drm/i915/skl: Move gen9 pm initialization into its own branch
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38 * RC6 is a special power stage which allows the GPU to enter an very
39 * low-voltage mode when idle, using down to 0V while at this stage. This
40 * stage is entered automatically when the GPU is idle when RC6 support is
41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42 *
43 * There are different RC6 modes available in Intel GPU, which differentiate
44 * among each other with the latency required to enter and leave RC6 and
45 * voltage consumed by the GPU in different states.
46 *
47 * The combination of the following flags define which states GPU is allowed
48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49 * RC6pp is deepest RC6. Their support by hardware varies according to the
50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51 * which brings the most power savings; deeper states save more power, but
52 * require higher latency to switch to and wake up.
53 */
54 #define INTEL_RC6_ENABLE (1<<0)
55 #define INTEL_RC6p_ENABLE (1<<1)
56 #define INTEL_RC6pp_ENABLE (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59 * framebuffer contents in-memory, aiming at reducing the required bandwidth
60 * during in-memory transfers and, therefore, reduce the power packet.
61 *
62 * The benefits of FBC are mostly visible with solid backgrounds and
63 * variation-less patterns.
64 *
65 * FBC-related functionality can be enabled by the means of the
66 * i915.i915_enable_fbc parameter
67 */
68
69 static void gen9_init_clock_gating(struct drm_device *dev)
70 {
71 struct drm_i915_private *dev_priv = dev->dev_private;
72
73 /*
74 * WaDisableSDEUnitClockGating:skl
75 * This seems to be a pre-production w/a.
76 */
77 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
78 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
79
80 /*
81 * WaDisableDgMirrorFixInHalfSliceChicken5:skl
82 * This is a pre-production w/a.
83 */
84 I915_WRITE(GEN9_HALF_SLICE_CHICKEN5,
85 I915_READ(GEN9_HALF_SLICE_CHICKEN5) &
86 ~GEN9_DG_MIRROR_FIX_ENABLE);
87
88 /* Wa4x4STCOptimizationDisable:skl */
89 I915_WRITE(CACHE_MODE_1,
90 _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
91 }
92
93 static void i8xx_disable_fbc(struct drm_device *dev)
94 {
95 struct drm_i915_private *dev_priv = dev->dev_private;
96 u32 fbc_ctl;
97
98 /* Disable compression */
99 fbc_ctl = I915_READ(FBC_CONTROL);
100 if ((fbc_ctl & FBC_CTL_EN) == 0)
101 return;
102
103 fbc_ctl &= ~FBC_CTL_EN;
104 I915_WRITE(FBC_CONTROL, fbc_ctl);
105
106 /* Wait for compressing bit to clear */
107 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
108 DRM_DEBUG_KMS("FBC idle timed out\n");
109 return;
110 }
111
112 DRM_DEBUG_KMS("disabled FBC\n");
113 }
114
115 static void i8xx_enable_fbc(struct drm_crtc *crtc)
116 {
117 struct drm_device *dev = crtc->dev;
118 struct drm_i915_private *dev_priv = dev->dev_private;
119 struct drm_framebuffer *fb = crtc->primary->fb;
120 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
121 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
122 int cfb_pitch;
123 int i;
124 u32 fbc_ctl;
125
126 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
127 if (fb->pitches[0] < cfb_pitch)
128 cfb_pitch = fb->pitches[0];
129
130 /* FBC_CTL wants 32B or 64B units */
131 if (IS_GEN2(dev))
132 cfb_pitch = (cfb_pitch / 32) - 1;
133 else
134 cfb_pitch = (cfb_pitch / 64) - 1;
135
136 /* Clear old tags */
137 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
138 I915_WRITE(FBC_TAG + (i * 4), 0);
139
140 if (IS_GEN4(dev)) {
141 u32 fbc_ctl2;
142
143 /* Set it up... */
144 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
145 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
146 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
147 I915_WRITE(FBC_FENCE_OFF, crtc->y);
148 }
149
150 /* enable it... */
151 fbc_ctl = I915_READ(FBC_CONTROL);
152 fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
153 fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
154 if (IS_I945GM(dev))
155 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
156 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
157 fbc_ctl |= obj->fence_reg;
158 I915_WRITE(FBC_CONTROL, fbc_ctl);
159
160 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
161 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
162 }
163
164 static bool i8xx_fbc_enabled(struct drm_device *dev)
165 {
166 struct drm_i915_private *dev_priv = dev->dev_private;
167
168 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
169 }
170
171 static void g4x_enable_fbc(struct drm_crtc *crtc)
172 {
173 struct drm_device *dev = crtc->dev;
174 struct drm_i915_private *dev_priv = dev->dev_private;
175 struct drm_framebuffer *fb = crtc->primary->fb;
176 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
178 u32 dpfc_ctl;
179
180 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
181 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
182 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
183 else
184 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
185 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
186
187 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
188
189 /* enable it... */
190 I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
191
192 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
193 }
194
195 static void g4x_disable_fbc(struct drm_device *dev)
196 {
197 struct drm_i915_private *dev_priv = dev->dev_private;
198 u32 dpfc_ctl;
199
200 /* Disable compression */
201 dpfc_ctl = I915_READ(DPFC_CONTROL);
202 if (dpfc_ctl & DPFC_CTL_EN) {
203 dpfc_ctl &= ~DPFC_CTL_EN;
204 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
205
206 DRM_DEBUG_KMS("disabled FBC\n");
207 }
208 }
209
210 static bool g4x_fbc_enabled(struct drm_device *dev)
211 {
212 struct drm_i915_private *dev_priv = dev->dev_private;
213
214 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
215 }
216
217 static void sandybridge_blit_fbc_update(struct drm_device *dev)
218 {
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 u32 blt_ecoskpd;
221
222 /* Make sure blitter notifies FBC of writes */
223
224 /* Blitter is part of Media powerwell on VLV. No impact of
225 * his param in other platforms for now */
226 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
227
228 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
229 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
230 GEN6_BLITTER_LOCK_SHIFT;
231 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
232 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
233 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
234 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
235 GEN6_BLITTER_LOCK_SHIFT);
236 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
237 POSTING_READ(GEN6_BLITTER_ECOSKPD);
238
239 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
240 }
241
242 static void ironlake_enable_fbc(struct drm_crtc *crtc)
243 {
244 struct drm_device *dev = crtc->dev;
245 struct drm_i915_private *dev_priv = dev->dev_private;
246 struct drm_framebuffer *fb = crtc->primary->fb;
247 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
248 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
249 u32 dpfc_ctl;
250
251 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
252 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
253 dev_priv->fbc.threshold++;
254
255 switch (dev_priv->fbc.threshold) {
256 case 4:
257 case 3:
258 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
259 break;
260 case 2:
261 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
262 break;
263 case 1:
264 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
265 break;
266 }
267 dpfc_ctl |= DPFC_CTL_FENCE_EN;
268 if (IS_GEN5(dev))
269 dpfc_ctl |= obj->fence_reg;
270
271 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
272 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
273 /* enable it... */
274 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
275
276 if (IS_GEN6(dev)) {
277 I915_WRITE(SNB_DPFC_CTL_SA,
278 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
279 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
280 sandybridge_blit_fbc_update(dev);
281 }
282
283 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
284 }
285
286 static void ironlake_disable_fbc(struct drm_device *dev)
287 {
288 struct drm_i915_private *dev_priv = dev->dev_private;
289 u32 dpfc_ctl;
290
291 /* Disable compression */
292 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
293 if (dpfc_ctl & DPFC_CTL_EN) {
294 dpfc_ctl &= ~DPFC_CTL_EN;
295 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
296
297 DRM_DEBUG_KMS("disabled FBC\n");
298 }
299 }
300
301 static bool ironlake_fbc_enabled(struct drm_device *dev)
302 {
303 struct drm_i915_private *dev_priv = dev->dev_private;
304
305 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
306 }
307
308 static void gen7_enable_fbc(struct drm_crtc *crtc)
309 {
310 struct drm_device *dev = crtc->dev;
311 struct drm_i915_private *dev_priv = dev->dev_private;
312 struct drm_framebuffer *fb = crtc->primary->fb;
313 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
314 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
315 u32 dpfc_ctl;
316
317 dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
318 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
319 dev_priv->fbc.threshold++;
320
321 switch (dev_priv->fbc.threshold) {
322 case 4:
323 case 3:
324 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
325 break;
326 case 2:
327 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
328 break;
329 case 1:
330 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
331 break;
332 }
333
334 dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
335
336 if (dev_priv->fbc.false_color)
337 dpfc_ctl |= FBC_CTL_FALSE_COLOR;
338
339 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
340
341 if (IS_IVYBRIDGE(dev)) {
342 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
343 I915_WRITE(ILK_DISPLAY_CHICKEN1,
344 I915_READ(ILK_DISPLAY_CHICKEN1) |
345 ILK_FBCQ_DIS);
346 } else {
347 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
348 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
349 I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
350 HSW_FBCQ_DIS);
351 }
352
353 I915_WRITE(SNB_DPFC_CTL_SA,
354 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
355 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
356
357 sandybridge_blit_fbc_update(dev);
358
359 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
360 }
361
362 bool intel_fbc_enabled(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365
366 if (!dev_priv->display.fbc_enabled)
367 return false;
368
369 return dev_priv->display.fbc_enabled(dev);
370 }
371
372 void gen8_fbc_sw_flush(struct drm_device *dev, u32 value)
373 {
374 struct drm_i915_private *dev_priv = dev->dev_private;
375
376 if (!IS_GEN8(dev))
377 return;
378
379 I915_WRITE(MSG_FBC_REND_STATE, value);
380 }
381
382 static void intel_fbc_work_fn(struct work_struct *__work)
383 {
384 struct intel_fbc_work *work =
385 container_of(to_delayed_work(__work),
386 struct intel_fbc_work, work);
387 struct drm_device *dev = work->crtc->dev;
388 struct drm_i915_private *dev_priv = dev->dev_private;
389
390 mutex_lock(&dev->struct_mutex);
391 if (work == dev_priv->fbc.fbc_work) {
392 /* Double check that we haven't switched fb without cancelling
393 * the prior work.
394 */
395 if (work->crtc->primary->fb == work->fb) {
396 dev_priv->display.enable_fbc(work->crtc);
397
398 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
399 dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
400 dev_priv->fbc.y = work->crtc->y;
401 }
402
403 dev_priv->fbc.fbc_work = NULL;
404 }
405 mutex_unlock(&dev->struct_mutex);
406
407 kfree(work);
408 }
409
410 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
411 {
412 if (dev_priv->fbc.fbc_work == NULL)
413 return;
414
415 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
416
417 /* Synchronisation is provided by struct_mutex and checking of
418 * dev_priv->fbc.fbc_work, so we can perform the cancellation
419 * entirely asynchronously.
420 */
421 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
422 /* tasklet was killed before being run, clean up */
423 kfree(dev_priv->fbc.fbc_work);
424
425 /* Mark the work as no longer wanted so that if it does
426 * wake-up (because the work was already running and waiting
427 * for our mutex), it will discover that is no longer
428 * necessary to run.
429 */
430 dev_priv->fbc.fbc_work = NULL;
431 }
432
433 static void intel_enable_fbc(struct drm_crtc *crtc)
434 {
435 struct intel_fbc_work *work;
436 struct drm_device *dev = crtc->dev;
437 struct drm_i915_private *dev_priv = dev->dev_private;
438
439 if (!dev_priv->display.enable_fbc)
440 return;
441
442 intel_cancel_fbc_work(dev_priv);
443
444 work = kzalloc(sizeof(*work), GFP_KERNEL);
445 if (work == NULL) {
446 DRM_ERROR("Failed to allocate FBC work structure\n");
447 dev_priv->display.enable_fbc(crtc);
448 return;
449 }
450
451 work->crtc = crtc;
452 work->fb = crtc->primary->fb;
453 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
454
455 dev_priv->fbc.fbc_work = work;
456
457 /* Delay the actual enabling to let pageflipping cease and the
458 * display to settle before starting the compression. Note that
459 * this delay also serves a second purpose: it allows for a
460 * vblank to pass after disabling the FBC before we attempt
461 * to modify the control registers.
462 *
463 * A more complicated solution would involve tracking vblanks
464 * following the termination of the page-flipping sequence
465 * and indeed performing the enable as a co-routine and not
466 * waiting synchronously upon the vblank.
467 *
468 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
469 */
470 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
471 }
472
473 void intel_disable_fbc(struct drm_device *dev)
474 {
475 struct drm_i915_private *dev_priv = dev->dev_private;
476
477 intel_cancel_fbc_work(dev_priv);
478
479 if (!dev_priv->display.disable_fbc)
480 return;
481
482 dev_priv->display.disable_fbc(dev);
483 dev_priv->fbc.plane = -1;
484 }
485
486 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
487 enum no_fbc_reason reason)
488 {
489 if (dev_priv->fbc.no_fbc_reason == reason)
490 return false;
491
492 dev_priv->fbc.no_fbc_reason = reason;
493 return true;
494 }
495
496 /**
497 * intel_update_fbc - enable/disable FBC as needed
498 * @dev: the drm_device
499 *
500 * Set up the framebuffer compression hardware at mode set time. We
501 * enable it if possible:
502 * - plane A only (on pre-965)
503 * - no pixel mulitply/line duplication
504 * - no alpha buffer discard
505 * - no dual wide
506 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
507 *
508 * We can't assume that any compression will take place (worst case),
509 * so the compressed buffer has to be the same size as the uncompressed
510 * one. It also must reside (along with the line length buffer) in
511 * stolen memory.
512 *
513 * We need to enable/disable FBC on a global basis.
514 */
515 void intel_update_fbc(struct drm_device *dev)
516 {
517 struct drm_i915_private *dev_priv = dev->dev_private;
518 struct drm_crtc *crtc = NULL, *tmp_crtc;
519 struct intel_crtc *intel_crtc;
520 struct drm_framebuffer *fb;
521 struct drm_i915_gem_object *obj;
522 const struct drm_display_mode *adjusted_mode;
523 unsigned int max_width, max_height;
524
525 if (!HAS_FBC(dev)) {
526 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
527 return;
528 }
529
530 if (!i915.powersave) {
531 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
532 DRM_DEBUG_KMS("fbc disabled per module param\n");
533 return;
534 }
535
536 /*
537 * If FBC is already on, we just have to verify that we can
538 * keep it that way...
539 * Need to disable if:
540 * - more than one pipe is active
541 * - changing FBC params (stride, fence, mode)
542 * - new fb is too large to fit in compressed buffer
543 * - going to an unsupported config (interlace, pixel multiply, etc.)
544 */
545 for_each_crtc(dev, tmp_crtc) {
546 if (intel_crtc_active(tmp_crtc) &&
547 to_intel_crtc(tmp_crtc)->primary_enabled) {
548 if (crtc) {
549 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
550 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
551 goto out_disable;
552 }
553 crtc = tmp_crtc;
554 }
555 }
556
557 if (!crtc || crtc->primary->fb == NULL) {
558 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
559 DRM_DEBUG_KMS("no output, disabling\n");
560 goto out_disable;
561 }
562
563 intel_crtc = to_intel_crtc(crtc);
564 fb = crtc->primary->fb;
565 obj = intel_fb_obj(fb);
566 adjusted_mode = &intel_crtc->config.adjusted_mode;
567
568 if (i915.enable_fbc < 0) {
569 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
570 DRM_DEBUG_KMS("disabled per chip default\n");
571 goto out_disable;
572 }
573 if (!i915.enable_fbc) {
574 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
575 DRM_DEBUG_KMS("fbc disabled per module param\n");
576 goto out_disable;
577 }
578 if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
579 (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
580 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
581 DRM_DEBUG_KMS("mode incompatible with compression, "
582 "disabling\n");
583 goto out_disable;
584 }
585
586 if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
587 max_width = 4096;
588 max_height = 4096;
589 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
590 max_width = 4096;
591 max_height = 2048;
592 } else {
593 max_width = 2048;
594 max_height = 1536;
595 }
596 if (intel_crtc->config.pipe_src_w > max_width ||
597 intel_crtc->config.pipe_src_h > max_height) {
598 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
599 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
600 goto out_disable;
601 }
602 if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
603 intel_crtc->plane != PLANE_A) {
604 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
605 DRM_DEBUG_KMS("plane not A, disabling compression\n");
606 goto out_disable;
607 }
608
609 /* The use of a CPU fence is mandatory in order to detect writes
610 * by the CPU to the scanout and trigger updates to the FBC.
611 */
612 if (obj->tiling_mode != I915_TILING_X ||
613 obj->fence_reg == I915_FENCE_REG_NONE) {
614 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
615 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
616 goto out_disable;
617 }
618 if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
619 to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
620 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
621 DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
622 goto out_disable;
623 }
624
625 /* If the kernel debugger is active, always disable compression */
626 if (in_dbg_master())
627 goto out_disable;
628
629 if (i915_gem_stolen_setup_compression(dev, obj->base.size,
630 drm_format_plane_cpp(fb->pixel_format, 0))) {
631 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
632 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
633 goto out_disable;
634 }
635
636 /* If the scanout has not changed, don't modify the FBC settings.
637 * Note that we make the fundamental assumption that the fb->obj
638 * cannot be unpinned (and have its GTT offset and fence revoked)
639 * without first being decoupled from the scanout and FBC disabled.
640 */
641 if (dev_priv->fbc.plane == intel_crtc->plane &&
642 dev_priv->fbc.fb_id == fb->base.id &&
643 dev_priv->fbc.y == crtc->y)
644 return;
645
646 if (intel_fbc_enabled(dev)) {
647 /* We update FBC along two paths, after changing fb/crtc
648 * configuration (modeswitching) and after page-flipping
649 * finishes. For the latter, we know that not only did
650 * we disable the FBC at the start of the page-flip
651 * sequence, but also more than one vblank has passed.
652 *
653 * For the former case of modeswitching, it is possible
654 * to switch between two FBC valid configurations
655 * instantaneously so we do need to disable the FBC
656 * before we can modify its control registers. We also
657 * have to wait for the next vblank for that to take
658 * effect. However, since we delay enabling FBC we can
659 * assume that a vblank has passed since disabling and
660 * that we can safely alter the registers in the deferred
661 * callback.
662 *
663 * In the scenario that we go from a valid to invalid
664 * and then back to valid FBC configuration we have
665 * no strict enforcement that a vblank occurred since
666 * disabling the FBC. However, along all current pipe
667 * disabling paths we do need to wait for a vblank at
668 * some point. And we wait before enabling FBC anyway.
669 */
670 DRM_DEBUG_KMS("disabling active FBC for update\n");
671 intel_disable_fbc(dev);
672 }
673
674 intel_enable_fbc(crtc);
675 dev_priv->fbc.no_fbc_reason = FBC_OK;
676 return;
677
678 out_disable:
679 /* Multiple disables should be harmless */
680 if (intel_fbc_enabled(dev)) {
681 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
682 intel_disable_fbc(dev);
683 }
684 i915_gem_stolen_cleanup_compression(dev);
685 }
686
687 static void i915_pineview_get_mem_freq(struct drm_device *dev)
688 {
689 struct drm_i915_private *dev_priv = dev->dev_private;
690 u32 tmp;
691
692 tmp = I915_READ(CLKCFG);
693
694 switch (tmp & CLKCFG_FSB_MASK) {
695 case CLKCFG_FSB_533:
696 dev_priv->fsb_freq = 533; /* 133*4 */
697 break;
698 case CLKCFG_FSB_800:
699 dev_priv->fsb_freq = 800; /* 200*4 */
700 break;
701 case CLKCFG_FSB_667:
702 dev_priv->fsb_freq = 667; /* 167*4 */
703 break;
704 case CLKCFG_FSB_400:
705 dev_priv->fsb_freq = 400; /* 100*4 */
706 break;
707 }
708
709 switch (tmp & CLKCFG_MEM_MASK) {
710 case CLKCFG_MEM_533:
711 dev_priv->mem_freq = 533;
712 break;
713 case CLKCFG_MEM_667:
714 dev_priv->mem_freq = 667;
715 break;
716 case CLKCFG_MEM_800:
717 dev_priv->mem_freq = 800;
718 break;
719 }
720
721 /* detect pineview DDR3 setting */
722 tmp = I915_READ(CSHRDDR3CTL);
723 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
724 }
725
726 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
727 {
728 struct drm_i915_private *dev_priv = dev->dev_private;
729 u16 ddrpll, csipll;
730
731 ddrpll = I915_READ16(DDRMPLL1);
732 csipll = I915_READ16(CSIPLL0);
733
734 switch (ddrpll & 0xff) {
735 case 0xc:
736 dev_priv->mem_freq = 800;
737 break;
738 case 0x10:
739 dev_priv->mem_freq = 1066;
740 break;
741 case 0x14:
742 dev_priv->mem_freq = 1333;
743 break;
744 case 0x18:
745 dev_priv->mem_freq = 1600;
746 break;
747 default:
748 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
749 ddrpll & 0xff);
750 dev_priv->mem_freq = 0;
751 break;
752 }
753
754 dev_priv->ips.r_t = dev_priv->mem_freq;
755
756 switch (csipll & 0x3ff) {
757 case 0x00c:
758 dev_priv->fsb_freq = 3200;
759 break;
760 case 0x00e:
761 dev_priv->fsb_freq = 3733;
762 break;
763 case 0x010:
764 dev_priv->fsb_freq = 4266;
765 break;
766 case 0x012:
767 dev_priv->fsb_freq = 4800;
768 break;
769 case 0x014:
770 dev_priv->fsb_freq = 5333;
771 break;
772 case 0x016:
773 dev_priv->fsb_freq = 5866;
774 break;
775 case 0x018:
776 dev_priv->fsb_freq = 6400;
777 break;
778 default:
779 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
780 csipll & 0x3ff);
781 dev_priv->fsb_freq = 0;
782 break;
783 }
784
785 if (dev_priv->fsb_freq == 3200) {
786 dev_priv->ips.c_m = 0;
787 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
788 dev_priv->ips.c_m = 1;
789 } else {
790 dev_priv->ips.c_m = 2;
791 }
792 }
793
794 static const struct cxsr_latency cxsr_latency_table[] = {
795 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
796 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
797 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
798 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
799 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
800
801 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
802 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
803 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
804 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
805 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
806
807 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
808 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
809 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
810 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
811 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
812
813 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
814 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
815 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
816 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
817 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
818
819 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
820 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
821 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
822 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
823 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
824
825 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
826 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
827 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
828 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
829 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
830 };
831
832 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
833 int is_ddr3,
834 int fsb,
835 int mem)
836 {
837 const struct cxsr_latency *latency;
838 int i;
839
840 if (fsb == 0 || mem == 0)
841 return NULL;
842
843 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
844 latency = &cxsr_latency_table[i];
845 if (is_desktop == latency->is_desktop &&
846 is_ddr3 == latency->is_ddr3 &&
847 fsb == latency->fsb_freq && mem == latency->mem_freq)
848 return latency;
849 }
850
851 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
852
853 return NULL;
854 }
855
856 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
857 {
858 struct drm_device *dev = dev_priv->dev;
859 u32 val;
860
861 if (IS_VALLEYVIEW(dev)) {
862 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
863 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
864 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
865 } else if (IS_PINEVIEW(dev)) {
866 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
867 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
868 I915_WRITE(DSPFW3, val);
869 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
870 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
871 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
872 I915_WRITE(FW_BLC_SELF, val);
873 } else if (IS_I915GM(dev)) {
874 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
875 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
876 I915_WRITE(INSTPM, val);
877 } else {
878 return;
879 }
880
881 DRM_DEBUG_KMS("memory self-refresh is %s\n",
882 enable ? "enabled" : "disabled");
883 }
884
885 /*
886 * Latency for FIFO fetches is dependent on several factors:
887 * - memory configuration (speed, channels)
888 * - chipset
889 * - current MCH state
890 * It can be fairly high in some situations, so here we assume a fairly
891 * pessimal value. It's a tradeoff between extra memory fetches (if we
892 * set this value too high, the FIFO will fetch frequently to stay full)
893 * and power consumption (set it too low to save power and we might see
894 * FIFO underruns and display "flicker").
895 *
896 * A value of 5us seems to be a good balance; safe for very low end
897 * platforms but not overly aggressive on lower latency configs.
898 */
899 static const int pessimal_latency_ns = 5000;
900
901 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
902 {
903 struct drm_i915_private *dev_priv = dev->dev_private;
904 uint32_t dsparb = I915_READ(DSPARB);
905 int size;
906
907 size = dsparb & 0x7f;
908 if (plane)
909 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
910
911 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
912 plane ? "B" : "A", size);
913
914 return size;
915 }
916
917 static int i830_get_fifo_size(struct drm_device *dev, int plane)
918 {
919 struct drm_i915_private *dev_priv = dev->dev_private;
920 uint32_t dsparb = I915_READ(DSPARB);
921 int size;
922
923 size = dsparb & 0x1ff;
924 if (plane)
925 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
926 size >>= 1; /* Convert to cachelines */
927
928 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
929 plane ? "B" : "A", size);
930
931 return size;
932 }
933
934 static int i845_get_fifo_size(struct drm_device *dev, int plane)
935 {
936 struct drm_i915_private *dev_priv = dev->dev_private;
937 uint32_t dsparb = I915_READ(DSPARB);
938 int size;
939
940 size = dsparb & 0x7f;
941 size >>= 2; /* Convert to cachelines */
942
943 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
944 plane ? "B" : "A",
945 size);
946
947 return size;
948 }
949
950 /* Pineview has different values for various configs */
951 static const struct intel_watermark_params pineview_display_wm = {
952 .fifo_size = PINEVIEW_DISPLAY_FIFO,
953 .max_wm = PINEVIEW_MAX_WM,
954 .default_wm = PINEVIEW_DFT_WM,
955 .guard_size = PINEVIEW_GUARD_WM,
956 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
957 };
958 static const struct intel_watermark_params pineview_display_hplloff_wm = {
959 .fifo_size = PINEVIEW_DISPLAY_FIFO,
960 .max_wm = PINEVIEW_MAX_WM,
961 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
962 .guard_size = PINEVIEW_GUARD_WM,
963 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
964 };
965 static const struct intel_watermark_params pineview_cursor_wm = {
966 .fifo_size = PINEVIEW_CURSOR_FIFO,
967 .max_wm = PINEVIEW_CURSOR_MAX_WM,
968 .default_wm = PINEVIEW_CURSOR_DFT_WM,
969 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
970 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
971 };
972 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
973 .fifo_size = PINEVIEW_CURSOR_FIFO,
974 .max_wm = PINEVIEW_CURSOR_MAX_WM,
975 .default_wm = PINEVIEW_CURSOR_DFT_WM,
976 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
977 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
978 };
979 static const struct intel_watermark_params g4x_wm_info = {
980 .fifo_size = G4X_FIFO_SIZE,
981 .max_wm = G4X_MAX_WM,
982 .default_wm = G4X_MAX_WM,
983 .guard_size = 2,
984 .cacheline_size = G4X_FIFO_LINE_SIZE,
985 };
986 static const struct intel_watermark_params g4x_cursor_wm_info = {
987 .fifo_size = I965_CURSOR_FIFO,
988 .max_wm = I965_CURSOR_MAX_WM,
989 .default_wm = I965_CURSOR_DFT_WM,
990 .guard_size = 2,
991 .cacheline_size = G4X_FIFO_LINE_SIZE,
992 };
993 static const struct intel_watermark_params valleyview_wm_info = {
994 .fifo_size = VALLEYVIEW_FIFO_SIZE,
995 .max_wm = VALLEYVIEW_MAX_WM,
996 .default_wm = VALLEYVIEW_MAX_WM,
997 .guard_size = 2,
998 .cacheline_size = G4X_FIFO_LINE_SIZE,
999 };
1000 static const struct intel_watermark_params valleyview_cursor_wm_info = {
1001 .fifo_size = I965_CURSOR_FIFO,
1002 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
1003 .default_wm = I965_CURSOR_DFT_WM,
1004 .guard_size = 2,
1005 .cacheline_size = G4X_FIFO_LINE_SIZE,
1006 };
1007 static const struct intel_watermark_params i965_cursor_wm_info = {
1008 .fifo_size = I965_CURSOR_FIFO,
1009 .max_wm = I965_CURSOR_MAX_WM,
1010 .default_wm = I965_CURSOR_DFT_WM,
1011 .guard_size = 2,
1012 .cacheline_size = I915_FIFO_LINE_SIZE,
1013 };
1014 static const struct intel_watermark_params i945_wm_info = {
1015 .fifo_size = I945_FIFO_SIZE,
1016 .max_wm = I915_MAX_WM,
1017 .default_wm = 1,
1018 .guard_size = 2,
1019 .cacheline_size = I915_FIFO_LINE_SIZE,
1020 };
1021 static const struct intel_watermark_params i915_wm_info = {
1022 .fifo_size = I915_FIFO_SIZE,
1023 .max_wm = I915_MAX_WM,
1024 .default_wm = 1,
1025 .guard_size = 2,
1026 .cacheline_size = I915_FIFO_LINE_SIZE,
1027 };
1028 static const struct intel_watermark_params i830_a_wm_info = {
1029 .fifo_size = I855GM_FIFO_SIZE,
1030 .max_wm = I915_MAX_WM,
1031 .default_wm = 1,
1032 .guard_size = 2,
1033 .cacheline_size = I830_FIFO_LINE_SIZE,
1034 };
1035 static const struct intel_watermark_params i830_bc_wm_info = {
1036 .fifo_size = I855GM_FIFO_SIZE,
1037 .max_wm = I915_MAX_WM/2,
1038 .default_wm = 1,
1039 .guard_size = 2,
1040 .cacheline_size = I830_FIFO_LINE_SIZE,
1041 };
1042 static const struct intel_watermark_params i845_wm_info = {
1043 .fifo_size = I830_FIFO_SIZE,
1044 .max_wm = I915_MAX_WM,
1045 .default_wm = 1,
1046 .guard_size = 2,
1047 .cacheline_size = I830_FIFO_LINE_SIZE,
1048 };
1049
1050 /**
1051 * intel_calculate_wm - calculate watermark level
1052 * @clock_in_khz: pixel clock
1053 * @wm: chip FIFO params
1054 * @pixel_size: display pixel size
1055 * @latency_ns: memory latency for the platform
1056 *
1057 * Calculate the watermark level (the level at which the display plane will
1058 * start fetching from memory again). Each chip has a different display
1059 * FIFO size and allocation, so the caller needs to figure that out and pass
1060 * in the correct intel_watermark_params structure.
1061 *
1062 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1063 * on the pixel size. When it reaches the watermark level, it'll start
1064 * fetching FIFO line sized based chunks from memory until the FIFO fills
1065 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1066 * will occur, and a display engine hang could result.
1067 */
1068 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1069 const struct intel_watermark_params *wm,
1070 int fifo_size,
1071 int pixel_size,
1072 unsigned long latency_ns)
1073 {
1074 long entries_required, wm_size;
1075
1076 /*
1077 * Note: we need to make sure we don't overflow for various clock &
1078 * latency values.
1079 * clocks go from a few thousand to several hundred thousand.
1080 * latency is usually a few thousand
1081 */
1082 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1083 1000;
1084 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1085
1086 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1087
1088 wm_size = fifo_size - (entries_required + wm->guard_size);
1089
1090 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1091
1092 /* Don't promote wm_size to unsigned... */
1093 if (wm_size > (long)wm->max_wm)
1094 wm_size = wm->max_wm;
1095 if (wm_size <= 0)
1096 wm_size = wm->default_wm;
1097 return wm_size;
1098 }
1099
1100 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1101 {
1102 struct drm_crtc *crtc, *enabled = NULL;
1103
1104 for_each_crtc(dev, crtc) {
1105 if (intel_crtc_active(crtc)) {
1106 if (enabled)
1107 return NULL;
1108 enabled = crtc;
1109 }
1110 }
1111
1112 return enabled;
1113 }
1114
1115 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1116 {
1117 struct drm_device *dev = unused_crtc->dev;
1118 struct drm_i915_private *dev_priv = dev->dev_private;
1119 struct drm_crtc *crtc;
1120 const struct cxsr_latency *latency;
1121 u32 reg;
1122 unsigned long wm;
1123
1124 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1125 dev_priv->fsb_freq, dev_priv->mem_freq);
1126 if (!latency) {
1127 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1128 intel_set_memory_cxsr(dev_priv, false);
1129 return;
1130 }
1131
1132 crtc = single_enabled_crtc(dev);
1133 if (crtc) {
1134 const struct drm_display_mode *adjusted_mode;
1135 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1136 int clock;
1137
1138 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1139 clock = adjusted_mode->crtc_clock;
1140
1141 /* Display SR */
1142 wm = intel_calculate_wm(clock, &pineview_display_wm,
1143 pineview_display_wm.fifo_size,
1144 pixel_size, latency->display_sr);
1145 reg = I915_READ(DSPFW1);
1146 reg &= ~DSPFW_SR_MASK;
1147 reg |= wm << DSPFW_SR_SHIFT;
1148 I915_WRITE(DSPFW1, reg);
1149 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1150
1151 /* cursor SR */
1152 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1153 pineview_display_wm.fifo_size,
1154 pixel_size, latency->cursor_sr);
1155 reg = I915_READ(DSPFW3);
1156 reg &= ~DSPFW_CURSOR_SR_MASK;
1157 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1158 I915_WRITE(DSPFW3, reg);
1159
1160 /* Display HPLL off SR */
1161 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1162 pineview_display_hplloff_wm.fifo_size,
1163 pixel_size, latency->display_hpll_disable);
1164 reg = I915_READ(DSPFW3);
1165 reg &= ~DSPFW_HPLL_SR_MASK;
1166 reg |= wm & DSPFW_HPLL_SR_MASK;
1167 I915_WRITE(DSPFW3, reg);
1168
1169 /* cursor HPLL off SR */
1170 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1171 pineview_display_hplloff_wm.fifo_size,
1172 pixel_size, latency->cursor_hpll_disable);
1173 reg = I915_READ(DSPFW3);
1174 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1175 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1176 I915_WRITE(DSPFW3, reg);
1177 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1178
1179 intel_set_memory_cxsr(dev_priv, true);
1180 } else {
1181 intel_set_memory_cxsr(dev_priv, false);
1182 }
1183 }
1184
1185 static bool g4x_compute_wm0(struct drm_device *dev,
1186 int plane,
1187 const struct intel_watermark_params *display,
1188 int display_latency_ns,
1189 const struct intel_watermark_params *cursor,
1190 int cursor_latency_ns,
1191 int *plane_wm,
1192 int *cursor_wm)
1193 {
1194 struct drm_crtc *crtc;
1195 const struct drm_display_mode *adjusted_mode;
1196 int htotal, hdisplay, clock, pixel_size;
1197 int line_time_us, line_count;
1198 int entries, tlb_miss;
1199
1200 crtc = intel_get_crtc_for_plane(dev, plane);
1201 if (!intel_crtc_active(crtc)) {
1202 *cursor_wm = cursor->guard_size;
1203 *plane_wm = display->guard_size;
1204 return false;
1205 }
1206
1207 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1208 clock = adjusted_mode->crtc_clock;
1209 htotal = adjusted_mode->crtc_htotal;
1210 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1211 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1212
1213 /* Use the small buffer method to calculate plane watermark */
1214 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1215 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1216 if (tlb_miss > 0)
1217 entries += tlb_miss;
1218 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1219 *plane_wm = entries + display->guard_size;
1220 if (*plane_wm > (int)display->max_wm)
1221 *plane_wm = display->max_wm;
1222
1223 /* Use the large buffer method to calculate cursor watermark */
1224 line_time_us = max(htotal * 1000 / clock, 1);
1225 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1226 entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1227 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1228 if (tlb_miss > 0)
1229 entries += tlb_miss;
1230 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1231 *cursor_wm = entries + cursor->guard_size;
1232 if (*cursor_wm > (int)cursor->max_wm)
1233 *cursor_wm = (int)cursor->max_wm;
1234
1235 return true;
1236 }
1237
1238 /*
1239 * Check the wm result.
1240 *
1241 * If any calculated watermark values is larger than the maximum value that
1242 * can be programmed into the associated watermark register, that watermark
1243 * must be disabled.
1244 */
1245 static bool g4x_check_srwm(struct drm_device *dev,
1246 int display_wm, int cursor_wm,
1247 const struct intel_watermark_params *display,
1248 const struct intel_watermark_params *cursor)
1249 {
1250 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1251 display_wm, cursor_wm);
1252
1253 if (display_wm > display->max_wm) {
1254 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1255 display_wm, display->max_wm);
1256 return false;
1257 }
1258
1259 if (cursor_wm > cursor->max_wm) {
1260 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1261 cursor_wm, cursor->max_wm);
1262 return false;
1263 }
1264
1265 if (!(display_wm || cursor_wm)) {
1266 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1267 return false;
1268 }
1269
1270 return true;
1271 }
1272
1273 static bool g4x_compute_srwm(struct drm_device *dev,
1274 int plane,
1275 int latency_ns,
1276 const struct intel_watermark_params *display,
1277 const struct intel_watermark_params *cursor,
1278 int *display_wm, int *cursor_wm)
1279 {
1280 struct drm_crtc *crtc;
1281 const struct drm_display_mode *adjusted_mode;
1282 int hdisplay, htotal, pixel_size, clock;
1283 unsigned long line_time_us;
1284 int line_count, line_size;
1285 int small, large;
1286 int entries;
1287
1288 if (!latency_ns) {
1289 *display_wm = *cursor_wm = 0;
1290 return false;
1291 }
1292
1293 crtc = intel_get_crtc_for_plane(dev, plane);
1294 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1295 clock = adjusted_mode->crtc_clock;
1296 htotal = adjusted_mode->crtc_htotal;
1297 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1298 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1299
1300 line_time_us = max(htotal * 1000 / clock, 1);
1301 line_count = (latency_ns / line_time_us + 1000) / 1000;
1302 line_size = hdisplay * pixel_size;
1303
1304 /* Use the minimum of the small and large buffer method for primary */
1305 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1306 large = line_count * line_size;
1307
1308 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1309 *display_wm = entries + display->guard_size;
1310
1311 /* calculate the self-refresh watermark for display cursor */
1312 entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1313 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1314 *cursor_wm = entries + cursor->guard_size;
1315
1316 return g4x_check_srwm(dev,
1317 *display_wm, *cursor_wm,
1318 display, cursor);
1319 }
1320
1321 static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
1322 int pixel_size,
1323 int *prec_mult,
1324 int *drain_latency)
1325 {
1326 int entries;
1327 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1328
1329 if (WARN(clock == 0, "Pixel clock is zero!\n"))
1330 return false;
1331
1332 if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
1333 return false;
1334
1335 entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1336 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
1337 DRAIN_LATENCY_PRECISION_32;
1338 *drain_latency = (64 * (*prec_mult) * 4) / entries;
1339
1340 if (*drain_latency > DRAIN_LATENCY_MASK)
1341 *drain_latency = DRAIN_LATENCY_MASK;
1342
1343 return true;
1344 }
1345
1346 /*
1347 * Update drain latency registers of memory arbiter
1348 *
1349 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1350 * to be programmed. Each plane has a drain latency multiplier and a drain
1351 * latency value.
1352 */
1353
1354 static void vlv_update_drain_latency(struct drm_crtc *crtc)
1355 {
1356 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1357 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1358 int pixel_size;
1359 int drain_latency;
1360 enum pipe pipe = intel_crtc->pipe;
1361 int plane_prec, prec_mult, plane_dl;
1362
1363 plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
1364 DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
1365 (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
1366
1367 if (!intel_crtc_active(crtc)) {
1368 I915_WRITE(VLV_DDL(pipe), plane_dl);
1369 return;
1370 }
1371
1372 /* Primary plane Drain Latency */
1373 pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
1374 if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1375 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1376 DDL_PLANE_PRECISION_64 :
1377 DDL_PLANE_PRECISION_32;
1378 plane_dl |= plane_prec | drain_latency;
1379 }
1380
1381 /* Cursor Drain Latency
1382 * BPP is always 4 for cursor
1383 */
1384 pixel_size = 4;
1385
1386 /* Program cursor DL only if it is enabled */
1387 if (intel_crtc->cursor_base &&
1388 vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1389 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1390 DDL_CURSOR_PRECISION_64 :
1391 DDL_CURSOR_PRECISION_32;
1392 plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1393 }
1394
1395 I915_WRITE(VLV_DDL(pipe), plane_dl);
1396 }
1397
1398 #define single_plane_enabled(mask) is_power_of_2(mask)
1399
1400 static void valleyview_update_wm(struct drm_crtc *crtc)
1401 {
1402 struct drm_device *dev = crtc->dev;
1403 static const int sr_latency_ns = 12000;
1404 struct drm_i915_private *dev_priv = dev->dev_private;
1405 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1406 int plane_sr, cursor_sr;
1407 int ignore_plane_sr, ignore_cursor_sr;
1408 unsigned int enabled = 0;
1409 bool cxsr_enabled;
1410
1411 vlv_update_drain_latency(crtc);
1412
1413 if (g4x_compute_wm0(dev, PIPE_A,
1414 &valleyview_wm_info, pessimal_latency_ns,
1415 &valleyview_cursor_wm_info, pessimal_latency_ns,
1416 &planea_wm, &cursora_wm))
1417 enabled |= 1 << PIPE_A;
1418
1419 if (g4x_compute_wm0(dev, PIPE_B,
1420 &valleyview_wm_info, pessimal_latency_ns,
1421 &valleyview_cursor_wm_info, pessimal_latency_ns,
1422 &planeb_wm, &cursorb_wm))
1423 enabled |= 1 << PIPE_B;
1424
1425 if (single_plane_enabled(enabled) &&
1426 g4x_compute_srwm(dev, ffs(enabled) - 1,
1427 sr_latency_ns,
1428 &valleyview_wm_info,
1429 &valleyview_cursor_wm_info,
1430 &plane_sr, &ignore_cursor_sr) &&
1431 g4x_compute_srwm(dev, ffs(enabled) - 1,
1432 2*sr_latency_ns,
1433 &valleyview_wm_info,
1434 &valleyview_cursor_wm_info,
1435 &ignore_plane_sr, &cursor_sr)) {
1436 cxsr_enabled = true;
1437 } else {
1438 cxsr_enabled = false;
1439 intel_set_memory_cxsr(dev_priv, false);
1440 plane_sr = cursor_sr = 0;
1441 }
1442
1443 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1444 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1445 planea_wm, cursora_wm,
1446 planeb_wm, cursorb_wm,
1447 plane_sr, cursor_sr);
1448
1449 I915_WRITE(DSPFW1,
1450 (plane_sr << DSPFW_SR_SHIFT) |
1451 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1452 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1453 (planea_wm << DSPFW_PLANEA_SHIFT));
1454 I915_WRITE(DSPFW2,
1455 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1456 (cursora_wm << DSPFW_CURSORA_SHIFT));
1457 I915_WRITE(DSPFW3,
1458 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1459 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1460
1461 if (cxsr_enabled)
1462 intel_set_memory_cxsr(dev_priv, true);
1463 }
1464
1465 static void cherryview_update_wm(struct drm_crtc *crtc)
1466 {
1467 struct drm_device *dev = crtc->dev;
1468 static const int sr_latency_ns = 12000;
1469 struct drm_i915_private *dev_priv = dev->dev_private;
1470 int planea_wm, planeb_wm, planec_wm;
1471 int cursora_wm, cursorb_wm, cursorc_wm;
1472 int plane_sr, cursor_sr;
1473 int ignore_plane_sr, ignore_cursor_sr;
1474 unsigned int enabled = 0;
1475 bool cxsr_enabled;
1476
1477 vlv_update_drain_latency(crtc);
1478
1479 if (g4x_compute_wm0(dev, PIPE_A,
1480 &valleyview_wm_info, pessimal_latency_ns,
1481 &valleyview_cursor_wm_info, pessimal_latency_ns,
1482 &planea_wm, &cursora_wm))
1483 enabled |= 1 << PIPE_A;
1484
1485 if (g4x_compute_wm0(dev, PIPE_B,
1486 &valleyview_wm_info, pessimal_latency_ns,
1487 &valleyview_cursor_wm_info, pessimal_latency_ns,
1488 &planeb_wm, &cursorb_wm))
1489 enabled |= 1 << PIPE_B;
1490
1491 if (g4x_compute_wm0(dev, PIPE_C,
1492 &valleyview_wm_info, pessimal_latency_ns,
1493 &valleyview_cursor_wm_info, pessimal_latency_ns,
1494 &planec_wm, &cursorc_wm))
1495 enabled |= 1 << PIPE_C;
1496
1497 if (single_plane_enabled(enabled) &&
1498 g4x_compute_srwm(dev, ffs(enabled) - 1,
1499 sr_latency_ns,
1500 &valleyview_wm_info,
1501 &valleyview_cursor_wm_info,
1502 &plane_sr, &ignore_cursor_sr) &&
1503 g4x_compute_srwm(dev, ffs(enabled) - 1,
1504 2*sr_latency_ns,
1505 &valleyview_wm_info,
1506 &valleyview_cursor_wm_info,
1507 &ignore_plane_sr, &cursor_sr)) {
1508 cxsr_enabled = true;
1509 } else {
1510 cxsr_enabled = false;
1511 intel_set_memory_cxsr(dev_priv, false);
1512 plane_sr = cursor_sr = 0;
1513 }
1514
1515 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1516 "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
1517 "SR: plane=%d, cursor=%d\n",
1518 planea_wm, cursora_wm,
1519 planeb_wm, cursorb_wm,
1520 planec_wm, cursorc_wm,
1521 plane_sr, cursor_sr);
1522
1523 I915_WRITE(DSPFW1,
1524 (plane_sr << DSPFW_SR_SHIFT) |
1525 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1526 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1527 (planea_wm << DSPFW_PLANEA_SHIFT));
1528 I915_WRITE(DSPFW2,
1529 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1530 (cursora_wm << DSPFW_CURSORA_SHIFT));
1531 I915_WRITE(DSPFW3,
1532 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1533 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1534 I915_WRITE(DSPFW9_CHV,
1535 (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
1536 DSPFW_CURSORC_MASK)) |
1537 (planec_wm << DSPFW_PLANEC_SHIFT) |
1538 (cursorc_wm << DSPFW_CURSORC_SHIFT));
1539
1540 if (cxsr_enabled)
1541 intel_set_memory_cxsr(dev_priv, true);
1542 }
1543
1544 static void valleyview_update_sprite_wm(struct drm_plane *plane,
1545 struct drm_crtc *crtc,
1546 uint32_t sprite_width,
1547 uint32_t sprite_height,
1548 int pixel_size,
1549 bool enabled, bool scaled)
1550 {
1551 struct drm_device *dev = crtc->dev;
1552 struct drm_i915_private *dev_priv = dev->dev_private;
1553 int pipe = to_intel_plane(plane)->pipe;
1554 int sprite = to_intel_plane(plane)->plane;
1555 int drain_latency;
1556 int plane_prec;
1557 int sprite_dl;
1558 int prec_mult;
1559
1560 sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
1561 (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
1562
1563 if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
1564 &drain_latency)) {
1565 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1566 DDL_SPRITE_PRECISION_64(sprite) :
1567 DDL_SPRITE_PRECISION_32(sprite);
1568 sprite_dl |= plane_prec |
1569 (drain_latency << DDL_SPRITE_SHIFT(sprite));
1570 }
1571
1572 I915_WRITE(VLV_DDL(pipe), sprite_dl);
1573 }
1574
1575 static void g4x_update_wm(struct drm_crtc *crtc)
1576 {
1577 struct drm_device *dev = crtc->dev;
1578 static const int sr_latency_ns = 12000;
1579 struct drm_i915_private *dev_priv = dev->dev_private;
1580 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1581 int plane_sr, cursor_sr;
1582 unsigned int enabled = 0;
1583 bool cxsr_enabled;
1584
1585 if (g4x_compute_wm0(dev, PIPE_A,
1586 &g4x_wm_info, pessimal_latency_ns,
1587 &g4x_cursor_wm_info, pessimal_latency_ns,
1588 &planea_wm, &cursora_wm))
1589 enabled |= 1 << PIPE_A;
1590
1591 if (g4x_compute_wm0(dev, PIPE_B,
1592 &g4x_wm_info, pessimal_latency_ns,
1593 &g4x_cursor_wm_info, pessimal_latency_ns,
1594 &planeb_wm, &cursorb_wm))
1595 enabled |= 1 << PIPE_B;
1596
1597 if (single_plane_enabled(enabled) &&
1598 g4x_compute_srwm(dev, ffs(enabled) - 1,
1599 sr_latency_ns,
1600 &g4x_wm_info,
1601 &g4x_cursor_wm_info,
1602 &plane_sr, &cursor_sr)) {
1603 cxsr_enabled = true;
1604 } else {
1605 cxsr_enabled = false;
1606 intel_set_memory_cxsr(dev_priv, false);
1607 plane_sr = cursor_sr = 0;
1608 }
1609
1610 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1611 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1612 planea_wm, cursora_wm,
1613 planeb_wm, cursorb_wm,
1614 plane_sr, cursor_sr);
1615
1616 I915_WRITE(DSPFW1,
1617 (plane_sr << DSPFW_SR_SHIFT) |
1618 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1619 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1620 (planea_wm << DSPFW_PLANEA_SHIFT));
1621 I915_WRITE(DSPFW2,
1622 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1623 (cursora_wm << DSPFW_CURSORA_SHIFT));
1624 /* HPLL off in SR has some issues on G4x... disable it */
1625 I915_WRITE(DSPFW3,
1626 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1627 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1628
1629 if (cxsr_enabled)
1630 intel_set_memory_cxsr(dev_priv, true);
1631 }
1632
1633 static void i965_update_wm(struct drm_crtc *unused_crtc)
1634 {
1635 struct drm_device *dev = unused_crtc->dev;
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637 struct drm_crtc *crtc;
1638 int srwm = 1;
1639 int cursor_sr = 16;
1640 bool cxsr_enabled;
1641
1642 /* Calc sr entries for one plane configs */
1643 crtc = single_enabled_crtc(dev);
1644 if (crtc) {
1645 /* self-refresh has much higher latency */
1646 static const int sr_latency_ns = 12000;
1647 const struct drm_display_mode *adjusted_mode =
1648 &to_intel_crtc(crtc)->config.adjusted_mode;
1649 int clock = adjusted_mode->crtc_clock;
1650 int htotal = adjusted_mode->crtc_htotal;
1651 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1652 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1653 unsigned long line_time_us;
1654 int entries;
1655
1656 line_time_us = max(htotal * 1000 / clock, 1);
1657
1658 /* Use ns/us then divide to preserve precision */
1659 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1660 pixel_size * hdisplay;
1661 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1662 srwm = I965_FIFO_SIZE - entries;
1663 if (srwm < 0)
1664 srwm = 1;
1665 srwm &= 0x1ff;
1666 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1667 entries, srwm);
1668
1669 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1670 pixel_size * to_intel_crtc(crtc)->cursor_width;
1671 entries = DIV_ROUND_UP(entries,
1672 i965_cursor_wm_info.cacheline_size);
1673 cursor_sr = i965_cursor_wm_info.fifo_size -
1674 (entries + i965_cursor_wm_info.guard_size);
1675
1676 if (cursor_sr > i965_cursor_wm_info.max_wm)
1677 cursor_sr = i965_cursor_wm_info.max_wm;
1678
1679 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1680 "cursor %d\n", srwm, cursor_sr);
1681
1682 cxsr_enabled = true;
1683 } else {
1684 cxsr_enabled = false;
1685 /* Turn off self refresh if both pipes are enabled */
1686 intel_set_memory_cxsr(dev_priv, false);
1687 }
1688
1689 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1690 srwm);
1691
1692 /* 965 has limitations... */
1693 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1694 (8 << DSPFW_CURSORB_SHIFT) |
1695 (8 << DSPFW_PLANEB_SHIFT) |
1696 (8 << DSPFW_PLANEA_SHIFT));
1697 I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1698 (8 << DSPFW_PLANEC_SHIFT_OLD));
1699 /* update cursor SR watermark */
1700 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1701
1702 if (cxsr_enabled)
1703 intel_set_memory_cxsr(dev_priv, true);
1704 }
1705
1706 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1707 {
1708 struct drm_device *dev = unused_crtc->dev;
1709 struct drm_i915_private *dev_priv = dev->dev_private;
1710 const struct intel_watermark_params *wm_info;
1711 uint32_t fwater_lo;
1712 uint32_t fwater_hi;
1713 int cwm, srwm = 1;
1714 int fifo_size;
1715 int planea_wm, planeb_wm;
1716 struct drm_crtc *crtc, *enabled = NULL;
1717
1718 if (IS_I945GM(dev))
1719 wm_info = &i945_wm_info;
1720 else if (!IS_GEN2(dev))
1721 wm_info = &i915_wm_info;
1722 else
1723 wm_info = &i830_a_wm_info;
1724
1725 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1726 crtc = intel_get_crtc_for_plane(dev, 0);
1727 if (intel_crtc_active(crtc)) {
1728 const struct drm_display_mode *adjusted_mode;
1729 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1730 if (IS_GEN2(dev))
1731 cpp = 4;
1732
1733 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1734 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1735 wm_info, fifo_size, cpp,
1736 pessimal_latency_ns);
1737 enabled = crtc;
1738 } else {
1739 planea_wm = fifo_size - wm_info->guard_size;
1740 if (planea_wm > (long)wm_info->max_wm)
1741 planea_wm = wm_info->max_wm;
1742 }
1743
1744 if (IS_GEN2(dev))
1745 wm_info = &i830_bc_wm_info;
1746
1747 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1748 crtc = intel_get_crtc_for_plane(dev, 1);
1749 if (intel_crtc_active(crtc)) {
1750 const struct drm_display_mode *adjusted_mode;
1751 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1752 if (IS_GEN2(dev))
1753 cpp = 4;
1754
1755 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1756 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1757 wm_info, fifo_size, cpp,
1758 pessimal_latency_ns);
1759 if (enabled == NULL)
1760 enabled = crtc;
1761 else
1762 enabled = NULL;
1763 } else {
1764 planeb_wm = fifo_size - wm_info->guard_size;
1765 if (planeb_wm > (long)wm_info->max_wm)
1766 planeb_wm = wm_info->max_wm;
1767 }
1768
1769 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1770
1771 if (IS_I915GM(dev) && enabled) {
1772 struct drm_i915_gem_object *obj;
1773
1774 obj = intel_fb_obj(enabled->primary->fb);
1775
1776 /* self-refresh seems busted with untiled */
1777 if (obj->tiling_mode == I915_TILING_NONE)
1778 enabled = NULL;
1779 }
1780
1781 /*
1782 * Overlay gets an aggressive default since video jitter is bad.
1783 */
1784 cwm = 2;
1785
1786 /* Play safe and disable self-refresh before adjusting watermarks. */
1787 intel_set_memory_cxsr(dev_priv, false);
1788
1789 /* Calc sr entries for one plane configs */
1790 if (HAS_FW_BLC(dev) && enabled) {
1791 /* self-refresh has much higher latency */
1792 static const int sr_latency_ns = 6000;
1793 const struct drm_display_mode *adjusted_mode =
1794 &to_intel_crtc(enabled)->config.adjusted_mode;
1795 int clock = adjusted_mode->crtc_clock;
1796 int htotal = adjusted_mode->crtc_htotal;
1797 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1798 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1799 unsigned long line_time_us;
1800 int entries;
1801
1802 line_time_us = max(htotal * 1000 / clock, 1);
1803
1804 /* Use ns/us then divide to preserve precision */
1805 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1806 pixel_size * hdisplay;
1807 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1808 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1809 srwm = wm_info->fifo_size - entries;
1810 if (srwm < 0)
1811 srwm = 1;
1812
1813 if (IS_I945G(dev) || IS_I945GM(dev))
1814 I915_WRITE(FW_BLC_SELF,
1815 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1816 else if (IS_I915GM(dev))
1817 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1818 }
1819
1820 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1821 planea_wm, planeb_wm, cwm, srwm);
1822
1823 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1824 fwater_hi = (cwm & 0x1f);
1825
1826 /* Set request length to 8 cachelines per fetch */
1827 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1828 fwater_hi = fwater_hi | (1 << 8);
1829
1830 I915_WRITE(FW_BLC, fwater_lo);
1831 I915_WRITE(FW_BLC2, fwater_hi);
1832
1833 if (enabled)
1834 intel_set_memory_cxsr(dev_priv, true);
1835 }
1836
1837 static void i845_update_wm(struct drm_crtc *unused_crtc)
1838 {
1839 struct drm_device *dev = unused_crtc->dev;
1840 struct drm_i915_private *dev_priv = dev->dev_private;
1841 struct drm_crtc *crtc;
1842 const struct drm_display_mode *adjusted_mode;
1843 uint32_t fwater_lo;
1844 int planea_wm;
1845
1846 crtc = single_enabled_crtc(dev);
1847 if (crtc == NULL)
1848 return;
1849
1850 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1851 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1852 &i845_wm_info,
1853 dev_priv->display.get_fifo_size(dev, 0),
1854 4, pessimal_latency_ns);
1855 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1856 fwater_lo |= (3<<8) | planea_wm;
1857
1858 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1859
1860 I915_WRITE(FW_BLC, fwater_lo);
1861 }
1862
1863 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1864 struct drm_crtc *crtc)
1865 {
1866 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1867 uint32_t pixel_rate;
1868
1869 pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1870
1871 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1872 * adjust the pixel_rate here. */
1873
1874 if (intel_crtc->config.pch_pfit.enabled) {
1875 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1876 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1877
1878 pipe_w = intel_crtc->config.pipe_src_w;
1879 pipe_h = intel_crtc->config.pipe_src_h;
1880 pfit_w = (pfit_size >> 16) & 0xFFFF;
1881 pfit_h = pfit_size & 0xFFFF;
1882 if (pipe_w < pfit_w)
1883 pipe_w = pfit_w;
1884 if (pipe_h < pfit_h)
1885 pipe_h = pfit_h;
1886
1887 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1888 pfit_w * pfit_h);
1889 }
1890
1891 return pixel_rate;
1892 }
1893
1894 /* latency must be in 0.1us units. */
1895 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1896 uint32_t latency)
1897 {
1898 uint64_t ret;
1899
1900 if (WARN(latency == 0, "Latency value missing\n"))
1901 return UINT_MAX;
1902
1903 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1904 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1905
1906 return ret;
1907 }
1908
1909 /* latency must be in 0.1us units. */
1910 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1911 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1912 uint32_t latency)
1913 {
1914 uint32_t ret;
1915
1916 if (WARN(latency == 0, "Latency value missing\n"))
1917 return UINT_MAX;
1918
1919 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1920 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1921 ret = DIV_ROUND_UP(ret, 64) + 2;
1922 return ret;
1923 }
1924
1925 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1926 uint8_t bytes_per_pixel)
1927 {
1928 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1929 }
1930
1931 struct ilk_pipe_wm_parameters {
1932 bool active;
1933 uint32_t pipe_htotal;
1934 uint32_t pixel_rate;
1935 struct intel_plane_wm_parameters pri;
1936 struct intel_plane_wm_parameters spr;
1937 struct intel_plane_wm_parameters cur;
1938 };
1939
1940 struct ilk_wm_maximums {
1941 uint16_t pri;
1942 uint16_t spr;
1943 uint16_t cur;
1944 uint16_t fbc;
1945 };
1946
1947 /* used in computing the new watermarks state */
1948 struct intel_wm_config {
1949 unsigned int num_pipes_active;
1950 bool sprites_enabled;
1951 bool sprites_scaled;
1952 };
1953
1954 /*
1955 * For both WM_PIPE and WM_LP.
1956 * mem_value must be in 0.1us units.
1957 */
1958 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1959 uint32_t mem_value,
1960 bool is_lp)
1961 {
1962 uint32_t method1, method2;
1963
1964 if (!params->active || !params->pri.enabled)
1965 return 0;
1966
1967 method1 = ilk_wm_method1(params->pixel_rate,
1968 params->pri.bytes_per_pixel,
1969 mem_value);
1970
1971 if (!is_lp)
1972 return method1;
1973
1974 method2 = ilk_wm_method2(params->pixel_rate,
1975 params->pipe_htotal,
1976 params->pri.horiz_pixels,
1977 params->pri.bytes_per_pixel,
1978 mem_value);
1979
1980 return min(method1, method2);
1981 }
1982
1983 /*
1984 * For both WM_PIPE and WM_LP.
1985 * mem_value must be in 0.1us units.
1986 */
1987 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1988 uint32_t mem_value)
1989 {
1990 uint32_t method1, method2;
1991
1992 if (!params->active || !params->spr.enabled)
1993 return 0;
1994
1995 method1 = ilk_wm_method1(params->pixel_rate,
1996 params->spr.bytes_per_pixel,
1997 mem_value);
1998 method2 = ilk_wm_method2(params->pixel_rate,
1999 params->pipe_htotal,
2000 params->spr.horiz_pixels,
2001 params->spr.bytes_per_pixel,
2002 mem_value);
2003 return min(method1, method2);
2004 }
2005
2006 /*
2007 * For both WM_PIPE and WM_LP.
2008 * mem_value must be in 0.1us units.
2009 */
2010 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
2011 uint32_t mem_value)
2012 {
2013 if (!params->active || !params->cur.enabled)
2014 return 0;
2015
2016 return ilk_wm_method2(params->pixel_rate,
2017 params->pipe_htotal,
2018 params->cur.horiz_pixels,
2019 params->cur.bytes_per_pixel,
2020 mem_value);
2021 }
2022
2023 /* Only for WM_LP. */
2024 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
2025 uint32_t pri_val)
2026 {
2027 if (!params->active || !params->pri.enabled)
2028 return 0;
2029
2030 return ilk_wm_fbc(pri_val,
2031 params->pri.horiz_pixels,
2032 params->pri.bytes_per_pixel);
2033 }
2034
2035 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2036 {
2037 if (INTEL_INFO(dev)->gen >= 8)
2038 return 3072;
2039 else if (INTEL_INFO(dev)->gen >= 7)
2040 return 768;
2041 else
2042 return 512;
2043 }
2044
2045 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
2046 int level, bool is_sprite)
2047 {
2048 if (INTEL_INFO(dev)->gen >= 8)
2049 /* BDW primary/sprite plane watermarks */
2050 return level == 0 ? 255 : 2047;
2051 else if (INTEL_INFO(dev)->gen >= 7)
2052 /* IVB/HSW primary/sprite plane watermarks */
2053 return level == 0 ? 127 : 1023;
2054 else if (!is_sprite)
2055 /* ILK/SNB primary plane watermarks */
2056 return level == 0 ? 127 : 511;
2057 else
2058 /* ILK/SNB sprite plane watermarks */
2059 return level == 0 ? 63 : 255;
2060 }
2061
2062 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
2063 int level)
2064 {
2065 if (INTEL_INFO(dev)->gen >= 7)
2066 return level == 0 ? 63 : 255;
2067 else
2068 return level == 0 ? 31 : 63;
2069 }
2070
2071 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
2072 {
2073 if (INTEL_INFO(dev)->gen >= 8)
2074 return 31;
2075 else
2076 return 15;
2077 }
2078
2079 /* Calculate the maximum primary/sprite plane watermark */
2080 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2081 int level,
2082 const struct intel_wm_config *config,
2083 enum intel_ddb_partitioning ddb_partitioning,
2084 bool is_sprite)
2085 {
2086 unsigned int fifo_size = ilk_display_fifo_size(dev);
2087
2088 /* if sprites aren't enabled, sprites get nothing */
2089 if (is_sprite && !config->sprites_enabled)
2090 return 0;
2091
2092 /* HSW allows LP1+ watermarks even with multiple pipes */
2093 if (level == 0 || config->num_pipes_active > 1) {
2094 fifo_size /= INTEL_INFO(dev)->num_pipes;
2095
2096 /*
2097 * For some reason the non self refresh
2098 * FIFO size is only half of the self
2099 * refresh FIFO size on ILK/SNB.
2100 */
2101 if (INTEL_INFO(dev)->gen <= 6)
2102 fifo_size /= 2;
2103 }
2104
2105 if (config->sprites_enabled) {
2106 /* level 0 is always calculated with 1:1 split */
2107 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2108 if (is_sprite)
2109 fifo_size *= 5;
2110 fifo_size /= 6;
2111 } else {
2112 fifo_size /= 2;
2113 }
2114 }
2115
2116 /* clamp to max that the registers can hold */
2117 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2118 }
2119
2120 /* Calculate the maximum cursor plane watermark */
2121 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2122 int level,
2123 const struct intel_wm_config *config)
2124 {
2125 /* HSW LP1+ watermarks w/ multiple pipes */
2126 if (level > 0 && config->num_pipes_active > 1)
2127 return 64;
2128
2129 /* otherwise just report max that registers can hold */
2130 return ilk_cursor_wm_reg_max(dev, level);
2131 }
2132
2133 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2134 int level,
2135 const struct intel_wm_config *config,
2136 enum intel_ddb_partitioning ddb_partitioning,
2137 struct ilk_wm_maximums *max)
2138 {
2139 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2140 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2141 max->cur = ilk_cursor_wm_max(dev, level, config);
2142 max->fbc = ilk_fbc_wm_reg_max(dev);
2143 }
2144
2145 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
2146 int level,
2147 struct ilk_wm_maximums *max)
2148 {
2149 max->pri = ilk_plane_wm_reg_max(dev, level, false);
2150 max->spr = ilk_plane_wm_reg_max(dev, level, true);
2151 max->cur = ilk_cursor_wm_reg_max(dev, level);
2152 max->fbc = ilk_fbc_wm_reg_max(dev);
2153 }
2154
2155 static bool ilk_validate_wm_level(int level,
2156 const struct ilk_wm_maximums *max,
2157 struct intel_wm_level *result)
2158 {
2159 bool ret;
2160
2161 /* already determined to be invalid? */
2162 if (!result->enable)
2163 return false;
2164
2165 result->enable = result->pri_val <= max->pri &&
2166 result->spr_val <= max->spr &&
2167 result->cur_val <= max->cur;
2168
2169 ret = result->enable;
2170
2171 /*
2172 * HACK until we can pre-compute everything,
2173 * and thus fail gracefully if LP0 watermarks
2174 * are exceeded...
2175 */
2176 if (level == 0 && !result->enable) {
2177 if (result->pri_val > max->pri)
2178 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2179 level, result->pri_val, max->pri);
2180 if (result->spr_val > max->spr)
2181 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2182 level, result->spr_val, max->spr);
2183 if (result->cur_val > max->cur)
2184 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2185 level, result->cur_val, max->cur);
2186
2187 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2188 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2189 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2190 result->enable = true;
2191 }
2192
2193 return ret;
2194 }
2195
2196 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2197 int level,
2198 const struct ilk_pipe_wm_parameters *p,
2199 struct intel_wm_level *result)
2200 {
2201 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2202 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2203 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2204
2205 /* WM1+ latency values stored in 0.5us units */
2206 if (level > 0) {
2207 pri_latency *= 5;
2208 spr_latency *= 5;
2209 cur_latency *= 5;
2210 }
2211
2212 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2213 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2214 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2215 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2216 result->enable = true;
2217 }
2218
2219 static uint32_t
2220 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2221 {
2222 struct drm_i915_private *dev_priv = dev->dev_private;
2223 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2224 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2225 u32 linetime, ips_linetime;
2226
2227 if (!intel_crtc_active(crtc))
2228 return 0;
2229
2230 /* The WM are computed with base on how long it takes to fill a single
2231 * row at the given clock rate, multiplied by 8.
2232 * */
2233 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2234 mode->crtc_clock);
2235 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2236 intel_ddi_get_cdclk_freq(dev_priv));
2237
2238 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2239 PIPE_WM_LINETIME_TIME(linetime);
2240 }
2241
2242 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2243 {
2244 struct drm_i915_private *dev_priv = dev->dev_private;
2245
2246 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2247 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2248
2249 wm[0] = (sskpd >> 56) & 0xFF;
2250 if (wm[0] == 0)
2251 wm[0] = sskpd & 0xF;
2252 wm[1] = (sskpd >> 4) & 0xFF;
2253 wm[2] = (sskpd >> 12) & 0xFF;
2254 wm[3] = (sskpd >> 20) & 0x1FF;
2255 wm[4] = (sskpd >> 32) & 0x1FF;
2256 } else if (INTEL_INFO(dev)->gen >= 6) {
2257 uint32_t sskpd = I915_READ(MCH_SSKPD);
2258
2259 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2260 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2261 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2262 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2263 } else if (INTEL_INFO(dev)->gen >= 5) {
2264 uint32_t mltr = I915_READ(MLTR_ILK);
2265
2266 /* ILK primary LP0 latency is 700 ns */
2267 wm[0] = 7;
2268 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2269 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2270 }
2271 }
2272
2273 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2274 {
2275 /* ILK sprite LP0 latency is 1300 ns */
2276 if (INTEL_INFO(dev)->gen == 5)
2277 wm[0] = 13;
2278 }
2279
2280 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2281 {
2282 /* ILK cursor LP0 latency is 1300 ns */
2283 if (INTEL_INFO(dev)->gen == 5)
2284 wm[0] = 13;
2285
2286 /* WaDoubleCursorLP3Latency:ivb */
2287 if (IS_IVYBRIDGE(dev))
2288 wm[3] *= 2;
2289 }
2290
2291 int ilk_wm_max_level(const struct drm_device *dev)
2292 {
2293 /* how many WM levels are we expecting */
2294 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2295 return 4;
2296 else if (INTEL_INFO(dev)->gen >= 6)
2297 return 3;
2298 else
2299 return 2;
2300 }
2301 static void intel_print_wm_latency(struct drm_device *dev,
2302 const char *name,
2303 const uint16_t wm[5])
2304 {
2305 int level, max_level = ilk_wm_max_level(dev);
2306
2307 for (level = 0; level <= max_level; level++) {
2308 unsigned int latency = wm[level];
2309
2310 if (latency == 0) {
2311 DRM_ERROR("%s WM%d latency not provided\n",
2312 name, level);
2313 continue;
2314 }
2315
2316 /* WM1+ latency values in 0.5us units */
2317 if (level > 0)
2318 latency *= 5;
2319
2320 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2321 name, level, wm[level],
2322 latency / 10, latency % 10);
2323 }
2324 }
2325
2326 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2327 uint16_t wm[5], uint16_t min)
2328 {
2329 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2330
2331 if (wm[0] >= min)
2332 return false;
2333
2334 wm[0] = max(wm[0], min);
2335 for (level = 1; level <= max_level; level++)
2336 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2337
2338 return true;
2339 }
2340
2341 static void snb_wm_latency_quirk(struct drm_device *dev)
2342 {
2343 struct drm_i915_private *dev_priv = dev->dev_private;
2344 bool changed;
2345
2346 /*
2347 * The BIOS provided WM memory latency values are often
2348 * inadequate for high resolution displays. Adjust them.
2349 */
2350 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2351 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2352 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2353
2354 if (!changed)
2355 return;
2356
2357 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2358 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2359 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2360 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2361 }
2362
2363 static void ilk_setup_wm_latency(struct drm_device *dev)
2364 {
2365 struct drm_i915_private *dev_priv = dev->dev_private;
2366
2367 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2368
2369 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2370 sizeof(dev_priv->wm.pri_latency));
2371 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2372 sizeof(dev_priv->wm.pri_latency));
2373
2374 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2375 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2376
2377 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2378 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2379 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2380
2381 if (IS_GEN6(dev))
2382 snb_wm_latency_quirk(dev);
2383 }
2384
2385 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2386 struct ilk_pipe_wm_parameters *p)
2387 {
2388 struct drm_device *dev = crtc->dev;
2389 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2390 enum pipe pipe = intel_crtc->pipe;
2391 struct drm_plane *plane;
2392
2393 if (!intel_crtc_active(crtc))
2394 return;
2395
2396 p->active = true;
2397 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2398 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2399 p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2400 p->cur.bytes_per_pixel = 4;
2401 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2402 p->cur.horiz_pixels = intel_crtc->cursor_width;
2403 /* TODO: for now, assume primary and cursor planes are always enabled. */
2404 p->pri.enabled = true;
2405 p->cur.enabled = true;
2406
2407 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2408 struct intel_plane *intel_plane = to_intel_plane(plane);
2409
2410 if (intel_plane->pipe == pipe) {
2411 p->spr = intel_plane->wm;
2412 break;
2413 }
2414 }
2415 }
2416
2417 static void ilk_compute_wm_config(struct drm_device *dev,
2418 struct intel_wm_config *config)
2419 {
2420 struct intel_crtc *intel_crtc;
2421
2422 /* Compute the currently _active_ config */
2423 for_each_intel_crtc(dev, intel_crtc) {
2424 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2425
2426 if (!wm->pipe_enabled)
2427 continue;
2428
2429 config->sprites_enabled |= wm->sprites_enabled;
2430 config->sprites_scaled |= wm->sprites_scaled;
2431 config->num_pipes_active++;
2432 }
2433 }
2434
2435 /* Compute new watermarks for the pipe */
2436 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2437 const struct ilk_pipe_wm_parameters *params,
2438 struct intel_pipe_wm *pipe_wm)
2439 {
2440 struct drm_device *dev = crtc->dev;
2441 const struct drm_i915_private *dev_priv = dev->dev_private;
2442 int level, max_level = ilk_wm_max_level(dev);
2443 /* LP0 watermark maximums depend on this pipe alone */
2444 struct intel_wm_config config = {
2445 .num_pipes_active = 1,
2446 .sprites_enabled = params->spr.enabled,
2447 .sprites_scaled = params->spr.scaled,
2448 };
2449 struct ilk_wm_maximums max;
2450
2451 pipe_wm->pipe_enabled = params->active;
2452 pipe_wm->sprites_enabled = params->spr.enabled;
2453 pipe_wm->sprites_scaled = params->spr.scaled;
2454
2455 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2456 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2457 max_level = 1;
2458
2459 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2460 if (params->spr.scaled)
2461 max_level = 0;
2462
2463 ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2464
2465 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2466 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2467
2468 /* LP0 watermarks always use 1/2 DDB partitioning */
2469 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2470
2471 /* At least LP0 must be valid */
2472 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2473 return false;
2474
2475 ilk_compute_wm_reg_maximums(dev, 1, &max);
2476
2477 for (level = 1; level <= max_level; level++) {
2478 struct intel_wm_level wm = {};
2479
2480 ilk_compute_wm_level(dev_priv, level, params, &wm);
2481
2482 /*
2483 * Disable any watermark level that exceeds the
2484 * register maximums since such watermarks are
2485 * always invalid.
2486 */
2487 if (!ilk_validate_wm_level(level, &max, &wm))
2488 break;
2489
2490 pipe_wm->wm[level] = wm;
2491 }
2492
2493 return true;
2494 }
2495
2496 /*
2497 * Merge the watermarks from all active pipes for a specific level.
2498 */
2499 static void ilk_merge_wm_level(struct drm_device *dev,
2500 int level,
2501 struct intel_wm_level *ret_wm)
2502 {
2503 const struct intel_crtc *intel_crtc;
2504
2505 ret_wm->enable = true;
2506
2507 for_each_intel_crtc(dev, intel_crtc) {
2508 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2509 const struct intel_wm_level *wm = &active->wm[level];
2510
2511 if (!active->pipe_enabled)
2512 continue;
2513
2514 /*
2515 * The watermark values may have been used in the past,
2516 * so we must maintain them in the registers for some
2517 * time even if the level is now disabled.
2518 */
2519 if (!wm->enable)
2520 ret_wm->enable = false;
2521
2522 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2523 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2524 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2525 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2526 }
2527 }
2528
2529 /*
2530 * Merge all low power watermarks for all active pipes.
2531 */
2532 static void ilk_wm_merge(struct drm_device *dev,
2533 const struct intel_wm_config *config,
2534 const struct ilk_wm_maximums *max,
2535 struct intel_pipe_wm *merged)
2536 {
2537 int level, max_level = ilk_wm_max_level(dev);
2538 int last_enabled_level = max_level;
2539
2540 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2541 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2542 config->num_pipes_active > 1)
2543 return;
2544
2545 /* ILK: FBC WM must be disabled always */
2546 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2547
2548 /* merge each WM1+ level */
2549 for (level = 1; level <= max_level; level++) {
2550 struct intel_wm_level *wm = &merged->wm[level];
2551
2552 ilk_merge_wm_level(dev, level, wm);
2553
2554 if (level > last_enabled_level)
2555 wm->enable = false;
2556 else if (!ilk_validate_wm_level(level, max, wm))
2557 /* make sure all following levels get disabled */
2558 last_enabled_level = level - 1;
2559
2560 /*
2561 * The spec says it is preferred to disable
2562 * FBC WMs instead of disabling a WM level.
2563 */
2564 if (wm->fbc_val > max->fbc) {
2565 if (wm->enable)
2566 merged->fbc_wm_enabled = false;
2567 wm->fbc_val = 0;
2568 }
2569 }
2570
2571 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2572 /*
2573 * FIXME this is racy. FBC might get enabled later.
2574 * What we should check here is whether FBC can be
2575 * enabled sometime later.
2576 */
2577 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2578 for (level = 2; level <= max_level; level++) {
2579 struct intel_wm_level *wm = &merged->wm[level];
2580
2581 wm->enable = false;
2582 }
2583 }
2584 }
2585
2586 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2587 {
2588 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2589 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2590 }
2591
2592 /* The value we need to program into the WM_LPx latency field */
2593 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2594 {
2595 struct drm_i915_private *dev_priv = dev->dev_private;
2596
2597 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2598 return 2 * level;
2599 else
2600 return dev_priv->wm.pri_latency[level];
2601 }
2602
2603 static void ilk_compute_wm_results(struct drm_device *dev,
2604 const struct intel_pipe_wm *merged,
2605 enum intel_ddb_partitioning partitioning,
2606 struct ilk_wm_values *results)
2607 {
2608 struct intel_crtc *intel_crtc;
2609 int level, wm_lp;
2610
2611 results->enable_fbc_wm = merged->fbc_wm_enabled;
2612 results->partitioning = partitioning;
2613
2614 /* LP1+ register values */
2615 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2616 const struct intel_wm_level *r;
2617
2618 level = ilk_wm_lp_to_level(wm_lp, merged);
2619
2620 r = &merged->wm[level];
2621
2622 /*
2623 * Maintain the watermark values even if the level is
2624 * disabled. Doing otherwise could cause underruns.
2625 */
2626 results->wm_lp[wm_lp - 1] =
2627 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2628 (r->pri_val << WM1_LP_SR_SHIFT) |
2629 r->cur_val;
2630
2631 if (r->enable)
2632 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2633
2634 if (INTEL_INFO(dev)->gen >= 8)
2635 results->wm_lp[wm_lp - 1] |=
2636 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2637 else
2638 results->wm_lp[wm_lp - 1] |=
2639 r->fbc_val << WM1_LP_FBC_SHIFT;
2640
2641 /*
2642 * Always set WM1S_LP_EN when spr_val != 0, even if the
2643 * level is disabled. Doing otherwise could cause underruns.
2644 */
2645 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2646 WARN_ON(wm_lp != 1);
2647 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2648 } else
2649 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2650 }
2651
2652 /* LP0 register values */
2653 for_each_intel_crtc(dev, intel_crtc) {
2654 enum pipe pipe = intel_crtc->pipe;
2655 const struct intel_wm_level *r =
2656 &intel_crtc->wm.active.wm[0];
2657
2658 if (WARN_ON(!r->enable))
2659 continue;
2660
2661 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2662
2663 results->wm_pipe[pipe] =
2664 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2665 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2666 r->cur_val;
2667 }
2668 }
2669
2670 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2671 * case both are at the same level. Prefer r1 in case they're the same. */
2672 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2673 struct intel_pipe_wm *r1,
2674 struct intel_pipe_wm *r2)
2675 {
2676 int level, max_level = ilk_wm_max_level(dev);
2677 int level1 = 0, level2 = 0;
2678
2679 for (level = 1; level <= max_level; level++) {
2680 if (r1->wm[level].enable)
2681 level1 = level;
2682 if (r2->wm[level].enable)
2683 level2 = level;
2684 }
2685
2686 if (level1 == level2) {
2687 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2688 return r2;
2689 else
2690 return r1;
2691 } else if (level1 > level2) {
2692 return r1;
2693 } else {
2694 return r2;
2695 }
2696 }
2697
2698 /* dirty bits used to track which watermarks need changes */
2699 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2700 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2701 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2702 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2703 #define WM_DIRTY_FBC (1 << 24)
2704 #define WM_DIRTY_DDB (1 << 25)
2705
2706 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2707 const struct ilk_wm_values *old,
2708 const struct ilk_wm_values *new)
2709 {
2710 unsigned int dirty = 0;
2711 enum pipe pipe;
2712 int wm_lp;
2713
2714 for_each_pipe(dev_priv, pipe) {
2715 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2716 dirty |= WM_DIRTY_LINETIME(pipe);
2717 /* Must disable LP1+ watermarks too */
2718 dirty |= WM_DIRTY_LP_ALL;
2719 }
2720
2721 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2722 dirty |= WM_DIRTY_PIPE(pipe);
2723 /* Must disable LP1+ watermarks too */
2724 dirty |= WM_DIRTY_LP_ALL;
2725 }
2726 }
2727
2728 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2729 dirty |= WM_DIRTY_FBC;
2730 /* Must disable LP1+ watermarks too */
2731 dirty |= WM_DIRTY_LP_ALL;
2732 }
2733
2734 if (old->partitioning != new->partitioning) {
2735 dirty |= WM_DIRTY_DDB;
2736 /* Must disable LP1+ watermarks too */
2737 dirty |= WM_DIRTY_LP_ALL;
2738 }
2739
2740 /* LP1+ watermarks already deemed dirty, no need to continue */
2741 if (dirty & WM_DIRTY_LP_ALL)
2742 return dirty;
2743
2744 /* Find the lowest numbered LP1+ watermark in need of an update... */
2745 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2746 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2747 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2748 break;
2749 }
2750
2751 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2752 for (; wm_lp <= 3; wm_lp++)
2753 dirty |= WM_DIRTY_LP(wm_lp);
2754
2755 return dirty;
2756 }
2757
2758 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2759 unsigned int dirty)
2760 {
2761 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2762 bool changed = false;
2763
2764 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2765 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2766 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2767 changed = true;
2768 }
2769 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2770 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2771 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2772 changed = true;
2773 }
2774 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2775 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2776 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2777 changed = true;
2778 }
2779
2780 /*
2781 * Don't touch WM1S_LP_EN here.
2782 * Doing so could cause underruns.
2783 */
2784
2785 return changed;
2786 }
2787
2788 /*
2789 * The spec says we shouldn't write when we don't need, because every write
2790 * causes WMs to be re-evaluated, expending some power.
2791 */
2792 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2793 struct ilk_wm_values *results)
2794 {
2795 struct drm_device *dev = dev_priv->dev;
2796 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2797 unsigned int dirty;
2798 uint32_t val;
2799
2800 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2801 if (!dirty)
2802 return;
2803
2804 _ilk_disable_lp_wm(dev_priv, dirty);
2805
2806 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2807 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2808 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2809 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2810 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2811 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2812
2813 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2814 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2815 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2816 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2817 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2818 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2819
2820 if (dirty & WM_DIRTY_DDB) {
2821 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2822 val = I915_READ(WM_MISC);
2823 if (results->partitioning == INTEL_DDB_PART_1_2)
2824 val &= ~WM_MISC_DATA_PARTITION_5_6;
2825 else
2826 val |= WM_MISC_DATA_PARTITION_5_6;
2827 I915_WRITE(WM_MISC, val);
2828 } else {
2829 val = I915_READ(DISP_ARB_CTL2);
2830 if (results->partitioning == INTEL_DDB_PART_1_2)
2831 val &= ~DISP_DATA_PARTITION_5_6;
2832 else
2833 val |= DISP_DATA_PARTITION_5_6;
2834 I915_WRITE(DISP_ARB_CTL2, val);
2835 }
2836 }
2837
2838 if (dirty & WM_DIRTY_FBC) {
2839 val = I915_READ(DISP_ARB_CTL);
2840 if (results->enable_fbc_wm)
2841 val &= ~DISP_FBC_WM_DIS;
2842 else
2843 val |= DISP_FBC_WM_DIS;
2844 I915_WRITE(DISP_ARB_CTL, val);
2845 }
2846
2847 if (dirty & WM_DIRTY_LP(1) &&
2848 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2849 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2850
2851 if (INTEL_INFO(dev)->gen >= 7) {
2852 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2853 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2854 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2855 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2856 }
2857
2858 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2859 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2860 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2861 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2862 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2863 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2864
2865 dev_priv->wm.hw = *results;
2866 }
2867
2868 static bool ilk_disable_lp_wm(struct drm_device *dev)
2869 {
2870 struct drm_i915_private *dev_priv = dev->dev_private;
2871
2872 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2873 }
2874
2875 static void ilk_update_wm(struct drm_crtc *crtc)
2876 {
2877 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2878 struct drm_device *dev = crtc->dev;
2879 struct drm_i915_private *dev_priv = dev->dev_private;
2880 struct ilk_wm_maximums max;
2881 struct ilk_pipe_wm_parameters params = {};
2882 struct ilk_wm_values results = {};
2883 enum intel_ddb_partitioning partitioning;
2884 struct intel_pipe_wm pipe_wm = {};
2885 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2886 struct intel_wm_config config = {};
2887
2888 ilk_compute_wm_parameters(crtc, &params);
2889
2890 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2891
2892 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2893 return;
2894
2895 intel_crtc->wm.active = pipe_wm;
2896
2897 ilk_compute_wm_config(dev, &config);
2898
2899 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2900 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2901
2902 /* 5/6 split only in single pipe config on IVB+ */
2903 if (INTEL_INFO(dev)->gen >= 7 &&
2904 config.num_pipes_active == 1 && config.sprites_enabled) {
2905 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2906 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2907
2908 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2909 } else {
2910 best_lp_wm = &lp_wm_1_2;
2911 }
2912
2913 partitioning = (best_lp_wm == &lp_wm_1_2) ?
2914 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2915
2916 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2917
2918 ilk_write_wm_values(dev_priv, &results);
2919 }
2920
2921 static void
2922 ilk_update_sprite_wm(struct drm_plane *plane,
2923 struct drm_crtc *crtc,
2924 uint32_t sprite_width, uint32_t sprite_height,
2925 int pixel_size, bool enabled, bool scaled)
2926 {
2927 struct drm_device *dev = plane->dev;
2928 struct intel_plane *intel_plane = to_intel_plane(plane);
2929
2930 intel_plane->wm.enabled = enabled;
2931 intel_plane->wm.scaled = scaled;
2932 intel_plane->wm.horiz_pixels = sprite_width;
2933 intel_plane->wm.vert_pixels = sprite_width;
2934 intel_plane->wm.bytes_per_pixel = pixel_size;
2935
2936 /*
2937 * IVB workaround: must disable low power watermarks for at least
2938 * one frame before enabling scaling. LP watermarks can be re-enabled
2939 * when scaling is disabled.
2940 *
2941 * WaCxSRDisabledForSpriteScaling:ivb
2942 */
2943 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2944 intel_wait_for_vblank(dev, intel_plane->pipe);
2945
2946 ilk_update_wm(crtc);
2947 }
2948
2949 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2950 {
2951 struct drm_device *dev = crtc->dev;
2952 struct drm_i915_private *dev_priv = dev->dev_private;
2953 struct ilk_wm_values *hw = &dev_priv->wm.hw;
2954 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2955 struct intel_pipe_wm *active = &intel_crtc->wm.active;
2956 enum pipe pipe = intel_crtc->pipe;
2957 static const unsigned int wm0_pipe_reg[] = {
2958 [PIPE_A] = WM0_PIPEA_ILK,
2959 [PIPE_B] = WM0_PIPEB_ILK,
2960 [PIPE_C] = WM0_PIPEC_IVB,
2961 };
2962
2963 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2964 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2965 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2966
2967 active->pipe_enabled = intel_crtc_active(crtc);
2968
2969 if (active->pipe_enabled) {
2970 u32 tmp = hw->wm_pipe[pipe];
2971
2972 /*
2973 * For active pipes LP0 watermark is marked as
2974 * enabled, and LP1+ watermaks as disabled since
2975 * we can't really reverse compute them in case
2976 * multiple pipes are active.
2977 */
2978 active->wm[0].enable = true;
2979 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2980 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2981 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2982 active->linetime = hw->wm_linetime[pipe];
2983 } else {
2984 int level, max_level = ilk_wm_max_level(dev);
2985
2986 /*
2987 * For inactive pipes, all watermark levels
2988 * should be marked as enabled but zeroed,
2989 * which is what we'd compute them to.
2990 */
2991 for (level = 0; level <= max_level; level++)
2992 active->wm[level].enable = true;
2993 }
2994 }
2995
2996 void ilk_wm_get_hw_state(struct drm_device *dev)
2997 {
2998 struct drm_i915_private *dev_priv = dev->dev_private;
2999 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3000 struct drm_crtc *crtc;
3001
3002 for_each_crtc(dev, crtc)
3003 ilk_pipe_wm_get_hw_state(crtc);
3004
3005 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3006 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3007 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3008
3009 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3010 if (INTEL_INFO(dev)->gen >= 7) {
3011 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3012 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3013 }
3014
3015 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3016 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3017 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3018 else if (IS_IVYBRIDGE(dev))
3019 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3020 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3021
3022 hw->enable_fbc_wm =
3023 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3024 }
3025
3026 /**
3027 * intel_update_watermarks - update FIFO watermark values based on current modes
3028 *
3029 * Calculate watermark values for the various WM regs based on current mode
3030 * and plane configuration.
3031 *
3032 * There are several cases to deal with here:
3033 * - normal (i.e. non-self-refresh)
3034 * - self-refresh (SR) mode
3035 * - lines are large relative to FIFO size (buffer can hold up to 2)
3036 * - lines are small relative to FIFO size (buffer can hold more than 2
3037 * lines), so need to account for TLB latency
3038 *
3039 * The normal calculation is:
3040 * watermark = dotclock * bytes per pixel * latency
3041 * where latency is platform & configuration dependent (we assume pessimal
3042 * values here).
3043 *
3044 * The SR calculation is:
3045 * watermark = (trunc(latency/line time)+1) * surface width *
3046 * bytes per pixel
3047 * where
3048 * line time = htotal / dotclock
3049 * surface width = hdisplay for normal plane and 64 for cursor
3050 * and latency is assumed to be high, as above.
3051 *
3052 * The final value programmed to the register should always be rounded up,
3053 * and include an extra 2 entries to account for clock crossings.
3054 *
3055 * We don't use the sprite, so we can ignore that. And on Crestline we have
3056 * to set the non-SR watermarks to 8.
3057 */
3058 void intel_update_watermarks(struct drm_crtc *crtc)
3059 {
3060 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3061
3062 if (dev_priv->display.update_wm)
3063 dev_priv->display.update_wm(crtc);
3064 }
3065
3066 void intel_update_sprite_watermarks(struct drm_plane *plane,
3067 struct drm_crtc *crtc,
3068 uint32_t sprite_width,
3069 uint32_t sprite_height,
3070 int pixel_size,
3071 bool enabled, bool scaled)
3072 {
3073 struct drm_i915_private *dev_priv = plane->dev->dev_private;
3074
3075 if (dev_priv->display.update_sprite_wm)
3076 dev_priv->display.update_sprite_wm(plane, crtc,
3077 sprite_width, sprite_height,
3078 pixel_size, enabled, scaled);
3079 }
3080
3081 static struct drm_i915_gem_object *
3082 intel_alloc_context_page(struct drm_device *dev)
3083 {
3084 struct drm_i915_gem_object *ctx;
3085 int ret;
3086
3087 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3088
3089 ctx = i915_gem_alloc_object(dev, 4096);
3090 if (!ctx) {
3091 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3092 return NULL;
3093 }
3094
3095 ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3096 if (ret) {
3097 DRM_ERROR("failed to pin power context: %d\n", ret);
3098 goto err_unref;
3099 }
3100
3101 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3102 if (ret) {
3103 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3104 goto err_unpin;
3105 }
3106
3107 return ctx;
3108
3109 err_unpin:
3110 i915_gem_object_ggtt_unpin(ctx);
3111 err_unref:
3112 drm_gem_object_unreference(&ctx->base);
3113 return NULL;
3114 }
3115
3116 /**
3117 * Lock protecting IPS related data structures
3118 */
3119 DEFINE_SPINLOCK(mchdev_lock);
3120
3121 /* Global for IPS driver to get at the current i915 device. Protected by
3122 * mchdev_lock. */
3123 static struct drm_i915_private *i915_mch_dev;
3124
3125 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3126 {
3127 struct drm_i915_private *dev_priv = dev->dev_private;
3128 u16 rgvswctl;
3129
3130 assert_spin_locked(&mchdev_lock);
3131
3132 rgvswctl = I915_READ16(MEMSWCTL);
3133 if (rgvswctl & MEMCTL_CMD_STS) {
3134 DRM_DEBUG("gpu busy, RCS change rejected\n");
3135 return false; /* still busy with another command */
3136 }
3137
3138 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3139 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3140 I915_WRITE16(MEMSWCTL, rgvswctl);
3141 POSTING_READ16(MEMSWCTL);
3142
3143 rgvswctl |= MEMCTL_CMD_STS;
3144 I915_WRITE16(MEMSWCTL, rgvswctl);
3145
3146 return true;
3147 }
3148
3149 static void ironlake_enable_drps(struct drm_device *dev)
3150 {
3151 struct drm_i915_private *dev_priv = dev->dev_private;
3152 u32 rgvmodectl = I915_READ(MEMMODECTL);
3153 u8 fmax, fmin, fstart, vstart;
3154
3155 spin_lock_irq(&mchdev_lock);
3156
3157 /* Enable temp reporting */
3158 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3159 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3160
3161 /* 100ms RC evaluation intervals */
3162 I915_WRITE(RCUPEI, 100000);
3163 I915_WRITE(RCDNEI, 100000);
3164
3165 /* Set max/min thresholds to 90ms and 80ms respectively */
3166 I915_WRITE(RCBMAXAVG, 90000);
3167 I915_WRITE(RCBMINAVG, 80000);
3168
3169 I915_WRITE(MEMIHYST, 1);
3170
3171 /* Set up min, max, and cur for interrupt handling */
3172 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3173 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3174 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3175 MEMMODE_FSTART_SHIFT;
3176
3177 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3178 PXVFREQ_PX_SHIFT;
3179
3180 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3181 dev_priv->ips.fstart = fstart;
3182
3183 dev_priv->ips.max_delay = fstart;
3184 dev_priv->ips.min_delay = fmin;
3185 dev_priv->ips.cur_delay = fstart;
3186
3187 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3188 fmax, fmin, fstart);
3189
3190 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3191
3192 /*
3193 * Interrupts will be enabled in ironlake_irq_postinstall
3194 */
3195
3196 I915_WRITE(VIDSTART, vstart);
3197 POSTING_READ(VIDSTART);
3198
3199 rgvmodectl |= MEMMODE_SWMODE_EN;
3200 I915_WRITE(MEMMODECTL, rgvmodectl);
3201
3202 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3203 DRM_ERROR("stuck trying to change perf mode\n");
3204 mdelay(1);
3205
3206 ironlake_set_drps(dev, fstart);
3207
3208 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3209 I915_READ(0x112e0);
3210 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3211 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3212 dev_priv->ips.last_time2 = ktime_get_raw_ns();
3213
3214 spin_unlock_irq(&mchdev_lock);
3215 }
3216
3217 static void ironlake_disable_drps(struct drm_device *dev)
3218 {
3219 struct drm_i915_private *dev_priv = dev->dev_private;
3220 u16 rgvswctl;
3221
3222 spin_lock_irq(&mchdev_lock);
3223
3224 rgvswctl = I915_READ16(MEMSWCTL);
3225
3226 /* Ack interrupts, disable EFC interrupt */
3227 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3228 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3229 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3230 I915_WRITE(DEIIR, DE_PCU_EVENT);
3231 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3232
3233 /* Go back to the starting frequency */
3234 ironlake_set_drps(dev, dev_priv->ips.fstart);
3235 mdelay(1);
3236 rgvswctl |= MEMCTL_CMD_STS;
3237 I915_WRITE(MEMSWCTL, rgvswctl);
3238 mdelay(1);
3239
3240 spin_unlock_irq(&mchdev_lock);
3241 }
3242
3243 /* There's a funny hw issue where the hw returns all 0 when reading from
3244 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3245 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3246 * all limits and the gpu stuck at whatever frequency it is at atm).
3247 */
3248 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3249 {
3250 u32 limits;
3251
3252 /* Only set the down limit when we've reached the lowest level to avoid
3253 * getting more interrupts, otherwise leave this clear. This prevents a
3254 * race in the hw when coming out of rc6: There's a tiny window where
3255 * the hw runs at the minimal clock before selecting the desired
3256 * frequency, if the down threshold expires in that window we will not
3257 * receive a down interrupt. */
3258 limits = dev_priv->rps.max_freq_softlimit << 24;
3259 if (val <= dev_priv->rps.min_freq_softlimit)
3260 limits |= dev_priv->rps.min_freq_softlimit << 16;
3261
3262 return limits;
3263 }
3264
3265 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3266 {
3267 int new_power;
3268
3269 if (dev_priv->rps.is_bdw_sw_turbo)
3270 return;
3271
3272 new_power = dev_priv->rps.power;
3273 switch (dev_priv->rps.power) {
3274 case LOW_POWER:
3275 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3276 new_power = BETWEEN;
3277 break;
3278
3279 case BETWEEN:
3280 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3281 new_power = LOW_POWER;
3282 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3283 new_power = HIGH_POWER;
3284 break;
3285
3286 case HIGH_POWER:
3287 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3288 new_power = BETWEEN;
3289 break;
3290 }
3291 /* Max/min bins are special */
3292 if (val == dev_priv->rps.min_freq_softlimit)
3293 new_power = LOW_POWER;
3294 if (val == dev_priv->rps.max_freq_softlimit)
3295 new_power = HIGH_POWER;
3296 if (new_power == dev_priv->rps.power)
3297 return;
3298
3299 /* Note the units here are not exactly 1us, but 1280ns. */
3300 switch (new_power) {
3301 case LOW_POWER:
3302 /* Upclock if more than 95% busy over 16ms */
3303 I915_WRITE(GEN6_RP_UP_EI, 12500);
3304 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3305
3306 /* Downclock if less than 85% busy over 32ms */
3307 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3308 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3309
3310 I915_WRITE(GEN6_RP_CONTROL,
3311 GEN6_RP_MEDIA_TURBO |
3312 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3313 GEN6_RP_MEDIA_IS_GFX |
3314 GEN6_RP_ENABLE |
3315 GEN6_RP_UP_BUSY_AVG |
3316 GEN6_RP_DOWN_IDLE_AVG);
3317 break;
3318
3319 case BETWEEN:
3320 /* Upclock if more than 90% busy over 13ms */
3321 I915_WRITE(GEN6_RP_UP_EI, 10250);
3322 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3323
3324 /* Downclock if less than 75% busy over 32ms */
3325 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3326 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3327
3328 I915_WRITE(GEN6_RP_CONTROL,
3329 GEN6_RP_MEDIA_TURBO |
3330 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3331 GEN6_RP_MEDIA_IS_GFX |
3332 GEN6_RP_ENABLE |
3333 GEN6_RP_UP_BUSY_AVG |
3334 GEN6_RP_DOWN_IDLE_AVG);
3335 break;
3336
3337 case HIGH_POWER:
3338 /* Upclock if more than 85% busy over 10ms */
3339 I915_WRITE(GEN6_RP_UP_EI, 8000);
3340 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3341
3342 /* Downclock if less than 60% busy over 32ms */
3343 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3344 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3345
3346 I915_WRITE(GEN6_RP_CONTROL,
3347 GEN6_RP_MEDIA_TURBO |
3348 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3349 GEN6_RP_MEDIA_IS_GFX |
3350 GEN6_RP_ENABLE |
3351 GEN6_RP_UP_BUSY_AVG |
3352 GEN6_RP_DOWN_IDLE_AVG);
3353 break;
3354 }
3355
3356 dev_priv->rps.power = new_power;
3357 dev_priv->rps.last_adj = 0;
3358 }
3359
3360 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3361 {
3362 u32 mask = 0;
3363
3364 if (val > dev_priv->rps.min_freq_softlimit)
3365 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3366 if (val < dev_priv->rps.max_freq_softlimit)
3367 mask |= GEN6_PM_RP_UP_THRESHOLD;
3368
3369 mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3370 mask &= dev_priv->pm_rps_events;
3371
3372 /* IVB and SNB hard hangs on looping batchbuffer
3373 * if GEN6_PM_UP_EI_EXPIRED is masked.
3374 */
3375 if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3376 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3377
3378 if (IS_GEN8(dev_priv->dev))
3379 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3380
3381 return ~mask;
3382 }
3383
3384 /* gen6_set_rps is called to update the frequency request, but should also be
3385 * called when the range (min_delay and max_delay) is modified so that we can
3386 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3387 void gen6_set_rps(struct drm_device *dev, u8 val)
3388 {
3389 struct drm_i915_private *dev_priv = dev->dev_private;
3390
3391 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3392 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3393 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3394
3395 /* min/max delay may still have been modified so be sure to
3396 * write the limits value.
3397 */
3398 if (val != dev_priv->rps.cur_freq) {
3399 gen6_set_rps_thresholds(dev_priv, val);
3400
3401 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3402 I915_WRITE(GEN6_RPNSWREQ,
3403 HSW_FREQUENCY(val));
3404 else
3405 I915_WRITE(GEN6_RPNSWREQ,
3406 GEN6_FREQUENCY(val) |
3407 GEN6_OFFSET(0) |
3408 GEN6_AGGRESSIVE_TURBO);
3409 }
3410
3411 /* Make sure we continue to get interrupts
3412 * until we hit the minimum or maximum frequencies.
3413 */
3414 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3415 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3416
3417 POSTING_READ(GEN6_RPNSWREQ);
3418
3419 dev_priv->rps.cur_freq = val;
3420 trace_intel_gpu_freq_change(val * 50);
3421 }
3422
3423 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3424 *
3425 * * If Gfx is Idle, then
3426 * 1. Mask Turbo interrupts
3427 * 2. Bring up Gfx clock
3428 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3429 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3430 * 5. Unmask Turbo interrupts
3431 */
3432 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3433 {
3434 struct drm_device *dev = dev_priv->dev;
3435
3436 /* Latest VLV doesn't need to force the gfx clock */
3437 if (dev->pdev->revision >= 0xd) {
3438 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3439 return;
3440 }
3441
3442 /*
3443 * When we are idle. Drop to min voltage state.
3444 */
3445
3446 if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3447 return;
3448
3449 /* Mask turbo interrupt so that they will not come in between */
3450 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3451
3452 vlv_force_gfx_clock(dev_priv, true);
3453
3454 dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3455
3456 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3457 dev_priv->rps.min_freq_softlimit);
3458
3459 if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3460 & GENFREQSTATUS) == 0, 5))
3461 DRM_ERROR("timed out waiting for Punit\n");
3462
3463 vlv_force_gfx_clock(dev_priv, false);
3464
3465 I915_WRITE(GEN6_PMINTRMSK,
3466 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3467 }
3468
3469 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3470 {
3471 struct drm_device *dev = dev_priv->dev;
3472
3473 mutex_lock(&dev_priv->rps.hw_lock);
3474 if (dev_priv->rps.enabled) {
3475 if (IS_CHERRYVIEW(dev))
3476 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3477 else if (IS_VALLEYVIEW(dev))
3478 vlv_set_rps_idle(dev_priv);
3479 else if (!dev_priv->rps.is_bdw_sw_turbo
3480 || atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
3481 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3482 }
3483
3484 dev_priv->rps.last_adj = 0;
3485 }
3486 mutex_unlock(&dev_priv->rps.hw_lock);
3487 }
3488
3489 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3490 {
3491 struct drm_device *dev = dev_priv->dev;
3492
3493 mutex_lock(&dev_priv->rps.hw_lock);
3494 if (dev_priv->rps.enabled) {
3495 if (IS_VALLEYVIEW(dev))
3496 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3497 else if (!dev_priv->rps.is_bdw_sw_turbo
3498 || atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
3499 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3500 }
3501
3502 dev_priv->rps.last_adj = 0;
3503 }
3504 mutex_unlock(&dev_priv->rps.hw_lock);
3505 }
3506
3507 void valleyview_set_rps(struct drm_device *dev, u8 val)
3508 {
3509 struct drm_i915_private *dev_priv = dev->dev_private;
3510
3511 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3512 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3513 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3514
3515 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3516 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3517 dev_priv->rps.cur_freq,
3518 vlv_gpu_freq(dev_priv, val), val);
3519
3520 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
3521 "Odd GPU freq value\n"))
3522 val &= ~1;
3523
3524 if (val != dev_priv->rps.cur_freq)
3525 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3526
3527 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3528
3529 dev_priv->rps.cur_freq = val;
3530 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3531 }
3532
3533 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3534 {
3535 struct drm_i915_private *dev_priv = dev->dev_private;
3536 if (IS_BROADWELL(dev) && dev_priv->rps.is_bdw_sw_turbo){
3537 if (atomic_read(&dev_priv->rps.sw_turbo.flip_received))
3538 del_timer(&dev_priv->rps.sw_turbo.flip_timer);
3539 dev_priv-> rps.is_bdw_sw_turbo = false;
3540 } else {
3541 I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3542 I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3543 ~dev_priv->pm_rps_events);
3544 /* Complete PM interrupt masking here doesn't race with the rps work
3545 * item again unmasking PM interrupts because that is using a different
3546 * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3547 * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3548 * gen8_enable_rps will clean up. */
3549
3550 spin_lock_irq(&dev_priv->irq_lock);
3551 dev_priv->rps.pm_iir = 0;
3552 spin_unlock_irq(&dev_priv->irq_lock);
3553
3554 I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3555 }
3556 }
3557
3558 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3559 {
3560 struct drm_i915_private *dev_priv = dev->dev_private;
3561
3562 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3563 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3564 ~dev_priv->pm_rps_events);
3565 /* Complete PM interrupt masking here doesn't race with the rps work
3566 * item again unmasking PM interrupts because that is using a different
3567 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3568 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3569
3570 spin_lock_irq(&dev_priv->irq_lock);
3571 dev_priv->rps.pm_iir = 0;
3572 spin_unlock_irq(&dev_priv->irq_lock);
3573
3574 I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3575 }
3576
3577 static void gen6_disable_rps(struct drm_device *dev)
3578 {
3579 struct drm_i915_private *dev_priv = dev->dev_private;
3580
3581 I915_WRITE(GEN6_RC_CONTROL, 0);
3582 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3583
3584 if (IS_BROADWELL(dev))
3585 gen8_disable_rps_interrupts(dev);
3586 else
3587 gen6_disable_rps_interrupts(dev);
3588 }
3589
3590 static void cherryview_disable_rps(struct drm_device *dev)
3591 {
3592 struct drm_i915_private *dev_priv = dev->dev_private;
3593
3594 I915_WRITE(GEN6_RC_CONTROL, 0);
3595
3596 gen8_disable_rps_interrupts(dev);
3597 }
3598
3599 static void valleyview_disable_rps(struct drm_device *dev)
3600 {
3601 struct drm_i915_private *dev_priv = dev->dev_private;
3602
3603 /* we're doing forcewake before Disabling RC6,
3604 * This what the BIOS expects when going into suspend */
3605 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3606
3607 I915_WRITE(GEN6_RC_CONTROL, 0);
3608
3609 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3610
3611 gen6_disable_rps_interrupts(dev);
3612 }
3613
3614 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3615 {
3616 if (IS_VALLEYVIEW(dev)) {
3617 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3618 mode = GEN6_RC_CTL_RC6_ENABLE;
3619 else
3620 mode = 0;
3621 }
3622 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3623 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3624 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3625 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3626 }
3627
3628 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3629 {
3630 /* No RC6 before Ironlake */
3631 if (INTEL_INFO(dev)->gen < 5)
3632 return 0;
3633
3634 /* RC6 is only on Ironlake mobile not on desktop */
3635 if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3636 return 0;
3637
3638 /* Respect the kernel parameter if it is set */
3639 if (enable_rc6 >= 0) {
3640 int mask;
3641
3642 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3643 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3644 INTEL_RC6pp_ENABLE;
3645 else
3646 mask = INTEL_RC6_ENABLE;
3647
3648 if ((enable_rc6 & mask) != enable_rc6)
3649 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3650 enable_rc6 & mask, enable_rc6, mask);
3651
3652 return enable_rc6 & mask;
3653 }
3654
3655 /* Disable RC6 on Ironlake */
3656 if (INTEL_INFO(dev)->gen == 5)
3657 return 0;
3658
3659 if (IS_IVYBRIDGE(dev))
3660 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3661
3662 return INTEL_RC6_ENABLE;
3663 }
3664
3665 int intel_enable_rc6(const struct drm_device *dev)
3666 {
3667 return i915.enable_rc6;
3668 }
3669
3670 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3671 {
3672 struct drm_i915_private *dev_priv = dev->dev_private;
3673
3674 spin_lock_irq(&dev_priv->irq_lock);
3675 WARN_ON(dev_priv->rps.pm_iir);
3676 gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3677 I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3678 spin_unlock_irq(&dev_priv->irq_lock);
3679 }
3680
3681 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3682 {
3683 struct drm_i915_private *dev_priv = dev->dev_private;
3684
3685 spin_lock_irq(&dev_priv->irq_lock);
3686 WARN_ON(dev_priv->rps.pm_iir);
3687 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3688 I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3689 spin_unlock_irq(&dev_priv->irq_lock);
3690 }
3691
3692 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3693 {
3694 /* All of these values are in units of 50MHz */
3695 dev_priv->rps.cur_freq = 0;
3696 /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3697 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
3698 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
3699 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
3700 /* XXX: only BYT has a special efficient freq */
3701 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
3702 /* hw_max = RP0 until we check for overclocking */
3703 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
3704
3705 /* Preserve min/max settings in case of re-init */
3706 if (dev_priv->rps.max_freq_softlimit == 0)
3707 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3708
3709 if (dev_priv->rps.min_freq_softlimit == 0)
3710 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3711 }
3712
3713 static void bdw_sw_calculate_freq(struct drm_device *dev,
3714 struct intel_rps_bdw_cal *c, u32 *cur_time, u32 *c0)
3715 {
3716 struct drm_i915_private *dev_priv = dev->dev_private;
3717 u64 busy = 0;
3718 u32 busyness_pct = 0;
3719 u32 elapsed_time = 0;
3720 u16 new_freq = 0;
3721
3722 if (!c || !cur_time || !c0)
3723 return;
3724
3725 if (0 == c->last_c0)
3726 goto out;
3727
3728 /* Check Evaluation interval */
3729 elapsed_time = *cur_time - c->last_ts;
3730 if (elapsed_time < c->eval_interval)
3731 return;
3732
3733 mutex_lock(&dev_priv->rps.hw_lock);
3734
3735 /*
3736 * c0 unit in 32*1.28 usec, elapsed_time unit in 1 usec.
3737 * Whole busyness_pct calculation should be
3738 * busy = ((u64)(*c0 - c->last_c0) << 5 << 7) / 100;
3739 * busyness_pct = (u32)(busy * 100 / elapsed_time);
3740 * The final formula is to simplify CPU calculation
3741 */
3742 busy = (u64)(*c0 - c->last_c0) << 12;
3743 do_div(busy, elapsed_time);
3744 busyness_pct = (u32)busy;
3745
3746 if (c->is_up && busyness_pct >= c->it_threshold_pct)
3747 new_freq = (u16)dev_priv->rps.cur_freq + 3;
3748 if (!c->is_up && busyness_pct <= c->it_threshold_pct)
3749 new_freq = (u16)dev_priv->rps.cur_freq - 1;
3750
3751 /* Adjust to new frequency busyness and compare with threshold */
3752 if (0 != new_freq) {
3753 if (new_freq > dev_priv->rps.max_freq_softlimit)
3754 new_freq = dev_priv->rps.max_freq_softlimit;
3755 else if (new_freq < dev_priv->rps.min_freq_softlimit)
3756 new_freq = dev_priv->rps.min_freq_softlimit;
3757
3758 gen6_set_rps(dev, new_freq);
3759 }
3760
3761 mutex_unlock(&dev_priv->rps.hw_lock);
3762
3763 out:
3764 c->last_c0 = *c0;
3765 c->last_ts = *cur_time;
3766 }
3767
3768 static void gen8_set_frequency_RP0(struct work_struct *work)
3769 {
3770 struct intel_rps_bdw_turbo *p_bdw_turbo =
3771 container_of(work, struct intel_rps_bdw_turbo, work_max_freq);
3772 struct intel_gen6_power_mgmt *p_power_mgmt =
3773 container_of(p_bdw_turbo, struct intel_gen6_power_mgmt, sw_turbo);
3774 struct drm_i915_private *dev_priv =
3775 container_of(p_power_mgmt, struct drm_i915_private, rps);
3776
3777 mutex_lock(&dev_priv->rps.hw_lock);
3778 gen6_set_rps(dev_priv->dev, dev_priv->rps.rp0_freq);
3779 mutex_unlock(&dev_priv->rps.hw_lock);
3780 }
3781
3782 static void flip_active_timeout_handler(unsigned long var)
3783 {
3784 struct drm_i915_private *dev_priv = (struct drm_i915_private *) var;
3785
3786 del_timer(&dev_priv->rps.sw_turbo.flip_timer);
3787 atomic_set(&dev_priv->rps.sw_turbo.flip_received, false);
3788
3789 queue_work(dev_priv->wq, &dev_priv->rps.sw_turbo.work_max_freq);
3790 }
3791
3792 void bdw_software_turbo(struct drm_device *dev)
3793 {
3794 struct drm_i915_private *dev_priv = dev->dev_private;
3795
3796 u32 current_time = I915_READ(TIMESTAMP_CTR); /* unit in usec */
3797 u32 current_c0 = I915_READ(MCHBAR_PCU_C0); /* unit in 32*1.28 usec */
3798
3799 bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.up,
3800 &current_time, &current_c0);
3801 bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.down,
3802 &current_time, &current_c0);
3803 }
3804
3805 static void gen8_enable_rps(struct drm_device *dev)
3806 {
3807 struct drm_i915_private *dev_priv = dev->dev_private;
3808 struct intel_engine_cs *ring;
3809 uint32_t rc6_mask = 0, rp_state_cap;
3810 uint32_t threshold_up_pct, threshold_down_pct;
3811 uint32_t ei_up, ei_down; /* up and down evaluation interval */
3812 u32 rp_ctl_flag;
3813 int unused;
3814
3815 /* Use software Turbo for BDW */
3816 dev_priv->rps.is_bdw_sw_turbo = IS_BROADWELL(dev);
3817
3818 /* 1a: Software RC state - RC0 */
3819 I915_WRITE(GEN6_RC_STATE, 0);
3820
3821 /* 1c & 1d: Get forcewake during program sequence. Although the driver
3822 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3823 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3824
3825 /* 2a: Disable RC states. */
3826 I915_WRITE(GEN6_RC_CONTROL, 0);
3827
3828 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3829 parse_rp_state_cap(dev_priv, rp_state_cap);
3830
3831 /* 2b: Program RC6 thresholds.*/
3832 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3833 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3834 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3835 for_each_ring(ring, dev_priv, unused)
3836 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3837 I915_WRITE(GEN6_RC_SLEEP, 0);
3838 if (IS_BROADWELL(dev))
3839 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
3840 else
3841 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3842
3843 /* 3: Enable RC6 */
3844 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3845 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3846 intel_print_rc6_info(dev, rc6_mask);
3847 if (IS_BROADWELL(dev))
3848 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3849 GEN7_RC_CTL_TO_MODE |
3850 rc6_mask);
3851 else
3852 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3853 GEN6_RC_CTL_EI_MODE(1) |
3854 rc6_mask);
3855
3856 /* 4 Program defaults and thresholds for RPS*/
3857 I915_WRITE(GEN6_RPNSWREQ,
3858 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3859 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3860 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3861 ei_up = 84480; /* 84.48ms */
3862 ei_down = 448000;
3863 threshold_up_pct = 90; /* x percent busy */
3864 threshold_down_pct = 70;
3865
3866 if (dev_priv->rps.is_bdw_sw_turbo) {
3867 dev_priv->rps.sw_turbo.up.it_threshold_pct = threshold_up_pct;
3868 dev_priv->rps.sw_turbo.up.eval_interval = ei_up;
3869 dev_priv->rps.sw_turbo.up.is_up = true;
3870 dev_priv->rps.sw_turbo.up.last_ts = 0;
3871 dev_priv->rps.sw_turbo.up.last_c0 = 0;
3872
3873 dev_priv->rps.sw_turbo.down.it_threshold_pct = threshold_down_pct;
3874 dev_priv->rps.sw_turbo.down.eval_interval = ei_down;
3875 dev_priv->rps.sw_turbo.down.is_up = false;
3876 dev_priv->rps.sw_turbo.down.last_ts = 0;
3877 dev_priv->rps.sw_turbo.down.last_c0 = 0;
3878
3879 /* Start the timer to track if flip comes*/
3880 dev_priv->rps.sw_turbo.timeout = 200*1000; /* in us */
3881
3882 init_timer(&dev_priv->rps.sw_turbo.flip_timer);
3883 dev_priv->rps.sw_turbo.flip_timer.function = flip_active_timeout_handler;
3884 dev_priv->rps.sw_turbo.flip_timer.data = (unsigned long) dev_priv;
3885 dev_priv->rps.sw_turbo.flip_timer.expires =
3886 usecs_to_jiffies(dev_priv->rps.sw_turbo.timeout) + jiffies;
3887 add_timer(&dev_priv->rps.sw_turbo.flip_timer);
3888 INIT_WORK(&dev_priv->rps.sw_turbo.work_max_freq, gen8_set_frequency_RP0);
3889
3890 atomic_set(&dev_priv->rps.sw_turbo.flip_received, true);
3891 } else {
3892 /* NB: Docs say 1s, and 1000000 - which aren't equivalent
3893 * 1 second timeout*/
3894 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, FREQ_1_28_US(1000000));
3895
3896 /* Docs recommend 900MHz, and 300 MHz respectively */
3897 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3898 dev_priv->rps.max_freq_softlimit << 24 |
3899 dev_priv->rps.min_freq_softlimit << 16);
3900
3901 I915_WRITE(GEN6_RP_UP_THRESHOLD,
3902 FREQ_1_28_US(ei_up * threshold_up_pct / 100));
3903 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
3904 FREQ_1_28_US(ei_down * threshold_down_pct / 100));
3905 I915_WRITE(GEN6_RP_UP_EI,
3906 FREQ_1_28_US(ei_up));
3907 I915_WRITE(GEN6_RP_DOWN_EI,
3908 FREQ_1_28_US(ei_down));
3909
3910 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3911 }
3912
3913 /* 5: Enable RPS */
3914 rp_ctl_flag = GEN6_RP_MEDIA_TURBO |
3915 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3916 GEN6_RP_MEDIA_IS_GFX |
3917 GEN6_RP_UP_BUSY_AVG |
3918 GEN6_RP_DOWN_IDLE_AVG;
3919 if (!dev_priv->rps.is_bdw_sw_turbo)
3920 rp_ctl_flag |= GEN6_RP_ENABLE;
3921
3922 I915_WRITE(GEN6_RP_CONTROL, rp_ctl_flag);
3923
3924 /* 6: Ring frequency + overclocking
3925 * (our driver does this later */
3926 gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3927 if (!dev_priv->rps.is_bdw_sw_turbo)
3928 gen8_enable_rps_interrupts(dev);
3929
3930 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3931 }
3932
3933 static void gen6_enable_rps(struct drm_device *dev)
3934 {
3935 struct drm_i915_private *dev_priv = dev->dev_private;
3936 struct intel_engine_cs *ring;
3937 u32 rp_state_cap;
3938 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3939 u32 gtfifodbg;
3940 int rc6_mode;
3941 int i, ret;
3942
3943 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3944
3945 /* Here begins a magic sequence of register writes to enable
3946 * auto-downclocking.
3947 *
3948 * Perhaps there might be some value in exposing these to
3949 * userspace...
3950 */
3951 I915_WRITE(GEN6_RC_STATE, 0);
3952
3953 /* Clear the DBG now so we don't confuse earlier errors */
3954 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3955 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3956 I915_WRITE(GTFIFODBG, gtfifodbg);
3957 }
3958
3959 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3960
3961 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3962
3963 parse_rp_state_cap(dev_priv, rp_state_cap);
3964
3965 /* disable the counters and set deterministic thresholds */
3966 I915_WRITE(GEN6_RC_CONTROL, 0);
3967
3968 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3969 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3970 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3971 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3972 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3973
3974 for_each_ring(ring, dev_priv, i)
3975 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3976
3977 I915_WRITE(GEN6_RC_SLEEP, 0);
3978 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3979 if (IS_IVYBRIDGE(dev))
3980 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3981 else
3982 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3983 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3984 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3985
3986 /* Check if we are enabling RC6 */
3987 rc6_mode = intel_enable_rc6(dev_priv->dev);
3988 if (rc6_mode & INTEL_RC6_ENABLE)
3989 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3990
3991 /* We don't use those on Haswell */
3992 if (!IS_HASWELL(dev)) {
3993 if (rc6_mode & INTEL_RC6p_ENABLE)
3994 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3995
3996 if (rc6_mode & INTEL_RC6pp_ENABLE)
3997 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3998 }
3999
4000 intel_print_rc6_info(dev, rc6_mask);
4001
4002 I915_WRITE(GEN6_RC_CONTROL,
4003 rc6_mask |
4004 GEN6_RC_CTL_EI_MODE(1) |
4005 GEN6_RC_CTL_HW_ENABLE);
4006
4007 /* Power down if completely idle for over 50ms */
4008 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4009 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4010
4011 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4012 if (ret)
4013 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4014
4015 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4016 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4017 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4018 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4019 (pcu_mbox & 0xff) * 50);
4020 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4021 }
4022
4023 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4024 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4025
4026 gen6_enable_rps_interrupts(dev);
4027
4028 rc6vids = 0;
4029 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4030 if (IS_GEN6(dev) && ret) {
4031 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4032 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4033 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4034 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4035 rc6vids &= 0xffff00;
4036 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4037 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4038 if (ret)
4039 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4040 }
4041
4042 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4043 }
4044
4045 static void __gen6_update_ring_freq(struct drm_device *dev)
4046 {
4047 struct drm_i915_private *dev_priv = dev->dev_private;
4048 int min_freq = 15;
4049 unsigned int gpu_freq;
4050 unsigned int max_ia_freq, min_ring_freq;
4051 int scaling_factor = 180;
4052 struct cpufreq_policy *policy;
4053
4054 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4055
4056 policy = cpufreq_cpu_get(0);
4057 if (policy) {
4058 max_ia_freq = policy->cpuinfo.max_freq;
4059 cpufreq_cpu_put(policy);
4060 } else {
4061 /*
4062 * Default to measured freq if none found, PCU will ensure we
4063 * don't go over
4064 */
4065 max_ia_freq = tsc_khz;
4066 }
4067
4068 /* Convert from kHz to MHz */
4069 max_ia_freq /= 1000;
4070
4071 min_ring_freq = I915_READ(DCLK) & 0xf;
4072 /* convert DDR frequency from units of 266.6MHz to bandwidth */
4073 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4074
4075 /*
4076 * For each potential GPU frequency, load a ring frequency we'd like
4077 * to use for memory access. We do this by specifying the IA frequency
4078 * the PCU should use as a reference to determine the ring frequency.
4079 */
4080 for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
4081 gpu_freq--) {
4082 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
4083 unsigned int ia_freq = 0, ring_freq = 0;
4084
4085 if (INTEL_INFO(dev)->gen >= 8) {
4086 /* max(2 * GT, DDR). NB: GT is 50MHz units */
4087 ring_freq = max(min_ring_freq, gpu_freq);
4088 } else if (IS_HASWELL(dev)) {
4089 ring_freq = mult_frac(gpu_freq, 5, 4);
4090 ring_freq = max(min_ring_freq, ring_freq);
4091 /* leave ia_freq as the default, chosen by cpufreq */
4092 } else {
4093 /* On older processors, there is no separate ring
4094 * clock domain, so in order to boost the bandwidth
4095 * of the ring, we need to upclock the CPU (ia_freq).
4096 *
4097 * For GPU frequencies less than 750MHz,
4098 * just use the lowest ring freq.
4099 */
4100 if (gpu_freq < min_freq)
4101 ia_freq = 800;
4102 else
4103 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4104 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4105 }
4106
4107 sandybridge_pcode_write(dev_priv,
4108 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4109 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4110 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4111 gpu_freq);
4112 }
4113 }
4114
4115 void gen6_update_ring_freq(struct drm_device *dev)
4116 {
4117 struct drm_i915_private *dev_priv = dev->dev_private;
4118
4119 if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4120 return;
4121
4122 mutex_lock(&dev_priv->rps.hw_lock);
4123 __gen6_update_ring_freq(dev);
4124 mutex_unlock(&dev_priv->rps.hw_lock);
4125 }
4126
4127 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4128 {
4129 u32 val, rp0;
4130
4131 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4132 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4133
4134 return rp0;
4135 }
4136
4137 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4138 {
4139 u32 val, rpe;
4140
4141 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4142 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4143
4144 return rpe;
4145 }
4146
4147 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4148 {
4149 u32 val, rp1;
4150
4151 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4152 rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4153
4154 return rp1;
4155 }
4156
4157 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4158 {
4159 u32 val, rpn;
4160
4161 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4162 rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
4163 return rpn;
4164 }
4165
4166 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4167 {
4168 u32 val, rp1;
4169
4170 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4171
4172 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4173
4174 return rp1;
4175 }
4176
4177 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4178 {
4179 u32 val, rp0;
4180
4181 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4182
4183 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4184 /* Clamp to max */
4185 rp0 = min_t(u32, rp0, 0xea);
4186
4187 return rp0;
4188 }
4189
4190 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4191 {
4192 u32 val, rpe;
4193
4194 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4195 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4196 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4197 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4198
4199 return rpe;
4200 }
4201
4202 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4203 {
4204 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4205 }
4206
4207 /* Check that the pctx buffer wasn't move under us. */
4208 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4209 {
4210 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4211
4212 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4213 dev_priv->vlv_pctx->stolen->start);
4214 }
4215
4216
4217 /* Check that the pcbr address is not empty. */
4218 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4219 {
4220 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4221
4222 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4223 }
4224
4225 static void cherryview_setup_pctx(struct drm_device *dev)
4226 {
4227 struct drm_i915_private *dev_priv = dev->dev_private;
4228 unsigned long pctx_paddr, paddr;
4229 struct i915_gtt *gtt = &dev_priv->gtt;
4230 u32 pcbr;
4231 int pctx_size = 32*1024;
4232
4233 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4234
4235 pcbr = I915_READ(VLV_PCBR);
4236 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4237 paddr = (dev_priv->mm.stolen_base +
4238 (gtt->stolen_size - pctx_size));
4239
4240 pctx_paddr = (paddr & (~4095));
4241 I915_WRITE(VLV_PCBR, pctx_paddr);
4242 }
4243 }
4244
4245 static void valleyview_setup_pctx(struct drm_device *dev)
4246 {
4247 struct drm_i915_private *dev_priv = dev->dev_private;
4248 struct drm_i915_gem_object *pctx;
4249 unsigned long pctx_paddr;
4250 u32 pcbr;
4251 int pctx_size = 24*1024;
4252
4253 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4254
4255 pcbr = I915_READ(VLV_PCBR);
4256 if (pcbr) {
4257 /* BIOS set it up already, grab the pre-alloc'd space */
4258 int pcbr_offset;
4259
4260 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4261 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4262 pcbr_offset,
4263 I915_GTT_OFFSET_NONE,
4264 pctx_size);
4265 goto out;
4266 }
4267
4268 /*
4269 * From the Gunit register HAS:
4270 * The Gfx driver is expected to program this register and ensure
4271 * proper allocation within Gfx stolen memory. For example, this
4272 * register should be programmed such than the PCBR range does not
4273 * overlap with other ranges, such as the frame buffer, protected
4274 * memory, or any other relevant ranges.
4275 */
4276 pctx = i915_gem_object_create_stolen(dev, pctx_size);
4277 if (!pctx) {
4278 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4279 return;
4280 }
4281
4282 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4283 I915_WRITE(VLV_PCBR, pctx_paddr);
4284
4285 out:
4286 dev_priv->vlv_pctx = pctx;
4287 }
4288
4289 static void valleyview_cleanup_pctx(struct drm_device *dev)
4290 {
4291 struct drm_i915_private *dev_priv = dev->dev_private;
4292
4293 if (WARN_ON(!dev_priv->vlv_pctx))
4294 return;
4295
4296 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4297 dev_priv->vlv_pctx = NULL;
4298 }
4299
4300 static void valleyview_init_gt_powersave(struct drm_device *dev)
4301 {
4302 struct drm_i915_private *dev_priv = dev->dev_private;
4303 u32 val;
4304
4305 valleyview_setup_pctx(dev);
4306
4307 mutex_lock(&dev_priv->rps.hw_lock);
4308
4309 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4310 switch ((val >> 6) & 3) {
4311 case 0:
4312 case 1:
4313 dev_priv->mem_freq = 800;
4314 break;
4315 case 2:
4316 dev_priv->mem_freq = 1066;
4317 break;
4318 case 3:
4319 dev_priv->mem_freq = 1333;
4320 break;
4321 }
4322 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4323
4324 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4325 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4326 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4327 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4328 dev_priv->rps.max_freq);
4329
4330 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4331 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4332 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4333 dev_priv->rps.efficient_freq);
4334
4335 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4336 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4337 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4338 dev_priv->rps.rp1_freq);
4339
4340 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4341 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4342 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4343 dev_priv->rps.min_freq);
4344
4345 /* Preserve min/max settings in case of re-init */
4346 if (dev_priv->rps.max_freq_softlimit == 0)
4347 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4348
4349 if (dev_priv->rps.min_freq_softlimit == 0)
4350 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4351
4352 mutex_unlock(&dev_priv->rps.hw_lock);
4353 }
4354
4355 static void cherryview_init_gt_powersave(struct drm_device *dev)
4356 {
4357 struct drm_i915_private *dev_priv = dev->dev_private;
4358 u32 val;
4359
4360 cherryview_setup_pctx(dev);
4361
4362 mutex_lock(&dev_priv->rps.hw_lock);
4363
4364 val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
4365 switch ((val >> 2) & 0x7) {
4366 case 0:
4367 case 1:
4368 dev_priv->rps.cz_freq = 200;
4369 dev_priv->mem_freq = 1600;
4370 break;
4371 case 2:
4372 dev_priv->rps.cz_freq = 267;
4373 dev_priv->mem_freq = 1600;
4374 break;
4375 case 3:
4376 dev_priv->rps.cz_freq = 333;
4377 dev_priv->mem_freq = 2000;
4378 break;
4379 case 4:
4380 dev_priv->rps.cz_freq = 320;
4381 dev_priv->mem_freq = 1600;
4382 break;
4383 case 5:
4384 dev_priv->rps.cz_freq = 400;
4385 dev_priv->mem_freq = 1600;
4386 break;
4387 }
4388 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4389
4390 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4391 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4392 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4393 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4394 dev_priv->rps.max_freq);
4395
4396 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4397 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4398 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4399 dev_priv->rps.efficient_freq);
4400
4401 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4402 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4403 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4404 dev_priv->rps.rp1_freq);
4405
4406 dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4407 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4408 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4409 dev_priv->rps.min_freq);
4410
4411 WARN_ONCE((dev_priv->rps.max_freq |
4412 dev_priv->rps.efficient_freq |
4413 dev_priv->rps.rp1_freq |
4414 dev_priv->rps.min_freq) & 1,
4415 "Odd GPU freq values\n");
4416
4417 /* Preserve min/max settings in case of re-init */
4418 if (dev_priv->rps.max_freq_softlimit == 0)
4419 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4420
4421 if (dev_priv->rps.min_freq_softlimit == 0)
4422 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4423
4424 mutex_unlock(&dev_priv->rps.hw_lock);
4425 }
4426
4427 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4428 {
4429 valleyview_cleanup_pctx(dev);
4430 }
4431
4432 static void cherryview_enable_rps(struct drm_device *dev)
4433 {
4434 struct drm_i915_private *dev_priv = dev->dev_private;
4435 struct intel_engine_cs *ring;
4436 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4437 int i;
4438
4439 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4440
4441 gtfifodbg = I915_READ(GTFIFODBG);
4442 if (gtfifodbg) {
4443 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4444 gtfifodbg);
4445 I915_WRITE(GTFIFODBG, gtfifodbg);
4446 }
4447
4448 cherryview_check_pctx(dev_priv);
4449
4450 /* 1a & 1b: Get forcewake during program sequence. Although the driver
4451 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4452 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4453
4454 /* 2a: Program RC6 thresholds.*/
4455 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4456 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4457 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4458
4459 for_each_ring(ring, dev_priv, i)
4460 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4461 I915_WRITE(GEN6_RC_SLEEP, 0);
4462
4463 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4464
4465 /* allows RC6 residency counter to work */
4466 I915_WRITE(VLV_COUNTER_CONTROL,
4467 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4468 VLV_MEDIA_RC6_COUNT_EN |
4469 VLV_RENDER_RC6_COUNT_EN));
4470
4471 /* For now we assume BIOS is allocating and populating the PCBR */
4472 pcbr = I915_READ(VLV_PCBR);
4473
4474 DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4475
4476 /* 3: Enable RC6 */
4477 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4478 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4479 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4480
4481 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4482
4483 /* 4 Program defaults and thresholds for RPS*/
4484 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4485 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4486 I915_WRITE(GEN6_RP_UP_EI, 66000);
4487 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4488
4489 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4490
4491 /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4492 I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4493 I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4494
4495 /* 5: Enable RPS */
4496 I915_WRITE(GEN6_RP_CONTROL,
4497 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4498 GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4499 GEN6_RP_ENABLE |
4500 GEN6_RP_UP_BUSY_AVG |
4501 GEN6_RP_DOWN_IDLE_AVG);
4502
4503 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4504
4505 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4506 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4507
4508 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4509 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4510 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4511 dev_priv->rps.cur_freq);
4512
4513 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4514 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4515 dev_priv->rps.efficient_freq);
4516
4517 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4518
4519 gen8_enable_rps_interrupts(dev);
4520
4521 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4522 }
4523
4524 static void valleyview_enable_rps(struct drm_device *dev)
4525 {
4526 struct drm_i915_private *dev_priv = dev->dev_private;
4527 struct intel_engine_cs *ring;
4528 u32 gtfifodbg, val, rc6_mode = 0;
4529 int i;
4530
4531 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4532
4533 valleyview_check_pctx(dev_priv);
4534
4535 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4536 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4537 gtfifodbg);
4538 I915_WRITE(GTFIFODBG, gtfifodbg);
4539 }
4540
4541 /* If VLV, Forcewake all wells, else re-direct to regular path */
4542 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4543
4544 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4545 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4546 I915_WRITE(GEN6_RP_UP_EI, 66000);
4547 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4548
4549 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4550 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4551
4552 I915_WRITE(GEN6_RP_CONTROL,
4553 GEN6_RP_MEDIA_TURBO |
4554 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4555 GEN6_RP_MEDIA_IS_GFX |
4556 GEN6_RP_ENABLE |
4557 GEN6_RP_UP_BUSY_AVG |
4558 GEN6_RP_DOWN_IDLE_CONT);
4559
4560 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4561 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4562 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4563
4564 for_each_ring(ring, dev_priv, i)
4565 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4566
4567 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4568
4569 /* allows RC6 residency counter to work */
4570 I915_WRITE(VLV_COUNTER_CONTROL,
4571 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4572 VLV_RENDER_RC0_COUNT_EN |
4573 VLV_MEDIA_RC6_COUNT_EN |
4574 VLV_RENDER_RC6_COUNT_EN));
4575
4576 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4577 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4578
4579 intel_print_rc6_info(dev, rc6_mode);
4580
4581 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4582
4583 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4584
4585 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4586 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4587
4588 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4589 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4590 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4591 dev_priv->rps.cur_freq);
4592
4593 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4594 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4595 dev_priv->rps.efficient_freq);
4596
4597 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4598
4599 gen6_enable_rps_interrupts(dev);
4600
4601 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4602 }
4603
4604 void ironlake_teardown_rc6(struct drm_device *dev)
4605 {
4606 struct drm_i915_private *dev_priv = dev->dev_private;
4607
4608 if (dev_priv->ips.renderctx) {
4609 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4610 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4611 dev_priv->ips.renderctx = NULL;
4612 }
4613
4614 if (dev_priv->ips.pwrctx) {
4615 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4616 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4617 dev_priv->ips.pwrctx = NULL;
4618 }
4619 }
4620
4621 static void ironlake_disable_rc6(struct drm_device *dev)
4622 {
4623 struct drm_i915_private *dev_priv = dev->dev_private;
4624
4625 if (I915_READ(PWRCTXA)) {
4626 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4627 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4628 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4629 50);
4630
4631 I915_WRITE(PWRCTXA, 0);
4632 POSTING_READ(PWRCTXA);
4633
4634 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4635 POSTING_READ(RSTDBYCTL);
4636 }
4637 }
4638
4639 static int ironlake_setup_rc6(struct drm_device *dev)
4640 {
4641 struct drm_i915_private *dev_priv = dev->dev_private;
4642
4643 if (dev_priv->ips.renderctx == NULL)
4644 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4645 if (!dev_priv->ips.renderctx)
4646 return -ENOMEM;
4647
4648 if (dev_priv->ips.pwrctx == NULL)
4649 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4650 if (!dev_priv->ips.pwrctx) {
4651 ironlake_teardown_rc6(dev);
4652 return -ENOMEM;
4653 }
4654
4655 return 0;
4656 }
4657
4658 static void ironlake_enable_rc6(struct drm_device *dev)
4659 {
4660 struct drm_i915_private *dev_priv = dev->dev_private;
4661 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4662 bool was_interruptible;
4663 int ret;
4664
4665 /* rc6 disabled by default due to repeated reports of hanging during
4666 * boot and resume.
4667 */
4668 if (!intel_enable_rc6(dev))
4669 return;
4670
4671 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4672
4673 ret = ironlake_setup_rc6(dev);
4674 if (ret)
4675 return;
4676
4677 was_interruptible = dev_priv->mm.interruptible;
4678 dev_priv->mm.interruptible = false;
4679
4680 /*
4681 * GPU can automatically power down the render unit if given a page
4682 * to save state.
4683 */
4684 ret = intel_ring_begin(ring, 6);
4685 if (ret) {
4686 ironlake_teardown_rc6(dev);
4687 dev_priv->mm.interruptible = was_interruptible;
4688 return;
4689 }
4690
4691 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4692 intel_ring_emit(ring, MI_SET_CONTEXT);
4693 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4694 MI_MM_SPACE_GTT |
4695 MI_SAVE_EXT_STATE_EN |
4696 MI_RESTORE_EXT_STATE_EN |
4697 MI_RESTORE_INHIBIT);
4698 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4699 intel_ring_emit(ring, MI_NOOP);
4700 intel_ring_emit(ring, MI_FLUSH);
4701 intel_ring_advance(ring);
4702
4703 /*
4704 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4705 * does an implicit flush, combined with MI_FLUSH above, it should be
4706 * safe to assume that renderctx is valid
4707 */
4708 ret = intel_ring_idle(ring);
4709 dev_priv->mm.interruptible = was_interruptible;
4710 if (ret) {
4711 DRM_ERROR("failed to enable ironlake power savings\n");
4712 ironlake_teardown_rc6(dev);
4713 return;
4714 }
4715
4716 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4717 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4718
4719 intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4720 }
4721
4722 static unsigned long intel_pxfreq(u32 vidfreq)
4723 {
4724 unsigned long freq;
4725 int div = (vidfreq & 0x3f0000) >> 16;
4726 int post = (vidfreq & 0x3000) >> 12;
4727 int pre = (vidfreq & 0x7);
4728
4729 if (!pre)
4730 return 0;
4731
4732 freq = ((div * 133333) / ((1<<post) * pre));
4733
4734 return freq;
4735 }
4736
4737 static const struct cparams {
4738 u16 i;
4739 u16 t;
4740 u16 m;
4741 u16 c;
4742 } cparams[] = {
4743 { 1, 1333, 301, 28664 },
4744 { 1, 1066, 294, 24460 },
4745 { 1, 800, 294, 25192 },
4746 { 0, 1333, 276, 27605 },
4747 { 0, 1066, 276, 27605 },
4748 { 0, 800, 231, 23784 },
4749 };
4750
4751 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4752 {
4753 u64 total_count, diff, ret;
4754 u32 count1, count2, count3, m = 0, c = 0;
4755 unsigned long now = jiffies_to_msecs(jiffies), diff1;
4756 int i;
4757
4758 assert_spin_locked(&mchdev_lock);
4759
4760 diff1 = now - dev_priv->ips.last_time1;
4761
4762 /* Prevent division-by-zero if we are asking too fast.
4763 * Also, we don't get interesting results if we are polling
4764 * faster than once in 10ms, so just return the saved value
4765 * in such cases.
4766 */
4767 if (diff1 <= 10)
4768 return dev_priv->ips.chipset_power;
4769
4770 count1 = I915_READ(DMIEC);
4771 count2 = I915_READ(DDREC);
4772 count3 = I915_READ(CSIEC);
4773
4774 total_count = count1 + count2 + count3;
4775
4776 /* FIXME: handle per-counter overflow */
4777 if (total_count < dev_priv->ips.last_count1) {
4778 diff = ~0UL - dev_priv->ips.last_count1;
4779 diff += total_count;
4780 } else {
4781 diff = total_count - dev_priv->ips.last_count1;
4782 }
4783
4784 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4785 if (cparams[i].i == dev_priv->ips.c_m &&
4786 cparams[i].t == dev_priv->ips.r_t) {
4787 m = cparams[i].m;
4788 c = cparams[i].c;
4789 break;
4790 }
4791 }
4792
4793 diff = div_u64(diff, diff1);
4794 ret = ((m * diff) + c);
4795 ret = div_u64(ret, 10);
4796
4797 dev_priv->ips.last_count1 = total_count;
4798 dev_priv->ips.last_time1 = now;
4799
4800 dev_priv->ips.chipset_power = ret;
4801
4802 return ret;
4803 }
4804
4805 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4806 {
4807 struct drm_device *dev = dev_priv->dev;
4808 unsigned long val;
4809
4810 if (INTEL_INFO(dev)->gen != 5)
4811 return 0;
4812
4813 spin_lock_irq(&mchdev_lock);
4814
4815 val = __i915_chipset_val(dev_priv);
4816
4817 spin_unlock_irq(&mchdev_lock);
4818
4819 return val;
4820 }
4821
4822 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4823 {
4824 unsigned long m, x, b;
4825 u32 tsfs;
4826
4827 tsfs = I915_READ(TSFS);
4828
4829 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4830 x = I915_READ8(TR1);
4831
4832 b = tsfs & TSFS_INTR_MASK;
4833
4834 return ((m * x) / 127) - b;
4835 }
4836
4837 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4838 {
4839 struct drm_device *dev = dev_priv->dev;
4840 static const struct v_table {
4841 u16 vd; /* in .1 mil */
4842 u16 vm; /* in .1 mil */
4843 } v_table[] = {
4844 { 0, 0, },
4845 { 375, 0, },
4846 { 500, 0, },
4847 { 625, 0, },
4848 { 750, 0, },
4849 { 875, 0, },
4850 { 1000, 0, },
4851 { 1125, 0, },
4852 { 4125, 3000, },
4853 { 4125, 3000, },
4854 { 4125, 3000, },
4855 { 4125, 3000, },
4856 { 4125, 3000, },
4857 { 4125, 3000, },
4858 { 4125, 3000, },
4859 { 4125, 3000, },
4860 { 4125, 3000, },
4861 { 4125, 3000, },
4862 { 4125, 3000, },
4863 { 4125, 3000, },
4864 { 4125, 3000, },
4865 { 4125, 3000, },
4866 { 4125, 3000, },
4867 { 4125, 3000, },
4868 { 4125, 3000, },
4869 { 4125, 3000, },
4870 { 4125, 3000, },
4871 { 4125, 3000, },
4872 { 4125, 3000, },
4873 { 4125, 3000, },
4874 { 4125, 3000, },
4875 { 4125, 3000, },
4876 { 4250, 3125, },
4877 { 4375, 3250, },
4878 { 4500, 3375, },
4879 { 4625, 3500, },
4880 { 4750, 3625, },
4881 { 4875, 3750, },
4882 { 5000, 3875, },
4883 { 5125, 4000, },
4884 { 5250, 4125, },
4885 { 5375, 4250, },
4886 { 5500, 4375, },
4887 { 5625, 4500, },
4888 { 5750, 4625, },
4889 { 5875, 4750, },
4890 { 6000, 4875, },
4891 { 6125, 5000, },
4892 { 6250, 5125, },
4893 { 6375, 5250, },
4894 { 6500, 5375, },
4895 { 6625, 5500, },
4896 { 6750, 5625, },
4897 { 6875, 5750, },
4898 { 7000, 5875, },
4899 { 7125, 6000, },
4900 { 7250, 6125, },
4901 { 7375, 6250, },
4902 { 7500, 6375, },
4903 { 7625, 6500, },
4904 { 7750, 6625, },
4905 { 7875, 6750, },
4906 { 8000, 6875, },
4907 { 8125, 7000, },
4908 { 8250, 7125, },
4909 { 8375, 7250, },
4910 { 8500, 7375, },
4911 { 8625, 7500, },
4912 { 8750, 7625, },
4913 { 8875, 7750, },
4914 { 9000, 7875, },
4915 { 9125, 8000, },
4916 { 9250, 8125, },
4917 { 9375, 8250, },
4918 { 9500, 8375, },
4919 { 9625, 8500, },
4920 { 9750, 8625, },
4921 { 9875, 8750, },
4922 { 10000, 8875, },
4923 { 10125, 9000, },
4924 { 10250, 9125, },
4925 { 10375, 9250, },
4926 { 10500, 9375, },
4927 { 10625, 9500, },
4928 { 10750, 9625, },
4929 { 10875, 9750, },
4930 { 11000, 9875, },
4931 { 11125, 10000, },
4932 { 11250, 10125, },
4933 { 11375, 10250, },
4934 { 11500, 10375, },
4935 { 11625, 10500, },
4936 { 11750, 10625, },
4937 { 11875, 10750, },
4938 { 12000, 10875, },
4939 { 12125, 11000, },
4940 { 12250, 11125, },
4941 { 12375, 11250, },
4942 { 12500, 11375, },
4943 { 12625, 11500, },
4944 { 12750, 11625, },
4945 { 12875, 11750, },
4946 { 13000, 11875, },
4947 { 13125, 12000, },
4948 { 13250, 12125, },
4949 { 13375, 12250, },
4950 { 13500, 12375, },
4951 { 13625, 12500, },
4952 { 13750, 12625, },
4953 { 13875, 12750, },
4954 { 14000, 12875, },
4955 { 14125, 13000, },
4956 { 14250, 13125, },
4957 { 14375, 13250, },
4958 { 14500, 13375, },
4959 { 14625, 13500, },
4960 { 14750, 13625, },
4961 { 14875, 13750, },
4962 { 15000, 13875, },
4963 { 15125, 14000, },
4964 { 15250, 14125, },
4965 { 15375, 14250, },
4966 { 15500, 14375, },
4967 { 15625, 14500, },
4968 { 15750, 14625, },
4969 { 15875, 14750, },
4970 { 16000, 14875, },
4971 { 16125, 15000, },
4972 };
4973 if (INTEL_INFO(dev)->is_mobile)
4974 return v_table[pxvid].vm;
4975 else
4976 return v_table[pxvid].vd;
4977 }
4978
4979 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4980 {
4981 u64 now, diff, diffms;
4982 u32 count;
4983
4984 assert_spin_locked(&mchdev_lock);
4985
4986 now = ktime_get_raw_ns();
4987 diffms = now - dev_priv->ips.last_time2;
4988 do_div(diffms, NSEC_PER_MSEC);
4989
4990 /* Don't divide by 0 */
4991 if (!diffms)
4992 return;
4993
4994 count = I915_READ(GFXEC);
4995
4996 if (count < dev_priv->ips.last_count2) {
4997 diff = ~0UL - dev_priv->ips.last_count2;
4998 diff += count;
4999 } else {
5000 diff = count - dev_priv->ips.last_count2;
5001 }
5002
5003 dev_priv->ips.last_count2 = count;
5004 dev_priv->ips.last_time2 = now;
5005
5006 /* More magic constants... */
5007 diff = diff * 1181;
5008 diff = div_u64(diff, diffms * 10);
5009 dev_priv->ips.gfx_power = diff;
5010 }
5011
5012 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5013 {
5014 struct drm_device *dev = dev_priv->dev;
5015
5016 if (INTEL_INFO(dev)->gen != 5)
5017 return;
5018
5019 spin_lock_irq(&mchdev_lock);
5020
5021 __i915_update_gfx_val(dev_priv);
5022
5023 spin_unlock_irq(&mchdev_lock);
5024 }
5025
5026 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5027 {
5028 unsigned long t, corr, state1, corr2, state2;
5029 u32 pxvid, ext_v;
5030
5031 assert_spin_locked(&mchdev_lock);
5032
5033 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5034 pxvid = (pxvid >> 24) & 0x7f;
5035 ext_v = pvid_to_extvid(dev_priv, pxvid);
5036
5037 state1 = ext_v;
5038
5039 t = i915_mch_val(dev_priv);
5040
5041 /* Revel in the empirically derived constants */
5042
5043 /* Correction factor in 1/100000 units */
5044 if (t > 80)
5045 corr = ((t * 2349) + 135940);
5046 else if (t >= 50)
5047 corr = ((t * 964) + 29317);
5048 else /* < 50 */
5049 corr = ((t * 301) + 1004);
5050
5051 corr = corr * ((150142 * state1) / 10000 - 78642);
5052 corr /= 100000;
5053 corr2 = (corr * dev_priv->ips.corr);
5054
5055 state2 = (corr2 * state1) / 10000;
5056 state2 /= 100; /* convert to mW */
5057
5058 __i915_update_gfx_val(dev_priv);
5059
5060 return dev_priv->ips.gfx_power + state2;
5061 }
5062
5063 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5064 {
5065 struct drm_device *dev = dev_priv->dev;
5066 unsigned long val;
5067
5068 if (INTEL_INFO(dev)->gen != 5)
5069 return 0;
5070
5071 spin_lock_irq(&mchdev_lock);
5072
5073 val = __i915_gfx_val(dev_priv);
5074
5075 spin_unlock_irq(&mchdev_lock);
5076
5077 return val;
5078 }
5079
5080 /**
5081 * i915_read_mch_val - return value for IPS use
5082 *
5083 * Calculate and return a value for the IPS driver to use when deciding whether
5084 * we have thermal and power headroom to increase CPU or GPU power budget.
5085 */
5086 unsigned long i915_read_mch_val(void)
5087 {
5088 struct drm_i915_private *dev_priv;
5089 unsigned long chipset_val, graphics_val, ret = 0;
5090
5091 spin_lock_irq(&mchdev_lock);
5092 if (!i915_mch_dev)
5093 goto out_unlock;
5094 dev_priv = i915_mch_dev;
5095
5096 chipset_val = __i915_chipset_val(dev_priv);
5097 graphics_val = __i915_gfx_val(dev_priv);
5098
5099 ret = chipset_val + graphics_val;
5100
5101 out_unlock:
5102 spin_unlock_irq(&mchdev_lock);
5103
5104 return ret;
5105 }
5106 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5107
5108 /**
5109 * i915_gpu_raise - raise GPU frequency limit
5110 *
5111 * Raise the limit; IPS indicates we have thermal headroom.
5112 */
5113 bool i915_gpu_raise(void)
5114 {
5115 struct drm_i915_private *dev_priv;
5116 bool ret = true;
5117
5118 spin_lock_irq(&mchdev_lock);
5119 if (!i915_mch_dev) {
5120 ret = false;
5121 goto out_unlock;
5122 }
5123 dev_priv = i915_mch_dev;
5124
5125 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5126 dev_priv->ips.max_delay--;
5127
5128 out_unlock:
5129 spin_unlock_irq(&mchdev_lock);
5130
5131 return ret;
5132 }
5133 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5134
5135 /**
5136 * i915_gpu_lower - lower GPU frequency limit
5137 *
5138 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5139 * frequency maximum.
5140 */
5141 bool i915_gpu_lower(void)
5142 {
5143 struct drm_i915_private *dev_priv;
5144 bool ret = true;
5145
5146 spin_lock_irq(&mchdev_lock);
5147 if (!i915_mch_dev) {
5148 ret = false;
5149 goto out_unlock;
5150 }
5151 dev_priv = i915_mch_dev;
5152
5153 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5154 dev_priv->ips.max_delay++;
5155
5156 out_unlock:
5157 spin_unlock_irq(&mchdev_lock);
5158
5159 return ret;
5160 }
5161 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5162
5163 /**
5164 * i915_gpu_busy - indicate GPU business to IPS
5165 *
5166 * Tell the IPS driver whether or not the GPU is busy.
5167 */
5168 bool i915_gpu_busy(void)
5169 {
5170 struct drm_i915_private *dev_priv;
5171 struct intel_engine_cs *ring;
5172 bool ret = false;
5173 int i;
5174
5175 spin_lock_irq(&mchdev_lock);
5176 if (!i915_mch_dev)
5177 goto out_unlock;
5178 dev_priv = i915_mch_dev;
5179
5180 for_each_ring(ring, dev_priv, i)
5181 ret |= !list_empty(&ring->request_list);
5182
5183 out_unlock:
5184 spin_unlock_irq(&mchdev_lock);
5185
5186 return ret;
5187 }
5188 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5189
5190 /**
5191 * i915_gpu_turbo_disable - disable graphics turbo
5192 *
5193 * Disable graphics turbo by resetting the max frequency and setting the
5194 * current frequency to the default.
5195 */
5196 bool i915_gpu_turbo_disable(void)
5197 {
5198 struct drm_i915_private *dev_priv;
5199 bool ret = true;
5200
5201 spin_lock_irq(&mchdev_lock);
5202 if (!i915_mch_dev) {
5203 ret = false;
5204 goto out_unlock;
5205 }
5206 dev_priv = i915_mch_dev;
5207
5208 dev_priv->ips.max_delay = dev_priv->ips.fstart;
5209
5210 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5211 ret = false;
5212
5213 out_unlock:
5214 spin_unlock_irq(&mchdev_lock);
5215
5216 return ret;
5217 }
5218 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5219
5220 /**
5221 * Tells the intel_ips driver that the i915 driver is now loaded, if
5222 * IPS got loaded first.
5223 *
5224 * This awkward dance is so that neither module has to depend on the
5225 * other in order for IPS to do the appropriate communication of
5226 * GPU turbo limits to i915.
5227 */
5228 static void
5229 ips_ping_for_i915_load(void)
5230 {
5231 void (*link)(void);
5232
5233 link = symbol_get(ips_link_to_i915_driver);
5234 if (link) {
5235 link();
5236 symbol_put(ips_link_to_i915_driver);
5237 }
5238 }
5239
5240 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5241 {
5242 /* We only register the i915 ips part with intel-ips once everything is
5243 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5244 spin_lock_irq(&mchdev_lock);
5245 i915_mch_dev = dev_priv;
5246 spin_unlock_irq(&mchdev_lock);
5247
5248 ips_ping_for_i915_load();
5249 }
5250
5251 void intel_gpu_ips_teardown(void)
5252 {
5253 spin_lock_irq(&mchdev_lock);
5254 i915_mch_dev = NULL;
5255 spin_unlock_irq(&mchdev_lock);
5256 }
5257
5258 static void intel_init_emon(struct drm_device *dev)
5259 {
5260 struct drm_i915_private *dev_priv = dev->dev_private;
5261 u32 lcfuse;
5262 u8 pxw[16];
5263 int i;
5264
5265 /* Disable to program */
5266 I915_WRITE(ECR, 0);
5267 POSTING_READ(ECR);
5268
5269 /* Program energy weights for various events */
5270 I915_WRITE(SDEW, 0x15040d00);
5271 I915_WRITE(CSIEW0, 0x007f0000);
5272 I915_WRITE(CSIEW1, 0x1e220004);
5273 I915_WRITE(CSIEW2, 0x04000004);
5274
5275 for (i = 0; i < 5; i++)
5276 I915_WRITE(PEW + (i * 4), 0);
5277 for (i = 0; i < 3; i++)
5278 I915_WRITE(DEW + (i * 4), 0);
5279
5280 /* Program P-state weights to account for frequency power adjustment */
5281 for (i = 0; i < 16; i++) {
5282 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5283 unsigned long freq = intel_pxfreq(pxvidfreq);
5284 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5285 PXVFREQ_PX_SHIFT;
5286 unsigned long val;
5287
5288 val = vid * vid;
5289 val *= (freq / 1000);
5290 val *= 255;
5291 val /= (127*127*900);
5292 if (val > 0xff)
5293 DRM_ERROR("bad pxval: %ld\n", val);
5294 pxw[i] = val;
5295 }
5296 /* Render standby states get 0 weight */
5297 pxw[14] = 0;
5298 pxw[15] = 0;
5299
5300 for (i = 0; i < 4; i++) {
5301 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5302 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5303 I915_WRITE(PXW + (i * 4), val);
5304 }
5305
5306 /* Adjust magic regs to magic values (more experimental results) */
5307 I915_WRITE(OGW0, 0);
5308 I915_WRITE(OGW1, 0);
5309 I915_WRITE(EG0, 0x00007f00);
5310 I915_WRITE(EG1, 0x0000000e);
5311 I915_WRITE(EG2, 0x000e0000);
5312 I915_WRITE(EG3, 0x68000300);
5313 I915_WRITE(EG4, 0x42000000);
5314 I915_WRITE(EG5, 0x00140031);
5315 I915_WRITE(EG6, 0);
5316 I915_WRITE(EG7, 0);
5317
5318 for (i = 0; i < 8; i++)
5319 I915_WRITE(PXWL + (i * 4), 0);
5320
5321 /* Enable PMON + select events */
5322 I915_WRITE(ECR, 0x80000019);
5323
5324 lcfuse = I915_READ(LCFUSE02);
5325
5326 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5327 }
5328
5329 void intel_init_gt_powersave(struct drm_device *dev)
5330 {
5331 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5332
5333 if (IS_CHERRYVIEW(dev))
5334 cherryview_init_gt_powersave(dev);
5335 else if (IS_VALLEYVIEW(dev))
5336 valleyview_init_gt_powersave(dev);
5337 }
5338
5339 void intel_cleanup_gt_powersave(struct drm_device *dev)
5340 {
5341 if (IS_CHERRYVIEW(dev))
5342 return;
5343 else if (IS_VALLEYVIEW(dev))
5344 valleyview_cleanup_gt_powersave(dev);
5345 }
5346
5347 /**
5348 * intel_suspend_gt_powersave - suspend PM work and helper threads
5349 * @dev: drm device
5350 *
5351 * We don't want to disable RC6 or other features here, we just want
5352 * to make sure any work we've queued has finished and won't bother
5353 * us while we're suspended.
5354 */
5355 void intel_suspend_gt_powersave(struct drm_device *dev)
5356 {
5357 struct drm_i915_private *dev_priv = dev->dev_private;
5358
5359 /* Interrupts should be disabled already to avoid re-arming. */
5360 WARN_ON(intel_irqs_enabled(dev_priv));
5361
5362 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5363
5364 cancel_work_sync(&dev_priv->rps.work);
5365
5366 /* Force GPU to min freq during suspend */
5367 gen6_rps_idle(dev_priv);
5368 }
5369
5370 void intel_disable_gt_powersave(struct drm_device *dev)
5371 {
5372 struct drm_i915_private *dev_priv = dev->dev_private;
5373
5374 /* Interrupts should be disabled already to avoid re-arming. */
5375 WARN_ON(intel_irqs_enabled(dev_priv));
5376
5377 if (IS_IRONLAKE_M(dev)) {
5378 ironlake_disable_drps(dev);
5379 ironlake_disable_rc6(dev);
5380 } else if (INTEL_INFO(dev)->gen >= 6) {
5381 intel_suspend_gt_powersave(dev);
5382
5383 mutex_lock(&dev_priv->rps.hw_lock);
5384 if (IS_CHERRYVIEW(dev))
5385 cherryview_disable_rps(dev);
5386 else if (IS_VALLEYVIEW(dev))
5387 valleyview_disable_rps(dev);
5388 else
5389 gen6_disable_rps(dev);
5390 dev_priv->rps.enabled = false;
5391 mutex_unlock(&dev_priv->rps.hw_lock);
5392 }
5393 }
5394
5395 static void intel_gen6_powersave_work(struct work_struct *work)
5396 {
5397 struct drm_i915_private *dev_priv =
5398 container_of(work, struct drm_i915_private,
5399 rps.delayed_resume_work.work);
5400 struct drm_device *dev = dev_priv->dev;
5401
5402 dev_priv->rps.is_bdw_sw_turbo = false;
5403
5404 mutex_lock(&dev_priv->rps.hw_lock);
5405
5406 if (IS_CHERRYVIEW(dev)) {
5407 cherryview_enable_rps(dev);
5408 } else if (IS_VALLEYVIEW(dev)) {
5409 valleyview_enable_rps(dev);
5410 } else if (IS_BROADWELL(dev)) {
5411 gen8_enable_rps(dev);
5412 __gen6_update_ring_freq(dev);
5413 } else {
5414 gen6_enable_rps(dev);
5415 __gen6_update_ring_freq(dev);
5416 }
5417 dev_priv->rps.enabled = true;
5418 mutex_unlock(&dev_priv->rps.hw_lock);
5419
5420 intel_runtime_pm_put(dev_priv);
5421 }
5422
5423 void intel_enable_gt_powersave(struct drm_device *dev)
5424 {
5425 struct drm_i915_private *dev_priv = dev->dev_private;
5426
5427 if (IS_IRONLAKE_M(dev)) {
5428 mutex_lock(&dev->struct_mutex);
5429 ironlake_enable_drps(dev);
5430 ironlake_enable_rc6(dev);
5431 intel_init_emon(dev);
5432 mutex_unlock(&dev->struct_mutex);
5433 } else if (INTEL_INFO(dev)->gen >= 6) {
5434 /*
5435 * PCU communication is slow and this doesn't need to be
5436 * done at any specific time, so do this out of our fast path
5437 * to make resume and init faster.
5438 *
5439 * We depend on the HW RC6 power context save/restore
5440 * mechanism when entering D3 through runtime PM suspend. So
5441 * disable RPM until RPS/RC6 is properly setup. We can only
5442 * get here via the driver load/system resume/runtime resume
5443 * paths, so the _noresume version is enough (and in case of
5444 * runtime resume it's necessary).
5445 */
5446 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5447 round_jiffies_up_relative(HZ)))
5448 intel_runtime_pm_get_noresume(dev_priv);
5449 }
5450 }
5451
5452 void intel_reset_gt_powersave(struct drm_device *dev)
5453 {
5454 struct drm_i915_private *dev_priv = dev->dev_private;
5455
5456 dev_priv->rps.enabled = false;
5457 intel_enable_gt_powersave(dev);
5458 }
5459
5460 static void ibx_init_clock_gating(struct drm_device *dev)
5461 {
5462 struct drm_i915_private *dev_priv = dev->dev_private;
5463
5464 /*
5465 * On Ibex Peak and Cougar Point, we need to disable clock
5466 * gating for the panel power sequencer or it will fail to
5467 * start up when no ports are active.
5468 */
5469 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5470 }
5471
5472 static void g4x_disable_trickle_feed(struct drm_device *dev)
5473 {
5474 struct drm_i915_private *dev_priv = dev->dev_private;
5475 int pipe;
5476
5477 for_each_pipe(dev_priv, pipe) {
5478 I915_WRITE(DSPCNTR(pipe),
5479 I915_READ(DSPCNTR(pipe)) |
5480 DISPPLANE_TRICKLE_FEED_DISABLE);
5481 intel_flush_primary_plane(dev_priv, pipe);
5482 }
5483 }
5484
5485 static void ilk_init_lp_watermarks(struct drm_device *dev)
5486 {
5487 struct drm_i915_private *dev_priv = dev->dev_private;
5488
5489 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5490 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5491 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5492
5493 /*
5494 * Don't touch WM1S_LP_EN here.
5495 * Doing so could cause underruns.
5496 */
5497 }
5498
5499 static void ironlake_init_clock_gating(struct drm_device *dev)
5500 {
5501 struct drm_i915_private *dev_priv = dev->dev_private;
5502 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5503
5504 /*
5505 * Required for FBC
5506 * WaFbcDisableDpfcClockGating:ilk
5507 */
5508 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5509 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5510 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5511
5512 I915_WRITE(PCH_3DCGDIS0,
5513 MARIUNIT_CLOCK_GATE_DISABLE |
5514 SVSMUNIT_CLOCK_GATE_DISABLE);
5515 I915_WRITE(PCH_3DCGDIS1,
5516 VFMUNIT_CLOCK_GATE_DISABLE);
5517
5518 /*
5519 * According to the spec the following bits should be set in
5520 * order to enable memory self-refresh
5521 * The bit 22/21 of 0x42004
5522 * The bit 5 of 0x42020
5523 * The bit 15 of 0x45000
5524 */
5525 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5526 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5527 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5528 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5529 I915_WRITE(DISP_ARB_CTL,
5530 (I915_READ(DISP_ARB_CTL) |
5531 DISP_FBC_WM_DIS));
5532
5533 ilk_init_lp_watermarks(dev);
5534
5535 /*
5536 * Based on the document from hardware guys the following bits
5537 * should be set unconditionally in order to enable FBC.
5538 * The bit 22 of 0x42000
5539 * The bit 22 of 0x42004
5540 * The bit 7,8,9 of 0x42020.
5541 */
5542 if (IS_IRONLAKE_M(dev)) {
5543 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5544 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5545 I915_READ(ILK_DISPLAY_CHICKEN1) |
5546 ILK_FBCQ_DIS);
5547 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5548 I915_READ(ILK_DISPLAY_CHICKEN2) |
5549 ILK_DPARB_GATE);
5550 }
5551
5552 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5553
5554 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5555 I915_READ(ILK_DISPLAY_CHICKEN2) |
5556 ILK_ELPIN_409_SELECT);
5557 I915_WRITE(_3D_CHICKEN2,
5558 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5559 _3D_CHICKEN2_WM_READ_PIPELINED);
5560
5561 /* WaDisableRenderCachePipelinedFlush:ilk */
5562 I915_WRITE(CACHE_MODE_0,
5563 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5564
5565 /* WaDisable_RenderCache_OperationalFlush:ilk */
5566 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5567
5568 g4x_disable_trickle_feed(dev);
5569
5570 ibx_init_clock_gating(dev);
5571 }
5572
5573 static void cpt_init_clock_gating(struct drm_device *dev)
5574 {
5575 struct drm_i915_private *dev_priv = dev->dev_private;
5576 int pipe;
5577 uint32_t val;
5578
5579 /*
5580 * On Ibex Peak and Cougar Point, we need to disable clock
5581 * gating for the panel power sequencer or it will fail to
5582 * start up when no ports are active.
5583 */
5584 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5585 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5586 PCH_CPUNIT_CLOCK_GATE_DISABLE);
5587 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5588 DPLS_EDP_PPS_FIX_DIS);
5589 /* The below fixes the weird display corruption, a few pixels shifted
5590 * downward, on (only) LVDS of some HP laptops with IVY.
5591 */
5592 for_each_pipe(dev_priv, pipe) {
5593 val = I915_READ(TRANS_CHICKEN2(pipe));
5594 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5595 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5596 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5597 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5598 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5599 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5600 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5601 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5602 }
5603 /* WADP0ClockGatingDisable */
5604 for_each_pipe(dev_priv, pipe) {
5605 I915_WRITE(TRANS_CHICKEN1(pipe),
5606 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5607 }
5608 }
5609
5610 static void gen6_check_mch_setup(struct drm_device *dev)
5611 {
5612 struct drm_i915_private *dev_priv = dev->dev_private;
5613 uint32_t tmp;
5614
5615 tmp = I915_READ(MCH_SSKPD);
5616 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5617 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5618 tmp);
5619 }
5620
5621 static void gen6_init_clock_gating(struct drm_device *dev)
5622 {
5623 struct drm_i915_private *dev_priv = dev->dev_private;
5624 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5625
5626 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5627
5628 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5629 I915_READ(ILK_DISPLAY_CHICKEN2) |
5630 ILK_ELPIN_409_SELECT);
5631
5632 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5633 I915_WRITE(_3D_CHICKEN,
5634 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5635
5636 /* WaSetupGtModeTdRowDispatch:snb */
5637 if (IS_SNB_GT1(dev))
5638 I915_WRITE(GEN6_GT_MODE,
5639 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5640
5641 /* WaDisable_RenderCache_OperationalFlush:snb */
5642 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5643
5644 /*
5645 * BSpec recoomends 8x4 when MSAA is used,
5646 * however in practice 16x4 seems fastest.
5647 *
5648 * Note that PS/WM thread counts depend on the WIZ hashing
5649 * disable bit, which we don't touch here, but it's good
5650 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5651 */
5652 I915_WRITE(GEN6_GT_MODE,
5653 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5654
5655 ilk_init_lp_watermarks(dev);
5656
5657 I915_WRITE(CACHE_MODE_0,
5658 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5659
5660 I915_WRITE(GEN6_UCGCTL1,
5661 I915_READ(GEN6_UCGCTL1) |
5662 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5663 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5664
5665 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5666 * gating disable must be set. Failure to set it results in
5667 * flickering pixels due to Z write ordering failures after
5668 * some amount of runtime in the Mesa "fire" demo, and Unigine
5669 * Sanctuary and Tropics, and apparently anything else with
5670 * alpha test or pixel discard.
5671 *
5672 * According to the spec, bit 11 (RCCUNIT) must also be set,
5673 * but we didn't debug actual testcases to find it out.
5674 *
5675 * WaDisableRCCUnitClockGating:snb
5676 * WaDisableRCPBUnitClockGating:snb
5677 */
5678 I915_WRITE(GEN6_UCGCTL2,
5679 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5680 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5681
5682 /* WaStripsFansDisableFastClipPerformanceFix:snb */
5683 I915_WRITE(_3D_CHICKEN3,
5684 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5685
5686 /*
5687 * Bspec says:
5688 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5689 * 3DSTATE_SF number of SF output attributes is more than 16."
5690 */
5691 I915_WRITE(_3D_CHICKEN3,
5692 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5693
5694 /*
5695 * According to the spec the following bits should be
5696 * set in order to enable memory self-refresh and fbc:
5697 * The bit21 and bit22 of 0x42000
5698 * The bit21 and bit22 of 0x42004
5699 * The bit5 and bit7 of 0x42020
5700 * The bit14 of 0x70180
5701 * The bit14 of 0x71180
5702 *
5703 * WaFbcAsynchFlipDisableFbcQueue:snb
5704 */
5705 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5706 I915_READ(ILK_DISPLAY_CHICKEN1) |
5707 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5708 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5709 I915_READ(ILK_DISPLAY_CHICKEN2) |
5710 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5711 I915_WRITE(ILK_DSPCLK_GATE_D,
5712 I915_READ(ILK_DSPCLK_GATE_D) |
5713 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
5714 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5715
5716 g4x_disable_trickle_feed(dev);
5717
5718 cpt_init_clock_gating(dev);
5719
5720 gen6_check_mch_setup(dev);
5721 }
5722
5723 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5724 {
5725 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5726
5727 /*
5728 * WaVSThreadDispatchOverride:ivb,vlv
5729 *
5730 * This actually overrides the dispatch
5731 * mode for all thread types.
5732 */
5733 reg &= ~GEN7_FF_SCHED_MASK;
5734 reg |= GEN7_FF_TS_SCHED_HW;
5735 reg |= GEN7_FF_VS_SCHED_HW;
5736 reg |= GEN7_FF_DS_SCHED_HW;
5737
5738 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5739 }
5740
5741 static void lpt_init_clock_gating(struct drm_device *dev)
5742 {
5743 struct drm_i915_private *dev_priv = dev->dev_private;
5744
5745 /*
5746 * TODO: this bit should only be enabled when really needed, then
5747 * disabled when not needed anymore in order to save power.
5748 */
5749 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5750 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5751 I915_READ(SOUTH_DSPCLK_GATE_D) |
5752 PCH_LP_PARTITION_LEVEL_DISABLE);
5753
5754 /* WADPOClockGatingDisable:hsw */
5755 I915_WRITE(_TRANSA_CHICKEN1,
5756 I915_READ(_TRANSA_CHICKEN1) |
5757 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5758 }
5759
5760 static void lpt_suspend_hw(struct drm_device *dev)
5761 {
5762 struct drm_i915_private *dev_priv = dev->dev_private;
5763
5764 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5765 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5766
5767 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5768 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5769 }
5770 }
5771
5772 static void broadwell_init_clock_gating(struct drm_device *dev)
5773 {
5774 struct drm_i915_private *dev_priv = dev->dev_private;
5775 enum pipe pipe;
5776
5777 I915_WRITE(WM3_LP_ILK, 0);
5778 I915_WRITE(WM2_LP_ILK, 0);
5779 I915_WRITE(WM1_LP_ILK, 0);
5780
5781 /* FIXME(BDW): Check all the w/a, some might only apply to
5782 * pre-production hw. */
5783
5784
5785 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5786
5787 I915_WRITE(_3D_CHICKEN3,
5788 _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5789
5790
5791 /* WaSwitchSolVfFArbitrationPriority:bdw */
5792 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5793
5794 /* WaPsrDPAMaskVBlankInSRD:bdw */
5795 I915_WRITE(CHICKEN_PAR1_1,
5796 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5797
5798 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5799 for_each_pipe(dev_priv, pipe) {
5800 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5801 I915_READ(CHICKEN_PIPESL_1(pipe)) |
5802 BDW_DPRS_MASK_VBLANK_SRD);
5803 }
5804
5805 /* WaVSRefCountFullforceMissDisable:bdw */
5806 /* WaDSRefCountFullforceMissDisable:bdw */
5807 I915_WRITE(GEN7_FF_THREAD_MODE,
5808 I915_READ(GEN7_FF_THREAD_MODE) &
5809 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5810
5811 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5812 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5813
5814 /* WaDisableSDEUnitClockGating:bdw */
5815 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5816 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5817
5818 lpt_init_clock_gating(dev);
5819 }
5820
5821 static void haswell_init_clock_gating(struct drm_device *dev)
5822 {
5823 struct drm_i915_private *dev_priv = dev->dev_private;
5824
5825 ilk_init_lp_watermarks(dev);
5826
5827 /* L3 caching of data atomics doesn't work -- disable it. */
5828 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5829 I915_WRITE(HSW_ROW_CHICKEN3,
5830 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5831
5832 /* This is required by WaCatErrorRejectionIssue:hsw */
5833 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5834 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5835 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5836
5837 /* WaVSRefCountFullforceMissDisable:hsw */
5838 I915_WRITE(GEN7_FF_THREAD_MODE,
5839 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5840
5841 /* WaDisable_RenderCache_OperationalFlush:hsw */
5842 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5843
5844 /* enable HiZ Raw Stall Optimization */
5845 I915_WRITE(CACHE_MODE_0_GEN7,
5846 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5847
5848 /* WaDisable4x2SubspanOptimization:hsw */
5849 I915_WRITE(CACHE_MODE_1,
5850 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5851
5852 /*
5853 * BSpec recommends 8x4 when MSAA is used,
5854 * however in practice 16x4 seems fastest.
5855 *
5856 * Note that PS/WM thread counts depend on the WIZ hashing
5857 * disable bit, which we don't touch here, but it's good
5858 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5859 */
5860 I915_WRITE(GEN7_GT_MODE,
5861 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5862
5863 /* WaSwitchSolVfFArbitrationPriority:hsw */
5864 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5865
5866 /* WaRsPkgCStateDisplayPMReq:hsw */
5867 I915_WRITE(CHICKEN_PAR1_1,
5868 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5869
5870 lpt_init_clock_gating(dev);
5871 }
5872
5873 static void ivybridge_init_clock_gating(struct drm_device *dev)
5874 {
5875 struct drm_i915_private *dev_priv = dev->dev_private;
5876 uint32_t snpcr;
5877
5878 ilk_init_lp_watermarks(dev);
5879
5880 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5881
5882 /* WaDisableEarlyCull:ivb */
5883 I915_WRITE(_3D_CHICKEN3,
5884 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5885
5886 /* WaDisableBackToBackFlipFix:ivb */
5887 I915_WRITE(IVB_CHICKEN3,
5888 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5889 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5890
5891 /* WaDisablePSDDualDispatchEnable:ivb */
5892 if (IS_IVB_GT1(dev))
5893 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5894 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5895
5896 /* WaDisable_RenderCache_OperationalFlush:ivb */
5897 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5898
5899 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5900 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5901 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5902
5903 /* WaApplyL3ControlAndL3ChickenMode:ivb */
5904 I915_WRITE(GEN7_L3CNTLREG1,
5905 GEN7_WA_FOR_GEN7_L3_CONTROL);
5906 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5907 GEN7_WA_L3_CHICKEN_MODE);
5908 if (IS_IVB_GT1(dev))
5909 I915_WRITE(GEN7_ROW_CHICKEN2,
5910 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5911 else {
5912 /* must write both registers */
5913 I915_WRITE(GEN7_ROW_CHICKEN2,
5914 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5915 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5916 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5917 }
5918
5919 /* WaForceL3Serialization:ivb */
5920 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5921 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5922
5923 /*
5924 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5925 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5926 */
5927 I915_WRITE(GEN6_UCGCTL2,
5928 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5929
5930 /* This is required by WaCatErrorRejectionIssue:ivb */
5931 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5932 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5933 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5934
5935 g4x_disable_trickle_feed(dev);
5936
5937 gen7_setup_fixed_func_scheduler(dev_priv);
5938
5939 if (0) { /* causes HiZ corruption on ivb:gt1 */
5940 /* enable HiZ Raw Stall Optimization */
5941 I915_WRITE(CACHE_MODE_0_GEN7,
5942 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5943 }
5944
5945 /* WaDisable4x2SubspanOptimization:ivb */
5946 I915_WRITE(CACHE_MODE_1,
5947 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5948
5949 /*
5950 * BSpec recommends 8x4 when MSAA is used,
5951 * however in practice 16x4 seems fastest.
5952 *
5953 * Note that PS/WM thread counts depend on the WIZ hashing
5954 * disable bit, which we don't touch here, but it's good
5955 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5956 */
5957 I915_WRITE(GEN7_GT_MODE,
5958 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5959
5960 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5961 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5962 snpcr |= GEN6_MBC_SNPCR_MED;
5963 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5964
5965 if (!HAS_PCH_NOP(dev))
5966 cpt_init_clock_gating(dev);
5967
5968 gen6_check_mch_setup(dev);
5969 }
5970
5971 static void valleyview_init_clock_gating(struct drm_device *dev)
5972 {
5973 struct drm_i915_private *dev_priv = dev->dev_private;
5974
5975 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5976
5977 /* WaDisableEarlyCull:vlv */
5978 I915_WRITE(_3D_CHICKEN3,
5979 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5980
5981 /* WaDisableBackToBackFlipFix:vlv */
5982 I915_WRITE(IVB_CHICKEN3,
5983 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5984 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5985
5986 /* WaPsdDispatchEnable:vlv */
5987 /* WaDisablePSDDualDispatchEnable:vlv */
5988 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5989 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5990 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5991
5992 /* WaDisable_RenderCache_OperationalFlush:vlv */
5993 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5994
5995 /* WaForceL3Serialization:vlv */
5996 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5997 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5998
5999 /* WaDisableDopClockGating:vlv */
6000 I915_WRITE(GEN7_ROW_CHICKEN2,
6001 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6002
6003 /* This is required by WaCatErrorRejectionIssue:vlv */
6004 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6005 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6006 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6007
6008 gen7_setup_fixed_func_scheduler(dev_priv);
6009
6010 /*
6011 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6012 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6013 */
6014 I915_WRITE(GEN6_UCGCTL2,
6015 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6016
6017 /* WaDisableL3Bank2xClockGate:vlv
6018 * Disabling L3 clock gating- MMIO 940c[25] = 1
6019 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6020 I915_WRITE(GEN7_UCGCTL4,
6021 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6022
6023 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6024
6025 /*
6026 * BSpec says this must be set, even though
6027 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6028 */
6029 I915_WRITE(CACHE_MODE_1,
6030 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6031
6032 /*
6033 * WaIncreaseL3CreditsForVLVB0:vlv
6034 * This is the hardware default actually.
6035 */
6036 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6037
6038 /*
6039 * WaDisableVLVClockGating_VBIIssue:vlv
6040 * Disable clock gating on th GCFG unit to prevent a delay
6041 * in the reporting of vblank events.
6042 */
6043 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6044 }
6045
6046 static void cherryview_init_clock_gating(struct drm_device *dev)
6047 {
6048 struct drm_i915_private *dev_priv = dev->dev_private;
6049
6050 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6051
6052 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6053
6054 /* WaVSRefCountFullforceMissDisable:chv */
6055 /* WaDSRefCountFullforceMissDisable:chv */
6056 I915_WRITE(GEN7_FF_THREAD_MODE,
6057 I915_READ(GEN7_FF_THREAD_MODE) &
6058 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6059
6060 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6061 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6062 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6063
6064 /* WaDisableCSUnitClockGating:chv */
6065 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6066 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6067
6068 /* WaDisableSDEUnitClockGating:chv */
6069 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6070 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6071
6072 /* WaDisableGunitClockGating:chv (pre-production hw) */
6073 I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
6074 GINT_DIS);
6075
6076 /* WaDisableFfDopClockGating:chv (pre-production hw) */
6077 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6078 _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
6079
6080 /* WaDisableDopClockGating:chv (pre-production hw) */
6081 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6082 GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
6083 }
6084
6085 static void g4x_init_clock_gating(struct drm_device *dev)
6086 {
6087 struct drm_i915_private *dev_priv = dev->dev_private;
6088 uint32_t dspclk_gate;
6089
6090 I915_WRITE(RENCLK_GATE_D1, 0);
6091 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6092 GS_UNIT_CLOCK_GATE_DISABLE |
6093 CL_UNIT_CLOCK_GATE_DISABLE);
6094 I915_WRITE(RAMCLK_GATE_D, 0);
6095 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6096 OVRUNIT_CLOCK_GATE_DISABLE |
6097 OVCUNIT_CLOCK_GATE_DISABLE;
6098 if (IS_GM45(dev))
6099 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6100 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6101
6102 /* WaDisableRenderCachePipelinedFlush */
6103 I915_WRITE(CACHE_MODE_0,
6104 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6105
6106 /* WaDisable_RenderCache_OperationalFlush:g4x */
6107 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6108
6109 g4x_disable_trickle_feed(dev);
6110 }
6111
6112 static void crestline_init_clock_gating(struct drm_device *dev)
6113 {
6114 struct drm_i915_private *dev_priv = dev->dev_private;
6115
6116 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6117 I915_WRITE(RENCLK_GATE_D2, 0);
6118 I915_WRITE(DSPCLK_GATE_D, 0);
6119 I915_WRITE(RAMCLK_GATE_D, 0);
6120 I915_WRITE16(DEUC, 0);
6121 I915_WRITE(MI_ARB_STATE,
6122 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6123
6124 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6125 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6126 }
6127
6128 static void broadwater_init_clock_gating(struct drm_device *dev)
6129 {
6130 struct drm_i915_private *dev_priv = dev->dev_private;
6131
6132 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6133 I965_RCC_CLOCK_GATE_DISABLE |
6134 I965_RCPB_CLOCK_GATE_DISABLE |
6135 I965_ISC_CLOCK_GATE_DISABLE |
6136 I965_FBC_CLOCK_GATE_DISABLE);
6137 I915_WRITE(RENCLK_GATE_D2, 0);
6138 I915_WRITE(MI_ARB_STATE,
6139 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6140
6141 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6142 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6143 }
6144
6145 static void gen3_init_clock_gating(struct drm_device *dev)
6146 {
6147 struct drm_i915_private *dev_priv = dev->dev_private;
6148 u32 dstate = I915_READ(D_STATE);
6149
6150 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6151 DSTATE_DOT_CLOCK_GATING;
6152 I915_WRITE(D_STATE, dstate);
6153
6154 if (IS_PINEVIEW(dev))
6155 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6156
6157 /* IIR "flip pending" means done if this bit is set */
6158 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6159
6160 /* interrupts should cause a wake up from C3 */
6161 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6162
6163 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6164 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6165
6166 I915_WRITE(MI_ARB_STATE,
6167 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6168 }
6169
6170 static void i85x_init_clock_gating(struct drm_device *dev)
6171 {
6172 struct drm_i915_private *dev_priv = dev->dev_private;
6173
6174 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6175
6176 /* interrupts should cause a wake up from C3 */
6177 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6178 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6179
6180 I915_WRITE(MEM_MODE,
6181 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6182 }
6183
6184 static void i830_init_clock_gating(struct drm_device *dev)
6185 {
6186 struct drm_i915_private *dev_priv = dev->dev_private;
6187
6188 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6189
6190 I915_WRITE(MEM_MODE,
6191 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6192 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6193 }
6194
6195 void intel_init_clock_gating(struct drm_device *dev)
6196 {
6197 struct drm_i915_private *dev_priv = dev->dev_private;
6198
6199 dev_priv->display.init_clock_gating(dev);
6200 }
6201
6202 void intel_suspend_hw(struct drm_device *dev)
6203 {
6204 if (HAS_PCH_LPT(dev))
6205 lpt_suspend_hw(dev);
6206 }
6207
6208 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
6209 for (i = 0; \
6210 i < (power_domains)->power_well_count && \
6211 ((power_well) = &(power_domains)->power_wells[i]); \
6212 i++) \
6213 if ((power_well)->domains & (domain_mask))
6214
6215 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
6216 for (i = (power_domains)->power_well_count - 1; \
6217 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
6218 i--) \
6219 if ((power_well)->domains & (domain_mask))
6220
6221 /**
6222 * We should only use the power well if we explicitly asked the hardware to
6223 * enable it, so check if it's enabled and also check if we've requested it to
6224 * be enabled.
6225 */
6226 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
6227 struct i915_power_well *power_well)
6228 {
6229 return I915_READ(HSW_PWR_WELL_DRIVER) ==
6230 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
6231 }
6232
6233 bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
6234 enum intel_display_power_domain domain)
6235 {
6236 struct i915_power_domains *power_domains;
6237 struct i915_power_well *power_well;
6238 bool is_enabled;
6239 int i;
6240
6241 if (dev_priv->pm.suspended)
6242 return false;
6243
6244 power_domains = &dev_priv->power_domains;
6245
6246 is_enabled = true;
6247
6248 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6249 if (power_well->always_on)
6250 continue;
6251
6252 if (!power_well->hw_enabled) {
6253 is_enabled = false;
6254 break;
6255 }
6256 }
6257
6258 return is_enabled;
6259 }
6260
6261 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
6262 enum intel_display_power_domain domain)
6263 {
6264 struct i915_power_domains *power_domains;
6265 bool ret;
6266
6267 power_domains = &dev_priv->power_domains;
6268
6269 mutex_lock(&power_domains->lock);
6270 ret = intel_display_power_enabled_unlocked(dev_priv, domain);
6271 mutex_unlock(&power_domains->lock);
6272
6273 return ret;
6274 }
6275
6276 /*
6277 * Starting with Haswell, we have a "Power Down Well" that can be turned off
6278 * when not needed anymore. We have 4 registers that can request the power well
6279 * to be enabled, and it will only be disabled if none of the registers is
6280 * requesting it to be enabled.
6281 */
6282 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
6283 {
6284 struct drm_device *dev = dev_priv->dev;
6285
6286 /*
6287 * After we re-enable the power well, if we touch VGA register 0x3d5
6288 * we'll get unclaimed register interrupts. This stops after we write
6289 * anything to the VGA MSR register. The vgacon module uses this
6290 * register all the time, so if we unbind our driver and, as a
6291 * consequence, bind vgacon, we'll get stuck in an infinite loop at
6292 * console_unlock(). So make here we touch the VGA MSR register, making
6293 * sure vgacon can keep working normally without triggering interrupts
6294 * and error messages.
6295 */
6296 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6297 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
6298 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6299
6300 if (IS_BROADWELL(dev) || (INTEL_INFO(dev)->gen >= 9))
6301 gen8_irq_power_well_post_enable(dev_priv);
6302 }
6303
6304 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6305 struct i915_power_well *power_well, bool enable)
6306 {
6307 bool is_enabled, enable_requested;
6308 uint32_t tmp;
6309
6310 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6311 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
6312 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6313
6314 if (enable) {
6315 if (!enable_requested)
6316 I915_WRITE(HSW_PWR_WELL_DRIVER,
6317 HSW_PWR_WELL_ENABLE_REQUEST);
6318
6319 if (!is_enabled) {
6320 DRM_DEBUG_KMS("Enabling power well\n");
6321 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6322 HSW_PWR_WELL_STATE_ENABLED), 20))
6323 DRM_ERROR("Timeout enabling power well\n");
6324 }
6325
6326 hsw_power_well_post_enable(dev_priv);
6327 } else {
6328 if (enable_requested) {
6329 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6330 POSTING_READ(HSW_PWR_WELL_DRIVER);
6331 DRM_DEBUG_KMS("Requesting to disable the power well\n");
6332 }
6333 }
6334 }
6335
6336 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
6337 struct i915_power_well *power_well)
6338 {
6339 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
6340
6341 /*
6342 * We're taking over the BIOS, so clear any requests made by it since
6343 * the driver is in charge now.
6344 */
6345 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
6346 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
6347 }
6348
6349 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
6350 struct i915_power_well *power_well)
6351 {
6352 hsw_set_power_well(dev_priv, power_well, true);
6353 }
6354
6355 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
6356 struct i915_power_well *power_well)
6357 {
6358 hsw_set_power_well(dev_priv, power_well, false);
6359 }
6360
6361 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
6362 struct i915_power_well *power_well)
6363 {
6364 }
6365
6366 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
6367 struct i915_power_well *power_well)
6368 {
6369 return true;
6370 }
6371
6372 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6373 struct i915_power_well *power_well, bool enable)
6374 {
6375 enum punit_power_well power_well_id = power_well->data;
6376 u32 mask;
6377 u32 state;
6378 u32 ctrl;
6379
6380 mask = PUNIT_PWRGT_MASK(power_well_id);
6381 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6382 PUNIT_PWRGT_PWR_GATE(power_well_id);
6383
6384 mutex_lock(&dev_priv->rps.hw_lock);
6385
6386 #define COND \
6387 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6388
6389 if (COND)
6390 goto out;
6391
6392 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6393 ctrl &= ~mask;
6394 ctrl |= state;
6395 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6396
6397 if (wait_for(COND, 100))
6398 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6399 state,
6400 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6401
6402 #undef COND
6403
6404 out:
6405 mutex_unlock(&dev_priv->rps.hw_lock);
6406 }
6407
6408 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6409 struct i915_power_well *power_well)
6410 {
6411 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6412 }
6413
6414 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6415 struct i915_power_well *power_well)
6416 {
6417 vlv_set_power_well(dev_priv, power_well, true);
6418 }
6419
6420 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6421 struct i915_power_well *power_well)
6422 {
6423 vlv_set_power_well(dev_priv, power_well, false);
6424 }
6425
6426 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6427 struct i915_power_well *power_well)
6428 {
6429 int power_well_id = power_well->data;
6430 bool enabled = false;
6431 u32 mask;
6432 u32 state;
6433 u32 ctrl;
6434
6435 mask = PUNIT_PWRGT_MASK(power_well_id);
6436 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6437
6438 mutex_lock(&dev_priv->rps.hw_lock);
6439
6440 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6441 /*
6442 * We only ever set the power-on and power-gate states, anything
6443 * else is unexpected.
6444 */
6445 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6446 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6447 if (state == ctrl)
6448 enabled = true;
6449
6450 /*
6451 * A transient state at this point would mean some unexpected party
6452 * is poking at the power controls too.
6453 */
6454 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6455 WARN_ON(ctrl != state);
6456
6457 mutex_unlock(&dev_priv->rps.hw_lock);
6458
6459 return enabled;
6460 }
6461
6462 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6463 struct i915_power_well *power_well)
6464 {
6465 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6466
6467 vlv_set_power_well(dev_priv, power_well, true);
6468
6469 spin_lock_irq(&dev_priv->irq_lock);
6470 valleyview_enable_display_irqs(dev_priv);
6471 spin_unlock_irq(&dev_priv->irq_lock);
6472
6473 /*
6474 * During driver initialization/resume we can avoid restoring the
6475 * part of the HW/SW state that will be inited anyway explicitly.
6476 */
6477 if (dev_priv->power_domains.initializing)
6478 return;
6479
6480 intel_hpd_init(dev_priv->dev);
6481
6482 i915_redisable_vga_power_on(dev_priv->dev);
6483 }
6484
6485 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6486 struct i915_power_well *power_well)
6487 {
6488 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6489
6490 spin_lock_irq(&dev_priv->irq_lock);
6491 valleyview_disable_display_irqs(dev_priv);
6492 spin_unlock_irq(&dev_priv->irq_lock);
6493
6494 vlv_set_power_well(dev_priv, power_well, false);
6495
6496 vlv_power_sequencer_reset(dev_priv);
6497 }
6498
6499 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6500 struct i915_power_well *power_well)
6501 {
6502 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6503
6504 /*
6505 * Enable the CRI clock source so we can get at the
6506 * display and the reference clock for VGA
6507 * hotplug / manual detection.
6508 */
6509 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6510 DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6511 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6512
6513 vlv_set_power_well(dev_priv, power_well, true);
6514
6515 /*
6516 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6517 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
6518 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
6519 * b. The other bits such as sfr settings / modesel may all
6520 * be set to 0.
6521 *
6522 * This should only be done on init and resume from S3 with
6523 * both PLLs disabled, or we risk losing DPIO and PLL
6524 * synchronization.
6525 */
6526 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6527 }
6528
6529 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6530 struct i915_power_well *power_well)
6531 {
6532 enum pipe pipe;
6533
6534 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6535
6536 for_each_pipe(dev_priv, pipe)
6537 assert_pll_disabled(dev_priv, pipe);
6538
6539 /* Assert common reset */
6540 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
6541
6542 vlv_set_power_well(dev_priv, power_well, false);
6543 }
6544
6545 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6546 struct i915_power_well *power_well)
6547 {
6548 enum dpio_phy phy;
6549
6550 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6551 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6552
6553 /*
6554 * Enable the CRI clock source so we can get at the
6555 * display and the reference clock for VGA
6556 * hotplug / manual detection.
6557 */
6558 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6559 phy = DPIO_PHY0;
6560 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6561 DPLL_REFA_CLK_ENABLE_VLV);
6562 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6563 DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6564 } else {
6565 phy = DPIO_PHY1;
6566 I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
6567 DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6568 }
6569 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6570 vlv_set_power_well(dev_priv, power_well, true);
6571
6572 /* Poll for phypwrgood signal */
6573 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
6574 DRM_ERROR("Display PHY %d is not power up\n", phy);
6575
6576 I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
6577 PHY_COM_LANE_RESET_DEASSERT(phy));
6578 }
6579
6580 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6581 struct i915_power_well *power_well)
6582 {
6583 enum dpio_phy phy;
6584
6585 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6586 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6587
6588 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6589 phy = DPIO_PHY0;
6590 assert_pll_disabled(dev_priv, PIPE_A);
6591 assert_pll_disabled(dev_priv, PIPE_B);
6592 } else {
6593 phy = DPIO_PHY1;
6594 assert_pll_disabled(dev_priv, PIPE_C);
6595 }
6596
6597 I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
6598 ~PHY_COM_LANE_RESET_DEASSERT(phy));
6599
6600 vlv_set_power_well(dev_priv, power_well, false);
6601 }
6602
6603 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
6604 struct i915_power_well *power_well)
6605 {
6606 enum pipe pipe = power_well->data;
6607 bool enabled;
6608 u32 state, ctrl;
6609
6610 mutex_lock(&dev_priv->rps.hw_lock);
6611
6612 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
6613 /*
6614 * We only ever set the power-on and power-gate states, anything
6615 * else is unexpected.
6616 */
6617 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
6618 enabled = state == DP_SSS_PWR_ON(pipe);
6619
6620 /*
6621 * A transient state at this point would mean some unexpected party
6622 * is poking at the power controls too.
6623 */
6624 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
6625 WARN_ON(ctrl << 16 != state);
6626
6627 mutex_unlock(&dev_priv->rps.hw_lock);
6628
6629 return enabled;
6630 }
6631
6632 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
6633 struct i915_power_well *power_well,
6634 bool enable)
6635 {
6636 enum pipe pipe = power_well->data;
6637 u32 state;
6638 u32 ctrl;
6639
6640 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
6641
6642 mutex_lock(&dev_priv->rps.hw_lock);
6643
6644 #define COND \
6645 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
6646
6647 if (COND)
6648 goto out;
6649
6650 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6651 ctrl &= ~DP_SSC_MASK(pipe);
6652 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
6653 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
6654
6655 if (wait_for(COND, 100))
6656 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6657 state,
6658 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
6659
6660 #undef COND
6661
6662 out:
6663 mutex_unlock(&dev_priv->rps.hw_lock);
6664 }
6665
6666 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
6667 struct i915_power_well *power_well)
6668 {
6669 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
6670 }
6671
6672 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
6673 struct i915_power_well *power_well)
6674 {
6675 WARN_ON_ONCE(power_well->data != PIPE_A &&
6676 power_well->data != PIPE_B &&
6677 power_well->data != PIPE_C);
6678
6679 chv_set_pipe_power_well(dev_priv, power_well, true);
6680 }
6681
6682 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
6683 struct i915_power_well *power_well)
6684 {
6685 WARN_ON_ONCE(power_well->data != PIPE_A &&
6686 power_well->data != PIPE_B &&
6687 power_well->data != PIPE_C);
6688
6689 chv_set_pipe_power_well(dev_priv, power_well, false);
6690 }
6691
6692 static void check_power_well_state(struct drm_i915_private *dev_priv,
6693 struct i915_power_well *power_well)
6694 {
6695 bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6696
6697 if (power_well->always_on || !i915.disable_power_well) {
6698 if (!enabled)
6699 goto mismatch;
6700
6701 return;
6702 }
6703
6704 if (enabled != (power_well->count > 0))
6705 goto mismatch;
6706
6707 return;
6708
6709 mismatch:
6710 WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6711 power_well->name, power_well->always_on, enabled,
6712 power_well->count, i915.disable_power_well);
6713 }
6714
6715 void intel_display_power_get(struct drm_i915_private *dev_priv,
6716 enum intel_display_power_domain domain)
6717 {
6718 struct i915_power_domains *power_domains;
6719 struct i915_power_well *power_well;
6720 int i;
6721
6722 intel_runtime_pm_get(dev_priv);
6723
6724 power_domains = &dev_priv->power_domains;
6725
6726 mutex_lock(&power_domains->lock);
6727
6728 for_each_power_well(i, power_well, BIT(domain), power_domains) {
6729 if (!power_well->count++) {
6730 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6731 power_well->ops->enable(dev_priv, power_well);
6732 power_well->hw_enabled = true;
6733 }
6734
6735 check_power_well_state(dev_priv, power_well);
6736 }
6737
6738 power_domains->domain_use_count[domain]++;
6739
6740 mutex_unlock(&power_domains->lock);
6741 }
6742
6743 void intel_display_power_put(struct drm_i915_private *dev_priv,
6744 enum intel_display_power_domain domain)
6745 {
6746 struct i915_power_domains *power_domains;
6747 struct i915_power_well *power_well;
6748 int i;
6749
6750 power_domains = &dev_priv->power_domains;
6751
6752 mutex_lock(&power_domains->lock);
6753
6754 WARN_ON(!power_domains->domain_use_count[domain]);
6755 power_domains->domain_use_count[domain]--;
6756
6757 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6758 WARN_ON(!power_well->count);
6759
6760 if (!--power_well->count && i915.disable_power_well) {
6761 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6762 power_well->hw_enabled = false;
6763 power_well->ops->disable(dev_priv, power_well);
6764 }
6765
6766 check_power_well_state(dev_priv, power_well);
6767 }
6768
6769 mutex_unlock(&power_domains->lock);
6770
6771 intel_runtime_pm_put(dev_priv);
6772 }
6773
6774 static struct i915_power_domains *hsw_pwr;
6775
6776 /* Display audio driver power well request */
6777 int i915_request_power_well(void)
6778 {
6779 struct drm_i915_private *dev_priv;
6780
6781 if (!hsw_pwr)
6782 return -ENODEV;
6783
6784 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6785 power_domains);
6786 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6787 return 0;
6788 }
6789 EXPORT_SYMBOL_GPL(i915_request_power_well);
6790
6791 /* Display audio driver power well release */
6792 int i915_release_power_well(void)
6793 {
6794 struct drm_i915_private *dev_priv;
6795
6796 if (!hsw_pwr)
6797 return -ENODEV;
6798
6799 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6800 power_domains);
6801 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6802 return 0;
6803 }
6804 EXPORT_SYMBOL_GPL(i915_release_power_well);
6805
6806 /*
6807 * Private interface for the audio driver to get CDCLK in kHz.
6808 *
6809 * Caller must request power well using i915_request_power_well() prior to
6810 * making the call.
6811 */
6812 int i915_get_cdclk_freq(void)
6813 {
6814 struct drm_i915_private *dev_priv;
6815
6816 if (!hsw_pwr)
6817 return -ENODEV;
6818
6819 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6820 power_domains);
6821
6822 return intel_ddi_get_cdclk_freq(dev_priv);
6823 }
6824 EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
6825
6826
6827 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6828
6829 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
6830 BIT(POWER_DOMAIN_PIPE_A) | \
6831 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
6832 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
6833 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
6834 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
6835 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6836 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
6837 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6838 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
6839 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
6840 BIT(POWER_DOMAIN_PORT_CRT) | \
6841 BIT(POWER_DOMAIN_PLLS) | \
6842 BIT(POWER_DOMAIN_INIT))
6843 #define HSW_DISPLAY_POWER_DOMAINS ( \
6844 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
6845 BIT(POWER_DOMAIN_INIT))
6846
6847 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
6848 HSW_ALWAYS_ON_POWER_DOMAINS | \
6849 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6850 #define BDW_DISPLAY_POWER_DOMAINS ( \
6851 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
6852 BIT(POWER_DOMAIN_INIT))
6853
6854 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
6855 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
6856
6857 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
6858 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
6859 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6860 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
6861 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6862 BIT(POWER_DOMAIN_PORT_CRT) | \
6863 BIT(POWER_DOMAIN_INIT))
6864
6865 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
6866 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
6867 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6868 BIT(POWER_DOMAIN_INIT))
6869
6870 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
6871 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6872 BIT(POWER_DOMAIN_INIT))
6873
6874 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
6875 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
6876 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6877 BIT(POWER_DOMAIN_INIT))
6878
6879 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
6880 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6881 BIT(POWER_DOMAIN_INIT))
6882
6883 #define CHV_PIPE_A_POWER_DOMAINS ( \
6884 BIT(POWER_DOMAIN_PIPE_A) | \
6885 BIT(POWER_DOMAIN_INIT))
6886
6887 #define CHV_PIPE_B_POWER_DOMAINS ( \
6888 BIT(POWER_DOMAIN_PIPE_B) | \
6889 BIT(POWER_DOMAIN_INIT))
6890
6891 #define CHV_PIPE_C_POWER_DOMAINS ( \
6892 BIT(POWER_DOMAIN_PIPE_C) | \
6893 BIT(POWER_DOMAIN_INIT))
6894
6895 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
6896 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
6897 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6898 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
6899 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6900 BIT(POWER_DOMAIN_INIT))
6901
6902 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
6903 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
6904 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
6905 BIT(POWER_DOMAIN_INIT))
6906
6907 #define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS ( \
6908 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
6909 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
6910 BIT(POWER_DOMAIN_INIT))
6911
6912 #define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS ( \
6913 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
6914 BIT(POWER_DOMAIN_INIT))
6915
6916 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6917 .sync_hw = i9xx_always_on_power_well_noop,
6918 .enable = i9xx_always_on_power_well_noop,
6919 .disable = i9xx_always_on_power_well_noop,
6920 .is_enabled = i9xx_always_on_power_well_enabled,
6921 };
6922
6923 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
6924 .sync_hw = chv_pipe_power_well_sync_hw,
6925 .enable = chv_pipe_power_well_enable,
6926 .disable = chv_pipe_power_well_disable,
6927 .is_enabled = chv_pipe_power_well_enabled,
6928 };
6929
6930 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
6931 .sync_hw = vlv_power_well_sync_hw,
6932 .enable = chv_dpio_cmn_power_well_enable,
6933 .disable = chv_dpio_cmn_power_well_disable,
6934 .is_enabled = vlv_power_well_enabled,
6935 };
6936
6937 static struct i915_power_well i9xx_always_on_power_well[] = {
6938 {
6939 .name = "always-on",
6940 .always_on = 1,
6941 .domains = POWER_DOMAIN_MASK,
6942 .ops = &i9xx_always_on_power_well_ops,
6943 },
6944 };
6945
6946 static const struct i915_power_well_ops hsw_power_well_ops = {
6947 .sync_hw = hsw_power_well_sync_hw,
6948 .enable = hsw_power_well_enable,
6949 .disable = hsw_power_well_disable,
6950 .is_enabled = hsw_power_well_enabled,
6951 };
6952
6953 static struct i915_power_well hsw_power_wells[] = {
6954 {
6955 .name = "always-on",
6956 .always_on = 1,
6957 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6958 .ops = &i9xx_always_on_power_well_ops,
6959 },
6960 {
6961 .name = "display",
6962 .domains = HSW_DISPLAY_POWER_DOMAINS,
6963 .ops = &hsw_power_well_ops,
6964 },
6965 };
6966
6967 static struct i915_power_well bdw_power_wells[] = {
6968 {
6969 .name = "always-on",
6970 .always_on = 1,
6971 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6972 .ops = &i9xx_always_on_power_well_ops,
6973 },
6974 {
6975 .name = "display",
6976 .domains = BDW_DISPLAY_POWER_DOMAINS,
6977 .ops = &hsw_power_well_ops,
6978 },
6979 };
6980
6981 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6982 .sync_hw = vlv_power_well_sync_hw,
6983 .enable = vlv_display_power_well_enable,
6984 .disable = vlv_display_power_well_disable,
6985 .is_enabled = vlv_power_well_enabled,
6986 };
6987
6988 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
6989 .sync_hw = vlv_power_well_sync_hw,
6990 .enable = vlv_dpio_cmn_power_well_enable,
6991 .disable = vlv_dpio_cmn_power_well_disable,
6992 .is_enabled = vlv_power_well_enabled,
6993 };
6994
6995 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6996 .sync_hw = vlv_power_well_sync_hw,
6997 .enable = vlv_power_well_enable,
6998 .disable = vlv_power_well_disable,
6999 .is_enabled = vlv_power_well_enabled,
7000 };
7001
7002 static struct i915_power_well vlv_power_wells[] = {
7003 {
7004 .name = "always-on",
7005 .always_on = 1,
7006 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
7007 .ops = &i9xx_always_on_power_well_ops,
7008 },
7009 {
7010 .name = "display",
7011 .domains = VLV_DISPLAY_POWER_DOMAINS,
7012 .data = PUNIT_POWER_WELL_DISP2D,
7013 .ops = &vlv_display_power_well_ops,
7014 },
7015 {
7016 .name = "dpio-tx-b-01",
7017 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
7018 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
7019 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
7020 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7021 .ops = &vlv_dpio_power_well_ops,
7022 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
7023 },
7024 {
7025 .name = "dpio-tx-b-23",
7026 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
7027 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
7028 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
7029 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7030 .ops = &vlv_dpio_power_well_ops,
7031 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
7032 },
7033 {
7034 .name = "dpio-tx-c-01",
7035 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
7036 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
7037 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
7038 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7039 .ops = &vlv_dpio_power_well_ops,
7040 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
7041 },
7042 {
7043 .name = "dpio-tx-c-23",
7044 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
7045 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
7046 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
7047 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7048 .ops = &vlv_dpio_power_well_ops,
7049 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
7050 },
7051 {
7052 .name = "dpio-common",
7053 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
7054 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
7055 .ops = &vlv_dpio_cmn_power_well_ops,
7056 },
7057 };
7058
7059 static struct i915_power_well chv_power_wells[] = {
7060 {
7061 .name = "always-on",
7062 .always_on = 1,
7063 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
7064 .ops = &i9xx_always_on_power_well_ops,
7065 },
7066 #if 0
7067 {
7068 .name = "display",
7069 .domains = VLV_DISPLAY_POWER_DOMAINS,
7070 .data = PUNIT_POWER_WELL_DISP2D,
7071 .ops = &vlv_display_power_well_ops,
7072 },
7073 {
7074 .name = "pipe-a",
7075 .domains = CHV_PIPE_A_POWER_DOMAINS,
7076 .data = PIPE_A,
7077 .ops = &chv_pipe_power_well_ops,
7078 },
7079 {
7080 .name = "pipe-b",
7081 .domains = CHV_PIPE_B_POWER_DOMAINS,
7082 .data = PIPE_B,
7083 .ops = &chv_pipe_power_well_ops,
7084 },
7085 {
7086 .name = "pipe-c",
7087 .domains = CHV_PIPE_C_POWER_DOMAINS,
7088 .data = PIPE_C,
7089 .ops = &chv_pipe_power_well_ops,
7090 },
7091 #endif
7092 {
7093 .name = "dpio-common-bc",
7094 /*
7095 * XXX: cmnreset for one PHY seems to disturb the other.
7096 * As a workaround keep both powered on at the same
7097 * time for now.
7098 */
7099 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
7100 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
7101 .ops = &chv_dpio_cmn_power_well_ops,
7102 },
7103 {
7104 .name = "dpio-common-d",
7105 /*
7106 * XXX: cmnreset for one PHY seems to disturb the other.
7107 * As a workaround keep both powered on at the same
7108 * time for now.
7109 */
7110 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
7111 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
7112 .ops = &chv_dpio_cmn_power_well_ops,
7113 },
7114 #if 0
7115 {
7116 .name = "dpio-tx-b-01",
7117 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
7118 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
7119 .ops = &vlv_dpio_power_well_ops,
7120 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
7121 },
7122 {
7123 .name = "dpio-tx-b-23",
7124 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
7125 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
7126 .ops = &vlv_dpio_power_well_ops,
7127 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
7128 },
7129 {
7130 .name = "dpio-tx-c-01",
7131 .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
7132 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7133 .ops = &vlv_dpio_power_well_ops,
7134 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
7135 },
7136 {
7137 .name = "dpio-tx-c-23",
7138 .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
7139 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7140 .ops = &vlv_dpio_power_well_ops,
7141 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
7142 },
7143 {
7144 .name = "dpio-tx-d-01",
7145 .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
7146 CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
7147 .ops = &vlv_dpio_power_well_ops,
7148 .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
7149 },
7150 {
7151 .name = "dpio-tx-d-23",
7152 .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
7153 CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
7154 .ops = &vlv_dpio_power_well_ops,
7155 .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
7156 },
7157 #endif
7158 };
7159
7160 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
7161 enum punit_power_well power_well_id)
7162 {
7163 struct i915_power_domains *power_domains = &dev_priv->power_domains;
7164 struct i915_power_well *power_well;
7165 int i;
7166
7167 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7168 if (power_well->data == power_well_id)
7169 return power_well;
7170 }
7171
7172 return NULL;
7173 }
7174
7175 #define set_power_wells(power_domains, __power_wells) ({ \
7176 (power_domains)->power_wells = (__power_wells); \
7177 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
7178 })
7179
7180 int intel_power_domains_init(struct drm_i915_private *dev_priv)
7181 {
7182 struct i915_power_domains *power_domains = &dev_priv->power_domains;
7183
7184 mutex_init(&power_domains->lock);
7185
7186 /*
7187 * The enabling order will be from lower to higher indexed wells,
7188 * the disabling order is reversed.
7189 */
7190 if (IS_HASWELL(dev_priv->dev)) {
7191 set_power_wells(power_domains, hsw_power_wells);
7192 hsw_pwr = power_domains;
7193 } else if (IS_BROADWELL(dev_priv->dev)) {
7194 set_power_wells(power_domains, bdw_power_wells);
7195 hsw_pwr = power_domains;
7196 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
7197 set_power_wells(power_domains, chv_power_wells);
7198 } else if (IS_VALLEYVIEW(dev_priv->dev)) {
7199 set_power_wells(power_domains, vlv_power_wells);
7200 } else {
7201 set_power_wells(power_domains, i9xx_always_on_power_well);
7202 }
7203
7204 return 0;
7205 }
7206
7207 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
7208 {
7209 hsw_pwr = NULL;
7210 }
7211
7212 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
7213 {
7214 struct i915_power_domains *power_domains = &dev_priv->power_domains;
7215 struct i915_power_well *power_well;
7216 int i;
7217
7218 mutex_lock(&power_domains->lock);
7219 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7220 power_well->ops->sync_hw(dev_priv, power_well);
7221 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
7222 power_well);
7223 }
7224 mutex_unlock(&power_domains->lock);
7225 }
7226
7227 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
7228 {
7229 struct i915_power_well *cmn =
7230 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
7231 struct i915_power_well *disp2d =
7232 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
7233
7234 /* nothing to do if common lane is already off */
7235 if (!cmn->ops->is_enabled(dev_priv, cmn))
7236 return;
7237
7238 /* If the display might be already active skip this */
7239 if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
7240 I915_READ(DPIO_CTL) & DPIO_CMNRST)
7241 return;
7242
7243 DRM_DEBUG_KMS("toggling display PHY side reset\n");
7244
7245 /* cmnlane needs DPLL registers */
7246 disp2d->ops->enable(dev_priv, disp2d);
7247
7248 /*
7249 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
7250 * Need to assert and de-assert PHY SB reset by gating the
7251 * common lane power, then un-gating it.
7252 * Simply ungating isn't enough to reset the PHY enough to get
7253 * ports and lanes running.
7254 */
7255 cmn->ops->disable(dev_priv, cmn);
7256 }
7257
7258 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
7259 {
7260 struct drm_device *dev = dev_priv->dev;
7261 struct i915_power_domains *power_domains = &dev_priv->power_domains;
7262
7263 power_domains->initializing = true;
7264
7265 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
7266 mutex_lock(&power_domains->lock);
7267 vlv_cmnlane_wa(dev_priv);
7268 mutex_unlock(&power_domains->lock);
7269 }
7270
7271 /* For now, we need the power well to be always enabled. */
7272 intel_display_set_init_power(dev_priv, true);
7273 intel_power_domains_resume(dev_priv);
7274 power_domains->initializing = false;
7275 }
7276
7277 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
7278 {
7279 intel_runtime_pm_get(dev_priv);
7280 }
7281
7282 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
7283 {
7284 intel_runtime_pm_put(dev_priv);
7285 }
7286
7287 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
7288 {
7289 struct drm_device *dev = dev_priv->dev;
7290 struct device *device = &dev->pdev->dev;
7291
7292 if (!HAS_RUNTIME_PM(dev))
7293 return;
7294
7295 pm_runtime_get_sync(device);
7296 WARN(dev_priv->pm.suspended, "Device still suspended.\n");
7297 }
7298
7299 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
7300 {
7301 struct drm_device *dev = dev_priv->dev;
7302 struct device *device = &dev->pdev->dev;
7303
7304 if (!HAS_RUNTIME_PM(dev))
7305 return;
7306
7307 WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
7308 pm_runtime_get_noresume(device);
7309 }
7310
7311 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
7312 {
7313 struct drm_device *dev = dev_priv->dev;
7314 struct device *device = &dev->pdev->dev;
7315
7316 if (!HAS_RUNTIME_PM(dev))
7317 return;
7318
7319 pm_runtime_mark_last_busy(device);
7320 pm_runtime_put_autosuspend(device);
7321 }
7322
7323 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
7324 {
7325 struct drm_device *dev = dev_priv->dev;
7326 struct device *device = &dev->pdev->dev;
7327
7328 if (!HAS_RUNTIME_PM(dev))
7329 return;
7330
7331 pm_runtime_set_active(device);
7332
7333 /*
7334 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7335 * requirement.
7336 */
7337 if (!intel_enable_rc6(dev)) {
7338 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7339 return;
7340 }
7341
7342 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
7343 pm_runtime_mark_last_busy(device);
7344 pm_runtime_use_autosuspend(device);
7345
7346 pm_runtime_put_autosuspend(device);
7347 }
7348
7349 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
7350 {
7351 struct drm_device *dev = dev_priv->dev;
7352 struct device *device = &dev->pdev->dev;
7353
7354 if (!HAS_RUNTIME_PM(dev))
7355 return;
7356
7357 if (!intel_enable_rc6(dev))
7358 return;
7359
7360 /* Make sure we're not suspended first. */
7361 pm_runtime_get_sync(device);
7362 pm_runtime_disable(device);
7363 }
7364
7365 /* Set up chip specific power management-related functions */
7366 void intel_init_pm(struct drm_device *dev)
7367 {
7368 struct drm_i915_private *dev_priv = dev->dev_private;
7369
7370 if (HAS_FBC(dev)) {
7371 if (INTEL_INFO(dev)->gen >= 7) {
7372 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7373 dev_priv->display.enable_fbc = gen7_enable_fbc;
7374 dev_priv->display.disable_fbc = ironlake_disable_fbc;
7375 } else if (INTEL_INFO(dev)->gen >= 5) {
7376 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7377 dev_priv->display.enable_fbc = ironlake_enable_fbc;
7378 dev_priv->display.disable_fbc = ironlake_disable_fbc;
7379 } else if (IS_GM45(dev)) {
7380 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7381 dev_priv->display.enable_fbc = g4x_enable_fbc;
7382 dev_priv->display.disable_fbc = g4x_disable_fbc;
7383 } else {
7384 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7385 dev_priv->display.enable_fbc = i8xx_enable_fbc;
7386 dev_priv->display.disable_fbc = i8xx_disable_fbc;
7387
7388 /* This value was pulled out of someone's hat */
7389 I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
7390 }
7391 }
7392
7393 /* For cxsr */
7394 if (IS_PINEVIEW(dev))
7395 i915_pineview_get_mem_freq(dev);
7396 else if (IS_GEN5(dev))
7397 i915_ironlake_get_mem_freq(dev);
7398
7399 /* For FIFO watermark updates */
7400 if (IS_GEN9(dev)) {
7401 dev_priv->display.init_clock_gating = gen9_init_clock_gating;
7402 } else if (HAS_PCH_SPLIT(dev)) {
7403 ilk_setup_wm_latency(dev);
7404
7405 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7406 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7407 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7408 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7409 dev_priv->display.update_wm = ilk_update_wm;
7410 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7411 } else {
7412 DRM_DEBUG_KMS("Failed to read display plane latency. "
7413 "Disable CxSR\n");
7414 }
7415
7416 if (IS_GEN5(dev))
7417 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7418 else if (IS_GEN6(dev))
7419 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7420 else if (IS_IVYBRIDGE(dev))
7421 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7422 else if (IS_HASWELL(dev))
7423 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7424 else if (INTEL_INFO(dev)->gen == 8)
7425 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7426 } else if (IS_CHERRYVIEW(dev)) {
7427 dev_priv->display.update_wm = cherryview_update_wm;
7428 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7429 dev_priv->display.init_clock_gating =
7430 cherryview_init_clock_gating;
7431 } else if (IS_VALLEYVIEW(dev)) {
7432 dev_priv->display.update_wm = valleyview_update_wm;
7433 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7434 dev_priv->display.init_clock_gating =
7435 valleyview_init_clock_gating;
7436 } else if (IS_PINEVIEW(dev)) {
7437 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7438 dev_priv->is_ddr3,
7439 dev_priv->fsb_freq,
7440 dev_priv->mem_freq)) {
7441 DRM_INFO("failed to find known CxSR latency "
7442 "(found ddr%s fsb freq %d, mem freq %d), "
7443 "disabling CxSR\n",
7444 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7445 dev_priv->fsb_freq, dev_priv->mem_freq);
7446 /* Disable CxSR and never update its watermark again */
7447 intel_set_memory_cxsr(dev_priv, false);
7448 dev_priv->display.update_wm = NULL;
7449 } else
7450 dev_priv->display.update_wm = pineview_update_wm;
7451 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7452 } else if (IS_G4X(dev)) {
7453 dev_priv->display.update_wm = g4x_update_wm;
7454 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7455 } else if (IS_GEN4(dev)) {
7456 dev_priv->display.update_wm = i965_update_wm;
7457 if (IS_CRESTLINE(dev))
7458 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7459 else if (IS_BROADWATER(dev))
7460 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7461 } else if (IS_GEN3(dev)) {
7462 dev_priv->display.update_wm = i9xx_update_wm;
7463 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7464 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7465 } else if (IS_GEN2(dev)) {
7466 if (INTEL_INFO(dev)->num_pipes == 1) {
7467 dev_priv->display.update_wm = i845_update_wm;
7468 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7469 } else {
7470 dev_priv->display.update_wm = i9xx_update_wm;
7471 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7472 }
7473
7474 if (IS_I85X(dev) || IS_I865G(dev))
7475 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7476 else
7477 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7478 } else {
7479 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7480 }
7481 }
7482
7483 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
7484 {
7485 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7486
7487 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7488 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7489 return -EAGAIN;
7490 }
7491
7492 I915_WRITE(GEN6_PCODE_DATA, *val);
7493 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7494
7495 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7496 500)) {
7497 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7498 return -ETIMEDOUT;
7499 }
7500
7501 *val = I915_READ(GEN6_PCODE_DATA);
7502 I915_WRITE(GEN6_PCODE_DATA, 0);
7503
7504 return 0;
7505 }
7506
7507 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
7508 {
7509 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7510
7511 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7512 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7513 return -EAGAIN;
7514 }
7515
7516 I915_WRITE(GEN6_PCODE_DATA, val);
7517 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7518
7519 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7520 500)) {
7521 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7522 return -ETIMEDOUT;
7523 }
7524
7525 I915_WRITE(GEN6_PCODE_DATA, 0);
7526
7527 return 0;
7528 }
7529
7530 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7531 {
7532 int div;
7533
7534 /* 4 x czclk */
7535 switch (dev_priv->mem_freq) {
7536 case 800:
7537 div = 10;
7538 break;
7539 case 1066:
7540 div = 12;
7541 break;
7542 case 1333:
7543 div = 16;
7544 break;
7545 default:
7546 return -1;
7547 }
7548
7549 return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
7550 }
7551
7552 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7553 {
7554 int mul;
7555
7556 /* 4 x czclk */
7557 switch (dev_priv->mem_freq) {
7558 case 800:
7559 mul = 10;
7560 break;
7561 case 1066:
7562 mul = 12;
7563 break;
7564 case 1333:
7565 mul = 16;
7566 break;
7567 default:
7568 return -1;
7569 }
7570
7571 return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7572 }
7573
7574 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7575 {
7576 int div, freq;
7577
7578 switch (dev_priv->rps.cz_freq) {
7579 case 200:
7580 div = 5;
7581 break;
7582 case 267:
7583 div = 6;
7584 break;
7585 case 320:
7586 case 333:
7587 case 400:
7588 div = 8;
7589 break;
7590 default:
7591 return -1;
7592 }
7593
7594 freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
7595
7596 return freq;
7597 }
7598
7599 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7600 {
7601 int mul, opcode;
7602
7603 switch (dev_priv->rps.cz_freq) {
7604 case 200:
7605 mul = 5;
7606 break;
7607 case 267:
7608 mul = 6;
7609 break;
7610 case 320:
7611 case 333:
7612 case 400:
7613 mul = 8;
7614 break;
7615 default:
7616 return -1;
7617 }
7618
7619 /* CHV needs even values */
7620 opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
7621
7622 return opcode;
7623 }
7624
7625 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7626 {
7627 int ret = -1;
7628
7629 if (IS_CHERRYVIEW(dev_priv->dev))
7630 ret = chv_gpu_freq(dev_priv, val);
7631 else if (IS_VALLEYVIEW(dev_priv->dev))
7632 ret = byt_gpu_freq(dev_priv, val);
7633
7634 return ret;
7635 }
7636
7637 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7638 {
7639 int ret = -1;
7640
7641 if (IS_CHERRYVIEW(dev_priv->dev))
7642 ret = chv_freq_opcode(dev_priv, val);
7643 else if (IS_VALLEYVIEW(dev_priv->dev))
7644 ret = byt_freq_opcode(dev_priv, val);
7645
7646 return ret;
7647 }
7648
7649 void intel_pm_setup(struct drm_device *dev)
7650 {
7651 struct drm_i915_private *dev_priv = dev->dev_private;
7652
7653 mutex_init(&dev_priv->rps.hw_lock);
7654
7655 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7656 intel_gen6_powersave_work);
7657
7658 dev_priv->pm.suspended = false;
7659 dev_priv->pm._irqs_disabled = false;
7660 }
This page took 0.29169 seconds and 5 git commands to generate.