drm/i915: Hide VLV DDL precision handling
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage. This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39 *
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
43 *
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
50 */
51 #define INTEL_RC6_ENABLE (1<<0)
52 #define INTEL_RC6p_ENABLE (1<<1)
53 #define INTEL_RC6pp_ENABLE (1<<2)
54
55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57 struct drm_i915_private *dev_priv = dev->dev_private;
58
59 /* WaEnableLbsSlaRetryTimerDecrement:skl */
60 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
61 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62 }
63
64 static void skl_init_clock_gating(struct drm_device *dev)
65 {
66 struct drm_i915_private *dev_priv = dev->dev_private;
67
68 gen9_init_clock_gating(dev);
69
70 if (INTEL_REVID(dev) == SKL_REVID_A0) {
71 /*
72 * WaDisableSDEUnitClockGating:skl
73 * WaSetGAPSunitClckGateDisable:skl
74 */
75 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
76 GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
77 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
78 }
79
80 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
81 /* WaDisableHDCInvalidation:skl */
82 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
83 BDW_DISABLE_HDC_INVALIDATION);
84
85 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
86 I915_WRITE(FF_SLICE_CS_CHICKEN2,
87 I915_READ(FF_SLICE_CS_CHICKEN2) |
88 GEN9_TSG_BARRIER_ACK_DISABLE);
89 }
90
91 if (INTEL_REVID(dev) <= SKL_REVID_E0)
92 /* WaDisableLSQCROPERFforOCL:skl */
93 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
94 GEN8_LQSC_RO_PERF_DIS);
95 }
96
97 static void i915_pineview_get_mem_freq(struct drm_device *dev)
98 {
99 struct drm_i915_private *dev_priv = dev->dev_private;
100 u32 tmp;
101
102 tmp = I915_READ(CLKCFG);
103
104 switch (tmp & CLKCFG_FSB_MASK) {
105 case CLKCFG_FSB_533:
106 dev_priv->fsb_freq = 533; /* 133*4 */
107 break;
108 case CLKCFG_FSB_800:
109 dev_priv->fsb_freq = 800; /* 200*4 */
110 break;
111 case CLKCFG_FSB_667:
112 dev_priv->fsb_freq = 667; /* 167*4 */
113 break;
114 case CLKCFG_FSB_400:
115 dev_priv->fsb_freq = 400; /* 100*4 */
116 break;
117 }
118
119 switch (tmp & CLKCFG_MEM_MASK) {
120 case CLKCFG_MEM_533:
121 dev_priv->mem_freq = 533;
122 break;
123 case CLKCFG_MEM_667:
124 dev_priv->mem_freq = 667;
125 break;
126 case CLKCFG_MEM_800:
127 dev_priv->mem_freq = 800;
128 break;
129 }
130
131 /* detect pineview DDR3 setting */
132 tmp = I915_READ(CSHRDDR3CTL);
133 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
134 }
135
136 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
137 {
138 struct drm_i915_private *dev_priv = dev->dev_private;
139 u16 ddrpll, csipll;
140
141 ddrpll = I915_READ16(DDRMPLL1);
142 csipll = I915_READ16(CSIPLL0);
143
144 switch (ddrpll & 0xff) {
145 case 0xc:
146 dev_priv->mem_freq = 800;
147 break;
148 case 0x10:
149 dev_priv->mem_freq = 1066;
150 break;
151 case 0x14:
152 dev_priv->mem_freq = 1333;
153 break;
154 case 0x18:
155 dev_priv->mem_freq = 1600;
156 break;
157 default:
158 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
159 ddrpll & 0xff);
160 dev_priv->mem_freq = 0;
161 break;
162 }
163
164 dev_priv->ips.r_t = dev_priv->mem_freq;
165
166 switch (csipll & 0x3ff) {
167 case 0x00c:
168 dev_priv->fsb_freq = 3200;
169 break;
170 case 0x00e:
171 dev_priv->fsb_freq = 3733;
172 break;
173 case 0x010:
174 dev_priv->fsb_freq = 4266;
175 break;
176 case 0x012:
177 dev_priv->fsb_freq = 4800;
178 break;
179 case 0x014:
180 dev_priv->fsb_freq = 5333;
181 break;
182 case 0x016:
183 dev_priv->fsb_freq = 5866;
184 break;
185 case 0x018:
186 dev_priv->fsb_freq = 6400;
187 break;
188 default:
189 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
190 csipll & 0x3ff);
191 dev_priv->fsb_freq = 0;
192 break;
193 }
194
195 if (dev_priv->fsb_freq == 3200) {
196 dev_priv->ips.c_m = 0;
197 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
198 dev_priv->ips.c_m = 1;
199 } else {
200 dev_priv->ips.c_m = 2;
201 }
202 }
203
204 static const struct cxsr_latency cxsr_latency_table[] = {
205 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
206 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
207 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
208 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
209 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
210
211 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
212 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
213 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
214 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
215 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
216
217 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
218 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
219 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
220 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
221 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
222
223 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
224 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
225 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
226 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
227 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
228
229 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
230 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
231 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
232 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
233 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
234
235 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
236 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
237 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
238 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
239 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
240 };
241
242 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
243 int is_ddr3,
244 int fsb,
245 int mem)
246 {
247 const struct cxsr_latency *latency;
248 int i;
249
250 if (fsb == 0 || mem == 0)
251 return NULL;
252
253 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
254 latency = &cxsr_latency_table[i];
255 if (is_desktop == latency->is_desktop &&
256 is_ddr3 == latency->is_ddr3 &&
257 fsb == latency->fsb_freq && mem == latency->mem_freq)
258 return latency;
259 }
260
261 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
262
263 return NULL;
264 }
265
266 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
267 {
268 struct drm_device *dev = dev_priv->dev;
269 u32 val;
270
271 if (IS_VALLEYVIEW(dev)) {
272 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
273 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
274 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
275 } else if (IS_PINEVIEW(dev)) {
276 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
277 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
278 I915_WRITE(DSPFW3, val);
279 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
280 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
281 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
282 I915_WRITE(FW_BLC_SELF, val);
283 } else if (IS_I915GM(dev)) {
284 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
285 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
286 I915_WRITE(INSTPM, val);
287 } else {
288 return;
289 }
290
291 DRM_DEBUG_KMS("memory self-refresh is %s\n",
292 enable ? "enabled" : "disabled");
293 }
294
295 /*
296 * Latency for FIFO fetches is dependent on several factors:
297 * - memory configuration (speed, channels)
298 * - chipset
299 * - current MCH state
300 * It can be fairly high in some situations, so here we assume a fairly
301 * pessimal value. It's a tradeoff between extra memory fetches (if we
302 * set this value too high, the FIFO will fetch frequently to stay full)
303 * and power consumption (set it too low to save power and we might see
304 * FIFO underruns and display "flicker").
305 *
306 * A value of 5us seems to be a good balance; safe for very low end
307 * platforms but not overly aggressive on lower latency configs.
308 */
309 static const int pessimal_latency_ns = 5000;
310
311 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
312 {
313 struct drm_i915_private *dev_priv = dev->dev_private;
314 uint32_t dsparb = I915_READ(DSPARB);
315 int size;
316
317 size = dsparb & 0x7f;
318 if (plane)
319 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
320
321 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
322 plane ? "B" : "A", size);
323
324 return size;
325 }
326
327 static int i830_get_fifo_size(struct drm_device *dev, int plane)
328 {
329 struct drm_i915_private *dev_priv = dev->dev_private;
330 uint32_t dsparb = I915_READ(DSPARB);
331 int size;
332
333 size = dsparb & 0x1ff;
334 if (plane)
335 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
336 size >>= 1; /* Convert to cachelines */
337
338 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
339 plane ? "B" : "A", size);
340
341 return size;
342 }
343
344 static int i845_get_fifo_size(struct drm_device *dev, int plane)
345 {
346 struct drm_i915_private *dev_priv = dev->dev_private;
347 uint32_t dsparb = I915_READ(DSPARB);
348 int size;
349
350 size = dsparb & 0x7f;
351 size >>= 2; /* Convert to cachelines */
352
353 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
354 plane ? "B" : "A",
355 size);
356
357 return size;
358 }
359
360 /* Pineview has different values for various configs */
361 static const struct intel_watermark_params pineview_display_wm = {
362 .fifo_size = PINEVIEW_DISPLAY_FIFO,
363 .max_wm = PINEVIEW_MAX_WM,
364 .default_wm = PINEVIEW_DFT_WM,
365 .guard_size = PINEVIEW_GUARD_WM,
366 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
367 };
368 static const struct intel_watermark_params pineview_display_hplloff_wm = {
369 .fifo_size = PINEVIEW_DISPLAY_FIFO,
370 .max_wm = PINEVIEW_MAX_WM,
371 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
372 .guard_size = PINEVIEW_GUARD_WM,
373 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
374 };
375 static const struct intel_watermark_params pineview_cursor_wm = {
376 .fifo_size = PINEVIEW_CURSOR_FIFO,
377 .max_wm = PINEVIEW_CURSOR_MAX_WM,
378 .default_wm = PINEVIEW_CURSOR_DFT_WM,
379 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
380 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
381 };
382 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
383 .fifo_size = PINEVIEW_CURSOR_FIFO,
384 .max_wm = PINEVIEW_CURSOR_MAX_WM,
385 .default_wm = PINEVIEW_CURSOR_DFT_WM,
386 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
387 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
388 };
389 static const struct intel_watermark_params g4x_wm_info = {
390 .fifo_size = G4X_FIFO_SIZE,
391 .max_wm = G4X_MAX_WM,
392 .default_wm = G4X_MAX_WM,
393 .guard_size = 2,
394 .cacheline_size = G4X_FIFO_LINE_SIZE,
395 };
396 static const struct intel_watermark_params g4x_cursor_wm_info = {
397 .fifo_size = I965_CURSOR_FIFO,
398 .max_wm = I965_CURSOR_MAX_WM,
399 .default_wm = I965_CURSOR_DFT_WM,
400 .guard_size = 2,
401 .cacheline_size = G4X_FIFO_LINE_SIZE,
402 };
403 static const struct intel_watermark_params valleyview_wm_info = {
404 .fifo_size = VALLEYVIEW_FIFO_SIZE,
405 .max_wm = VALLEYVIEW_MAX_WM,
406 .default_wm = VALLEYVIEW_MAX_WM,
407 .guard_size = 2,
408 .cacheline_size = G4X_FIFO_LINE_SIZE,
409 };
410 static const struct intel_watermark_params valleyview_cursor_wm_info = {
411 .fifo_size = I965_CURSOR_FIFO,
412 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
413 .default_wm = I965_CURSOR_DFT_WM,
414 .guard_size = 2,
415 .cacheline_size = G4X_FIFO_LINE_SIZE,
416 };
417 static const struct intel_watermark_params i965_cursor_wm_info = {
418 .fifo_size = I965_CURSOR_FIFO,
419 .max_wm = I965_CURSOR_MAX_WM,
420 .default_wm = I965_CURSOR_DFT_WM,
421 .guard_size = 2,
422 .cacheline_size = I915_FIFO_LINE_SIZE,
423 };
424 static const struct intel_watermark_params i945_wm_info = {
425 .fifo_size = I945_FIFO_SIZE,
426 .max_wm = I915_MAX_WM,
427 .default_wm = 1,
428 .guard_size = 2,
429 .cacheline_size = I915_FIFO_LINE_SIZE,
430 };
431 static const struct intel_watermark_params i915_wm_info = {
432 .fifo_size = I915_FIFO_SIZE,
433 .max_wm = I915_MAX_WM,
434 .default_wm = 1,
435 .guard_size = 2,
436 .cacheline_size = I915_FIFO_LINE_SIZE,
437 };
438 static const struct intel_watermark_params i830_a_wm_info = {
439 .fifo_size = I855GM_FIFO_SIZE,
440 .max_wm = I915_MAX_WM,
441 .default_wm = 1,
442 .guard_size = 2,
443 .cacheline_size = I830_FIFO_LINE_SIZE,
444 };
445 static const struct intel_watermark_params i830_bc_wm_info = {
446 .fifo_size = I855GM_FIFO_SIZE,
447 .max_wm = I915_MAX_WM/2,
448 .default_wm = 1,
449 .guard_size = 2,
450 .cacheline_size = I830_FIFO_LINE_SIZE,
451 };
452 static const struct intel_watermark_params i845_wm_info = {
453 .fifo_size = I830_FIFO_SIZE,
454 .max_wm = I915_MAX_WM,
455 .default_wm = 1,
456 .guard_size = 2,
457 .cacheline_size = I830_FIFO_LINE_SIZE,
458 };
459
460 /**
461 * intel_calculate_wm - calculate watermark level
462 * @clock_in_khz: pixel clock
463 * @wm: chip FIFO params
464 * @pixel_size: display pixel size
465 * @latency_ns: memory latency for the platform
466 *
467 * Calculate the watermark level (the level at which the display plane will
468 * start fetching from memory again). Each chip has a different display
469 * FIFO size and allocation, so the caller needs to figure that out and pass
470 * in the correct intel_watermark_params structure.
471 *
472 * As the pixel clock runs, the FIFO will be drained at a rate that depends
473 * on the pixel size. When it reaches the watermark level, it'll start
474 * fetching FIFO line sized based chunks from memory until the FIFO fills
475 * past the watermark point. If the FIFO drains completely, a FIFO underrun
476 * will occur, and a display engine hang could result.
477 */
478 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
479 const struct intel_watermark_params *wm,
480 int fifo_size,
481 int pixel_size,
482 unsigned long latency_ns)
483 {
484 long entries_required, wm_size;
485
486 /*
487 * Note: we need to make sure we don't overflow for various clock &
488 * latency values.
489 * clocks go from a few thousand to several hundred thousand.
490 * latency is usually a few thousand
491 */
492 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
493 1000;
494 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
495
496 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
497
498 wm_size = fifo_size - (entries_required + wm->guard_size);
499
500 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
501
502 /* Don't promote wm_size to unsigned... */
503 if (wm_size > (long)wm->max_wm)
504 wm_size = wm->max_wm;
505 if (wm_size <= 0)
506 wm_size = wm->default_wm;
507
508 /*
509 * Bspec seems to indicate that the value shouldn't be lower than
510 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
511 * Lets go for 8 which is the burst size since certain platforms
512 * already use a hardcoded 8 (which is what the spec says should be
513 * done).
514 */
515 if (wm_size <= 8)
516 wm_size = 8;
517
518 return wm_size;
519 }
520
521 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
522 {
523 struct drm_crtc *crtc, *enabled = NULL;
524
525 for_each_crtc(dev, crtc) {
526 if (intel_crtc_active(crtc)) {
527 if (enabled)
528 return NULL;
529 enabled = crtc;
530 }
531 }
532
533 return enabled;
534 }
535
536 static void pineview_update_wm(struct drm_crtc *unused_crtc)
537 {
538 struct drm_device *dev = unused_crtc->dev;
539 struct drm_i915_private *dev_priv = dev->dev_private;
540 struct drm_crtc *crtc;
541 const struct cxsr_latency *latency;
542 u32 reg;
543 unsigned long wm;
544
545 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
546 dev_priv->fsb_freq, dev_priv->mem_freq);
547 if (!latency) {
548 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
549 intel_set_memory_cxsr(dev_priv, false);
550 return;
551 }
552
553 crtc = single_enabled_crtc(dev);
554 if (crtc) {
555 const struct drm_display_mode *adjusted_mode;
556 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
557 int clock;
558
559 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
560 clock = adjusted_mode->crtc_clock;
561
562 /* Display SR */
563 wm = intel_calculate_wm(clock, &pineview_display_wm,
564 pineview_display_wm.fifo_size,
565 pixel_size, latency->display_sr);
566 reg = I915_READ(DSPFW1);
567 reg &= ~DSPFW_SR_MASK;
568 reg |= wm << DSPFW_SR_SHIFT;
569 I915_WRITE(DSPFW1, reg);
570 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
571
572 /* cursor SR */
573 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
574 pineview_display_wm.fifo_size,
575 pixel_size, latency->cursor_sr);
576 reg = I915_READ(DSPFW3);
577 reg &= ~DSPFW_CURSOR_SR_MASK;
578 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
579 I915_WRITE(DSPFW3, reg);
580
581 /* Display HPLL off SR */
582 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
583 pineview_display_hplloff_wm.fifo_size,
584 pixel_size, latency->display_hpll_disable);
585 reg = I915_READ(DSPFW3);
586 reg &= ~DSPFW_HPLL_SR_MASK;
587 reg |= wm & DSPFW_HPLL_SR_MASK;
588 I915_WRITE(DSPFW3, reg);
589
590 /* cursor HPLL off SR */
591 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
592 pineview_display_hplloff_wm.fifo_size,
593 pixel_size, latency->cursor_hpll_disable);
594 reg = I915_READ(DSPFW3);
595 reg &= ~DSPFW_HPLL_CURSOR_MASK;
596 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
597 I915_WRITE(DSPFW3, reg);
598 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
599
600 intel_set_memory_cxsr(dev_priv, true);
601 } else {
602 intel_set_memory_cxsr(dev_priv, false);
603 }
604 }
605
606 static bool g4x_compute_wm0(struct drm_device *dev,
607 int plane,
608 const struct intel_watermark_params *display,
609 int display_latency_ns,
610 const struct intel_watermark_params *cursor,
611 int cursor_latency_ns,
612 int *plane_wm,
613 int *cursor_wm)
614 {
615 struct drm_crtc *crtc;
616 const struct drm_display_mode *adjusted_mode;
617 int htotal, hdisplay, clock, pixel_size;
618 int line_time_us, line_count;
619 int entries, tlb_miss;
620
621 crtc = intel_get_crtc_for_plane(dev, plane);
622 if (!intel_crtc_active(crtc)) {
623 *cursor_wm = cursor->guard_size;
624 *plane_wm = display->guard_size;
625 return false;
626 }
627
628 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
629 clock = adjusted_mode->crtc_clock;
630 htotal = adjusted_mode->crtc_htotal;
631 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
632 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
633
634 /* Use the small buffer method to calculate plane watermark */
635 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
636 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
637 if (tlb_miss > 0)
638 entries += tlb_miss;
639 entries = DIV_ROUND_UP(entries, display->cacheline_size);
640 *plane_wm = entries + display->guard_size;
641 if (*plane_wm > (int)display->max_wm)
642 *plane_wm = display->max_wm;
643
644 /* Use the large buffer method to calculate cursor watermark */
645 line_time_us = max(htotal * 1000 / clock, 1);
646 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
647 entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
648 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
649 if (tlb_miss > 0)
650 entries += tlb_miss;
651 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
652 *cursor_wm = entries + cursor->guard_size;
653 if (*cursor_wm > (int)cursor->max_wm)
654 *cursor_wm = (int)cursor->max_wm;
655
656 return true;
657 }
658
659 /*
660 * Check the wm result.
661 *
662 * If any calculated watermark values is larger than the maximum value that
663 * can be programmed into the associated watermark register, that watermark
664 * must be disabled.
665 */
666 static bool g4x_check_srwm(struct drm_device *dev,
667 int display_wm, int cursor_wm,
668 const struct intel_watermark_params *display,
669 const struct intel_watermark_params *cursor)
670 {
671 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
672 display_wm, cursor_wm);
673
674 if (display_wm > display->max_wm) {
675 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
676 display_wm, display->max_wm);
677 return false;
678 }
679
680 if (cursor_wm > cursor->max_wm) {
681 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
682 cursor_wm, cursor->max_wm);
683 return false;
684 }
685
686 if (!(display_wm || cursor_wm)) {
687 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
688 return false;
689 }
690
691 return true;
692 }
693
694 static bool g4x_compute_srwm(struct drm_device *dev,
695 int plane,
696 int latency_ns,
697 const struct intel_watermark_params *display,
698 const struct intel_watermark_params *cursor,
699 int *display_wm, int *cursor_wm)
700 {
701 struct drm_crtc *crtc;
702 const struct drm_display_mode *adjusted_mode;
703 int hdisplay, htotal, pixel_size, clock;
704 unsigned long line_time_us;
705 int line_count, line_size;
706 int small, large;
707 int entries;
708
709 if (!latency_ns) {
710 *display_wm = *cursor_wm = 0;
711 return false;
712 }
713
714 crtc = intel_get_crtc_for_plane(dev, plane);
715 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
716 clock = adjusted_mode->crtc_clock;
717 htotal = adjusted_mode->crtc_htotal;
718 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
719 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
720
721 line_time_us = max(htotal * 1000 / clock, 1);
722 line_count = (latency_ns / line_time_us + 1000) / 1000;
723 line_size = hdisplay * pixel_size;
724
725 /* Use the minimum of the small and large buffer method for primary */
726 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
727 large = line_count * line_size;
728
729 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
730 *display_wm = entries + display->guard_size;
731
732 /* calculate the self-refresh watermark for display cursor */
733 entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
734 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
735 *cursor_wm = entries + cursor->guard_size;
736
737 return g4x_check_srwm(dev,
738 *display_wm, *cursor_wm,
739 display, cursor);
740 }
741
742 static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
743 int pixel_size)
744 {
745 struct drm_device *dev = crtc->dev;
746 int entries, prec_mult, drain_latency;
747 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
748 const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
749
750 if (WARN(clock == 0, "Pixel clock is zero!\n"))
751 return 0;
752
753 if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
754 return 0;
755
756 entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
757
758 prec_mult = high_precision;
759 drain_latency = 64 * prec_mult * 4 / entries;
760
761 if (drain_latency > DRAIN_LATENCY_MASK) {
762 prec_mult /= 2;
763 drain_latency = 64 * prec_mult * 4 / entries;
764 }
765
766 if (drain_latency > DRAIN_LATENCY_MASK)
767 drain_latency = DRAIN_LATENCY_MASK;
768
769 return drain_latency | (prec_mult == high_precision ?
770 DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
771 }
772
773 /*
774 * Update drain latency registers of memory arbiter
775 *
776 * Valleyview SoC has a new memory arbiter and needs drain latency registers
777 * to be programmed. Each plane has a drain latency multiplier and a drain
778 * latency value.
779 */
780
781 static void vlv_update_drain_latency(struct drm_crtc *crtc)
782 {
783 struct drm_device *dev = crtc->dev;
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
786 int pixel_size;
787 enum pipe pipe = intel_crtc->pipe;
788 int plane_dl;
789
790 plane_dl = I915_READ(VLV_DDL(pipe)) &
791 ~(((DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK) << DDL_CURSOR_SHIFT) |
792 ((DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK) << DDL_PLANE_SHIFT));
793
794 if (!intel_crtc_active(crtc)) {
795 I915_WRITE(VLV_DDL(pipe), plane_dl);
796 return;
797 }
798
799 /* Primary plane Drain Latency */
800 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8; /* BPP */
801 plane_dl = vlv_compute_drain_latency(crtc, pixel_size) << DDL_PLANE_SHIFT;
802
803 /* Cursor Drain Latency
804 * BPP is always 4 for cursor
805 */
806 pixel_size = 4;
807
808 /* Program cursor DL only if it is enabled */
809 if (intel_crtc->cursor_base)
810 plane_dl |= vlv_compute_drain_latency(crtc, pixel_size) << DDL_CURSOR_SHIFT;
811
812 I915_WRITE(VLV_DDL(pipe), plane_dl);
813 }
814
815 #define single_plane_enabled(mask) is_power_of_2(mask)
816
817 static void valleyview_update_wm(struct drm_crtc *crtc)
818 {
819 struct drm_device *dev = crtc->dev;
820 static const int sr_latency_ns = 12000;
821 struct drm_i915_private *dev_priv = dev->dev_private;
822 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
823 int plane_sr, cursor_sr;
824 int ignore_plane_sr, ignore_cursor_sr;
825 unsigned int enabled = 0;
826 bool cxsr_enabled;
827
828 vlv_update_drain_latency(crtc);
829
830 if (g4x_compute_wm0(dev, PIPE_A,
831 &valleyview_wm_info, pessimal_latency_ns,
832 &valleyview_cursor_wm_info, pessimal_latency_ns,
833 &planea_wm, &cursora_wm))
834 enabled |= 1 << PIPE_A;
835
836 if (g4x_compute_wm0(dev, PIPE_B,
837 &valleyview_wm_info, pessimal_latency_ns,
838 &valleyview_cursor_wm_info, pessimal_latency_ns,
839 &planeb_wm, &cursorb_wm))
840 enabled |= 1 << PIPE_B;
841
842 if (single_plane_enabled(enabled) &&
843 g4x_compute_srwm(dev, ffs(enabled) - 1,
844 sr_latency_ns,
845 &valleyview_wm_info,
846 &valleyview_cursor_wm_info,
847 &plane_sr, &ignore_cursor_sr) &&
848 g4x_compute_srwm(dev, ffs(enabled) - 1,
849 2*sr_latency_ns,
850 &valleyview_wm_info,
851 &valleyview_cursor_wm_info,
852 &ignore_plane_sr, &cursor_sr)) {
853 cxsr_enabled = true;
854 } else {
855 cxsr_enabled = false;
856 intel_set_memory_cxsr(dev_priv, false);
857 plane_sr = cursor_sr = 0;
858 }
859
860 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
861 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
862 planea_wm, cursora_wm,
863 planeb_wm, cursorb_wm,
864 plane_sr, cursor_sr);
865
866 I915_WRITE(DSPFW1,
867 (plane_sr << DSPFW_SR_SHIFT) |
868 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
869 (planeb_wm << DSPFW_PLANEB_SHIFT) |
870 (planea_wm << DSPFW_PLANEA_SHIFT));
871 I915_WRITE(DSPFW2,
872 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
873 (cursora_wm << DSPFW_CURSORA_SHIFT));
874 I915_WRITE(DSPFW3,
875 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
876 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
877
878 if (cxsr_enabled)
879 intel_set_memory_cxsr(dev_priv, true);
880 }
881
882 static void cherryview_update_wm(struct drm_crtc *crtc)
883 {
884 struct drm_device *dev = crtc->dev;
885 static const int sr_latency_ns = 12000;
886 struct drm_i915_private *dev_priv = dev->dev_private;
887 int planea_wm, planeb_wm, planec_wm;
888 int cursora_wm, cursorb_wm, cursorc_wm;
889 int plane_sr, cursor_sr;
890 int ignore_plane_sr, ignore_cursor_sr;
891 unsigned int enabled = 0;
892 bool cxsr_enabled;
893
894 vlv_update_drain_latency(crtc);
895
896 if (g4x_compute_wm0(dev, PIPE_A,
897 &valleyview_wm_info, pessimal_latency_ns,
898 &valleyview_cursor_wm_info, pessimal_latency_ns,
899 &planea_wm, &cursora_wm))
900 enabled |= 1 << PIPE_A;
901
902 if (g4x_compute_wm0(dev, PIPE_B,
903 &valleyview_wm_info, pessimal_latency_ns,
904 &valleyview_cursor_wm_info, pessimal_latency_ns,
905 &planeb_wm, &cursorb_wm))
906 enabled |= 1 << PIPE_B;
907
908 if (g4x_compute_wm0(dev, PIPE_C,
909 &valleyview_wm_info, pessimal_latency_ns,
910 &valleyview_cursor_wm_info, pessimal_latency_ns,
911 &planec_wm, &cursorc_wm))
912 enabled |= 1 << PIPE_C;
913
914 if (single_plane_enabled(enabled) &&
915 g4x_compute_srwm(dev, ffs(enabled) - 1,
916 sr_latency_ns,
917 &valleyview_wm_info,
918 &valleyview_cursor_wm_info,
919 &plane_sr, &ignore_cursor_sr) &&
920 g4x_compute_srwm(dev, ffs(enabled) - 1,
921 2*sr_latency_ns,
922 &valleyview_wm_info,
923 &valleyview_cursor_wm_info,
924 &ignore_plane_sr, &cursor_sr)) {
925 cxsr_enabled = true;
926 } else {
927 cxsr_enabled = false;
928 intel_set_memory_cxsr(dev_priv, false);
929 plane_sr = cursor_sr = 0;
930 }
931
932 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
933 "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
934 "SR: plane=%d, cursor=%d\n",
935 planea_wm, cursora_wm,
936 planeb_wm, cursorb_wm,
937 planec_wm, cursorc_wm,
938 plane_sr, cursor_sr);
939
940 I915_WRITE(DSPFW1,
941 (plane_sr << DSPFW_SR_SHIFT) |
942 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
943 (planeb_wm << DSPFW_PLANEB_SHIFT) |
944 (planea_wm << DSPFW_PLANEA_SHIFT));
945 I915_WRITE(DSPFW2,
946 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
947 (cursora_wm << DSPFW_CURSORA_SHIFT));
948 I915_WRITE(DSPFW3,
949 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
950 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
951 I915_WRITE(DSPFW9_CHV,
952 (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
953 DSPFW_CURSORC_MASK)) |
954 (planec_wm << DSPFW_PLANEC_SHIFT) |
955 (cursorc_wm << DSPFW_CURSORC_SHIFT));
956
957 if (cxsr_enabled)
958 intel_set_memory_cxsr(dev_priv, true);
959 }
960
961 static void valleyview_update_sprite_wm(struct drm_plane *plane,
962 struct drm_crtc *crtc,
963 uint32_t sprite_width,
964 uint32_t sprite_height,
965 int pixel_size,
966 bool enabled, bool scaled)
967 {
968 struct drm_device *dev = crtc->dev;
969 struct drm_i915_private *dev_priv = dev->dev_private;
970 int pipe = to_intel_plane(plane)->pipe;
971 int sprite = to_intel_plane(plane)->plane;
972 int sprite_dl;
973
974 sprite_dl = I915_READ(VLV_DDL(pipe)) &
975 ~((DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK) << DDL_SPRITE_SHIFT(sprite));
976
977 if (enabled)
978 sprite_dl |= vlv_compute_drain_latency(crtc, pixel_size) << DDL_SPRITE_SHIFT(sprite);
979
980 I915_WRITE(VLV_DDL(pipe), sprite_dl);
981 }
982
983 static void g4x_update_wm(struct drm_crtc *crtc)
984 {
985 struct drm_device *dev = crtc->dev;
986 static const int sr_latency_ns = 12000;
987 struct drm_i915_private *dev_priv = dev->dev_private;
988 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
989 int plane_sr, cursor_sr;
990 unsigned int enabled = 0;
991 bool cxsr_enabled;
992
993 if (g4x_compute_wm0(dev, PIPE_A,
994 &g4x_wm_info, pessimal_latency_ns,
995 &g4x_cursor_wm_info, pessimal_latency_ns,
996 &planea_wm, &cursora_wm))
997 enabled |= 1 << PIPE_A;
998
999 if (g4x_compute_wm0(dev, PIPE_B,
1000 &g4x_wm_info, pessimal_latency_ns,
1001 &g4x_cursor_wm_info, pessimal_latency_ns,
1002 &planeb_wm, &cursorb_wm))
1003 enabled |= 1 << PIPE_B;
1004
1005 if (single_plane_enabled(enabled) &&
1006 g4x_compute_srwm(dev, ffs(enabled) - 1,
1007 sr_latency_ns,
1008 &g4x_wm_info,
1009 &g4x_cursor_wm_info,
1010 &plane_sr, &cursor_sr)) {
1011 cxsr_enabled = true;
1012 } else {
1013 cxsr_enabled = false;
1014 intel_set_memory_cxsr(dev_priv, false);
1015 plane_sr = cursor_sr = 0;
1016 }
1017
1018 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1019 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1020 planea_wm, cursora_wm,
1021 planeb_wm, cursorb_wm,
1022 plane_sr, cursor_sr);
1023
1024 I915_WRITE(DSPFW1,
1025 (plane_sr << DSPFW_SR_SHIFT) |
1026 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1027 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1028 (planea_wm << DSPFW_PLANEA_SHIFT));
1029 I915_WRITE(DSPFW2,
1030 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1031 (cursora_wm << DSPFW_CURSORA_SHIFT));
1032 /* HPLL off in SR has some issues on G4x... disable it */
1033 I915_WRITE(DSPFW3,
1034 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1035 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1036
1037 if (cxsr_enabled)
1038 intel_set_memory_cxsr(dev_priv, true);
1039 }
1040
1041 static void i965_update_wm(struct drm_crtc *unused_crtc)
1042 {
1043 struct drm_device *dev = unused_crtc->dev;
1044 struct drm_i915_private *dev_priv = dev->dev_private;
1045 struct drm_crtc *crtc;
1046 int srwm = 1;
1047 int cursor_sr = 16;
1048 bool cxsr_enabled;
1049
1050 /* Calc sr entries for one plane configs */
1051 crtc = single_enabled_crtc(dev);
1052 if (crtc) {
1053 /* self-refresh has much higher latency */
1054 static const int sr_latency_ns = 12000;
1055 const struct drm_display_mode *adjusted_mode =
1056 &to_intel_crtc(crtc)->config->base.adjusted_mode;
1057 int clock = adjusted_mode->crtc_clock;
1058 int htotal = adjusted_mode->crtc_htotal;
1059 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1060 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1061 unsigned long line_time_us;
1062 int entries;
1063
1064 line_time_us = max(htotal * 1000 / clock, 1);
1065
1066 /* Use ns/us then divide to preserve precision */
1067 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1068 pixel_size * hdisplay;
1069 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1070 srwm = I965_FIFO_SIZE - entries;
1071 if (srwm < 0)
1072 srwm = 1;
1073 srwm &= 0x1ff;
1074 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1075 entries, srwm);
1076
1077 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1078 pixel_size * crtc->cursor->state->crtc_w;
1079 entries = DIV_ROUND_UP(entries,
1080 i965_cursor_wm_info.cacheline_size);
1081 cursor_sr = i965_cursor_wm_info.fifo_size -
1082 (entries + i965_cursor_wm_info.guard_size);
1083
1084 if (cursor_sr > i965_cursor_wm_info.max_wm)
1085 cursor_sr = i965_cursor_wm_info.max_wm;
1086
1087 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1088 "cursor %d\n", srwm, cursor_sr);
1089
1090 cxsr_enabled = true;
1091 } else {
1092 cxsr_enabled = false;
1093 /* Turn off self refresh if both pipes are enabled */
1094 intel_set_memory_cxsr(dev_priv, false);
1095 }
1096
1097 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1098 srwm);
1099
1100 /* 965 has limitations... */
1101 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1102 (8 << DSPFW_CURSORB_SHIFT) |
1103 (8 << DSPFW_PLANEB_SHIFT) |
1104 (8 << DSPFW_PLANEA_SHIFT));
1105 I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1106 (8 << DSPFW_PLANEC_SHIFT_OLD));
1107 /* update cursor SR watermark */
1108 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1109
1110 if (cxsr_enabled)
1111 intel_set_memory_cxsr(dev_priv, true);
1112 }
1113
1114 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1115 {
1116 struct drm_device *dev = unused_crtc->dev;
1117 struct drm_i915_private *dev_priv = dev->dev_private;
1118 const struct intel_watermark_params *wm_info;
1119 uint32_t fwater_lo;
1120 uint32_t fwater_hi;
1121 int cwm, srwm = 1;
1122 int fifo_size;
1123 int planea_wm, planeb_wm;
1124 struct drm_crtc *crtc, *enabled = NULL;
1125
1126 if (IS_I945GM(dev))
1127 wm_info = &i945_wm_info;
1128 else if (!IS_GEN2(dev))
1129 wm_info = &i915_wm_info;
1130 else
1131 wm_info = &i830_a_wm_info;
1132
1133 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1134 crtc = intel_get_crtc_for_plane(dev, 0);
1135 if (intel_crtc_active(crtc)) {
1136 const struct drm_display_mode *adjusted_mode;
1137 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1138 if (IS_GEN2(dev))
1139 cpp = 4;
1140
1141 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1142 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1143 wm_info, fifo_size, cpp,
1144 pessimal_latency_ns);
1145 enabled = crtc;
1146 } else {
1147 planea_wm = fifo_size - wm_info->guard_size;
1148 if (planea_wm > (long)wm_info->max_wm)
1149 planea_wm = wm_info->max_wm;
1150 }
1151
1152 if (IS_GEN2(dev))
1153 wm_info = &i830_bc_wm_info;
1154
1155 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1156 crtc = intel_get_crtc_for_plane(dev, 1);
1157 if (intel_crtc_active(crtc)) {
1158 const struct drm_display_mode *adjusted_mode;
1159 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1160 if (IS_GEN2(dev))
1161 cpp = 4;
1162
1163 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1164 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1165 wm_info, fifo_size, cpp,
1166 pessimal_latency_ns);
1167 if (enabled == NULL)
1168 enabled = crtc;
1169 else
1170 enabled = NULL;
1171 } else {
1172 planeb_wm = fifo_size - wm_info->guard_size;
1173 if (planeb_wm > (long)wm_info->max_wm)
1174 planeb_wm = wm_info->max_wm;
1175 }
1176
1177 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1178
1179 if (IS_I915GM(dev) && enabled) {
1180 struct drm_i915_gem_object *obj;
1181
1182 obj = intel_fb_obj(enabled->primary->state->fb);
1183
1184 /* self-refresh seems busted with untiled */
1185 if (obj->tiling_mode == I915_TILING_NONE)
1186 enabled = NULL;
1187 }
1188
1189 /*
1190 * Overlay gets an aggressive default since video jitter is bad.
1191 */
1192 cwm = 2;
1193
1194 /* Play safe and disable self-refresh before adjusting watermarks. */
1195 intel_set_memory_cxsr(dev_priv, false);
1196
1197 /* Calc sr entries for one plane configs */
1198 if (HAS_FW_BLC(dev) && enabled) {
1199 /* self-refresh has much higher latency */
1200 static const int sr_latency_ns = 6000;
1201 const struct drm_display_mode *adjusted_mode =
1202 &to_intel_crtc(enabled)->config->base.adjusted_mode;
1203 int clock = adjusted_mode->crtc_clock;
1204 int htotal = adjusted_mode->crtc_htotal;
1205 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1206 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1207 unsigned long line_time_us;
1208 int entries;
1209
1210 line_time_us = max(htotal * 1000 / clock, 1);
1211
1212 /* Use ns/us then divide to preserve precision */
1213 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1214 pixel_size * hdisplay;
1215 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1216 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1217 srwm = wm_info->fifo_size - entries;
1218 if (srwm < 0)
1219 srwm = 1;
1220
1221 if (IS_I945G(dev) || IS_I945GM(dev))
1222 I915_WRITE(FW_BLC_SELF,
1223 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1224 else if (IS_I915GM(dev))
1225 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1226 }
1227
1228 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1229 planea_wm, planeb_wm, cwm, srwm);
1230
1231 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1232 fwater_hi = (cwm & 0x1f);
1233
1234 /* Set request length to 8 cachelines per fetch */
1235 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1236 fwater_hi = fwater_hi | (1 << 8);
1237
1238 I915_WRITE(FW_BLC, fwater_lo);
1239 I915_WRITE(FW_BLC2, fwater_hi);
1240
1241 if (enabled)
1242 intel_set_memory_cxsr(dev_priv, true);
1243 }
1244
1245 static void i845_update_wm(struct drm_crtc *unused_crtc)
1246 {
1247 struct drm_device *dev = unused_crtc->dev;
1248 struct drm_i915_private *dev_priv = dev->dev_private;
1249 struct drm_crtc *crtc;
1250 const struct drm_display_mode *adjusted_mode;
1251 uint32_t fwater_lo;
1252 int planea_wm;
1253
1254 crtc = single_enabled_crtc(dev);
1255 if (crtc == NULL)
1256 return;
1257
1258 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1259 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1260 &i845_wm_info,
1261 dev_priv->display.get_fifo_size(dev, 0),
1262 4, pessimal_latency_ns);
1263 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1264 fwater_lo |= (3<<8) | planea_wm;
1265
1266 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1267
1268 I915_WRITE(FW_BLC, fwater_lo);
1269 }
1270
1271 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1272 struct drm_crtc *crtc)
1273 {
1274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1275 uint32_t pixel_rate;
1276
1277 pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1278
1279 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1280 * adjust the pixel_rate here. */
1281
1282 if (intel_crtc->config->pch_pfit.enabled) {
1283 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1284 uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1285
1286 pipe_w = intel_crtc->config->pipe_src_w;
1287 pipe_h = intel_crtc->config->pipe_src_h;
1288 pfit_w = (pfit_size >> 16) & 0xFFFF;
1289 pfit_h = pfit_size & 0xFFFF;
1290 if (pipe_w < pfit_w)
1291 pipe_w = pfit_w;
1292 if (pipe_h < pfit_h)
1293 pipe_h = pfit_h;
1294
1295 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1296 pfit_w * pfit_h);
1297 }
1298
1299 return pixel_rate;
1300 }
1301
1302 /* latency must be in 0.1us units. */
1303 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1304 uint32_t latency)
1305 {
1306 uint64_t ret;
1307
1308 if (WARN(latency == 0, "Latency value missing\n"))
1309 return UINT_MAX;
1310
1311 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1312 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1313
1314 return ret;
1315 }
1316
1317 /* latency must be in 0.1us units. */
1318 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1319 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1320 uint32_t latency)
1321 {
1322 uint32_t ret;
1323
1324 if (WARN(latency == 0, "Latency value missing\n"))
1325 return UINT_MAX;
1326
1327 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1328 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1329 ret = DIV_ROUND_UP(ret, 64) + 2;
1330 return ret;
1331 }
1332
1333 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1334 uint8_t bytes_per_pixel)
1335 {
1336 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1337 }
1338
1339 struct skl_pipe_wm_parameters {
1340 bool active;
1341 uint32_t pipe_htotal;
1342 uint32_t pixel_rate; /* in KHz */
1343 struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1344 struct intel_plane_wm_parameters cursor;
1345 };
1346
1347 struct ilk_pipe_wm_parameters {
1348 bool active;
1349 uint32_t pipe_htotal;
1350 uint32_t pixel_rate;
1351 struct intel_plane_wm_parameters pri;
1352 struct intel_plane_wm_parameters spr;
1353 struct intel_plane_wm_parameters cur;
1354 };
1355
1356 struct ilk_wm_maximums {
1357 uint16_t pri;
1358 uint16_t spr;
1359 uint16_t cur;
1360 uint16_t fbc;
1361 };
1362
1363 /* used in computing the new watermarks state */
1364 struct intel_wm_config {
1365 unsigned int num_pipes_active;
1366 bool sprites_enabled;
1367 bool sprites_scaled;
1368 };
1369
1370 /*
1371 * For both WM_PIPE and WM_LP.
1372 * mem_value must be in 0.1us units.
1373 */
1374 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1375 uint32_t mem_value,
1376 bool is_lp)
1377 {
1378 uint32_t method1, method2;
1379
1380 if (!params->active || !params->pri.enabled)
1381 return 0;
1382
1383 method1 = ilk_wm_method1(params->pixel_rate,
1384 params->pri.bytes_per_pixel,
1385 mem_value);
1386
1387 if (!is_lp)
1388 return method1;
1389
1390 method2 = ilk_wm_method2(params->pixel_rate,
1391 params->pipe_htotal,
1392 params->pri.horiz_pixels,
1393 params->pri.bytes_per_pixel,
1394 mem_value);
1395
1396 return min(method1, method2);
1397 }
1398
1399 /*
1400 * For both WM_PIPE and WM_LP.
1401 * mem_value must be in 0.1us units.
1402 */
1403 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1404 uint32_t mem_value)
1405 {
1406 uint32_t method1, method2;
1407
1408 if (!params->active || !params->spr.enabled)
1409 return 0;
1410
1411 method1 = ilk_wm_method1(params->pixel_rate,
1412 params->spr.bytes_per_pixel,
1413 mem_value);
1414 method2 = ilk_wm_method2(params->pixel_rate,
1415 params->pipe_htotal,
1416 params->spr.horiz_pixels,
1417 params->spr.bytes_per_pixel,
1418 mem_value);
1419 return min(method1, method2);
1420 }
1421
1422 /*
1423 * For both WM_PIPE and WM_LP.
1424 * mem_value must be in 0.1us units.
1425 */
1426 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1427 uint32_t mem_value)
1428 {
1429 if (!params->active || !params->cur.enabled)
1430 return 0;
1431
1432 return ilk_wm_method2(params->pixel_rate,
1433 params->pipe_htotal,
1434 params->cur.horiz_pixels,
1435 params->cur.bytes_per_pixel,
1436 mem_value);
1437 }
1438
1439 /* Only for WM_LP. */
1440 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1441 uint32_t pri_val)
1442 {
1443 if (!params->active || !params->pri.enabled)
1444 return 0;
1445
1446 return ilk_wm_fbc(pri_val,
1447 params->pri.horiz_pixels,
1448 params->pri.bytes_per_pixel);
1449 }
1450
1451 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1452 {
1453 if (INTEL_INFO(dev)->gen >= 8)
1454 return 3072;
1455 else if (INTEL_INFO(dev)->gen >= 7)
1456 return 768;
1457 else
1458 return 512;
1459 }
1460
1461 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1462 int level, bool is_sprite)
1463 {
1464 if (INTEL_INFO(dev)->gen >= 8)
1465 /* BDW primary/sprite plane watermarks */
1466 return level == 0 ? 255 : 2047;
1467 else if (INTEL_INFO(dev)->gen >= 7)
1468 /* IVB/HSW primary/sprite plane watermarks */
1469 return level == 0 ? 127 : 1023;
1470 else if (!is_sprite)
1471 /* ILK/SNB primary plane watermarks */
1472 return level == 0 ? 127 : 511;
1473 else
1474 /* ILK/SNB sprite plane watermarks */
1475 return level == 0 ? 63 : 255;
1476 }
1477
1478 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1479 int level)
1480 {
1481 if (INTEL_INFO(dev)->gen >= 7)
1482 return level == 0 ? 63 : 255;
1483 else
1484 return level == 0 ? 31 : 63;
1485 }
1486
1487 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1488 {
1489 if (INTEL_INFO(dev)->gen >= 8)
1490 return 31;
1491 else
1492 return 15;
1493 }
1494
1495 /* Calculate the maximum primary/sprite plane watermark */
1496 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1497 int level,
1498 const struct intel_wm_config *config,
1499 enum intel_ddb_partitioning ddb_partitioning,
1500 bool is_sprite)
1501 {
1502 unsigned int fifo_size = ilk_display_fifo_size(dev);
1503
1504 /* if sprites aren't enabled, sprites get nothing */
1505 if (is_sprite && !config->sprites_enabled)
1506 return 0;
1507
1508 /* HSW allows LP1+ watermarks even with multiple pipes */
1509 if (level == 0 || config->num_pipes_active > 1) {
1510 fifo_size /= INTEL_INFO(dev)->num_pipes;
1511
1512 /*
1513 * For some reason the non self refresh
1514 * FIFO size is only half of the self
1515 * refresh FIFO size on ILK/SNB.
1516 */
1517 if (INTEL_INFO(dev)->gen <= 6)
1518 fifo_size /= 2;
1519 }
1520
1521 if (config->sprites_enabled) {
1522 /* level 0 is always calculated with 1:1 split */
1523 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1524 if (is_sprite)
1525 fifo_size *= 5;
1526 fifo_size /= 6;
1527 } else {
1528 fifo_size /= 2;
1529 }
1530 }
1531
1532 /* clamp to max that the registers can hold */
1533 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1534 }
1535
1536 /* Calculate the maximum cursor plane watermark */
1537 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1538 int level,
1539 const struct intel_wm_config *config)
1540 {
1541 /* HSW LP1+ watermarks w/ multiple pipes */
1542 if (level > 0 && config->num_pipes_active > 1)
1543 return 64;
1544
1545 /* otherwise just report max that registers can hold */
1546 return ilk_cursor_wm_reg_max(dev, level);
1547 }
1548
1549 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1550 int level,
1551 const struct intel_wm_config *config,
1552 enum intel_ddb_partitioning ddb_partitioning,
1553 struct ilk_wm_maximums *max)
1554 {
1555 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1556 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1557 max->cur = ilk_cursor_wm_max(dev, level, config);
1558 max->fbc = ilk_fbc_wm_reg_max(dev);
1559 }
1560
1561 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1562 int level,
1563 struct ilk_wm_maximums *max)
1564 {
1565 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1566 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1567 max->cur = ilk_cursor_wm_reg_max(dev, level);
1568 max->fbc = ilk_fbc_wm_reg_max(dev);
1569 }
1570
1571 static bool ilk_validate_wm_level(int level,
1572 const struct ilk_wm_maximums *max,
1573 struct intel_wm_level *result)
1574 {
1575 bool ret;
1576
1577 /* already determined to be invalid? */
1578 if (!result->enable)
1579 return false;
1580
1581 result->enable = result->pri_val <= max->pri &&
1582 result->spr_val <= max->spr &&
1583 result->cur_val <= max->cur;
1584
1585 ret = result->enable;
1586
1587 /*
1588 * HACK until we can pre-compute everything,
1589 * and thus fail gracefully if LP0 watermarks
1590 * are exceeded...
1591 */
1592 if (level == 0 && !result->enable) {
1593 if (result->pri_val > max->pri)
1594 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1595 level, result->pri_val, max->pri);
1596 if (result->spr_val > max->spr)
1597 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1598 level, result->spr_val, max->spr);
1599 if (result->cur_val > max->cur)
1600 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1601 level, result->cur_val, max->cur);
1602
1603 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1604 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1605 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1606 result->enable = true;
1607 }
1608
1609 return ret;
1610 }
1611
1612 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1613 int level,
1614 const struct ilk_pipe_wm_parameters *p,
1615 struct intel_wm_level *result)
1616 {
1617 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1618 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1619 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1620
1621 /* WM1+ latency values stored in 0.5us units */
1622 if (level > 0) {
1623 pri_latency *= 5;
1624 spr_latency *= 5;
1625 cur_latency *= 5;
1626 }
1627
1628 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1629 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1630 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1631 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1632 result->enable = true;
1633 }
1634
1635 static uint32_t
1636 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1637 {
1638 struct drm_i915_private *dev_priv = dev->dev_private;
1639 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1640 struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1641 u32 linetime, ips_linetime;
1642
1643 if (!intel_crtc_active(crtc))
1644 return 0;
1645
1646 /* The WM are computed with base on how long it takes to fill a single
1647 * row at the given clock rate, multiplied by 8.
1648 * */
1649 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1650 mode->crtc_clock);
1651 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1652 intel_ddi_get_cdclk_freq(dev_priv));
1653
1654 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1655 PIPE_WM_LINETIME_TIME(linetime);
1656 }
1657
1658 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1659 {
1660 struct drm_i915_private *dev_priv = dev->dev_private;
1661
1662 if (IS_GEN9(dev)) {
1663 uint32_t val;
1664 int ret, i;
1665 int level, max_level = ilk_wm_max_level(dev);
1666
1667 /* read the first set of memory latencies[0:3] */
1668 val = 0; /* data0 to be programmed to 0 for first set */
1669 mutex_lock(&dev_priv->rps.hw_lock);
1670 ret = sandybridge_pcode_read(dev_priv,
1671 GEN9_PCODE_READ_MEM_LATENCY,
1672 &val);
1673 mutex_unlock(&dev_priv->rps.hw_lock);
1674
1675 if (ret) {
1676 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1677 return;
1678 }
1679
1680 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1681 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1682 GEN9_MEM_LATENCY_LEVEL_MASK;
1683 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1684 GEN9_MEM_LATENCY_LEVEL_MASK;
1685 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1686 GEN9_MEM_LATENCY_LEVEL_MASK;
1687
1688 /* read the second set of memory latencies[4:7] */
1689 val = 1; /* data0 to be programmed to 1 for second set */
1690 mutex_lock(&dev_priv->rps.hw_lock);
1691 ret = sandybridge_pcode_read(dev_priv,
1692 GEN9_PCODE_READ_MEM_LATENCY,
1693 &val);
1694 mutex_unlock(&dev_priv->rps.hw_lock);
1695 if (ret) {
1696 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1697 return;
1698 }
1699
1700 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1701 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1702 GEN9_MEM_LATENCY_LEVEL_MASK;
1703 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1704 GEN9_MEM_LATENCY_LEVEL_MASK;
1705 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1706 GEN9_MEM_LATENCY_LEVEL_MASK;
1707
1708 /*
1709 * WaWmMemoryReadLatency:skl
1710 *
1711 * punit doesn't take into account the read latency so we need
1712 * to add 2us to the various latency levels we retrieve from
1713 * the punit.
1714 * - W0 is a bit special in that it's the only level that
1715 * can't be disabled if we want to have display working, so
1716 * we always add 2us there.
1717 * - For levels >=1, punit returns 0us latency when they are
1718 * disabled, so we respect that and don't add 2us then
1719 *
1720 * Additionally, if a level n (n > 1) has a 0us latency, all
1721 * levels m (m >= n) need to be disabled. We make sure to
1722 * sanitize the values out of the punit to satisfy this
1723 * requirement.
1724 */
1725 wm[0] += 2;
1726 for (level = 1; level <= max_level; level++)
1727 if (wm[level] != 0)
1728 wm[level] += 2;
1729 else {
1730 for (i = level + 1; i <= max_level; i++)
1731 wm[i] = 0;
1732
1733 break;
1734 }
1735 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1736 uint64_t sskpd = I915_READ64(MCH_SSKPD);
1737
1738 wm[0] = (sskpd >> 56) & 0xFF;
1739 if (wm[0] == 0)
1740 wm[0] = sskpd & 0xF;
1741 wm[1] = (sskpd >> 4) & 0xFF;
1742 wm[2] = (sskpd >> 12) & 0xFF;
1743 wm[3] = (sskpd >> 20) & 0x1FF;
1744 wm[4] = (sskpd >> 32) & 0x1FF;
1745 } else if (INTEL_INFO(dev)->gen >= 6) {
1746 uint32_t sskpd = I915_READ(MCH_SSKPD);
1747
1748 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
1749 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
1750 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
1751 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1752 } else if (INTEL_INFO(dev)->gen >= 5) {
1753 uint32_t mltr = I915_READ(MLTR_ILK);
1754
1755 /* ILK primary LP0 latency is 700 ns */
1756 wm[0] = 7;
1757 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
1758 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1759 }
1760 }
1761
1762 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
1763 {
1764 /* ILK sprite LP0 latency is 1300 ns */
1765 if (INTEL_INFO(dev)->gen == 5)
1766 wm[0] = 13;
1767 }
1768
1769 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
1770 {
1771 /* ILK cursor LP0 latency is 1300 ns */
1772 if (INTEL_INFO(dev)->gen == 5)
1773 wm[0] = 13;
1774
1775 /* WaDoubleCursorLP3Latency:ivb */
1776 if (IS_IVYBRIDGE(dev))
1777 wm[3] *= 2;
1778 }
1779
1780 int ilk_wm_max_level(const struct drm_device *dev)
1781 {
1782 /* how many WM levels are we expecting */
1783 if (IS_GEN9(dev))
1784 return 7;
1785 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1786 return 4;
1787 else if (INTEL_INFO(dev)->gen >= 6)
1788 return 3;
1789 else
1790 return 2;
1791 }
1792
1793 static void intel_print_wm_latency(struct drm_device *dev,
1794 const char *name,
1795 const uint16_t wm[8])
1796 {
1797 int level, max_level = ilk_wm_max_level(dev);
1798
1799 for (level = 0; level <= max_level; level++) {
1800 unsigned int latency = wm[level];
1801
1802 if (latency == 0) {
1803 DRM_ERROR("%s WM%d latency not provided\n",
1804 name, level);
1805 continue;
1806 }
1807
1808 /*
1809 * - latencies are in us on gen9.
1810 * - before then, WM1+ latency values are in 0.5us units
1811 */
1812 if (IS_GEN9(dev))
1813 latency *= 10;
1814 else if (level > 0)
1815 latency *= 5;
1816
1817 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
1818 name, level, wm[level],
1819 latency / 10, latency % 10);
1820 }
1821 }
1822
1823 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
1824 uint16_t wm[5], uint16_t min)
1825 {
1826 int level, max_level = ilk_wm_max_level(dev_priv->dev);
1827
1828 if (wm[0] >= min)
1829 return false;
1830
1831 wm[0] = max(wm[0], min);
1832 for (level = 1; level <= max_level; level++)
1833 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
1834
1835 return true;
1836 }
1837
1838 static void snb_wm_latency_quirk(struct drm_device *dev)
1839 {
1840 struct drm_i915_private *dev_priv = dev->dev_private;
1841 bool changed;
1842
1843 /*
1844 * The BIOS provided WM memory latency values are often
1845 * inadequate for high resolution displays. Adjust them.
1846 */
1847 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
1848 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
1849 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
1850
1851 if (!changed)
1852 return;
1853
1854 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
1855 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1856 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
1857 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1858 }
1859
1860 static void ilk_setup_wm_latency(struct drm_device *dev)
1861 {
1862 struct drm_i915_private *dev_priv = dev->dev_private;
1863
1864 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
1865
1866 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
1867 sizeof(dev_priv->wm.pri_latency));
1868 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
1869 sizeof(dev_priv->wm.pri_latency));
1870
1871 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
1872 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
1873
1874 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1875 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
1876 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1877
1878 if (IS_GEN6(dev))
1879 snb_wm_latency_quirk(dev);
1880 }
1881
1882 static void skl_setup_wm_latency(struct drm_device *dev)
1883 {
1884 struct drm_i915_private *dev_priv = dev->dev_private;
1885
1886 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
1887 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
1888 }
1889
1890 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
1891 struct ilk_pipe_wm_parameters *p)
1892 {
1893 struct drm_device *dev = crtc->dev;
1894 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1895 enum pipe pipe = intel_crtc->pipe;
1896 struct drm_plane *plane;
1897
1898 if (!intel_crtc_active(crtc))
1899 return;
1900
1901 p->active = true;
1902 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
1903 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
1904 p->pri.bytes_per_pixel = crtc->primary->state->fb->bits_per_pixel / 8;
1905 p->cur.bytes_per_pixel = 4;
1906 p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
1907 p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
1908 /* TODO: for now, assume primary and cursor planes are always enabled. */
1909 p->pri.enabled = true;
1910 p->cur.enabled = true;
1911
1912 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
1913 struct intel_plane *intel_plane = to_intel_plane(plane);
1914
1915 if (intel_plane->pipe == pipe) {
1916 p->spr = intel_plane->wm;
1917 break;
1918 }
1919 }
1920 }
1921
1922 static void ilk_compute_wm_config(struct drm_device *dev,
1923 struct intel_wm_config *config)
1924 {
1925 struct intel_crtc *intel_crtc;
1926
1927 /* Compute the currently _active_ config */
1928 for_each_intel_crtc(dev, intel_crtc) {
1929 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
1930
1931 if (!wm->pipe_enabled)
1932 continue;
1933
1934 config->sprites_enabled |= wm->sprites_enabled;
1935 config->sprites_scaled |= wm->sprites_scaled;
1936 config->num_pipes_active++;
1937 }
1938 }
1939
1940 /* Compute new watermarks for the pipe */
1941 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
1942 const struct ilk_pipe_wm_parameters *params,
1943 struct intel_pipe_wm *pipe_wm)
1944 {
1945 struct drm_device *dev = crtc->dev;
1946 const struct drm_i915_private *dev_priv = dev->dev_private;
1947 int level, max_level = ilk_wm_max_level(dev);
1948 /* LP0 watermark maximums depend on this pipe alone */
1949 struct intel_wm_config config = {
1950 .num_pipes_active = 1,
1951 .sprites_enabled = params->spr.enabled,
1952 .sprites_scaled = params->spr.scaled,
1953 };
1954 struct ilk_wm_maximums max;
1955
1956 pipe_wm->pipe_enabled = params->active;
1957 pipe_wm->sprites_enabled = params->spr.enabled;
1958 pipe_wm->sprites_scaled = params->spr.scaled;
1959
1960 /* ILK/SNB: LP2+ watermarks only w/o sprites */
1961 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
1962 max_level = 1;
1963
1964 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
1965 if (params->spr.scaled)
1966 max_level = 0;
1967
1968 ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
1969
1970 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1971 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
1972
1973 /* LP0 watermarks always use 1/2 DDB partitioning */
1974 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
1975
1976 /* At least LP0 must be valid */
1977 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
1978 return false;
1979
1980 ilk_compute_wm_reg_maximums(dev, 1, &max);
1981
1982 for (level = 1; level <= max_level; level++) {
1983 struct intel_wm_level wm = {};
1984
1985 ilk_compute_wm_level(dev_priv, level, params, &wm);
1986
1987 /*
1988 * Disable any watermark level that exceeds the
1989 * register maximums since such watermarks are
1990 * always invalid.
1991 */
1992 if (!ilk_validate_wm_level(level, &max, &wm))
1993 break;
1994
1995 pipe_wm->wm[level] = wm;
1996 }
1997
1998 return true;
1999 }
2000
2001 /*
2002 * Merge the watermarks from all active pipes for a specific level.
2003 */
2004 static void ilk_merge_wm_level(struct drm_device *dev,
2005 int level,
2006 struct intel_wm_level *ret_wm)
2007 {
2008 const struct intel_crtc *intel_crtc;
2009
2010 ret_wm->enable = true;
2011
2012 for_each_intel_crtc(dev, intel_crtc) {
2013 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2014 const struct intel_wm_level *wm = &active->wm[level];
2015
2016 if (!active->pipe_enabled)
2017 continue;
2018
2019 /*
2020 * The watermark values may have been used in the past,
2021 * so we must maintain them in the registers for some
2022 * time even if the level is now disabled.
2023 */
2024 if (!wm->enable)
2025 ret_wm->enable = false;
2026
2027 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2028 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2029 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2030 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2031 }
2032 }
2033
2034 /*
2035 * Merge all low power watermarks for all active pipes.
2036 */
2037 static void ilk_wm_merge(struct drm_device *dev,
2038 const struct intel_wm_config *config,
2039 const struct ilk_wm_maximums *max,
2040 struct intel_pipe_wm *merged)
2041 {
2042 int level, max_level = ilk_wm_max_level(dev);
2043 int last_enabled_level = max_level;
2044
2045 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2046 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2047 config->num_pipes_active > 1)
2048 return;
2049
2050 /* ILK: FBC WM must be disabled always */
2051 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2052
2053 /* merge each WM1+ level */
2054 for (level = 1; level <= max_level; level++) {
2055 struct intel_wm_level *wm = &merged->wm[level];
2056
2057 ilk_merge_wm_level(dev, level, wm);
2058
2059 if (level > last_enabled_level)
2060 wm->enable = false;
2061 else if (!ilk_validate_wm_level(level, max, wm))
2062 /* make sure all following levels get disabled */
2063 last_enabled_level = level - 1;
2064
2065 /*
2066 * The spec says it is preferred to disable
2067 * FBC WMs instead of disabling a WM level.
2068 */
2069 if (wm->fbc_val > max->fbc) {
2070 if (wm->enable)
2071 merged->fbc_wm_enabled = false;
2072 wm->fbc_val = 0;
2073 }
2074 }
2075
2076 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2077 /*
2078 * FIXME this is racy. FBC might get enabled later.
2079 * What we should check here is whether FBC can be
2080 * enabled sometime later.
2081 */
2082 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2083 for (level = 2; level <= max_level; level++) {
2084 struct intel_wm_level *wm = &merged->wm[level];
2085
2086 wm->enable = false;
2087 }
2088 }
2089 }
2090
2091 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2092 {
2093 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2094 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2095 }
2096
2097 /* The value we need to program into the WM_LPx latency field */
2098 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2099 {
2100 struct drm_i915_private *dev_priv = dev->dev_private;
2101
2102 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2103 return 2 * level;
2104 else
2105 return dev_priv->wm.pri_latency[level];
2106 }
2107
2108 static void ilk_compute_wm_results(struct drm_device *dev,
2109 const struct intel_pipe_wm *merged,
2110 enum intel_ddb_partitioning partitioning,
2111 struct ilk_wm_values *results)
2112 {
2113 struct intel_crtc *intel_crtc;
2114 int level, wm_lp;
2115
2116 results->enable_fbc_wm = merged->fbc_wm_enabled;
2117 results->partitioning = partitioning;
2118
2119 /* LP1+ register values */
2120 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2121 const struct intel_wm_level *r;
2122
2123 level = ilk_wm_lp_to_level(wm_lp, merged);
2124
2125 r = &merged->wm[level];
2126
2127 /*
2128 * Maintain the watermark values even if the level is
2129 * disabled. Doing otherwise could cause underruns.
2130 */
2131 results->wm_lp[wm_lp - 1] =
2132 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2133 (r->pri_val << WM1_LP_SR_SHIFT) |
2134 r->cur_val;
2135
2136 if (r->enable)
2137 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2138
2139 if (INTEL_INFO(dev)->gen >= 8)
2140 results->wm_lp[wm_lp - 1] |=
2141 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2142 else
2143 results->wm_lp[wm_lp - 1] |=
2144 r->fbc_val << WM1_LP_FBC_SHIFT;
2145
2146 /*
2147 * Always set WM1S_LP_EN when spr_val != 0, even if the
2148 * level is disabled. Doing otherwise could cause underruns.
2149 */
2150 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2151 WARN_ON(wm_lp != 1);
2152 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2153 } else
2154 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2155 }
2156
2157 /* LP0 register values */
2158 for_each_intel_crtc(dev, intel_crtc) {
2159 enum pipe pipe = intel_crtc->pipe;
2160 const struct intel_wm_level *r =
2161 &intel_crtc->wm.active.wm[0];
2162
2163 if (WARN_ON(!r->enable))
2164 continue;
2165
2166 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2167
2168 results->wm_pipe[pipe] =
2169 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2170 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2171 r->cur_val;
2172 }
2173 }
2174
2175 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2176 * case both are at the same level. Prefer r1 in case they're the same. */
2177 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2178 struct intel_pipe_wm *r1,
2179 struct intel_pipe_wm *r2)
2180 {
2181 int level, max_level = ilk_wm_max_level(dev);
2182 int level1 = 0, level2 = 0;
2183
2184 for (level = 1; level <= max_level; level++) {
2185 if (r1->wm[level].enable)
2186 level1 = level;
2187 if (r2->wm[level].enable)
2188 level2 = level;
2189 }
2190
2191 if (level1 == level2) {
2192 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2193 return r2;
2194 else
2195 return r1;
2196 } else if (level1 > level2) {
2197 return r1;
2198 } else {
2199 return r2;
2200 }
2201 }
2202
2203 /* dirty bits used to track which watermarks need changes */
2204 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2205 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2206 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2207 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2208 #define WM_DIRTY_FBC (1 << 24)
2209 #define WM_DIRTY_DDB (1 << 25)
2210
2211 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2212 const struct ilk_wm_values *old,
2213 const struct ilk_wm_values *new)
2214 {
2215 unsigned int dirty = 0;
2216 enum pipe pipe;
2217 int wm_lp;
2218
2219 for_each_pipe(dev_priv, pipe) {
2220 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2221 dirty |= WM_DIRTY_LINETIME(pipe);
2222 /* Must disable LP1+ watermarks too */
2223 dirty |= WM_DIRTY_LP_ALL;
2224 }
2225
2226 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2227 dirty |= WM_DIRTY_PIPE(pipe);
2228 /* Must disable LP1+ watermarks too */
2229 dirty |= WM_DIRTY_LP_ALL;
2230 }
2231 }
2232
2233 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2234 dirty |= WM_DIRTY_FBC;
2235 /* Must disable LP1+ watermarks too */
2236 dirty |= WM_DIRTY_LP_ALL;
2237 }
2238
2239 if (old->partitioning != new->partitioning) {
2240 dirty |= WM_DIRTY_DDB;
2241 /* Must disable LP1+ watermarks too */
2242 dirty |= WM_DIRTY_LP_ALL;
2243 }
2244
2245 /* LP1+ watermarks already deemed dirty, no need to continue */
2246 if (dirty & WM_DIRTY_LP_ALL)
2247 return dirty;
2248
2249 /* Find the lowest numbered LP1+ watermark in need of an update... */
2250 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2251 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2252 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2253 break;
2254 }
2255
2256 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2257 for (; wm_lp <= 3; wm_lp++)
2258 dirty |= WM_DIRTY_LP(wm_lp);
2259
2260 return dirty;
2261 }
2262
2263 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2264 unsigned int dirty)
2265 {
2266 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2267 bool changed = false;
2268
2269 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2270 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2271 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2272 changed = true;
2273 }
2274 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2275 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2276 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2277 changed = true;
2278 }
2279 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2280 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2281 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2282 changed = true;
2283 }
2284
2285 /*
2286 * Don't touch WM1S_LP_EN here.
2287 * Doing so could cause underruns.
2288 */
2289
2290 return changed;
2291 }
2292
2293 /*
2294 * The spec says we shouldn't write when we don't need, because every write
2295 * causes WMs to be re-evaluated, expending some power.
2296 */
2297 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2298 struct ilk_wm_values *results)
2299 {
2300 struct drm_device *dev = dev_priv->dev;
2301 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2302 unsigned int dirty;
2303 uint32_t val;
2304
2305 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2306 if (!dirty)
2307 return;
2308
2309 _ilk_disable_lp_wm(dev_priv, dirty);
2310
2311 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2312 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2313 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2314 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2315 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2316 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2317
2318 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2319 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2320 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2321 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2322 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2323 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2324
2325 if (dirty & WM_DIRTY_DDB) {
2326 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2327 val = I915_READ(WM_MISC);
2328 if (results->partitioning == INTEL_DDB_PART_1_2)
2329 val &= ~WM_MISC_DATA_PARTITION_5_6;
2330 else
2331 val |= WM_MISC_DATA_PARTITION_5_6;
2332 I915_WRITE(WM_MISC, val);
2333 } else {
2334 val = I915_READ(DISP_ARB_CTL2);
2335 if (results->partitioning == INTEL_DDB_PART_1_2)
2336 val &= ~DISP_DATA_PARTITION_5_6;
2337 else
2338 val |= DISP_DATA_PARTITION_5_6;
2339 I915_WRITE(DISP_ARB_CTL2, val);
2340 }
2341 }
2342
2343 if (dirty & WM_DIRTY_FBC) {
2344 val = I915_READ(DISP_ARB_CTL);
2345 if (results->enable_fbc_wm)
2346 val &= ~DISP_FBC_WM_DIS;
2347 else
2348 val |= DISP_FBC_WM_DIS;
2349 I915_WRITE(DISP_ARB_CTL, val);
2350 }
2351
2352 if (dirty & WM_DIRTY_LP(1) &&
2353 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2354 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2355
2356 if (INTEL_INFO(dev)->gen >= 7) {
2357 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2358 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2359 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2360 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2361 }
2362
2363 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2364 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2365 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2366 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2367 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2368 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2369
2370 dev_priv->wm.hw = *results;
2371 }
2372
2373 static bool ilk_disable_lp_wm(struct drm_device *dev)
2374 {
2375 struct drm_i915_private *dev_priv = dev->dev_private;
2376
2377 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2378 }
2379
2380 /*
2381 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2382 * different active planes.
2383 */
2384
2385 #define SKL_DDB_SIZE 896 /* in blocks */
2386
2387 static void
2388 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2389 struct drm_crtc *for_crtc,
2390 const struct intel_wm_config *config,
2391 const struct skl_pipe_wm_parameters *params,
2392 struct skl_ddb_entry *alloc /* out */)
2393 {
2394 struct drm_crtc *crtc;
2395 unsigned int pipe_size, ddb_size;
2396 int nth_active_pipe;
2397
2398 if (!params->active) {
2399 alloc->start = 0;
2400 alloc->end = 0;
2401 return;
2402 }
2403
2404 ddb_size = SKL_DDB_SIZE;
2405
2406 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2407
2408 nth_active_pipe = 0;
2409 for_each_crtc(dev, crtc) {
2410 if (!intel_crtc_active(crtc))
2411 continue;
2412
2413 if (crtc == for_crtc)
2414 break;
2415
2416 nth_active_pipe++;
2417 }
2418
2419 pipe_size = ddb_size / config->num_pipes_active;
2420 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2421 alloc->end = alloc->start + pipe_size;
2422 }
2423
2424 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2425 {
2426 if (config->num_pipes_active == 1)
2427 return 32;
2428
2429 return 8;
2430 }
2431
2432 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2433 {
2434 entry->start = reg & 0x3ff;
2435 entry->end = (reg >> 16) & 0x3ff;
2436 if (entry->end)
2437 entry->end += 1;
2438 }
2439
2440 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2441 struct skl_ddb_allocation *ddb /* out */)
2442 {
2443 enum pipe pipe;
2444 int plane;
2445 u32 val;
2446
2447 for_each_pipe(dev_priv, pipe) {
2448 for_each_plane(dev_priv, pipe, plane) {
2449 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2450 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2451 val);
2452 }
2453
2454 val = I915_READ(CUR_BUF_CFG(pipe));
2455 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2456 }
2457 }
2458
2459 static unsigned int
2460 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
2461 {
2462 return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2463 }
2464
2465 /*
2466 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2467 * a 8192x4096@32bpp framebuffer:
2468 * 3 * 4096 * 8192 * 4 < 2^32
2469 */
2470 static unsigned int
2471 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2472 const struct skl_pipe_wm_parameters *params)
2473 {
2474 unsigned int total_data_rate = 0;
2475 int plane;
2476
2477 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2478 const struct intel_plane_wm_parameters *p;
2479
2480 p = &params->plane[plane];
2481 if (!p->enabled)
2482 continue;
2483
2484 total_data_rate += skl_plane_relative_data_rate(p);
2485 }
2486
2487 return total_data_rate;
2488 }
2489
2490 static void
2491 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2492 const struct intel_wm_config *config,
2493 const struct skl_pipe_wm_parameters *params,
2494 struct skl_ddb_allocation *ddb /* out */)
2495 {
2496 struct drm_device *dev = crtc->dev;
2497 struct drm_i915_private *dev_priv = dev->dev_private;
2498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2499 enum pipe pipe = intel_crtc->pipe;
2500 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2501 uint16_t alloc_size, start, cursor_blocks;
2502 uint16_t minimum[I915_MAX_PLANES];
2503 unsigned int total_data_rate;
2504 int plane;
2505
2506 skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2507 alloc_size = skl_ddb_entry_size(alloc);
2508 if (alloc_size == 0) {
2509 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2510 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2511 return;
2512 }
2513
2514 cursor_blocks = skl_cursor_allocation(config);
2515 ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2516 ddb->cursor[pipe].end = alloc->end;
2517
2518 alloc_size -= cursor_blocks;
2519 alloc->end -= cursor_blocks;
2520
2521 /* 1. Allocate the mininum required blocks for each active plane */
2522 for_each_plane(dev_priv, pipe, plane) {
2523 const struct intel_plane_wm_parameters *p;
2524
2525 p = &params->plane[plane];
2526 if (!p->enabled)
2527 continue;
2528
2529 minimum[plane] = 8;
2530 alloc_size -= minimum[plane];
2531 }
2532
2533 /*
2534 * 2. Distribute the remaining space in proportion to the amount of
2535 * data each plane needs to fetch from memory.
2536 *
2537 * FIXME: we may not allocate every single block here.
2538 */
2539 total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2540
2541 start = alloc->start;
2542 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2543 const struct intel_plane_wm_parameters *p;
2544 unsigned int data_rate;
2545 uint16_t plane_blocks;
2546
2547 p = &params->plane[plane];
2548 if (!p->enabled)
2549 continue;
2550
2551 data_rate = skl_plane_relative_data_rate(p);
2552
2553 /*
2554 * promote the expression to 64 bits to avoid overflowing, the
2555 * result is < available as data_rate / total_data_rate < 1
2556 */
2557 plane_blocks = minimum[plane];
2558 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2559 total_data_rate);
2560
2561 ddb->plane[pipe][plane].start = start;
2562 ddb->plane[pipe][plane].end = start + plane_blocks;
2563
2564 start += plane_blocks;
2565 }
2566
2567 }
2568
2569 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2570 {
2571 /* TODO: Take into account the scalers once we support them */
2572 return config->base.adjusted_mode.crtc_clock;
2573 }
2574
2575 /*
2576 * The max latency should be 257 (max the punit can code is 255 and we add 2us
2577 * for the read latency) and bytes_per_pixel should always be <= 8, so that
2578 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2579 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2580 */
2581 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2582 uint32_t latency)
2583 {
2584 uint32_t wm_intermediate_val, ret;
2585
2586 if (latency == 0)
2587 return UINT_MAX;
2588
2589 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2590 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
2591
2592 return ret;
2593 }
2594
2595 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2596 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2597 uint64_t tiling, uint32_t latency)
2598 {
2599 uint32_t ret;
2600 uint32_t plane_bytes_per_line, plane_blocks_per_line;
2601 uint32_t wm_intermediate_val;
2602
2603 if (latency == 0)
2604 return UINT_MAX;
2605
2606 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2607
2608 if (tiling == I915_FORMAT_MOD_Y_TILED ||
2609 tiling == I915_FORMAT_MOD_Yf_TILED) {
2610 plane_bytes_per_line *= 4;
2611 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2612 plane_blocks_per_line /= 4;
2613 } else {
2614 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2615 }
2616
2617 wm_intermediate_val = latency * pixel_rate;
2618 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2619 plane_blocks_per_line;
2620
2621 return ret;
2622 }
2623
2624 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
2625 const struct intel_crtc *intel_crtc)
2626 {
2627 struct drm_device *dev = intel_crtc->base.dev;
2628 struct drm_i915_private *dev_priv = dev->dev_private;
2629 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
2630 enum pipe pipe = intel_crtc->pipe;
2631
2632 if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
2633 sizeof(new_ddb->plane[pipe])))
2634 return true;
2635
2636 if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
2637 sizeof(new_ddb->cursor[pipe])))
2638 return true;
2639
2640 return false;
2641 }
2642
2643 static void skl_compute_wm_global_parameters(struct drm_device *dev,
2644 struct intel_wm_config *config)
2645 {
2646 struct drm_crtc *crtc;
2647 struct drm_plane *plane;
2648
2649 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2650 config->num_pipes_active += intel_crtc_active(crtc);
2651
2652 /* FIXME: I don't think we need those two global parameters on SKL */
2653 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2654 struct intel_plane *intel_plane = to_intel_plane(plane);
2655
2656 config->sprites_enabled |= intel_plane->wm.enabled;
2657 config->sprites_scaled |= intel_plane->wm.scaled;
2658 }
2659 }
2660
2661 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
2662 struct skl_pipe_wm_parameters *p)
2663 {
2664 struct drm_device *dev = crtc->dev;
2665 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2666 enum pipe pipe = intel_crtc->pipe;
2667 struct drm_plane *plane;
2668 struct drm_framebuffer *fb;
2669 int i = 1; /* Index for sprite planes start */
2670
2671 p->active = intel_crtc_active(crtc);
2672 if (p->active) {
2673 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2674 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2675
2676 /*
2677 * For now, assume primary and cursor planes are always enabled.
2678 */
2679 p->plane[0].enabled = true;
2680 p->plane[0].bytes_per_pixel =
2681 crtc->primary->state->fb->bits_per_pixel / 8;
2682 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
2683 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2684 p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
2685 fb = crtc->primary->state->fb;
2686 /*
2687 * Framebuffer can be NULL on plane disable, but it does not
2688 * matter for watermarks if we assume no tiling in that case.
2689 */
2690 if (fb)
2691 p->plane[0].tiling = fb->modifier[0];
2692
2693 p->cursor.enabled = true;
2694 p->cursor.bytes_per_pixel = 4;
2695 p->cursor.horiz_pixels = intel_crtc->base.cursor->state->crtc_w ?
2696 intel_crtc->base.cursor->state->crtc_w : 64;
2697 }
2698
2699 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2700 struct intel_plane *intel_plane = to_intel_plane(plane);
2701
2702 if (intel_plane->pipe == pipe &&
2703 plane->type == DRM_PLANE_TYPE_OVERLAY)
2704 p->plane[i++] = intel_plane->wm;
2705 }
2706 }
2707
2708 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
2709 struct skl_pipe_wm_parameters *p,
2710 struct intel_plane_wm_parameters *p_params,
2711 uint16_t ddb_allocation,
2712 int level,
2713 uint16_t *out_blocks, /* out */
2714 uint8_t *out_lines /* out */)
2715 {
2716 uint32_t latency = dev_priv->wm.skl_latency[level];
2717 uint32_t method1, method2;
2718 uint32_t plane_bytes_per_line, plane_blocks_per_line;
2719 uint32_t res_blocks, res_lines;
2720 uint32_t selected_result;
2721
2722 if (latency == 0 || !p->active || !p_params->enabled)
2723 return false;
2724
2725 method1 = skl_wm_method1(p->pixel_rate,
2726 p_params->bytes_per_pixel,
2727 latency);
2728 method2 = skl_wm_method2(p->pixel_rate,
2729 p->pipe_htotal,
2730 p_params->horiz_pixels,
2731 p_params->bytes_per_pixel,
2732 p_params->tiling,
2733 latency);
2734
2735 plane_bytes_per_line = p_params->horiz_pixels *
2736 p_params->bytes_per_pixel;
2737 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2738
2739 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2740 p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
2741 uint32_t y_tile_minimum = plane_blocks_per_line * 4;
2742 selected_result = max(method2, y_tile_minimum);
2743 } else {
2744 if ((ddb_allocation / plane_blocks_per_line) >= 1)
2745 selected_result = min(method1, method2);
2746 else
2747 selected_result = method1;
2748 }
2749
2750 res_blocks = selected_result + 1;
2751 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
2752
2753 if (level >= 1 && level <= 7) {
2754 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2755 p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
2756 res_lines += 4;
2757 else
2758 res_blocks++;
2759 }
2760
2761 if (res_blocks >= ddb_allocation || res_lines > 31)
2762 return false;
2763
2764 *out_blocks = res_blocks;
2765 *out_lines = res_lines;
2766
2767 return true;
2768 }
2769
2770 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
2771 struct skl_ddb_allocation *ddb,
2772 struct skl_pipe_wm_parameters *p,
2773 enum pipe pipe,
2774 int level,
2775 int num_planes,
2776 struct skl_wm_level *result)
2777 {
2778 uint16_t ddb_blocks;
2779 int i;
2780
2781 for (i = 0; i < num_planes; i++) {
2782 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
2783
2784 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
2785 p, &p->plane[i],
2786 ddb_blocks,
2787 level,
2788 &result->plane_res_b[i],
2789 &result->plane_res_l[i]);
2790 }
2791
2792 ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2793 result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
2794 ddb_blocks, level,
2795 &result->cursor_res_b,
2796 &result->cursor_res_l);
2797 }
2798
2799 static uint32_t
2800 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
2801 {
2802 if (!intel_crtc_active(crtc))
2803 return 0;
2804
2805 return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
2806
2807 }
2808
2809 static void skl_compute_transition_wm(struct drm_crtc *crtc,
2810 struct skl_pipe_wm_parameters *params,
2811 struct skl_wm_level *trans_wm /* out */)
2812 {
2813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2814 int i;
2815
2816 if (!params->active)
2817 return;
2818
2819 /* Until we know more, just disable transition WMs */
2820 for (i = 0; i < intel_num_planes(intel_crtc); i++)
2821 trans_wm->plane_en[i] = false;
2822 trans_wm->cursor_en = false;
2823 }
2824
2825 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
2826 struct skl_ddb_allocation *ddb,
2827 struct skl_pipe_wm_parameters *params,
2828 struct skl_pipe_wm *pipe_wm)
2829 {
2830 struct drm_device *dev = crtc->dev;
2831 const struct drm_i915_private *dev_priv = dev->dev_private;
2832 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2833 int level, max_level = ilk_wm_max_level(dev);
2834
2835 for (level = 0; level <= max_level; level++) {
2836 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
2837 level, intel_num_planes(intel_crtc),
2838 &pipe_wm->wm[level]);
2839 }
2840 pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
2841
2842 skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
2843 }
2844
2845 static void skl_compute_wm_results(struct drm_device *dev,
2846 struct skl_pipe_wm_parameters *p,
2847 struct skl_pipe_wm *p_wm,
2848 struct skl_wm_values *r,
2849 struct intel_crtc *intel_crtc)
2850 {
2851 int level, max_level = ilk_wm_max_level(dev);
2852 enum pipe pipe = intel_crtc->pipe;
2853 uint32_t temp;
2854 int i;
2855
2856 for (level = 0; level <= max_level; level++) {
2857 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
2858 temp = 0;
2859
2860 temp |= p_wm->wm[level].plane_res_l[i] <<
2861 PLANE_WM_LINES_SHIFT;
2862 temp |= p_wm->wm[level].plane_res_b[i];
2863 if (p_wm->wm[level].plane_en[i])
2864 temp |= PLANE_WM_EN;
2865
2866 r->plane[pipe][i][level] = temp;
2867 }
2868
2869 temp = 0;
2870
2871 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
2872 temp |= p_wm->wm[level].cursor_res_b;
2873
2874 if (p_wm->wm[level].cursor_en)
2875 temp |= PLANE_WM_EN;
2876
2877 r->cursor[pipe][level] = temp;
2878
2879 }
2880
2881 /* transition WMs */
2882 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
2883 temp = 0;
2884 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
2885 temp |= p_wm->trans_wm.plane_res_b[i];
2886 if (p_wm->trans_wm.plane_en[i])
2887 temp |= PLANE_WM_EN;
2888
2889 r->plane_trans[pipe][i] = temp;
2890 }
2891
2892 temp = 0;
2893 temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
2894 temp |= p_wm->trans_wm.cursor_res_b;
2895 if (p_wm->trans_wm.cursor_en)
2896 temp |= PLANE_WM_EN;
2897
2898 r->cursor_trans[pipe] = temp;
2899
2900 r->wm_linetime[pipe] = p_wm->linetime;
2901 }
2902
2903 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
2904 const struct skl_ddb_entry *entry)
2905 {
2906 if (entry->end)
2907 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
2908 else
2909 I915_WRITE(reg, 0);
2910 }
2911
2912 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
2913 const struct skl_wm_values *new)
2914 {
2915 struct drm_device *dev = dev_priv->dev;
2916 struct intel_crtc *crtc;
2917
2918 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
2919 int i, level, max_level = ilk_wm_max_level(dev);
2920 enum pipe pipe = crtc->pipe;
2921
2922 if (!new->dirty[pipe])
2923 continue;
2924
2925 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
2926
2927 for (level = 0; level <= max_level; level++) {
2928 for (i = 0; i < intel_num_planes(crtc); i++)
2929 I915_WRITE(PLANE_WM(pipe, i, level),
2930 new->plane[pipe][i][level]);
2931 I915_WRITE(CUR_WM(pipe, level),
2932 new->cursor[pipe][level]);
2933 }
2934 for (i = 0; i < intel_num_planes(crtc); i++)
2935 I915_WRITE(PLANE_WM_TRANS(pipe, i),
2936 new->plane_trans[pipe][i]);
2937 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
2938
2939 for (i = 0; i < intel_num_planes(crtc); i++)
2940 skl_ddb_entry_write(dev_priv,
2941 PLANE_BUF_CFG(pipe, i),
2942 &new->ddb.plane[pipe][i]);
2943
2944 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
2945 &new->ddb.cursor[pipe]);
2946 }
2947 }
2948
2949 /*
2950 * When setting up a new DDB allocation arrangement, we need to correctly
2951 * sequence the times at which the new allocations for the pipes are taken into
2952 * account or we'll have pipes fetching from space previously allocated to
2953 * another pipe.
2954 *
2955 * Roughly the sequence looks like:
2956 * 1. re-allocate the pipe(s) with the allocation being reduced and not
2957 * overlapping with a previous light-up pipe (another way to put it is:
2958 * pipes with their new allocation strickly included into their old ones).
2959 * 2. re-allocate the other pipes that get their allocation reduced
2960 * 3. allocate the pipes having their allocation increased
2961 *
2962 * Steps 1. and 2. are here to take care of the following case:
2963 * - Initially DDB looks like this:
2964 * | B | C |
2965 * - enable pipe A.
2966 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
2967 * allocation
2968 * | A | B | C |
2969 *
2970 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
2971 */
2972
2973 static void
2974 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
2975 {
2976 int plane;
2977
2978 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
2979
2980 for_each_plane(dev_priv, pipe, plane) {
2981 I915_WRITE(PLANE_SURF(pipe, plane),
2982 I915_READ(PLANE_SURF(pipe, plane)));
2983 }
2984 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
2985 }
2986
2987 static bool
2988 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
2989 const struct skl_ddb_allocation *new,
2990 enum pipe pipe)
2991 {
2992 uint16_t old_size, new_size;
2993
2994 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
2995 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
2996
2997 return old_size != new_size &&
2998 new->pipe[pipe].start >= old->pipe[pipe].start &&
2999 new->pipe[pipe].end <= old->pipe[pipe].end;
3000 }
3001
3002 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3003 struct skl_wm_values *new_values)
3004 {
3005 struct drm_device *dev = dev_priv->dev;
3006 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3007 bool reallocated[I915_MAX_PIPES] = {false, false, false};
3008 struct intel_crtc *crtc;
3009 enum pipe pipe;
3010
3011 new_ddb = &new_values->ddb;
3012 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3013
3014 /*
3015 * First pass: flush the pipes with the new allocation contained into
3016 * the old space.
3017 *
3018 * We'll wait for the vblank on those pipes to ensure we can safely
3019 * re-allocate the freed space without this pipe fetching from it.
3020 */
3021 for_each_intel_crtc(dev, crtc) {
3022 if (!crtc->active)
3023 continue;
3024
3025 pipe = crtc->pipe;
3026
3027 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3028 continue;
3029
3030 skl_wm_flush_pipe(dev_priv, pipe, 1);
3031 intel_wait_for_vblank(dev, pipe);
3032
3033 reallocated[pipe] = true;
3034 }
3035
3036
3037 /*
3038 * Second pass: flush the pipes that are having their allocation
3039 * reduced, but overlapping with a previous allocation.
3040 *
3041 * Here as well we need to wait for the vblank to make sure the freed
3042 * space is not used anymore.
3043 */
3044 for_each_intel_crtc(dev, crtc) {
3045 if (!crtc->active)
3046 continue;
3047
3048 pipe = crtc->pipe;
3049
3050 if (reallocated[pipe])
3051 continue;
3052
3053 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3054 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3055 skl_wm_flush_pipe(dev_priv, pipe, 2);
3056 intel_wait_for_vblank(dev, pipe);
3057 reallocated[pipe] = true;
3058 }
3059 }
3060
3061 /*
3062 * Third pass: flush the pipes that got more space allocated.
3063 *
3064 * We don't need to actively wait for the update here, next vblank
3065 * will just get more DDB space with the correct WM values.
3066 */
3067 for_each_intel_crtc(dev, crtc) {
3068 if (!crtc->active)
3069 continue;
3070
3071 pipe = crtc->pipe;
3072
3073 /*
3074 * At this point, only the pipes more space than before are
3075 * left to re-allocate.
3076 */
3077 if (reallocated[pipe])
3078 continue;
3079
3080 skl_wm_flush_pipe(dev_priv, pipe, 3);
3081 }
3082 }
3083
3084 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3085 struct skl_pipe_wm_parameters *params,
3086 struct intel_wm_config *config,
3087 struct skl_ddb_allocation *ddb, /* out */
3088 struct skl_pipe_wm *pipe_wm /* out */)
3089 {
3090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3091
3092 skl_compute_wm_pipe_parameters(crtc, params);
3093 skl_allocate_pipe_ddb(crtc, config, params, ddb);
3094 skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3095
3096 if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3097 return false;
3098
3099 intel_crtc->wm.skl_active = *pipe_wm;
3100 return true;
3101 }
3102
3103 static void skl_update_other_pipe_wm(struct drm_device *dev,
3104 struct drm_crtc *crtc,
3105 struct intel_wm_config *config,
3106 struct skl_wm_values *r)
3107 {
3108 struct intel_crtc *intel_crtc;
3109 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3110
3111 /*
3112 * If the WM update hasn't changed the allocation for this_crtc (the
3113 * crtc we are currently computing the new WM values for), other
3114 * enabled crtcs will keep the same allocation and we don't need to
3115 * recompute anything for them.
3116 */
3117 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3118 return;
3119
3120 /*
3121 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3122 * other active pipes need new DDB allocation and WM values.
3123 */
3124 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3125 base.head) {
3126 struct skl_pipe_wm_parameters params = {};
3127 struct skl_pipe_wm pipe_wm = {};
3128 bool wm_changed;
3129
3130 if (this_crtc->pipe == intel_crtc->pipe)
3131 continue;
3132
3133 if (!intel_crtc->active)
3134 continue;
3135
3136 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3137 &params, config,
3138 &r->ddb, &pipe_wm);
3139
3140 /*
3141 * If we end up re-computing the other pipe WM values, it's
3142 * because it was really needed, so we expect the WM values to
3143 * be different.
3144 */
3145 WARN_ON(!wm_changed);
3146
3147 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3148 r->dirty[intel_crtc->pipe] = true;
3149 }
3150 }
3151
3152 static void skl_update_wm(struct drm_crtc *crtc)
3153 {
3154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3155 struct drm_device *dev = crtc->dev;
3156 struct drm_i915_private *dev_priv = dev->dev_private;
3157 struct skl_pipe_wm_parameters params = {};
3158 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3159 struct skl_pipe_wm pipe_wm = {};
3160 struct intel_wm_config config = {};
3161
3162 memset(results, 0, sizeof(*results));
3163
3164 skl_compute_wm_global_parameters(dev, &config);
3165
3166 if (!skl_update_pipe_wm(crtc, &params, &config,
3167 &results->ddb, &pipe_wm))
3168 return;
3169
3170 skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3171 results->dirty[intel_crtc->pipe] = true;
3172
3173 skl_update_other_pipe_wm(dev, crtc, &config, results);
3174 skl_write_wm_values(dev_priv, results);
3175 skl_flush_wm_values(dev_priv, results);
3176
3177 /* store the new configuration */
3178 dev_priv->wm.skl_hw = *results;
3179 }
3180
3181 static void
3182 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3183 uint32_t sprite_width, uint32_t sprite_height,
3184 int pixel_size, bool enabled, bool scaled)
3185 {
3186 struct intel_plane *intel_plane = to_intel_plane(plane);
3187 struct drm_framebuffer *fb = plane->state->fb;
3188
3189 intel_plane->wm.enabled = enabled;
3190 intel_plane->wm.scaled = scaled;
3191 intel_plane->wm.horiz_pixels = sprite_width;
3192 intel_plane->wm.vert_pixels = sprite_height;
3193 intel_plane->wm.bytes_per_pixel = pixel_size;
3194 intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3195 /*
3196 * Framebuffer can be NULL on plane disable, but it does not
3197 * matter for watermarks if we assume no tiling in that case.
3198 */
3199 if (fb)
3200 intel_plane->wm.tiling = fb->modifier[0];
3201
3202 skl_update_wm(crtc);
3203 }
3204
3205 static void ilk_update_wm(struct drm_crtc *crtc)
3206 {
3207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3208 struct drm_device *dev = crtc->dev;
3209 struct drm_i915_private *dev_priv = dev->dev_private;
3210 struct ilk_wm_maximums max;
3211 struct ilk_pipe_wm_parameters params = {};
3212 struct ilk_wm_values results = {};
3213 enum intel_ddb_partitioning partitioning;
3214 struct intel_pipe_wm pipe_wm = {};
3215 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3216 struct intel_wm_config config = {};
3217
3218 ilk_compute_wm_parameters(crtc, &params);
3219
3220 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3221
3222 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3223 return;
3224
3225 intel_crtc->wm.active = pipe_wm;
3226
3227 ilk_compute_wm_config(dev, &config);
3228
3229 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3230 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3231
3232 /* 5/6 split only in single pipe config on IVB+ */
3233 if (INTEL_INFO(dev)->gen >= 7 &&
3234 config.num_pipes_active == 1 && config.sprites_enabled) {
3235 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3236 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3237
3238 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3239 } else {
3240 best_lp_wm = &lp_wm_1_2;
3241 }
3242
3243 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3244 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3245
3246 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3247
3248 ilk_write_wm_values(dev_priv, &results);
3249 }
3250
3251 static void
3252 ilk_update_sprite_wm(struct drm_plane *plane,
3253 struct drm_crtc *crtc,
3254 uint32_t sprite_width, uint32_t sprite_height,
3255 int pixel_size, bool enabled, bool scaled)
3256 {
3257 struct drm_device *dev = plane->dev;
3258 struct intel_plane *intel_plane = to_intel_plane(plane);
3259
3260 intel_plane->wm.enabled = enabled;
3261 intel_plane->wm.scaled = scaled;
3262 intel_plane->wm.horiz_pixels = sprite_width;
3263 intel_plane->wm.vert_pixels = sprite_width;
3264 intel_plane->wm.bytes_per_pixel = pixel_size;
3265
3266 /*
3267 * IVB workaround: must disable low power watermarks for at least
3268 * one frame before enabling scaling. LP watermarks can be re-enabled
3269 * when scaling is disabled.
3270 *
3271 * WaCxSRDisabledForSpriteScaling:ivb
3272 */
3273 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3274 intel_wait_for_vblank(dev, intel_plane->pipe);
3275
3276 ilk_update_wm(crtc);
3277 }
3278
3279 static void skl_pipe_wm_active_state(uint32_t val,
3280 struct skl_pipe_wm *active,
3281 bool is_transwm,
3282 bool is_cursor,
3283 int i,
3284 int level)
3285 {
3286 bool is_enabled = (val & PLANE_WM_EN) != 0;
3287
3288 if (!is_transwm) {
3289 if (!is_cursor) {
3290 active->wm[level].plane_en[i] = is_enabled;
3291 active->wm[level].plane_res_b[i] =
3292 val & PLANE_WM_BLOCKS_MASK;
3293 active->wm[level].plane_res_l[i] =
3294 (val >> PLANE_WM_LINES_SHIFT) &
3295 PLANE_WM_LINES_MASK;
3296 } else {
3297 active->wm[level].cursor_en = is_enabled;
3298 active->wm[level].cursor_res_b =
3299 val & PLANE_WM_BLOCKS_MASK;
3300 active->wm[level].cursor_res_l =
3301 (val >> PLANE_WM_LINES_SHIFT) &
3302 PLANE_WM_LINES_MASK;
3303 }
3304 } else {
3305 if (!is_cursor) {
3306 active->trans_wm.plane_en[i] = is_enabled;
3307 active->trans_wm.plane_res_b[i] =
3308 val & PLANE_WM_BLOCKS_MASK;
3309 active->trans_wm.plane_res_l[i] =
3310 (val >> PLANE_WM_LINES_SHIFT) &
3311 PLANE_WM_LINES_MASK;
3312 } else {
3313 active->trans_wm.cursor_en = is_enabled;
3314 active->trans_wm.cursor_res_b =
3315 val & PLANE_WM_BLOCKS_MASK;
3316 active->trans_wm.cursor_res_l =
3317 (val >> PLANE_WM_LINES_SHIFT) &
3318 PLANE_WM_LINES_MASK;
3319 }
3320 }
3321 }
3322
3323 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3324 {
3325 struct drm_device *dev = crtc->dev;
3326 struct drm_i915_private *dev_priv = dev->dev_private;
3327 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3328 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3329 struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3330 enum pipe pipe = intel_crtc->pipe;
3331 int level, i, max_level;
3332 uint32_t temp;
3333
3334 max_level = ilk_wm_max_level(dev);
3335
3336 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3337
3338 for (level = 0; level <= max_level; level++) {
3339 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3340 hw->plane[pipe][i][level] =
3341 I915_READ(PLANE_WM(pipe, i, level));
3342 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3343 }
3344
3345 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3346 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3347 hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3348
3349 if (!intel_crtc_active(crtc))
3350 return;
3351
3352 hw->dirty[pipe] = true;
3353
3354 active->linetime = hw->wm_linetime[pipe];
3355
3356 for (level = 0; level <= max_level; level++) {
3357 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3358 temp = hw->plane[pipe][i][level];
3359 skl_pipe_wm_active_state(temp, active, false,
3360 false, i, level);
3361 }
3362 temp = hw->cursor[pipe][level];
3363 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3364 }
3365
3366 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3367 temp = hw->plane_trans[pipe][i];
3368 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3369 }
3370
3371 temp = hw->cursor_trans[pipe];
3372 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3373 }
3374
3375 void skl_wm_get_hw_state(struct drm_device *dev)
3376 {
3377 struct drm_i915_private *dev_priv = dev->dev_private;
3378 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3379 struct drm_crtc *crtc;
3380
3381 skl_ddb_get_hw_state(dev_priv, ddb);
3382 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3383 skl_pipe_wm_get_hw_state(crtc);
3384 }
3385
3386 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3387 {
3388 struct drm_device *dev = crtc->dev;
3389 struct drm_i915_private *dev_priv = dev->dev_private;
3390 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3391 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3392 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3393 enum pipe pipe = intel_crtc->pipe;
3394 static const unsigned int wm0_pipe_reg[] = {
3395 [PIPE_A] = WM0_PIPEA_ILK,
3396 [PIPE_B] = WM0_PIPEB_ILK,
3397 [PIPE_C] = WM0_PIPEC_IVB,
3398 };
3399
3400 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3401 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3402 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3403
3404 active->pipe_enabled = intel_crtc_active(crtc);
3405
3406 if (active->pipe_enabled) {
3407 u32 tmp = hw->wm_pipe[pipe];
3408
3409 /*
3410 * For active pipes LP0 watermark is marked as
3411 * enabled, and LP1+ watermaks as disabled since
3412 * we can't really reverse compute them in case
3413 * multiple pipes are active.
3414 */
3415 active->wm[0].enable = true;
3416 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3417 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3418 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3419 active->linetime = hw->wm_linetime[pipe];
3420 } else {
3421 int level, max_level = ilk_wm_max_level(dev);
3422
3423 /*
3424 * For inactive pipes, all watermark levels
3425 * should be marked as enabled but zeroed,
3426 * which is what we'd compute them to.
3427 */
3428 for (level = 0; level <= max_level; level++)
3429 active->wm[level].enable = true;
3430 }
3431 }
3432
3433 void ilk_wm_get_hw_state(struct drm_device *dev)
3434 {
3435 struct drm_i915_private *dev_priv = dev->dev_private;
3436 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3437 struct drm_crtc *crtc;
3438
3439 for_each_crtc(dev, crtc)
3440 ilk_pipe_wm_get_hw_state(crtc);
3441
3442 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3443 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3444 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3445
3446 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3447 if (INTEL_INFO(dev)->gen >= 7) {
3448 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3449 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3450 }
3451
3452 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3453 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3454 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3455 else if (IS_IVYBRIDGE(dev))
3456 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3457 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3458
3459 hw->enable_fbc_wm =
3460 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3461 }
3462
3463 /**
3464 * intel_update_watermarks - update FIFO watermark values based on current modes
3465 *
3466 * Calculate watermark values for the various WM regs based on current mode
3467 * and plane configuration.
3468 *
3469 * There are several cases to deal with here:
3470 * - normal (i.e. non-self-refresh)
3471 * - self-refresh (SR) mode
3472 * - lines are large relative to FIFO size (buffer can hold up to 2)
3473 * - lines are small relative to FIFO size (buffer can hold more than 2
3474 * lines), so need to account for TLB latency
3475 *
3476 * The normal calculation is:
3477 * watermark = dotclock * bytes per pixel * latency
3478 * where latency is platform & configuration dependent (we assume pessimal
3479 * values here).
3480 *
3481 * The SR calculation is:
3482 * watermark = (trunc(latency/line time)+1) * surface width *
3483 * bytes per pixel
3484 * where
3485 * line time = htotal / dotclock
3486 * surface width = hdisplay for normal plane and 64 for cursor
3487 * and latency is assumed to be high, as above.
3488 *
3489 * The final value programmed to the register should always be rounded up,
3490 * and include an extra 2 entries to account for clock crossings.
3491 *
3492 * We don't use the sprite, so we can ignore that. And on Crestline we have
3493 * to set the non-SR watermarks to 8.
3494 */
3495 void intel_update_watermarks(struct drm_crtc *crtc)
3496 {
3497 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3498
3499 if (dev_priv->display.update_wm)
3500 dev_priv->display.update_wm(crtc);
3501 }
3502
3503 void intel_update_sprite_watermarks(struct drm_plane *plane,
3504 struct drm_crtc *crtc,
3505 uint32_t sprite_width,
3506 uint32_t sprite_height,
3507 int pixel_size,
3508 bool enabled, bool scaled)
3509 {
3510 struct drm_i915_private *dev_priv = plane->dev->dev_private;
3511
3512 if (dev_priv->display.update_sprite_wm)
3513 dev_priv->display.update_sprite_wm(plane, crtc,
3514 sprite_width, sprite_height,
3515 pixel_size, enabled, scaled);
3516 }
3517
3518 /**
3519 * Lock protecting IPS related data structures
3520 */
3521 DEFINE_SPINLOCK(mchdev_lock);
3522
3523 /* Global for IPS driver to get at the current i915 device. Protected by
3524 * mchdev_lock. */
3525 static struct drm_i915_private *i915_mch_dev;
3526
3527 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3528 {
3529 struct drm_i915_private *dev_priv = dev->dev_private;
3530 u16 rgvswctl;
3531
3532 assert_spin_locked(&mchdev_lock);
3533
3534 rgvswctl = I915_READ16(MEMSWCTL);
3535 if (rgvswctl & MEMCTL_CMD_STS) {
3536 DRM_DEBUG("gpu busy, RCS change rejected\n");
3537 return false; /* still busy with another command */
3538 }
3539
3540 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3541 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3542 I915_WRITE16(MEMSWCTL, rgvswctl);
3543 POSTING_READ16(MEMSWCTL);
3544
3545 rgvswctl |= MEMCTL_CMD_STS;
3546 I915_WRITE16(MEMSWCTL, rgvswctl);
3547
3548 return true;
3549 }
3550
3551 static void ironlake_enable_drps(struct drm_device *dev)
3552 {
3553 struct drm_i915_private *dev_priv = dev->dev_private;
3554 u32 rgvmodectl = I915_READ(MEMMODECTL);
3555 u8 fmax, fmin, fstart, vstart;
3556
3557 spin_lock_irq(&mchdev_lock);
3558
3559 /* Enable temp reporting */
3560 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3561 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3562
3563 /* 100ms RC evaluation intervals */
3564 I915_WRITE(RCUPEI, 100000);
3565 I915_WRITE(RCDNEI, 100000);
3566
3567 /* Set max/min thresholds to 90ms and 80ms respectively */
3568 I915_WRITE(RCBMAXAVG, 90000);
3569 I915_WRITE(RCBMINAVG, 80000);
3570
3571 I915_WRITE(MEMIHYST, 1);
3572
3573 /* Set up min, max, and cur for interrupt handling */
3574 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3575 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3576 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3577 MEMMODE_FSTART_SHIFT;
3578
3579 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3580 PXVFREQ_PX_SHIFT;
3581
3582 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3583 dev_priv->ips.fstart = fstart;
3584
3585 dev_priv->ips.max_delay = fstart;
3586 dev_priv->ips.min_delay = fmin;
3587 dev_priv->ips.cur_delay = fstart;
3588
3589 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3590 fmax, fmin, fstart);
3591
3592 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3593
3594 /*
3595 * Interrupts will be enabled in ironlake_irq_postinstall
3596 */
3597
3598 I915_WRITE(VIDSTART, vstart);
3599 POSTING_READ(VIDSTART);
3600
3601 rgvmodectl |= MEMMODE_SWMODE_EN;
3602 I915_WRITE(MEMMODECTL, rgvmodectl);
3603
3604 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3605 DRM_ERROR("stuck trying to change perf mode\n");
3606 mdelay(1);
3607
3608 ironlake_set_drps(dev, fstart);
3609
3610 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3611 I915_READ(0x112e0);
3612 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3613 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3614 dev_priv->ips.last_time2 = ktime_get_raw_ns();
3615
3616 spin_unlock_irq(&mchdev_lock);
3617 }
3618
3619 static void ironlake_disable_drps(struct drm_device *dev)
3620 {
3621 struct drm_i915_private *dev_priv = dev->dev_private;
3622 u16 rgvswctl;
3623
3624 spin_lock_irq(&mchdev_lock);
3625
3626 rgvswctl = I915_READ16(MEMSWCTL);
3627
3628 /* Ack interrupts, disable EFC interrupt */
3629 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3630 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3631 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3632 I915_WRITE(DEIIR, DE_PCU_EVENT);
3633 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3634
3635 /* Go back to the starting frequency */
3636 ironlake_set_drps(dev, dev_priv->ips.fstart);
3637 mdelay(1);
3638 rgvswctl |= MEMCTL_CMD_STS;
3639 I915_WRITE(MEMSWCTL, rgvswctl);
3640 mdelay(1);
3641
3642 spin_unlock_irq(&mchdev_lock);
3643 }
3644
3645 /* There's a funny hw issue where the hw returns all 0 when reading from
3646 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3647 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3648 * all limits and the gpu stuck at whatever frequency it is at atm).
3649 */
3650 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3651 {
3652 u32 limits;
3653
3654 /* Only set the down limit when we've reached the lowest level to avoid
3655 * getting more interrupts, otherwise leave this clear. This prevents a
3656 * race in the hw when coming out of rc6: There's a tiny window where
3657 * the hw runs at the minimal clock before selecting the desired
3658 * frequency, if the down threshold expires in that window we will not
3659 * receive a down interrupt. */
3660 limits = dev_priv->rps.max_freq_softlimit << 24;
3661 if (val <= dev_priv->rps.min_freq_softlimit)
3662 limits |= dev_priv->rps.min_freq_softlimit << 16;
3663
3664 return limits;
3665 }
3666
3667 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3668 {
3669 int new_power;
3670
3671 new_power = dev_priv->rps.power;
3672 switch (dev_priv->rps.power) {
3673 case LOW_POWER:
3674 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3675 new_power = BETWEEN;
3676 break;
3677
3678 case BETWEEN:
3679 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3680 new_power = LOW_POWER;
3681 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3682 new_power = HIGH_POWER;
3683 break;
3684
3685 case HIGH_POWER:
3686 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3687 new_power = BETWEEN;
3688 break;
3689 }
3690 /* Max/min bins are special */
3691 if (val == dev_priv->rps.min_freq_softlimit)
3692 new_power = LOW_POWER;
3693 if (val == dev_priv->rps.max_freq_softlimit)
3694 new_power = HIGH_POWER;
3695 if (new_power == dev_priv->rps.power)
3696 return;
3697
3698 /* Note the units here are not exactly 1us, but 1280ns. */
3699 switch (new_power) {
3700 case LOW_POWER:
3701 /* Upclock if more than 95% busy over 16ms */
3702 I915_WRITE(GEN6_RP_UP_EI, 12500);
3703 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3704
3705 /* Downclock if less than 85% busy over 32ms */
3706 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3707 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3708
3709 I915_WRITE(GEN6_RP_CONTROL,
3710 GEN6_RP_MEDIA_TURBO |
3711 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3712 GEN6_RP_MEDIA_IS_GFX |
3713 GEN6_RP_ENABLE |
3714 GEN6_RP_UP_BUSY_AVG |
3715 GEN6_RP_DOWN_IDLE_AVG);
3716 break;
3717
3718 case BETWEEN:
3719 /* Upclock if more than 90% busy over 13ms */
3720 I915_WRITE(GEN6_RP_UP_EI, 10250);
3721 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3722
3723 /* Downclock if less than 75% busy over 32ms */
3724 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3725 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3726
3727 I915_WRITE(GEN6_RP_CONTROL,
3728 GEN6_RP_MEDIA_TURBO |
3729 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3730 GEN6_RP_MEDIA_IS_GFX |
3731 GEN6_RP_ENABLE |
3732 GEN6_RP_UP_BUSY_AVG |
3733 GEN6_RP_DOWN_IDLE_AVG);
3734 break;
3735
3736 case HIGH_POWER:
3737 /* Upclock if more than 85% busy over 10ms */
3738 I915_WRITE(GEN6_RP_UP_EI, 8000);
3739 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3740
3741 /* Downclock if less than 60% busy over 32ms */
3742 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3743 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3744
3745 I915_WRITE(GEN6_RP_CONTROL,
3746 GEN6_RP_MEDIA_TURBO |
3747 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3748 GEN6_RP_MEDIA_IS_GFX |
3749 GEN6_RP_ENABLE |
3750 GEN6_RP_UP_BUSY_AVG |
3751 GEN6_RP_DOWN_IDLE_AVG);
3752 break;
3753 }
3754
3755 dev_priv->rps.power = new_power;
3756 dev_priv->rps.last_adj = 0;
3757 }
3758
3759 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3760 {
3761 u32 mask = 0;
3762
3763 if (val > dev_priv->rps.min_freq_softlimit)
3764 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3765 if (val < dev_priv->rps.max_freq_softlimit)
3766 mask |= GEN6_PM_RP_UP_THRESHOLD;
3767
3768 mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3769 mask &= dev_priv->pm_rps_events;
3770
3771 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3772 }
3773
3774 /* gen6_set_rps is called to update the frequency request, but should also be
3775 * called when the range (min_delay and max_delay) is modified so that we can
3776 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3777 static void gen6_set_rps(struct drm_device *dev, u8 val)
3778 {
3779 struct drm_i915_private *dev_priv = dev->dev_private;
3780
3781 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3782 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3783 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3784
3785 /* min/max delay may still have been modified so be sure to
3786 * write the limits value.
3787 */
3788 if (val != dev_priv->rps.cur_freq) {
3789 gen6_set_rps_thresholds(dev_priv, val);
3790
3791 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3792 I915_WRITE(GEN6_RPNSWREQ,
3793 HSW_FREQUENCY(val));
3794 else
3795 I915_WRITE(GEN6_RPNSWREQ,
3796 GEN6_FREQUENCY(val) |
3797 GEN6_OFFSET(0) |
3798 GEN6_AGGRESSIVE_TURBO);
3799 }
3800
3801 /* Make sure we continue to get interrupts
3802 * until we hit the minimum or maximum frequencies.
3803 */
3804 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3805 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3806
3807 POSTING_READ(GEN6_RPNSWREQ);
3808
3809 dev_priv->rps.cur_freq = val;
3810 trace_intel_gpu_freq_change(val * 50);
3811 }
3812
3813 static void valleyview_set_rps(struct drm_device *dev, u8 val)
3814 {
3815 struct drm_i915_private *dev_priv = dev->dev_private;
3816
3817 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3818 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3819 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3820
3821 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
3822 "Odd GPU freq value\n"))
3823 val &= ~1;
3824
3825 if (val != dev_priv->rps.cur_freq)
3826 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3827
3828 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3829
3830 dev_priv->rps.cur_freq = val;
3831 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
3832 }
3833
3834 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3835 *
3836 * * If Gfx is Idle, then
3837 * 1. Mask Turbo interrupts
3838 * 2. Bring up Gfx clock
3839 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3840 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3841 * 5. Unmask Turbo interrupts
3842 */
3843 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3844 {
3845 struct drm_device *dev = dev_priv->dev;
3846
3847 /* CHV and latest VLV don't need to force the gfx clock */
3848 if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
3849 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3850 return;
3851 }
3852
3853 /*
3854 * When we are idle. Drop to min voltage state.
3855 */
3856
3857 if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3858 return;
3859
3860 /* Mask turbo interrupt so that they will not come in between */
3861 I915_WRITE(GEN6_PMINTRMSK,
3862 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
3863
3864 vlv_force_gfx_clock(dev_priv, true);
3865
3866 dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3867
3868 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3869 dev_priv->rps.min_freq_softlimit);
3870
3871 if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3872 & GENFREQSTATUS) == 0, 100))
3873 DRM_ERROR("timed out waiting for Punit\n");
3874
3875 vlv_force_gfx_clock(dev_priv, false);
3876
3877 I915_WRITE(GEN6_PMINTRMSK,
3878 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3879 }
3880
3881 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3882 {
3883 struct drm_device *dev = dev_priv->dev;
3884
3885 mutex_lock(&dev_priv->rps.hw_lock);
3886 if (dev_priv->rps.enabled) {
3887 if (IS_VALLEYVIEW(dev))
3888 vlv_set_rps_idle(dev_priv);
3889 else
3890 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3891 dev_priv->rps.last_adj = 0;
3892 }
3893 mutex_unlock(&dev_priv->rps.hw_lock);
3894 }
3895
3896 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3897 {
3898 mutex_lock(&dev_priv->rps.hw_lock);
3899 if (dev_priv->rps.enabled) {
3900 intel_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3901 dev_priv->rps.last_adj = 0;
3902 }
3903 mutex_unlock(&dev_priv->rps.hw_lock);
3904 }
3905
3906 void intel_set_rps(struct drm_device *dev, u8 val)
3907 {
3908 if (IS_VALLEYVIEW(dev))
3909 valleyview_set_rps(dev, val);
3910 else
3911 gen6_set_rps(dev, val);
3912 }
3913
3914 static void gen9_disable_rps(struct drm_device *dev)
3915 {
3916 struct drm_i915_private *dev_priv = dev->dev_private;
3917
3918 I915_WRITE(GEN6_RC_CONTROL, 0);
3919 I915_WRITE(GEN9_PG_ENABLE, 0);
3920 }
3921
3922 static void gen6_disable_rps(struct drm_device *dev)
3923 {
3924 struct drm_i915_private *dev_priv = dev->dev_private;
3925
3926 I915_WRITE(GEN6_RC_CONTROL, 0);
3927 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3928 }
3929
3930 static void cherryview_disable_rps(struct drm_device *dev)
3931 {
3932 struct drm_i915_private *dev_priv = dev->dev_private;
3933
3934 I915_WRITE(GEN6_RC_CONTROL, 0);
3935 }
3936
3937 static void valleyview_disable_rps(struct drm_device *dev)
3938 {
3939 struct drm_i915_private *dev_priv = dev->dev_private;
3940
3941 /* we're doing forcewake before Disabling RC6,
3942 * This what the BIOS expects when going into suspend */
3943 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
3944
3945 I915_WRITE(GEN6_RC_CONTROL, 0);
3946
3947 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
3948 }
3949
3950 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3951 {
3952 if (IS_VALLEYVIEW(dev)) {
3953 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3954 mode = GEN6_RC_CTL_RC6_ENABLE;
3955 else
3956 mode = 0;
3957 }
3958 if (HAS_RC6p(dev))
3959 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
3960 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3961 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3962 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3963
3964 else
3965 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
3966 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
3967 }
3968
3969 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3970 {
3971 /* No RC6 before Ironlake */
3972 if (INTEL_INFO(dev)->gen < 5)
3973 return 0;
3974
3975 /* RC6 is only on Ironlake mobile not on desktop */
3976 if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3977 return 0;
3978
3979 /* Respect the kernel parameter if it is set */
3980 if (enable_rc6 >= 0) {
3981 int mask;
3982
3983 if (HAS_RC6p(dev))
3984 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3985 INTEL_RC6pp_ENABLE;
3986 else
3987 mask = INTEL_RC6_ENABLE;
3988
3989 if ((enable_rc6 & mask) != enable_rc6)
3990 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3991 enable_rc6 & mask, enable_rc6, mask);
3992
3993 return enable_rc6 & mask;
3994 }
3995
3996 /* Disable RC6 on Ironlake */
3997 if (INTEL_INFO(dev)->gen == 5)
3998 return 0;
3999
4000 if (IS_IVYBRIDGE(dev))
4001 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4002
4003 return INTEL_RC6_ENABLE;
4004 }
4005
4006 int intel_enable_rc6(const struct drm_device *dev)
4007 {
4008 return i915.enable_rc6;
4009 }
4010
4011 static void gen6_init_rps_frequencies(struct drm_device *dev)
4012 {
4013 struct drm_i915_private *dev_priv = dev->dev_private;
4014 uint32_t rp_state_cap;
4015 u32 ddcc_status = 0;
4016 int ret;
4017
4018 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4019 /* All of these values are in units of 50MHz */
4020 dev_priv->rps.cur_freq = 0;
4021 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4022 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4023 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4024 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4025 /* hw_max = RP0 until we check for overclocking */
4026 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4027
4028 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4029 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4030 ret = sandybridge_pcode_read(dev_priv,
4031 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4032 &ddcc_status);
4033 if (0 == ret)
4034 dev_priv->rps.efficient_freq =
4035 clamp_t(u8,
4036 ((ddcc_status >> 8) & 0xff),
4037 dev_priv->rps.min_freq,
4038 dev_priv->rps.max_freq);
4039 }
4040
4041 /* Preserve min/max settings in case of re-init */
4042 if (dev_priv->rps.max_freq_softlimit == 0)
4043 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4044
4045 if (dev_priv->rps.min_freq_softlimit == 0) {
4046 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4047 dev_priv->rps.min_freq_softlimit =
4048 /* max(RPe, 450 MHz) */
4049 max(dev_priv->rps.efficient_freq, (u8) 9);
4050 else
4051 dev_priv->rps.min_freq_softlimit =
4052 dev_priv->rps.min_freq;
4053 }
4054 }
4055
4056 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4057 static void gen9_enable_rps(struct drm_device *dev)
4058 {
4059 struct drm_i915_private *dev_priv = dev->dev_private;
4060
4061 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4062
4063 gen6_init_rps_frequencies(dev);
4064
4065 I915_WRITE(GEN6_RPNSWREQ, 0xc800000);
4066 I915_WRITE(GEN6_RC_VIDEO_FREQ, 0xc800000);
4067
4068 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4069 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, 0x12060000);
4070 I915_WRITE(GEN6_RP_UP_THRESHOLD, 0xe808);
4071 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 0x3bd08);
4072 I915_WRITE(GEN6_RP_UP_EI, 0x101d0);
4073 I915_WRITE(GEN6_RP_DOWN_EI, 0x55730);
4074 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4075 I915_WRITE(GEN6_PMINTRMSK, 0x6);
4076 I915_WRITE(GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO |
4077 GEN6_RP_MEDIA_HW_MODE | GEN6_RP_MEDIA_IS_GFX |
4078 GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG |
4079 GEN6_RP_DOWN_IDLE_AVG);
4080
4081 gen6_enable_rps_interrupts(dev);
4082
4083 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4084 }
4085
4086 static void gen9_enable_rc6(struct drm_device *dev)
4087 {
4088 struct drm_i915_private *dev_priv = dev->dev_private;
4089 struct intel_engine_cs *ring;
4090 uint32_t rc6_mask = 0;
4091 int unused;
4092
4093 /* 1a: Software RC state - RC0 */
4094 I915_WRITE(GEN6_RC_STATE, 0);
4095
4096 /* 1b: Get forcewake during program sequence. Although the driver
4097 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4098 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4099
4100 /* 2a: Disable RC states. */
4101 I915_WRITE(GEN6_RC_CONTROL, 0);
4102
4103 /* 2b: Program RC6 thresholds.*/
4104 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4105 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4106 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4107 for_each_ring(ring, dev_priv, unused)
4108 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4109 I915_WRITE(GEN6_RC_SLEEP, 0);
4110 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4111
4112 /* 2c: Program Coarse Power Gating Policies. */
4113 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4114 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4115
4116 /* 3a: Enable RC6 */
4117 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4118 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4119 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4120 "on" : "off");
4121 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4122 GEN6_RC_CTL_EI_MODE(1) |
4123 rc6_mask);
4124
4125 /* 3b: Enable Coarse Power Gating only when RC6 is enabled */
4126 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);
4127
4128 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4129
4130 }
4131
4132 static void gen8_enable_rps(struct drm_device *dev)
4133 {
4134 struct drm_i915_private *dev_priv = dev->dev_private;
4135 struct intel_engine_cs *ring;
4136 uint32_t rc6_mask = 0;
4137 int unused;
4138
4139 /* 1a: Software RC state - RC0 */
4140 I915_WRITE(GEN6_RC_STATE, 0);
4141
4142 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4143 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4144 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4145
4146 /* 2a: Disable RC states. */
4147 I915_WRITE(GEN6_RC_CONTROL, 0);
4148
4149 /* Initialize rps frequencies */
4150 gen6_init_rps_frequencies(dev);
4151
4152 /* 2b: Program RC6 thresholds.*/
4153 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4154 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4155 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4156 for_each_ring(ring, dev_priv, unused)
4157 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4158 I915_WRITE(GEN6_RC_SLEEP, 0);
4159 if (IS_BROADWELL(dev))
4160 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4161 else
4162 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4163
4164 /* 3: Enable RC6 */
4165 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4166 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4167 intel_print_rc6_info(dev, rc6_mask);
4168 if (IS_BROADWELL(dev))
4169 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4170 GEN7_RC_CTL_TO_MODE |
4171 rc6_mask);
4172 else
4173 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4174 GEN6_RC_CTL_EI_MODE(1) |
4175 rc6_mask);
4176
4177 /* 4 Program defaults and thresholds for RPS*/
4178 I915_WRITE(GEN6_RPNSWREQ,
4179 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4180 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4181 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4182 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4183 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4184
4185 /* Docs recommend 900MHz, and 300 MHz respectively */
4186 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4187 dev_priv->rps.max_freq_softlimit << 24 |
4188 dev_priv->rps.min_freq_softlimit << 16);
4189
4190 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4191 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4192 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4193 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4194
4195 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4196
4197 /* 5: Enable RPS */
4198 I915_WRITE(GEN6_RP_CONTROL,
4199 GEN6_RP_MEDIA_TURBO |
4200 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4201 GEN6_RP_MEDIA_IS_GFX |
4202 GEN6_RP_ENABLE |
4203 GEN6_RP_UP_BUSY_AVG |
4204 GEN6_RP_DOWN_IDLE_AVG);
4205
4206 /* 6: Ring frequency + overclocking (our driver does this later */
4207
4208 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4209 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4210
4211 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4212 }
4213
4214 static void gen6_enable_rps(struct drm_device *dev)
4215 {
4216 struct drm_i915_private *dev_priv = dev->dev_private;
4217 struct intel_engine_cs *ring;
4218 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4219 u32 gtfifodbg;
4220 int rc6_mode;
4221 int i, ret;
4222
4223 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4224
4225 /* Here begins a magic sequence of register writes to enable
4226 * auto-downclocking.
4227 *
4228 * Perhaps there might be some value in exposing these to
4229 * userspace...
4230 */
4231 I915_WRITE(GEN6_RC_STATE, 0);
4232
4233 /* Clear the DBG now so we don't confuse earlier errors */
4234 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4235 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4236 I915_WRITE(GTFIFODBG, gtfifodbg);
4237 }
4238
4239 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4240
4241 /* Initialize rps frequencies */
4242 gen6_init_rps_frequencies(dev);
4243
4244 /* disable the counters and set deterministic thresholds */
4245 I915_WRITE(GEN6_RC_CONTROL, 0);
4246
4247 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4248 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4249 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4250 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4251 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4252
4253 for_each_ring(ring, dev_priv, i)
4254 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4255
4256 I915_WRITE(GEN6_RC_SLEEP, 0);
4257 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4258 if (IS_IVYBRIDGE(dev))
4259 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4260 else
4261 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4262 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4263 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4264
4265 /* Check if we are enabling RC6 */
4266 rc6_mode = intel_enable_rc6(dev_priv->dev);
4267 if (rc6_mode & INTEL_RC6_ENABLE)
4268 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4269
4270 /* We don't use those on Haswell */
4271 if (!IS_HASWELL(dev)) {
4272 if (rc6_mode & INTEL_RC6p_ENABLE)
4273 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4274
4275 if (rc6_mode & INTEL_RC6pp_ENABLE)
4276 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4277 }
4278
4279 intel_print_rc6_info(dev, rc6_mask);
4280
4281 I915_WRITE(GEN6_RC_CONTROL,
4282 rc6_mask |
4283 GEN6_RC_CTL_EI_MODE(1) |
4284 GEN6_RC_CTL_HW_ENABLE);
4285
4286 /* Power down if completely idle for over 50ms */
4287 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4288 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4289
4290 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4291 if (ret)
4292 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4293
4294 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4295 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4296 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4297 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4298 (pcu_mbox & 0xff) * 50);
4299 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4300 }
4301
4302 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4303 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4304
4305 rc6vids = 0;
4306 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4307 if (IS_GEN6(dev) && ret) {
4308 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4309 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4310 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4311 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4312 rc6vids &= 0xffff00;
4313 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4314 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4315 if (ret)
4316 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4317 }
4318
4319 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4320 }
4321
4322 static void __gen6_update_ring_freq(struct drm_device *dev)
4323 {
4324 struct drm_i915_private *dev_priv = dev->dev_private;
4325 int min_freq = 15;
4326 unsigned int gpu_freq;
4327 unsigned int max_ia_freq, min_ring_freq;
4328 int scaling_factor = 180;
4329 struct cpufreq_policy *policy;
4330
4331 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4332
4333 policy = cpufreq_cpu_get(0);
4334 if (policy) {
4335 max_ia_freq = policy->cpuinfo.max_freq;
4336 cpufreq_cpu_put(policy);
4337 } else {
4338 /*
4339 * Default to measured freq if none found, PCU will ensure we
4340 * don't go over
4341 */
4342 max_ia_freq = tsc_khz;
4343 }
4344
4345 /* Convert from kHz to MHz */
4346 max_ia_freq /= 1000;
4347
4348 min_ring_freq = I915_READ(DCLK) & 0xf;
4349 /* convert DDR frequency from units of 266.6MHz to bandwidth */
4350 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4351
4352 /*
4353 * For each potential GPU frequency, load a ring frequency we'd like
4354 * to use for memory access. We do this by specifying the IA frequency
4355 * the PCU should use as a reference to determine the ring frequency.
4356 */
4357 for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4358 gpu_freq--) {
4359 int diff = dev_priv->rps.max_freq - gpu_freq;
4360 unsigned int ia_freq = 0, ring_freq = 0;
4361
4362 if (INTEL_INFO(dev)->gen >= 8) {
4363 /* max(2 * GT, DDR). NB: GT is 50MHz units */
4364 ring_freq = max(min_ring_freq, gpu_freq);
4365 } else if (IS_HASWELL(dev)) {
4366 ring_freq = mult_frac(gpu_freq, 5, 4);
4367 ring_freq = max(min_ring_freq, ring_freq);
4368 /* leave ia_freq as the default, chosen by cpufreq */
4369 } else {
4370 /* On older processors, there is no separate ring
4371 * clock domain, so in order to boost the bandwidth
4372 * of the ring, we need to upclock the CPU (ia_freq).
4373 *
4374 * For GPU frequencies less than 750MHz,
4375 * just use the lowest ring freq.
4376 */
4377 if (gpu_freq < min_freq)
4378 ia_freq = 800;
4379 else
4380 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4381 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4382 }
4383
4384 sandybridge_pcode_write(dev_priv,
4385 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4386 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4387 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4388 gpu_freq);
4389 }
4390 }
4391
4392 void gen6_update_ring_freq(struct drm_device *dev)
4393 {
4394 struct drm_i915_private *dev_priv = dev->dev_private;
4395
4396 if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4397 return;
4398
4399 mutex_lock(&dev_priv->rps.hw_lock);
4400 __gen6_update_ring_freq(dev);
4401 mutex_unlock(&dev_priv->rps.hw_lock);
4402 }
4403
4404 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4405 {
4406 struct drm_device *dev = dev_priv->dev;
4407 u32 val, rp0;
4408
4409 if (dev->pdev->revision >= 0x20) {
4410 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4411
4412 switch (INTEL_INFO(dev)->eu_total) {
4413 case 8:
4414 /* (2 * 4) config */
4415 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
4416 break;
4417 case 12:
4418 /* (2 * 6) config */
4419 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
4420 break;
4421 case 16:
4422 /* (2 * 8) config */
4423 default:
4424 /* Setting (2 * 8) Min RP0 for any other combination */
4425 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
4426 break;
4427 }
4428 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
4429 } else {
4430 /* For pre-production hardware */
4431 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4432 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4433 PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4434 }
4435 return rp0;
4436 }
4437
4438 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4439 {
4440 u32 val, rpe;
4441
4442 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4443 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4444
4445 return rpe;
4446 }
4447
4448 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4449 {
4450 struct drm_device *dev = dev_priv->dev;
4451 u32 val, rp1;
4452
4453 if (dev->pdev->revision >= 0x20) {
4454 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4455 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
4456 } else {
4457 /* For pre-production hardware */
4458 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4459 rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4460 PUNIT_GPU_STATUS_MAX_FREQ_MASK);
4461 }
4462 return rp1;
4463 }
4464
4465 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4466 {
4467 struct drm_device *dev = dev_priv->dev;
4468 u32 val, rpn;
4469
4470 if (dev->pdev->revision >= 0x20) {
4471 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
4472 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
4473 FB_GFX_FREQ_FUSE_MASK);
4474 } else { /* For pre-production hardware */
4475 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4476 rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
4477 PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
4478 }
4479
4480 return rpn;
4481 }
4482
4483 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4484 {
4485 u32 val, rp1;
4486
4487 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4488
4489 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4490
4491 return rp1;
4492 }
4493
4494 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4495 {
4496 u32 val, rp0;
4497
4498 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4499
4500 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4501 /* Clamp to max */
4502 rp0 = min_t(u32, rp0, 0xea);
4503
4504 return rp0;
4505 }
4506
4507 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4508 {
4509 u32 val, rpe;
4510
4511 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4512 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4513 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4514 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4515
4516 return rpe;
4517 }
4518
4519 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4520 {
4521 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4522 }
4523
4524 /* Check that the pctx buffer wasn't move under us. */
4525 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4526 {
4527 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4528
4529 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4530 dev_priv->vlv_pctx->stolen->start);
4531 }
4532
4533
4534 /* Check that the pcbr address is not empty. */
4535 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4536 {
4537 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4538
4539 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4540 }
4541
4542 static void cherryview_setup_pctx(struct drm_device *dev)
4543 {
4544 struct drm_i915_private *dev_priv = dev->dev_private;
4545 unsigned long pctx_paddr, paddr;
4546 struct i915_gtt *gtt = &dev_priv->gtt;
4547 u32 pcbr;
4548 int pctx_size = 32*1024;
4549
4550 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4551
4552 pcbr = I915_READ(VLV_PCBR);
4553 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4554 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4555 paddr = (dev_priv->mm.stolen_base +
4556 (gtt->stolen_size - pctx_size));
4557
4558 pctx_paddr = (paddr & (~4095));
4559 I915_WRITE(VLV_PCBR, pctx_paddr);
4560 }
4561
4562 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4563 }
4564
4565 static void valleyview_setup_pctx(struct drm_device *dev)
4566 {
4567 struct drm_i915_private *dev_priv = dev->dev_private;
4568 struct drm_i915_gem_object *pctx;
4569 unsigned long pctx_paddr;
4570 u32 pcbr;
4571 int pctx_size = 24*1024;
4572
4573 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4574
4575 pcbr = I915_READ(VLV_PCBR);
4576 if (pcbr) {
4577 /* BIOS set it up already, grab the pre-alloc'd space */
4578 int pcbr_offset;
4579
4580 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4581 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4582 pcbr_offset,
4583 I915_GTT_OFFSET_NONE,
4584 pctx_size);
4585 goto out;
4586 }
4587
4588 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4589
4590 /*
4591 * From the Gunit register HAS:
4592 * The Gfx driver is expected to program this register and ensure
4593 * proper allocation within Gfx stolen memory. For example, this
4594 * register should be programmed such than the PCBR range does not
4595 * overlap with other ranges, such as the frame buffer, protected
4596 * memory, or any other relevant ranges.
4597 */
4598 pctx = i915_gem_object_create_stolen(dev, pctx_size);
4599 if (!pctx) {
4600 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4601 return;
4602 }
4603
4604 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4605 I915_WRITE(VLV_PCBR, pctx_paddr);
4606
4607 out:
4608 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4609 dev_priv->vlv_pctx = pctx;
4610 }
4611
4612 static void valleyview_cleanup_pctx(struct drm_device *dev)
4613 {
4614 struct drm_i915_private *dev_priv = dev->dev_private;
4615
4616 if (WARN_ON(!dev_priv->vlv_pctx))
4617 return;
4618
4619 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4620 dev_priv->vlv_pctx = NULL;
4621 }
4622
4623 static void valleyview_init_gt_powersave(struct drm_device *dev)
4624 {
4625 struct drm_i915_private *dev_priv = dev->dev_private;
4626 u32 val;
4627
4628 valleyview_setup_pctx(dev);
4629
4630 mutex_lock(&dev_priv->rps.hw_lock);
4631
4632 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4633 switch ((val >> 6) & 3) {
4634 case 0:
4635 case 1:
4636 dev_priv->mem_freq = 800;
4637 break;
4638 case 2:
4639 dev_priv->mem_freq = 1066;
4640 break;
4641 case 3:
4642 dev_priv->mem_freq = 1333;
4643 break;
4644 }
4645 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4646
4647 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4648 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4649 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4650 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4651 dev_priv->rps.max_freq);
4652
4653 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4654 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4655 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4656 dev_priv->rps.efficient_freq);
4657
4658 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4659 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4660 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4661 dev_priv->rps.rp1_freq);
4662
4663 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4664 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4665 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4666 dev_priv->rps.min_freq);
4667
4668 /* Preserve min/max settings in case of re-init */
4669 if (dev_priv->rps.max_freq_softlimit == 0)
4670 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4671
4672 if (dev_priv->rps.min_freq_softlimit == 0)
4673 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4674
4675 mutex_unlock(&dev_priv->rps.hw_lock);
4676 }
4677
4678 static void cherryview_init_gt_powersave(struct drm_device *dev)
4679 {
4680 struct drm_i915_private *dev_priv = dev->dev_private;
4681 u32 val;
4682
4683 cherryview_setup_pctx(dev);
4684
4685 mutex_lock(&dev_priv->rps.hw_lock);
4686
4687 mutex_lock(&dev_priv->dpio_lock);
4688 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
4689 mutex_unlock(&dev_priv->dpio_lock);
4690
4691 switch ((val >> 2) & 0x7) {
4692 case 0:
4693 case 1:
4694 dev_priv->rps.cz_freq = 200;
4695 dev_priv->mem_freq = 1600;
4696 break;
4697 case 2:
4698 dev_priv->rps.cz_freq = 267;
4699 dev_priv->mem_freq = 1600;
4700 break;
4701 case 3:
4702 dev_priv->rps.cz_freq = 333;
4703 dev_priv->mem_freq = 2000;
4704 break;
4705 case 4:
4706 dev_priv->rps.cz_freq = 320;
4707 dev_priv->mem_freq = 1600;
4708 break;
4709 case 5:
4710 dev_priv->rps.cz_freq = 400;
4711 dev_priv->mem_freq = 1600;
4712 break;
4713 }
4714 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4715
4716 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4717 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4718 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4719 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4720 dev_priv->rps.max_freq);
4721
4722 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4723 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4724 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4725 dev_priv->rps.efficient_freq);
4726
4727 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4728 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4729 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4730 dev_priv->rps.rp1_freq);
4731
4732 dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4733 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4734 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4735 dev_priv->rps.min_freq);
4736
4737 WARN_ONCE((dev_priv->rps.max_freq |
4738 dev_priv->rps.efficient_freq |
4739 dev_priv->rps.rp1_freq |
4740 dev_priv->rps.min_freq) & 1,
4741 "Odd GPU freq values\n");
4742
4743 /* Preserve min/max settings in case of re-init */
4744 if (dev_priv->rps.max_freq_softlimit == 0)
4745 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4746
4747 if (dev_priv->rps.min_freq_softlimit == 0)
4748 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4749
4750 mutex_unlock(&dev_priv->rps.hw_lock);
4751 }
4752
4753 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4754 {
4755 valleyview_cleanup_pctx(dev);
4756 }
4757
4758 static void cherryview_enable_rps(struct drm_device *dev)
4759 {
4760 struct drm_i915_private *dev_priv = dev->dev_private;
4761 struct intel_engine_cs *ring;
4762 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4763 int i;
4764
4765 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4766
4767 gtfifodbg = I915_READ(GTFIFODBG);
4768 if (gtfifodbg) {
4769 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4770 gtfifodbg);
4771 I915_WRITE(GTFIFODBG, gtfifodbg);
4772 }
4773
4774 cherryview_check_pctx(dev_priv);
4775
4776 /* 1a & 1b: Get forcewake during program sequence. Although the driver
4777 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4778 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4779
4780 /* Disable RC states. */
4781 I915_WRITE(GEN6_RC_CONTROL, 0);
4782
4783 /* 2a: Program RC6 thresholds.*/
4784 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4785 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4786 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4787
4788 for_each_ring(ring, dev_priv, i)
4789 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4790 I915_WRITE(GEN6_RC_SLEEP, 0);
4791
4792 /* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
4793 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4794
4795 /* allows RC6 residency counter to work */
4796 I915_WRITE(VLV_COUNTER_CONTROL,
4797 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4798 VLV_MEDIA_RC6_COUNT_EN |
4799 VLV_RENDER_RC6_COUNT_EN));
4800
4801 /* For now we assume BIOS is allocating and populating the PCBR */
4802 pcbr = I915_READ(VLV_PCBR);
4803
4804 /* 3: Enable RC6 */
4805 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4806 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4807 rc6_mode = GEN7_RC_CTL_TO_MODE;
4808
4809 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4810
4811 /* 4 Program defaults and thresholds for RPS*/
4812 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4813 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4814 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4815 I915_WRITE(GEN6_RP_UP_EI, 66000);
4816 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4817
4818 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4819
4820 /* 5: Enable RPS */
4821 I915_WRITE(GEN6_RP_CONTROL,
4822 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4823 GEN6_RP_MEDIA_IS_GFX |
4824 GEN6_RP_ENABLE |
4825 GEN6_RP_UP_BUSY_AVG |
4826 GEN6_RP_DOWN_IDLE_AVG);
4827
4828 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4829
4830 /* RPS code assumes GPLL is used */
4831 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
4832
4833 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4834 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4835
4836 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4837 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4838 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4839 dev_priv->rps.cur_freq);
4840
4841 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4842 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4843 dev_priv->rps.efficient_freq);
4844
4845 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4846
4847 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4848 }
4849
4850 static void valleyview_enable_rps(struct drm_device *dev)
4851 {
4852 struct drm_i915_private *dev_priv = dev->dev_private;
4853 struct intel_engine_cs *ring;
4854 u32 gtfifodbg, val, rc6_mode = 0;
4855 int i;
4856
4857 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4858
4859 valleyview_check_pctx(dev_priv);
4860
4861 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4862 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4863 gtfifodbg);
4864 I915_WRITE(GTFIFODBG, gtfifodbg);
4865 }
4866
4867 /* If VLV, Forcewake all wells, else re-direct to regular path */
4868 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4869
4870 /* Disable RC states. */
4871 I915_WRITE(GEN6_RC_CONTROL, 0);
4872
4873 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4874 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4875 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4876 I915_WRITE(GEN6_RP_UP_EI, 66000);
4877 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4878
4879 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4880
4881 I915_WRITE(GEN6_RP_CONTROL,
4882 GEN6_RP_MEDIA_TURBO |
4883 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4884 GEN6_RP_MEDIA_IS_GFX |
4885 GEN6_RP_ENABLE |
4886 GEN6_RP_UP_BUSY_AVG |
4887 GEN6_RP_DOWN_IDLE_CONT);
4888
4889 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4890 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4891 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4892
4893 for_each_ring(ring, dev_priv, i)
4894 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4895
4896 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4897
4898 /* allows RC6 residency counter to work */
4899 I915_WRITE(VLV_COUNTER_CONTROL,
4900 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4901 VLV_RENDER_RC0_COUNT_EN |
4902 VLV_MEDIA_RC6_COUNT_EN |
4903 VLV_RENDER_RC6_COUNT_EN));
4904
4905 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4906 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4907
4908 intel_print_rc6_info(dev, rc6_mode);
4909
4910 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4911
4912 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4913
4914 /* RPS code assumes GPLL is used */
4915 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
4916
4917 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4918 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4919
4920 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4921 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4922 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4923 dev_priv->rps.cur_freq);
4924
4925 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4926 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4927 dev_priv->rps.efficient_freq);
4928
4929 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4930
4931 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4932 }
4933
4934 static unsigned long intel_pxfreq(u32 vidfreq)
4935 {
4936 unsigned long freq;
4937 int div = (vidfreq & 0x3f0000) >> 16;
4938 int post = (vidfreq & 0x3000) >> 12;
4939 int pre = (vidfreq & 0x7);
4940
4941 if (!pre)
4942 return 0;
4943
4944 freq = ((div * 133333) / ((1<<post) * pre));
4945
4946 return freq;
4947 }
4948
4949 static const struct cparams {
4950 u16 i;
4951 u16 t;
4952 u16 m;
4953 u16 c;
4954 } cparams[] = {
4955 { 1, 1333, 301, 28664 },
4956 { 1, 1066, 294, 24460 },
4957 { 1, 800, 294, 25192 },
4958 { 0, 1333, 276, 27605 },
4959 { 0, 1066, 276, 27605 },
4960 { 0, 800, 231, 23784 },
4961 };
4962
4963 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4964 {
4965 u64 total_count, diff, ret;
4966 u32 count1, count2, count3, m = 0, c = 0;
4967 unsigned long now = jiffies_to_msecs(jiffies), diff1;
4968 int i;
4969
4970 assert_spin_locked(&mchdev_lock);
4971
4972 diff1 = now - dev_priv->ips.last_time1;
4973
4974 /* Prevent division-by-zero if we are asking too fast.
4975 * Also, we don't get interesting results if we are polling
4976 * faster than once in 10ms, so just return the saved value
4977 * in such cases.
4978 */
4979 if (diff1 <= 10)
4980 return dev_priv->ips.chipset_power;
4981
4982 count1 = I915_READ(DMIEC);
4983 count2 = I915_READ(DDREC);
4984 count3 = I915_READ(CSIEC);
4985
4986 total_count = count1 + count2 + count3;
4987
4988 /* FIXME: handle per-counter overflow */
4989 if (total_count < dev_priv->ips.last_count1) {
4990 diff = ~0UL - dev_priv->ips.last_count1;
4991 diff += total_count;
4992 } else {
4993 diff = total_count - dev_priv->ips.last_count1;
4994 }
4995
4996 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4997 if (cparams[i].i == dev_priv->ips.c_m &&
4998 cparams[i].t == dev_priv->ips.r_t) {
4999 m = cparams[i].m;
5000 c = cparams[i].c;
5001 break;
5002 }
5003 }
5004
5005 diff = div_u64(diff, diff1);
5006 ret = ((m * diff) + c);
5007 ret = div_u64(ret, 10);
5008
5009 dev_priv->ips.last_count1 = total_count;
5010 dev_priv->ips.last_time1 = now;
5011
5012 dev_priv->ips.chipset_power = ret;
5013
5014 return ret;
5015 }
5016
5017 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5018 {
5019 struct drm_device *dev = dev_priv->dev;
5020 unsigned long val;
5021
5022 if (INTEL_INFO(dev)->gen != 5)
5023 return 0;
5024
5025 spin_lock_irq(&mchdev_lock);
5026
5027 val = __i915_chipset_val(dev_priv);
5028
5029 spin_unlock_irq(&mchdev_lock);
5030
5031 return val;
5032 }
5033
5034 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5035 {
5036 unsigned long m, x, b;
5037 u32 tsfs;
5038
5039 tsfs = I915_READ(TSFS);
5040
5041 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5042 x = I915_READ8(TR1);
5043
5044 b = tsfs & TSFS_INTR_MASK;
5045
5046 return ((m * x) / 127) - b;
5047 }
5048
5049 static int _pxvid_to_vd(u8 pxvid)
5050 {
5051 if (pxvid == 0)
5052 return 0;
5053
5054 if (pxvid >= 8 && pxvid < 31)
5055 pxvid = 31;
5056
5057 return (pxvid + 2) * 125;
5058 }
5059
5060 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5061 {
5062 struct drm_device *dev = dev_priv->dev;
5063 const int vd = _pxvid_to_vd(pxvid);
5064 const int vm = vd - 1125;
5065
5066 if (INTEL_INFO(dev)->is_mobile)
5067 return vm > 0 ? vm : 0;
5068
5069 return vd;
5070 }
5071
5072 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5073 {
5074 u64 now, diff, diffms;
5075 u32 count;
5076
5077 assert_spin_locked(&mchdev_lock);
5078
5079 now = ktime_get_raw_ns();
5080 diffms = now - dev_priv->ips.last_time2;
5081 do_div(diffms, NSEC_PER_MSEC);
5082
5083 /* Don't divide by 0 */
5084 if (!diffms)
5085 return;
5086
5087 count = I915_READ(GFXEC);
5088
5089 if (count < dev_priv->ips.last_count2) {
5090 diff = ~0UL - dev_priv->ips.last_count2;
5091 diff += count;
5092 } else {
5093 diff = count - dev_priv->ips.last_count2;
5094 }
5095
5096 dev_priv->ips.last_count2 = count;
5097 dev_priv->ips.last_time2 = now;
5098
5099 /* More magic constants... */
5100 diff = diff * 1181;
5101 diff = div_u64(diff, diffms * 10);
5102 dev_priv->ips.gfx_power = diff;
5103 }
5104
5105 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5106 {
5107 struct drm_device *dev = dev_priv->dev;
5108
5109 if (INTEL_INFO(dev)->gen != 5)
5110 return;
5111
5112 spin_lock_irq(&mchdev_lock);
5113
5114 __i915_update_gfx_val(dev_priv);
5115
5116 spin_unlock_irq(&mchdev_lock);
5117 }
5118
5119 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5120 {
5121 unsigned long t, corr, state1, corr2, state2;
5122 u32 pxvid, ext_v;
5123
5124 assert_spin_locked(&mchdev_lock);
5125
5126 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5127 pxvid = (pxvid >> 24) & 0x7f;
5128 ext_v = pvid_to_extvid(dev_priv, pxvid);
5129
5130 state1 = ext_v;
5131
5132 t = i915_mch_val(dev_priv);
5133
5134 /* Revel in the empirically derived constants */
5135
5136 /* Correction factor in 1/100000 units */
5137 if (t > 80)
5138 corr = ((t * 2349) + 135940);
5139 else if (t >= 50)
5140 corr = ((t * 964) + 29317);
5141 else /* < 50 */
5142 corr = ((t * 301) + 1004);
5143
5144 corr = corr * ((150142 * state1) / 10000 - 78642);
5145 corr /= 100000;
5146 corr2 = (corr * dev_priv->ips.corr);
5147
5148 state2 = (corr2 * state1) / 10000;
5149 state2 /= 100; /* convert to mW */
5150
5151 __i915_update_gfx_val(dev_priv);
5152
5153 return dev_priv->ips.gfx_power + state2;
5154 }
5155
5156 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5157 {
5158 struct drm_device *dev = dev_priv->dev;
5159 unsigned long val;
5160
5161 if (INTEL_INFO(dev)->gen != 5)
5162 return 0;
5163
5164 spin_lock_irq(&mchdev_lock);
5165
5166 val = __i915_gfx_val(dev_priv);
5167
5168 spin_unlock_irq(&mchdev_lock);
5169
5170 return val;
5171 }
5172
5173 /**
5174 * i915_read_mch_val - return value for IPS use
5175 *
5176 * Calculate and return a value for the IPS driver to use when deciding whether
5177 * we have thermal and power headroom to increase CPU or GPU power budget.
5178 */
5179 unsigned long i915_read_mch_val(void)
5180 {
5181 struct drm_i915_private *dev_priv;
5182 unsigned long chipset_val, graphics_val, ret = 0;
5183
5184 spin_lock_irq(&mchdev_lock);
5185 if (!i915_mch_dev)
5186 goto out_unlock;
5187 dev_priv = i915_mch_dev;
5188
5189 chipset_val = __i915_chipset_val(dev_priv);
5190 graphics_val = __i915_gfx_val(dev_priv);
5191
5192 ret = chipset_val + graphics_val;
5193
5194 out_unlock:
5195 spin_unlock_irq(&mchdev_lock);
5196
5197 return ret;
5198 }
5199 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5200
5201 /**
5202 * i915_gpu_raise - raise GPU frequency limit
5203 *
5204 * Raise the limit; IPS indicates we have thermal headroom.
5205 */
5206 bool i915_gpu_raise(void)
5207 {
5208 struct drm_i915_private *dev_priv;
5209 bool ret = true;
5210
5211 spin_lock_irq(&mchdev_lock);
5212 if (!i915_mch_dev) {
5213 ret = false;
5214 goto out_unlock;
5215 }
5216 dev_priv = i915_mch_dev;
5217
5218 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5219 dev_priv->ips.max_delay--;
5220
5221 out_unlock:
5222 spin_unlock_irq(&mchdev_lock);
5223
5224 return ret;
5225 }
5226 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5227
5228 /**
5229 * i915_gpu_lower - lower GPU frequency limit
5230 *
5231 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5232 * frequency maximum.
5233 */
5234 bool i915_gpu_lower(void)
5235 {
5236 struct drm_i915_private *dev_priv;
5237 bool ret = true;
5238
5239 spin_lock_irq(&mchdev_lock);
5240 if (!i915_mch_dev) {
5241 ret = false;
5242 goto out_unlock;
5243 }
5244 dev_priv = i915_mch_dev;
5245
5246 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5247 dev_priv->ips.max_delay++;
5248
5249 out_unlock:
5250 spin_unlock_irq(&mchdev_lock);
5251
5252 return ret;
5253 }
5254 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5255
5256 /**
5257 * i915_gpu_busy - indicate GPU business to IPS
5258 *
5259 * Tell the IPS driver whether or not the GPU is busy.
5260 */
5261 bool i915_gpu_busy(void)
5262 {
5263 struct drm_i915_private *dev_priv;
5264 struct intel_engine_cs *ring;
5265 bool ret = false;
5266 int i;
5267
5268 spin_lock_irq(&mchdev_lock);
5269 if (!i915_mch_dev)
5270 goto out_unlock;
5271 dev_priv = i915_mch_dev;
5272
5273 for_each_ring(ring, dev_priv, i)
5274 ret |= !list_empty(&ring->request_list);
5275
5276 out_unlock:
5277 spin_unlock_irq(&mchdev_lock);
5278
5279 return ret;
5280 }
5281 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5282
5283 /**
5284 * i915_gpu_turbo_disable - disable graphics turbo
5285 *
5286 * Disable graphics turbo by resetting the max frequency and setting the
5287 * current frequency to the default.
5288 */
5289 bool i915_gpu_turbo_disable(void)
5290 {
5291 struct drm_i915_private *dev_priv;
5292 bool ret = true;
5293
5294 spin_lock_irq(&mchdev_lock);
5295 if (!i915_mch_dev) {
5296 ret = false;
5297 goto out_unlock;
5298 }
5299 dev_priv = i915_mch_dev;
5300
5301 dev_priv->ips.max_delay = dev_priv->ips.fstart;
5302
5303 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5304 ret = false;
5305
5306 out_unlock:
5307 spin_unlock_irq(&mchdev_lock);
5308
5309 return ret;
5310 }
5311 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5312
5313 /**
5314 * Tells the intel_ips driver that the i915 driver is now loaded, if
5315 * IPS got loaded first.
5316 *
5317 * This awkward dance is so that neither module has to depend on the
5318 * other in order for IPS to do the appropriate communication of
5319 * GPU turbo limits to i915.
5320 */
5321 static void
5322 ips_ping_for_i915_load(void)
5323 {
5324 void (*link)(void);
5325
5326 link = symbol_get(ips_link_to_i915_driver);
5327 if (link) {
5328 link();
5329 symbol_put(ips_link_to_i915_driver);
5330 }
5331 }
5332
5333 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5334 {
5335 /* We only register the i915 ips part with intel-ips once everything is
5336 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5337 spin_lock_irq(&mchdev_lock);
5338 i915_mch_dev = dev_priv;
5339 spin_unlock_irq(&mchdev_lock);
5340
5341 ips_ping_for_i915_load();
5342 }
5343
5344 void intel_gpu_ips_teardown(void)
5345 {
5346 spin_lock_irq(&mchdev_lock);
5347 i915_mch_dev = NULL;
5348 spin_unlock_irq(&mchdev_lock);
5349 }
5350
5351 static void intel_init_emon(struct drm_device *dev)
5352 {
5353 struct drm_i915_private *dev_priv = dev->dev_private;
5354 u32 lcfuse;
5355 u8 pxw[16];
5356 int i;
5357
5358 /* Disable to program */
5359 I915_WRITE(ECR, 0);
5360 POSTING_READ(ECR);
5361
5362 /* Program energy weights for various events */
5363 I915_WRITE(SDEW, 0x15040d00);
5364 I915_WRITE(CSIEW0, 0x007f0000);
5365 I915_WRITE(CSIEW1, 0x1e220004);
5366 I915_WRITE(CSIEW2, 0x04000004);
5367
5368 for (i = 0; i < 5; i++)
5369 I915_WRITE(PEW + (i * 4), 0);
5370 for (i = 0; i < 3; i++)
5371 I915_WRITE(DEW + (i * 4), 0);
5372
5373 /* Program P-state weights to account for frequency power adjustment */
5374 for (i = 0; i < 16; i++) {
5375 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5376 unsigned long freq = intel_pxfreq(pxvidfreq);
5377 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5378 PXVFREQ_PX_SHIFT;
5379 unsigned long val;
5380
5381 val = vid * vid;
5382 val *= (freq / 1000);
5383 val *= 255;
5384 val /= (127*127*900);
5385 if (val > 0xff)
5386 DRM_ERROR("bad pxval: %ld\n", val);
5387 pxw[i] = val;
5388 }
5389 /* Render standby states get 0 weight */
5390 pxw[14] = 0;
5391 pxw[15] = 0;
5392
5393 for (i = 0; i < 4; i++) {
5394 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5395 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5396 I915_WRITE(PXW + (i * 4), val);
5397 }
5398
5399 /* Adjust magic regs to magic values (more experimental results) */
5400 I915_WRITE(OGW0, 0);
5401 I915_WRITE(OGW1, 0);
5402 I915_WRITE(EG0, 0x00007f00);
5403 I915_WRITE(EG1, 0x0000000e);
5404 I915_WRITE(EG2, 0x000e0000);
5405 I915_WRITE(EG3, 0x68000300);
5406 I915_WRITE(EG4, 0x42000000);
5407 I915_WRITE(EG5, 0x00140031);
5408 I915_WRITE(EG6, 0);
5409 I915_WRITE(EG7, 0);
5410
5411 for (i = 0; i < 8; i++)
5412 I915_WRITE(PXWL + (i * 4), 0);
5413
5414 /* Enable PMON + select events */
5415 I915_WRITE(ECR, 0x80000019);
5416
5417 lcfuse = I915_READ(LCFUSE02);
5418
5419 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5420 }
5421
5422 void intel_init_gt_powersave(struct drm_device *dev)
5423 {
5424 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5425
5426 if (IS_CHERRYVIEW(dev))
5427 cherryview_init_gt_powersave(dev);
5428 else if (IS_VALLEYVIEW(dev))
5429 valleyview_init_gt_powersave(dev);
5430 }
5431
5432 void intel_cleanup_gt_powersave(struct drm_device *dev)
5433 {
5434 if (IS_CHERRYVIEW(dev))
5435 return;
5436 else if (IS_VALLEYVIEW(dev))
5437 valleyview_cleanup_gt_powersave(dev);
5438 }
5439
5440 static void gen6_suspend_rps(struct drm_device *dev)
5441 {
5442 struct drm_i915_private *dev_priv = dev->dev_private;
5443
5444 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5445
5446 /*
5447 * TODO: disable RPS interrupts on GEN9+ too once RPS support
5448 * is added for it.
5449 */
5450 if (INTEL_INFO(dev)->gen < 9)
5451 gen6_disable_rps_interrupts(dev);
5452 }
5453
5454 /**
5455 * intel_suspend_gt_powersave - suspend PM work and helper threads
5456 * @dev: drm device
5457 *
5458 * We don't want to disable RC6 or other features here, we just want
5459 * to make sure any work we've queued has finished and won't bother
5460 * us while we're suspended.
5461 */
5462 void intel_suspend_gt_powersave(struct drm_device *dev)
5463 {
5464 struct drm_i915_private *dev_priv = dev->dev_private;
5465
5466 if (INTEL_INFO(dev)->gen < 6)
5467 return;
5468
5469 gen6_suspend_rps(dev);
5470
5471 /* Force GPU to min freq during suspend */
5472 gen6_rps_idle(dev_priv);
5473 }
5474
5475 void intel_disable_gt_powersave(struct drm_device *dev)
5476 {
5477 struct drm_i915_private *dev_priv = dev->dev_private;
5478
5479 if (IS_IRONLAKE_M(dev)) {
5480 ironlake_disable_drps(dev);
5481 } else if (INTEL_INFO(dev)->gen >= 6) {
5482 intel_suspend_gt_powersave(dev);
5483
5484 mutex_lock(&dev_priv->rps.hw_lock);
5485 if (INTEL_INFO(dev)->gen >= 9)
5486 gen9_disable_rps(dev);
5487 else if (IS_CHERRYVIEW(dev))
5488 cherryview_disable_rps(dev);
5489 else if (IS_VALLEYVIEW(dev))
5490 valleyview_disable_rps(dev);
5491 else
5492 gen6_disable_rps(dev);
5493
5494 dev_priv->rps.enabled = false;
5495 mutex_unlock(&dev_priv->rps.hw_lock);
5496 }
5497 }
5498
5499 static void intel_gen6_powersave_work(struct work_struct *work)
5500 {
5501 struct drm_i915_private *dev_priv =
5502 container_of(work, struct drm_i915_private,
5503 rps.delayed_resume_work.work);
5504 struct drm_device *dev = dev_priv->dev;
5505
5506 mutex_lock(&dev_priv->rps.hw_lock);
5507
5508 /*
5509 * TODO: reset/enable RPS interrupts on GEN9+ too, once RPS support is
5510 * added for it.
5511 */
5512 if (INTEL_INFO(dev)->gen < 9)
5513 gen6_reset_rps_interrupts(dev);
5514
5515 if (IS_CHERRYVIEW(dev)) {
5516 cherryview_enable_rps(dev);
5517 } else if (IS_VALLEYVIEW(dev)) {
5518 valleyview_enable_rps(dev);
5519 } else if (INTEL_INFO(dev)->gen >= 9) {
5520 gen9_enable_rc6(dev);
5521 gen9_enable_rps(dev);
5522 __gen6_update_ring_freq(dev);
5523 } else if (IS_BROADWELL(dev)) {
5524 gen8_enable_rps(dev);
5525 __gen6_update_ring_freq(dev);
5526 } else {
5527 gen6_enable_rps(dev);
5528 __gen6_update_ring_freq(dev);
5529 }
5530 dev_priv->rps.enabled = true;
5531
5532 if (INTEL_INFO(dev)->gen < 9)
5533 gen6_enable_rps_interrupts(dev);
5534
5535 mutex_unlock(&dev_priv->rps.hw_lock);
5536
5537 intel_runtime_pm_put(dev_priv);
5538 }
5539
5540 void intel_enable_gt_powersave(struct drm_device *dev)
5541 {
5542 struct drm_i915_private *dev_priv = dev->dev_private;
5543
5544 /* Powersaving is controlled by the host when inside a VM */
5545 if (intel_vgpu_active(dev))
5546 return;
5547
5548 if (IS_IRONLAKE_M(dev)) {
5549 mutex_lock(&dev->struct_mutex);
5550 ironlake_enable_drps(dev);
5551 intel_init_emon(dev);
5552 mutex_unlock(&dev->struct_mutex);
5553 } else if (INTEL_INFO(dev)->gen >= 6) {
5554 /*
5555 * PCU communication is slow and this doesn't need to be
5556 * done at any specific time, so do this out of our fast path
5557 * to make resume and init faster.
5558 *
5559 * We depend on the HW RC6 power context save/restore
5560 * mechanism when entering D3 through runtime PM suspend. So
5561 * disable RPM until RPS/RC6 is properly setup. We can only
5562 * get here via the driver load/system resume/runtime resume
5563 * paths, so the _noresume version is enough (and in case of
5564 * runtime resume it's necessary).
5565 */
5566 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5567 round_jiffies_up_relative(HZ)))
5568 intel_runtime_pm_get_noresume(dev_priv);
5569 }
5570 }
5571
5572 void intel_reset_gt_powersave(struct drm_device *dev)
5573 {
5574 struct drm_i915_private *dev_priv = dev->dev_private;
5575
5576 if (INTEL_INFO(dev)->gen < 6)
5577 return;
5578
5579 gen6_suspend_rps(dev);
5580 dev_priv->rps.enabled = false;
5581 }
5582
5583 static void ibx_init_clock_gating(struct drm_device *dev)
5584 {
5585 struct drm_i915_private *dev_priv = dev->dev_private;
5586
5587 /*
5588 * On Ibex Peak and Cougar Point, we need to disable clock
5589 * gating for the panel power sequencer or it will fail to
5590 * start up when no ports are active.
5591 */
5592 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5593 }
5594
5595 static void g4x_disable_trickle_feed(struct drm_device *dev)
5596 {
5597 struct drm_i915_private *dev_priv = dev->dev_private;
5598 int pipe;
5599
5600 for_each_pipe(dev_priv, pipe) {
5601 I915_WRITE(DSPCNTR(pipe),
5602 I915_READ(DSPCNTR(pipe)) |
5603 DISPPLANE_TRICKLE_FEED_DISABLE);
5604 intel_flush_primary_plane(dev_priv, pipe);
5605 }
5606 }
5607
5608 static void ilk_init_lp_watermarks(struct drm_device *dev)
5609 {
5610 struct drm_i915_private *dev_priv = dev->dev_private;
5611
5612 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5613 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5614 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5615
5616 /*
5617 * Don't touch WM1S_LP_EN here.
5618 * Doing so could cause underruns.
5619 */
5620 }
5621
5622 static void ironlake_init_clock_gating(struct drm_device *dev)
5623 {
5624 struct drm_i915_private *dev_priv = dev->dev_private;
5625 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5626
5627 /*
5628 * Required for FBC
5629 * WaFbcDisableDpfcClockGating:ilk
5630 */
5631 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5632 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5633 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5634
5635 I915_WRITE(PCH_3DCGDIS0,
5636 MARIUNIT_CLOCK_GATE_DISABLE |
5637 SVSMUNIT_CLOCK_GATE_DISABLE);
5638 I915_WRITE(PCH_3DCGDIS1,
5639 VFMUNIT_CLOCK_GATE_DISABLE);
5640
5641 /*
5642 * According to the spec the following bits should be set in
5643 * order to enable memory self-refresh
5644 * The bit 22/21 of 0x42004
5645 * The bit 5 of 0x42020
5646 * The bit 15 of 0x45000
5647 */
5648 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5649 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5650 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5651 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5652 I915_WRITE(DISP_ARB_CTL,
5653 (I915_READ(DISP_ARB_CTL) |
5654 DISP_FBC_WM_DIS));
5655
5656 ilk_init_lp_watermarks(dev);
5657
5658 /*
5659 * Based on the document from hardware guys the following bits
5660 * should be set unconditionally in order to enable FBC.
5661 * The bit 22 of 0x42000
5662 * The bit 22 of 0x42004
5663 * The bit 7,8,9 of 0x42020.
5664 */
5665 if (IS_IRONLAKE_M(dev)) {
5666 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5667 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5668 I915_READ(ILK_DISPLAY_CHICKEN1) |
5669 ILK_FBCQ_DIS);
5670 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5671 I915_READ(ILK_DISPLAY_CHICKEN2) |
5672 ILK_DPARB_GATE);
5673 }
5674
5675 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5676
5677 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5678 I915_READ(ILK_DISPLAY_CHICKEN2) |
5679 ILK_ELPIN_409_SELECT);
5680 I915_WRITE(_3D_CHICKEN2,
5681 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5682 _3D_CHICKEN2_WM_READ_PIPELINED);
5683
5684 /* WaDisableRenderCachePipelinedFlush:ilk */
5685 I915_WRITE(CACHE_MODE_0,
5686 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5687
5688 /* WaDisable_RenderCache_OperationalFlush:ilk */
5689 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5690
5691 g4x_disable_trickle_feed(dev);
5692
5693 ibx_init_clock_gating(dev);
5694 }
5695
5696 static void cpt_init_clock_gating(struct drm_device *dev)
5697 {
5698 struct drm_i915_private *dev_priv = dev->dev_private;
5699 int pipe;
5700 uint32_t val;
5701
5702 /*
5703 * On Ibex Peak and Cougar Point, we need to disable clock
5704 * gating for the panel power sequencer or it will fail to
5705 * start up when no ports are active.
5706 */
5707 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5708 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5709 PCH_CPUNIT_CLOCK_GATE_DISABLE);
5710 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5711 DPLS_EDP_PPS_FIX_DIS);
5712 /* The below fixes the weird display corruption, a few pixels shifted
5713 * downward, on (only) LVDS of some HP laptops with IVY.
5714 */
5715 for_each_pipe(dev_priv, pipe) {
5716 val = I915_READ(TRANS_CHICKEN2(pipe));
5717 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5718 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5719 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5720 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5721 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5722 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5723 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5724 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5725 }
5726 /* WADP0ClockGatingDisable */
5727 for_each_pipe(dev_priv, pipe) {
5728 I915_WRITE(TRANS_CHICKEN1(pipe),
5729 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5730 }
5731 }
5732
5733 static void gen6_check_mch_setup(struct drm_device *dev)
5734 {
5735 struct drm_i915_private *dev_priv = dev->dev_private;
5736 uint32_t tmp;
5737
5738 tmp = I915_READ(MCH_SSKPD);
5739 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5740 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5741 tmp);
5742 }
5743
5744 static void gen6_init_clock_gating(struct drm_device *dev)
5745 {
5746 struct drm_i915_private *dev_priv = dev->dev_private;
5747 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5748
5749 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5750
5751 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5752 I915_READ(ILK_DISPLAY_CHICKEN2) |
5753 ILK_ELPIN_409_SELECT);
5754
5755 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5756 I915_WRITE(_3D_CHICKEN,
5757 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5758
5759 /* WaDisable_RenderCache_OperationalFlush:snb */
5760 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5761
5762 /*
5763 * BSpec recoomends 8x4 when MSAA is used,
5764 * however in practice 16x4 seems fastest.
5765 *
5766 * Note that PS/WM thread counts depend on the WIZ hashing
5767 * disable bit, which we don't touch here, but it's good
5768 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5769 */
5770 I915_WRITE(GEN6_GT_MODE,
5771 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5772
5773 ilk_init_lp_watermarks(dev);
5774
5775 I915_WRITE(CACHE_MODE_0,
5776 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5777
5778 I915_WRITE(GEN6_UCGCTL1,
5779 I915_READ(GEN6_UCGCTL1) |
5780 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5781 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5782
5783 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5784 * gating disable must be set. Failure to set it results in
5785 * flickering pixels due to Z write ordering failures after
5786 * some amount of runtime in the Mesa "fire" demo, and Unigine
5787 * Sanctuary and Tropics, and apparently anything else with
5788 * alpha test or pixel discard.
5789 *
5790 * According to the spec, bit 11 (RCCUNIT) must also be set,
5791 * but we didn't debug actual testcases to find it out.
5792 *
5793 * WaDisableRCCUnitClockGating:snb
5794 * WaDisableRCPBUnitClockGating:snb
5795 */
5796 I915_WRITE(GEN6_UCGCTL2,
5797 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5798 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5799
5800 /* WaStripsFansDisableFastClipPerformanceFix:snb */
5801 I915_WRITE(_3D_CHICKEN3,
5802 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5803
5804 /*
5805 * Bspec says:
5806 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5807 * 3DSTATE_SF number of SF output attributes is more than 16."
5808 */
5809 I915_WRITE(_3D_CHICKEN3,
5810 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5811
5812 /*
5813 * According to the spec the following bits should be
5814 * set in order to enable memory self-refresh and fbc:
5815 * The bit21 and bit22 of 0x42000
5816 * The bit21 and bit22 of 0x42004
5817 * The bit5 and bit7 of 0x42020
5818 * The bit14 of 0x70180
5819 * The bit14 of 0x71180
5820 *
5821 * WaFbcAsynchFlipDisableFbcQueue:snb
5822 */
5823 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5824 I915_READ(ILK_DISPLAY_CHICKEN1) |
5825 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5826 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5827 I915_READ(ILK_DISPLAY_CHICKEN2) |
5828 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5829 I915_WRITE(ILK_DSPCLK_GATE_D,
5830 I915_READ(ILK_DSPCLK_GATE_D) |
5831 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
5832 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5833
5834 g4x_disable_trickle_feed(dev);
5835
5836 cpt_init_clock_gating(dev);
5837
5838 gen6_check_mch_setup(dev);
5839 }
5840
5841 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5842 {
5843 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5844
5845 /*
5846 * WaVSThreadDispatchOverride:ivb,vlv
5847 *
5848 * This actually overrides the dispatch
5849 * mode for all thread types.
5850 */
5851 reg &= ~GEN7_FF_SCHED_MASK;
5852 reg |= GEN7_FF_TS_SCHED_HW;
5853 reg |= GEN7_FF_VS_SCHED_HW;
5854 reg |= GEN7_FF_DS_SCHED_HW;
5855
5856 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5857 }
5858
5859 static void lpt_init_clock_gating(struct drm_device *dev)
5860 {
5861 struct drm_i915_private *dev_priv = dev->dev_private;
5862
5863 /*
5864 * TODO: this bit should only be enabled when really needed, then
5865 * disabled when not needed anymore in order to save power.
5866 */
5867 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5868 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5869 I915_READ(SOUTH_DSPCLK_GATE_D) |
5870 PCH_LP_PARTITION_LEVEL_DISABLE);
5871
5872 /* WADPOClockGatingDisable:hsw */
5873 I915_WRITE(_TRANSA_CHICKEN1,
5874 I915_READ(_TRANSA_CHICKEN1) |
5875 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5876 }
5877
5878 static void lpt_suspend_hw(struct drm_device *dev)
5879 {
5880 struct drm_i915_private *dev_priv = dev->dev_private;
5881
5882 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5883 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5884
5885 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5886 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5887 }
5888 }
5889
5890 static void broadwell_init_clock_gating(struct drm_device *dev)
5891 {
5892 struct drm_i915_private *dev_priv = dev->dev_private;
5893 enum pipe pipe;
5894
5895 I915_WRITE(WM3_LP_ILK, 0);
5896 I915_WRITE(WM2_LP_ILK, 0);
5897 I915_WRITE(WM1_LP_ILK, 0);
5898
5899 /* WaSwitchSolVfFArbitrationPriority:bdw */
5900 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5901
5902 /* WaPsrDPAMaskVBlankInSRD:bdw */
5903 I915_WRITE(CHICKEN_PAR1_1,
5904 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5905
5906 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5907 for_each_pipe(dev_priv, pipe) {
5908 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5909 I915_READ(CHICKEN_PIPESL_1(pipe)) |
5910 BDW_DPRS_MASK_VBLANK_SRD);
5911 }
5912
5913 /* WaVSRefCountFullforceMissDisable:bdw */
5914 /* WaDSRefCountFullforceMissDisable:bdw */
5915 I915_WRITE(GEN7_FF_THREAD_MODE,
5916 I915_READ(GEN7_FF_THREAD_MODE) &
5917 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5918
5919 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5920 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5921
5922 /* WaDisableSDEUnitClockGating:bdw */
5923 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5924 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5925
5926 lpt_init_clock_gating(dev);
5927 }
5928
5929 static void haswell_init_clock_gating(struct drm_device *dev)
5930 {
5931 struct drm_i915_private *dev_priv = dev->dev_private;
5932
5933 ilk_init_lp_watermarks(dev);
5934
5935 /* L3 caching of data atomics doesn't work -- disable it. */
5936 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5937 I915_WRITE(HSW_ROW_CHICKEN3,
5938 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5939
5940 /* This is required by WaCatErrorRejectionIssue:hsw */
5941 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5942 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5943 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5944
5945 /* WaVSRefCountFullforceMissDisable:hsw */
5946 I915_WRITE(GEN7_FF_THREAD_MODE,
5947 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5948
5949 /* WaDisable_RenderCache_OperationalFlush:hsw */
5950 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5951
5952 /* enable HiZ Raw Stall Optimization */
5953 I915_WRITE(CACHE_MODE_0_GEN7,
5954 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5955
5956 /* WaDisable4x2SubspanOptimization:hsw */
5957 I915_WRITE(CACHE_MODE_1,
5958 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5959
5960 /*
5961 * BSpec recommends 8x4 when MSAA is used,
5962 * however in practice 16x4 seems fastest.
5963 *
5964 * Note that PS/WM thread counts depend on the WIZ hashing
5965 * disable bit, which we don't touch here, but it's good
5966 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5967 */
5968 I915_WRITE(GEN7_GT_MODE,
5969 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5970
5971 /* WaSampleCChickenBitEnable:hsw */
5972 I915_WRITE(HALF_SLICE_CHICKEN3,
5973 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
5974
5975 /* WaSwitchSolVfFArbitrationPriority:hsw */
5976 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5977
5978 /* WaRsPkgCStateDisplayPMReq:hsw */
5979 I915_WRITE(CHICKEN_PAR1_1,
5980 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5981
5982 lpt_init_clock_gating(dev);
5983 }
5984
5985 static void ivybridge_init_clock_gating(struct drm_device *dev)
5986 {
5987 struct drm_i915_private *dev_priv = dev->dev_private;
5988 uint32_t snpcr;
5989
5990 ilk_init_lp_watermarks(dev);
5991
5992 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5993
5994 /* WaDisableEarlyCull:ivb */
5995 I915_WRITE(_3D_CHICKEN3,
5996 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5997
5998 /* WaDisableBackToBackFlipFix:ivb */
5999 I915_WRITE(IVB_CHICKEN3,
6000 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6001 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6002
6003 /* WaDisablePSDDualDispatchEnable:ivb */
6004 if (IS_IVB_GT1(dev))
6005 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6006 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6007
6008 /* WaDisable_RenderCache_OperationalFlush:ivb */
6009 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6010
6011 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6012 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6013 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6014
6015 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6016 I915_WRITE(GEN7_L3CNTLREG1,
6017 GEN7_WA_FOR_GEN7_L3_CONTROL);
6018 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6019 GEN7_WA_L3_CHICKEN_MODE);
6020 if (IS_IVB_GT1(dev))
6021 I915_WRITE(GEN7_ROW_CHICKEN2,
6022 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6023 else {
6024 /* must write both registers */
6025 I915_WRITE(GEN7_ROW_CHICKEN2,
6026 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6027 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6028 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6029 }
6030
6031 /* WaForceL3Serialization:ivb */
6032 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6033 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6034
6035 /*
6036 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6037 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6038 */
6039 I915_WRITE(GEN6_UCGCTL2,
6040 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6041
6042 /* This is required by WaCatErrorRejectionIssue:ivb */
6043 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6044 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6045 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6046
6047 g4x_disable_trickle_feed(dev);
6048
6049 gen7_setup_fixed_func_scheduler(dev_priv);
6050
6051 if (0) { /* causes HiZ corruption on ivb:gt1 */
6052 /* enable HiZ Raw Stall Optimization */
6053 I915_WRITE(CACHE_MODE_0_GEN7,
6054 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6055 }
6056
6057 /* WaDisable4x2SubspanOptimization:ivb */
6058 I915_WRITE(CACHE_MODE_1,
6059 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6060
6061 /*
6062 * BSpec recommends 8x4 when MSAA is used,
6063 * however in practice 16x4 seems fastest.
6064 *
6065 * Note that PS/WM thread counts depend on the WIZ hashing
6066 * disable bit, which we don't touch here, but it's good
6067 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6068 */
6069 I915_WRITE(GEN7_GT_MODE,
6070 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6071
6072 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6073 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6074 snpcr |= GEN6_MBC_SNPCR_MED;
6075 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6076
6077 if (!HAS_PCH_NOP(dev))
6078 cpt_init_clock_gating(dev);
6079
6080 gen6_check_mch_setup(dev);
6081 }
6082
6083 static void valleyview_init_clock_gating(struct drm_device *dev)
6084 {
6085 struct drm_i915_private *dev_priv = dev->dev_private;
6086
6087 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6088
6089 /* WaDisableEarlyCull:vlv */
6090 I915_WRITE(_3D_CHICKEN3,
6091 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6092
6093 /* WaDisableBackToBackFlipFix:vlv */
6094 I915_WRITE(IVB_CHICKEN3,
6095 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6096 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6097
6098 /* WaPsdDispatchEnable:vlv */
6099 /* WaDisablePSDDualDispatchEnable:vlv */
6100 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6101 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6102 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6103
6104 /* WaDisable_RenderCache_OperationalFlush:vlv */
6105 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6106
6107 /* WaForceL3Serialization:vlv */
6108 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6109 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6110
6111 /* WaDisableDopClockGating:vlv */
6112 I915_WRITE(GEN7_ROW_CHICKEN2,
6113 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6114
6115 /* This is required by WaCatErrorRejectionIssue:vlv */
6116 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6117 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6118 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6119
6120 gen7_setup_fixed_func_scheduler(dev_priv);
6121
6122 /*
6123 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6124 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6125 */
6126 I915_WRITE(GEN6_UCGCTL2,
6127 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6128
6129 /* WaDisableL3Bank2xClockGate:vlv
6130 * Disabling L3 clock gating- MMIO 940c[25] = 1
6131 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6132 I915_WRITE(GEN7_UCGCTL4,
6133 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6134
6135 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6136
6137 /*
6138 * BSpec says this must be set, even though
6139 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6140 */
6141 I915_WRITE(CACHE_MODE_1,
6142 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6143
6144 /*
6145 * BSpec recommends 8x4 when MSAA is used,
6146 * however in practice 16x4 seems fastest.
6147 *
6148 * Note that PS/WM thread counts depend on the WIZ hashing
6149 * disable bit, which we don't touch here, but it's good
6150 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6151 */
6152 I915_WRITE(GEN7_GT_MODE,
6153 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6154
6155 /*
6156 * WaIncreaseL3CreditsForVLVB0:vlv
6157 * This is the hardware default actually.
6158 */
6159 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6160
6161 /*
6162 * WaDisableVLVClockGating_VBIIssue:vlv
6163 * Disable clock gating on th GCFG unit to prevent a delay
6164 * in the reporting of vblank events.
6165 */
6166 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6167 }
6168
6169 static void cherryview_init_clock_gating(struct drm_device *dev)
6170 {
6171 struct drm_i915_private *dev_priv = dev->dev_private;
6172
6173 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6174
6175 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6176
6177 /* WaVSRefCountFullforceMissDisable:chv */
6178 /* WaDSRefCountFullforceMissDisable:chv */
6179 I915_WRITE(GEN7_FF_THREAD_MODE,
6180 I915_READ(GEN7_FF_THREAD_MODE) &
6181 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6182
6183 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6184 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6185 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6186
6187 /* WaDisableCSUnitClockGating:chv */
6188 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6189 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6190
6191 /* WaDisableSDEUnitClockGating:chv */
6192 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6193 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6194 }
6195
6196 static void g4x_init_clock_gating(struct drm_device *dev)
6197 {
6198 struct drm_i915_private *dev_priv = dev->dev_private;
6199 uint32_t dspclk_gate;
6200
6201 I915_WRITE(RENCLK_GATE_D1, 0);
6202 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6203 GS_UNIT_CLOCK_GATE_DISABLE |
6204 CL_UNIT_CLOCK_GATE_DISABLE);
6205 I915_WRITE(RAMCLK_GATE_D, 0);
6206 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6207 OVRUNIT_CLOCK_GATE_DISABLE |
6208 OVCUNIT_CLOCK_GATE_DISABLE;
6209 if (IS_GM45(dev))
6210 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6211 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6212
6213 /* WaDisableRenderCachePipelinedFlush */
6214 I915_WRITE(CACHE_MODE_0,
6215 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6216
6217 /* WaDisable_RenderCache_OperationalFlush:g4x */
6218 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6219
6220 g4x_disable_trickle_feed(dev);
6221 }
6222
6223 static void crestline_init_clock_gating(struct drm_device *dev)
6224 {
6225 struct drm_i915_private *dev_priv = dev->dev_private;
6226
6227 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6228 I915_WRITE(RENCLK_GATE_D2, 0);
6229 I915_WRITE(DSPCLK_GATE_D, 0);
6230 I915_WRITE(RAMCLK_GATE_D, 0);
6231 I915_WRITE16(DEUC, 0);
6232 I915_WRITE(MI_ARB_STATE,
6233 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6234
6235 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6236 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6237 }
6238
6239 static void broadwater_init_clock_gating(struct drm_device *dev)
6240 {
6241 struct drm_i915_private *dev_priv = dev->dev_private;
6242
6243 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6244 I965_RCC_CLOCK_GATE_DISABLE |
6245 I965_RCPB_CLOCK_GATE_DISABLE |
6246 I965_ISC_CLOCK_GATE_DISABLE |
6247 I965_FBC_CLOCK_GATE_DISABLE);
6248 I915_WRITE(RENCLK_GATE_D2, 0);
6249 I915_WRITE(MI_ARB_STATE,
6250 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6251
6252 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6253 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6254 }
6255
6256 static void gen3_init_clock_gating(struct drm_device *dev)
6257 {
6258 struct drm_i915_private *dev_priv = dev->dev_private;
6259 u32 dstate = I915_READ(D_STATE);
6260
6261 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6262 DSTATE_DOT_CLOCK_GATING;
6263 I915_WRITE(D_STATE, dstate);
6264
6265 if (IS_PINEVIEW(dev))
6266 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6267
6268 /* IIR "flip pending" means done if this bit is set */
6269 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6270
6271 /* interrupts should cause a wake up from C3 */
6272 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6273
6274 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6275 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6276
6277 I915_WRITE(MI_ARB_STATE,
6278 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6279 }
6280
6281 static void i85x_init_clock_gating(struct drm_device *dev)
6282 {
6283 struct drm_i915_private *dev_priv = dev->dev_private;
6284
6285 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6286
6287 /* interrupts should cause a wake up from C3 */
6288 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6289 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6290
6291 I915_WRITE(MEM_MODE,
6292 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6293 }
6294
6295 static void i830_init_clock_gating(struct drm_device *dev)
6296 {
6297 struct drm_i915_private *dev_priv = dev->dev_private;
6298
6299 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6300
6301 I915_WRITE(MEM_MODE,
6302 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6303 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6304 }
6305
6306 void intel_init_clock_gating(struct drm_device *dev)
6307 {
6308 struct drm_i915_private *dev_priv = dev->dev_private;
6309
6310 if (dev_priv->display.init_clock_gating)
6311 dev_priv->display.init_clock_gating(dev);
6312 }
6313
6314 void intel_suspend_hw(struct drm_device *dev)
6315 {
6316 if (HAS_PCH_LPT(dev))
6317 lpt_suspend_hw(dev);
6318 }
6319
6320 /* Set up chip specific power management-related functions */
6321 void intel_init_pm(struct drm_device *dev)
6322 {
6323 struct drm_i915_private *dev_priv = dev->dev_private;
6324
6325 intel_fbc_init(dev_priv);
6326
6327 /* For cxsr */
6328 if (IS_PINEVIEW(dev))
6329 i915_pineview_get_mem_freq(dev);
6330 else if (IS_GEN5(dev))
6331 i915_ironlake_get_mem_freq(dev);
6332
6333 /* For FIFO watermark updates */
6334 if (INTEL_INFO(dev)->gen >= 9) {
6335 skl_setup_wm_latency(dev);
6336
6337 dev_priv->display.init_clock_gating = skl_init_clock_gating;
6338 dev_priv->display.update_wm = skl_update_wm;
6339 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6340 } else if (HAS_PCH_SPLIT(dev)) {
6341 ilk_setup_wm_latency(dev);
6342
6343 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6344 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6345 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6346 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6347 dev_priv->display.update_wm = ilk_update_wm;
6348 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6349 } else {
6350 DRM_DEBUG_KMS("Failed to read display plane latency. "
6351 "Disable CxSR\n");
6352 }
6353
6354 if (IS_GEN5(dev))
6355 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6356 else if (IS_GEN6(dev))
6357 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6358 else if (IS_IVYBRIDGE(dev))
6359 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6360 else if (IS_HASWELL(dev))
6361 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6362 else if (INTEL_INFO(dev)->gen == 8)
6363 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6364 } else if (IS_CHERRYVIEW(dev)) {
6365 dev_priv->display.update_wm = cherryview_update_wm;
6366 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6367 dev_priv->display.init_clock_gating =
6368 cherryview_init_clock_gating;
6369 } else if (IS_VALLEYVIEW(dev)) {
6370 dev_priv->display.update_wm = valleyview_update_wm;
6371 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6372 dev_priv->display.init_clock_gating =
6373 valleyview_init_clock_gating;
6374 } else if (IS_PINEVIEW(dev)) {
6375 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6376 dev_priv->is_ddr3,
6377 dev_priv->fsb_freq,
6378 dev_priv->mem_freq)) {
6379 DRM_INFO("failed to find known CxSR latency "
6380 "(found ddr%s fsb freq %d, mem freq %d), "
6381 "disabling CxSR\n",
6382 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6383 dev_priv->fsb_freq, dev_priv->mem_freq);
6384 /* Disable CxSR and never update its watermark again */
6385 intel_set_memory_cxsr(dev_priv, false);
6386 dev_priv->display.update_wm = NULL;
6387 } else
6388 dev_priv->display.update_wm = pineview_update_wm;
6389 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6390 } else if (IS_G4X(dev)) {
6391 dev_priv->display.update_wm = g4x_update_wm;
6392 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6393 } else if (IS_GEN4(dev)) {
6394 dev_priv->display.update_wm = i965_update_wm;
6395 if (IS_CRESTLINE(dev))
6396 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6397 else if (IS_BROADWATER(dev))
6398 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6399 } else if (IS_GEN3(dev)) {
6400 dev_priv->display.update_wm = i9xx_update_wm;
6401 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6402 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6403 } else if (IS_GEN2(dev)) {
6404 if (INTEL_INFO(dev)->num_pipes == 1) {
6405 dev_priv->display.update_wm = i845_update_wm;
6406 dev_priv->display.get_fifo_size = i845_get_fifo_size;
6407 } else {
6408 dev_priv->display.update_wm = i9xx_update_wm;
6409 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6410 }
6411
6412 if (IS_I85X(dev) || IS_I865G(dev))
6413 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6414 else
6415 dev_priv->display.init_clock_gating = i830_init_clock_gating;
6416 } else {
6417 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6418 }
6419 }
6420
6421 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
6422 {
6423 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6424
6425 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6426 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6427 return -EAGAIN;
6428 }
6429
6430 I915_WRITE(GEN6_PCODE_DATA, *val);
6431 I915_WRITE(GEN6_PCODE_DATA1, 0);
6432 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6433
6434 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6435 500)) {
6436 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6437 return -ETIMEDOUT;
6438 }
6439
6440 *val = I915_READ(GEN6_PCODE_DATA);
6441 I915_WRITE(GEN6_PCODE_DATA, 0);
6442
6443 return 0;
6444 }
6445
6446 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
6447 {
6448 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6449
6450 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6451 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6452 return -EAGAIN;
6453 }
6454
6455 I915_WRITE(GEN6_PCODE_DATA, val);
6456 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6457
6458 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6459 500)) {
6460 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6461 return -ETIMEDOUT;
6462 }
6463
6464 I915_WRITE(GEN6_PCODE_DATA, 0);
6465
6466 return 0;
6467 }
6468
6469 static int vlv_gpu_freq_div(unsigned int czclk_freq)
6470 {
6471 switch (czclk_freq) {
6472 case 200:
6473 return 10;
6474 case 267:
6475 return 12;
6476 case 320:
6477 case 333:
6478 return 16;
6479 case 400:
6480 return 20;
6481 default:
6482 return -1;
6483 }
6484 }
6485
6486 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6487 {
6488 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6489
6490 div = vlv_gpu_freq_div(czclk_freq);
6491 if (div < 0)
6492 return div;
6493
6494 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6495 }
6496
6497 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6498 {
6499 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6500
6501 mul = vlv_gpu_freq_div(czclk_freq);
6502 if (mul < 0)
6503 return mul;
6504
6505 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6506 }
6507
6508 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6509 {
6510 int div, czclk_freq = dev_priv->rps.cz_freq;
6511
6512 div = vlv_gpu_freq_div(czclk_freq) / 2;
6513 if (div < 0)
6514 return div;
6515
6516 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6517 }
6518
6519 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6520 {
6521 int mul, czclk_freq = dev_priv->rps.cz_freq;
6522
6523 mul = vlv_gpu_freq_div(czclk_freq) / 2;
6524 if (mul < 0)
6525 return mul;
6526
6527 /* CHV needs even values */
6528 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6529 }
6530
6531 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6532 {
6533 if (IS_CHERRYVIEW(dev_priv->dev))
6534 return chv_gpu_freq(dev_priv, val);
6535 else if (IS_VALLEYVIEW(dev_priv->dev))
6536 return byt_gpu_freq(dev_priv, val);
6537 else
6538 return val * GT_FREQUENCY_MULTIPLIER;
6539 }
6540
6541 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
6542 {
6543 if (IS_CHERRYVIEW(dev_priv->dev))
6544 return chv_freq_opcode(dev_priv, val);
6545 else if (IS_VALLEYVIEW(dev_priv->dev))
6546 return byt_freq_opcode(dev_priv, val);
6547 else
6548 return val / GT_FREQUENCY_MULTIPLIER;
6549 }
6550
6551 void intel_pm_setup(struct drm_device *dev)
6552 {
6553 struct drm_i915_private *dev_priv = dev->dev_private;
6554
6555 mutex_init(&dev_priv->rps.hw_lock);
6556
6557 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6558 intel_gen6_powersave_work);
6559
6560 dev_priv->pm.suspended = false;
6561 }
This page took 0.175758 seconds and 5 git commands to generate.