drm/i915: Broaden FBC resolution limit to 4096*4096
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38 * RC6 is a special power stage which allows the GPU to enter an very
39 * low-voltage mode when idle, using down to 0V while at this stage. This
40 * stage is entered automatically when the GPU is idle when RC6 support is
41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42 *
43 * There are different RC6 modes available in Intel GPU, which differentiate
44 * among each other with the latency required to enter and leave RC6 and
45 * voltage consumed by the GPU in different states.
46 *
47 * The combination of the following flags define which states GPU is allowed
48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49 * RC6pp is deepest RC6. Their support by hardware varies according to the
50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51 * which brings the most power savings; deeper states save more power, but
52 * require higher latency to switch to and wake up.
53 */
54 #define INTEL_RC6_ENABLE (1<<0)
55 #define INTEL_RC6p_ENABLE (1<<1)
56 #define INTEL_RC6pp_ENABLE (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59 * framebuffer contents in-memory, aiming at reducing the required bandwidth
60 * during in-memory transfers and, therefore, reduce the power packet.
61 *
62 * The benefits of FBC are mostly visible with solid backgrounds and
63 * variation-less patterns.
64 *
65 * FBC-related functionality can be enabled by the means of the
66 * i915.i915_enable_fbc parameter
67 */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71 struct drm_i915_private *dev_priv = dev->dev_private;
72 u32 fbc_ctl;
73
74 /* Disable compression */
75 fbc_ctl = I915_READ(FBC_CONTROL);
76 if ((fbc_ctl & FBC_CTL_EN) == 0)
77 return;
78
79 fbc_ctl &= ~FBC_CTL_EN;
80 I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82 /* Wait for compressing bit to clear */
83 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84 DRM_DEBUG_KMS("FBC idle timed out\n");
85 return;
86 }
87
88 DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93 struct drm_device *dev = crtc->dev;
94 struct drm_i915_private *dev_priv = dev->dev_private;
95 struct drm_framebuffer *fb = crtc->primary->fb;
96 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97 struct drm_i915_gem_object *obj = intel_fb->obj;
98 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99 int cfb_pitch;
100 int i;
101 u32 fbc_ctl;
102
103 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104 if (fb->pitches[0] < cfb_pitch)
105 cfb_pitch = fb->pitches[0];
106
107 /* FBC_CTL wants 32B or 64B units */
108 if (IS_GEN2(dev))
109 cfb_pitch = (cfb_pitch / 32) - 1;
110 else
111 cfb_pitch = (cfb_pitch / 64) - 1;
112
113 /* Clear old tags */
114 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
115 I915_WRITE(FBC_TAG + (i * 4), 0);
116
117 if (IS_GEN4(dev)) {
118 u32 fbc_ctl2;
119
120 /* Set it up... */
121 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
122 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
123 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
124 I915_WRITE(FBC_FENCE_OFF, crtc->y);
125 }
126
127 /* enable it... */
128 fbc_ctl = I915_READ(FBC_CONTROL);
129 fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
130 fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
131 if (IS_I945GM(dev))
132 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
133 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
134 fbc_ctl |= obj->fence_reg;
135 I915_WRITE(FBC_CONTROL, fbc_ctl);
136
137 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
138 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
139 }
140
141 static bool i8xx_fbc_enabled(struct drm_device *dev)
142 {
143 struct drm_i915_private *dev_priv = dev->dev_private;
144
145 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
146 }
147
148 static void g4x_enable_fbc(struct drm_crtc *crtc)
149 {
150 struct drm_device *dev = crtc->dev;
151 struct drm_i915_private *dev_priv = dev->dev_private;
152 struct drm_framebuffer *fb = crtc->primary->fb;
153 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
154 struct drm_i915_gem_object *obj = intel_fb->obj;
155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
156 u32 dpfc_ctl;
157
158 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
159 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
160 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
161 else
162 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
163 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
164
165 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
166
167 /* enable it... */
168 I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
169
170 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
171 }
172
173 static void g4x_disable_fbc(struct drm_device *dev)
174 {
175 struct drm_i915_private *dev_priv = dev->dev_private;
176 u32 dpfc_ctl;
177
178 /* Disable compression */
179 dpfc_ctl = I915_READ(DPFC_CONTROL);
180 if (dpfc_ctl & DPFC_CTL_EN) {
181 dpfc_ctl &= ~DPFC_CTL_EN;
182 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
183
184 DRM_DEBUG_KMS("disabled FBC\n");
185 }
186 }
187
188 static bool g4x_fbc_enabled(struct drm_device *dev)
189 {
190 struct drm_i915_private *dev_priv = dev->dev_private;
191
192 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
193 }
194
195 static void sandybridge_blit_fbc_update(struct drm_device *dev)
196 {
197 struct drm_i915_private *dev_priv = dev->dev_private;
198 u32 blt_ecoskpd;
199
200 /* Make sure blitter notifies FBC of writes */
201
202 /* Blitter is part of Media powerwell on VLV. No impact of
203 * his param in other platforms for now */
204 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
205
206 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
207 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
208 GEN6_BLITTER_LOCK_SHIFT;
209 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
211 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
212 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
213 GEN6_BLITTER_LOCK_SHIFT);
214 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
215 POSTING_READ(GEN6_BLITTER_ECOSKPD);
216
217 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
218 }
219
220 static void ironlake_enable_fbc(struct drm_crtc *crtc)
221 {
222 struct drm_device *dev = crtc->dev;
223 struct drm_i915_private *dev_priv = dev->dev_private;
224 struct drm_framebuffer *fb = crtc->primary->fb;
225 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
226 struct drm_i915_gem_object *obj = intel_fb->obj;
227 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
228 u32 dpfc_ctl;
229
230 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
231 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
232 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
233 else
234 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
235 dpfc_ctl |= DPFC_CTL_FENCE_EN;
236 if (IS_GEN5(dev))
237 dpfc_ctl |= obj->fence_reg;
238
239 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
240 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
241 /* enable it... */
242 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
243
244 if (IS_GEN6(dev)) {
245 I915_WRITE(SNB_DPFC_CTL_SA,
246 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
247 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
248 sandybridge_blit_fbc_update(dev);
249 }
250
251 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
252 }
253
254 static void ironlake_disable_fbc(struct drm_device *dev)
255 {
256 struct drm_i915_private *dev_priv = dev->dev_private;
257 u32 dpfc_ctl;
258
259 /* Disable compression */
260 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
261 if (dpfc_ctl & DPFC_CTL_EN) {
262 dpfc_ctl &= ~DPFC_CTL_EN;
263 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
264
265 DRM_DEBUG_KMS("disabled FBC\n");
266 }
267 }
268
269 static bool ironlake_fbc_enabled(struct drm_device *dev)
270 {
271 struct drm_i915_private *dev_priv = dev->dev_private;
272
273 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
274 }
275
276 static void gen7_enable_fbc(struct drm_crtc *crtc)
277 {
278 struct drm_device *dev = crtc->dev;
279 struct drm_i915_private *dev_priv = dev->dev_private;
280 struct drm_framebuffer *fb = crtc->primary->fb;
281 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
282 struct drm_i915_gem_object *obj = intel_fb->obj;
283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
284 u32 dpfc_ctl;
285
286 dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
287 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
288 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
289 else
290 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
291 dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
292
293 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
294
295 if (IS_IVYBRIDGE(dev)) {
296 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
297 I915_WRITE(ILK_DISPLAY_CHICKEN1,
298 I915_READ(ILK_DISPLAY_CHICKEN1) |
299 ILK_FBCQ_DIS);
300 } else {
301 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
302 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
303 I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
304 HSW_FBCQ_DIS);
305 }
306
307 I915_WRITE(SNB_DPFC_CTL_SA,
308 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
309 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
310
311 sandybridge_blit_fbc_update(dev);
312
313 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
314 }
315
316 bool intel_fbc_enabled(struct drm_device *dev)
317 {
318 struct drm_i915_private *dev_priv = dev->dev_private;
319
320 if (!dev_priv->display.fbc_enabled)
321 return false;
322
323 return dev_priv->display.fbc_enabled(dev);
324 }
325
326 static void intel_fbc_work_fn(struct work_struct *__work)
327 {
328 struct intel_fbc_work *work =
329 container_of(to_delayed_work(__work),
330 struct intel_fbc_work, work);
331 struct drm_device *dev = work->crtc->dev;
332 struct drm_i915_private *dev_priv = dev->dev_private;
333
334 mutex_lock(&dev->struct_mutex);
335 if (work == dev_priv->fbc.fbc_work) {
336 /* Double check that we haven't switched fb without cancelling
337 * the prior work.
338 */
339 if (work->crtc->primary->fb == work->fb) {
340 dev_priv->display.enable_fbc(work->crtc);
341
342 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
343 dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
344 dev_priv->fbc.y = work->crtc->y;
345 }
346
347 dev_priv->fbc.fbc_work = NULL;
348 }
349 mutex_unlock(&dev->struct_mutex);
350
351 kfree(work);
352 }
353
354 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
355 {
356 if (dev_priv->fbc.fbc_work == NULL)
357 return;
358
359 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
360
361 /* Synchronisation is provided by struct_mutex and checking of
362 * dev_priv->fbc.fbc_work, so we can perform the cancellation
363 * entirely asynchronously.
364 */
365 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
366 /* tasklet was killed before being run, clean up */
367 kfree(dev_priv->fbc.fbc_work);
368
369 /* Mark the work as no longer wanted so that if it does
370 * wake-up (because the work was already running and waiting
371 * for our mutex), it will discover that is no longer
372 * necessary to run.
373 */
374 dev_priv->fbc.fbc_work = NULL;
375 }
376
377 static void intel_enable_fbc(struct drm_crtc *crtc)
378 {
379 struct intel_fbc_work *work;
380 struct drm_device *dev = crtc->dev;
381 struct drm_i915_private *dev_priv = dev->dev_private;
382
383 if (!dev_priv->display.enable_fbc)
384 return;
385
386 intel_cancel_fbc_work(dev_priv);
387
388 work = kzalloc(sizeof(*work), GFP_KERNEL);
389 if (work == NULL) {
390 DRM_ERROR("Failed to allocate FBC work structure\n");
391 dev_priv->display.enable_fbc(crtc);
392 return;
393 }
394
395 work->crtc = crtc;
396 work->fb = crtc->primary->fb;
397 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
398
399 dev_priv->fbc.fbc_work = work;
400
401 /* Delay the actual enabling to let pageflipping cease and the
402 * display to settle before starting the compression. Note that
403 * this delay also serves a second purpose: it allows for a
404 * vblank to pass after disabling the FBC before we attempt
405 * to modify the control registers.
406 *
407 * A more complicated solution would involve tracking vblanks
408 * following the termination of the page-flipping sequence
409 * and indeed performing the enable as a co-routine and not
410 * waiting synchronously upon the vblank.
411 *
412 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
413 */
414 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
415 }
416
417 void intel_disable_fbc(struct drm_device *dev)
418 {
419 struct drm_i915_private *dev_priv = dev->dev_private;
420
421 intel_cancel_fbc_work(dev_priv);
422
423 if (!dev_priv->display.disable_fbc)
424 return;
425
426 dev_priv->display.disable_fbc(dev);
427 dev_priv->fbc.plane = -1;
428 }
429
430 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
431 enum no_fbc_reason reason)
432 {
433 if (dev_priv->fbc.no_fbc_reason == reason)
434 return false;
435
436 dev_priv->fbc.no_fbc_reason = reason;
437 return true;
438 }
439
440 /**
441 * intel_update_fbc - enable/disable FBC as needed
442 * @dev: the drm_device
443 *
444 * Set up the framebuffer compression hardware at mode set time. We
445 * enable it if possible:
446 * - plane A only (on pre-965)
447 * - no pixel mulitply/line duplication
448 * - no alpha buffer discard
449 * - no dual wide
450 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
451 *
452 * We can't assume that any compression will take place (worst case),
453 * so the compressed buffer has to be the same size as the uncompressed
454 * one. It also must reside (along with the line length buffer) in
455 * stolen memory.
456 *
457 * We need to enable/disable FBC on a global basis.
458 */
459 void intel_update_fbc(struct drm_device *dev)
460 {
461 struct drm_i915_private *dev_priv = dev->dev_private;
462 struct drm_crtc *crtc = NULL, *tmp_crtc;
463 struct intel_crtc *intel_crtc;
464 struct drm_framebuffer *fb;
465 struct intel_framebuffer *intel_fb;
466 struct drm_i915_gem_object *obj;
467 const struct drm_display_mode *adjusted_mode;
468 unsigned int max_width, max_height;
469
470 if (!HAS_FBC(dev)) {
471 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
472 return;
473 }
474
475 if (!i915.powersave) {
476 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
477 DRM_DEBUG_KMS("fbc disabled per module param\n");
478 return;
479 }
480
481 /*
482 * If FBC is already on, we just have to verify that we can
483 * keep it that way...
484 * Need to disable if:
485 * - more than one pipe is active
486 * - changing FBC params (stride, fence, mode)
487 * - new fb is too large to fit in compressed buffer
488 * - going to an unsupported config (interlace, pixel multiply, etc.)
489 */
490 for_each_crtc(dev, tmp_crtc) {
491 if (intel_crtc_active(tmp_crtc) &&
492 to_intel_crtc(tmp_crtc)->primary_enabled) {
493 if (crtc) {
494 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
495 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
496 goto out_disable;
497 }
498 crtc = tmp_crtc;
499 }
500 }
501
502 if (!crtc || crtc->primary->fb == NULL) {
503 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
504 DRM_DEBUG_KMS("no output, disabling\n");
505 goto out_disable;
506 }
507
508 intel_crtc = to_intel_crtc(crtc);
509 fb = crtc->primary->fb;
510 intel_fb = to_intel_framebuffer(fb);
511 obj = intel_fb->obj;
512 adjusted_mode = &intel_crtc->config.adjusted_mode;
513
514 if (i915.enable_fbc < 0 &&
515 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
516 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
517 DRM_DEBUG_KMS("disabled per chip default\n");
518 goto out_disable;
519 }
520 if (!i915.enable_fbc) {
521 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
522 DRM_DEBUG_KMS("fbc disabled per module param\n");
523 goto out_disable;
524 }
525 if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
526 (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
527 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
528 DRM_DEBUG_KMS("mode incompatible with compression, "
529 "disabling\n");
530 goto out_disable;
531 }
532
533 if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
534 max_width = 4096;
535 max_height = 4096;
536 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
537 max_width = 4096;
538 max_height = 2048;
539 } else {
540 max_width = 2048;
541 max_height = 1536;
542 }
543 if (intel_crtc->config.pipe_src_w > max_width ||
544 intel_crtc->config.pipe_src_h > max_height) {
545 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
546 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
547 goto out_disable;
548 }
549 if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
550 intel_crtc->plane != PLANE_A) {
551 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
552 DRM_DEBUG_KMS("plane not A, disabling compression\n");
553 goto out_disable;
554 }
555
556 /* The use of a CPU fence is mandatory in order to detect writes
557 * by the CPU to the scanout and trigger updates to the FBC.
558 */
559 if (obj->tiling_mode != I915_TILING_X ||
560 obj->fence_reg == I915_FENCE_REG_NONE) {
561 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
562 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
563 goto out_disable;
564 }
565
566 /* If the kernel debugger is active, always disable compression */
567 if (in_dbg_master())
568 goto out_disable;
569
570 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
571 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
572 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
573 goto out_disable;
574 }
575
576 /* If the scanout has not changed, don't modify the FBC settings.
577 * Note that we make the fundamental assumption that the fb->obj
578 * cannot be unpinned (and have its GTT offset and fence revoked)
579 * without first being decoupled from the scanout and FBC disabled.
580 */
581 if (dev_priv->fbc.plane == intel_crtc->plane &&
582 dev_priv->fbc.fb_id == fb->base.id &&
583 dev_priv->fbc.y == crtc->y)
584 return;
585
586 if (intel_fbc_enabled(dev)) {
587 /* We update FBC along two paths, after changing fb/crtc
588 * configuration (modeswitching) and after page-flipping
589 * finishes. For the latter, we know that not only did
590 * we disable the FBC at the start of the page-flip
591 * sequence, but also more than one vblank has passed.
592 *
593 * For the former case of modeswitching, it is possible
594 * to switch between two FBC valid configurations
595 * instantaneously so we do need to disable the FBC
596 * before we can modify its control registers. We also
597 * have to wait for the next vblank for that to take
598 * effect. However, since we delay enabling FBC we can
599 * assume that a vblank has passed since disabling and
600 * that we can safely alter the registers in the deferred
601 * callback.
602 *
603 * In the scenario that we go from a valid to invalid
604 * and then back to valid FBC configuration we have
605 * no strict enforcement that a vblank occurred since
606 * disabling the FBC. However, along all current pipe
607 * disabling paths we do need to wait for a vblank at
608 * some point. And we wait before enabling FBC anyway.
609 */
610 DRM_DEBUG_KMS("disabling active FBC for update\n");
611 intel_disable_fbc(dev);
612 }
613
614 intel_enable_fbc(crtc);
615 dev_priv->fbc.no_fbc_reason = FBC_OK;
616 return;
617
618 out_disable:
619 /* Multiple disables should be harmless */
620 if (intel_fbc_enabled(dev)) {
621 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
622 intel_disable_fbc(dev);
623 }
624 i915_gem_stolen_cleanup_compression(dev);
625 }
626
627 static void i915_pineview_get_mem_freq(struct drm_device *dev)
628 {
629 struct drm_i915_private *dev_priv = dev->dev_private;
630 u32 tmp;
631
632 tmp = I915_READ(CLKCFG);
633
634 switch (tmp & CLKCFG_FSB_MASK) {
635 case CLKCFG_FSB_533:
636 dev_priv->fsb_freq = 533; /* 133*4 */
637 break;
638 case CLKCFG_FSB_800:
639 dev_priv->fsb_freq = 800; /* 200*4 */
640 break;
641 case CLKCFG_FSB_667:
642 dev_priv->fsb_freq = 667; /* 167*4 */
643 break;
644 case CLKCFG_FSB_400:
645 dev_priv->fsb_freq = 400; /* 100*4 */
646 break;
647 }
648
649 switch (tmp & CLKCFG_MEM_MASK) {
650 case CLKCFG_MEM_533:
651 dev_priv->mem_freq = 533;
652 break;
653 case CLKCFG_MEM_667:
654 dev_priv->mem_freq = 667;
655 break;
656 case CLKCFG_MEM_800:
657 dev_priv->mem_freq = 800;
658 break;
659 }
660
661 /* detect pineview DDR3 setting */
662 tmp = I915_READ(CSHRDDR3CTL);
663 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
664 }
665
666 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
667 {
668 struct drm_i915_private *dev_priv = dev->dev_private;
669 u16 ddrpll, csipll;
670
671 ddrpll = I915_READ16(DDRMPLL1);
672 csipll = I915_READ16(CSIPLL0);
673
674 switch (ddrpll & 0xff) {
675 case 0xc:
676 dev_priv->mem_freq = 800;
677 break;
678 case 0x10:
679 dev_priv->mem_freq = 1066;
680 break;
681 case 0x14:
682 dev_priv->mem_freq = 1333;
683 break;
684 case 0x18:
685 dev_priv->mem_freq = 1600;
686 break;
687 default:
688 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
689 ddrpll & 0xff);
690 dev_priv->mem_freq = 0;
691 break;
692 }
693
694 dev_priv->ips.r_t = dev_priv->mem_freq;
695
696 switch (csipll & 0x3ff) {
697 case 0x00c:
698 dev_priv->fsb_freq = 3200;
699 break;
700 case 0x00e:
701 dev_priv->fsb_freq = 3733;
702 break;
703 case 0x010:
704 dev_priv->fsb_freq = 4266;
705 break;
706 case 0x012:
707 dev_priv->fsb_freq = 4800;
708 break;
709 case 0x014:
710 dev_priv->fsb_freq = 5333;
711 break;
712 case 0x016:
713 dev_priv->fsb_freq = 5866;
714 break;
715 case 0x018:
716 dev_priv->fsb_freq = 6400;
717 break;
718 default:
719 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
720 csipll & 0x3ff);
721 dev_priv->fsb_freq = 0;
722 break;
723 }
724
725 if (dev_priv->fsb_freq == 3200) {
726 dev_priv->ips.c_m = 0;
727 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
728 dev_priv->ips.c_m = 1;
729 } else {
730 dev_priv->ips.c_m = 2;
731 }
732 }
733
734 static const struct cxsr_latency cxsr_latency_table[] = {
735 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
736 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
737 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
738 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
739 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
740
741 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
742 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
743 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
744 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
745 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
746
747 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
748 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
749 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
750 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
751 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
752
753 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
754 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
755 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
756 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
757 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
758
759 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
760 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
761 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
762 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
763 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
764
765 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
766 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
767 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
768 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
769 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
770 };
771
772 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
773 int is_ddr3,
774 int fsb,
775 int mem)
776 {
777 const struct cxsr_latency *latency;
778 int i;
779
780 if (fsb == 0 || mem == 0)
781 return NULL;
782
783 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
784 latency = &cxsr_latency_table[i];
785 if (is_desktop == latency->is_desktop &&
786 is_ddr3 == latency->is_ddr3 &&
787 fsb == latency->fsb_freq && mem == latency->mem_freq)
788 return latency;
789 }
790
791 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
792
793 return NULL;
794 }
795
796 static void pineview_disable_cxsr(struct drm_device *dev)
797 {
798 struct drm_i915_private *dev_priv = dev->dev_private;
799
800 /* deactivate cxsr */
801 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
802 }
803
804 /*
805 * Latency for FIFO fetches is dependent on several factors:
806 * - memory configuration (speed, channels)
807 * - chipset
808 * - current MCH state
809 * It can be fairly high in some situations, so here we assume a fairly
810 * pessimal value. It's a tradeoff between extra memory fetches (if we
811 * set this value too high, the FIFO will fetch frequently to stay full)
812 * and power consumption (set it too low to save power and we might see
813 * FIFO underruns and display "flicker").
814 *
815 * A value of 5us seems to be a good balance; safe for very low end
816 * platforms but not overly aggressive on lower latency configs.
817 */
818 static const int latency_ns = 5000;
819
820 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
821 {
822 struct drm_i915_private *dev_priv = dev->dev_private;
823 uint32_t dsparb = I915_READ(DSPARB);
824 int size;
825
826 size = dsparb & 0x7f;
827 if (plane)
828 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
829
830 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
831 plane ? "B" : "A", size);
832
833 return size;
834 }
835
836 static int i830_get_fifo_size(struct drm_device *dev, int plane)
837 {
838 struct drm_i915_private *dev_priv = dev->dev_private;
839 uint32_t dsparb = I915_READ(DSPARB);
840 int size;
841
842 size = dsparb & 0x1ff;
843 if (plane)
844 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
845 size >>= 1; /* Convert to cachelines */
846
847 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
848 plane ? "B" : "A", size);
849
850 return size;
851 }
852
853 static int i845_get_fifo_size(struct drm_device *dev, int plane)
854 {
855 struct drm_i915_private *dev_priv = dev->dev_private;
856 uint32_t dsparb = I915_READ(DSPARB);
857 int size;
858
859 size = dsparb & 0x7f;
860 size >>= 2; /* Convert to cachelines */
861
862 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
863 plane ? "B" : "A",
864 size);
865
866 return size;
867 }
868
869 /* Pineview has different values for various configs */
870 static const struct intel_watermark_params pineview_display_wm = {
871 .fifo_size = PINEVIEW_DISPLAY_FIFO,
872 .max_wm = PINEVIEW_MAX_WM,
873 .default_wm = PINEVIEW_DFT_WM,
874 .guard_size = PINEVIEW_GUARD_WM,
875 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
876 };
877 static const struct intel_watermark_params pineview_display_hplloff_wm = {
878 .fifo_size = PINEVIEW_DISPLAY_FIFO,
879 .max_wm = PINEVIEW_MAX_WM,
880 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
881 .guard_size = PINEVIEW_GUARD_WM,
882 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
883 };
884 static const struct intel_watermark_params pineview_cursor_wm = {
885 .fifo_size = PINEVIEW_CURSOR_FIFO,
886 .max_wm = PINEVIEW_CURSOR_MAX_WM,
887 .default_wm = PINEVIEW_CURSOR_DFT_WM,
888 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
889 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
890 };
891 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
892 .fifo_size = PINEVIEW_CURSOR_FIFO,
893 .max_wm = PINEVIEW_CURSOR_MAX_WM,
894 .default_wm = PINEVIEW_CURSOR_DFT_WM,
895 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
896 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
897 };
898 static const struct intel_watermark_params g4x_wm_info = {
899 .fifo_size = G4X_FIFO_SIZE,
900 .max_wm = G4X_MAX_WM,
901 .default_wm = G4X_MAX_WM,
902 .guard_size = 2,
903 .cacheline_size = G4X_FIFO_LINE_SIZE,
904 };
905 static const struct intel_watermark_params g4x_cursor_wm_info = {
906 .fifo_size = I965_CURSOR_FIFO,
907 .max_wm = I965_CURSOR_MAX_WM,
908 .default_wm = I965_CURSOR_DFT_WM,
909 .guard_size = 2,
910 .cacheline_size = G4X_FIFO_LINE_SIZE,
911 };
912 static const struct intel_watermark_params valleyview_wm_info = {
913 .fifo_size = VALLEYVIEW_FIFO_SIZE,
914 .max_wm = VALLEYVIEW_MAX_WM,
915 .default_wm = VALLEYVIEW_MAX_WM,
916 .guard_size = 2,
917 .cacheline_size = G4X_FIFO_LINE_SIZE,
918 };
919 static const struct intel_watermark_params valleyview_cursor_wm_info = {
920 .fifo_size = I965_CURSOR_FIFO,
921 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
922 .default_wm = I965_CURSOR_DFT_WM,
923 .guard_size = 2,
924 .cacheline_size = G4X_FIFO_LINE_SIZE,
925 };
926 static const struct intel_watermark_params i965_cursor_wm_info = {
927 .fifo_size = I965_CURSOR_FIFO,
928 .max_wm = I965_CURSOR_MAX_WM,
929 .default_wm = I965_CURSOR_DFT_WM,
930 .guard_size = 2,
931 .cacheline_size = I915_FIFO_LINE_SIZE,
932 };
933 static const struct intel_watermark_params i945_wm_info = {
934 .fifo_size = I945_FIFO_SIZE,
935 .max_wm = I915_MAX_WM,
936 .default_wm = 1,
937 .guard_size = 2,
938 .cacheline_size = I915_FIFO_LINE_SIZE,
939 };
940 static const struct intel_watermark_params i915_wm_info = {
941 .fifo_size = I915_FIFO_SIZE,
942 .max_wm = I915_MAX_WM,
943 .default_wm = 1,
944 .guard_size = 2,
945 .cacheline_size = I915_FIFO_LINE_SIZE,
946 };
947 static const struct intel_watermark_params i830_wm_info = {
948 .fifo_size = I855GM_FIFO_SIZE,
949 .max_wm = I915_MAX_WM,
950 .default_wm = 1,
951 .guard_size = 2,
952 .cacheline_size = I830_FIFO_LINE_SIZE,
953 };
954 static const struct intel_watermark_params i845_wm_info = {
955 .fifo_size = I830_FIFO_SIZE,
956 .max_wm = I915_MAX_WM,
957 .default_wm = 1,
958 .guard_size = 2,
959 .cacheline_size = I830_FIFO_LINE_SIZE,
960 };
961
962 /**
963 * intel_calculate_wm - calculate watermark level
964 * @clock_in_khz: pixel clock
965 * @wm: chip FIFO params
966 * @pixel_size: display pixel size
967 * @latency_ns: memory latency for the platform
968 *
969 * Calculate the watermark level (the level at which the display plane will
970 * start fetching from memory again). Each chip has a different display
971 * FIFO size and allocation, so the caller needs to figure that out and pass
972 * in the correct intel_watermark_params structure.
973 *
974 * As the pixel clock runs, the FIFO will be drained at a rate that depends
975 * on the pixel size. When it reaches the watermark level, it'll start
976 * fetching FIFO line sized based chunks from memory until the FIFO fills
977 * past the watermark point. If the FIFO drains completely, a FIFO underrun
978 * will occur, and a display engine hang could result.
979 */
980 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
981 const struct intel_watermark_params *wm,
982 int fifo_size,
983 int pixel_size,
984 unsigned long latency_ns)
985 {
986 long entries_required, wm_size;
987
988 /*
989 * Note: we need to make sure we don't overflow for various clock &
990 * latency values.
991 * clocks go from a few thousand to several hundred thousand.
992 * latency is usually a few thousand
993 */
994 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
995 1000;
996 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
997
998 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
999
1000 wm_size = fifo_size - (entries_required + wm->guard_size);
1001
1002 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1003
1004 /* Don't promote wm_size to unsigned... */
1005 if (wm_size > (long)wm->max_wm)
1006 wm_size = wm->max_wm;
1007 if (wm_size <= 0)
1008 wm_size = wm->default_wm;
1009 return wm_size;
1010 }
1011
1012 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1013 {
1014 struct drm_crtc *crtc, *enabled = NULL;
1015
1016 for_each_crtc(dev, crtc) {
1017 if (intel_crtc_active(crtc)) {
1018 if (enabled)
1019 return NULL;
1020 enabled = crtc;
1021 }
1022 }
1023
1024 return enabled;
1025 }
1026
1027 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1028 {
1029 struct drm_device *dev = unused_crtc->dev;
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 struct drm_crtc *crtc;
1032 const struct cxsr_latency *latency;
1033 u32 reg;
1034 unsigned long wm;
1035
1036 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1037 dev_priv->fsb_freq, dev_priv->mem_freq);
1038 if (!latency) {
1039 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1040 pineview_disable_cxsr(dev);
1041 return;
1042 }
1043
1044 crtc = single_enabled_crtc(dev);
1045 if (crtc) {
1046 const struct drm_display_mode *adjusted_mode;
1047 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1048 int clock;
1049
1050 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1051 clock = adjusted_mode->crtc_clock;
1052
1053 /* Display SR */
1054 wm = intel_calculate_wm(clock, &pineview_display_wm,
1055 pineview_display_wm.fifo_size,
1056 pixel_size, latency->display_sr);
1057 reg = I915_READ(DSPFW1);
1058 reg &= ~DSPFW_SR_MASK;
1059 reg |= wm << DSPFW_SR_SHIFT;
1060 I915_WRITE(DSPFW1, reg);
1061 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1062
1063 /* cursor SR */
1064 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1065 pineview_display_wm.fifo_size,
1066 pixel_size, latency->cursor_sr);
1067 reg = I915_READ(DSPFW3);
1068 reg &= ~DSPFW_CURSOR_SR_MASK;
1069 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1070 I915_WRITE(DSPFW3, reg);
1071
1072 /* Display HPLL off SR */
1073 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1074 pineview_display_hplloff_wm.fifo_size,
1075 pixel_size, latency->display_hpll_disable);
1076 reg = I915_READ(DSPFW3);
1077 reg &= ~DSPFW_HPLL_SR_MASK;
1078 reg |= wm & DSPFW_HPLL_SR_MASK;
1079 I915_WRITE(DSPFW3, reg);
1080
1081 /* cursor HPLL off SR */
1082 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1083 pineview_display_hplloff_wm.fifo_size,
1084 pixel_size, latency->cursor_hpll_disable);
1085 reg = I915_READ(DSPFW3);
1086 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1087 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1088 I915_WRITE(DSPFW3, reg);
1089 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1090
1091 /* activate cxsr */
1092 I915_WRITE(DSPFW3,
1093 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1094 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1095 } else {
1096 pineview_disable_cxsr(dev);
1097 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1098 }
1099 }
1100
1101 static bool g4x_compute_wm0(struct drm_device *dev,
1102 int plane,
1103 const struct intel_watermark_params *display,
1104 int display_latency_ns,
1105 const struct intel_watermark_params *cursor,
1106 int cursor_latency_ns,
1107 int *plane_wm,
1108 int *cursor_wm)
1109 {
1110 struct drm_crtc *crtc;
1111 const struct drm_display_mode *adjusted_mode;
1112 int htotal, hdisplay, clock, pixel_size;
1113 int line_time_us, line_count;
1114 int entries, tlb_miss;
1115
1116 crtc = intel_get_crtc_for_plane(dev, plane);
1117 if (!intel_crtc_active(crtc)) {
1118 *cursor_wm = cursor->guard_size;
1119 *plane_wm = display->guard_size;
1120 return false;
1121 }
1122
1123 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1124 clock = adjusted_mode->crtc_clock;
1125 htotal = adjusted_mode->crtc_htotal;
1126 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1127 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1128
1129 /* Use the small buffer method to calculate plane watermark */
1130 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1131 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1132 if (tlb_miss > 0)
1133 entries += tlb_miss;
1134 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1135 *plane_wm = entries + display->guard_size;
1136 if (*plane_wm > (int)display->max_wm)
1137 *plane_wm = display->max_wm;
1138
1139 /* Use the large buffer method to calculate cursor watermark */
1140 line_time_us = max(htotal * 1000 / clock, 1);
1141 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1142 entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1143 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1144 if (tlb_miss > 0)
1145 entries += tlb_miss;
1146 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1147 *cursor_wm = entries + cursor->guard_size;
1148 if (*cursor_wm > (int)cursor->max_wm)
1149 *cursor_wm = (int)cursor->max_wm;
1150
1151 return true;
1152 }
1153
1154 /*
1155 * Check the wm result.
1156 *
1157 * If any calculated watermark values is larger than the maximum value that
1158 * can be programmed into the associated watermark register, that watermark
1159 * must be disabled.
1160 */
1161 static bool g4x_check_srwm(struct drm_device *dev,
1162 int display_wm, int cursor_wm,
1163 const struct intel_watermark_params *display,
1164 const struct intel_watermark_params *cursor)
1165 {
1166 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1167 display_wm, cursor_wm);
1168
1169 if (display_wm > display->max_wm) {
1170 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1171 display_wm, display->max_wm);
1172 return false;
1173 }
1174
1175 if (cursor_wm > cursor->max_wm) {
1176 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1177 cursor_wm, cursor->max_wm);
1178 return false;
1179 }
1180
1181 if (!(display_wm || cursor_wm)) {
1182 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1183 return false;
1184 }
1185
1186 return true;
1187 }
1188
1189 static bool g4x_compute_srwm(struct drm_device *dev,
1190 int plane,
1191 int latency_ns,
1192 const struct intel_watermark_params *display,
1193 const struct intel_watermark_params *cursor,
1194 int *display_wm, int *cursor_wm)
1195 {
1196 struct drm_crtc *crtc;
1197 const struct drm_display_mode *adjusted_mode;
1198 int hdisplay, htotal, pixel_size, clock;
1199 unsigned long line_time_us;
1200 int line_count, line_size;
1201 int small, large;
1202 int entries;
1203
1204 if (!latency_ns) {
1205 *display_wm = *cursor_wm = 0;
1206 return false;
1207 }
1208
1209 crtc = intel_get_crtc_for_plane(dev, plane);
1210 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1211 clock = adjusted_mode->crtc_clock;
1212 htotal = adjusted_mode->crtc_htotal;
1213 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1214 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1215
1216 line_time_us = max(htotal * 1000 / clock, 1);
1217 line_count = (latency_ns / line_time_us + 1000) / 1000;
1218 line_size = hdisplay * pixel_size;
1219
1220 /* Use the minimum of the small and large buffer method for primary */
1221 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1222 large = line_count * line_size;
1223
1224 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1225 *display_wm = entries + display->guard_size;
1226
1227 /* calculate the self-refresh watermark for display cursor */
1228 entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1229 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1230 *cursor_wm = entries + cursor->guard_size;
1231
1232 return g4x_check_srwm(dev,
1233 *display_wm, *cursor_wm,
1234 display, cursor);
1235 }
1236
1237 static bool vlv_compute_drain_latency(struct drm_device *dev,
1238 int plane,
1239 int *plane_prec_mult,
1240 int *plane_dl,
1241 int *cursor_prec_mult,
1242 int *cursor_dl)
1243 {
1244 struct drm_crtc *crtc;
1245 int clock, pixel_size;
1246 int entries;
1247
1248 crtc = intel_get_crtc_for_plane(dev, plane);
1249 if (!intel_crtc_active(crtc))
1250 return false;
1251
1252 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1253 pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
1254
1255 entries = (clock / 1000) * pixel_size;
1256 *plane_prec_mult = (entries > 256) ?
1257 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1258 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1259 pixel_size);
1260
1261 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1262 *cursor_prec_mult = (entries > 256) ?
1263 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1264 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1265
1266 return true;
1267 }
1268
1269 /*
1270 * Update drain latency registers of memory arbiter
1271 *
1272 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1273 * to be programmed. Each plane has a drain latency multiplier and a drain
1274 * latency value.
1275 */
1276
1277 static void vlv_update_drain_latency(struct drm_device *dev)
1278 {
1279 struct drm_i915_private *dev_priv = dev->dev_private;
1280 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1281 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1282 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1283 either 16 or 32 */
1284
1285 /* For plane A, Cursor A */
1286 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1287 &cursor_prec_mult, &cursora_dl)) {
1288 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1289 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1290 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1291 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1292
1293 I915_WRITE(VLV_DDL1, cursora_prec |
1294 (cursora_dl << DDL_CURSORA_SHIFT) |
1295 planea_prec | planea_dl);
1296 }
1297
1298 /* For plane B, Cursor B */
1299 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1300 &cursor_prec_mult, &cursorb_dl)) {
1301 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1302 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1303 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1304 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1305
1306 I915_WRITE(VLV_DDL2, cursorb_prec |
1307 (cursorb_dl << DDL_CURSORB_SHIFT) |
1308 planeb_prec | planeb_dl);
1309 }
1310 }
1311
1312 #define single_plane_enabled(mask) is_power_of_2(mask)
1313
1314 static void valleyview_update_wm(struct drm_crtc *crtc)
1315 {
1316 struct drm_device *dev = crtc->dev;
1317 static const int sr_latency_ns = 12000;
1318 struct drm_i915_private *dev_priv = dev->dev_private;
1319 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1320 int plane_sr, cursor_sr;
1321 int ignore_plane_sr, ignore_cursor_sr;
1322 unsigned int enabled = 0;
1323
1324 vlv_update_drain_latency(dev);
1325
1326 if (g4x_compute_wm0(dev, PIPE_A,
1327 &valleyview_wm_info, latency_ns,
1328 &valleyview_cursor_wm_info, latency_ns,
1329 &planea_wm, &cursora_wm))
1330 enabled |= 1 << PIPE_A;
1331
1332 if (g4x_compute_wm0(dev, PIPE_B,
1333 &valleyview_wm_info, latency_ns,
1334 &valleyview_cursor_wm_info, latency_ns,
1335 &planeb_wm, &cursorb_wm))
1336 enabled |= 1 << PIPE_B;
1337
1338 if (single_plane_enabled(enabled) &&
1339 g4x_compute_srwm(dev, ffs(enabled) - 1,
1340 sr_latency_ns,
1341 &valleyview_wm_info,
1342 &valleyview_cursor_wm_info,
1343 &plane_sr, &ignore_cursor_sr) &&
1344 g4x_compute_srwm(dev, ffs(enabled) - 1,
1345 2*sr_latency_ns,
1346 &valleyview_wm_info,
1347 &valleyview_cursor_wm_info,
1348 &ignore_plane_sr, &cursor_sr)) {
1349 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1350 } else {
1351 I915_WRITE(FW_BLC_SELF_VLV,
1352 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1353 plane_sr = cursor_sr = 0;
1354 }
1355
1356 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1357 planea_wm, cursora_wm,
1358 planeb_wm, cursorb_wm,
1359 plane_sr, cursor_sr);
1360
1361 I915_WRITE(DSPFW1,
1362 (plane_sr << DSPFW_SR_SHIFT) |
1363 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1364 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1365 planea_wm);
1366 I915_WRITE(DSPFW2,
1367 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1368 (cursora_wm << DSPFW_CURSORA_SHIFT));
1369 I915_WRITE(DSPFW3,
1370 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1371 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1372 }
1373
1374 static void g4x_update_wm(struct drm_crtc *crtc)
1375 {
1376 struct drm_device *dev = crtc->dev;
1377 static const int sr_latency_ns = 12000;
1378 struct drm_i915_private *dev_priv = dev->dev_private;
1379 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1380 int plane_sr, cursor_sr;
1381 unsigned int enabled = 0;
1382
1383 if (g4x_compute_wm0(dev, PIPE_A,
1384 &g4x_wm_info, latency_ns,
1385 &g4x_cursor_wm_info, latency_ns,
1386 &planea_wm, &cursora_wm))
1387 enabled |= 1 << PIPE_A;
1388
1389 if (g4x_compute_wm0(dev, PIPE_B,
1390 &g4x_wm_info, latency_ns,
1391 &g4x_cursor_wm_info, latency_ns,
1392 &planeb_wm, &cursorb_wm))
1393 enabled |= 1 << PIPE_B;
1394
1395 if (single_plane_enabled(enabled) &&
1396 g4x_compute_srwm(dev, ffs(enabled) - 1,
1397 sr_latency_ns,
1398 &g4x_wm_info,
1399 &g4x_cursor_wm_info,
1400 &plane_sr, &cursor_sr)) {
1401 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1402 } else {
1403 I915_WRITE(FW_BLC_SELF,
1404 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1405 plane_sr = cursor_sr = 0;
1406 }
1407
1408 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1409 planea_wm, cursora_wm,
1410 planeb_wm, cursorb_wm,
1411 plane_sr, cursor_sr);
1412
1413 I915_WRITE(DSPFW1,
1414 (plane_sr << DSPFW_SR_SHIFT) |
1415 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1416 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1417 planea_wm);
1418 I915_WRITE(DSPFW2,
1419 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1420 (cursora_wm << DSPFW_CURSORA_SHIFT));
1421 /* HPLL off in SR has some issues on G4x... disable it */
1422 I915_WRITE(DSPFW3,
1423 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1424 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1425 }
1426
1427 static void i965_update_wm(struct drm_crtc *unused_crtc)
1428 {
1429 struct drm_device *dev = unused_crtc->dev;
1430 struct drm_i915_private *dev_priv = dev->dev_private;
1431 struct drm_crtc *crtc;
1432 int srwm = 1;
1433 int cursor_sr = 16;
1434
1435 /* Calc sr entries for one plane configs */
1436 crtc = single_enabled_crtc(dev);
1437 if (crtc) {
1438 /* self-refresh has much higher latency */
1439 static const int sr_latency_ns = 12000;
1440 const struct drm_display_mode *adjusted_mode =
1441 &to_intel_crtc(crtc)->config.adjusted_mode;
1442 int clock = adjusted_mode->crtc_clock;
1443 int htotal = adjusted_mode->crtc_htotal;
1444 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1445 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1446 unsigned long line_time_us;
1447 int entries;
1448
1449 line_time_us = max(htotal * 1000 / clock, 1);
1450
1451 /* Use ns/us then divide to preserve precision */
1452 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1453 pixel_size * hdisplay;
1454 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1455 srwm = I965_FIFO_SIZE - entries;
1456 if (srwm < 0)
1457 srwm = 1;
1458 srwm &= 0x1ff;
1459 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1460 entries, srwm);
1461
1462 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1463 pixel_size * to_intel_crtc(crtc)->cursor_width;
1464 entries = DIV_ROUND_UP(entries,
1465 i965_cursor_wm_info.cacheline_size);
1466 cursor_sr = i965_cursor_wm_info.fifo_size -
1467 (entries + i965_cursor_wm_info.guard_size);
1468
1469 if (cursor_sr > i965_cursor_wm_info.max_wm)
1470 cursor_sr = i965_cursor_wm_info.max_wm;
1471
1472 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1473 "cursor %d\n", srwm, cursor_sr);
1474
1475 if (IS_CRESTLINE(dev))
1476 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1477 } else {
1478 /* Turn off self refresh if both pipes are enabled */
1479 if (IS_CRESTLINE(dev))
1480 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1481 & ~FW_BLC_SELF_EN);
1482 }
1483
1484 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1485 srwm);
1486
1487 /* 965 has limitations... */
1488 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1489 (8 << 16) | (8 << 8) | (8 << 0));
1490 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1491 /* update cursor SR watermark */
1492 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1493 }
1494
1495 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1496 {
1497 struct drm_device *dev = unused_crtc->dev;
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499 const struct intel_watermark_params *wm_info;
1500 uint32_t fwater_lo;
1501 uint32_t fwater_hi;
1502 int cwm, srwm = 1;
1503 int fifo_size;
1504 int planea_wm, planeb_wm;
1505 struct drm_crtc *crtc, *enabled = NULL;
1506
1507 if (IS_I945GM(dev))
1508 wm_info = &i945_wm_info;
1509 else if (!IS_GEN2(dev))
1510 wm_info = &i915_wm_info;
1511 else
1512 wm_info = &i830_wm_info;
1513
1514 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1515 crtc = intel_get_crtc_for_plane(dev, 0);
1516 if (intel_crtc_active(crtc)) {
1517 const struct drm_display_mode *adjusted_mode;
1518 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1519 if (IS_GEN2(dev))
1520 cpp = 4;
1521
1522 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1523 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1524 wm_info, fifo_size, cpp,
1525 latency_ns);
1526 enabled = crtc;
1527 } else
1528 planea_wm = fifo_size - wm_info->guard_size;
1529
1530 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1531 crtc = intel_get_crtc_for_plane(dev, 1);
1532 if (intel_crtc_active(crtc)) {
1533 const struct drm_display_mode *adjusted_mode;
1534 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1535 if (IS_GEN2(dev))
1536 cpp = 4;
1537
1538 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1539 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1540 wm_info, fifo_size, cpp,
1541 latency_ns);
1542 if (enabled == NULL)
1543 enabled = crtc;
1544 else
1545 enabled = NULL;
1546 } else
1547 planeb_wm = fifo_size - wm_info->guard_size;
1548
1549 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1550
1551 if (IS_I915GM(dev) && enabled) {
1552 struct intel_framebuffer *fb;
1553
1554 fb = to_intel_framebuffer(enabled->primary->fb);
1555
1556 /* self-refresh seems busted with untiled */
1557 if (fb->obj->tiling_mode == I915_TILING_NONE)
1558 enabled = NULL;
1559 }
1560
1561 /*
1562 * Overlay gets an aggressive default since video jitter is bad.
1563 */
1564 cwm = 2;
1565
1566 /* Play safe and disable self-refresh before adjusting watermarks. */
1567 if (IS_I945G(dev) || IS_I945GM(dev))
1568 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1569 else if (IS_I915GM(dev))
1570 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1571
1572 /* Calc sr entries for one plane configs */
1573 if (HAS_FW_BLC(dev) && enabled) {
1574 /* self-refresh has much higher latency */
1575 static const int sr_latency_ns = 6000;
1576 const struct drm_display_mode *adjusted_mode =
1577 &to_intel_crtc(enabled)->config.adjusted_mode;
1578 int clock = adjusted_mode->crtc_clock;
1579 int htotal = adjusted_mode->crtc_htotal;
1580 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1581 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1582 unsigned long line_time_us;
1583 int entries;
1584
1585 line_time_us = max(htotal * 1000 / clock, 1);
1586
1587 /* Use ns/us then divide to preserve precision */
1588 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1589 pixel_size * hdisplay;
1590 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1591 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1592 srwm = wm_info->fifo_size - entries;
1593 if (srwm < 0)
1594 srwm = 1;
1595
1596 if (IS_I945G(dev) || IS_I945GM(dev))
1597 I915_WRITE(FW_BLC_SELF,
1598 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1599 else if (IS_I915GM(dev))
1600 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1601 }
1602
1603 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1604 planea_wm, planeb_wm, cwm, srwm);
1605
1606 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1607 fwater_hi = (cwm & 0x1f);
1608
1609 /* Set request length to 8 cachelines per fetch */
1610 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1611 fwater_hi = fwater_hi | (1 << 8);
1612
1613 I915_WRITE(FW_BLC, fwater_lo);
1614 I915_WRITE(FW_BLC2, fwater_hi);
1615
1616 if (HAS_FW_BLC(dev)) {
1617 if (enabled) {
1618 if (IS_I945G(dev) || IS_I945GM(dev))
1619 I915_WRITE(FW_BLC_SELF,
1620 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1621 else if (IS_I915GM(dev))
1622 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1623 DRM_DEBUG_KMS("memory self refresh enabled\n");
1624 } else
1625 DRM_DEBUG_KMS("memory self refresh disabled\n");
1626 }
1627 }
1628
1629 static void i845_update_wm(struct drm_crtc *unused_crtc)
1630 {
1631 struct drm_device *dev = unused_crtc->dev;
1632 struct drm_i915_private *dev_priv = dev->dev_private;
1633 struct drm_crtc *crtc;
1634 const struct drm_display_mode *adjusted_mode;
1635 uint32_t fwater_lo;
1636 int planea_wm;
1637
1638 crtc = single_enabled_crtc(dev);
1639 if (crtc == NULL)
1640 return;
1641
1642 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1643 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1644 &i845_wm_info,
1645 dev_priv->display.get_fifo_size(dev, 0),
1646 4, latency_ns);
1647 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1648 fwater_lo |= (3<<8) | planea_wm;
1649
1650 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1651
1652 I915_WRITE(FW_BLC, fwater_lo);
1653 }
1654
1655 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1656 struct drm_crtc *crtc)
1657 {
1658 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1659 uint32_t pixel_rate;
1660
1661 pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1662
1663 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1664 * adjust the pixel_rate here. */
1665
1666 if (intel_crtc->config.pch_pfit.enabled) {
1667 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1668 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1669
1670 pipe_w = intel_crtc->config.pipe_src_w;
1671 pipe_h = intel_crtc->config.pipe_src_h;
1672 pfit_w = (pfit_size >> 16) & 0xFFFF;
1673 pfit_h = pfit_size & 0xFFFF;
1674 if (pipe_w < pfit_w)
1675 pipe_w = pfit_w;
1676 if (pipe_h < pfit_h)
1677 pipe_h = pfit_h;
1678
1679 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1680 pfit_w * pfit_h);
1681 }
1682
1683 return pixel_rate;
1684 }
1685
1686 /* latency must be in 0.1us units. */
1687 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1688 uint32_t latency)
1689 {
1690 uint64_t ret;
1691
1692 if (WARN(latency == 0, "Latency value missing\n"))
1693 return UINT_MAX;
1694
1695 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1696 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1697
1698 return ret;
1699 }
1700
1701 /* latency must be in 0.1us units. */
1702 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1703 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1704 uint32_t latency)
1705 {
1706 uint32_t ret;
1707
1708 if (WARN(latency == 0, "Latency value missing\n"))
1709 return UINT_MAX;
1710
1711 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1712 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1713 ret = DIV_ROUND_UP(ret, 64) + 2;
1714 return ret;
1715 }
1716
1717 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1718 uint8_t bytes_per_pixel)
1719 {
1720 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1721 }
1722
1723 struct ilk_pipe_wm_parameters {
1724 bool active;
1725 uint32_t pipe_htotal;
1726 uint32_t pixel_rate;
1727 struct intel_plane_wm_parameters pri;
1728 struct intel_plane_wm_parameters spr;
1729 struct intel_plane_wm_parameters cur;
1730 };
1731
1732 struct ilk_wm_maximums {
1733 uint16_t pri;
1734 uint16_t spr;
1735 uint16_t cur;
1736 uint16_t fbc;
1737 };
1738
1739 /* used in computing the new watermarks state */
1740 struct intel_wm_config {
1741 unsigned int num_pipes_active;
1742 bool sprites_enabled;
1743 bool sprites_scaled;
1744 };
1745
1746 /*
1747 * For both WM_PIPE and WM_LP.
1748 * mem_value must be in 0.1us units.
1749 */
1750 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1751 uint32_t mem_value,
1752 bool is_lp)
1753 {
1754 uint32_t method1, method2;
1755
1756 if (!params->active || !params->pri.enabled)
1757 return 0;
1758
1759 method1 = ilk_wm_method1(params->pixel_rate,
1760 params->pri.bytes_per_pixel,
1761 mem_value);
1762
1763 if (!is_lp)
1764 return method1;
1765
1766 method2 = ilk_wm_method2(params->pixel_rate,
1767 params->pipe_htotal,
1768 params->pri.horiz_pixels,
1769 params->pri.bytes_per_pixel,
1770 mem_value);
1771
1772 return min(method1, method2);
1773 }
1774
1775 /*
1776 * For both WM_PIPE and WM_LP.
1777 * mem_value must be in 0.1us units.
1778 */
1779 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1780 uint32_t mem_value)
1781 {
1782 uint32_t method1, method2;
1783
1784 if (!params->active || !params->spr.enabled)
1785 return 0;
1786
1787 method1 = ilk_wm_method1(params->pixel_rate,
1788 params->spr.bytes_per_pixel,
1789 mem_value);
1790 method2 = ilk_wm_method2(params->pixel_rate,
1791 params->pipe_htotal,
1792 params->spr.horiz_pixels,
1793 params->spr.bytes_per_pixel,
1794 mem_value);
1795 return min(method1, method2);
1796 }
1797
1798 /*
1799 * For both WM_PIPE and WM_LP.
1800 * mem_value must be in 0.1us units.
1801 */
1802 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1803 uint32_t mem_value)
1804 {
1805 if (!params->active || !params->cur.enabled)
1806 return 0;
1807
1808 return ilk_wm_method2(params->pixel_rate,
1809 params->pipe_htotal,
1810 params->cur.horiz_pixels,
1811 params->cur.bytes_per_pixel,
1812 mem_value);
1813 }
1814
1815 /* Only for WM_LP. */
1816 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1817 uint32_t pri_val)
1818 {
1819 if (!params->active || !params->pri.enabled)
1820 return 0;
1821
1822 return ilk_wm_fbc(pri_val,
1823 params->pri.horiz_pixels,
1824 params->pri.bytes_per_pixel);
1825 }
1826
1827 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1828 {
1829 if (INTEL_INFO(dev)->gen >= 8)
1830 return 3072;
1831 else if (INTEL_INFO(dev)->gen >= 7)
1832 return 768;
1833 else
1834 return 512;
1835 }
1836
1837 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1838 int level, bool is_sprite)
1839 {
1840 if (INTEL_INFO(dev)->gen >= 8)
1841 /* BDW primary/sprite plane watermarks */
1842 return level == 0 ? 255 : 2047;
1843 else if (INTEL_INFO(dev)->gen >= 7)
1844 /* IVB/HSW primary/sprite plane watermarks */
1845 return level == 0 ? 127 : 1023;
1846 else if (!is_sprite)
1847 /* ILK/SNB primary plane watermarks */
1848 return level == 0 ? 127 : 511;
1849 else
1850 /* ILK/SNB sprite plane watermarks */
1851 return level == 0 ? 63 : 255;
1852 }
1853
1854 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1855 int level)
1856 {
1857 if (INTEL_INFO(dev)->gen >= 7)
1858 return level == 0 ? 63 : 255;
1859 else
1860 return level == 0 ? 31 : 63;
1861 }
1862
1863 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1864 {
1865 if (INTEL_INFO(dev)->gen >= 8)
1866 return 31;
1867 else
1868 return 15;
1869 }
1870
1871 /* Calculate the maximum primary/sprite plane watermark */
1872 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1873 int level,
1874 const struct intel_wm_config *config,
1875 enum intel_ddb_partitioning ddb_partitioning,
1876 bool is_sprite)
1877 {
1878 unsigned int fifo_size = ilk_display_fifo_size(dev);
1879
1880 /* if sprites aren't enabled, sprites get nothing */
1881 if (is_sprite && !config->sprites_enabled)
1882 return 0;
1883
1884 /* HSW allows LP1+ watermarks even with multiple pipes */
1885 if (level == 0 || config->num_pipes_active > 1) {
1886 fifo_size /= INTEL_INFO(dev)->num_pipes;
1887
1888 /*
1889 * For some reason the non self refresh
1890 * FIFO size is only half of the self
1891 * refresh FIFO size on ILK/SNB.
1892 */
1893 if (INTEL_INFO(dev)->gen <= 6)
1894 fifo_size /= 2;
1895 }
1896
1897 if (config->sprites_enabled) {
1898 /* level 0 is always calculated with 1:1 split */
1899 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1900 if (is_sprite)
1901 fifo_size *= 5;
1902 fifo_size /= 6;
1903 } else {
1904 fifo_size /= 2;
1905 }
1906 }
1907
1908 /* clamp to max that the registers can hold */
1909 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1910 }
1911
1912 /* Calculate the maximum cursor plane watermark */
1913 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1914 int level,
1915 const struct intel_wm_config *config)
1916 {
1917 /* HSW LP1+ watermarks w/ multiple pipes */
1918 if (level > 0 && config->num_pipes_active > 1)
1919 return 64;
1920
1921 /* otherwise just report max that registers can hold */
1922 return ilk_cursor_wm_reg_max(dev, level);
1923 }
1924
1925 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1926 int level,
1927 const struct intel_wm_config *config,
1928 enum intel_ddb_partitioning ddb_partitioning,
1929 struct ilk_wm_maximums *max)
1930 {
1931 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1932 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1933 max->cur = ilk_cursor_wm_max(dev, level, config);
1934 max->fbc = ilk_fbc_wm_reg_max(dev);
1935 }
1936
1937 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1938 int level,
1939 struct ilk_wm_maximums *max)
1940 {
1941 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1942 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1943 max->cur = ilk_cursor_wm_reg_max(dev, level);
1944 max->fbc = ilk_fbc_wm_reg_max(dev);
1945 }
1946
1947 static bool ilk_validate_wm_level(int level,
1948 const struct ilk_wm_maximums *max,
1949 struct intel_wm_level *result)
1950 {
1951 bool ret;
1952
1953 /* already determined to be invalid? */
1954 if (!result->enable)
1955 return false;
1956
1957 result->enable = result->pri_val <= max->pri &&
1958 result->spr_val <= max->spr &&
1959 result->cur_val <= max->cur;
1960
1961 ret = result->enable;
1962
1963 /*
1964 * HACK until we can pre-compute everything,
1965 * and thus fail gracefully if LP0 watermarks
1966 * are exceeded...
1967 */
1968 if (level == 0 && !result->enable) {
1969 if (result->pri_val > max->pri)
1970 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1971 level, result->pri_val, max->pri);
1972 if (result->spr_val > max->spr)
1973 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1974 level, result->spr_val, max->spr);
1975 if (result->cur_val > max->cur)
1976 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1977 level, result->cur_val, max->cur);
1978
1979 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1980 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1981 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1982 result->enable = true;
1983 }
1984
1985 return ret;
1986 }
1987
1988 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1989 int level,
1990 const struct ilk_pipe_wm_parameters *p,
1991 struct intel_wm_level *result)
1992 {
1993 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1994 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1995 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1996
1997 /* WM1+ latency values stored in 0.5us units */
1998 if (level > 0) {
1999 pri_latency *= 5;
2000 spr_latency *= 5;
2001 cur_latency *= 5;
2002 }
2003
2004 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2005 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2006 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2007 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2008 result->enable = true;
2009 }
2010
2011 static uint32_t
2012 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2013 {
2014 struct drm_i915_private *dev_priv = dev->dev_private;
2015 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2016 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2017 u32 linetime, ips_linetime;
2018
2019 if (!intel_crtc_active(crtc))
2020 return 0;
2021
2022 /* The WM are computed with base on how long it takes to fill a single
2023 * row at the given clock rate, multiplied by 8.
2024 * */
2025 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2026 mode->crtc_clock);
2027 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2028 intel_ddi_get_cdclk_freq(dev_priv));
2029
2030 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2031 PIPE_WM_LINETIME_TIME(linetime);
2032 }
2033
2034 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2035 {
2036 struct drm_i915_private *dev_priv = dev->dev_private;
2037
2038 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2039 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2040
2041 wm[0] = (sskpd >> 56) & 0xFF;
2042 if (wm[0] == 0)
2043 wm[0] = sskpd & 0xF;
2044 wm[1] = (sskpd >> 4) & 0xFF;
2045 wm[2] = (sskpd >> 12) & 0xFF;
2046 wm[3] = (sskpd >> 20) & 0x1FF;
2047 wm[4] = (sskpd >> 32) & 0x1FF;
2048 } else if (INTEL_INFO(dev)->gen >= 6) {
2049 uint32_t sskpd = I915_READ(MCH_SSKPD);
2050
2051 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2052 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2053 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2054 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2055 } else if (INTEL_INFO(dev)->gen >= 5) {
2056 uint32_t mltr = I915_READ(MLTR_ILK);
2057
2058 /* ILK primary LP0 latency is 700 ns */
2059 wm[0] = 7;
2060 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2061 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2062 }
2063 }
2064
2065 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2066 {
2067 /* ILK sprite LP0 latency is 1300 ns */
2068 if (INTEL_INFO(dev)->gen == 5)
2069 wm[0] = 13;
2070 }
2071
2072 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2073 {
2074 /* ILK cursor LP0 latency is 1300 ns */
2075 if (INTEL_INFO(dev)->gen == 5)
2076 wm[0] = 13;
2077
2078 /* WaDoubleCursorLP3Latency:ivb */
2079 if (IS_IVYBRIDGE(dev))
2080 wm[3] *= 2;
2081 }
2082
2083 int ilk_wm_max_level(const struct drm_device *dev)
2084 {
2085 /* how many WM levels are we expecting */
2086 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2087 return 4;
2088 else if (INTEL_INFO(dev)->gen >= 6)
2089 return 3;
2090 else
2091 return 2;
2092 }
2093
2094 static void intel_print_wm_latency(struct drm_device *dev,
2095 const char *name,
2096 const uint16_t wm[5])
2097 {
2098 int level, max_level = ilk_wm_max_level(dev);
2099
2100 for (level = 0; level <= max_level; level++) {
2101 unsigned int latency = wm[level];
2102
2103 if (latency == 0) {
2104 DRM_ERROR("%s WM%d latency not provided\n",
2105 name, level);
2106 continue;
2107 }
2108
2109 /* WM1+ latency values in 0.5us units */
2110 if (level > 0)
2111 latency *= 5;
2112
2113 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2114 name, level, wm[level],
2115 latency / 10, latency % 10);
2116 }
2117 }
2118
2119 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2120 uint16_t wm[5], uint16_t min)
2121 {
2122 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2123
2124 if (wm[0] >= min)
2125 return false;
2126
2127 wm[0] = max(wm[0], min);
2128 for (level = 1; level <= max_level; level++)
2129 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2130
2131 return true;
2132 }
2133
2134 static void snb_wm_latency_quirk(struct drm_device *dev)
2135 {
2136 struct drm_i915_private *dev_priv = dev->dev_private;
2137 bool changed;
2138
2139 /*
2140 * The BIOS provided WM memory latency values are often
2141 * inadequate for high resolution displays. Adjust them.
2142 */
2143 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2144 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2145 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2146
2147 if (!changed)
2148 return;
2149
2150 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2151 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2152 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2153 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2154 }
2155
2156 static void ilk_setup_wm_latency(struct drm_device *dev)
2157 {
2158 struct drm_i915_private *dev_priv = dev->dev_private;
2159
2160 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2161
2162 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2163 sizeof(dev_priv->wm.pri_latency));
2164 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2165 sizeof(dev_priv->wm.pri_latency));
2166
2167 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2168 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2169
2170 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2171 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2172 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2173
2174 if (IS_GEN6(dev))
2175 snb_wm_latency_quirk(dev);
2176 }
2177
2178 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2179 struct ilk_pipe_wm_parameters *p)
2180 {
2181 struct drm_device *dev = crtc->dev;
2182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2183 enum pipe pipe = intel_crtc->pipe;
2184 struct drm_plane *plane;
2185
2186 if (!intel_crtc_active(crtc))
2187 return;
2188
2189 p->active = true;
2190 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2191 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2192 p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2193 p->cur.bytes_per_pixel = 4;
2194 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2195 p->cur.horiz_pixels = intel_crtc->cursor_width;
2196 /* TODO: for now, assume primary and cursor planes are always enabled. */
2197 p->pri.enabled = true;
2198 p->cur.enabled = true;
2199
2200 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2201 struct intel_plane *intel_plane = to_intel_plane(plane);
2202
2203 if (intel_plane->pipe == pipe) {
2204 p->spr = intel_plane->wm;
2205 break;
2206 }
2207 }
2208 }
2209
2210 static void ilk_compute_wm_config(struct drm_device *dev,
2211 struct intel_wm_config *config)
2212 {
2213 struct intel_crtc *intel_crtc;
2214
2215 /* Compute the currently _active_ config */
2216 for_each_intel_crtc(dev, intel_crtc) {
2217 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2218
2219 if (!wm->pipe_enabled)
2220 continue;
2221
2222 config->sprites_enabled |= wm->sprites_enabled;
2223 config->sprites_scaled |= wm->sprites_scaled;
2224 config->num_pipes_active++;
2225 }
2226 }
2227
2228 /* Compute new watermarks for the pipe */
2229 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2230 const struct ilk_pipe_wm_parameters *params,
2231 struct intel_pipe_wm *pipe_wm)
2232 {
2233 struct drm_device *dev = crtc->dev;
2234 const struct drm_i915_private *dev_priv = dev->dev_private;
2235 int level, max_level = ilk_wm_max_level(dev);
2236 /* LP0 watermark maximums depend on this pipe alone */
2237 struct intel_wm_config config = {
2238 .num_pipes_active = 1,
2239 .sprites_enabled = params->spr.enabled,
2240 .sprites_scaled = params->spr.scaled,
2241 };
2242 struct ilk_wm_maximums max;
2243
2244 pipe_wm->pipe_enabled = params->active;
2245 pipe_wm->sprites_enabled = params->spr.enabled;
2246 pipe_wm->sprites_scaled = params->spr.scaled;
2247
2248 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2249 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2250 max_level = 1;
2251
2252 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2253 if (params->spr.scaled)
2254 max_level = 0;
2255
2256 ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2257
2258 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2259 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2260
2261 /* LP0 watermarks always use 1/2 DDB partitioning */
2262 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2263
2264 /* At least LP0 must be valid */
2265 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2266 return false;
2267
2268 ilk_compute_wm_reg_maximums(dev, 1, &max);
2269
2270 for (level = 1; level <= max_level; level++) {
2271 struct intel_wm_level wm = {};
2272
2273 ilk_compute_wm_level(dev_priv, level, params, &wm);
2274
2275 /*
2276 * Disable any watermark level that exceeds the
2277 * register maximums since such watermarks are
2278 * always invalid.
2279 */
2280 if (!ilk_validate_wm_level(level, &max, &wm))
2281 break;
2282
2283 pipe_wm->wm[level] = wm;
2284 }
2285
2286 return true;
2287 }
2288
2289 /*
2290 * Merge the watermarks from all active pipes for a specific level.
2291 */
2292 static void ilk_merge_wm_level(struct drm_device *dev,
2293 int level,
2294 struct intel_wm_level *ret_wm)
2295 {
2296 const struct intel_crtc *intel_crtc;
2297
2298 ret_wm->enable = true;
2299
2300 for_each_intel_crtc(dev, intel_crtc) {
2301 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2302 const struct intel_wm_level *wm = &active->wm[level];
2303
2304 if (!active->pipe_enabled)
2305 continue;
2306
2307 /*
2308 * The watermark values may have been used in the past,
2309 * so we must maintain them in the registers for some
2310 * time even if the level is now disabled.
2311 */
2312 if (!wm->enable)
2313 ret_wm->enable = false;
2314
2315 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2316 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2317 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2318 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2319 }
2320 }
2321
2322 /*
2323 * Merge all low power watermarks for all active pipes.
2324 */
2325 static void ilk_wm_merge(struct drm_device *dev,
2326 const struct intel_wm_config *config,
2327 const struct ilk_wm_maximums *max,
2328 struct intel_pipe_wm *merged)
2329 {
2330 int level, max_level = ilk_wm_max_level(dev);
2331 int last_enabled_level = max_level;
2332
2333 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2334 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2335 config->num_pipes_active > 1)
2336 return;
2337
2338 /* ILK: FBC WM must be disabled always */
2339 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2340
2341 /* merge each WM1+ level */
2342 for (level = 1; level <= max_level; level++) {
2343 struct intel_wm_level *wm = &merged->wm[level];
2344
2345 ilk_merge_wm_level(dev, level, wm);
2346
2347 if (level > last_enabled_level)
2348 wm->enable = false;
2349 else if (!ilk_validate_wm_level(level, max, wm))
2350 /* make sure all following levels get disabled */
2351 last_enabled_level = level - 1;
2352
2353 /*
2354 * The spec says it is preferred to disable
2355 * FBC WMs instead of disabling a WM level.
2356 */
2357 if (wm->fbc_val > max->fbc) {
2358 if (wm->enable)
2359 merged->fbc_wm_enabled = false;
2360 wm->fbc_val = 0;
2361 }
2362 }
2363
2364 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2365 /*
2366 * FIXME this is racy. FBC might get enabled later.
2367 * What we should check here is whether FBC can be
2368 * enabled sometime later.
2369 */
2370 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2371 for (level = 2; level <= max_level; level++) {
2372 struct intel_wm_level *wm = &merged->wm[level];
2373
2374 wm->enable = false;
2375 }
2376 }
2377 }
2378
2379 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2380 {
2381 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2382 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2383 }
2384
2385 /* The value we need to program into the WM_LPx latency field */
2386 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2387 {
2388 struct drm_i915_private *dev_priv = dev->dev_private;
2389
2390 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2391 return 2 * level;
2392 else
2393 return dev_priv->wm.pri_latency[level];
2394 }
2395
2396 static void ilk_compute_wm_results(struct drm_device *dev,
2397 const struct intel_pipe_wm *merged,
2398 enum intel_ddb_partitioning partitioning,
2399 struct ilk_wm_values *results)
2400 {
2401 struct intel_crtc *intel_crtc;
2402 int level, wm_lp;
2403
2404 results->enable_fbc_wm = merged->fbc_wm_enabled;
2405 results->partitioning = partitioning;
2406
2407 /* LP1+ register values */
2408 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2409 const struct intel_wm_level *r;
2410
2411 level = ilk_wm_lp_to_level(wm_lp, merged);
2412
2413 r = &merged->wm[level];
2414
2415 /*
2416 * Maintain the watermark values even if the level is
2417 * disabled. Doing otherwise could cause underruns.
2418 */
2419 results->wm_lp[wm_lp - 1] =
2420 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2421 (r->pri_val << WM1_LP_SR_SHIFT) |
2422 r->cur_val;
2423
2424 if (r->enable)
2425 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2426
2427 if (INTEL_INFO(dev)->gen >= 8)
2428 results->wm_lp[wm_lp - 1] |=
2429 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2430 else
2431 results->wm_lp[wm_lp - 1] |=
2432 r->fbc_val << WM1_LP_FBC_SHIFT;
2433
2434 /*
2435 * Always set WM1S_LP_EN when spr_val != 0, even if the
2436 * level is disabled. Doing otherwise could cause underruns.
2437 */
2438 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2439 WARN_ON(wm_lp != 1);
2440 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2441 } else
2442 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2443 }
2444
2445 /* LP0 register values */
2446 for_each_intel_crtc(dev, intel_crtc) {
2447 enum pipe pipe = intel_crtc->pipe;
2448 const struct intel_wm_level *r =
2449 &intel_crtc->wm.active.wm[0];
2450
2451 if (WARN_ON(!r->enable))
2452 continue;
2453
2454 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2455
2456 results->wm_pipe[pipe] =
2457 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2458 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2459 r->cur_val;
2460 }
2461 }
2462
2463 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2464 * case both are at the same level. Prefer r1 in case they're the same. */
2465 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2466 struct intel_pipe_wm *r1,
2467 struct intel_pipe_wm *r2)
2468 {
2469 int level, max_level = ilk_wm_max_level(dev);
2470 int level1 = 0, level2 = 0;
2471
2472 for (level = 1; level <= max_level; level++) {
2473 if (r1->wm[level].enable)
2474 level1 = level;
2475 if (r2->wm[level].enable)
2476 level2 = level;
2477 }
2478
2479 if (level1 == level2) {
2480 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2481 return r2;
2482 else
2483 return r1;
2484 } else if (level1 > level2) {
2485 return r1;
2486 } else {
2487 return r2;
2488 }
2489 }
2490
2491 /* dirty bits used to track which watermarks need changes */
2492 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2493 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2494 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2495 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2496 #define WM_DIRTY_FBC (1 << 24)
2497 #define WM_DIRTY_DDB (1 << 25)
2498
2499 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2500 const struct ilk_wm_values *old,
2501 const struct ilk_wm_values *new)
2502 {
2503 unsigned int dirty = 0;
2504 enum pipe pipe;
2505 int wm_lp;
2506
2507 for_each_pipe(pipe) {
2508 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2509 dirty |= WM_DIRTY_LINETIME(pipe);
2510 /* Must disable LP1+ watermarks too */
2511 dirty |= WM_DIRTY_LP_ALL;
2512 }
2513
2514 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2515 dirty |= WM_DIRTY_PIPE(pipe);
2516 /* Must disable LP1+ watermarks too */
2517 dirty |= WM_DIRTY_LP_ALL;
2518 }
2519 }
2520
2521 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2522 dirty |= WM_DIRTY_FBC;
2523 /* Must disable LP1+ watermarks too */
2524 dirty |= WM_DIRTY_LP_ALL;
2525 }
2526
2527 if (old->partitioning != new->partitioning) {
2528 dirty |= WM_DIRTY_DDB;
2529 /* Must disable LP1+ watermarks too */
2530 dirty |= WM_DIRTY_LP_ALL;
2531 }
2532
2533 /* LP1+ watermarks already deemed dirty, no need to continue */
2534 if (dirty & WM_DIRTY_LP_ALL)
2535 return dirty;
2536
2537 /* Find the lowest numbered LP1+ watermark in need of an update... */
2538 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2539 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2540 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2541 break;
2542 }
2543
2544 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2545 for (; wm_lp <= 3; wm_lp++)
2546 dirty |= WM_DIRTY_LP(wm_lp);
2547
2548 return dirty;
2549 }
2550
2551 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2552 unsigned int dirty)
2553 {
2554 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2555 bool changed = false;
2556
2557 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2558 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2559 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2560 changed = true;
2561 }
2562 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2563 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2564 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2565 changed = true;
2566 }
2567 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2568 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2569 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2570 changed = true;
2571 }
2572
2573 /*
2574 * Don't touch WM1S_LP_EN here.
2575 * Doing so could cause underruns.
2576 */
2577
2578 return changed;
2579 }
2580
2581 /*
2582 * The spec says we shouldn't write when we don't need, because every write
2583 * causes WMs to be re-evaluated, expending some power.
2584 */
2585 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2586 struct ilk_wm_values *results)
2587 {
2588 struct drm_device *dev = dev_priv->dev;
2589 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2590 unsigned int dirty;
2591 uint32_t val;
2592
2593 dirty = ilk_compute_wm_dirty(dev, previous, results);
2594 if (!dirty)
2595 return;
2596
2597 _ilk_disable_lp_wm(dev_priv, dirty);
2598
2599 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2600 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2601 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2602 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2603 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2604 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2605
2606 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2607 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2608 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2609 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2610 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2611 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2612
2613 if (dirty & WM_DIRTY_DDB) {
2614 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2615 val = I915_READ(WM_MISC);
2616 if (results->partitioning == INTEL_DDB_PART_1_2)
2617 val &= ~WM_MISC_DATA_PARTITION_5_6;
2618 else
2619 val |= WM_MISC_DATA_PARTITION_5_6;
2620 I915_WRITE(WM_MISC, val);
2621 } else {
2622 val = I915_READ(DISP_ARB_CTL2);
2623 if (results->partitioning == INTEL_DDB_PART_1_2)
2624 val &= ~DISP_DATA_PARTITION_5_6;
2625 else
2626 val |= DISP_DATA_PARTITION_5_6;
2627 I915_WRITE(DISP_ARB_CTL2, val);
2628 }
2629 }
2630
2631 if (dirty & WM_DIRTY_FBC) {
2632 val = I915_READ(DISP_ARB_CTL);
2633 if (results->enable_fbc_wm)
2634 val &= ~DISP_FBC_WM_DIS;
2635 else
2636 val |= DISP_FBC_WM_DIS;
2637 I915_WRITE(DISP_ARB_CTL, val);
2638 }
2639
2640 if (dirty & WM_DIRTY_LP(1) &&
2641 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2642 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2643
2644 if (INTEL_INFO(dev)->gen >= 7) {
2645 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2646 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2647 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2648 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2649 }
2650
2651 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2652 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2653 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2654 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2655 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2656 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2657
2658 dev_priv->wm.hw = *results;
2659 }
2660
2661 static bool ilk_disable_lp_wm(struct drm_device *dev)
2662 {
2663 struct drm_i915_private *dev_priv = dev->dev_private;
2664
2665 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2666 }
2667
2668 static void ilk_update_wm(struct drm_crtc *crtc)
2669 {
2670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2671 struct drm_device *dev = crtc->dev;
2672 struct drm_i915_private *dev_priv = dev->dev_private;
2673 struct ilk_wm_maximums max;
2674 struct ilk_pipe_wm_parameters params = {};
2675 struct ilk_wm_values results = {};
2676 enum intel_ddb_partitioning partitioning;
2677 struct intel_pipe_wm pipe_wm = {};
2678 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2679 struct intel_wm_config config = {};
2680
2681 ilk_compute_wm_parameters(crtc, &params);
2682
2683 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2684
2685 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2686 return;
2687
2688 intel_crtc->wm.active = pipe_wm;
2689
2690 ilk_compute_wm_config(dev, &config);
2691
2692 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2693 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2694
2695 /* 5/6 split only in single pipe config on IVB+ */
2696 if (INTEL_INFO(dev)->gen >= 7 &&
2697 config.num_pipes_active == 1 && config.sprites_enabled) {
2698 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2699 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2700
2701 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2702 } else {
2703 best_lp_wm = &lp_wm_1_2;
2704 }
2705
2706 partitioning = (best_lp_wm == &lp_wm_1_2) ?
2707 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2708
2709 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2710
2711 ilk_write_wm_values(dev_priv, &results);
2712 }
2713
2714 static void ilk_update_sprite_wm(struct drm_plane *plane,
2715 struct drm_crtc *crtc,
2716 uint32_t sprite_width, int pixel_size,
2717 bool enabled, bool scaled)
2718 {
2719 struct drm_device *dev = plane->dev;
2720 struct intel_plane *intel_plane = to_intel_plane(plane);
2721
2722 intel_plane->wm.enabled = enabled;
2723 intel_plane->wm.scaled = scaled;
2724 intel_plane->wm.horiz_pixels = sprite_width;
2725 intel_plane->wm.bytes_per_pixel = pixel_size;
2726
2727 /*
2728 * IVB workaround: must disable low power watermarks for at least
2729 * one frame before enabling scaling. LP watermarks can be re-enabled
2730 * when scaling is disabled.
2731 *
2732 * WaCxSRDisabledForSpriteScaling:ivb
2733 */
2734 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2735 intel_wait_for_vblank(dev, intel_plane->pipe);
2736
2737 ilk_update_wm(crtc);
2738 }
2739
2740 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2741 {
2742 struct drm_device *dev = crtc->dev;
2743 struct drm_i915_private *dev_priv = dev->dev_private;
2744 struct ilk_wm_values *hw = &dev_priv->wm.hw;
2745 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2746 struct intel_pipe_wm *active = &intel_crtc->wm.active;
2747 enum pipe pipe = intel_crtc->pipe;
2748 static const unsigned int wm0_pipe_reg[] = {
2749 [PIPE_A] = WM0_PIPEA_ILK,
2750 [PIPE_B] = WM0_PIPEB_ILK,
2751 [PIPE_C] = WM0_PIPEC_IVB,
2752 };
2753
2754 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2755 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2756 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2757
2758 active->pipe_enabled = intel_crtc_active(crtc);
2759
2760 if (active->pipe_enabled) {
2761 u32 tmp = hw->wm_pipe[pipe];
2762
2763 /*
2764 * For active pipes LP0 watermark is marked as
2765 * enabled, and LP1+ watermaks as disabled since
2766 * we can't really reverse compute them in case
2767 * multiple pipes are active.
2768 */
2769 active->wm[0].enable = true;
2770 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2771 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2772 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2773 active->linetime = hw->wm_linetime[pipe];
2774 } else {
2775 int level, max_level = ilk_wm_max_level(dev);
2776
2777 /*
2778 * For inactive pipes, all watermark levels
2779 * should be marked as enabled but zeroed,
2780 * which is what we'd compute them to.
2781 */
2782 for (level = 0; level <= max_level; level++)
2783 active->wm[level].enable = true;
2784 }
2785 }
2786
2787 void ilk_wm_get_hw_state(struct drm_device *dev)
2788 {
2789 struct drm_i915_private *dev_priv = dev->dev_private;
2790 struct ilk_wm_values *hw = &dev_priv->wm.hw;
2791 struct drm_crtc *crtc;
2792
2793 for_each_crtc(dev, crtc)
2794 ilk_pipe_wm_get_hw_state(crtc);
2795
2796 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2797 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2798 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2799
2800 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2801 if (INTEL_INFO(dev)->gen >= 7) {
2802 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2803 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2804 }
2805
2806 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2807 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2808 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2809 else if (IS_IVYBRIDGE(dev))
2810 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2811 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2812
2813 hw->enable_fbc_wm =
2814 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2815 }
2816
2817 /**
2818 * intel_update_watermarks - update FIFO watermark values based on current modes
2819 *
2820 * Calculate watermark values for the various WM regs based on current mode
2821 * and plane configuration.
2822 *
2823 * There are several cases to deal with here:
2824 * - normal (i.e. non-self-refresh)
2825 * - self-refresh (SR) mode
2826 * - lines are large relative to FIFO size (buffer can hold up to 2)
2827 * - lines are small relative to FIFO size (buffer can hold more than 2
2828 * lines), so need to account for TLB latency
2829 *
2830 * The normal calculation is:
2831 * watermark = dotclock * bytes per pixel * latency
2832 * where latency is platform & configuration dependent (we assume pessimal
2833 * values here).
2834 *
2835 * The SR calculation is:
2836 * watermark = (trunc(latency/line time)+1) * surface width *
2837 * bytes per pixel
2838 * where
2839 * line time = htotal / dotclock
2840 * surface width = hdisplay for normal plane and 64 for cursor
2841 * and latency is assumed to be high, as above.
2842 *
2843 * The final value programmed to the register should always be rounded up,
2844 * and include an extra 2 entries to account for clock crossings.
2845 *
2846 * We don't use the sprite, so we can ignore that. And on Crestline we have
2847 * to set the non-SR watermarks to 8.
2848 */
2849 void intel_update_watermarks(struct drm_crtc *crtc)
2850 {
2851 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2852
2853 if (dev_priv->display.update_wm)
2854 dev_priv->display.update_wm(crtc);
2855 }
2856
2857 void intel_update_sprite_watermarks(struct drm_plane *plane,
2858 struct drm_crtc *crtc,
2859 uint32_t sprite_width, int pixel_size,
2860 bool enabled, bool scaled)
2861 {
2862 struct drm_i915_private *dev_priv = plane->dev->dev_private;
2863
2864 if (dev_priv->display.update_sprite_wm)
2865 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2866 pixel_size, enabled, scaled);
2867 }
2868
2869 static struct drm_i915_gem_object *
2870 intel_alloc_context_page(struct drm_device *dev)
2871 {
2872 struct drm_i915_gem_object *ctx;
2873 int ret;
2874
2875 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2876
2877 ctx = i915_gem_alloc_object(dev, 4096);
2878 if (!ctx) {
2879 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2880 return NULL;
2881 }
2882
2883 ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2884 if (ret) {
2885 DRM_ERROR("failed to pin power context: %d\n", ret);
2886 goto err_unref;
2887 }
2888
2889 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2890 if (ret) {
2891 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2892 goto err_unpin;
2893 }
2894
2895 return ctx;
2896
2897 err_unpin:
2898 i915_gem_object_ggtt_unpin(ctx);
2899 err_unref:
2900 drm_gem_object_unreference(&ctx->base);
2901 return NULL;
2902 }
2903
2904 /**
2905 * Lock protecting IPS related data structures
2906 */
2907 DEFINE_SPINLOCK(mchdev_lock);
2908
2909 /* Global for IPS driver to get at the current i915 device. Protected by
2910 * mchdev_lock. */
2911 static struct drm_i915_private *i915_mch_dev;
2912
2913 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2914 {
2915 struct drm_i915_private *dev_priv = dev->dev_private;
2916 u16 rgvswctl;
2917
2918 assert_spin_locked(&mchdev_lock);
2919
2920 rgvswctl = I915_READ16(MEMSWCTL);
2921 if (rgvswctl & MEMCTL_CMD_STS) {
2922 DRM_DEBUG("gpu busy, RCS change rejected\n");
2923 return false; /* still busy with another command */
2924 }
2925
2926 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2927 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2928 I915_WRITE16(MEMSWCTL, rgvswctl);
2929 POSTING_READ16(MEMSWCTL);
2930
2931 rgvswctl |= MEMCTL_CMD_STS;
2932 I915_WRITE16(MEMSWCTL, rgvswctl);
2933
2934 return true;
2935 }
2936
2937 static void ironlake_enable_drps(struct drm_device *dev)
2938 {
2939 struct drm_i915_private *dev_priv = dev->dev_private;
2940 u32 rgvmodectl = I915_READ(MEMMODECTL);
2941 u8 fmax, fmin, fstart, vstart;
2942
2943 spin_lock_irq(&mchdev_lock);
2944
2945 /* Enable temp reporting */
2946 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2947 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2948
2949 /* 100ms RC evaluation intervals */
2950 I915_WRITE(RCUPEI, 100000);
2951 I915_WRITE(RCDNEI, 100000);
2952
2953 /* Set max/min thresholds to 90ms and 80ms respectively */
2954 I915_WRITE(RCBMAXAVG, 90000);
2955 I915_WRITE(RCBMINAVG, 80000);
2956
2957 I915_WRITE(MEMIHYST, 1);
2958
2959 /* Set up min, max, and cur for interrupt handling */
2960 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2961 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2962 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2963 MEMMODE_FSTART_SHIFT;
2964
2965 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2966 PXVFREQ_PX_SHIFT;
2967
2968 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2969 dev_priv->ips.fstart = fstart;
2970
2971 dev_priv->ips.max_delay = fstart;
2972 dev_priv->ips.min_delay = fmin;
2973 dev_priv->ips.cur_delay = fstart;
2974
2975 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2976 fmax, fmin, fstart);
2977
2978 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2979
2980 /*
2981 * Interrupts will be enabled in ironlake_irq_postinstall
2982 */
2983
2984 I915_WRITE(VIDSTART, vstart);
2985 POSTING_READ(VIDSTART);
2986
2987 rgvmodectl |= MEMMODE_SWMODE_EN;
2988 I915_WRITE(MEMMODECTL, rgvmodectl);
2989
2990 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2991 DRM_ERROR("stuck trying to change perf mode\n");
2992 mdelay(1);
2993
2994 ironlake_set_drps(dev, fstart);
2995
2996 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2997 I915_READ(0x112e0);
2998 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2999 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3000 getrawmonotonic(&dev_priv->ips.last_time2);
3001
3002 spin_unlock_irq(&mchdev_lock);
3003 }
3004
3005 static void ironlake_disable_drps(struct drm_device *dev)
3006 {
3007 struct drm_i915_private *dev_priv = dev->dev_private;
3008 u16 rgvswctl;
3009
3010 spin_lock_irq(&mchdev_lock);
3011
3012 rgvswctl = I915_READ16(MEMSWCTL);
3013
3014 /* Ack interrupts, disable EFC interrupt */
3015 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3016 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3017 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3018 I915_WRITE(DEIIR, DE_PCU_EVENT);
3019 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3020
3021 /* Go back to the starting frequency */
3022 ironlake_set_drps(dev, dev_priv->ips.fstart);
3023 mdelay(1);
3024 rgvswctl |= MEMCTL_CMD_STS;
3025 I915_WRITE(MEMSWCTL, rgvswctl);
3026 mdelay(1);
3027
3028 spin_unlock_irq(&mchdev_lock);
3029 }
3030
3031 /* There's a funny hw issue where the hw returns all 0 when reading from
3032 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3033 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3034 * all limits and the gpu stuck at whatever frequency it is at atm).
3035 */
3036 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3037 {
3038 u32 limits;
3039
3040 /* Only set the down limit when we've reached the lowest level to avoid
3041 * getting more interrupts, otherwise leave this clear. This prevents a
3042 * race in the hw when coming out of rc6: There's a tiny window where
3043 * the hw runs at the minimal clock before selecting the desired
3044 * frequency, if the down threshold expires in that window we will not
3045 * receive a down interrupt. */
3046 limits = dev_priv->rps.max_freq_softlimit << 24;
3047 if (val <= dev_priv->rps.min_freq_softlimit)
3048 limits |= dev_priv->rps.min_freq_softlimit << 16;
3049
3050 return limits;
3051 }
3052
3053 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3054 {
3055 int new_power;
3056
3057 new_power = dev_priv->rps.power;
3058 switch (dev_priv->rps.power) {
3059 case LOW_POWER:
3060 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3061 new_power = BETWEEN;
3062 break;
3063
3064 case BETWEEN:
3065 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3066 new_power = LOW_POWER;
3067 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3068 new_power = HIGH_POWER;
3069 break;
3070
3071 case HIGH_POWER:
3072 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3073 new_power = BETWEEN;
3074 break;
3075 }
3076 /* Max/min bins are special */
3077 if (val == dev_priv->rps.min_freq_softlimit)
3078 new_power = LOW_POWER;
3079 if (val == dev_priv->rps.max_freq_softlimit)
3080 new_power = HIGH_POWER;
3081 if (new_power == dev_priv->rps.power)
3082 return;
3083
3084 /* Note the units here are not exactly 1us, but 1280ns. */
3085 switch (new_power) {
3086 case LOW_POWER:
3087 /* Upclock if more than 95% busy over 16ms */
3088 I915_WRITE(GEN6_RP_UP_EI, 12500);
3089 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3090
3091 /* Downclock if less than 85% busy over 32ms */
3092 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3093 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3094
3095 I915_WRITE(GEN6_RP_CONTROL,
3096 GEN6_RP_MEDIA_TURBO |
3097 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3098 GEN6_RP_MEDIA_IS_GFX |
3099 GEN6_RP_ENABLE |
3100 GEN6_RP_UP_BUSY_AVG |
3101 GEN6_RP_DOWN_IDLE_AVG);
3102 break;
3103
3104 case BETWEEN:
3105 /* Upclock if more than 90% busy over 13ms */
3106 I915_WRITE(GEN6_RP_UP_EI, 10250);
3107 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3108
3109 /* Downclock if less than 75% busy over 32ms */
3110 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3111 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3112
3113 I915_WRITE(GEN6_RP_CONTROL,
3114 GEN6_RP_MEDIA_TURBO |
3115 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3116 GEN6_RP_MEDIA_IS_GFX |
3117 GEN6_RP_ENABLE |
3118 GEN6_RP_UP_BUSY_AVG |
3119 GEN6_RP_DOWN_IDLE_AVG);
3120 break;
3121
3122 case HIGH_POWER:
3123 /* Upclock if more than 85% busy over 10ms */
3124 I915_WRITE(GEN6_RP_UP_EI, 8000);
3125 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3126
3127 /* Downclock if less than 60% busy over 32ms */
3128 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3129 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3130
3131 I915_WRITE(GEN6_RP_CONTROL,
3132 GEN6_RP_MEDIA_TURBO |
3133 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3134 GEN6_RP_MEDIA_IS_GFX |
3135 GEN6_RP_ENABLE |
3136 GEN6_RP_UP_BUSY_AVG |
3137 GEN6_RP_DOWN_IDLE_AVG);
3138 break;
3139 }
3140
3141 dev_priv->rps.power = new_power;
3142 dev_priv->rps.last_adj = 0;
3143 }
3144
3145 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3146 {
3147 u32 mask = 0;
3148
3149 if (val > dev_priv->rps.min_freq_softlimit)
3150 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3151 if (val < dev_priv->rps.max_freq_softlimit)
3152 mask |= GEN6_PM_RP_UP_THRESHOLD;
3153
3154 /* IVB and SNB hard hangs on looping batchbuffer
3155 * if GEN6_PM_UP_EI_EXPIRED is masked.
3156 */
3157 if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3158 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3159
3160 if (IS_GEN8(dev_priv->dev))
3161 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3162
3163 return ~mask;
3164 }
3165
3166 /* gen6_set_rps is called to update the frequency request, but should also be
3167 * called when the range (min_delay and max_delay) is modified so that we can
3168 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3169 void gen6_set_rps(struct drm_device *dev, u8 val)
3170 {
3171 struct drm_i915_private *dev_priv = dev->dev_private;
3172
3173 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3174 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3175 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3176
3177 /* min/max delay may still have been modified so be sure to
3178 * write the limits value.
3179 */
3180 if (val != dev_priv->rps.cur_freq) {
3181 gen6_set_rps_thresholds(dev_priv, val);
3182
3183 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3184 I915_WRITE(GEN6_RPNSWREQ,
3185 HSW_FREQUENCY(val));
3186 else
3187 I915_WRITE(GEN6_RPNSWREQ,
3188 GEN6_FREQUENCY(val) |
3189 GEN6_OFFSET(0) |
3190 GEN6_AGGRESSIVE_TURBO);
3191 }
3192
3193 /* Make sure we continue to get interrupts
3194 * until we hit the minimum or maximum frequencies.
3195 */
3196 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3197 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3198
3199 POSTING_READ(GEN6_RPNSWREQ);
3200
3201 dev_priv->rps.cur_freq = val;
3202 trace_intel_gpu_freq_change(val * 50);
3203 }
3204
3205 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3206 *
3207 * * If Gfx is Idle, then
3208 * 1. Mask Turbo interrupts
3209 * 2. Bring up Gfx clock
3210 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3211 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3212 * 5. Unmask Turbo interrupts
3213 */
3214 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3215 {
3216 /*
3217 * When we are idle. Drop to min voltage state.
3218 */
3219
3220 if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3221 return;
3222
3223 /* Mask turbo interrupt so that they will not come in between */
3224 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3225
3226 vlv_force_gfx_clock(dev_priv, true);
3227
3228 dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3229
3230 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3231 dev_priv->rps.min_freq_softlimit);
3232
3233 if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3234 & GENFREQSTATUS) == 0, 5))
3235 DRM_ERROR("timed out waiting for Punit\n");
3236
3237 vlv_force_gfx_clock(dev_priv, false);
3238
3239 I915_WRITE(GEN6_PMINTRMSK,
3240 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3241 }
3242
3243 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3244 {
3245 struct drm_device *dev = dev_priv->dev;
3246
3247 mutex_lock(&dev_priv->rps.hw_lock);
3248 if (dev_priv->rps.enabled) {
3249 if (IS_VALLEYVIEW(dev))
3250 vlv_set_rps_idle(dev_priv);
3251 else
3252 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3253 dev_priv->rps.last_adj = 0;
3254 }
3255 mutex_unlock(&dev_priv->rps.hw_lock);
3256 }
3257
3258 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3259 {
3260 struct drm_device *dev = dev_priv->dev;
3261
3262 mutex_lock(&dev_priv->rps.hw_lock);
3263 if (dev_priv->rps.enabled) {
3264 if (IS_VALLEYVIEW(dev))
3265 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3266 else
3267 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3268 dev_priv->rps.last_adj = 0;
3269 }
3270 mutex_unlock(&dev_priv->rps.hw_lock);
3271 }
3272
3273 void valleyview_set_rps(struct drm_device *dev, u8 val)
3274 {
3275 struct drm_i915_private *dev_priv = dev->dev_private;
3276
3277 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3278 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3279 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3280
3281 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3282 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3283 dev_priv->rps.cur_freq,
3284 vlv_gpu_freq(dev_priv, val), val);
3285
3286 if (val != dev_priv->rps.cur_freq)
3287 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3288
3289 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3290
3291 dev_priv->rps.cur_freq = val;
3292 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3293 }
3294
3295 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3296 {
3297 struct drm_i915_private *dev_priv = dev->dev_private;
3298
3299 I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3300 I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3301 ~dev_priv->pm_rps_events);
3302 /* Complete PM interrupt masking here doesn't race with the rps work
3303 * item again unmasking PM interrupts because that is using a different
3304 * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3305 * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3306 * gen8_enable_rps will clean up. */
3307
3308 spin_lock_irq(&dev_priv->irq_lock);
3309 dev_priv->rps.pm_iir = 0;
3310 spin_unlock_irq(&dev_priv->irq_lock);
3311
3312 I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3313 }
3314
3315 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3316 {
3317 struct drm_i915_private *dev_priv = dev->dev_private;
3318
3319 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3320 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3321 ~dev_priv->pm_rps_events);
3322 /* Complete PM interrupt masking here doesn't race with the rps work
3323 * item again unmasking PM interrupts because that is using a different
3324 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3325 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3326
3327 spin_lock_irq(&dev_priv->irq_lock);
3328 dev_priv->rps.pm_iir = 0;
3329 spin_unlock_irq(&dev_priv->irq_lock);
3330
3331 I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3332 }
3333
3334 static void gen6_disable_rps(struct drm_device *dev)
3335 {
3336 struct drm_i915_private *dev_priv = dev->dev_private;
3337
3338 I915_WRITE(GEN6_RC_CONTROL, 0);
3339 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3340
3341 if (IS_BROADWELL(dev))
3342 gen8_disable_rps_interrupts(dev);
3343 else
3344 gen6_disable_rps_interrupts(dev);
3345 }
3346
3347 static void cherryview_disable_rps(struct drm_device *dev)
3348 {
3349 struct drm_i915_private *dev_priv = dev->dev_private;
3350
3351 I915_WRITE(GEN6_RC_CONTROL, 0);
3352 }
3353
3354 static void valleyview_disable_rps(struct drm_device *dev)
3355 {
3356 struct drm_i915_private *dev_priv = dev->dev_private;
3357
3358 I915_WRITE(GEN6_RC_CONTROL, 0);
3359
3360 gen6_disable_rps_interrupts(dev);
3361 }
3362
3363 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3364 {
3365 if (IS_VALLEYVIEW(dev)) {
3366 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3367 mode = GEN6_RC_CTL_RC6_ENABLE;
3368 else
3369 mode = 0;
3370 }
3371 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3372 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3373 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3374 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3375 }
3376
3377 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3378 {
3379 /* No RC6 before Ironlake */
3380 if (INTEL_INFO(dev)->gen < 5)
3381 return 0;
3382
3383 /* RC6 is only on Ironlake mobile not on desktop */
3384 if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3385 return 0;
3386
3387 /* Respect the kernel parameter if it is set */
3388 if (enable_rc6 >= 0) {
3389 int mask;
3390
3391 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3392 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3393 INTEL_RC6pp_ENABLE;
3394 else
3395 mask = INTEL_RC6_ENABLE;
3396
3397 if ((enable_rc6 & mask) != enable_rc6)
3398 DRM_INFO("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3399 enable_rc6 & mask, enable_rc6, mask);
3400
3401 return enable_rc6 & mask;
3402 }
3403
3404 /* Disable RC6 on Ironlake */
3405 if (INTEL_INFO(dev)->gen == 5)
3406 return 0;
3407
3408 if (IS_IVYBRIDGE(dev))
3409 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3410
3411 return INTEL_RC6_ENABLE;
3412 }
3413
3414 int intel_enable_rc6(const struct drm_device *dev)
3415 {
3416 return i915.enable_rc6;
3417 }
3418
3419 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3420 {
3421 struct drm_i915_private *dev_priv = dev->dev_private;
3422
3423 spin_lock_irq(&dev_priv->irq_lock);
3424 WARN_ON(dev_priv->rps.pm_iir);
3425 bdw_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3426 I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3427 spin_unlock_irq(&dev_priv->irq_lock);
3428 }
3429
3430 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3431 {
3432 struct drm_i915_private *dev_priv = dev->dev_private;
3433
3434 spin_lock_irq(&dev_priv->irq_lock);
3435 WARN_ON(dev_priv->rps.pm_iir);
3436 snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3437 I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3438 spin_unlock_irq(&dev_priv->irq_lock);
3439 }
3440
3441 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3442 {
3443 /* All of these values are in units of 50MHz */
3444 dev_priv->rps.cur_freq = 0;
3445 /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3446 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
3447 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
3448 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
3449 /* XXX: only BYT has a special efficient freq */
3450 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
3451 /* hw_max = RP0 until we check for overclocking */
3452 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
3453
3454 /* Preserve min/max settings in case of re-init */
3455 if (dev_priv->rps.max_freq_softlimit == 0)
3456 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3457
3458 if (dev_priv->rps.min_freq_softlimit == 0)
3459 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3460 }
3461
3462 static void gen8_enable_rps(struct drm_device *dev)
3463 {
3464 struct drm_i915_private *dev_priv = dev->dev_private;
3465 struct intel_engine_cs *ring;
3466 uint32_t rc6_mask = 0, rp_state_cap;
3467 int unused;
3468
3469 /* 1a: Software RC state - RC0 */
3470 I915_WRITE(GEN6_RC_STATE, 0);
3471
3472 /* 1c & 1d: Get forcewake during program sequence. Although the driver
3473 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3474 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3475
3476 /* 2a: Disable RC states. */
3477 I915_WRITE(GEN6_RC_CONTROL, 0);
3478
3479 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3480 parse_rp_state_cap(dev_priv, rp_state_cap);
3481
3482 /* 2b: Program RC6 thresholds.*/
3483 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3484 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3485 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3486 for_each_ring(ring, dev_priv, unused)
3487 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3488 I915_WRITE(GEN6_RC_SLEEP, 0);
3489 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3490
3491 /* 3: Enable RC6 */
3492 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3493 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3494 intel_print_rc6_info(dev, rc6_mask);
3495 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3496 GEN6_RC_CTL_EI_MODE(1) |
3497 rc6_mask);
3498
3499 /* 4 Program defaults and thresholds for RPS*/
3500 I915_WRITE(GEN6_RPNSWREQ,
3501 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3502 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3503 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3504 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3505 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3506
3507 /* Docs recommend 900MHz, and 300 MHz respectively */
3508 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3509 dev_priv->rps.max_freq_softlimit << 24 |
3510 dev_priv->rps.min_freq_softlimit << 16);
3511
3512 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3513 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3514 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3515 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3516
3517 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3518
3519 /* 5: Enable RPS */
3520 I915_WRITE(GEN6_RP_CONTROL,
3521 GEN6_RP_MEDIA_TURBO |
3522 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3523 GEN6_RP_MEDIA_IS_GFX |
3524 GEN6_RP_ENABLE |
3525 GEN6_RP_UP_BUSY_AVG |
3526 GEN6_RP_DOWN_IDLE_AVG);
3527
3528 /* 6: Ring frequency + overclocking (our driver does this later */
3529
3530 gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3531
3532 gen8_enable_rps_interrupts(dev);
3533
3534 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3535 }
3536
3537 static void gen6_enable_rps(struct drm_device *dev)
3538 {
3539 struct drm_i915_private *dev_priv = dev->dev_private;
3540 struct intel_engine_cs *ring;
3541 u32 rp_state_cap;
3542 u32 gt_perf_status;
3543 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3544 u32 gtfifodbg;
3545 int rc6_mode;
3546 int i, ret;
3547
3548 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3549
3550 /* Here begins a magic sequence of register writes to enable
3551 * auto-downclocking.
3552 *
3553 * Perhaps there might be some value in exposing these to
3554 * userspace...
3555 */
3556 I915_WRITE(GEN6_RC_STATE, 0);
3557
3558 /* Clear the DBG now so we don't confuse earlier errors */
3559 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3560 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3561 I915_WRITE(GTFIFODBG, gtfifodbg);
3562 }
3563
3564 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3565
3566 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3567 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3568
3569 parse_rp_state_cap(dev_priv, rp_state_cap);
3570
3571 /* disable the counters and set deterministic thresholds */
3572 I915_WRITE(GEN6_RC_CONTROL, 0);
3573
3574 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3575 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3576 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3577 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3578 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3579
3580 for_each_ring(ring, dev_priv, i)
3581 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3582
3583 I915_WRITE(GEN6_RC_SLEEP, 0);
3584 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3585 if (IS_IVYBRIDGE(dev))
3586 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3587 else
3588 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3589 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3590 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3591
3592 /* Check if we are enabling RC6 */
3593 rc6_mode = intel_enable_rc6(dev_priv->dev);
3594 if (rc6_mode & INTEL_RC6_ENABLE)
3595 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3596
3597 /* We don't use those on Haswell */
3598 if (!IS_HASWELL(dev)) {
3599 if (rc6_mode & INTEL_RC6p_ENABLE)
3600 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3601
3602 if (rc6_mode & INTEL_RC6pp_ENABLE)
3603 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3604 }
3605
3606 intel_print_rc6_info(dev, rc6_mask);
3607
3608 I915_WRITE(GEN6_RC_CONTROL,
3609 rc6_mask |
3610 GEN6_RC_CTL_EI_MODE(1) |
3611 GEN6_RC_CTL_HW_ENABLE);
3612
3613 /* Power down if completely idle for over 50ms */
3614 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3615 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3616
3617 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3618 if (ret)
3619 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3620
3621 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3622 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3623 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3624 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3625 (pcu_mbox & 0xff) * 50);
3626 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3627 }
3628
3629 dev_priv->rps.power = HIGH_POWER; /* force a reset */
3630 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3631
3632 gen6_enable_rps_interrupts(dev);
3633
3634 rc6vids = 0;
3635 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3636 if (IS_GEN6(dev) && ret) {
3637 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3638 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3639 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3640 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3641 rc6vids &= 0xffff00;
3642 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3643 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3644 if (ret)
3645 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3646 }
3647
3648 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3649 }
3650
3651 static void __gen6_update_ring_freq(struct drm_device *dev)
3652 {
3653 struct drm_i915_private *dev_priv = dev->dev_private;
3654 int min_freq = 15;
3655 unsigned int gpu_freq;
3656 unsigned int max_ia_freq, min_ring_freq;
3657 int scaling_factor = 180;
3658 struct cpufreq_policy *policy;
3659
3660 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3661
3662 policy = cpufreq_cpu_get(0);
3663 if (policy) {
3664 max_ia_freq = policy->cpuinfo.max_freq;
3665 cpufreq_cpu_put(policy);
3666 } else {
3667 /*
3668 * Default to measured freq if none found, PCU will ensure we
3669 * don't go over
3670 */
3671 max_ia_freq = tsc_khz;
3672 }
3673
3674 /* Convert from kHz to MHz */
3675 max_ia_freq /= 1000;
3676
3677 min_ring_freq = I915_READ(DCLK) & 0xf;
3678 /* convert DDR frequency from units of 266.6MHz to bandwidth */
3679 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3680
3681 /*
3682 * For each potential GPU frequency, load a ring frequency we'd like
3683 * to use for memory access. We do this by specifying the IA frequency
3684 * the PCU should use as a reference to determine the ring frequency.
3685 */
3686 for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3687 gpu_freq--) {
3688 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3689 unsigned int ia_freq = 0, ring_freq = 0;
3690
3691 if (INTEL_INFO(dev)->gen >= 8) {
3692 /* max(2 * GT, DDR). NB: GT is 50MHz units */
3693 ring_freq = max(min_ring_freq, gpu_freq);
3694 } else if (IS_HASWELL(dev)) {
3695 ring_freq = mult_frac(gpu_freq, 5, 4);
3696 ring_freq = max(min_ring_freq, ring_freq);
3697 /* leave ia_freq as the default, chosen by cpufreq */
3698 } else {
3699 /* On older processors, there is no separate ring
3700 * clock domain, so in order to boost the bandwidth
3701 * of the ring, we need to upclock the CPU (ia_freq).
3702 *
3703 * For GPU frequencies less than 750MHz,
3704 * just use the lowest ring freq.
3705 */
3706 if (gpu_freq < min_freq)
3707 ia_freq = 800;
3708 else
3709 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3710 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3711 }
3712
3713 sandybridge_pcode_write(dev_priv,
3714 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3715 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3716 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3717 gpu_freq);
3718 }
3719 }
3720
3721 void gen6_update_ring_freq(struct drm_device *dev)
3722 {
3723 struct drm_i915_private *dev_priv = dev->dev_private;
3724
3725 if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3726 return;
3727
3728 mutex_lock(&dev_priv->rps.hw_lock);
3729 __gen6_update_ring_freq(dev);
3730 mutex_unlock(&dev_priv->rps.hw_lock);
3731 }
3732
3733 int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
3734 {
3735 u32 val, rp0;
3736
3737 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3738 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3739
3740 return rp0;
3741 }
3742
3743 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3744 {
3745 u32 val, rpe;
3746
3747 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
3748 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
3749
3750 return rpe;
3751 }
3752
3753 int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
3754 {
3755 u32 val, rpn;
3756
3757 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3758 rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
3759 return rpn;
3760 }
3761
3762 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3763 {
3764 u32 val, rp0;
3765
3766 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3767
3768 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3769 /* Clamp to max */
3770 rp0 = min_t(u32, rp0, 0xea);
3771
3772 return rp0;
3773 }
3774
3775 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3776 {
3777 u32 val, rpe;
3778
3779 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3780 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3781 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3782 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3783
3784 return rpe;
3785 }
3786
3787 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3788 {
3789 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3790 }
3791
3792 /* Check that the pctx buffer wasn't move under us. */
3793 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3794 {
3795 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3796
3797 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3798 dev_priv->vlv_pctx->stolen->start);
3799 }
3800
3801
3802 /* Check that the pcbr address is not empty. */
3803 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
3804 {
3805 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3806
3807 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
3808 }
3809
3810 static void cherryview_setup_pctx(struct drm_device *dev)
3811 {
3812 struct drm_i915_private *dev_priv = dev->dev_private;
3813 unsigned long pctx_paddr, paddr;
3814 struct i915_gtt *gtt = &dev_priv->gtt;
3815 u32 pcbr;
3816 int pctx_size = 32*1024;
3817
3818 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3819
3820 pcbr = I915_READ(VLV_PCBR);
3821 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
3822 paddr = (dev_priv->mm.stolen_base +
3823 (gtt->stolen_size - pctx_size));
3824
3825 pctx_paddr = (paddr & (~4095));
3826 I915_WRITE(VLV_PCBR, pctx_paddr);
3827 }
3828 }
3829
3830 static void valleyview_setup_pctx(struct drm_device *dev)
3831 {
3832 struct drm_i915_private *dev_priv = dev->dev_private;
3833 struct drm_i915_gem_object *pctx;
3834 unsigned long pctx_paddr;
3835 u32 pcbr;
3836 int pctx_size = 24*1024;
3837
3838 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3839
3840 pcbr = I915_READ(VLV_PCBR);
3841 if (pcbr) {
3842 /* BIOS set it up already, grab the pre-alloc'd space */
3843 int pcbr_offset;
3844
3845 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3846 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3847 pcbr_offset,
3848 I915_GTT_OFFSET_NONE,
3849 pctx_size);
3850 goto out;
3851 }
3852
3853 /*
3854 * From the Gunit register HAS:
3855 * The Gfx driver is expected to program this register and ensure
3856 * proper allocation within Gfx stolen memory. For example, this
3857 * register should be programmed such than the PCBR range does not
3858 * overlap with other ranges, such as the frame buffer, protected
3859 * memory, or any other relevant ranges.
3860 */
3861 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3862 if (!pctx) {
3863 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3864 return;
3865 }
3866
3867 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3868 I915_WRITE(VLV_PCBR, pctx_paddr);
3869
3870 out:
3871 dev_priv->vlv_pctx = pctx;
3872 }
3873
3874 static void valleyview_cleanup_pctx(struct drm_device *dev)
3875 {
3876 struct drm_i915_private *dev_priv = dev->dev_private;
3877
3878 if (WARN_ON(!dev_priv->vlv_pctx))
3879 return;
3880
3881 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3882 dev_priv->vlv_pctx = NULL;
3883 }
3884
3885 static void valleyview_init_gt_powersave(struct drm_device *dev)
3886 {
3887 struct drm_i915_private *dev_priv = dev->dev_private;
3888
3889 valleyview_setup_pctx(dev);
3890
3891 mutex_lock(&dev_priv->rps.hw_lock);
3892
3893 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3894 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3895 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3896 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3897 dev_priv->rps.max_freq);
3898
3899 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3900 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3901 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3902 dev_priv->rps.efficient_freq);
3903
3904 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3905 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3906 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3907 dev_priv->rps.min_freq);
3908
3909 /* Preserve min/max settings in case of re-init */
3910 if (dev_priv->rps.max_freq_softlimit == 0)
3911 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3912
3913 if (dev_priv->rps.min_freq_softlimit == 0)
3914 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3915
3916 mutex_unlock(&dev_priv->rps.hw_lock);
3917 }
3918
3919 static void cherryview_init_gt_powersave(struct drm_device *dev)
3920 {
3921 struct drm_i915_private *dev_priv = dev->dev_private;
3922
3923 cherryview_setup_pctx(dev);
3924
3925 mutex_lock(&dev_priv->rps.hw_lock);
3926
3927 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
3928 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3929 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3930 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3931 dev_priv->rps.max_freq);
3932
3933 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
3934 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3935 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3936 dev_priv->rps.efficient_freq);
3937
3938 dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
3939 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3940 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3941 dev_priv->rps.min_freq);
3942
3943 /* Preserve min/max settings in case of re-init */
3944 if (dev_priv->rps.max_freq_softlimit == 0)
3945 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3946
3947 if (dev_priv->rps.min_freq_softlimit == 0)
3948 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3949
3950 mutex_unlock(&dev_priv->rps.hw_lock);
3951 }
3952
3953 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
3954 {
3955 valleyview_cleanup_pctx(dev);
3956 }
3957
3958 static void cherryview_enable_rps(struct drm_device *dev)
3959 {
3960 struct drm_i915_private *dev_priv = dev->dev_private;
3961 struct intel_engine_cs *ring;
3962 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
3963 int i;
3964
3965 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3966
3967 gtfifodbg = I915_READ(GTFIFODBG);
3968 if (gtfifodbg) {
3969 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3970 gtfifodbg);
3971 I915_WRITE(GTFIFODBG, gtfifodbg);
3972 }
3973
3974 cherryview_check_pctx(dev_priv);
3975
3976 /* 1a & 1b: Get forcewake during program sequence. Although the driver
3977 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3978 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3979
3980 /* 2a: Program RC6 thresholds.*/
3981 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3982 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3983 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3984
3985 for_each_ring(ring, dev_priv, i)
3986 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3987 I915_WRITE(GEN6_RC_SLEEP, 0);
3988
3989 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3990
3991 /* allows RC6 residency counter to work */
3992 I915_WRITE(VLV_COUNTER_CONTROL,
3993 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3994 VLV_MEDIA_RC6_COUNT_EN |
3995 VLV_RENDER_RC6_COUNT_EN));
3996
3997 /* For now we assume BIOS is allocating and populating the PCBR */
3998 pcbr = I915_READ(VLV_PCBR);
3999
4000 DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4001
4002 /* 3: Enable RC6 */
4003 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4004 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4005 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4006
4007 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4008
4009 /* 4 Program defaults and thresholds for RPS*/
4010 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4011 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4012 I915_WRITE(GEN6_RP_UP_EI, 66000);
4013 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4014
4015 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4016
4017 /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4018 I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4019 I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4020
4021 /* 5: Enable RPS */
4022 I915_WRITE(GEN6_RP_CONTROL,
4023 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4024 GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4025 GEN6_RP_ENABLE |
4026 GEN6_RP_UP_BUSY_AVG |
4027 GEN6_RP_DOWN_IDLE_AVG);
4028
4029 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4030
4031 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4032 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4033
4034 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4035 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4036 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4037 dev_priv->rps.cur_freq);
4038
4039 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4040 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4041 dev_priv->rps.efficient_freq);
4042
4043 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4044
4045 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4046 }
4047
4048 static void valleyview_enable_rps(struct drm_device *dev)
4049 {
4050 struct drm_i915_private *dev_priv = dev->dev_private;
4051 struct intel_engine_cs *ring;
4052 u32 gtfifodbg, val, rc6_mode = 0;
4053 int i;
4054
4055 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4056
4057 valleyview_check_pctx(dev_priv);
4058
4059 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4060 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4061 gtfifodbg);
4062 I915_WRITE(GTFIFODBG, gtfifodbg);
4063 }
4064
4065 /* If VLV, Forcewake all wells, else re-direct to regular path */
4066 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4067
4068 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4069 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4070 I915_WRITE(GEN6_RP_UP_EI, 66000);
4071 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4072
4073 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4074
4075 I915_WRITE(GEN6_RP_CONTROL,
4076 GEN6_RP_MEDIA_TURBO |
4077 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4078 GEN6_RP_MEDIA_IS_GFX |
4079 GEN6_RP_ENABLE |
4080 GEN6_RP_UP_BUSY_AVG |
4081 GEN6_RP_DOWN_IDLE_CONT);
4082
4083 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4084 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4085 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4086
4087 for_each_ring(ring, dev_priv, i)
4088 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4089
4090 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4091
4092 /* allows RC6 residency counter to work */
4093 I915_WRITE(VLV_COUNTER_CONTROL,
4094 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4095 VLV_MEDIA_RC6_COUNT_EN |
4096 VLV_RENDER_RC6_COUNT_EN));
4097 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4098 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4099
4100 intel_print_rc6_info(dev, rc6_mode);
4101
4102 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4103
4104 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4105
4106 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4107 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4108
4109 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4110 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4111 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4112 dev_priv->rps.cur_freq);
4113
4114 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4115 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4116 dev_priv->rps.efficient_freq);
4117
4118 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4119
4120 gen6_enable_rps_interrupts(dev);
4121
4122 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4123 }
4124
4125 void ironlake_teardown_rc6(struct drm_device *dev)
4126 {
4127 struct drm_i915_private *dev_priv = dev->dev_private;
4128
4129 if (dev_priv->ips.renderctx) {
4130 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4131 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4132 dev_priv->ips.renderctx = NULL;
4133 }
4134
4135 if (dev_priv->ips.pwrctx) {
4136 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4137 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4138 dev_priv->ips.pwrctx = NULL;
4139 }
4140 }
4141
4142 static void ironlake_disable_rc6(struct drm_device *dev)
4143 {
4144 struct drm_i915_private *dev_priv = dev->dev_private;
4145
4146 if (I915_READ(PWRCTXA)) {
4147 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4148 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4149 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4150 50);
4151
4152 I915_WRITE(PWRCTXA, 0);
4153 POSTING_READ(PWRCTXA);
4154
4155 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4156 POSTING_READ(RSTDBYCTL);
4157 }
4158 }
4159
4160 static int ironlake_setup_rc6(struct drm_device *dev)
4161 {
4162 struct drm_i915_private *dev_priv = dev->dev_private;
4163
4164 if (dev_priv->ips.renderctx == NULL)
4165 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4166 if (!dev_priv->ips.renderctx)
4167 return -ENOMEM;
4168
4169 if (dev_priv->ips.pwrctx == NULL)
4170 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4171 if (!dev_priv->ips.pwrctx) {
4172 ironlake_teardown_rc6(dev);
4173 return -ENOMEM;
4174 }
4175
4176 return 0;
4177 }
4178
4179 static void ironlake_enable_rc6(struct drm_device *dev)
4180 {
4181 struct drm_i915_private *dev_priv = dev->dev_private;
4182 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4183 bool was_interruptible;
4184 int ret;
4185
4186 /* rc6 disabled by default due to repeated reports of hanging during
4187 * boot and resume.
4188 */
4189 if (!intel_enable_rc6(dev))
4190 return;
4191
4192 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4193
4194 ret = ironlake_setup_rc6(dev);
4195 if (ret)
4196 return;
4197
4198 was_interruptible = dev_priv->mm.interruptible;
4199 dev_priv->mm.interruptible = false;
4200
4201 /*
4202 * GPU can automatically power down the render unit if given a page
4203 * to save state.
4204 */
4205 ret = intel_ring_begin(ring, 6);
4206 if (ret) {
4207 ironlake_teardown_rc6(dev);
4208 dev_priv->mm.interruptible = was_interruptible;
4209 return;
4210 }
4211
4212 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4213 intel_ring_emit(ring, MI_SET_CONTEXT);
4214 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4215 MI_MM_SPACE_GTT |
4216 MI_SAVE_EXT_STATE_EN |
4217 MI_RESTORE_EXT_STATE_EN |
4218 MI_RESTORE_INHIBIT);
4219 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4220 intel_ring_emit(ring, MI_NOOP);
4221 intel_ring_emit(ring, MI_FLUSH);
4222 intel_ring_advance(ring);
4223
4224 /*
4225 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4226 * does an implicit flush, combined with MI_FLUSH above, it should be
4227 * safe to assume that renderctx is valid
4228 */
4229 ret = intel_ring_idle(ring);
4230 dev_priv->mm.interruptible = was_interruptible;
4231 if (ret) {
4232 DRM_ERROR("failed to enable ironlake power savings\n");
4233 ironlake_teardown_rc6(dev);
4234 return;
4235 }
4236
4237 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4238 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4239
4240 intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4241 }
4242
4243 static unsigned long intel_pxfreq(u32 vidfreq)
4244 {
4245 unsigned long freq;
4246 int div = (vidfreq & 0x3f0000) >> 16;
4247 int post = (vidfreq & 0x3000) >> 12;
4248 int pre = (vidfreq & 0x7);
4249
4250 if (!pre)
4251 return 0;
4252
4253 freq = ((div * 133333) / ((1<<post) * pre));
4254
4255 return freq;
4256 }
4257
4258 static const struct cparams {
4259 u16 i;
4260 u16 t;
4261 u16 m;
4262 u16 c;
4263 } cparams[] = {
4264 { 1, 1333, 301, 28664 },
4265 { 1, 1066, 294, 24460 },
4266 { 1, 800, 294, 25192 },
4267 { 0, 1333, 276, 27605 },
4268 { 0, 1066, 276, 27605 },
4269 { 0, 800, 231, 23784 },
4270 };
4271
4272 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4273 {
4274 u64 total_count, diff, ret;
4275 u32 count1, count2, count3, m = 0, c = 0;
4276 unsigned long now = jiffies_to_msecs(jiffies), diff1;
4277 int i;
4278
4279 assert_spin_locked(&mchdev_lock);
4280
4281 diff1 = now - dev_priv->ips.last_time1;
4282
4283 /* Prevent division-by-zero if we are asking too fast.
4284 * Also, we don't get interesting results if we are polling
4285 * faster than once in 10ms, so just return the saved value
4286 * in such cases.
4287 */
4288 if (diff1 <= 10)
4289 return dev_priv->ips.chipset_power;
4290
4291 count1 = I915_READ(DMIEC);
4292 count2 = I915_READ(DDREC);
4293 count3 = I915_READ(CSIEC);
4294
4295 total_count = count1 + count2 + count3;
4296
4297 /* FIXME: handle per-counter overflow */
4298 if (total_count < dev_priv->ips.last_count1) {
4299 diff = ~0UL - dev_priv->ips.last_count1;
4300 diff += total_count;
4301 } else {
4302 diff = total_count - dev_priv->ips.last_count1;
4303 }
4304
4305 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4306 if (cparams[i].i == dev_priv->ips.c_m &&
4307 cparams[i].t == dev_priv->ips.r_t) {
4308 m = cparams[i].m;
4309 c = cparams[i].c;
4310 break;
4311 }
4312 }
4313
4314 diff = div_u64(diff, diff1);
4315 ret = ((m * diff) + c);
4316 ret = div_u64(ret, 10);
4317
4318 dev_priv->ips.last_count1 = total_count;
4319 dev_priv->ips.last_time1 = now;
4320
4321 dev_priv->ips.chipset_power = ret;
4322
4323 return ret;
4324 }
4325
4326 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4327 {
4328 struct drm_device *dev = dev_priv->dev;
4329 unsigned long val;
4330
4331 if (INTEL_INFO(dev)->gen != 5)
4332 return 0;
4333
4334 spin_lock_irq(&mchdev_lock);
4335
4336 val = __i915_chipset_val(dev_priv);
4337
4338 spin_unlock_irq(&mchdev_lock);
4339
4340 return val;
4341 }
4342
4343 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4344 {
4345 unsigned long m, x, b;
4346 u32 tsfs;
4347
4348 tsfs = I915_READ(TSFS);
4349
4350 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4351 x = I915_READ8(TR1);
4352
4353 b = tsfs & TSFS_INTR_MASK;
4354
4355 return ((m * x) / 127) - b;
4356 }
4357
4358 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4359 {
4360 struct drm_device *dev = dev_priv->dev;
4361 static const struct v_table {
4362 u16 vd; /* in .1 mil */
4363 u16 vm; /* in .1 mil */
4364 } v_table[] = {
4365 { 0, 0, },
4366 { 375, 0, },
4367 { 500, 0, },
4368 { 625, 0, },
4369 { 750, 0, },
4370 { 875, 0, },
4371 { 1000, 0, },
4372 { 1125, 0, },
4373 { 4125, 3000, },
4374 { 4125, 3000, },
4375 { 4125, 3000, },
4376 { 4125, 3000, },
4377 { 4125, 3000, },
4378 { 4125, 3000, },
4379 { 4125, 3000, },
4380 { 4125, 3000, },
4381 { 4125, 3000, },
4382 { 4125, 3000, },
4383 { 4125, 3000, },
4384 { 4125, 3000, },
4385 { 4125, 3000, },
4386 { 4125, 3000, },
4387 { 4125, 3000, },
4388 { 4125, 3000, },
4389 { 4125, 3000, },
4390 { 4125, 3000, },
4391 { 4125, 3000, },
4392 { 4125, 3000, },
4393 { 4125, 3000, },
4394 { 4125, 3000, },
4395 { 4125, 3000, },
4396 { 4125, 3000, },
4397 { 4250, 3125, },
4398 { 4375, 3250, },
4399 { 4500, 3375, },
4400 { 4625, 3500, },
4401 { 4750, 3625, },
4402 { 4875, 3750, },
4403 { 5000, 3875, },
4404 { 5125, 4000, },
4405 { 5250, 4125, },
4406 { 5375, 4250, },
4407 { 5500, 4375, },
4408 { 5625, 4500, },
4409 { 5750, 4625, },
4410 { 5875, 4750, },
4411 { 6000, 4875, },
4412 { 6125, 5000, },
4413 { 6250, 5125, },
4414 { 6375, 5250, },
4415 { 6500, 5375, },
4416 { 6625, 5500, },
4417 { 6750, 5625, },
4418 { 6875, 5750, },
4419 { 7000, 5875, },
4420 { 7125, 6000, },
4421 { 7250, 6125, },
4422 { 7375, 6250, },
4423 { 7500, 6375, },
4424 { 7625, 6500, },
4425 { 7750, 6625, },
4426 { 7875, 6750, },
4427 { 8000, 6875, },
4428 { 8125, 7000, },
4429 { 8250, 7125, },
4430 { 8375, 7250, },
4431 { 8500, 7375, },
4432 { 8625, 7500, },
4433 { 8750, 7625, },
4434 { 8875, 7750, },
4435 { 9000, 7875, },
4436 { 9125, 8000, },
4437 { 9250, 8125, },
4438 { 9375, 8250, },
4439 { 9500, 8375, },
4440 { 9625, 8500, },
4441 { 9750, 8625, },
4442 { 9875, 8750, },
4443 { 10000, 8875, },
4444 { 10125, 9000, },
4445 { 10250, 9125, },
4446 { 10375, 9250, },
4447 { 10500, 9375, },
4448 { 10625, 9500, },
4449 { 10750, 9625, },
4450 { 10875, 9750, },
4451 { 11000, 9875, },
4452 { 11125, 10000, },
4453 { 11250, 10125, },
4454 { 11375, 10250, },
4455 { 11500, 10375, },
4456 { 11625, 10500, },
4457 { 11750, 10625, },
4458 { 11875, 10750, },
4459 { 12000, 10875, },
4460 { 12125, 11000, },
4461 { 12250, 11125, },
4462 { 12375, 11250, },
4463 { 12500, 11375, },
4464 { 12625, 11500, },
4465 { 12750, 11625, },
4466 { 12875, 11750, },
4467 { 13000, 11875, },
4468 { 13125, 12000, },
4469 { 13250, 12125, },
4470 { 13375, 12250, },
4471 { 13500, 12375, },
4472 { 13625, 12500, },
4473 { 13750, 12625, },
4474 { 13875, 12750, },
4475 { 14000, 12875, },
4476 { 14125, 13000, },
4477 { 14250, 13125, },
4478 { 14375, 13250, },
4479 { 14500, 13375, },
4480 { 14625, 13500, },
4481 { 14750, 13625, },
4482 { 14875, 13750, },
4483 { 15000, 13875, },
4484 { 15125, 14000, },
4485 { 15250, 14125, },
4486 { 15375, 14250, },
4487 { 15500, 14375, },
4488 { 15625, 14500, },
4489 { 15750, 14625, },
4490 { 15875, 14750, },
4491 { 16000, 14875, },
4492 { 16125, 15000, },
4493 };
4494 if (INTEL_INFO(dev)->is_mobile)
4495 return v_table[pxvid].vm;
4496 else
4497 return v_table[pxvid].vd;
4498 }
4499
4500 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4501 {
4502 struct timespec now, diff1;
4503 u64 diff;
4504 unsigned long diffms;
4505 u32 count;
4506
4507 assert_spin_locked(&mchdev_lock);
4508
4509 getrawmonotonic(&now);
4510 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4511
4512 /* Don't divide by 0 */
4513 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4514 if (!diffms)
4515 return;
4516
4517 count = I915_READ(GFXEC);
4518
4519 if (count < dev_priv->ips.last_count2) {
4520 diff = ~0UL - dev_priv->ips.last_count2;
4521 diff += count;
4522 } else {
4523 diff = count - dev_priv->ips.last_count2;
4524 }
4525
4526 dev_priv->ips.last_count2 = count;
4527 dev_priv->ips.last_time2 = now;
4528
4529 /* More magic constants... */
4530 diff = diff * 1181;
4531 diff = div_u64(diff, diffms * 10);
4532 dev_priv->ips.gfx_power = diff;
4533 }
4534
4535 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4536 {
4537 struct drm_device *dev = dev_priv->dev;
4538
4539 if (INTEL_INFO(dev)->gen != 5)
4540 return;
4541
4542 spin_lock_irq(&mchdev_lock);
4543
4544 __i915_update_gfx_val(dev_priv);
4545
4546 spin_unlock_irq(&mchdev_lock);
4547 }
4548
4549 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4550 {
4551 unsigned long t, corr, state1, corr2, state2;
4552 u32 pxvid, ext_v;
4553
4554 assert_spin_locked(&mchdev_lock);
4555
4556 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4557 pxvid = (pxvid >> 24) & 0x7f;
4558 ext_v = pvid_to_extvid(dev_priv, pxvid);
4559
4560 state1 = ext_v;
4561
4562 t = i915_mch_val(dev_priv);
4563
4564 /* Revel in the empirically derived constants */
4565
4566 /* Correction factor in 1/100000 units */
4567 if (t > 80)
4568 corr = ((t * 2349) + 135940);
4569 else if (t >= 50)
4570 corr = ((t * 964) + 29317);
4571 else /* < 50 */
4572 corr = ((t * 301) + 1004);
4573
4574 corr = corr * ((150142 * state1) / 10000 - 78642);
4575 corr /= 100000;
4576 corr2 = (corr * dev_priv->ips.corr);
4577
4578 state2 = (corr2 * state1) / 10000;
4579 state2 /= 100; /* convert to mW */
4580
4581 __i915_update_gfx_val(dev_priv);
4582
4583 return dev_priv->ips.gfx_power + state2;
4584 }
4585
4586 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4587 {
4588 struct drm_device *dev = dev_priv->dev;
4589 unsigned long val;
4590
4591 if (INTEL_INFO(dev)->gen != 5)
4592 return 0;
4593
4594 spin_lock_irq(&mchdev_lock);
4595
4596 val = __i915_gfx_val(dev_priv);
4597
4598 spin_unlock_irq(&mchdev_lock);
4599
4600 return val;
4601 }
4602
4603 /**
4604 * i915_read_mch_val - return value for IPS use
4605 *
4606 * Calculate and return a value for the IPS driver to use when deciding whether
4607 * we have thermal and power headroom to increase CPU or GPU power budget.
4608 */
4609 unsigned long i915_read_mch_val(void)
4610 {
4611 struct drm_i915_private *dev_priv;
4612 unsigned long chipset_val, graphics_val, ret = 0;
4613
4614 spin_lock_irq(&mchdev_lock);
4615 if (!i915_mch_dev)
4616 goto out_unlock;
4617 dev_priv = i915_mch_dev;
4618
4619 chipset_val = __i915_chipset_val(dev_priv);
4620 graphics_val = __i915_gfx_val(dev_priv);
4621
4622 ret = chipset_val + graphics_val;
4623
4624 out_unlock:
4625 spin_unlock_irq(&mchdev_lock);
4626
4627 return ret;
4628 }
4629 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4630
4631 /**
4632 * i915_gpu_raise - raise GPU frequency limit
4633 *
4634 * Raise the limit; IPS indicates we have thermal headroom.
4635 */
4636 bool i915_gpu_raise(void)
4637 {
4638 struct drm_i915_private *dev_priv;
4639 bool ret = true;
4640
4641 spin_lock_irq(&mchdev_lock);
4642 if (!i915_mch_dev) {
4643 ret = false;
4644 goto out_unlock;
4645 }
4646 dev_priv = i915_mch_dev;
4647
4648 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4649 dev_priv->ips.max_delay--;
4650
4651 out_unlock:
4652 spin_unlock_irq(&mchdev_lock);
4653
4654 return ret;
4655 }
4656 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4657
4658 /**
4659 * i915_gpu_lower - lower GPU frequency limit
4660 *
4661 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4662 * frequency maximum.
4663 */
4664 bool i915_gpu_lower(void)
4665 {
4666 struct drm_i915_private *dev_priv;
4667 bool ret = true;
4668
4669 spin_lock_irq(&mchdev_lock);
4670 if (!i915_mch_dev) {
4671 ret = false;
4672 goto out_unlock;
4673 }
4674 dev_priv = i915_mch_dev;
4675
4676 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4677 dev_priv->ips.max_delay++;
4678
4679 out_unlock:
4680 spin_unlock_irq(&mchdev_lock);
4681
4682 return ret;
4683 }
4684 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4685
4686 /**
4687 * i915_gpu_busy - indicate GPU business to IPS
4688 *
4689 * Tell the IPS driver whether or not the GPU is busy.
4690 */
4691 bool i915_gpu_busy(void)
4692 {
4693 struct drm_i915_private *dev_priv;
4694 struct intel_engine_cs *ring;
4695 bool ret = false;
4696 int i;
4697
4698 spin_lock_irq(&mchdev_lock);
4699 if (!i915_mch_dev)
4700 goto out_unlock;
4701 dev_priv = i915_mch_dev;
4702
4703 for_each_ring(ring, dev_priv, i)
4704 ret |= !list_empty(&ring->request_list);
4705
4706 out_unlock:
4707 spin_unlock_irq(&mchdev_lock);
4708
4709 return ret;
4710 }
4711 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4712
4713 /**
4714 * i915_gpu_turbo_disable - disable graphics turbo
4715 *
4716 * Disable graphics turbo by resetting the max frequency and setting the
4717 * current frequency to the default.
4718 */
4719 bool i915_gpu_turbo_disable(void)
4720 {
4721 struct drm_i915_private *dev_priv;
4722 bool ret = true;
4723
4724 spin_lock_irq(&mchdev_lock);
4725 if (!i915_mch_dev) {
4726 ret = false;
4727 goto out_unlock;
4728 }
4729 dev_priv = i915_mch_dev;
4730
4731 dev_priv->ips.max_delay = dev_priv->ips.fstart;
4732
4733 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4734 ret = false;
4735
4736 out_unlock:
4737 spin_unlock_irq(&mchdev_lock);
4738
4739 return ret;
4740 }
4741 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4742
4743 /**
4744 * Tells the intel_ips driver that the i915 driver is now loaded, if
4745 * IPS got loaded first.
4746 *
4747 * This awkward dance is so that neither module has to depend on the
4748 * other in order for IPS to do the appropriate communication of
4749 * GPU turbo limits to i915.
4750 */
4751 static void
4752 ips_ping_for_i915_load(void)
4753 {
4754 void (*link)(void);
4755
4756 link = symbol_get(ips_link_to_i915_driver);
4757 if (link) {
4758 link();
4759 symbol_put(ips_link_to_i915_driver);
4760 }
4761 }
4762
4763 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4764 {
4765 /* We only register the i915 ips part with intel-ips once everything is
4766 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4767 spin_lock_irq(&mchdev_lock);
4768 i915_mch_dev = dev_priv;
4769 spin_unlock_irq(&mchdev_lock);
4770
4771 ips_ping_for_i915_load();
4772 }
4773
4774 void intel_gpu_ips_teardown(void)
4775 {
4776 spin_lock_irq(&mchdev_lock);
4777 i915_mch_dev = NULL;
4778 spin_unlock_irq(&mchdev_lock);
4779 }
4780
4781 static void intel_init_emon(struct drm_device *dev)
4782 {
4783 struct drm_i915_private *dev_priv = dev->dev_private;
4784 u32 lcfuse;
4785 u8 pxw[16];
4786 int i;
4787
4788 /* Disable to program */
4789 I915_WRITE(ECR, 0);
4790 POSTING_READ(ECR);
4791
4792 /* Program energy weights for various events */
4793 I915_WRITE(SDEW, 0x15040d00);
4794 I915_WRITE(CSIEW0, 0x007f0000);
4795 I915_WRITE(CSIEW1, 0x1e220004);
4796 I915_WRITE(CSIEW2, 0x04000004);
4797
4798 for (i = 0; i < 5; i++)
4799 I915_WRITE(PEW + (i * 4), 0);
4800 for (i = 0; i < 3; i++)
4801 I915_WRITE(DEW + (i * 4), 0);
4802
4803 /* Program P-state weights to account for frequency power adjustment */
4804 for (i = 0; i < 16; i++) {
4805 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4806 unsigned long freq = intel_pxfreq(pxvidfreq);
4807 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4808 PXVFREQ_PX_SHIFT;
4809 unsigned long val;
4810
4811 val = vid * vid;
4812 val *= (freq / 1000);
4813 val *= 255;
4814 val /= (127*127*900);
4815 if (val > 0xff)
4816 DRM_ERROR("bad pxval: %ld\n", val);
4817 pxw[i] = val;
4818 }
4819 /* Render standby states get 0 weight */
4820 pxw[14] = 0;
4821 pxw[15] = 0;
4822
4823 for (i = 0; i < 4; i++) {
4824 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4825 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4826 I915_WRITE(PXW + (i * 4), val);
4827 }
4828
4829 /* Adjust magic regs to magic values (more experimental results) */
4830 I915_WRITE(OGW0, 0);
4831 I915_WRITE(OGW1, 0);
4832 I915_WRITE(EG0, 0x00007f00);
4833 I915_WRITE(EG1, 0x0000000e);
4834 I915_WRITE(EG2, 0x000e0000);
4835 I915_WRITE(EG3, 0x68000300);
4836 I915_WRITE(EG4, 0x42000000);
4837 I915_WRITE(EG5, 0x00140031);
4838 I915_WRITE(EG6, 0);
4839 I915_WRITE(EG7, 0);
4840
4841 for (i = 0; i < 8; i++)
4842 I915_WRITE(PXWL + (i * 4), 0);
4843
4844 /* Enable PMON + select events */
4845 I915_WRITE(ECR, 0x80000019);
4846
4847 lcfuse = I915_READ(LCFUSE02);
4848
4849 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4850 }
4851
4852 void intel_init_gt_powersave(struct drm_device *dev)
4853 {
4854 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
4855
4856 if (IS_CHERRYVIEW(dev))
4857 cherryview_init_gt_powersave(dev);
4858 else if (IS_VALLEYVIEW(dev))
4859 valleyview_init_gt_powersave(dev);
4860 }
4861
4862 void intel_cleanup_gt_powersave(struct drm_device *dev)
4863 {
4864 if (IS_CHERRYVIEW(dev))
4865 return;
4866 else if (IS_VALLEYVIEW(dev))
4867 valleyview_cleanup_gt_powersave(dev);
4868 }
4869
4870 void intel_disable_gt_powersave(struct drm_device *dev)
4871 {
4872 struct drm_i915_private *dev_priv = dev->dev_private;
4873
4874 /* Interrupts should be disabled already to avoid re-arming. */
4875 WARN_ON(dev->irq_enabled);
4876
4877 if (IS_IRONLAKE_M(dev)) {
4878 ironlake_disable_drps(dev);
4879 ironlake_disable_rc6(dev);
4880 } else if (INTEL_INFO(dev)->gen >= 6) {
4881 if (cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work))
4882 intel_runtime_pm_put(dev_priv);
4883
4884 cancel_work_sync(&dev_priv->rps.work);
4885 mutex_lock(&dev_priv->rps.hw_lock);
4886 if (IS_CHERRYVIEW(dev))
4887 cherryview_disable_rps(dev);
4888 else if (IS_VALLEYVIEW(dev))
4889 valleyview_disable_rps(dev);
4890 else
4891 gen6_disable_rps(dev);
4892 dev_priv->rps.enabled = false;
4893 mutex_unlock(&dev_priv->rps.hw_lock);
4894 }
4895 }
4896
4897 static void intel_gen6_powersave_work(struct work_struct *work)
4898 {
4899 struct drm_i915_private *dev_priv =
4900 container_of(work, struct drm_i915_private,
4901 rps.delayed_resume_work.work);
4902 struct drm_device *dev = dev_priv->dev;
4903
4904 mutex_lock(&dev_priv->rps.hw_lock);
4905
4906 if (IS_CHERRYVIEW(dev)) {
4907 cherryview_enable_rps(dev);
4908 } else if (IS_VALLEYVIEW(dev)) {
4909 valleyview_enable_rps(dev);
4910 } else if (IS_BROADWELL(dev)) {
4911 gen8_enable_rps(dev);
4912 __gen6_update_ring_freq(dev);
4913 } else {
4914 gen6_enable_rps(dev);
4915 __gen6_update_ring_freq(dev);
4916 }
4917 dev_priv->rps.enabled = true;
4918 mutex_unlock(&dev_priv->rps.hw_lock);
4919
4920 intel_runtime_pm_put(dev_priv);
4921 }
4922
4923 void intel_enable_gt_powersave(struct drm_device *dev)
4924 {
4925 struct drm_i915_private *dev_priv = dev->dev_private;
4926
4927 if (IS_IRONLAKE_M(dev)) {
4928 mutex_lock(&dev->struct_mutex);
4929 ironlake_enable_drps(dev);
4930 ironlake_enable_rc6(dev);
4931 intel_init_emon(dev);
4932 mutex_unlock(&dev->struct_mutex);
4933 } else if (INTEL_INFO(dev)->gen >= 6) {
4934 /*
4935 * PCU communication is slow and this doesn't need to be
4936 * done at any specific time, so do this out of our fast path
4937 * to make resume and init faster.
4938 *
4939 * We depend on the HW RC6 power context save/restore
4940 * mechanism when entering D3 through runtime PM suspend. So
4941 * disable RPM until RPS/RC6 is properly setup. We can only
4942 * get here via the driver load/system resume/runtime resume
4943 * paths, so the _noresume version is enough (and in case of
4944 * runtime resume it's necessary).
4945 */
4946 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4947 round_jiffies_up_relative(HZ)))
4948 intel_runtime_pm_get_noresume(dev_priv);
4949 }
4950 }
4951
4952 void intel_reset_gt_powersave(struct drm_device *dev)
4953 {
4954 struct drm_i915_private *dev_priv = dev->dev_private;
4955
4956 dev_priv->rps.enabled = false;
4957 intel_enable_gt_powersave(dev);
4958 }
4959
4960 static void ibx_init_clock_gating(struct drm_device *dev)
4961 {
4962 struct drm_i915_private *dev_priv = dev->dev_private;
4963
4964 /*
4965 * On Ibex Peak and Cougar Point, we need to disable clock
4966 * gating for the panel power sequencer or it will fail to
4967 * start up when no ports are active.
4968 */
4969 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4970 }
4971
4972 static void g4x_disable_trickle_feed(struct drm_device *dev)
4973 {
4974 struct drm_i915_private *dev_priv = dev->dev_private;
4975 int pipe;
4976
4977 for_each_pipe(pipe) {
4978 I915_WRITE(DSPCNTR(pipe),
4979 I915_READ(DSPCNTR(pipe)) |
4980 DISPPLANE_TRICKLE_FEED_DISABLE);
4981 intel_flush_primary_plane(dev_priv, pipe);
4982 }
4983 }
4984
4985 static void ilk_init_lp_watermarks(struct drm_device *dev)
4986 {
4987 struct drm_i915_private *dev_priv = dev->dev_private;
4988
4989 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4990 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4991 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4992
4993 /*
4994 * Don't touch WM1S_LP_EN here.
4995 * Doing so could cause underruns.
4996 */
4997 }
4998
4999 static void ironlake_init_clock_gating(struct drm_device *dev)
5000 {
5001 struct drm_i915_private *dev_priv = dev->dev_private;
5002 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5003
5004 /*
5005 * Required for FBC
5006 * WaFbcDisableDpfcClockGating:ilk
5007 */
5008 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5009 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5010 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5011
5012 I915_WRITE(PCH_3DCGDIS0,
5013 MARIUNIT_CLOCK_GATE_DISABLE |
5014 SVSMUNIT_CLOCK_GATE_DISABLE);
5015 I915_WRITE(PCH_3DCGDIS1,
5016 VFMUNIT_CLOCK_GATE_DISABLE);
5017
5018 /*
5019 * According to the spec the following bits should be set in
5020 * order to enable memory self-refresh
5021 * The bit 22/21 of 0x42004
5022 * The bit 5 of 0x42020
5023 * The bit 15 of 0x45000
5024 */
5025 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5026 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5027 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5028 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5029 I915_WRITE(DISP_ARB_CTL,
5030 (I915_READ(DISP_ARB_CTL) |
5031 DISP_FBC_WM_DIS));
5032
5033 ilk_init_lp_watermarks(dev);
5034
5035 /*
5036 * Based on the document from hardware guys the following bits
5037 * should be set unconditionally in order to enable FBC.
5038 * The bit 22 of 0x42000
5039 * The bit 22 of 0x42004
5040 * The bit 7,8,9 of 0x42020.
5041 */
5042 if (IS_IRONLAKE_M(dev)) {
5043 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5044 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5045 I915_READ(ILK_DISPLAY_CHICKEN1) |
5046 ILK_FBCQ_DIS);
5047 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5048 I915_READ(ILK_DISPLAY_CHICKEN2) |
5049 ILK_DPARB_GATE);
5050 }
5051
5052 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5053
5054 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5055 I915_READ(ILK_DISPLAY_CHICKEN2) |
5056 ILK_ELPIN_409_SELECT);
5057 I915_WRITE(_3D_CHICKEN2,
5058 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5059 _3D_CHICKEN2_WM_READ_PIPELINED);
5060
5061 /* WaDisableRenderCachePipelinedFlush:ilk */
5062 I915_WRITE(CACHE_MODE_0,
5063 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5064
5065 /* WaDisable_RenderCache_OperationalFlush:ilk */
5066 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5067
5068 g4x_disable_trickle_feed(dev);
5069
5070 ibx_init_clock_gating(dev);
5071 }
5072
5073 static void cpt_init_clock_gating(struct drm_device *dev)
5074 {
5075 struct drm_i915_private *dev_priv = dev->dev_private;
5076 int pipe;
5077 uint32_t val;
5078
5079 /*
5080 * On Ibex Peak and Cougar Point, we need to disable clock
5081 * gating for the panel power sequencer or it will fail to
5082 * start up when no ports are active.
5083 */
5084 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5085 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5086 PCH_CPUNIT_CLOCK_GATE_DISABLE);
5087 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5088 DPLS_EDP_PPS_FIX_DIS);
5089 /* The below fixes the weird display corruption, a few pixels shifted
5090 * downward, on (only) LVDS of some HP laptops with IVY.
5091 */
5092 for_each_pipe(pipe) {
5093 val = I915_READ(TRANS_CHICKEN2(pipe));
5094 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5095 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5096 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5097 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5098 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5099 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5100 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5101 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5102 }
5103 /* WADP0ClockGatingDisable */
5104 for_each_pipe(pipe) {
5105 I915_WRITE(TRANS_CHICKEN1(pipe),
5106 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5107 }
5108 }
5109
5110 static void gen6_check_mch_setup(struct drm_device *dev)
5111 {
5112 struct drm_i915_private *dev_priv = dev->dev_private;
5113 uint32_t tmp;
5114
5115 tmp = I915_READ(MCH_SSKPD);
5116 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
5117 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
5118 DRM_INFO("This can cause pipe underruns and display issues.\n");
5119 DRM_INFO("Please upgrade your BIOS to fix this.\n");
5120 }
5121 }
5122
5123 static void gen6_init_clock_gating(struct drm_device *dev)
5124 {
5125 struct drm_i915_private *dev_priv = dev->dev_private;
5126 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5127
5128 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5129
5130 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5131 I915_READ(ILK_DISPLAY_CHICKEN2) |
5132 ILK_ELPIN_409_SELECT);
5133
5134 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5135 I915_WRITE(_3D_CHICKEN,
5136 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5137
5138 /* WaSetupGtModeTdRowDispatch:snb */
5139 if (IS_SNB_GT1(dev))
5140 I915_WRITE(GEN6_GT_MODE,
5141 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5142
5143 /* WaDisable_RenderCache_OperationalFlush:snb */
5144 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5145
5146 /*
5147 * BSpec recoomends 8x4 when MSAA is used,
5148 * however in practice 16x4 seems fastest.
5149 *
5150 * Note that PS/WM thread counts depend on the WIZ hashing
5151 * disable bit, which we don't touch here, but it's good
5152 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5153 */
5154 I915_WRITE(GEN6_GT_MODE,
5155 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5156
5157 ilk_init_lp_watermarks(dev);
5158
5159 I915_WRITE(CACHE_MODE_0,
5160 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5161
5162 I915_WRITE(GEN6_UCGCTL1,
5163 I915_READ(GEN6_UCGCTL1) |
5164 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5165 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5166
5167 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5168 * gating disable must be set. Failure to set it results in
5169 * flickering pixels due to Z write ordering failures after
5170 * some amount of runtime in the Mesa "fire" demo, and Unigine
5171 * Sanctuary and Tropics, and apparently anything else with
5172 * alpha test or pixel discard.
5173 *
5174 * According to the spec, bit 11 (RCCUNIT) must also be set,
5175 * but we didn't debug actual testcases to find it out.
5176 *
5177 * WaDisableRCCUnitClockGating:snb
5178 * WaDisableRCPBUnitClockGating:snb
5179 */
5180 I915_WRITE(GEN6_UCGCTL2,
5181 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5182 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5183
5184 /* WaStripsFansDisableFastClipPerformanceFix:snb */
5185 I915_WRITE(_3D_CHICKEN3,
5186 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5187
5188 /*
5189 * Bspec says:
5190 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5191 * 3DSTATE_SF number of SF output attributes is more than 16."
5192 */
5193 I915_WRITE(_3D_CHICKEN3,
5194 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5195
5196 /*
5197 * According to the spec the following bits should be
5198 * set in order to enable memory self-refresh and fbc:
5199 * The bit21 and bit22 of 0x42000
5200 * The bit21 and bit22 of 0x42004
5201 * The bit5 and bit7 of 0x42020
5202 * The bit14 of 0x70180
5203 * The bit14 of 0x71180
5204 *
5205 * WaFbcAsynchFlipDisableFbcQueue:snb
5206 */
5207 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5208 I915_READ(ILK_DISPLAY_CHICKEN1) |
5209 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5210 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5211 I915_READ(ILK_DISPLAY_CHICKEN2) |
5212 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5213 I915_WRITE(ILK_DSPCLK_GATE_D,
5214 I915_READ(ILK_DSPCLK_GATE_D) |
5215 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
5216 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5217
5218 g4x_disable_trickle_feed(dev);
5219
5220 cpt_init_clock_gating(dev);
5221
5222 gen6_check_mch_setup(dev);
5223 }
5224
5225 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5226 {
5227 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5228
5229 /*
5230 * WaVSThreadDispatchOverride:ivb,vlv
5231 *
5232 * This actually overrides the dispatch
5233 * mode for all thread types.
5234 */
5235 reg &= ~GEN7_FF_SCHED_MASK;
5236 reg |= GEN7_FF_TS_SCHED_HW;
5237 reg |= GEN7_FF_VS_SCHED_HW;
5238 reg |= GEN7_FF_DS_SCHED_HW;
5239
5240 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5241 }
5242
5243 static void lpt_init_clock_gating(struct drm_device *dev)
5244 {
5245 struct drm_i915_private *dev_priv = dev->dev_private;
5246
5247 /*
5248 * TODO: this bit should only be enabled when really needed, then
5249 * disabled when not needed anymore in order to save power.
5250 */
5251 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5252 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5253 I915_READ(SOUTH_DSPCLK_GATE_D) |
5254 PCH_LP_PARTITION_LEVEL_DISABLE);
5255
5256 /* WADPOClockGatingDisable:hsw */
5257 I915_WRITE(_TRANSA_CHICKEN1,
5258 I915_READ(_TRANSA_CHICKEN1) |
5259 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5260 }
5261
5262 static void lpt_suspend_hw(struct drm_device *dev)
5263 {
5264 struct drm_i915_private *dev_priv = dev->dev_private;
5265
5266 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5267 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5268
5269 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5270 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5271 }
5272 }
5273
5274 static void gen8_init_clock_gating(struct drm_device *dev)
5275 {
5276 struct drm_i915_private *dev_priv = dev->dev_private;
5277 enum pipe pipe;
5278
5279 I915_WRITE(WM3_LP_ILK, 0);
5280 I915_WRITE(WM2_LP_ILK, 0);
5281 I915_WRITE(WM1_LP_ILK, 0);
5282
5283 /* FIXME(BDW): Check all the w/a, some might only apply to
5284 * pre-production hw. */
5285
5286 /* WaDisablePartialInstShootdown:bdw */
5287 I915_WRITE(GEN8_ROW_CHICKEN,
5288 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5289
5290 /* WaDisableThreadStallDopClockGating:bdw */
5291 /* FIXME: Unclear whether we really need this on production bdw. */
5292 I915_WRITE(GEN8_ROW_CHICKEN,
5293 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5294
5295 /*
5296 * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
5297 * pre-production hardware
5298 */
5299 I915_WRITE(HALF_SLICE_CHICKEN3,
5300 _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5301 I915_WRITE(HALF_SLICE_CHICKEN3,
5302 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5303 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5304
5305 I915_WRITE(_3D_CHICKEN3,
5306 _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
5307
5308 I915_WRITE(COMMON_SLICE_CHICKEN2,
5309 _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5310
5311 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5312 _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5313
5314 /* WaDisableDopClockGating:bdw May not be needed for production */
5315 I915_WRITE(GEN7_ROW_CHICKEN2,
5316 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5317
5318 /* WaSwitchSolVfFArbitrationPriority:bdw */
5319 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5320
5321 /* WaPsrDPAMaskVBlankInSRD:bdw */
5322 I915_WRITE(CHICKEN_PAR1_1,
5323 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5324
5325 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5326 for_each_pipe(pipe) {
5327 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5328 I915_READ(CHICKEN_PIPESL_1(pipe)) |
5329 BDW_DPRS_MASK_VBLANK_SRD);
5330 }
5331
5332 /* Use Force Non-Coherent whenever executing a 3D context. This is a
5333 * workaround for for a possible hang in the unlikely event a TLB
5334 * invalidation occurs during a PSD flush.
5335 */
5336 I915_WRITE(HDC_CHICKEN0,
5337 I915_READ(HDC_CHICKEN0) |
5338 _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
5339
5340 /* WaVSRefCountFullforceMissDisable:bdw */
5341 /* WaDSRefCountFullforceMissDisable:bdw */
5342 I915_WRITE(GEN7_FF_THREAD_MODE,
5343 I915_READ(GEN7_FF_THREAD_MODE) &
5344 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5345
5346 /*
5347 * BSpec recommends 8x4 when MSAA is used,
5348 * however in practice 16x4 seems fastest.
5349 *
5350 * Note that PS/WM thread counts depend on the WIZ hashing
5351 * disable bit, which we don't touch here, but it's good
5352 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5353 */
5354 I915_WRITE(GEN7_GT_MODE,
5355 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5356
5357 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5358 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5359
5360 /* WaDisableSDEUnitClockGating:bdw */
5361 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5362 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5363
5364 /* Wa4x4STCOptimizationDisable:bdw */
5365 I915_WRITE(CACHE_MODE_1,
5366 _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
5367 }
5368
5369 static void haswell_init_clock_gating(struct drm_device *dev)
5370 {
5371 struct drm_i915_private *dev_priv = dev->dev_private;
5372
5373 ilk_init_lp_watermarks(dev);
5374
5375 /* L3 caching of data atomics doesn't work -- disable it. */
5376 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5377 I915_WRITE(HSW_ROW_CHICKEN3,
5378 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5379
5380 /* This is required by WaCatErrorRejectionIssue:hsw */
5381 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5382 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5383 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5384
5385 /* WaVSRefCountFullforceMissDisable:hsw */
5386 I915_WRITE(GEN7_FF_THREAD_MODE,
5387 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5388
5389 /* WaDisable_RenderCache_OperationalFlush:hsw */
5390 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5391
5392 /* enable HiZ Raw Stall Optimization */
5393 I915_WRITE(CACHE_MODE_0_GEN7,
5394 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5395
5396 /* WaDisable4x2SubspanOptimization:hsw */
5397 I915_WRITE(CACHE_MODE_1,
5398 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5399
5400 /*
5401 * BSpec recommends 8x4 when MSAA is used,
5402 * however in practice 16x4 seems fastest.
5403 *
5404 * Note that PS/WM thread counts depend on the WIZ hashing
5405 * disable bit, which we don't touch here, but it's good
5406 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5407 */
5408 I915_WRITE(GEN7_GT_MODE,
5409 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5410
5411 /* WaSwitchSolVfFArbitrationPriority:hsw */
5412 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5413
5414 /* WaRsPkgCStateDisplayPMReq:hsw */
5415 I915_WRITE(CHICKEN_PAR1_1,
5416 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5417
5418 lpt_init_clock_gating(dev);
5419 }
5420
5421 static void ivybridge_init_clock_gating(struct drm_device *dev)
5422 {
5423 struct drm_i915_private *dev_priv = dev->dev_private;
5424 uint32_t snpcr;
5425
5426 ilk_init_lp_watermarks(dev);
5427
5428 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5429
5430 /* WaDisableEarlyCull:ivb */
5431 I915_WRITE(_3D_CHICKEN3,
5432 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5433
5434 /* WaDisableBackToBackFlipFix:ivb */
5435 I915_WRITE(IVB_CHICKEN3,
5436 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5437 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5438
5439 /* WaDisablePSDDualDispatchEnable:ivb */
5440 if (IS_IVB_GT1(dev))
5441 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5442 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5443
5444 /* WaDisable_RenderCache_OperationalFlush:ivb */
5445 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5446
5447 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5448 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5449 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5450
5451 /* WaApplyL3ControlAndL3ChickenMode:ivb */
5452 I915_WRITE(GEN7_L3CNTLREG1,
5453 GEN7_WA_FOR_GEN7_L3_CONTROL);
5454 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5455 GEN7_WA_L3_CHICKEN_MODE);
5456 if (IS_IVB_GT1(dev))
5457 I915_WRITE(GEN7_ROW_CHICKEN2,
5458 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5459 else {
5460 /* must write both registers */
5461 I915_WRITE(GEN7_ROW_CHICKEN2,
5462 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5463 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5464 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5465 }
5466
5467 /* WaForceL3Serialization:ivb */
5468 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5469 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5470
5471 /*
5472 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5473 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5474 */
5475 I915_WRITE(GEN6_UCGCTL2,
5476 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5477
5478 /* This is required by WaCatErrorRejectionIssue:ivb */
5479 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5480 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5481 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5482
5483 g4x_disable_trickle_feed(dev);
5484
5485 gen7_setup_fixed_func_scheduler(dev_priv);
5486
5487 if (0) { /* causes HiZ corruption on ivb:gt1 */
5488 /* enable HiZ Raw Stall Optimization */
5489 I915_WRITE(CACHE_MODE_0_GEN7,
5490 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5491 }
5492
5493 /* WaDisable4x2SubspanOptimization:ivb */
5494 I915_WRITE(CACHE_MODE_1,
5495 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5496
5497 /*
5498 * BSpec recommends 8x4 when MSAA is used,
5499 * however in practice 16x4 seems fastest.
5500 *
5501 * Note that PS/WM thread counts depend on the WIZ hashing
5502 * disable bit, which we don't touch here, but it's good
5503 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5504 */
5505 I915_WRITE(GEN7_GT_MODE,
5506 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5507
5508 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5509 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5510 snpcr |= GEN6_MBC_SNPCR_MED;
5511 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5512
5513 if (!HAS_PCH_NOP(dev))
5514 cpt_init_clock_gating(dev);
5515
5516 gen6_check_mch_setup(dev);
5517 }
5518
5519 static void valleyview_init_clock_gating(struct drm_device *dev)
5520 {
5521 struct drm_i915_private *dev_priv = dev->dev_private;
5522 u32 val;
5523
5524 mutex_lock(&dev_priv->rps.hw_lock);
5525 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5526 mutex_unlock(&dev_priv->rps.hw_lock);
5527 switch ((val >> 6) & 3) {
5528 case 0:
5529 case 1:
5530 dev_priv->mem_freq = 800;
5531 break;
5532 case 2:
5533 dev_priv->mem_freq = 1066;
5534 break;
5535 case 3:
5536 dev_priv->mem_freq = 1333;
5537 break;
5538 }
5539 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5540
5541 dev_priv->vlv_cdclk_freq = valleyview_cur_cdclk(dev_priv);
5542 DRM_DEBUG_DRIVER("Current CD clock rate: %d MHz",
5543 dev_priv->vlv_cdclk_freq);
5544
5545 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5546
5547 /* WaDisableEarlyCull:vlv */
5548 I915_WRITE(_3D_CHICKEN3,
5549 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5550
5551 /* WaDisableBackToBackFlipFix:vlv */
5552 I915_WRITE(IVB_CHICKEN3,
5553 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5554 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5555
5556 /* WaPsdDispatchEnable:vlv */
5557 /* WaDisablePSDDualDispatchEnable:vlv */
5558 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5559 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5560 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5561
5562 /* WaDisable_RenderCache_OperationalFlush:vlv */
5563 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5564
5565 /* WaForceL3Serialization:vlv */
5566 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5567 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5568
5569 /* WaDisableDopClockGating:vlv */
5570 I915_WRITE(GEN7_ROW_CHICKEN2,
5571 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5572
5573 /* This is required by WaCatErrorRejectionIssue:vlv */
5574 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5575 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5576 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5577
5578 gen7_setup_fixed_func_scheduler(dev_priv);
5579
5580 /*
5581 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5582 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5583 */
5584 I915_WRITE(GEN6_UCGCTL2,
5585 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5586
5587 /* WaDisableL3Bank2xClockGate:vlv
5588 * Disabling L3 clock gating- MMIO 940c[25] = 1
5589 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5590 I915_WRITE(GEN7_UCGCTL4,
5591 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5592
5593 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5594
5595 /*
5596 * BSpec says this must be set, even though
5597 * WaDisable4x2SubspanOptimization isn't listed for VLV.
5598 */
5599 I915_WRITE(CACHE_MODE_1,
5600 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5601
5602 /*
5603 * WaIncreaseL3CreditsForVLVB0:vlv
5604 * This is the hardware default actually.
5605 */
5606 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5607
5608 /*
5609 * WaDisableVLVClockGating_VBIIssue:vlv
5610 * Disable clock gating on th GCFG unit to prevent a delay
5611 * in the reporting of vblank events.
5612 */
5613 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5614 }
5615
5616 static void cherryview_init_clock_gating(struct drm_device *dev)
5617 {
5618 struct drm_i915_private *dev_priv = dev->dev_private;
5619
5620 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5621
5622 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5623
5624 /* WaDisablePartialInstShootdown:chv */
5625 I915_WRITE(GEN8_ROW_CHICKEN,
5626 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5627
5628 /* WaDisableThreadStallDopClockGating:chv */
5629 I915_WRITE(GEN8_ROW_CHICKEN,
5630 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5631
5632 /* WaVSRefCountFullforceMissDisable:chv */
5633 /* WaDSRefCountFullforceMissDisable:chv */
5634 I915_WRITE(GEN7_FF_THREAD_MODE,
5635 I915_READ(GEN7_FF_THREAD_MODE) &
5636 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5637
5638 /* WaDisableSemaphoreAndSyncFlipWait:chv */
5639 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5640 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5641
5642 /* WaDisableCSUnitClockGating:chv */
5643 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5644 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5645
5646 /* WaDisableSDEUnitClockGating:chv */
5647 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5648 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5649
5650 /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
5651 I915_WRITE(HALF_SLICE_CHICKEN3,
5652 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5653
5654 /* WaDisableGunitClockGating:chv (pre-production hw) */
5655 I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
5656 GINT_DIS);
5657
5658 /* WaDisableFfDopClockGating:chv (pre-production hw) */
5659 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5660 _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
5661
5662 /* WaDisableDopClockGating:chv (pre-production hw) */
5663 I915_WRITE(GEN7_ROW_CHICKEN2,
5664 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5665 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5666 GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5667 }
5668
5669 static void g4x_init_clock_gating(struct drm_device *dev)
5670 {
5671 struct drm_i915_private *dev_priv = dev->dev_private;
5672 uint32_t dspclk_gate;
5673
5674 I915_WRITE(RENCLK_GATE_D1, 0);
5675 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5676 GS_UNIT_CLOCK_GATE_DISABLE |
5677 CL_UNIT_CLOCK_GATE_DISABLE);
5678 I915_WRITE(RAMCLK_GATE_D, 0);
5679 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5680 OVRUNIT_CLOCK_GATE_DISABLE |
5681 OVCUNIT_CLOCK_GATE_DISABLE;
5682 if (IS_GM45(dev))
5683 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5684 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5685
5686 /* WaDisableRenderCachePipelinedFlush */
5687 I915_WRITE(CACHE_MODE_0,
5688 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5689
5690 /* WaDisable_RenderCache_OperationalFlush:g4x */
5691 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5692
5693 g4x_disable_trickle_feed(dev);
5694 }
5695
5696 static void crestline_init_clock_gating(struct drm_device *dev)
5697 {
5698 struct drm_i915_private *dev_priv = dev->dev_private;
5699
5700 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5701 I915_WRITE(RENCLK_GATE_D2, 0);
5702 I915_WRITE(DSPCLK_GATE_D, 0);
5703 I915_WRITE(RAMCLK_GATE_D, 0);
5704 I915_WRITE16(DEUC, 0);
5705 I915_WRITE(MI_ARB_STATE,
5706 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5707
5708 /* WaDisable_RenderCache_OperationalFlush:gen4 */
5709 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5710 }
5711
5712 static void broadwater_init_clock_gating(struct drm_device *dev)
5713 {
5714 struct drm_i915_private *dev_priv = dev->dev_private;
5715
5716 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5717 I965_RCC_CLOCK_GATE_DISABLE |
5718 I965_RCPB_CLOCK_GATE_DISABLE |
5719 I965_ISC_CLOCK_GATE_DISABLE |
5720 I965_FBC_CLOCK_GATE_DISABLE);
5721 I915_WRITE(RENCLK_GATE_D2, 0);
5722 I915_WRITE(MI_ARB_STATE,
5723 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5724
5725 /* WaDisable_RenderCache_OperationalFlush:gen4 */
5726 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5727 }
5728
5729 static void gen3_init_clock_gating(struct drm_device *dev)
5730 {
5731 struct drm_i915_private *dev_priv = dev->dev_private;
5732 u32 dstate = I915_READ(D_STATE);
5733
5734 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5735 DSTATE_DOT_CLOCK_GATING;
5736 I915_WRITE(D_STATE, dstate);
5737
5738 if (IS_PINEVIEW(dev))
5739 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5740
5741 /* IIR "flip pending" means done if this bit is set */
5742 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5743
5744 /* interrupts should cause a wake up from C3 */
5745 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
5746
5747 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5748 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5749 }
5750
5751 static void i85x_init_clock_gating(struct drm_device *dev)
5752 {
5753 struct drm_i915_private *dev_priv = dev->dev_private;
5754
5755 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5756
5757 /* interrupts should cause a wake up from C3 */
5758 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
5759 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
5760 }
5761
5762 static void i830_init_clock_gating(struct drm_device *dev)
5763 {
5764 struct drm_i915_private *dev_priv = dev->dev_private;
5765
5766 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5767 }
5768
5769 void intel_init_clock_gating(struct drm_device *dev)
5770 {
5771 struct drm_i915_private *dev_priv = dev->dev_private;
5772
5773 dev_priv->display.init_clock_gating(dev);
5774 }
5775
5776 void intel_suspend_hw(struct drm_device *dev)
5777 {
5778 if (HAS_PCH_LPT(dev))
5779 lpt_suspend_hw(dev);
5780 }
5781
5782 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
5783 for (i = 0; \
5784 i < (power_domains)->power_well_count && \
5785 ((power_well) = &(power_domains)->power_wells[i]); \
5786 i++) \
5787 if ((power_well)->domains & (domain_mask))
5788
5789 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5790 for (i = (power_domains)->power_well_count - 1; \
5791 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5792 i--) \
5793 if ((power_well)->domains & (domain_mask))
5794
5795 /**
5796 * We should only use the power well if we explicitly asked the hardware to
5797 * enable it, so check if it's enabled and also check if we've requested it to
5798 * be enabled.
5799 */
5800 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5801 struct i915_power_well *power_well)
5802 {
5803 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5804 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5805 }
5806
5807 bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
5808 enum intel_display_power_domain domain)
5809 {
5810 struct i915_power_domains *power_domains;
5811 struct i915_power_well *power_well;
5812 bool is_enabled;
5813 int i;
5814
5815 if (dev_priv->pm.suspended)
5816 return false;
5817
5818 power_domains = &dev_priv->power_domains;
5819 is_enabled = true;
5820 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5821 if (power_well->always_on)
5822 continue;
5823
5824 if (!power_well->count) {
5825 is_enabled = false;
5826 break;
5827 }
5828 }
5829 return is_enabled;
5830 }
5831
5832 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5833 enum intel_display_power_domain domain)
5834 {
5835 struct i915_power_domains *power_domains;
5836 struct i915_power_well *power_well;
5837 bool is_enabled;
5838 int i;
5839
5840 if (dev_priv->pm.suspended)
5841 return false;
5842
5843 power_domains = &dev_priv->power_domains;
5844
5845 is_enabled = true;
5846
5847 mutex_lock(&power_domains->lock);
5848 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5849 if (power_well->always_on)
5850 continue;
5851
5852 if (!power_well->ops->is_enabled(dev_priv, power_well)) {
5853 is_enabled = false;
5854 break;
5855 }
5856 }
5857 mutex_unlock(&power_domains->lock);
5858
5859 return is_enabled;
5860 }
5861
5862 /*
5863 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5864 * when not needed anymore. We have 4 registers that can request the power well
5865 * to be enabled, and it will only be disabled if none of the registers is
5866 * requesting it to be enabled.
5867 */
5868 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5869 {
5870 struct drm_device *dev = dev_priv->dev;
5871 unsigned long irqflags;
5872
5873 /*
5874 * After we re-enable the power well, if we touch VGA register 0x3d5
5875 * we'll get unclaimed register interrupts. This stops after we write
5876 * anything to the VGA MSR register. The vgacon module uses this
5877 * register all the time, so if we unbind our driver and, as a
5878 * consequence, bind vgacon, we'll get stuck in an infinite loop at
5879 * console_unlock(). So make here we touch the VGA MSR register, making
5880 * sure vgacon can keep working normally without triggering interrupts
5881 * and error messages.
5882 */
5883 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5884 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5885 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5886
5887 if (IS_BROADWELL(dev)) {
5888 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5889 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5890 dev_priv->de_irq_mask[PIPE_B]);
5891 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5892 ~dev_priv->de_irq_mask[PIPE_B] |
5893 GEN8_PIPE_VBLANK);
5894 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5895 dev_priv->de_irq_mask[PIPE_C]);
5896 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5897 ~dev_priv->de_irq_mask[PIPE_C] |
5898 GEN8_PIPE_VBLANK);
5899 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5900 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5901 }
5902 }
5903
5904 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
5905 struct i915_power_well *power_well, bool enable)
5906 {
5907 bool is_enabled, enable_requested;
5908 uint32_t tmp;
5909
5910 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5911 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5912 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5913
5914 if (enable) {
5915 if (!enable_requested)
5916 I915_WRITE(HSW_PWR_WELL_DRIVER,
5917 HSW_PWR_WELL_ENABLE_REQUEST);
5918
5919 if (!is_enabled) {
5920 DRM_DEBUG_KMS("Enabling power well\n");
5921 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5922 HSW_PWR_WELL_STATE_ENABLED), 20))
5923 DRM_ERROR("Timeout enabling power well\n");
5924 }
5925
5926 hsw_power_well_post_enable(dev_priv);
5927 } else {
5928 if (enable_requested) {
5929 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5930 POSTING_READ(HSW_PWR_WELL_DRIVER);
5931 DRM_DEBUG_KMS("Requesting to disable the power well\n");
5932 }
5933 }
5934 }
5935
5936 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
5937 struct i915_power_well *power_well)
5938 {
5939 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
5940
5941 /*
5942 * We're taking over the BIOS, so clear any requests made by it since
5943 * the driver is in charge now.
5944 */
5945 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5946 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5947 }
5948
5949 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
5950 struct i915_power_well *power_well)
5951 {
5952 hsw_set_power_well(dev_priv, power_well, true);
5953 }
5954
5955 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
5956 struct i915_power_well *power_well)
5957 {
5958 hsw_set_power_well(dev_priv, power_well, false);
5959 }
5960
5961 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
5962 struct i915_power_well *power_well)
5963 {
5964 }
5965
5966 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
5967 struct i915_power_well *power_well)
5968 {
5969 return true;
5970 }
5971
5972 void __vlv_set_power_well(struct drm_i915_private *dev_priv,
5973 enum punit_power_well power_well_id, bool enable)
5974 {
5975 struct drm_device *dev = dev_priv->dev;
5976 u32 mask;
5977 u32 state;
5978 u32 ctrl;
5979 enum pipe pipe;
5980
5981 if (power_well_id == PUNIT_POWER_WELL_DPIO_CMN_BC) {
5982 if (enable) {
5983 /*
5984 * Enable the CRI clock source so we can get at the
5985 * display and the reference clock for VGA
5986 * hotplug / manual detection.
5987 */
5988 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
5989 DPLL_REFA_CLK_ENABLE_VLV |
5990 DPLL_INTEGRATED_CRI_CLK_VLV);
5991 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
5992 } else {
5993 for_each_pipe(pipe)
5994 assert_pll_disabled(dev_priv, pipe);
5995 /* Assert common reset */
5996 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) &
5997 ~DPIO_CMNRST);
5998 }
5999 }
6000
6001 mask = PUNIT_PWRGT_MASK(power_well_id);
6002 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6003 PUNIT_PWRGT_PWR_GATE(power_well_id);
6004
6005 mutex_lock(&dev_priv->rps.hw_lock);
6006
6007 #define COND \
6008 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6009
6010 if (COND)
6011 goto out;
6012
6013 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6014 ctrl &= ~mask;
6015 ctrl |= state;
6016 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6017
6018 if (wait_for(COND, 100))
6019 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6020 state,
6021 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6022
6023 #undef COND
6024
6025 out:
6026 mutex_unlock(&dev_priv->rps.hw_lock);
6027
6028 /*
6029 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6030 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
6031 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
6032 * b. The other bits such as sfr settings / modesel may all
6033 * be set to 0.
6034 *
6035 * This should only be done on init and resume from S3 with
6036 * both PLLs disabled, or we risk losing DPIO and PLL
6037 * synchronization.
6038 */
6039 if (power_well_id == PUNIT_POWER_WELL_DPIO_CMN_BC && enable)
6040 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6041 }
6042
6043 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6044 struct i915_power_well *power_well, bool enable)
6045 {
6046 enum punit_power_well power_well_id = power_well->data;
6047
6048 __vlv_set_power_well(dev_priv, power_well_id, enable);
6049 }
6050
6051 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6052 struct i915_power_well *power_well)
6053 {
6054 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6055 }
6056
6057 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6058 struct i915_power_well *power_well)
6059 {
6060 vlv_set_power_well(dev_priv, power_well, true);
6061 }
6062
6063 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6064 struct i915_power_well *power_well)
6065 {
6066 vlv_set_power_well(dev_priv, power_well, false);
6067 }
6068
6069 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6070 struct i915_power_well *power_well)
6071 {
6072 int power_well_id = power_well->data;
6073 bool enabled = false;
6074 u32 mask;
6075 u32 state;
6076 u32 ctrl;
6077
6078 mask = PUNIT_PWRGT_MASK(power_well_id);
6079 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6080
6081 mutex_lock(&dev_priv->rps.hw_lock);
6082
6083 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6084 /*
6085 * We only ever set the power-on and power-gate states, anything
6086 * else is unexpected.
6087 */
6088 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6089 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6090 if (state == ctrl)
6091 enabled = true;
6092
6093 /*
6094 * A transient state at this point would mean some unexpected party
6095 * is poking at the power controls too.
6096 */
6097 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6098 WARN_ON(ctrl != state);
6099
6100 mutex_unlock(&dev_priv->rps.hw_lock);
6101
6102 return enabled;
6103 }
6104
6105 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6106 struct i915_power_well *power_well)
6107 {
6108 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6109
6110 vlv_set_power_well(dev_priv, power_well, true);
6111
6112 spin_lock_irq(&dev_priv->irq_lock);
6113 valleyview_enable_display_irqs(dev_priv);
6114 spin_unlock_irq(&dev_priv->irq_lock);
6115
6116 /*
6117 * During driver initialization/resume we can avoid restoring the
6118 * part of the HW/SW state that will be inited anyway explicitly.
6119 */
6120 if (dev_priv->power_domains.initializing)
6121 return;
6122
6123 intel_hpd_init(dev_priv->dev);
6124
6125 i915_redisable_vga_power_on(dev_priv->dev);
6126 }
6127
6128 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6129 struct i915_power_well *power_well)
6130 {
6131 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6132
6133 spin_lock_irq(&dev_priv->irq_lock);
6134 valleyview_disable_display_irqs(dev_priv);
6135 spin_unlock_irq(&dev_priv->irq_lock);
6136
6137 vlv_set_power_well(dev_priv, power_well, false);
6138 }
6139
6140 static void check_power_well_state(struct drm_i915_private *dev_priv,
6141 struct i915_power_well *power_well)
6142 {
6143 bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6144
6145 if (power_well->always_on || !i915.disable_power_well) {
6146 if (!enabled)
6147 goto mismatch;
6148
6149 return;
6150 }
6151
6152 if (enabled != (power_well->count > 0))
6153 goto mismatch;
6154
6155 return;
6156
6157 mismatch:
6158 WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6159 power_well->name, power_well->always_on, enabled,
6160 power_well->count, i915.disable_power_well);
6161 }
6162
6163 void intel_display_power_get(struct drm_i915_private *dev_priv,
6164 enum intel_display_power_domain domain)
6165 {
6166 struct i915_power_domains *power_domains;
6167 struct i915_power_well *power_well;
6168 int i;
6169
6170 intel_runtime_pm_get(dev_priv);
6171
6172 power_domains = &dev_priv->power_domains;
6173
6174 mutex_lock(&power_domains->lock);
6175
6176 for_each_power_well(i, power_well, BIT(domain), power_domains) {
6177 if (!power_well->count++) {
6178 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6179 power_well->ops->enable(dev_priv, power_well);
6180 }
6181
6182 check_power_well_state(dev_priv, power_well);
6183 }
6184
6185 power_domains->domain_use_count[domain]++;
6186
6187 mutex_unlock(&power_domains->lock);
6188 }
6189
6190 void intel_display_power_put(struct drm_i915_private *dev_priv,
6191 enum intel_display_power_domain domain)
6192 {
6193 struct i915_power_domains *power_domains;
6194 struct i915_power_well *power_well;
6195 int i;
6196
6197 power_domains = &dev_priv->power_domains;
6198
6199 mutex_lock(&power_domains->lock);
6200
6201 WARN_ON(!power_domains->domain_use_count[domain]);
6202 power_domains->domain_use_count[domain]--;
6203
6204 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6205 WARN_ON(!power_well->count);
6206
6207 if (!--power_well->count && i915.disable_power_well) {
6208 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6209 power_well->ops->disable(dev_priv, power_well);
6210 }
6211
6212 check_power_well_state(dev_priv, power_well);
6213 }
6214
6215 mutex_unlock(&power_domains->lock);
6216
6217 intel_runtime_pm_put(dev_priv);
6218 }
6219
6220 static struct i915_power_domains *hsw_pwr;
6221
6222 /* Display audio driver power well request */
6223 void i915_request_power_well(void)
6224 {
6225 struct drm_i915_private *dev_priv;
6226
6227 if (WARN_ON(!hsw_pwr))
6228 return;
6229
6230 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6231 power_domains);
6232 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6233 }
6234 EXPORT_SYMBOL_GPL(i915_request_power_well);
6235
6236 /* Display audio driver power well release */
6237 void i915_release_power_well(void)
6238 {
6239 struct drm_i915_private *dev_priv;
6240
6241 if (WARN_ON(!hsw_pwr))
6242 return;
6243
6244 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6245 power_domains);
6246 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6247 }
6248 EXPORT_SYMBOL_GPL(i915_release_power_well);
6249
6250 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6251
6252 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
6253 BIT(POWER_DOMAIN_PIPE_A) | \
6254 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
6255 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
6256 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
6257 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
6258 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6259 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
6260 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6261 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
6262 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
6263 BIT(POWER_DOMAIN_PORT_CRT) | \
6264 BIT(POWER_DOMAIN_INIT))
6265 #define HSW_DISPLAY_POWER_DOMAINS ( \
6266 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
6267 BIT(POWER_DOMAIN_INIT))
6268
6269 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
6270 HSW_ALWAYS_ON_POWER_DOMAINS | \
6271 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6272 #define BDW_DISPLAY_POWER_DOMAINS ( \
6273 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
6274 BIT(POWER_DOMAIN_INIT))
6275
6276 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
6277 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
6278
6279 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
6280 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
6281 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6282 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
6283 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6284 BIT(POWER_DOMAIN_PORT_CRT) | \
6285 BIT(POWER_DOMAIN_INIT))
6286
6287 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
6288 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
6289 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6290 BIT(POWER_DOMAIN_INIT))
6291
6292 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
6293 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6294 BIT(POWER_DOMAIN_INIT))
6295
6296 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
6297 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
6298 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6299 BIT(POWER_DOMAIN_INIT))
6300
6301 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
6302 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6303 BIT(POWER_DOMAIN_INIT))
6304
6305 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6306 .sync_hw = i9xx_always_on_power_well_noop,
6307 .enable = i9xx_always_on_power_well_noop,
6308 .disable = i9xx_always_on_power_well_noop,
6309 .is_enabled = i9xx_always_on_power_well_enabled,
6310 };
6311
6312 static struct i915_power_well i9xx_always_on_power_well[] = {
6313 {
6314 .name = "always-on",
6315 .always_on = 1,
6316 .domains = POWER_DOMAIN_MASK,
6317 .ops = &i9xx_always_on_power_well_ops,
6318 },
6319 };
6320
6321 static const struct i915_power_well_ops hsw_power_well_ops = {
6322 .sync_hw = hsw_power_well_sync_hw,
6323 .enable = hsw_power_well_enable,
6324 .disable = hsw_power_well_disable,
6325 .is_enabled = hsw_power_well_enabled,
6326 };
6327
6328 static struct i915_power_well hsw_power_wells[] = {
6329 {
6330 .name = "always-on",
6331 .always_on = 1,
6332 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6333 .ops = &i9xx_always_on_power_well_ops,
6334 },
6335 {
6336 .name = "display",
6337 .domains = HSW_DISPLAY_POWER_DOMAINS,
6338 .ops = &hsw_power_well_ops,
6339 },
6340 };
6341
6342 static struct i915_power_well bdw_power_wells[] = {
6343 {
6344 .name = "always-on",
6345 .always_on = 1,
6346 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6347 .ops = &i9xx_always_on_power_well_ops,
6348 },
6349 {
6350 .name = "display",
6351 .domains = BDW_DISPLAY_POWER_DOMAINS,
6352 .ops = &hsw_power_well_ops,
6353 },
6354 };
6355
6356 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6357 .sync_hw = vlv_power_well_sync_hw,
6358 .enable = vlv_display_power_well_enable,
6359 .disable = vlv_display_power_well_disable,
6360 .is_enabled = vlv_power_well_enabled,
6361 };
6362
6363 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6364 .sync_hw = vlv_power_well_sync_hw,
6365 .enable = vlv_power_well_enable,
6366 .disable = vlv_power_well_disable,
6367 .is_enabled = vlv_power_well_enabled,
6368 };
6369
6370 static struct i915_power_well vlv_power_wells[] = {
6371 {
6372 .name = "always-on",
6373 .always_on = 1,
6374 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6375 .ops = &i9xx_always_on_power_well_ops,
6376 },
6377 {
6378 .name = "display",
6379 .domains = VLV_DISPLAY_POWER_DOMAINS,
6380 .data = PUNIT_POWER_WELL_DISP2D,
6381 .ops = &vlv_display_power_well_ops,
6382 },
6383 {
6384 .name = "dpio-tx-b-01",
6385 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6386 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6387 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6388 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6389 .ops = &vlv_dpio_power_well_ops,
6390 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6391 },
6392 {
6393 .name = "dpio-tx-b-23",
6394 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6395 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6396 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6397 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6398 .ops = &vlv_dpio_power_well_ops,
6399 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6400 },
6401 {
6402 .name = "dpio-tx-c-01",
6403 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6404 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6405 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6406 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6407 .ops = &vlv_dpio_power_well_ops,
6408 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6409 },
6410 {
6411 .name = "dpio-tx-c-23",
6412 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6413 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6414 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6415 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6416 .ops = &vlv_dpio_power_well_ops,
6417 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6418 },
6419 {
6420 .name = "dpio-common",
6421 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
6422 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6423 .ops = &vlv_dpio_power_well_ops,
6424 },
6425 };
6426
6427 #define set_power_wells(power_domains, __power_wells) ({ \
6428 (power_domains)->power_wells = (__power_wells); \
6429 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
6430 })
6431
6432 int intel_power_domains_init(struct drm_i915_private *dev_priv)
6433 {
6434 struct i915_power_domains *power_domains = &dev_priv->power_domains;
6435
6436 mutex_init(&power_domains->lock);
6437
6438 /*
6439 * The enabling order will be from lower to higher indexed wells,
6440 * the disabling order is reversed.
6441 */
6442 if (IS_HASWELL(dev_priv->dev)) {
6443 set_power_wells(power_domains, hsw_power_wells);
6444 hsw_pwr = power_domains;
6445 } else if (IS_BROADWELL(dev_priv->dev)) {
6446 set_power_wells(power_domains, bdw_power_wells);
6447 hsw_pwr = power_domains;
6448 } else if (IS_VALLEYVIEW(dev_priv->dev)) {
6449 set_power_wells(power_domains, vlv_power_wells);
6450 } else {
6451 set_power_wells(power_domains, i9xx_always_on_power_well);
6452 }
6453
6454 return 0;
6455 }
6456
6457 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
6458 {
6459 hsw_pwr = NULL;
6460 }
6461
6462 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
6463 {
6464 struct i915_power_domains *power_domains = &dev_priv->power_domains;
6465 struct i915_power_well *power_well;
6466 int i;
6467
6468 mutex_lock(&power_domains->lock);
6469 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
6470 power_well->ops->sync_hw(dev_priv, power_well);
6471 mutex_unlock(&power_domains->lock);
6472 }
6473
6474 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
6475 {
6476 struct i915_power_domains *power_domains = &dev_priv->power_domains;
6477
6478 power_domains->initializing = true;
6479 /* For now, we need the power well to be always enabled. */
6480 intel_display_set_init_power(dev_priv, true);
6481 intel_power_domains_resume(dev_priv);
6482 power_domains->initializing = false;
6483 }
6484
6485 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
6486 {
6487 intel_runtime_pm_get(dev_priv);
6488 }
6489
6490 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
6491 {
6492 intel_runtime_pm_put(dev_priv);
6493 }
6494
6495 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
6496 {
6497 struct drm_device *dev = dev_priv->dev;
6498 struct device *device = &dev->pdev->dev;
6499
6500 if (!HAS_RUNTIME_PM(dev))
6501 return;
6502
6503 pm_runtime_get_sync(device);
6504 WARN(dev_priv->pm.suspended, "Device still suspended.\n");
6505 }
6506
6507 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
6508 {
6509 struct drm_device *dev = dev_priv->dev;
6510 struct device *device = &dev->pdev->dev;
6511
6512 if (!HAS_RUNTIME_PM(dev))
6513 return;
6514
6515 WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
6516 pm_runtime_get_noresume(device);
6517 }
6518
6519 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
6520 {
6521 struct drm_device *dev = dev_priv->dev;
6522 struct device *device = &dev->pdev->dev;
6523
6524 if (!HAS_RUNTIME_PM(dev))
6525 return;
6526
6527 pm_runtime_mark_last_busy(device);
6528 pm_runtime_put_autosuspend(device);
6529 }
6530
6531 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6532 {
6533 struct drm_device *dev = dev_priv->dev;
6534 struct device *device = &dev->pdev->dev;
6535
6536 if (!HAS_RUNTIME_PM(dev))
6537 return;
6538
6539 pm_runtime_set_active(device);
6540
6541 /*
6542 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6543 * requirement.
6544 */
6545 if (!intel_enable_rc6(dev)) {
6546 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6547 return;
6548 }
6549
6550 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6551 pm_runtime_mark_last_busy(device);
6552 pm_runtime_use_autosuspend(device);
6553
6554 pm_runtime_put_autosuspend(device);
6555 }
6556
6557 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6558 {
6559 struct drm_device *dev = dev_priv->dev;
6560 struct device *device = &dev->pdev->dev;
6561
6562 if (!HAS_RUNTIME_PM(dev))
6563 return;
6564
6565 if (!intel_enable_rc6(dev))
6566 return;
6567
6568 /* Make sure we're not suspended first. */
6569 pm_runtime_get_sync(device);
6570 pm_runtime_disable(device);
6571 }
6572
6573 /* Set up chip specific power management-related functions */
6574 void intel_init_pm(struct drm_device *dev)
6575 {
6576 struct drm_i915_private *dev_priv = dev->dev_private;
6577
6578 if (HAS_FBC(dev)) {
6579 if (INTEL_INFO(dev)->gen >= 7) {
6580 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6581 dev_priv->display.enable_fbc = gen7_enable_fbc;
6582 dev_priv->display.disable_fbc = ironlake_disable_fbc;
6583 } else if (INTEL_INFO(dev)->gen >= 5) {
6584 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6585 dev_priv->display.enable_fbc = ironlake_enable_fbc;
6586 dev_priv->display.disable_fbc = ironlake_disable_fbc;
6587 } else if (IS_GM45(dev)) {
6588 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6589 dev_priv->display.enable_fbc = g4x_enable_fbc;
6590 dev_priv->display.disable_fbc = g4x_disable_fbc;
6591 } else {
6592 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6593 dev_priv->display.enable_fbc = i8xx_enable_fbc;
6594 dev_priv->display.disable_fbc = i8xx_disable_fbc;
6595
6596 /* This value was pulled out of someone's hat */
6597 I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6598 }
6599 }
6600
6601 /* For cxsr */
6602 if (IS_PINEVIEW(dev))
6603 i915_pineview_get_mem_freq(dev);
6604 else if (IS_GEN5(dev))
6605 i915_ironlake_get_mem_freq(dev);
6606
6607 /* For FIFO watermark updates */
6608 if (HAS_PCH_SPLIT(dev)) {
6609 ilk_setup_wm_latency(dev);
6610
6611 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6612 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6613 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6614 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6615 dev_priv->display.update_wm = ilk_update_wm;
6616 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6617 } else {
6618 DRM_DEBUG_KMS("Failed to read display plane latency. "
6619 "Disable CxSR\n");
6620 }
6621
6622 if (IS_GEN5(dev))
6623 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6624 else if (IS_GEN6(dev))
6625 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6626 else if (IS_IVYBRIDGE(dev))
6627 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6628 else if (IS_HASWELL(dev))
6629 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6630 else if (INTEL_INFO(dev)->gen == 8)
6631 dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6632 } else if (IS_CHERRYVIEW(dev)) {
6633 dev_priv->display.update_wm = valleyview_update_wm;
6634 dev_priv->display.init_clock_gating =
6635 cherryview_init_clock_gating;
6636 } else if (IS_VALLEYVIEW(dev)) {
6637 dev_priv->display.update_wm = valleyview_update_wm;
6638 dev_priv->display.init_clock_gating =
6639 valleyview_init_clock_gating;
6640 } else if (IS_PINEVIEW(dev)) {
6641 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6642 dev_priv->is_ddr3,
6643 dev_priv->fsb_freq,
6644 dev_priv->mem_freq)) {
6645 DRM_INFO("failed to find known CxSR latency "
6646 "(found ddr%s fsb freq %d, mem freq %d), "
6647 "disabling CxSR\n",
6648 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6649 dev_priv->fsb_freq, dev_priv->mem_freq);
6650 /* Disable CxSR and never update its watermark again */
6651 pineview_disable_cxsr(dev);
6652 dev_priv->display.update_wm = NULL;
6653 } else
6654 dev_priv->display.update_wm = pineview_update_wm;
6655 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6656 } else if (IS_G4X(dev)) {
6657 dev_priv->display.update_wm = g4x_update_wm;
6658 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6659 } else if (IS_GEN4(dev)) {
6660 dev_priv->display.update_wm = i965_update_wm;
6661 if (IS_CRESTLINE(dev))
6662 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6663 else if (IS_BROADWATER(dev))
6664 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6665 } else if (IS_GEN3(dev)) {
6666 dev_priv->display.update_wm = i9xx_update_wm;
6667 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6668 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6669 } else if (IS_GEN2(dev)) {
6670 if (INTEL_INFO(dev)->num_pipes == 1) {
6671 dev_priv->display.update_wm = i845_update_wm;
6672 dev_priv->display.get_fifo_size = i845_get_fifo_size;
6673 } else {
6674 dev_priv->display.update_wm = i9xx_update_wm;
6675 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6676 }
6677
6678 if (IS_I85X(dev) || IS_I865G(dev))
6679 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6680 else
6681 dev_priv->display.init_clock_gating = i830_init_clock_gating;
6682 } else {
6683 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6684 }
6685 }
6686
6687 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6688 {
6689 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6690
6691 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6692 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6693 return -EAGAIN;
6694 }
6695
6696 I915_WRITE(GEN6_PCODE_DATA, *val);
6697 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6698
6699 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6700 500)) {
6701 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6702 return -ETIMEDOUT;
6703 }
6704
6705 *val = I915_READ(GEN6_PCODE_DATA);
6706 I915_WRITE(GEN6_PCODE_DATA, 0);
6707
6708 return 0;
6709 }
6710
6711 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6712 {
6713 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6714
6715 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6716 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6717 return -EAGAIN;
6718 }
6719
6720 I915_WRITE(GEN6_PCODE_DATA, val);
6721 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6722
6723 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6724 500)) {
6725 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6726 return -ETIMEDOUT;
6727 }
6728
6729 I915_WRITE(GEN6_PCODE_DATA, 0);
6730
6731 return 0;
6732 }
6733
6734 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6735 {
6736 int div;
6737
6738 /* 4 x czclk */
6739 switch (dev_priv->mem_freq) {
6740 case 800:
6741 div = 10;
6742 break;
6743 case 1066:
6744 div = 12;
6745 break;
6746 case 1333:
6747 div = 16;
6748 break;
6749 default:
6750 return -1;
6751 }
6752
6753 return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6754 }
6755
6756 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6757 {
6758 int mul;
6759
6760 /* 4 x czclk */
6761 switch (dev_priv->mem_freq) {
6762 case 800:
6763 mul = 10;
6764 break;
6765 case 1066:
6766 mul = 12;
6767 break;
6768 case 1333:
6769 mul = 16;
6770 break;
6771 default:
6772 return -1;
6773 }
6774
6775 return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6776 }
6777
6778 void intel_pm_setup(struct drm_device *dev)
6779 {
6780 struct drm_i915_private *dev_priv = dev->dev_private;
6781
6782 mutex_init(&dev_priv->rps.hw_lock);
6783
6784 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6785 intel_gen6_powersave_work);
6786
6787 dev_priv->pm.suspended = false;
6788 dev_priv->pm.irqs_disabled = false;
6789 }
This page took 0.19991 seconds and 5 git commands to generate.