wm);
1342 I915_WRITE(DSPFW2,
1343 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1344 (cursora_wm << DSPFW_CURSORA_SHIFT));
1345 I915_WRITE(DSPFW3,
1346 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1347 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1348 }
1349
1350 static void g4x_update_wm(struct drm_device *dev)
1351 {
1352 static const int sr_latency_ns = 12000;
1353 struct drm_i915_private *dev_priv = dev->dev_private;
1354 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1355 int plane_sr, cursor_sr;
1356 unsigned int enabled = 0;
1357
1358 if (g4x_compute_wm0(dev, 0,
1359 &g4x_wm_info, latency_ns,
1360 &g4x_cursor_wm_info, latency_ns,
1361 &planea_wm, &cursora_wm))
1362 enabled |= 1;
1363
1364 if (g4x_compute_wm0(dev, 1,
1365 &g4x_wm_info, latency_ns,
1366 &g4x_cursor_wm_info, latency_ns,
1367 &planeb_wm, &cursorb_wm))
1368 enabled |= 2;
1369
1370 if (single_plane_enabled(enabled) &&
1371 g4x_compute_srwm(dev, ffs(enabled) - 1,
1372 sr_latency_ns,
1373 &g4x_wm_info,
1374 &g4x_cursor_wm_info,
1375 &plane_sr, &cursor_sr)) {
1376 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1377 } else {
1378 I915_WRITE(FW_BLC_SELF,
1379 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1380 plane_sr = cursor_sr = 0;
1381 }
1382
1383 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1384 planea_wm, cursora_wm,
1385 planeb_wm, cursorb_wm,
1386 plane_sr, cursor_sr);
1387
1388 I915_WRITE(DSPFW1,
1389 (plane_sr << DSPFW_SR_SHIFT) |
1390 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1391 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1392 planea_wm);
1393 I915_WRITE(DSPFW2,
1394 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1395 (cursora_wm << DSPFW_CURSORA_SHIFT));
1396 /* HPLL off in SR has some issues on G4x... disable it */
1397 I915_WRITE(DSPFW3,
1398 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1399 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1400 }
1401
1402 static void i965_update_wm(struct drm_device *dev)
1403 {
1404 struct drm_i915_private *dev_priv = dev->dev_private;
1405 struct drm_crtc *crtc;
1406 int srwm = 1;
1407 int cursor_sr = 16;
1408
1409 /* Calc sr entries for one plane configs */
1410 crtc = single_enabled_crtc(dev);
1411 if (crtc) {
1412 /* self-refresh has much higher latency */
1413 static const int sr_latency_ns = 12000;
1414 int clock = crtc->mode.clock;
1415 int htotal = crtc->mode.htotal;
1416 int hdisplay = crtc->mode.hdisplay;
1417 int pixel_size = crtc->fb->bits_per_pixel / 8;
1418 unsigned long line_time_us;
1419 int entries;
1420
1421 line_time_us = ((htotal * 1000) / clock);
1422
1423 /* Use ns/us then divide to preserve precision */
1424 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1425 pixel_size * hdisplay;
1426 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1427 srwm = I965_FIFO_SIZE - entries;
1428 if (srwm < 0)
1429 srwm = 1;
1430 srwm &= 0x1ff;
1431 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1432 entries, srwm);
1433
1434 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1435 pixel_size * 64;
1436 entries = DIV_ROUND_UP(entries,
1437 i965_cursor_wm_info.cacheline_size);
1438 cursor_sr = i965_cursor_wm_info.fifo_size -
1439 (entries + i965_cursor_wm_info.guard_size);
1440
1441 if (cursor_sr > i965_cursor_wm_info.max_wm)
1442 cursor_sr = i965_cursor_wm_info.max_wm;
1443
1444 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1445 "cursor %d\n", srwm, cursor_sr);
1446
1447 if (IS_CRESTLINE(dev))
1448 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1449 } else {
1450 /* Turn off self refresh if both pipes are enabled */
1451 if (IS_CRESTLINE(dev))
1452 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1453 & ~FW_BLC_SELF_EN);
1454 }
1455
1456 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1457 srwm);
1458
1459 /* 965 has limitations... */
1460 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1461 (8 << 16) | (8 << 8) | (8 << 0));
1462 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1463 /* update cursor SR watermark */
1464 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1465 }
1466
1467 static void i9xx_update_wm(struct drm_device *dev)
1468 {
1469 struct drm_i915_private *dev_priv = dev->dev_private;
1470 const struct intel_watermark_params *wm_info;
1471 uint32_t fwater_lo;
1472 uint32_t fwater_hi;
1473 int cwm, srwm = 1;
1474 int fifo_size;
1475 int planea_wm, planeb_wm;
1476 struct drm_crtc *crtc, *enabled = NULL;
1477
1478 if (IS_I945GM(dev))
1479 wm_info = &i945_wm_info;
1480 else if (!IS_GEN2(dev))
1481 wm_info = &i915_wm_info;
1482 else
1483 wm_info = &i855_wm_info;
1484
1485 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1486 crtc = intel_get_crtc_for_plane(dev, 0);
1487 if (intel_crtc_active(crtc)) {
1488 int cpp = crtc->fb->bits_per_pixel / 8;
1489 if (IS_GEN2(dev))
1490 cpp = 4;
1491
1492 planea_wm = intel_calculate_wm(crtc->mode.clock,
1493 wm_info, fifo_size, cpp,
1494 latency_ns);
1495 enabled = crtc;
1496 } else
1497 planea_wm = fifo_size - wm_info->guard_size;
1498
1499 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1500 crtc = intel_get_crtc_for_plane(dev, 1);
1501 if (intel_crtc_active(crtc)) {
1502 int cpp = crtc->fb->bits_per_pixel / 8;
1503 if (IS_GEN2(dev))
1504 cpp = 4;
1505
1506 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1507 wm_info, fifo_size, cpp,
1508 latency_ns);
1509 if (enabled == NULL)
1510 enabled = crtc;
1511 else
1512 enabled = NULL;
1513 } else
1514 planeb_wm = fifo_size - wm_info->guard_size;
1515
1516 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1517
1518 /*
1519 * Overlay gets an aggressive default since video jitter is bad.
1520 */
1521 cwm = 2;
1522
1523 /* Play safe and disable self-refresh before adjusting watermarks. */
1524 if (IS_I945G(dev) || IS_I945GM(dev))
1525 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1526 else if (IS_I915GM(dev))
1527 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1528
1529 /* Calc sr entries for one plane configs */
1530 if (HAS_FW_BLC(dev) && enabled) {
1531 /* self-refresh has much higher latency */
1532 static const int sr_latency_ns = 6000;
1533 int clock = enabled->mode.clock;
1534 int htotal = enabled->mode.htotal;
1535 int hdisplay = enabled->mode.hdisplay;
1536 int pixel_size = enabled->fb->bits_per_pixel / 8;
1537 unsigned long line_time_us;
1538 int entries;
1539
1540 line_time_us = (htotal * 1000) / clock;
1541
1542 /* Use ns/us then divide to preserve precision */
1543 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1544 pixel_size * hdisplay;
1545 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1546 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1547 srwm = wm_info->fifo_size - entries;
1548 if (srwm < 0)
1549 srwm = 1;
1550
1551 if (IS_I945G(dev) || IS_I945GM(dev))
1552 I915_WRITE(FW_BLC_SELF,
1553 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1554 else if (IS_I915GM(dev))
1555 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1556 }
1557
1558 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1559 planea_wm, planeb_wm, cwm, srwm);
1560
1561 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1562 fwater_hi = (cwm & 0x1f);
1563
1564 /* Set request length to 8 cachelines per fetch */
1565 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1566 fwater_hi = fwater_hi | (1 << 8);
1567
1568 I915_WRITE(FW_BLC, fwater_lo);
1569 I915_WRITE(FW_BLC2, fwater_hi);
1570
1571 if (HAS_FW_BLC(dev)) {
1572 if (enabled) {
1573 if (IS_I945G(dev) || IS_I945GM(dev))
1574 I915_WRITE(FW_BLC_SELF,
1575 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1576 else if (IS_I915GM(dev))
1577 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1578 DRM_DEBUG_KMS("memory self refresh enabled\n");
1579 } else
1580 DRM_DEBUG_KMS("memory self refresh disabled\n");
1581 }
1582 }
1583
1584 static void i830_update_wm(struct drm_device *dev)
1585 {
1586 struct drm_i915_private *dev_priv = dev->dev_private;
1587 struct drm_crtc *crtc;
1588 uint32_t fwater_lo;
1589 int planea_wm;
1590
1591 crtc = single_enabled_crtc(dev);
1592 if (crtc == NULL)
1593 return;
1594
1595 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1596 dev_priv->display.get_fifo_size(dev, 0),
1597 4, latency_ns);
1598 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1599 fwater_lo |= (3<<8) | planea_wm;
1600
1601 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1602
1603 I915_WRITE(FW_BLC, fwater_lo);
1604 }
1605
1606 #define ILK_LP0_PLANE_LATENCY 700
1607 #define ILK_LP0_CURSOR_LATENCY 1300
1608
1609 /*
1610 * Check the wm result.
1611 *
1612 * If any calculated watermark values is larger than the maximum value that
1613 * can be programmed into the associated watermark register, that watermark
1614 * must be disabled.
1615 */
1616 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1617 int fbc_wm, int display_wm, int cursor_wm,
1618 const struct intel_watermark_params *display,
1619 const struct intel_watermark_params *cursor)
1620 {
1621 struct drm_i915_private *dev_priv = dev->dev_private;
1622
1623 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1624 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1625
1626 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1627 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1628 fbc_wm, SNB_FBC_MAX_SRWM, level);
1629
1630 /* fbc has it's own way to disable FBC WM */
1631 I915_WRITE(DISP_ARB_CTL,
1632 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1633 return false;
1634 } else if (INTEL_INFO(dev)->gen >= 6) {
1635 /* enable FBC WM (except on ILK, where it must remain off) */
1636 I915_WRITE(DISP_ARB_CTL,
1637 I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1638 }
1639
1640 if (display_wm > display->max_wm) {
1641 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1642 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1643 return false;
1644 }
1645
1646 if (cursor_wm > cursor->max_wm) {
1647 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1648 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1649 return false;
1650 }
1651
1652 if (!(fbc_wm || display_wm || cursor_wm)) {
1653 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1654 return false;
1655 }
1656
1657 return true;
1658 }
1659
1660 /*
1661 * Compute watermark values of WM[1-3],
1662 */
1663 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1664 int latency_ns,
1665 const struct intel_watermark_params *display,
1666 const struct intel_watermark_params *cursor,
1667 int *fbc_wm, int *display_wm, int *cursor_wm)
1668 {
1669 struct drm_crtc *crtc;
1670 unsigned long line_time_us;
1671 int hdisplay, htotal, pixel_size, clock;
1672 int line_count, line_size;
1673 int small, large;
1674 int entries;
1675
1676 if (!latency_ns) {
1677 *fbc_wm = *display_wm = *cursor_wm = 0;
1678 return false;
1679 }
1680
1681 crtc = intel_get_crtc_for_plane(dev, plane);
1682 hdisplay = crtc->mode.hdisplay;
1683 htotal = crtc->mode.htotal;
1684 clock = crtc->mode.clock;
1685 pixel_size = crtc->fb->bits_per_pixel / 8;
1686
1687 line_time_us = (htotal * 1000) / clock;
1688 line_count = (latency_ns / line_time_us + 1000) / 1000;
1689 line_size = hdisplay * pixel_size;
1690
1691 /* Use the minimum of the small and large buffer method for primary */
1692 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1693 large = line_count * line_size;
1694
1695 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1696 *display_wm = entries + display->guard_size;
1697
1698 /*
1699 * Spec says:
1700 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1701 */
1702 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1703
1704 /* calculate the self-refresh watermark for display cursor */
1705 entries = line_count * pixel_size * 64;
1706 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1707 *cursor_wm = entries + cursor->guard_size;
1708
1709 return ironlake_check_srwm(dev, level,
1710 *fbc_wm, *display_wm, *cursor_wm,
1711 display, cursor);
1712 }
1713
1714 static void ironlake_update_wm(struct drm_device *dev)
1715 {
1716 struct drm_i915_private *dev_priv = dev->dev_private;
1717 int fbc_wm, plane_wm, cursor_wm;
1718 unsigned int enabled;
1719
1720 enabled = 0;
1721 if (g4x_compute_wm0(dev, 0,
1722 &ironlake_display_wm_info,
1723 ILK_LP0_PLANE_LATENCY,
1724 &ironlake_cursor_wm_info,
1725 ILK_LP0_CURSOR_LATENCY,
1726 &plane_wm, &cursor_wm)) {
1727 I915_WRITE(WM0_PIPEA_ILK,
1728 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1729 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1730 " plane %d, " "cursor: %d\n",
1731 plane_wm, cursor_wm);
1732 enabled |= 1;
1733 }
1734
1735 if (g4x_compute_wm0(dev, 1,
1736 &ironlake_display_wm_info,
1737 ILK_LP0_PLANE_LATENCY,
1738 &ironlake_cursor_wm_info,
1739 ILK_LP0_CURSOR_LATENCY,
1740 &plane_wm, &cursor_wm)) {
1741 I915_WRITE(WM0_PIPEB_ILK,
1742 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1743 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1744 " plane %d, cursor: %d\n",
1745 plane_wm, cursor_wm);
1746 enabled |= 2;
1747 }
1748
1749 /*
1750 * Calculate and update the self-refresh watermark only when one
1751 * display plane is used.
1752 */
1753 I915_WRITE(WM3_LP_ILK, 0);
1754 I915_WRITE(WM2_LP_ILK, 0);
1755 I915_WRITE(WM1_LP_ILK, 0);
1756
1757 if (!single_plane_enabled(enabled))
1758 return;
1759 enabled = ffs(enabled) - 1;
1760
1761 /* WM1 */
1762 if (!ironlake_compute_srwm(dev, 1, enabled,
1763 ILK_READ_WM1_LATENCY() * 500,
1764 &ironlake_display_srwm_info,
1765 &ironlake_cursor_srwm_info,
1766 &fbc_wm, &plane_wm, &cursor_wm))
1767 return;
1768
1769 I915_WRITE(WM1_LP_ILK,
1770 WM1_LP_SR_EN |
1771 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1772 (fbc_wm << WM1_LP_FBC_SHIFT) |
1773 (plane_wm << WM1_LP_SR_SHIFT) |
1774 cursor_wm);
1775
1776 /* WM2 */
1777 if (!ironlake_compute_srwm(dev, 2, enabled,
1778 ILK_READ_WM2_LATENCY() * 500,
1779 &ironlake_display_srwm_info,
1780 &ironlake_cursor_srwm_info,
1781 &fbc_wm, &plane_wm, &cursor_wm))
1782 return;
1783
1784 I915_WRITE(WM2_LP_ILK,
1785 WM2_LP_EN |
1786 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1787 (fbc_wm << WM1_LP_FBC_SHIFT) |
1788 (plane_wm << WM1_LP_SR_SHIFT) |
1789 cursor_wm);
1790
1791 /*
1792 * WM3 is unsupported on ILK, probably because we don't have latency
1793 * data for that power state
1794 */
1795 }
1796
1797 static void sandybridge_update_wm(struct drm_device *dev)
1798 {
1799 struct drm_i915_private *dev_priv = dev->dev_private;
1800 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1801 u32 val;
1802 int fbc_wm, plane_wm, cursor_wm;
1803 unsigned int enabled;
1804
1805 enabled = 0;
1806 if (g4x_compute_wm0(dev, 0,
1807 &sandybridge_display_wm_info, latency,
1808 &sandybridge_cursor_wm_info, latency,
1809 &plane_wm, &cursor_wm)) {
1810 val = I915_READ(WM0_PIPEA_ILK);
1811 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1812 I915_WRITE(WM0_PIPEA_ILK, val |
1813 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1814 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1815 " plane %d, " "cursor: %d\n",
1816 plane_wm, cursor_wm);
1817 enabled |= 1;
1818 }
1819
1820 if (g4x_compute_wm0(dev, 1,
1821 &sandybridge_display_wm_info, latency,
1822 &sandybridge_cursor_wm_info, latency,
1823 &plane_wm, &cursor_wm)) {
1824 val = I915_READ(WM0_PIPEB_ILK);
1825 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1826 I915_WRITE(WM0_PIPEB_ILK, val |
1827 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1828 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1829 " plane %d, cursor: %d\n",
1830 plane_wm, cursor_wm);
1831 enabled |= 2;
1832 }
1833
1834 /*
1835 * Calculate and update the self-refresh watermark only when one
1836 * display plane is used.
1837 *
1838 * SNB support 3 levels of watermark.
1839 *
1840 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1841 * and disabled in the descending order
1842 *
1843 */
1844 I915_WRITE(WM3_LP_ILK, 0);
1845 I915_WRITE(WM2_LP_ILK, 0);
1846 I915_WRITE(WM1_LP_ILK, 0);
1847
1848 if (!single_plane_enabled(enabled) ||
1849 dev_priv->sprite_scaling_enabled)
1850 return;
1851 enabled = ffs(enabled) - 1;
1852
1853 /* WM1 */
1854 if (!ironlake_compute_srwm(dev, 1, enabled,
1855 SNB_READ_WM1_LATENCY() * 500,
1856 &sandybridge_display_srwm_info,
1857 &sandybridge_cursor_srwm_info,
1858 &fbc_wm, &plane_wm, &cursor_wm))
1859 return;
1860
1861 I915_WRITE(WM1_LP_ILK,
1862 WM1_LP_SR_EN |
1863 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1864 (fbc_wm << WM1_LP_FBC_SHIFT) |
1865 (plane_wm << WM1_LP_SR_SHIFT) |
1866 cursor_wm);
1867
1868 /* WM2 */
1869 if (!ironlake_compute_srwm(dev, 2, enabled,
1870 SNB_READ_WM2_LATENCY() * 500,
1871 &sandybridge_display_srwm_info,
1872 &sandybridge_cursor_srwm_info,
1873 &fbc_wm, &plane_wm, &cursor_wm))
1874 return;
1875
1876 I915_WRITE(WM2_LP_ILK,
1877 WM2_LP_EN |
1878 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1879 (fbc_wm << WM1_LP_FBC_SHIFT) |
1880 (plane_wm << WM1_LP_SR_SHIFT) |
1881 cursor_wm);
1882
1883 /* WM3 */
1884 if (!ironlake_compute_srwm(dev, 3, enabled,
1885 SNB_READ_WM3_LATENCY() * 500,
1886 &sandybridge_display_srwm_info,
1887 &sandybridge_cursor_srwm_info,
1888 &fbc_wm, &plane_wm, &cursor_wm))
1889 return;
1890
1891 I915_WRITE(WM3_LP_ILK,
1892 WM3_LP_EN |
1893 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1894 (fbc_wm << WM1_LP_FBC_SHIFT) |
1895 (plane_wm << WM1_LP_SR_SHIFT) |
1896 cursor_wm);
1897 }
1898
1899 static void ivybridge_update_wm(struct drm_device *dev)
1900 {
1901 struct drm_i915_private *dev_priv = dev->dev_private;
1902 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1903 u32 val;
1904 int fbc_wm, plane_wm, cursor_wm;
1905 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1906 unsigned int enabled;
1907
1908 enabled = 0;
1909 if (g4x_compute_wm0(dev, 0,
1910 &sandybridge_display_wm_info, latency,
1911 &sandybridge_cursor_wm_info, latency,
1912 &plane_wm, &cursor_wm)) {
1913 val = I915_READ(WM0_PIPEA_ILK);
1914 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1915 I915_WRITE(WM0_PIPEA_ILK, val |
1916 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1917 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1918 " plane %d, " "cursor: %d\n",
1919 plane_wm, cursor_wm);
1920 enabled |= 1;
1921 }
1922
1923 if (g4x_compute_wm0(dev, 1,
1924 &sandybridge_display_wm_info, latency,
1925 &sandybridge_cursor_wm_info, latency,
1926 &plane_wm, &cursor_wm)) {
1927 val = I915_READ(WM0_PIPEB_ILK);
1928 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1929 I915_WRITE(WM0_PIPEB_ILK, val |
1930 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1931 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1932 " plane %d, cursor: %d\n",
1933 plane_wm, cursor_wm);
1934 enabled |= 2;
1935 }
1936
1937 if (g4x_compute_wm0(dev, 2,
1938 &sandybridge_display_wm_info, latency,
1939 &sandybridge_cursor_wm_info, latency,
1940 &plane_wm, &cursor_wm)) {
1941 val = I915_READ(WM0_PIPEC_IVB);
1942 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1943 I915_WRITE(WM0_PIPEC_IVB, val |
1944 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1945 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1946 " plane %d, cursor: %d\n",
1947 plane_wm, cursor_wm);
1948 enabled |= 3;
1949 }
1950
1951 /*
1952 * Calculate and update the self-refresh watermark only when one
1953 * display plane is used.
1954 *
1955 * SNB support 3 levels of watermark.
1956 *
1957 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1958 * and disabled in the descending order
1959 *
1960 */
1961 I915_WRITE(WM3_LP_ILK, 0);
1962 I915_WRITE(WM2_LP_ILK, 0);
1963 I915_WRITE(WM1_LP_ILK, 0);
1964
1965 if (!single_plane_enabled(enabled) ||
1966 dev_priv->sprite_scaling_enabled)
1967 return;
1968 enabled = ffs(enabled) - 1;
1969
1970 /* WM1 */
1971 if (!ironlake_compute_srwm(dev, 1, enabled,
1972 SNB_READ_WM1_LATENCY() * 500,
1973 &sandybridge_display_srwm_info,
1974 &sandybridge_cursor_srwm_info,
1975 &fbc_wm, &plane_wm, &cursor_wm))
1976 return;
1977
1978 I915_WRITE(WM1_LP_ILK,
1979 WM1_LP_SR_EN |
1980 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1981 (fbc_wm << WM1_LP_FBC_SHIFT) |
1982 (plane_wm << WM1_LP_SR_SHIFT) |
1983 cursor_wm);
1984
1985 /* WM2 */
1986 if (!ironlake_compute_srwm(dev, 2, enabled,
1987 SNB_READ_WM2_LATENCY() * 500,
1988 &sandybridge_display_srwm_info,
1989 &sandybridge_cursor_srwm_info,
1990 &fbc_wm, &plane_wm, &cursor_wm))
1991 return;
1992
1993 I915_WRITE(WM2_LP_ILK,
1994 WM2_LP_EN |
1995 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1996 (fbc_wm << WM1_LP_FBC_SHIFT) |
1997 (plane_wm << WM1_LP_SR_SHIFT) |
1998 cursor_wm);
1999
2000 /* WM3, note we have to correct the cursor latency */
2001 if (!ironlake_compute_srwm(dev, 3, enabled,
2002 SNB_READ_WM3_LATENCY() * 500,
2003 &sandybridge_display_srwm_info,
2004 &sandybridge_cursor_srwm_info,
2005 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2006 !ironlake_compute_srwm(dev, 3, enabled,
2007 2 * SNB_READ_WM3_LATENCY() * 500,
2008 &sandybridge_display_srwm_info,
2009 &sandybridge_cursor_srwm_info,
2010 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2011 return;
2012
2013 I915_WRITE(WM3_LP_ILK,
2014 WM3_LP_EN |
2015 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2016 (fbc_wm << WM1_LP_FBC_SHIFT) |
2017 (plane_wm << WM1_LP_SR_SHIFT) |
2018 cursor_wm);
2019 }
2020
2021 static void
2022 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2023 struct drm_display_mode *mode)
2024 {
2025 struct drm_i915_private *dev_priv = dev->dev_private;
2026 u32 temp;
2027
2028 temp = I915_READ(PIPE_WM_LINETIME(pipe));
2029 temp &= ~PIPE_WM_LINETIME_MASK;
2030
2031 /* The WM are computed with base on how long it takes to fill a single
2032 * row at the given clock rate, multiplied by 8.
2033 * */
2034 temp |= PIPE_WM_LINETIME_TIME(
2035 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2036
2037 /* IPS watermarks are only used by pipe A, and are ignored by
2038 * pipes B and C. They are calculated similarly to the common
2039 * linetime values, except that we are using CD clock frequency
2040 * in MHz instead of pixel rate for the division.
2041 *
2042 * This is a placeholder for the IPS watermark calculation code.
2043 */
2044
2045 I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2046 }
2047
2048 static bool
2049 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2050 uint32_t sprite_width, int pixel_size,
2051 const struct intel_watermark_params *display,
2052 int display_latency_ns, int *sprite_wm)
2053 {
2054 struct drm_crtc *crtc;
2055 int clock;
2056 int entries, tlb_miss;
2057
2058 crtc = intel_get_crtc_for_plane(dev, plane);
2059 if (!intel_crtc_active(crtc)) {
2060 *sprite_wm = display->guard_size;
2061 return false;
2062 }
2063
2064 clock = crtc->mode.clock;
2065
2066 /* Use the small buffer method to calculate the sprite watermark */
2067 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2068 tlb_miss = display->fifo_size*display->cacheline_size -
2069 sprite_width * 8;
2070 if (tlb_miss > 0)
2071 entries += tlb_miss;
2072 entries = DIV_ROUND_UP(entries, display->cacheline_size);
2073 *sprite_wm = entries + display->guard_size;
2074 if (*sprite_wm > (int)display->max_wm)
2075 *sprite_wm = display->max_wm;
2076
2077 return true;
2078 }
2079
2080 static bool
2081 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2082 uint32_t sprite_width, int pixel_size,
2083 const struct intel_watermark_params *display,
2084 int latency_ns, int *sprite_wm)
2085 {
2086 struct drm_crtc *crtc;
2087 unsigned long line_time_us;
2088 int clock;
2089 int line_count, line_size;
2090 int small, large;
2091 int entries;
2092
2093 if (!latency_ns) {
2094 *sprite_wm = 0;
2095 return false;
2096 }
2097
2098 crtc = intel_get_crtc_for_plane(dev, plane);
2099 clock = crtc->mode.clock;
2100 if (!clock) {
2101 *sprite_wm = 0;
2102 return false;
2103 }
2104
2105 line_time_us = (sprite_width * 1000) / clock;
2106 if (!line_time_us) {
2107 *sprite_wm = 0;
2108 return false;
2109 }
2110
2111 line_count = (latency_ns / line_time_us + 1000) / 1000;
2112 line_size = sprite_width * pixel_size;
2113
2114 /* Use the minimum of the small and large buffer method for primary */
2115 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2116 large = line_count * line_size;
2117
2118 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2119 *sprite_wm = entries + display->guard_size;
2120
2121 return *sprite_wm > 0x3ff ? false : true;
2122 }
2123
2124 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2125 uint32_t sprite_width, int pixel_size)
2126 {
2127 struct drm_i915_private *dev_priv = dev->dev_private;
2128 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
2129 u32 val;
2130 int sprite_wm, reg;
2131 int ret;
2132
2133 switch (pipe) {
2134 case 0:
2135 reg = WM0_PIPEA_ILK;
2136 break;
2137 case 1:
2138 reg = WM0_PIPEB_ILK;
2139 break;
2140 case 2:
2141 reg = WM0_PIPEC_IVB;
2142 break;
2143 default:
2144 return; /* bad pipe */
2145 }
2146
2147 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2148 &sandybridge_display_wm_info,
2149 latency, &sprite_wm);
2150 if (!ret) {
2151 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2152 pipe_name(pipe));
2153 return;
2154 }
2155
2156 val = I915_READ(reg);
2157 val &= ~WM0_PIPE_SPRITE_MASK;
2158 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2159 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2160
2161
2162 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2163 pixel_size,
2164 &sandybridge_display_srwm_info,
2165 SNB_READ_WM1_LATENCY() * 500,
2166 &sprite_wm);
2167 if (!ret) {
2168 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
2169 pipe_name(pipe));
2170 return;
2171 }
2172 I915_WRITE(WM1S_LP_ILK, sprite_wm);
2173
2174 /* Only IVB has two more LP watermarks for sprite */
2175 if (!IS_IVYBRIDGE(dev))
2176 return;
2177
2178 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2179 pixel_size,
2180 &sandybridge_display_srwm_info,
2181 SNB_READ_WM2_LATENCY() * 500,
2182 &sprite_wm);
2183 if (!ret) {
2184 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
2185 pipe_name(pipe));
2186 return;
2187 }
2188 I915_WRITE(WM2S_LP_IVB, sprite_wm);
2189
2190 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2191 pixel_size,
2192 &sandybridge_display_srwm_info,
2193 SNB_READ_WM3_LATENCY() * 500,
2194 &sprite_wm);
2195 if (!ret) {
2196 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
2197 pipe_name(pipe));
2198 return;
2199 }
2200 I915_WRITE(WM3S_LP_IVB, sprite_wm);
2201 }
2202
2203 /**
2204 * intel_update_watermarks - update FIFO watermark values based on current modes
2205 *
2206 * Calculate watermark values for the various WM regs based on current mode
2207 * and plane configuration.
2208 *
2209 * There are several cases to deal with here:
2210 * - normal (i.e. non-self-refresh)
2211 * - self-refresh (SR) mode
2212 * - lines are large relative to FIFO size (buffer can hold up to 2)
2213 * - lines are small relative to FIFO size (buffer can hold more than 2
2214 * lines), so need to account for TLB latency
2215 *
2216 * The normal calculation is:
2217 * watermark = dotclock * bytes per pixel * latency
2218 * where latency is platform & configuration dependent (we assume pessimal
2219 * values here).
2220 *
2221 * The SR calculation is:
2222 * watermark = (trunc(latency/line time)+1) * surface width *
2223 * bytes per pixel
2224 * where
2225 * line time = htotal / dotclock
2226 * surface width = hdisplay for normal plane and 64 for cursor
2227 * and latency is assumed to be high, as above.
2228 *
2229 * The final value programmed to the register should always be rounded up,
2230 * and include an extra 2 entries to account for clock crossings.
2231 *
2232 * We don't use the sprite, so we can ignore that. And on Crestline we have
2233 * to set the non-SR watermarks to 8.
2234 */
2235 void intel_update_watermarks(struct drm_device *dev)
2236 {
2237 struct drm_i915_private *dev_priv = dev->dev_private;
2238
2239 if (dev_priv->display.update_wm)
2240 dev_priv->display.update_wm(dev);
2241 }
2242
2243 void intel_update_linetime_watermarks(struct drm_device *dev,
2244 int pipe, struct drm_display_mode *mode)
2245 {
2246 struct drm_i915_private *dev_priv = dev->dev_private;
2247
2248 if (dev_priv->display.update_linetime_wm)
2249 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2250 }
2251
2252 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2253 uint32_t sprite_width, int pixel_size)
2254 {
2255 struct drm_i915_private *dev_priv = dev->dev_private;
2256
2257 if (dev_priv->display.update_sprite_wm)
2258 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2259 pixel_size);
2260 }
2261
2262 static struct drm_i915_gem_object *
2263 intel_alloc_context_page(struct drm_device *dev)
2264 {
2265 struct drm_i915_gem_object *ctx;
2266 int ret;
2267
2268 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2269
2270 ctx = i915_gem_alloc_object(dev, 4096);
2271 if (!ctx) {
2272 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2273 return NULL;
2274 }
2275
2276 ret = i915_gem_object_pin(ctx, 4096, true, false);
2277 if (ret) {
2278 DRM_ERROR("failed to pin power context: %d\n", ret);
2279 goto err_unref;
2280 }
2281
2282 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2283 if (ret) {
2284 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2285 goto err_unpin;
2286 }
2287
2288 return ctx;
2289
2290 err_unpin:
2291 i915_gem_object_unpin(ctx);
2292 err_unref:
2293 drm_gem_object_unreference(&ctx->base);
2294 return NULL;
2295 }
2296
2297 /**
2298 * Lock protecting IPS related data structures
2299 */
2300 DEFINE_SPINLOCK(mchdev_lock);
2301
2302 /* Global for IPS driver to get at the current i915 device. Protected by
2303 * mchdev_lock. */
2304 static struct drm_i915_private *i915_mch_dev;
2305
2306 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2307 {
2308 struct drm_i915_private *dev_priv = dev->dev_private;
2309 u16 rgvswctl;
2310
2311 assert_spin_locked(&mchdev_lock);
2312
2313 rgvswctl = I915_READ16(MEMSWCTL);
2314 if (rgvswctl & MEMCTL_CMD_STS) {
2315 DRM_DEBUG("gpu busy, RCS change rejected\n");
2316 return false; /* still busy with another command */
2317 }
2318
2319 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2320 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2321 I915_WRITE16(MEMSWCTL, rgvswctl);
2322 POSTING_READ16(MEMSWCTL);
2323
2324 rgvswctl |= MEMCTL_CMD_STS;
2325 I915_WRITE16(MEMSWCTL, rgvswctl);
2326
2327 return true;
2328 }
2329
2330 static void ironlake_enable_drps(struct drm_device *dev)
2331 {
2332 struct drm_i915_private *dev_priv = dev->dev_private;
2333 u32 rgvmodectl = I915_READ(MEMMODECTL);
2334 u8 fmax, fmin, fstart, vstart;
2335
2336 spin_lock_irq(&mchdev_lock);
2337
2338 /* Enable temp reporting */
2339 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2340 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2341
2342 /* 100ms RC evaluation intervals */
2343 I915_WRITE(RCUPEI, 100000);
2344 I915_WRITE(RCDNEI, 100000);
2345
2346 /* Set max/min thresholds to 90ms and 80ms respectively */
2347 I915_WRITE(RCBMAXAVG, 90000);
2348 I915_WRITE(RCBMINAVG, 80000);
2349
2350 I915_WRITE(MEMIHYST, 1);
2351
2352 /* Set up min, max, and cur for interrupt handling */
2353 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2354 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2355 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2356 MEMMODE_FSTART_SHIFT;
2357
2358 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2359 PXVFREQ_PX_SHIFT;
2360
2361 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2362 dev_priv->ips.fstart = fstart;
2363
2364 dev_priv->ips.max_delay = fstart;
2365 dev_priv->ips.min_delay = fmin;
2366 dev_priv->ips.cur_delay = fstart;
2367
2368 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2369 fmax, fmin, fstart);
2370
2371 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2372
2373 /*
2374 * Interrupts will be enabled in ironlake_irq_postinstall
2375 */
2376
2377 I915_WRITE(VIDSTART, vstart);
2378 POSTING_READ(VIDSTART);
2379
2380 rgvmodectl |= MEMMODE_SWMODE_EN;
2381 I915_WRITE(MEMMODECTL, rgvmodectl);
2382
2383 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2384 DRM_ERROR("stuck trying to change perf mode\n");
2385 mdelay(1);
2386
2387 ironlake_set_drps(dev, fstart);
2388
2389 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2390 I915_READ(0x112e0);
2391 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2392 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2393 getrawmonotonic(&dev_priv->ips.last_time2);
2394
2395 spin_unlock_irq(&mchdev_lock);
2396 }
2397
2398 static void ironlake_disable_drps(struct drm_device *dev)
2399 {
2400 struct drm_i915_private *dev_priv = dev->dev_private;
2401 u16 rgvswctl;
2402
2403 spin_lock_irq(&mchdev_lock);
2404
2405 rgvswctl = I915_READ16(MEMSWCTL);
2406
2407 /* Ack interrupts, disable EFC interrupt */
2408 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2409 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2410 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2411 I915_WRITE(DEIIR, DE_PCU_EVENT);
2412 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2413
2414 /* Go back to the starting frequency */
2415 ironlake_set_drps(dev, dev_priv->ips.fstart);
2416 mdelay(1);
2417 rgvswctl |= MEMCTL_CMD_STS;
2418 I915_WRITE(MEMSWCTL, rgvswctl);
2419 mdelay(1);
2420
2421 spin_unlock_irq(&mchdev_lock);
2422 }
2423
2424 /* There's a funny hw issue where the hw returns all 0 when reading from
2425 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2426 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2427 * all limits and the gpu stuck at whatever frequency it is at atm).
2428 */
2429 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2430 {
2431 u32 limits;
2432
2433 limits = 0;
2434
2435 if (*val >= dev_priv->rps.max_delay)
2436 *val = dev_priv->rps.max_delay;
2437 limits |= dev_priv->rps.max_delay << 24;
2438
2439 /* Only set the down limit when we've reached the lowest level to avoid
2440 * getting more interrupts, otherwise leave this clear. This prevents a
2441 * race in the hw when coming out of rc6: There's a tiny window where
2442 * the hw runs at the minimal clock before selecting the desired
2443 * frequency, if the down threshold expires in that window we will not
2444 * receive a down interrupt. */
2445 if (*val <= dev_priv->rps.min_delay) {
2446 *val = dev_priv->rps.min_delay;
2447 limits |= dev_priv->rps.min_delay << 16;
2448 }
2449
2450 return limits;
2451 }
2452
2453 void gen6_set_rps(struct drm_device *dev, u8 val)
2454 {
2455 struct drm_i915_private *dev_priv = dev->dev_private;
2456 u32 limits = gen6_rps_limits(dev_priv, &val);
2457
2458 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2459 WARN_ON(val > dev_priv->rps.max_delay);
2460 WARN_ON(val < dev_priv->rps.min_delay);
2461
2462 if (val == dev_priv->rps.cur_delay)
2463 return;
2464
2465 if (IS_HASWELL(dev))
2466 I915_WRITE(GEN6_RPNSWREQ,
2467 HSW_FREQUENCY(val));
2468 else
2469 I915_WRITE(GEN6_RPNSWREQ,
2470 GEN6_FREQUENCY(val) |
2471 GEN6_OFFSET(0) |
2472 GEN6_AGGRESSIVE_TURBO);
2473
2474 /* Make sure we continue to get interrupts
2475 * until we hit the minimum or maximum frequencies.
2476 */
2477 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2478
2479 POSTING_READ(GEN6_RPNSWREQ);
2480
2481 dev_priv->rps.cur_delay = val;
2482
2483 trace_intel_gpu_freq_change(val * 50);
2484 }
2485
2486 void valleyview_set_rps(struct drm_device *dev, u8 val)
2487 {
2488 struct drm_i915_private *dev_priv = dev->dev_private;
2489 unsigned long timeout = jiffies + msecs_to_jiffies(10);
2490 u32 limits = gen6_rps_limits(dev_priv, &val);
2491 u32 pval;
2492
2493 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2494 WARN_ON(val > dev_priv->rps.max_delay);
2495 WARN_ON(val < dev_priv->rps.min_delay);
2496
2497 DRM_DEBUG_DRIVER("gpu freq request from %d to %d\n",
2498 vlv_gpu_freq(dev_priv->mem_freq,
2499 dev_priv->rps.cur_delay),
2500 vlv_gpu_freq(dev_priv->mem_freq, val));
2501
2502 if (val == dev_priv->rps.cur_delay)
2503 return;
2504
2505 valleyview_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
2506
2507 do {
2508 valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &pval);
2509 if (time_after(jiffies, timeout)) {
2510 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
2511 break;
2512 }
2513 udelay(10);
2514 } while (pval & 1);
2515
2516 valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &pval);
2517 if ((pval >> 8) != val)
2518 DRM_DEBUG_DRIVER("punit overrode freq: %d requested, but got %d\n",
2519 val, pval >> 8);
2520
2521 /* Make sure we continue to get interrupts
2522 * until we hit the minimum or maximum frequencies.
2523 */
2524 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2525
2526 dev_priv->rps.cur_delay = pval >> 8;
2527
2528 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
2529 }
2530
2531
2532 static void gen6_disable_rps(struct drm_device *dev)
2533 {
2534 struct drm_i915_private *dev_priv = dev->dev_private;
2535
2536 I915_WRITE(GEN6_RC_CONTROL, 0);
2537 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2538 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2539 I915_WRITE(GEN6_PMIER, 0);
2540 /* Complete PM interrupt masking here doesn't race with the rps work
2541 * item again unmasking PM interrupts because that is using a different
2542 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2543 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2544
2545 spin_lock_irq(&dev_priv->rps.lock);
2546 dev_priv->rps.pm_iir = 0;
2547 spin_unlock_irq(&dev_priv->rps.lock);
2548
2549 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2550 }
2551
2552 static void valleyview_disable_rps(struct drm_device *dev)
2553 {
2554 struct drm_i915_private *dev_priv = dev->dev_private;
2555
2556 I915_WRITE(GEN6_RC_CONTROL, 0);
2557 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2558 I915_WRITE(GEN6_PMIER, 0);
2559 /* Complete PM interrupt masking here doesn't race with the rps work
2560 * item again unmasking PM interrupts because that is using a different
2561 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2562 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2563
2564 spin_lock_irq(&dev_priv->rps.lock);
2565 dev_priv->rps.pm_iir = 0;
2566 spin_unlock_irq(&dev_priv->rps.lock);
2567
2568 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2569
2570 if (dev_priv->vlv_pctx) {
2571 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
2572 dev_priv->vlv_pctx = NULL;
2573 }
2574 }
2575
2576 int intel_enable_rc6(const struct drm_device *dev)
2577 {
2578 /* Respect the kernel parameter if it is set */
2579 if (i915_enable_rc6 >= 0)
2580 return i915_enable_rc6;
2581
2582 /* Disable RC6 on Ironlake */
2583 if (INTEL_INFO(dev)->gen == 5)
2584 return 0;
2585
2586 if (IS_HASWELL(dev)) {
2587 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2588 return INTEL_RC6_ENABLE;
2589 }
2590
2591 /* snb/ivb have more than one rc6 state. */
2592 if (INTEL_INFO(dev)->gen == 6) {
2593 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2594 return INTEL_RC6_ENABLE;
2595 }
2596
2597 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2598 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2599 }
2600
2601 static void gen6_enable_rps(struct drm_device *dev)
2602 {
2603 struct drm_i915_private *dev_priv = dev->dev_private;
2604 struct intel_ring_buffer *ring;
2605 u32 rp_state_cap;
2606 u32 gt_perf_status;
2607 u32 rc6vids, pcu_mbox, rc6_mask = 0;
2608 u32 gtfifodbg;
2609 int rc6_mode;
2610 int i, ret;
2611
2612 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2613
2614 /* Here begins a magic sequence of register writes to enable
2615 * auto-downclocking.
2616 *
2617 * Perhaps there might be some value in exposing these to
2618 * userspace...
2619 */
2620 I915_WRITE(GEN6_RC_STATE, 0);
2621
2622 /* Clear the DBG now so we don't confuse earlier errors */
2623 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2624 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2625 I915_WRITE(GTFIFODBG, gtfifodbg);
2626 }
2627
2628 gen6_gt_force_wake_get(dev_priv);
2629
2630 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2631 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2632
2633 /* In units of 50MHz */
2634 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
2635 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2636 dev_priv->rps.cur_delay = 0;
2637
2638 /* disable the counters and set deterministic thresholds */
2639 I915_WRITE(GEN6_RC_CONTROL, 0);
2640
2641 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2642 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2643 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2644 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2645 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2646
2647 for_each_ring(ring, dev_priv, i)
2648 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2649
2650 I915_WRITE(GEN6_RC_SLEEP, 0);
2651 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2652 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2653 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2654 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2655
2656 /* Check if we are enabling RC6 */
2657 rc6_mode = intel_enable_rc6(dev_priv->dev);
2658 if (rc6_mode & INTEL_RC6_ENABLE)
2659 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2660
2661 /* We don't use those on Haswell */
2662 if (!IS_HASWELL(dev)) {
2663 if (rc6_mode & INTEL_RC6p_ENABLE)
2664 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2665
2666 if (rc6_mode & INTEL_RC6pp_ENABLE)
2667 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2668 }
2669
2670 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2671 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2672 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2673 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2674
2675 I915_WRITE(GEN6_RC_CONTROL,
2676 rc6_mask |
2677 GEN6_RC_CTL_EI_MODE(1) |
2678 GEN6_RC_CTL_HW_ENABLE);
2679
2680 if (IS_HASWELL(dev)) {
2681 I915_WRITE(GEN6_RPNSWREQ,
2682 HSW_FREQUENCY(10));
2683 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2684 HSW_FREQUENCY(12));
2685 } else {
2686 I915_WRITE(GEN6_RPNSWREQ,
2687 GEN6_FREQUENCY(10) |
2688 GEN6_OFFSET(0) |
2689 GEN6_AGGRESSIVE_TURBO);
2690 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2691 GEN6_FREQUENCY(12));
2692 }
2693
2694 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2695 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2696 dev_priv->rps.max_delay << 24 |
2697 dev_priv->rps.min_delay << 16);
2698
2699 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2700 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2701 I915_WRITE(GEN6_RP_UP_EI, 66000);
2702 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2703
2704 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2705 I915_WRITE(GEN6_RP_CONTROL,
2706 GEN6_RP_MEDIA_TURBO |
2707 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2708 GEN6_RP_MEDIA_IS_GFX |
2709 GEN6_RP_ENABLE |
2710 GEN6_RP_UP_BUSY_AVG |
2711 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2712
2713 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2714 if (!ret && (IS_GEN6(dev) || IS_IVYBRIDGE(dev))) {
2715 pcu_mbox = 0;
2716 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2717 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
2718 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
2719 (dev_priv->rps.max_delay & 0xff) * 50,
2720 (pcu_mbox & 0xff) * 50);
2721 dev_priv->rps.hw_max = pcu_mbox & 0xff;
2722 }
2723 } else {
2724 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2725 }
2726
2727 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2728
2729 /* requires MSI enabled */
2730 I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2731 spin_lock_irq(&dev_priv->rps.lock);
2732 WARN_ON(dev_priv->rps.pm_iir != 0);
2733 I915_WRITE(GEN6_PMIMR, 0);
2734 spin_unlock_irq(&dev_priv->rps.lock);
2735 /* enable all PM interrupts */
2736 I915_WRITE(GEN6_PMINTRMSK, 0);
2737
2738 rc6vids = 0;
2739 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2740 if (IS_GEN6(dev) && ret) {
2741 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2742 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2743 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2744 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2745 rc6vids &= 0xffff00;
2746 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2747 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2748 if (ret)
2749 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2750 }
2751
2752 gen6_gt_force_wake_put(dev_priv);
2753 }
2754
2755 static void gen6_update_ring_freq(struct drm_device *dev)
2756 {
2757 struct drm_i915_private *dev_priv = dev->dev_private;
2758 int min_freq = 15;
2759 unsigned int gpu_freq;
2760 unsigned int max_ia_freq, min_ring_freq;
2761 int scaling_factor = 180;
2762
2763 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2764
2765 max_ia_freq = cpufreq_quick_get_max(0);
2766 /*
2767 * Default to measured freq if none found, PCU will ensure we don't go
2768 * over
2769 */
2770 if (!max_ia_freq)
2771 max_ia_freq = tsc_khz;
2772
2773 /* Convert from kHz to MHz */
2774 max_ia_freq /= 1000;
2775
2776 min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
2777 /* convert DDR frequency from units of 133.3MHz to bandwidth */
2778 min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
2779
2780 /*
2781 * For each potential GPU frequency, load a ring frequency we'd like
2782 * to use for memory access. We do this by specifying the IA frequency
2783 * the PCU should use as a reference to determine the ring frequency.
2784 */
2785 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2786 gpu_freq--) {
2787 int diff = dev_priv->rps.max_delay - gpu_freq;
2788 unsigned int ia_freq = 0, ring_freq = 0;
2789
2790 if (IS_HASWELL(dev)) {
2791 ring_freq = (gpu_freq * 5 + 3) / 4;
2792 ring_freq = max(min_ring_freq, ring_freq);
2793 /* leave ia_freq as the default, chosen by cpufreq */
2794 } else {
2795 /* On older processors, there is no separate ring
2796 * clock domain, so in order to boost the bandwidth
2797 * of the ring, we need to upclock the CPU (ia_freq).
2798 *
2799 * For GPU frequencies less than 750MHz,
2800 * just use the lowest ring freq.
2801 */
2802 if (gpu_freq < min_freq)
2803 ia_freq = 800;
2804 else
2805 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2806 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2807 }
2808
2809 sandybridge_pcode_write(dev_priv,
2810 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2811 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
2812 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
2813 gpu_freq);
2814 }
2815 }
2816
2817 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
2818 {
2819 u32 val, rp0;
2820
2821 valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE, &val);
2822
2823 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
2824 /* Clamp to max */
2825 rp0 = min_t(u32, rp0, 0xea);
2826
2827 return rp0;
2828 }
2829
2830 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
2831 {
2832 u32 val, rpe;
2833
2834 valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO, &val);
2835 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
2836 valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI, &val);
2837 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
2838
2839 return rpe;
2840 }
2841
2842 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
2843 {
2844 u32 val;
2845
2846 valleyview_punit_read(dev_priv, PUNIT_REG_GPU_LFM, &val);
2847
2848 return val & 0xff;
2849 }
2850
2851 static void vlv_rps_timer_work(struct work_struct *work)
2852 {
2853 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
2854 rps.vlv_work.work);
2855
2856 /*
2857 * Timer fired, we must be idle. Drop to min voltage state.
2858 * Note: we use RPe here since it should match the
2859 * Vmin we were shooting for. That should give us better
2860 * perf when we come back out of RC6 than if we used the
2861 * min freq available.
2862 */
2863 mutex_lock(&dev_priv->rps.hw_lock);
2864 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
2865 mutex_unlock(&dev_priv->rps.hw_lock);
2866 }
2867
2868 static void valleyview_setup_pctx(struct drm_device *dev)
2869 {
2870 struct drm_i915_private *dev_priv = dev->dev_private;
2871 struct drm_i915_gem_object *pctx;
2872 unsigned long pctx_paddr;
2873 u32 pcbr;
2874 int pctx_size = 24*1024;
2875
2876 pcbr = I915_READ(VLV_PCBR);
2877 if (pcbr) {
2878 /* BIOS set it up already, grab the pre-alloc'd space */
2879 int pcbr_offset;
2880
2881 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
2882 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
2883 pcbr_offset,
2884 pcbr_offset,
2885 pctx_size);
2886 goto out;
2887 }
2888
2889 /*
2890 * From the Gunit register HAS:
2891 * The Gfx driver is expected to program this register and ensure
2892 * proper allocation within Gfx stolen memory. For example, this
2893 * register should be programmed such than the PCBR range does not
2894 * overlap with other ranges, such as the frame buffer, protected
2895 * memory, or any other relevant ranges.
2896 */
2897 pctx = i915_gem_object_create_stolen(dev, pctx_size);
2898 if (!pctx) {
2899 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
2900 return;
2901 }
2902
2903 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
2904 I915_WRITE(VLV_PCBR, pctx_paddr);
2905
2906 out:
2907 dev_priv->vlv_pctx = pctx;
2908 }
2909
2910 static void valleyview_enable_rps(struct drm_device *dev)
2911 {
2912 struct drm_i915_private *dev_priv = dev->dev_private;
2913 struct intel_ring_buffer *ring;
2914 u32 gtfifodbg, val, rpe;
2915 int i;
2916
2917 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2918
2919 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2920 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2921 I915_WRITE(GTFIFODBG, gtfifodbg);
2922 }
2923
2924 valleyview_setup_pctx(dev);
2925
2926 gen6_gt_force_wake_get(dev_priv);
2927
2928 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2929 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2930 I915_WRITE(GEN6_RP_UP_EI, 66000);
2931 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2932
2933 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2934
2935 I915_WRITE(GEN6_RP_CONTROL,
2936 GEN6_RP_MEDIA_TURBO |
2937 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2938 GEN6_RP_MEDIA_IS_GFX |
2939 GEN6_RP_ENABLE |
2940 GEN6_RP_UP_BUSY_AVG |
2941 GEN6_RP_DOWN_IDLE_CONT);
2942
2943 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
2944 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2945 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2946
2947 for_each_ring(ring, dev_priv, i)
2948 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2949
2950 I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
2951
2952 /* allows RC6 residency counter to work */
2953 I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
2954 I915_WRITE(GEN6_RC_CONTROL,
2955 GEN7_RC_CTL_TO_MODE);
2956
2957 valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &val);
2958 switch ((val >> 6) & 3) {
2959 case 0:
2960 case 1:
2961 dev_priv->mem_freq = 800;
2962 break;
2963 case 2:
2964 dev_priv->mem_freq = 1066;
2965 break;
2966 case 3:
2967 dev_priv->mem_freq = 1333;
2968 break;
2969 }
2970 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
2971
2972 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
2973 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
2974
2975 DRM_DEBUG_DRIVER("current GPU freq: %d\n",
2976 vlv_gpu_freq(dev_priv->mem_freq, (val >> 8) & 0xff));
2977 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
2978
2979 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
2980 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
2981 DRM_DEBUG_DRIVER("max GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
2982 dev_priv->rps.max_delay));
2983
2984 rpe = valleyview_rps_rpe_freq(dev_priv);
2985 DRM_DEBUG_DRIVER("RPe GPU freq: %d\n",
2986 vlv_gpu_freq(dev_priv->mem_freq, rpe));
2987 dev_priv->rps.rpe_delay = rpe;
2988
2989 val = valleyview_rps_min_freq(dev_priv);
2990 DRM_DEBUG_DRIVER("min GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
2991 val));
2992 dev_priv->rps.min_delay = val;
2993
2994 DRM_DEBUG_DRIVER("setting GPU freq to %d\n",
2995 vlv_gpu_freq(dev_priv->mem_freq, rpe));
2996
2997 INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
2998
2999 valleyview_set_rps(dev_priv->dev, rpe);
3000
3001 /* requires MSI enabled */
3002 I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
3003 spin_lock_irq(&dev_priv->rps.lock);
3004 WARN_ON(dev_priv->rps.pm_iir != 0);
3005 I915_WRITE(GEN6_PMIMR, 0);
3006 spin_unlock_irq(&dev_priv->rps.lock);
3007 /* enable all PM interrupts */
3008 I915_WRITE(GEN6_PMINTRMSK, 0);
3009
3010 gen6_gt_force_wake_put(dev_priv);
3011 }
3012
3013 void ironlake_teardown_rc6(struct drm_device *dev)
3014 {
3015 struct drm_i915_private *dev_priv = dev->dev_private;
3016
3017 if (dev_priv->ips.renderctx) {
3018 i915_gem_object_unpin(dev_priv->ips.renderctx);
3019 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3020 dev_priv->ips.renderctx = NULL;
3021 }
3022
3023 if (dev_priv->ips.pwrctx) {
3024 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3025 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3026 dev_priv->ips.pwrctx = NULL;
3027 }
3028 }
3029
3030 static void ironlake_disable_rc6(struct drm_device *dev)
3031 {
3032 struct drm_i915_private *dev_priv = dev->dev_private;
3033
3034 if (I915_READ(PWRCTXA)) {
3035 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3036 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3037 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3038 50);
3039
3040 I915_WRITE(PWRCTXA, 0);
3041 POSTING_READ(PWRCTXA);
3042
3043 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3044 POSTING_READ(RSTDBYCTL);
3045 }
3046 }
3047
3048 static int ironlake_setup_rc6(struct drm_device *dev)
3049 {
3050 struct drm_i915_private *dev_priv = dev->dev_private;
3051
3052 if (dev_priv->ips.renderctx == NULL)
3053 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3054 if (!dev_priv->ips.renderctx)
3055 return -ENOMEM;
3056
3057 if (dev_priv->ips.pwrctx == NULL)
3058 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3059 if (!dev_priv->ips.pwrctx) {
3060 ironlake_teardown_rc6(dev);
3061 return -ENOMEM;
3062 }
3063
3064 return 0;
3065 }
3066
3067 static void ironlake_enable_rc6(struct drm_device *dev)
3068 {
3069 struct drm_i915_private *dev_priv = dev->dev_private;
3070 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3071 bool was_interruptible;
3072 int ret;
3073
3074 /* rc6 disabled by default due to repeated reports of hanging during
3075 * boot and resume.
3076 */
3077 if (!intel_enable_rc6(dev))
3078 return;
3079
3080 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3081
3082 ret = ironlake_setup_rc6(dev);
3083 if (ret)
3084 return;
3085
3086 was_interruptible = dev_priv->mm.interruptible;
3087 dev_priv->mm.interruptible = false;
3088
3089 /*
3090 * GPU can automatically power down the render unit if given a page
3091 * to save state.
3092 */
3093 ret = intel_ring_begin(ring, 6);
3094 if (ret) {
3095 ironlake_teardown_rc6(dev);
3096 dev_priv->mm.interruptible = was_interruptible;
3097 return;
3098 }
3099
3100 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3101 intel_ring_emit(ring, MI_SET_CONTEXT);
3102 intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
3103 MI_MM_SPACE_GTT |
3104 MI_SAVE_EXT_STATE_EN |
3105 MI_RESTORE_EXT_STATE_EN |
3106 MI_RESTORE_INHIBIT);
3107 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3108 intel_ring_emit(ring, MI_NOOP);
3109 intel_ring_emit(ring, MI_FLUSH);
3110 intel_ring_advance(ring);
3111
3112 /*
3113 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3114 * does an implicit flush, combined with MI_FLUSH above, it should be
3115 * safe to assume that renderctx is valid
3116 */
3117 ret = intel_ring_idle(ring);
3118 dev_priv->mm.interruptible = was_interruptible;
3119 if (ret) {
3120 DRM_ERROR("failed to enable ironlake power savings\n");
3121 ironlake_teardown_rc6(dev);
3122 return;
3123 }
3124
3125 I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
3126 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3127 }
3128
3129 static unsigned long intel_pxfreq(u32 vidfreq)
3130 {
3131 unsigned long freq;
3132 int div = (vidfreq & 0x3f0000) >> 16;
3133 int post = (vidfreq & 0x3000) >> 12;
3134 int pre = (vidfreq & 0x7);
3135
3136 if (!pre)
3137 return 0;
3138
3139 freq = ((div * 133333) / ((1<<post) * pre));
3140
3141 return freq;
3142 }
3143
3144 static const struct cparams {
3145 u16 i;
3146 u16 t;
3147 u16 m;
3148 u16 c;
3149 } cparams[] = {
3150 { 1, 1333, 301, 28664 },
3151 { 1, 1066, 294, 24460 },
3152 { 1, 800, 294, 25192 },
3153 { 0, 1333, 276, 27605 },
3154 { 0, 1066, 276, 27605 },
3155 { 0, 800, 231, 23784 },
3156 };
3157
3158 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3159 {
3160 u64 total_count, diff, ret;
3161 u32 count1, count2, count3, m = 0, c = 0;
3162 unsigned long now = jiffies_to_msecs(jiffies), diff1;
3163 int i;
3164
3165 assert_spin_locked(&mchdev_lock);
3166
3167 diff1 = now - dev_priv->ips.last_time1;
3168
3169 /* Prevent division-by-zero if we are asking too fast.
3170 * Also, we don't get interesting results if we are polling
3171 * faster than once in 10ms, so just return the saved value
3172 * in such cases.
3173 */
3174 if (diff1 <= 10)
3175 return dev_priv->ips.chipset_power;
3176
3177 count1 = I915_READ(DMIEC);
3178 count2 = I915_READ(DDREC);
3179 count3 = I915_READ(CSIEC);
3180
3181 total_count = count1 + count2 + count3;
3182
3183 /* FIXME: handle per-counter overflow */
3184 if (total_count < dev_priv->ips.last_count1) {
3185 diff = ~0UL - dev_priv->ips.last_count1;
3186 diff += total_count;
3187 } else {
3188 diff = total_count - dev_priv->ips.last_count1;
3189 }
3190
3191 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3192 if (cparams[i].i == dev_priv->ips.c_m &&
3193 cparams[i].t == dev_priv->ips.r_t) {
3194 m = cparams[i].m;
3195 c = cparams[i].c;
3196 break;
3197 }
3198 }
3199
3200 diff = div_u64(diff, diff1);
3201 ret = ((m * diff) + c);
3202 ret = div_u64(ret, 10);
3203
3204 dev_priv->ips.last_count1 = total_count;
3205 dev_priv->ips.last_time1 = now;
3206
3207 dev_priv->ips.chipset_power = ret;
3208
3209 return ret;
3210 }
3211
3212 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3213 {
3214 unsigned long val;
3215
3216 if (dev_priv->info->gen != 5)
3217 return 0;
3218
3219 spin_lock_irq(&mchdev_lock);
3220
3221 val = __i915_chipset_val(dev_priv);
3222
3223 spin_unlock_irq(&mchdev_lock);
3224
3225 return val;
3226 }
3227
3228 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3229 {
3230 unsigned long m, x, b;
3231 u32 tsfs;
3232
3233 tsfs = I915_READ(TSFS);
3234
3235 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3236 x = I915_READ8(TR1);
3237
3238 b = tsfs & TSFS_INTR_MASK;
3239
3240 return ((m * x) / 127) - b;
3241 }
3242
3243 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3244 {
3245 static const struct v_table {
3246 u16 vd; /* in .1 mil */
3247 u16 vm; /* in .1 mil */
3248 } v_table[] = {
3249 { 0, 0, },
3250 { 375, 0, },
3251 { 500, 0, },
3252 { 625, 0, },
3253 { 750, 0, },
3254 { 875, 0, },
3255 { 1000, 0, },
3256 { 1125, 0, },
3257 { 4125, 3000, },
3258 { 4125, 3000, },
3259 { 4125, 3000, },
3260 { 4125, 3000, },
3261 { 4125, 3000, },
3262 { 4125, 3000, },
3263 { 4125, 3000, },
3264 { 4125, 3000, },
3265 { 4125, 3000, },
3266 { 4125, 3000, },
3267 { 4125, 3000, },
3268 { 4125, 3000, },
3269 { 4125, 3000, },
3270 { 4125, 3000, },
3271 { 4125, 3000, },
3272 { 4125, 3000, },
3273 { 4125, 3000, },
3274 { 4125, 3000, },
3275 { 4125, 3000, },
3276 { 4125, 3000, },
3277 { 4125, 3000, },
3278 { 4125, 3000, },
3279 { 4125, 3000, },
3280 { 4125, 3000, },
3281 { 4250, 3125, },
3282 { 4375, 3250, },
3283 { 4500, 3375, },
3284 { 4625, 3500, },
3285 { 4750, 3625, },
3286 { 4875, 3750, },
3287 { 5000, 3875, },
3288 { 5125, 4000, },
3289 { 5250, 4125, },
3290 { 5375, 4250, },
3291 { 5500, 4375, },
3292 { 5625, 4500, },
3293 { 5750, 4625, },
3294 { 5875, 4750, },
3295 { 6000, 4875, },
3296 { 6125, 5000, },
3297 { 6250, 5125, },
3298 { 6375, 5250, },
3299 { 6500, 5375, },
3300 { 6625, 5500, },
3301 { 6750, 5625, },
3302 { 6875, 5750, },
3303 { 7000, 5875, },
3304 { 7125, 6000, },
3305 { 7250, 6125, },
3306 { 7375, 6250, },
3307 { 7500, 6375, },
3308 { 7625, 6500, },
3309 { 7750, 6625, },
3310 { 7875, 6750, },
3311 { 8000, 6875, },
3312 { 8125, 7000, },
3313 { 8250, 7125, },
3314 { 8375, 7250, },
3315 { 8500, 7375, },
3316 { 8625, 7500, },
3317 { 8750, 7625, },
3318 { 8875, 7750, },
3319 { 9000, 7875, },
3320 { 9125, 8000, },
3321 { 9250, 8125, },
3322 { 9375, 8250, },
3323 { 9500, 8375, },
3324 { 9625, 8500, },
3325 { 9750, 8625, },
3326 { 9875, 8750, },
3327 { 10000, 8875, },
3328 { 10125, 9000, },
3329 { 10250, 9125, },
3330 { 10375, 9250, },
3331 { 10500, 9375, },
3332 { 10625, 9500, },
3333 { 10750, 9625, },
3334 { 10875, 9750, },
3335 { 11000, 9875, },
3336 { 11125, 10000, },
3337 { 11250, 10125, },
3338 { 11375, 10250, },
3339 { 11500, 10375, },
3340 { 11625, 10500, },
3341 { 11750, 10625, },
3342 { 11875, 10750, },
3343 { 12000, 10875, },
3344 { 12125, 11000, },
3345 { 12250, 11125, },
3346 { 12375, 11250, },
3347 { 12500, 11375, },
3348 { 12625, 11500, },
3349 { 12750, 11625, },
3350 { 12875, 11750, },
3351 { 13000, 11875, },
3352 { 13125, 12000, },
3353 { 13250, 12125, },
3354 { 13375, 12250, },
3355 { 13500, 12375, },
3356 { 13625, 12500, },
3357 { 13750, 12625, },
3358 { 13875, 12750, },
3359 { 14000, 12875, },
3360 { 14125, 13000, },
3361 { 14250, 13125, },
3362 { 14375, 13250, },
3363 { 14500, 13375, },
3364 { 14625, 13500, },
3365 { 14750, 13625, },
3366 { 14875, 13750, },
3367 { 15000, 13875, },
3368 { 15125, 14000, },
3369 { 15250, 14125, },
3370 { 15375, 14250, },
3371 { 15500, 14375, },
3372 { 15625, 14500, },
3373 { 15750, 14625, },
3374 { 15875, 14750, },
3375 { 16000, 14875, },
3376 { 16125, 15000, },
3377 };
3378 if (dev_priv->info->is_mobile)
3379 return v_table[pxvid].vm;
3380 else
3381 return v_table[pxvid].vd;
3382 }
3383
3384 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3385 {
3386 struct timespec now, diff1;
3387 u64 diff;
3388 unsigned long diffms;
3389 u32 count;
3390
3391 assert_spin_locked(&mchdev_lock);
3392
3393 getrawmonotonic(&now);
3394 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3395
3396 /* Don't divide by 0 */
3397 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3398 if (!diffms)
3399 return;
3400
3401 count = I915_READ(GFXEC);
3402
3403 if (count < dev_priv->ips.last_count2) {
3404 diff = ~0UL - dev_priv->ips.last_count2;
3405 diff += count;
3406 } else {
3407 diff = count - dev_priv->ips.last_count2;
3408 }
3409
3410 dev_priv->ips.last_count2 = count;
3411 dev_priv->ips.last_time2 = now;
3412
3413 /* More magic constants... */
3414 diff = diff * 1181;
3415 diff = div_u64(diff, diffms * 10);
3416 dev_priv->ips.gfx_power = diff;
3417 }
3418
3419 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3420 {
3421 if (dev_priv->info->gen != 5)
3422 return;
3423
3424 spin_lock_irq(&mchdev_lock);
3425
3426 __i915_update_gfx_val(dev_priv);
3427
3428 spin_unlock_irq(&mchdev_lock);
3429 }
3430
3431 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3432 {
3433 unsigned long t, corr, state1, corr2, state2;
3434 u32 pxvid, ext_v;
3435
3436 assert_spin_locked(&mchdev_lock);
3437
3438 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3439 pxvid = (pxvid >> 24) & 0x7f;
3440 ext_v = pvid_to_extvid(dev_priv, pxvid);
3441
3442 state1 = ext_v;
3443
3444 t = i915_mch_val(dev_priv);
3445
3446 /* Revel in the empirically derived constants */
3447
3448 /* Correction factor in 1/100000 units */
3449 if (t > 80)
3450 corr = ((t * 2349) + 135940);
3451 else if (t >= 50)
3452 corr = ((t * 964) + 29317);
3453 else /* < 50 */
3454 corr = ((t * 301) + 1004);
3455
3456 corr = corr * ((150142 * state1) / 10000 - 78642);
3457 corr /= 100000;
3458 corr2 = (corr * dev_priv->ips.corr);
3459
3460 state2 = (corr2 * state1) / 10000;
3461 state2 /= 100; /* convert to mW */
3462
3463 __i915_update_gfx_val(dev_priv);
3464
3465 return dev_priv->ips.gfx_power + state2;
3466 }
3467
3468 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3469 {
3470 unsigned long val;
3471
3472 if (dev_priv->info->gen != 5)
3473 return 0;
3474
3475 spin_lock_irq(&mchdev_lock);
3476
3477 val = __i915_gfx_val(dev_priv);
3478
3479 spin_unlock_irq(&mchdev_lock);
3480
3481 return val;
3482 }
3483
3484 /**
3485 * i915_read_mch_val - return value for IPS use
3486 *
3487 * Calculate and return a value for the IPS driver to use when deciding whether
3488 * we have thermal and power headroom to increase CPU or GPU power budget.
3489 */
3490 unsigned long i915_read_mch_val(void)
3491 {
3492 struct drm_i915_private *dev_priv;
3493 unsigned long chipset_val, graphics_val, ret = 0;
3494
3495 spin_lock_irq(&mchdev_lock);
3496 if (!i915_mch_dev)
3497 goto out_unlock;
3498 dev_priv = i915_mch_dev;
3499
3500 chipset_val = __i915_chipset_val(dev_priv);
3501 graphics_val = __i915_gfx_val(dev_priv);
3502
3503 ret = chipset_val + graphics_val;
3504
3505 out_unlock:
3506 spin_unlock_irq(&mchdev_lock);
3507
3508 return ret;
3509 }
3510 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3511
3512 /**
3513 * i915_gpu_raise - raise GPU frequency limit
3514 *
3515 * Raise the limit; IPS indicates we have thermal headroom.
3516 */
3517 bool i915_gpu_raise(void)
3518 {
3519 struct drm_i915_private *dev_priv;
3520 bool ret = true;
3521
3522 spin_lock_irq(&mchdev_lock);
3523 if (!i915_mch_dev) {
3524 ret = false;
3525 goto out_unlock;
3526 }
3527 dev_priv = i915_mch_dev;
3528
3529 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3530 dev_priv->ips.max_delay--;
3531
3532 out_unlock:
3533 spin_unlock_irq(&mchdev_lock);
3534
3535 return ret;
3536 }
3537 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3538
3539 /**
3540 * i915_gpu_lower - lower GPU frequency limit
3541 *
3542 * IPS indicates we're close to a thermal limit, so throttle back the GPU
3543 * frequency maximum.
3544 */
3545 bool i915_gpu_lower(void)
3546 {
3547 struct drm_i915_private *dev_priv;
3548 bool ret = true;
3549
3550 spin_lock_irq(&mchdev_lock);
3551 if (!i915_mch_dev) {
3552 ret = false;
3553 goto out_unlock;
3554 }
3555 dev_priv = i915_mch_dev;
3556
3557 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3558 dev_priv->ips.max_delay++;
3559
3560 out_unlock:
3561 spin_unlock_irq(&mchdev_lock);
3562
3563 return ret;
3564 }
3565 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3566
3567 /**
3568 * i915_gpu_busy - indicate GPU business to IPS
3569 *
3570 * Tell the IPS driver whether or not the GPU is busy.
3571 */
3572 bool i915_gpu_busy(void)
3573 {
3574 struct drm_i915_private *dev_priv;
3575 struct intel_ring_buffer *ring;
3576 bool ret = false;
3577 int i;
3578
3579 spin_lock_irq(&mchdev_lock);
3580 if (!i915_mch_dev)
3581 goto out_unlock;
3582 dev_priv = i915_mch_dev;
3583
3584 for_each_ring(ring, dev_priv, i)
3585 ret |= !list_empty(&ring->request_list);
3586
3587 out_unlock:
3588 spin_unlock_irq(&mchdev_lock);
3589
3590 return ret;
3591 }
3592 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3593
3594 /**
3595 * i915_gpu_turbo_disable - disable graphics turbo
3596 *
3597 * Disable graphics turbo by resetting the max frequency and setting the
3598 * current frequency to the default.
3599 */
3600 bool i915_gpu_turbo_disable(void)
3601 {
3602 struct drm_i915_private *dev_priv;
3603 bool ret = true;
3604
3605 spin_lock_irq(&mchdev_lock);
3606 if (!i915_mch_dev) {
3607 ret = false;
3608 goto out_unlock;
3609 }
3610 dev_priv = i915_mch_dev;
3611
3612 dev_priv->ips.max_delay = dev_priv->ips.fstart;
3613
3614 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3615 ret = false;
3616
3617 out_unlock:
3618 spin_unlock_irq(&mchdev_lock);
3619
3620 return ret;
3621 }
3622 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3623
3624 /**
3625 * Tells the intel_ips driver that the i915 driver is now loaded, if
3626 * IPS got loaded first.
3627 *
3628 * This awkward dance is so that neither module has to depend on the
3629 * other in order for IPS to do the appropriate communication of
3630 * GPU turbo limits to i915.
3631 */
3632 static void
3633 ips_ping_for_i915_load(void)
3634 {
3635 void (*link)(void);
3636
3637 link = symbol_get(ips_link_to_i915_driver);
3638 if (link) {
3639 link();
3640 symbol_put(ips_link_to_i915_driver);
3641 }
3642 }
3643
3644 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3645 {
3646 /* We only register the i915 ips part with intel-ips once everything is
3647 * set up, to avoid intel-ips sneaking in and reading bogus values. */
3648 spin_lock_irq(&mchdev_lock);
3649 i915_mch_dev = dev_priv;
3650 spin_unlock_irq(&mchdev_lock);
3651
3652 ips_ping_for_i915_load();
3653 }
3654
3655 void intel_gpu_ips_teardown(void)
3656 {
3657 spin_lock_irq(&mchdev_lock);
3658 i915_mch_dev = NULL;
3659 spin_unlock_irq(&mchdev_lock);
3660 }
3661 static void intel_init_emon(struct drm_device *dev)
3662 {
3663 struct drm_i915_private *dev_priv = dev->dev_private;
3664 u32 lcfuse;
3665 u8 pxw[16];
3666 int i;
3667
3668 /* Disable to program */
3669 I915_WRITE(ECR, 0);
3670 POSTING_READ(ECR);
3671
3672 /* Program energy weights for various events */
3673 I915_WRITE(SDEW, 0x15040d00);
3674 I915_WRITE(CSIEW0, 0x007f0000);
3675 I915_WRITE(CSIEW1, 0x1e220004);
3676 I915_WRITE(CSIEW2, 0x04000004);
3677
3678 for (i = 0; i < 5; i++)
3679 I915_WRITE(PEW + (i * 4), 0);
3680 for (i = 0; i < 3; i++)
3681 I915_WRITE(DEW + (i * 4), 0);
3682
3683 /* Program P-state weights to account for frequency power adjustment */
3684 for (i = 0; i < 16; i++) {
3685 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3686 unsigned long freq = intel_pxfreq(pxvidfreq);
3687 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3688 PXVFREQ_PX_SHIFT;
3689 unsigned long val;
3690
3691 val = vid * vid;
3692 val *= (freq / 1000);
3693 val *= 255;
3694 val /= (127*127*900);
3695 if (val > 0xff)
3696 DRM_ERROR("bad pxval: %ld\n", val);
3697 pxw[i] = val;
3698 }
3699 /* Render standby states get 0 weight */
3700 pxw[14] = 0;
3701 pxw[15] = 0;
3702
3703 for (i = 0; i < 4; i++) {
3704 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3705 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3706 I915_WRITE(PXW + (i * 4), val);
3707 }
3708
3709 /* Adjust magic regs to magic values (more experimental results) */
3710 I915_WRITE(OGW0, 0);
3711 I915_WRITE(OGW1, 0);
3712 I915_WRITE(EG0, 0x00007f00);
3713 I915_WRITE(EG1, 0x0000000e);
3714 I915_WRITE(EG2, 0x000e0000);
3715 I915_WRITE(EG3, 0x68000300);
3716 I915_WRITE(EG4, 0x42000000);
3717 I915_WRITE(EG5, 0x00140031);
3718 I915_WRITE(EG6, 0);
3719 I915_WRITE(EG7, 0);
3720
3721 for (i = 0; i < 8; i++)
3722 I915_WRITE(PXWL + (i * 4), 0);
3723
3724 /* Enable PMON + select events */
3725 I915_WRITE(ECR, 0x80000019);
3726
3727 lcfuse = I915_READ(LCFUSE02);
3728
3729 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3730 }
3731
3732 void intel_disable_gt_powersave(struct drm_device *dev)
3733 {
3734 struct drm_i915_private *dev_priv = dev->dev_private;
3735
3736 /* Interrupts should be disabled already to avoid re-arming. */
3737 WARN_ON(dev->irq_enabled);
3738
3739 if (IS_IRONLAKE_M(dev)) {
3740 ironlake_disable_drps(dev);
3741 ironlake_disable_rc6(dev);
3742 } else if (INTEL_INFO(dev)->gen >= 6) {
3743 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3744 cancel_work_sync(&dev_priv->rps.work);
3745 if (IS_VALLEYVIEW(dev))
3746 cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
3747 mutex_lock(&dev_priv->rps.hw_lock);
3748 if (IS_VALLEYVIEW(dev))
3749 valleyview_disable_rps(dev);
3750 else
3751 gen6_disable_rps(dev);
3752 mutex_unlock(&dev_priv->rps.hw_lock);
3753 }
3754 }
3755
3756 static void intel_gen6_powersave_work(struct work_struct *work)
3757 {
3758 struct drm_i915_private *dev_priv =
3759 container_of(work, struct drm_i915_private,
3760 rps.delayed_resume_work.work);
3761 struct drm_device *dev = dev_priv->dev;
3762
3763 mutex_lock(&dev_priv->rps.hw_lock);
3764
3765 if (IS_VALLEYVIEW(dev)) {
3766 valleyview_enable_rps(dev);
3767 } else {
3768 gen6_enable_rps(dev);
3769 gen6_update_ring_freq(dev);
3770 }
3771 mutex_unlock(&dev_priv->rps.hw_lock);
3772 }
3773
3774 void intel_enable_gt_powersave(struct drm_device *dev)
3775 {
3776 struct drm_i915_private *dev_priv = dev->dev_private;
3777
3778 if (IS_IRONLAKE_M(dev)) {
3779 ironlake_enable_drps(dev);
3780 ironlake_enable_rc6(dev);
3781 intel_init_emon(dev);
3782 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
3783 /*
3784 * PCU communication is slow and this doesn't need to be
3785 * done at any specific time, so do this out of our fast path
3786 * to make resume and init faster.
3787 */
3788 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3789 round_jiffies_up_relative(HZ));
3790 }
3791 }
3792
3793 static void ibx_init_clock_gating(struct drm_device *dev)
3794 {
3795 struct drm_i915_private *dev_priv = dev->dev_private;
3796
3797 /*
3798 * On Ibex Peak and Cougar Point, we need to disable clock
3799 * gating for the panel power sequencer or it will fail to
3800 * start up when no ports are active.
3801 */
3802 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3803 }
3804
3805 static void ironlake_init_clock_gating(struct drm_device *dev)
3806 {
3807 struct drm_i915_private *dev_priv = dev->dev_private;
3808 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3809
3810 /* Required for FBC */
3811 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3812 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3813 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3814
3815 I915_WRITE(PCH_3DCGDIS0,
3816 MARIUNIT_CLOCK_GATE_DISABLE |
3817 SVSMUNIT_CLOCK_GATE_DISABLE);
3818 I915_WRITE(PCH_3DCGDIS1,
3819 VFMUNIT_CLOCK_GATE_DISABLE);
3820
3821 /*
3822 * According to the spec the following bits should be set in
3823 * order to enable memory self-refresh
3824 * The bit 22/21 of 0x42004
3825 * The bit 5 of 0x42020
3826 * The bit 15 of 0x45000
3827 */
3828 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3829 (I915_READ(ILK_DISPLAY_CHICKEN2) |
3830 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3831 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3832 I915_WRITE(DISP_ARB_CTL,
3833 (I915_READ(DISP_ARB_CTL) |
3834 DISP_FBC_WM_DIS));
3835 I915_WRITE(WM3_LP_ILK, 0);
3836 I915_WRITE(WM2_LP_ILK, 0);
3837 I915_WRITE(WM1_LP_ILK, 0);
3838
3839 /*
3840 * Based on the document from hardware guys the following bits
3841 * should be set unconditionally in order to enable FBC.
3842 * The bit 22 of 0x42000
3843 * The bit 22 of 0x42004
3844 * The bit 7,8,9 of 0x42020.
3845 */
3846 if (IS_IRONLAKE_M(dev)) {
3847 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3848 I915_READ(ILK_DISPLAY_CHICKEN1) |
3849 ILK_FBCQ_DIS);
3850 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3851 I915_READ(ILK_DISPLAY_CHICKEN2) |
3852 ILK_DPARB_GATE);
3853 }
3854
3855 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3856
3857 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3858 I915_READ(ILK_DISPLAY_CHICKEN2) |
3859 ILK_ELPIN_409_SELECT);
3860 I915_WRITE(_3D_CHICKEN2,
3861 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3862 _3D_CHICKEN2_WM_READ_PIPELINED);
3863
3864 /* WaDisableRenderCachePipelinedFlush:ilk */
3865 I915_WRITE(CACHE_MODE_0,
3866 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3867
3868 ibx_init_clock_gating(dev);
3869 }
3870
3871 static void cpt_init_clock_gating(struct drm_device *dev)
3872 {
3873 struct drm_i915_private *dev_priv = dev->dev_private;
3874 int pipe;
3875 uint32_t val;
3876
3877 /*
3878 * On Ibex Peak and Cougar Point, we need to disable clock
3879 * gating for the panel power sequencer or it will fail to
3880 * start up when no ports are active.
3881 */
3882 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3883 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3884 DPLS_EDP_PPS_FIX_DIS);
3885 /* The below fixes the weird display corruption, a few pixels shifted
3886 * downward, on (only) LVDS of some HP laptops with IVY.
3887 */
3888 for_each_pipe(pipe) {
3889 val = I915_READ(TRANS_CHICKEN2(pipe));
3890 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
3891 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3892 if (dev_priv->fdi_rx_polarity_inverted)
3893 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3894 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
3895 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
3896 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
3897 I915_WRITE(TRANS_CHICKEN2(pipe), val);
3898 }
3899 /* WADP0ClockGatingDisable */
3900 for_each_pipe(pipe) {
3901 I915_WRITE(TRANS_CHICKEN1(pipe),
3902 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3903 }
3904 }
3905
3906 static void gen6_check_mch_setup(struct drm_device *dev)
3907 {
3908 struct drm_i915_private *dev_priv = dev->dev_private;
3909 uint32_t tmp;
3910
3911 tmp = I915_READ(MCH_SSKPD);
3912 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
3913 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
3914 DRM_INFO("This can cause pipe underruns and display issues.\n");
3915 DRM_INFO("Please upgrade your BIOS to fix this.\n");
3916 }
3917 }
3918
3919 static void gen6_init_clock_gating(struct drm_device *dev)
3920 {
3921 struct drm_i915_private *dev_priv = dev->dev_private;
3922 int pipe;
3923 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3924
3925 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3926
3927 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3928 I915_READ(ILK_DISPLAY_CHICKEN2) |
3929 ILK_ELPIN_409_SELECT);
3930
3931 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
3932 I915_WRITE(_3D_CHICKEN,
3933 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3934
3935 /* WaSetupGtModeTdRowDispatch:snb */
3936 if (IS_SNB_GT1(dev))
3937 I915_WRITE(GEN6_GT_MODE,
3938 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3939
3940 I915_WRITE(WM3_LP_ILK, 0);
3941 I915_WRITE(WM2_LP_ILK, 0);
3942 I915_WRITE(WM1_LP_ILK, 0);
3943
3944 I915_WRITE(CACHE_MODE_0,
3945 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3946
3947 I915_WRITE(GEN6_UCGCTL1,
3948 I915_READ(GEN6_UCGCTL1) |
3949 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3950 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3951
3952 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3953 * gating disable must be set. Failure to set it results in
3954 * flickering pixels due to Z write ordering failures after
3955 * some amount of runtime in the Mesa "fire" demo, and Unigine
3956 * Sanctuary and Tropics, and apparently anything else with
3957 * alpha test or pixel discard.
3958 *
3959 * According to the spec, bit 11 (RCCUNIT) must also be set,
3960 * but we didn't debug actual testcases to find it out.
3961 *
3962 * Also apply WaDisableVDSUnitClockGating:snb and
3963 * WaDisableRCPBUnitClockGating:snb.
3964 */
3965 I915_WRITE(GEN6_UCGCTL2,
3966 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3967 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3968 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3969
3970 /* Bspec says we need to always set all mask bits. */
3971 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3972 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3973
3974 /*
3975 * According to the spec the following bits should be
3976 * set in order to enable memory self-refresh and fbc:
3977 * The bit21 and bit22 of 0x42000
3978 * The bit21 and bit22 of 0x42004
3979 * The bit5 and bit7 of 0x42020
3980 * The bit14 of 0x70180
3981 * The bit14 of 0x71180
3982 */
3983 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3984 I915_READ(ILK_DISPLAY_CHICKEN1) |
3985 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3986 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3987 I915_READ(ILK_DISPLAY_CHICKEN2) |
3988 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3989 I915_WRITE(ILK_DSPCLK_GATE_D,
3990 I915_READ(ILK_DSPCLK_GATE_D) |
3991 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
3992 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3993
3994 /* WaMbcDriverBootEnable:snb */
3995 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3996 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3997
3998 for_each_pipe(pipe) {
3999 I915_WRITE(DSPCNTR(pipe),
4000 I915_READ(DSPCNTR(pipe)) |
4001 DISPPLANE_TRICKLE_FEED_DISABLE);
4002 intel_flush_display_plane(dev_priv, pipe);
4003 }
4004
4005 /* The default value should be 0x200 according to docs, but the two
4006 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4007 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4008 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4009
4010 cpt_init_clock_gating(dev);
4011
4012 gen6_check_mch_setup(dev);
4013 }
4014
4015 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4016 {
4017 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4018
4019 reg &= ~GEN7_FF_SCHED_MASK;
4020 reg |= GEN7_FF_TS_SCHED_HW;
4021 reg |= GEN7_FF_VS_SCHED_HW;
4022 reg |= GEN7_FF_DS_SCHED_HW;
4023
4024 if (IS_HASWELL(dev_priv->dev))
4025 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4026
4027 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4028 }
4029
4030 static void lpt_init_clock_gating(struct drm_device *dev)
4031 {
4032 struct drm_i915_private *dev_priv = dev->dev_private;
4033
4034 /*
4035 * TODO: this bit should only be enabled when really needed, then
4036 * disabled when not needed anymore in order to save power.
4037 */
4038 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4039 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4040 I915_READ(SOUTH_DSPCLK_GATE_D) |
4041 PCH_LP_PARTITION_LEVEL_DISABLE);
4042 }
4043
4044 static void lpt_suspend_hw(struct drm_device *dev)
4045 {
4046 struct drm_i915_private *dev_priv = dev->dev_private;
4047
4048 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4049 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4050
4051 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4052 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4053 }
4054 }
4055
4056 static void haswell_init_clock_gating(struct drm_device *dev)
4057 {
4058 struct drm_i915_private *dev_priv = dev->dev_private;
4059 int pipe;
4060
4061 I915_WRITE(WM3_LP_ILK, 0);
4062 I915_WRITE(WM2_LP_ILK, 0);
4063 I915_WRITE(WM1_LP_ILK, 0);
4064
4065 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4066 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4067 */
4068 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4069
4070 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4071 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4072 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4073
4074 /* WaApplyL3ControlAndL3ChickenMode:hsw */
4075 I915_WRITE(GEN7_L3CNTLREG1,
4076 GEN7_WA_FOR_GEN7_L3_CONTROL);
4077 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4078 GEN7_WA_L3_CHICKEN_MODE);
4079
4080 /* This is required by WaCatErrorRejectionIssue:hsw */
4081 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4082 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4083 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4084
4085 for_each_pipe(pipe) {
4086 I915_WRITE(DSPCNTR(pipe),
4087 I915_READ(DSPCNTR(pipe)) |
4088 DISPPLANE_TRICKLE_FEED_DISABLE);
4089 intel_flush_display_plane(dev_priv, pipe);
4090 }
4091
4092 /* WaVSRefCountFullforceMissDisable:hsw */
4093 gen7_setup_fixed_func_scheduler(dev_priv);
4094
4095 /* WaDisable4x2SubspanOptimization:hsw */
4096 I915_WRITE(CACHE_MODE_1,
4097 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4098
4099 /* WaMbcDriverBootEnable:hsw */
4100 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4101 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4102
4103 /* WaSwitchSolVfFArbitrationPriority:hsw */
4104 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4105
4106 /* XXX: This is a workaround for early silicon revisions and should be
4107 * removed later.
4108 */
4109 I915_WRITE(WM_DBG,
4110 I915_READ(WM_DBG) |
4111 WM_DBG_DISALLOW_MULTIPLE_LP |
4112 WM_DBG_DISALLOW_SPRITE |
4113 WM_DBG_DISALLOW_MAXFIFO);
4114
4115 lpt_init_clock_gating(dev);
4116 }
4117
4118 static void ivybridge_init_clock_gating(struct drm_device *dev)
4119 {
4120 struct drm_i915_private *dev_priv = dev->dev_private;
4121 int pipe;
4122 uint32_t snpcr;
4123
4124 I915_WRITE(WM3_LP_ILK, 0);
4125 I915_WRITE(WM2_LP_ILK, 0);
4126 I915_WRITE(WM1_LP_ILK, 0);
4127
4128 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4129
4130 /* WaDisableEarlyCull:ivb */
4131 I915_WRITE(_3D_CHICKEN3,
4132 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4133
4134 /* WaDisableBackToBackFlipFix:ivb */
4135 I915_WRITE(IVB_CHICKEN3,
4136 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4137 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4138
4139 /* WaDisablePSDDualDispatchEnable:ivb */
4140 if (IS_IVB_GT1(dev))
4141 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4142 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4143 else
4144 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4145 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4146
4147 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4148 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4149 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4150
4151 /* WaApplyL3ControlAndL3ChickenMode:ivb */
4152 I915_WRITE(GEN7_L3CNTLREG1,
4153 GEN7_WA_FOR_GEN7_L3_CONTROL);
4154 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4155 GEN7_WA_L3_CHICKEN_MODE);
4156 if (IS_IVB_GT1(dev))
4157 I915_WRITE(GEN7_ROW_CHICKEN2,
4158 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4159 else
4160 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4161 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4162
4163
4164 /* WaForceL3Serialization:ivb */
4165 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4166 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4167
4168 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4169 * gating disable must be set. Failure to set it results in
4170 * flickering pixels due to Z write ordering failures after
4171 * some amount of runtime in the Mesa "fire" demo, and Unigine
4172 * Sanctuary and Tropics, and apparently anything else with
4173 * alpha test or pixel discard.
4174 *
4175 * According to the spec, bit 11 (RCCUNIT) must also be set,
4176 * but we didn't debug actual testcases to find it out.
4177 *
4178 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4179 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4180 */
4181 I915_WRITE(GEN6_UCGCTL2,
4182 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4183 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4184
4185 /* This is required by WaCatErrorRejectionIssue:ivb */
4186 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4187 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4188 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4189
4190 for_each_pipe(pipe) {
4191 I915_WRITE(DSPCNTR(pipe),
4192 I915_READ(DSPCNTR(pipe)) |
4193 DISPPLANE_TRICKLE_FEED_DISABLE);
4194 intel_flush_display_plane(dev_priv, pipe);
4195 }
4196
4197 /* WaMbcDriverBootEnable:ivb */
4198 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4199 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4200
4201 /* WaVSRefCountFullforceMissDisable:ivb */
4202 gen7_setup_fixed_func_scheduler(dev_priv);
4203
4204 /* WaDisable4x2SubspanOptimization:ivb */
4205 I915_WRITE(CACHE_MODE_1,
4206 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4207
4208 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4209 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4210 snpcr |= GEN6_MBC_SNPCR_MED;
4211 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4212
4213 if (!HAS_PCH_NOP(dev))
4214 cpt_init_clock_gating(dev);
4215
4216 gen6_check_mch_setup(dev);
4217 }
4218
4219 static void valleyview_init_clock_gating(struct drm_device *dev)
4220 {
4221 struct drm_i915_private *dev_priv = dev->dev_private;
4222 int pipe;
4223
4224 I915_WRITE(WM3_LP_ILK, 0);
4225 I915_WRITE(WM2_LP_ILK, 0);
4226 I915_WRITE(WM1_LP_ILK, 0);
4227
4228 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4229
4230 /* WaDisableEarlyCull:vlv */
4231 I915_WRITE(_3D_CHICKEN3,
4232 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4233
4234 /* WaDisableBackToBackFlipFix:vlv */
4235 I915_WRITE(IVB_CHICKEN3,
4236 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4237 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4238
4239 /* WaDisablePSDDualDispatchEnable:vlv */
4240 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4241 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4242 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4243
4244 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4245 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4246 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4247
4248 /* WaApplyL3ControlAndL3ChickenMode:vlv */
4249 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4250 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4251
4252 /* WaForceL3Serialization:vlv */
4253 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4254 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4255
4256 /* WaDisableDopClockGating:vlv */
4257 I915_WRITE(GEN7_ROW_CHICKEN2,
4258 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4259
4260 /* WaForceL3Serialization:vlv */
4261 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4262 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4263
4264 /* This is required by WaCatErrorRejectionIssue:vlv */
4265 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4266 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4267 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4268
4269 /* WaMbcDriverBootEnable:vlv */
4270 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4271 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4272
4273
4274 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4275 * gating disable must be set. Failure to set it results in
4276 * flickering pixels due to Z write ordering failures after
4277 * some amount of runtime in the Mesa "fire" demo, and Unigine
4278 * Sanctuary and Tropics, and apparently anything else with
4279 * alpha test or pixel discard.
4280 *
4281 * According to the spec, bit 11 (RCCUNIT) must also be set,
4282 * but we didn't debug actual testcases to find it out.
4283 *
4284 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4285 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4286 *
4287 * Also apply WaDisableVDSUnitClockGating:vlv and
4288 * WaDisableRCPBUnitClockGating:vlv.
4289 */
4290 I915_WRITE(GEN6_UCGCTL2,
4291 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4292 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4293 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4294 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4295 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4296
4297 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4298
4299 for_each_pipe(pipe) {
4300 I915_WRITE(DSPCNTR(pipe),
4301 I915_READ(DSPCNTR(pipe)) |
4302 DISPPLANE_TRICKLE_FEED_DISABLE);
4303 intel_flush_display_plane(dev_priv, pipe);
4304 }
4305
4306 I915_WRITE(CACHE_MODE_1,
4307 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4308
4309 /*
4310 * WaDisableVLVClockGating_VBIIssue:vlv
4311 * Disable clock gating on th GCFG unit to prevent a delay
4312 * in the reporting of vblank events.
4313 */
4314 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4315
4316 /* Conservative clock gating settings for now */
4317 I915_WRITE(0x9400, 0xffffffff);
4318 I915_WRITE(0x9404, 0xffffffff);
4319 I915_WRITE(0x9408, 0xffffffff);
4320 I915_WRITE(0x940c, 0xffffffff);
4321 I915_WRITE(0x9410, 0xffffffff);
4322 I915_WRITE(0x9414, 0xffffffff);
4323 I915_WRITE(0x9418, 0xffffffff);
4324 }
4325
4326 static void g4x_init_clock_gating(struct drm_device *dev)
4327 {
4328 struct drm_i915_private *dev_priv = dev->dev_private;
4329 uint32_t dspclk_gate;
4330
4331 I915_WRITE(RENCLK_GATE_D1, 0);
4332 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4333 GS_UNIT_CLOCK_GATE_DISABLE |
4334 CL_UNIT_CLOCK_GATE_DISABLE);
4335 I915_WRITE(RAMCLK_GATE_D, 0);
4336 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4337 OVRUNIT_CLOCK_GATE_DISABLE |
4338 OVCUNIT_CLOCK_GATE_DISABLE;
4339 if (IS_GM45(dev))
4340 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4341 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4342
4343 /* WaDisableRenderCachePipelinedFlush */
4344 I915_WRITE(CACHE_MODE_0,
4345 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4346 }
4347
4348 static void crestline_init_clock_gating(struct drm_device *dev)
4349 {
4350 struct drm_i915_private *dev_priv = dev->dev_private;
4351
4352 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4353 I915_WRITE(RENCLK_GATE_D2, 0);
4354 I915_WRITE(DSPCLK_GATE_D, 0);
4355 I915_WRITE(RAMCLK_GATE_D, 0);
4356 I915_WRITE16(DEUC, 0);
4357 }
4358
4359 static void broadwater_init_clock_gating(struct drm_device *dev)
4360 {
4361 struct drm_i915_private *dev_priv = dev->dev_private;
4362
4363 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4364 I965_RCC_CLOCK_GATE_DISABLE |
4365 I965_RCPB_CLOCK_GATE_DISABLE |
4366 I965_ISC_CLOCK_GATE_DISABLE |
4367 I965_FBC_CLOCK_GATE_DISABLE);
4368 I915_WRITE(RENCLK_GATE_D2, 0);
4369 }
4370
4371 static void gen3_init_clock_gating(struct drm_device *dev)
4372 {
4373 struct drm_i915_private *dev_priv = dev->dev_private;
4374 u32 dstate = I915_READ(D_STATE);
4375
4376 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4377 DSTATE_DOT_CLOCK_GATING;
4378 I915_WRITE(D_STATE, dstate);
4379
4380 if (IS_PINEVIEW(dev))
4381 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4382
4383 /* IIR "flip pending" means done if this bit is set */
4384 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4385 }
4386
4387 static void i85x_init_clock_gating(struct drm_device *dev)
4388 {
4389 struct drm_i915_private *dev_priv = dev->dev_private;
4390
4391 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4392 }
4393
4394 static void i830_init_clock_gating(struct drm_device *dev)
4395 {
4396 struct drm_i915_private *dev_priv = dev->dev_private;
4397
4398 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4399 }
4400
4401 void intel_init_clock_gating(struct drm_device *dev)
4402 {
4403 struct drm_i915_private *dev_priv = dev->dev_private;
4404
4405 dev_priv->display.init_clock_gating(dev);
4406 }
4407
4408 void intel_suspend_hw(struct drm_device *dev)
4409 {
4410 if (HAS_PCH_LPT(dev))
4411 lpt_suspend_hw(dev);
4412 }
4413
4414 /**
4415 * We should only use the power well if we explicitly asked the hardware to
4416 * enable it, so check if it's enabled and also check if we've requested it to
4417 * be enabled.
4418 */
4419 bool intel_display_power_enabled(struct drm_device *dev,
4420 enum intel_display_power_domain domain)
4421 {
4422 struct drm_i915_private *dev_priv = dev->dev_private;
4423
4424 if (!HAS_POWER_WELL(dev))
4425 return true;
4426
4427 switch (domain) {
4428 case POWER_DOMAIN_PIPE_A:
4429 case POWER_DOMAIN_TRANSCODER_EDP:
4430 return true;
4431 case POWER_DOMAIN_PIPE_B:
4432 case POWER_DOMAIN_PIPE_C:
4433 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
4434 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
4435 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
4436 case POWER_DOMAIN_TRANSCODER_A:
4437 case POWER_DOMAIN_TRANSCODER_B:
4438 case POWER_DOMAIN_TRANSCODER_C:
4439 return I915_READ(HSW_PWR_WELL_DRIVER) ==
4440 (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
4441 default:
4442 BUG();
4443 }
4444 }
4445
4446 void intel_set_power_well(struct drm_device *dev, bool enable)
4447 {
4448 struct drm_i915_private *dev_priv = dev->dev_private;
4449 bool is_enabled, enable_requested;
4450 uint32_t tmp;
4451
4452 if (!HAS_POWER_WELL(dev))
4453 return;
4454
4455 if (!i915_disable_power_well && !enable)
4456 return;
4457
4458 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
4459 is_enabled = tmp & HSW_PWR_WELL_STATE;
4460 enable_requested = tmp & HSW_PWR_WELL_ENABLE;
4461
4462 if (enable) {
4463 if (!enable_requested)
4464 I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
4465
4466 if (!is_enabled) {
4467 DRM_DEBUG_KMS("Enabling power well\n");
4468 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
4469 HSW_PWR_WELL_STATE), 20))
4470 DRM_ERROR("Timeout enabling power well\n");
4471 }
4472 } else {
4473 if (enable_requested) {
4474 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
4475 DRM_DEBUG_KMS("Requesting to disable the power well\n");
4476 }
4477 }
4478 }
4479
4480 /*
4481 * Starting with Haswell, we have a "Power Down Well" that can be turned off
4482 * when not needed anymore. We have 4 registers that can request the power well
4483 * to be enabled, and it will only be disabled if none of the registers is
4484 * requesting it to be enabled.
4485 */
4486 void intel_init_power_well(struct drm_device *dev)
4487 {
4488 struct drm_i915_private *dev_priv = dev->dev_private;
4489
4490 if (!HAS_POWER_WELL(dev))
4491 return;
4492
4493 /* For now, we need the power well to be always enabled. */
4494 intel_set_power_well(dev, true);
4495
4496 /* We're taking over the BIOS, so clear any requests made by it since
4497 * the driver is in charge now. */
4498 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
4499 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
4500 }
4501
4502 /* Set up chip specific power management-related functions */
4503 void intel_init_pm(struct drm_device *dev)
4504 {
4505 struct drm_i915_private *dev_priv = dev->dev_private;
4506
4507 if (I915_HAS_FBC(dev)) {
4508 if (HAS_PCH_SPLIT(dev)) {
4509 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4510 dev_priv->display.enable_fbc = ironlake_enable_fbc;
4511 dev_priv->display.disable_fbc = ironlake_disable_fbc;
4512 } else if (IS_GM45(dev)) {
4513 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4514 dev_priv->display.enable_fbc = g4x_enable_fbc;
4515 dev_priv->display.disable_fbc = g4x_disable_fbc;
4516 } else if (IS_CRESTLINE(dev)) {
4517 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4518 dev_priv->display.enable_fbc = i8xx_enable_fbc;
4519 dev_priv->display.disable_fbc = i8xx_disable_fbc;
4520 }
4521 /* 855GM needs testing */
4522 }
4523
4524 /* For cxsr */
4525 if (IS_PINEVIEW(dev))
4526 i915_pineview_get_mem_freq(dev);
4527 else if (IS_GEN5(dev))
4528 i915_ironlake_get_mem_freq(dev);
4529
4530 /* For FIFO watermark updates */
4531 if (HAS_PCH_SPLIT(dev)) {
4532 if (IS_GEN5(dev)) {
4533 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4534 dev_priv->display.update_wm = ironlake_update_wm;
4535 else {
4536 DRM_DEBUG_KMS("Failed to get proper latency. "
4537 "Disable CxSR\n");
4538 dev_priv->display.update_wm = NULL;
4539 }
4540 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4541 } else if (IS_GEN6(dev)) {
4542 if (SNB_READ_WM0_LATENCY()) {
4543 dev_priv->display.update_wm = sandybridge_update_wm;
4544 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4545 } else {
4546 DRM_DEBUG_KMS("Failed to read display plane latency. "
4547 "Disable CxSR\n");
4548 dev_priv->display.update_wm = NULL;
4549 }
4550 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4551 } else if (IS_IVYBRIDGE(dev)) {
4552 if (SNB_READ_WM0_LATENCY()) {
4553 dev_priv->display.update_wm = ivybridge_update_wm;
4554 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4555 } else {
4556 DRM_DEBUG_KMS("Failed to read display plane latency. "
4557 "Disable CxSR\n");
4558 dev_priv->display.update_wm = NULL;
4559 }
4560 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4561 } else if (IS_HASWELL(dev)) {
4562 if (SNB_READ_WM0_LATENCY()) {
4563 dev_priv->display.update_wm = sandybridge_update_wm;
4564 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4565 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4566 } else {
4567 DRM_DEBUG_KMS("Failed to read display plane latency. "
4568 "Disable CxSR\n");
4569 dev_priv->display.update_wm = NULL;
4570 }
4571 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4572 } else
4573 dev_priv->display.update_wm = NULL;
4574 } else if (IS_VALLEYVIEW(dev)) {
4575 dev_priv->display.update_wm = valleyview_update_wm;
4576 dev_priv->display.init_clock_gating =
4577 valleyview_init_clock_gating;
4578 } else if (IS_PINEVIEW(dev)) {
4579 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4580 dev_priv->is_ddr3,
4581 dev_priv->fsb_freq,
4582 dev_priv->mem_freq)) {
4583 DRM_INFO("failed to find known CxSR latency "
4584 "(found ddr%s fsb freq %d, mem freq %d), "
4585 "disabling CxSR\n",
4586 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4587 dev_priv->fsb_freq, dev_priv->mem_freq);
4588 /* Disable CxSR and never update its watermark again */
4589 pineview_disable_cxsr(dev);
4590 dev_priv->display.update_wm = NULL;
4591 } else
4592 dev_priv->display.update_wm = pineview_update_wm;
4593 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4594 } else if (IS_G4X(dev)) {
4595 dev_priv->display.update_wm = g4x_update_wm;
4596 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4597 } else if (IS_GEN4(dev)) {
4598 dev_priv->display.update_wm = i965_update_wm;
4599 if (IS_CRESTLINE(dev))
4600 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4601 else if (IS_BROADWATER(dev))
4602 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4603 } else if (IS_GEN3(dev)) {
4604 dev_priv->display.update_wm = i9xx_update_wm;
4605 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4606 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4607 } else if (IS_I865G(dev)) {
4608 dev_priv->display.update_wm = i830_update_wm;
4609 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4610 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4611 } else if (IS_I85X(dev)) {
4612 dev_priv->display.update_wm = i9xx_update_wm;
4613 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4614 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4615 } else {
4616 dev_priv->display.update_wm = i830_update_wm;
4617 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4618 if (IS_845G(dev))
4619 dev_priv->display.get_fifo_size = i845_get_fifo_size;
4620 else
4621 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4622 }
4623 }
4624
4625 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4626 {
4627 u32 gt_thread_status_mask;
4628
4629 if (IS_HASWELL(dev_priv->dev))
4630 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4631 else
4632 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4633
4634 /* w/a for a sporadic read returning 0 by waiting for the GT
4635 * thread to wake up.
4636 */
4637 if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4638 DRM_ERROR("GT thread status wait timed out\n");
4639 }
4640
4641 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4642 {
4643 I915_WRITE_NOTRACE(FORCEWAKE, 0);
4644 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4645 }
4646
4647 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4648 {
4649 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
4650 FORCEWAKE_ACK_TIMEOUT_MS))
4651 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4652
4653 I915_WRITE_NOTRACE(FORCEWAKE, 1);
4654 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4655
4656 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
4657 FORCEWAKE_ACK_TIMEOUT_MS))
4658 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4659
4660 /* WaRsForcewakeWaitTC0:snb */
4661 __gen6_gt_wait_for_thread_c0(dev_priv);
4662 }
4663
4664 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4665 {
4666 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4667 /* something from same cacheline, but !FORCEWAKE_MT */
4668 POSTING_READ(ECOBUS);
4669 }
4670
4671 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4672 {
4673 u32 forcewake_ack;
4674
4675 if (IS_HASWELL(dev_priv->dev))
4676 forcewake_ack = FORCEWAKE_ACK_HSW;
4677 else
4678 forcewake_ack = FORCEWAKE_MT_ACK;
4679
4680 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
4681 FORCEWAKE_ACK_TIMEOUT_MS))
4682 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4683
4684 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4685 /* something from same cacheline, but !FORCEWAKE_MT */
4686 POSTING_READ(ECOBUS);
4687
4688 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
4689 FORCEWAKE_ACK_TIMEOUT_MS))
4690 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4691
4692 /* WaRsForcewakeWaitTC0:ivb,hsw */
4693 __gen6_gt_wait_for_thread_c0(dev_priv);
4694 }
4695
4696 /*
4697 * Generally this is called implicitly by the register read function. However,
4698 * if some sequence requires the GT to not power down then this function should
4699 * be called at the beginning of the sequence followed by a call to
4700 * gen6_gt_force_wake_put() at the end of the sequence.
4701 */
4702 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4703 {
4704 unsigned long irqflags;
4705
4706 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4707 if (dev_priv->forcewake_count++ == 0)
4708 dev_priv->gt.force_wake_get(dev_priv);
4709 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4710 }
4711
4712 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4713 {
4714 u32 gtfifodbg;
4715 gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4716 if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4717 "MMIO read or write has been dropped %x\n", gtfifodbg))
4718 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4719 }
4720
4721 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4722 {
4723 I915_WRITE_NOTRACE(FORCEWAKE, 0);
4724 /* something from same cacheline, but !FORCEWAKE */
4725 POSTING_READ(ECOBUS);
4726 gen6_gt_check_fifodbg(dev_priv);
4727 }
4728
4729 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4730 {
4731 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4732 /* something from same cacheline, but !FORCEWAKE_MT */
4733 POSTING_READ(ECOBUS);
4734 gen6_gt_check_fifodbg(dev_priv);
4735 }
4736
4737 /*
4738 * see gen6_gt_force_wake_get()
4739 */
4740 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4741 {
4742 unsigned long irqflags;
4743
4744 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4745 if (--dev_priv->forcewake_count == 0)
4746 dev_priv->gt.force_wake_put(dev_priv);
4747 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4748 }
4749
4750 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4751 {
4752 int ret = 0;
4753
4754 if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4755 int loop = 500;
4756 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4757 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4758 udelay(10);
4759 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4760 }
4761 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4762 ++ret;
4763 dev_priv->gt_fifo_count = fifo;
4764 }
4765 dev_priv->gt_fifo_count--;
4766
4767 return ret;
4768 }
4769
4770 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4771 {
4772 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4773 /* something from same cacheline, but !FORCEWAKE_VLV */
4774 POSTING_READ(FORCEWAKE_ACK_VLV);
4775 }
4776
4777 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4778 {
4779 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
4780 FORCEWAKE_ACK_TIMEOUT_MS))
4781 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4782
4783 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4784 I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4785 _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4786
4787 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
4788 FORCEWAKE_ACK_TIMEOUT_MS))
4789 DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
4790
4791 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
4792 FORCEWAKE_KERNEL),
4793 FORCEWAKE_ACK_TIMEOUT_MS))
4794 DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
4795
4796 /* WaRsForcewakeWaitTC0:vlv */
4797 __gen6_gt_wait_for_thread_c0(dev_priv);
4798 }
4799
4800 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4801 {
4802 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4803 I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4804 _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4805 /* The below doubles as a POSTING_READ */
4806 gen6_gt_check_fifodbg(dev_priv);
4807 }
4808
4809 void intel_gt_reset(struct drm_device *dev)
4810 {
4811 struct drm_i915_private *dev_priv = dev->dev_private;
4812
4813 if (IS_VALLEYVIEW(dev)) {
4814 vlv_force_wake_reset(dev_priv);
4815 } else if (INTEL_INFO(dev)->gen >= 6) {
4816 __gen6_gt_force_wake_reset(dev_priv);
4817 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4818 __gen6_gt_force_wake_mt_reset(dev_priv);
4819 }
4820 }
4821
4822 void intel_gt_init(struct drm_device *dev)
4823 {
4824 struct drm_i915_private *dev_priv = dev->dev_private;
4825
4826 spin_lock_init(&dev_priv->gt_lock);
4827
4828 intel_gt_reset(dev);
4829
4830 if (IS_VALLEYVIEW(dev)) {
4831 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4832 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4833 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4834 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4835 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4836 } else if (IS_GEN6(dev)) {
4837 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4838 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4839 }
4840 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4841 intel_gen6_powersave_work);
4842 }
4843
4844 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4845 {
4846 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4847
4848 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4849 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4850 return -EAGAIN;
4851 }
4852
4853 I915_WRITE(GEN6_PCODE_DATA, *val);
4854 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4855
4856 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4857 500)) {
4858 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4859 return -ETIMEDOUT;
4860 }
4861
4862 *val = I915_READ(GEN6_PCODE_DATA);
4863 I915_WRITE(GEN6_PCODE_DATA, 0);
4864
4865 return 0;
4866 }
4867
4868 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4869 {
4870 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4871
4872 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4873 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4874 return -EAGAIN;
4875 }
4876
4877 I915_WRITE(GEN6_PCODE_DATA, val);
4878 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4879
4880 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4881 500)) {
4882 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4883 return -ETIMEDOUT;
4884 }
4885
4886 I915_WRITE(GEN6_PCODE_DATA, 0);
4887
4888 return 0;
4889 }
4890
4891 static int vlv_punit_rw(struct drm_i915_private *dev_priv, u32 port, u8 opcode,
4892 u8 addr, u32 *val)
4893 {
4894 u32 cmd, devfn, be, bar;
4895
4896 bar = 0;
4897 be = 0xf;
4898 devfn = PCI_DEVFN(2, 0);
4899
4900 cmd = (devfn << IOSF_DEVFN_SHIFT) | (opcode << IOSF_OPCODE_SHIFT) |
4901 (port << IOSF_PORT_SHIFT) | (be << IOSF_BYTE_ENABLES_SHIFT) |
4902 (bar << IOSF_BAR_SHIFT);
4903
4904 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4905
4906 if (I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) {
4907 DRM_DEBUG_DRIVER("warning: pcode (%s) mailbox access failed\n",
4908 opcode == PUNIT_OPCODE_REG_READ ?
4909 "read" : "write");
4910 return -EAGAIN;
4911 }
4912
4913 I915_WRITE(VLV_IOSF_ADDR, addr);
4914 if (opcode == PUNIT_OPCODE_REG_WRITE)
4915 I915_WRITE(VLV_IOSF_DATA, *val);
4916 I915_WRITE(VLV_IOSF_DOORBELL_REQ, cmd);
4917
4918 if (wait_for((I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) == 0,
4919 5)) {
4920 DRM_ERROR("timeout waiting for pcode %s (%d) to finish\n",
4921 opcode == PUNIT_OPCODE_REG_READ ? "read" : "write",
4922 addr);
4923 return -ETIMEDOUT;
4924 }
4925
4926 if (opcode == PUNIT_OPCODE_REG_READ)
4927 *val = I915_READ(VLV_IOSF_DATA);
4928 I915_WRITE(VLV_IOSF_DATA, 0);
4929
4930 return 0;
4931 }
4932
4933 int valleyview_punit_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
4934 {
4935 return vlv_punit_rw(dev_priv, IOSF_PORT_PUNIT, PUNIT_OPCODE_REG_READ,
4936 addr, val);
4937 }
4938
4939 int valleyview_punit_write(struct drm_i915_private *dev_priv, u8 addr, u32 val)
4940 {
4941 return vlv_punit_rw(dev_priv, IOSF_PORT_PUNIT, PUNIT_OPCODE_REG_WRITE,
4942 addr, &val);
4943 }
4944
4945 int valleyview_nc_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
4946 {
4947 return vlv_punit_rw(dev_priv, IOSF_PORT_NC, PUNIT_OPCODE_REG_READ,
4948 addr, val);
4949 }
4950
4951 int vlv_gpu_freq(int ddr_freq, int val)
4952 {
4953 int mult, base;
4954
4955 switch (ddr_freq) {
4956 case 800:
4957 mult = 20;
4958 base = 120;
4959 break;
4960 case 1066:
4961 mult = 22;
4962 base = 133;
4963 break;
4964 case 1333:
4965 mult = 21;
4966 base = 125;
4967 break;
4968 default:
4969 return -1;
4970 }
4971
4972 return ((val - 0xbd) * mult) + base;
4973 }
4974
4975 int vlv_freq_opcode(int ddr_freq, int val)
4976 {
4977 int mult, base;
4978
4979 switch (ddr_freq) {
4980 case 800:
4981 mult = 20;
4982 base = 120;
4983 break;
4984 case 1066:
4985 mult = 22;
4986 base = 133;
4987 break;
4988 case 1333:
4989 mult = 21;
4990 base = 125;
4991 break;
4992 default:
4993 return -1;
4994 }
4995
4996 val /= mult;
4997 val -= base / mult;
4998 val += 0xbd;
4999
5000 if (val > 0xea)
5001 val = 0xea;
5002
5003 return val;
5004 }
5005
This page took 0.201745 seconds and 5 git commands to generate.