drm/i915/kbl: Add WaDisableGamClockGating
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34
35 /**
36 * DOC: RC6
37 *
38 * RC6 is a special power stage which allows the GPU to enter an very
39 * low-voltage mode when idle, using down to 0V while at this stage. This
40 * stage is entered automatically when the GPU is idle when RC6 support is
41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42 *
43 * There are different RC6 modes available in Intel GPU, which differentiate
44 * among each other with the latency required to enter and leave RC6 and
45 * voltage consumed by the GPU in different states.
46 *
47 * The combination of the following flags define which states GPU is allowed
48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49 * RC6pp is deepest RC6. Their support by hardware varies according to the
50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51 * which brings the most power savings; deeper states save more power, but
52 * require higher latency to switch to and wake up.
53 */
54 #define INTEL_RC6_ENABLE (1<<0)
55 #define INTEL_RC6p_ENABLE (1<<1)
56 #define INTEL_RC6pp_ENABLE (1<<2)
57
58 static void gen9_init_clock_gating(struct drm_device *dev)
59 {
60 struct drm_i915_private *dev_priv = dev->dev_private;
61
62 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 I915_WRITE(CHICKEN_PAR1_1,
64 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
65
66 I915_WRITE(GEN8_CONFIG0,
67 I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68 }
69
70 static void bxt_init_clock_gating(struct drm_device *dev)
71 {
72 struct drm_i915_private *dev_priv = dev->dev_private;
73
74 gen9_init_clock_gating(dev);
75
76 /* WaDisableSDEUnitClockGating:bxt */
77 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
78 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
79
80 /*
81 * FIXME:
82 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
83 */
84 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
85 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
86
87 /*
88 * Wa: Backlight PWM may stop in the asserted state, causing backlight
89 * to stay fully on.
90 */
91 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
92 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
93 PWM1_GATING_DIS | PWM2_GATING_DIS);
94 }
95
96 static void i915_pineview_get_mem_freq(struct drm_device *dev)
97 {
98 struct drm_i915_private *dev_priv = dev->dev_private;
99 u32 tmp;
100
101 tmp = I915_READ(CLKCFG);
102
103 switch (tmp & CLKCFG_FSB_MASK) {
104 case CLKCFG_FSB_533:
105 dev_priv->fsb_freq = 533; /* 133*4 */
106 break;
107 case CLKCFG_FSB_800:
108 dev_priv->fsb_freq = 800; /* 200*4 */
109 break;
110 case CLKCFG_FSB_667:
111 dev_priv->fsb_freq = 667; /* 167*4 */
112 break;
113 case CLKCFG_FSB_400:
114 dev_priv->fsb_freq = 400; /* 100*4 */
115 break;
116 }
117
118 switch (tmp & CLKCFG_MEM_MASK) {
119 case CLKCFG_MEM_533:
120 dev_priv->mem_freq = 533;
121 break;
122 case CLKCFG_MEM_667:
123 dev_priv->mem_freq = 667;
124 break;
125 case CLKCFG_MEM_800:
126 dev_priv->mem_freq = 800;
127 break;
128 }
129
130 /* detect pineview DDR3 setting */
131 tmp = I915_READ(CSHRDDR3CTL);
132 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
133 }
134
135 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
136 {
137 struct drm_i915_private *dev_priv = dev->dev_private;
138 u16 ddrpll, csipll;
139
140 ddrpll = I915_READ16(DDRMPLL1);
141 csipll = I915_READ16(CSIPLL0);
142
143 switch (ddrpll & 0xff) {
144 case 0xc:
145 dev_priv->mem_freq = 800;
146 break;
147 case 0x10:
148 dev_priv->mem_freq = 1066;
149 break;
150 case 0x14:
151 dev_priv->mem_freq = 1333;
152 break;
153 case 0x18:
154 dev_priv->mem_freq = 1600;
155 break;
156 default:
157 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
158 ddrpll & 0xff);
159 dev_priv->mem_freq = 0;
160 break;
161 }
162
163 dev_priv->ips.r_t = dev_priv->mem_freq;
164
165 switch (csipll & 0x3ff) {
166 case 0x00c:
167 dev_priv->fsb_freq = 3200;
168 break;
169 case 0x00e:
170 dev_priv->fsb_freq = 3733;
171 break;
172 case 0x010:
173 dev_priv->fsb_freq = 4266;
174 break;
175 case 0x012:
176 dev_priv->fsb_freq = 4800;
177 break;
178 case 0x014:
179 dev_priv->fsb_freq = 5333;
180 break;
181 case 0x016:
182 dev_priv->fsb_freq = 5866;
183 break;
184 case 0x018:
185 dev_priv->fsb_freq = 6400;
186 break;
187 default:
188 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
189 csipll & 0x3ff);
190 dev_priv->fsb_freq = 0;
191 break;
192 }
193
194 if (dev_priv->fsb_freq == 3200) {
195 dev_priv->ips.c_m = 0;
196 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
197 dev_priv->ips.c_m = 1;
198 } else {
199 dev_priv->ips.c_m = 2;
200 }
201 }
202
203 static const struct cxsr_latency cxsr_latency_table[] = {
204 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
205 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
206 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
207 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
208 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
209
210 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
211 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
212 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
213 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
214 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
215
216 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
217 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
218 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
219 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
220 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
221
222 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
223 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
224 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
225 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
226 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
227
228 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
229 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
230 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
231 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
232 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
233
234 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
235 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
236 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
237 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
238 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
239 };
240
241 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
242 int is_ddr3,
243 int fsb,
244 int mem)
245 {
246 const struct cxsr_latency *latency;
247 int i;
248
249 if (fsb == 0 || mem == 0)
250 return NULL;
251
252 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
253 latency = &cxsr_latency_table[i];
254 if (is_desktop == latency->is_desktop &&
255 is_ddr3 == latency->is_ddr3 &&
256 fsb == latency->fsb_freq && mem == latency->mem_freq)
257 return latency;
258 }
259
260 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
261
262 return NULL;
263 }
264
265 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
266 {
267 u32 val;
268
269 mutex_lock(&dev_priv->rps.hw_lock);
270
271 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
272 if (enable)
273 val &= ~FORCE_DDR_HIGH_FREQ;
274 else
275 val |= FORCE_DDR_HIGH_FREQ;
276 val &= ~FORCE_DDR_LOW_FREQ;
277 val |= FORCE_DDR_FREQ_REQ_ACK;
278 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
279
280 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
281 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
282 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
283
284 mutex_unlock(&dev_priv->rps.hw_lock);
285 }
286
287 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
288 {
289 u32 val;
290
291 mutex_lock(&dev_priv->rps.hw_lock);
292
293 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
294 if (enable)
295 val |= DSP_MAXFIFO_PM5_ENABLE;
296 else
297 val &= ~DSP_MAXFIFO_PM5_ENABLE;
298 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
299
300 mutex_unlock(&dev_priv->rps.hw_lock);
301 }
302
303 #define FW_WM(value, plane) \
304 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
305
306 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
307 {
308 struct drm_device *dev = dev_priv->dev;
309 u32 val;
310
311 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
312 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
313 POSTING_READ(FW_BLC_SELF_VLV);
314 dev_priv->wm.vlv.cxsr = enable;
315 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
316 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
317 POSTING_READ(FW_BLC_SELF);
318 } else if (IS_PINEVIEW(dev)) {
319 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
320 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
321 I915_WRITE(DSPFW3, val);
322 POSTING_READ(DSPFW3);
323 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
324 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
325 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
326 I915_WRITE(FW_BLC_SELF, val);
327 POSTING_READ(FW_BLC_SELF);
328 } else if (IS_I915GM(dev)) {
329 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
330 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
331 I915_WRITE(INSTPM, val);
332 POSTING_READ(INSTPM);
333 } else {
334 return;
335 }
336
337 DRM_DEBUG_KMS("memory self-refresh is %s\n",
338 enable ? "enabled" : "disabled");
339 }
340
341
342 /*
343 * Latency for FIFO fetches is dependent on several factors:
344 * - memory configuration (speed, channels)
345 * - chipset
346 * - current MCH state
347 * It can be fairly high in some situations, so here we assume a fairly
348 * pessimal value. It's a tradeoff between extra memory fetches (if we
349 * set this value too high, the FIFO will fetch frequently to stay full)
350 * and power consumption (set it too low to save power and we might see
351 * FIFO underruns and display "flicker").
352 *
353 * A value of 5us seems to be a good balance; safe for very low end
354 * platforms but not overly aggressive on lower latency configs.
355 */
356 static const int pessimal_latency_ns = 5000;
357
358 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
359 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
360
361 static int vlv_get_fifo_size(struct drm_device *dev,
362 enum pipe pipe, int plane)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 int sprite0_start, sprite1_start, size;
366
367 switch (pipe) {
368 uint32_t dsparb, dsparb2, dsparb3;
369 case PIPE_A:
370 dsparb = I915_READ(DSPARB);
371 dsparb2 = I915_READ(DSPARB2);
372 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
373 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
374 break;
375 case PIPE_B:
376 dsparb = I915_READ(DSPARB);
377 dsparb2 = I915_READ(DSPARB2);
378 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
379 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
380 break;
381 case PIPE_C:
382 dsparb2 = I915_READ(DSPARB2);
383 dsparb3 = I915_READ(DSPARB3);
384 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
385 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
386 break;
387 default:
388 return 0;
389 }
390
391 switch (plane) {
392 case 0:
393 size = sprite0_start;
394 break;
395 case 1:
396 size = sprite1_start - sprite0_start;
397 break;
398 case 2:
399 size = 512 - 1 - sprite1_start;
400 break;
401 default:
402 return 0;
403 }
404
405 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
406 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
407 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
408 size);
409
410 return size;
411 }
412
413 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
414 {
415 struct drm_i915_private *dev_priv = dev->dev_private;
416 uint32_t dsparb = I915_READ(DSPARB);
417 int size;
418
419 size = dsparb & 0x7f;
420 if (plane)
421 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
422
423 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
424 plane ? "B" : "A", size);
425
426 return size;
427 }
428
429 static int i830_get_fifo_size(struct drm_device *dev, int plane)
430 {
431 struct drm_i915_private *dev_priv = dev->dev_private;
432 uint32_t dsparb = I915_READ(DSPARB);
433 int size;
434
435 size = dsparb & 0x1ff;
436 if (plane)
437 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
438 size >>= 1; /* Convert to cachelines */
439
440 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
441 plane ? "B" : "A", size);
442
443 return size;
444 }
445
446 static int i845_get_fifo_size(struct drm_device *dev, int plane)
447 {
448 struct drm_i915_private *dev_priv = dev->dev_private;
449 uint32_t dsparb = I915_READ(DSPARB);
450 int size;
451
452 size = dsparb & 0x7f;
453 size >>= 2; /* Convert to cachelines */
454
455 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
456 plane ? "B" : "A",
457 size);
458
459 return size;
460 }
461
462 /* Pineview has different values for various configs */
463 static const struct intel_watermark_params pineview_display_wm = {
464 .fifo_size = PINEVIEW_DISPLAY_FIFO,
465 .max_wm = PINEVIEW_MAX_WM,
466 .default_wm = PINEVIEW_DFT_WM,
467 .guard_size = PINEVIEW_GUARD_WM,
468 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
469 };
470 static const struct intel_watermark_params pineview_display_hplloff_wm = {
471 .fifo_size = PINEVIEW_DISPLAY_FIFO,
472 .max_wm = PINEVIEW_MAX_WM,
473 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
474 .guard_size = PINEVIEW_GUARD_WM,
475 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
476 };
477 static const struct intel_watermark_params pineview_cursor_wm = {
478 .fifo_size = PINEVIEW_CURSOR_FIFO,
479 .max_wm = PINEVIEW_CURSOR_MAX_WM,
480 .default_wm = PINEVIEW_CURSOR_DFT_WM,
481 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
482 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
483 };
484 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
485 .fifo_size = PINEVIEW_CURSOR_FIFO,
486 .max_wm = PINEVIEW_CURSOR_MAX_WM,
487 .default_wm = PINEVIEW_CURSOR_DFT_WM,
488 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
489 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
490 };
491 static const struct intel_watermark_params g4x_wm_info = {
492 .fifo_size = G4X_FIFO_SIZE,
493 .max_wm = G4X_MAX_WM,
494 .default_wm = G4X_MAX_WM,
495 .guard_size = 2,
496 .cacheline_size = G4X_FIFO_LINE_SIZE,
497 };
498 static const struct intel_watermark_params g4x_cursor_wm_info = {
499 .fifo_size = I965_CURSOR_FIFO,
500 .max_wm = I965_CURSOR_MAX_WM,
501 .default_wm = I965_CURSOR_DFT_WM,
502 .guard_size = 2,
503 .cacheline_size = G4X_FIFO_LINE_SIZE,
504 };
505 static const struct intel_watermark_params i965_cursor_wm_info = {
506 .fifo_size = I965_CURSOR_FIFO,
507 .max_wm = I965_CURSOR_MAX_WM,
508 .default_wm = I965_CURSOR_DFT_WM,
509 .guard_size = 2,
510 .cacheline_size = I915_FIFO_LINE_SIZE,
511 };
512 static const struct intel_watermark_params i945_wm_info = {
513 .fifo_size = I945_FIFO_SIZE,
514 .max_wm = I915_MAX_WM,
515 .default_wm = 1,
516 .guard_size = 2,
517 .cacheline_size = I915_FIFO_LINE_SIZE,
518 };
519 static const struct intel_watermark_params i915_wm_info = {
520 .fifo_size = I915_FIFO_SIZE,
521 .max_wm = I915_MAX_WM,
522 .default_wm = 1,
523 .guard_size = 2,
524 .cacheline_size = I915_FIFO_LINE_SIZE,
525 };
526 static const struct intel_watermark_params i830_a_wm_info = {
527 .fifo_size = I855GM_FIFO_SIZE,
528 .max_wm = I915_MAX_WM,
529 .default_wm = 1,
530 .guard_size = 2,
531 .cacheline_size = I830_FIFO_LINE_SIZE,
532 };
533 static const struct intel_watermark_params i830_bc_wm_info = {
534 .fifo_size = I855GM_FIFO_SIZE,
535 .max_wm = I915_MAX_WM/2,
536 .default_wm = 1,
537 .guard_size = 2,
538 .cacheline_size = I830_FIFO_LINE_SIZE,
539 };
540 static const struct intel_watermark_params i845_wm_info = {
541 .fifo_size = I830_FIFO_SIZE,
542 .max_wm = I915_MAX_WM,
543 .default_wm = 1,
544 .guard_size = 2,
545 .cacheline_size = I830_FIFO_LINE_SIZE,
546 };
547
548 /**
549 * intel_calculate_wm - calculate watermark level
550 * @clock_in_khz: pixel clock
551 * @wm: chip FIFO params
552 * @cpp: bytes per pixel
553 * @latency_ns: memory latency for the platform
554 *
555 * Calculate the watermark level (the level at which the display plane will
556 * start fetching from memory again). Each chip has a different display
557 * FIFO size and allocation, so the caller needs to figure that out and pass
558 * in the correct intel_watermark_params structure.
559 *
560 * As the pixel clock runs, the FIFO will be drained at a rate that depends
561 * on the pixel size. When it reaches the watermark level, it'll start
562 * fetching FIFO line sized based chunks from memory until the FIFO fills
563 * past the watermark point. If the FIFO drains completely, a FIFO underrun
564 * will occur, and a display engine hang could result.
565 */
566 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
567 const struct intel_watermark_params *wm,
568 int fifo_size, int cpp,
569 unsigned long latency_ns)
570 {
571 long entries_required, wm_size;
572
573 /*
574 * Note: we need to make sure we don't overflow for various clock &
575 * latency values.
576 * clocks go from a few thousand to several hundred thousand.
577 * latency is usually a few thousand
578 */
579 entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
580 1000;
581 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
582
583 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
584
585 wm_size = fifo_size - (entries_required + wm->guard_size);
586
587 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
588
589 /* Don't promote wm_size to unsigned... */
590 if (wm_size > (long)wm->max_wm)
591 wm_size = wm->max_wm;
592 if (wm_size <= 0)
593 wm_size = wm->default_wm;
594
595 /*
596 * Bspec seems to indicate that the value shouldn't be lower than
597 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
598 * Lets go for 8 which is the burst size since certain platforms
599 * already use a hardcoded 8 (which is what the spec says should be
600 * done).
601 */
602 if (wm_size <= 8)
603 wm_size = 8;
604
605 return wm_size;
606 }
607
608 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
609 {
610 struct drm_crtc *crtc, *enabled = NULL;
611
612 for_each_crtc(dev, crtc) {
613 if (intel_crtc_active(crtc)) {
614 if (enabled)
615 return NULL;
616 enabled = crtc;
617 }
618 }
619
620 return enabled;
621 }
622
623 static void pineview_update_wm(struct drm_crtc *unused_crtc)
624 {
625 struct drm_device *dev = unused_crtc->dev;
626 struct drm_i915_private *dev_priv = dev->dev_private;
627 struct drm_crtc *crtc;
628 const struct cxsr_latency *latency;
629 u32 reg;
630 unsigned long wm;
631
632 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
633 dev_priv->fsb_freq, dev_priv->mem_freq);
634 if (!latency) {
635 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
636 intel_set_memory_cxsr(dev_priv, false);
637 return;
638 }
639
640 crtc = single_enabled_crtc(dev);
641 if (crtc) {
642 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
643 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
644 int clock = adjusted_mode->crtc_clock;
645
646 /* Display SR */
647 wm = intel_calculate_wm(clock, &pineview_display_wm,
648 pineview_display_wm.fifo_size,
649 cpp, latency->display_sr);
650 reg = I915_READ(DSPFW1);
651 reg &= ~DSPFW_SR_MASK;
652 reg |= FW_WM(wm, SR);
653 I915_WRITE(DSPFW1, reg);
654 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
655
656 /* cursor SR */
657 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
658 pineview_display_wm.fifo_size,
659 cpp, latency->cursor_sr);
660 reg = I915_READ(DSPFW3);
661 reg &= ~DSPFW_CURSOR_SR_MASK;
662 reg |= FW_WM(wm, CURSOR_SR);
663 I915_WRITE(DSPFW3, reg);
664
665 /* Display HPLL off SR */
666 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
667 pineview_display_hplloff_wm.fifo_size,
668 cpp, latency->display_hpll_disable);
669 reg = I915_READ(DSPFW3);
670 reg &= ~DSPFW_HPLL_SR_MASK;
671 reg |= FW_WM(wm, HPLL_SR);
672 I915_WRITE(DSPFW3, reg);
673
674 /* cursor HPLL off SR */
675 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
676 pineview_display_hplloff_wm.fifo_size,
677 cpp, latency->cursor_hpll_disable);
678 reg = I915_READ(DSPFW3);
679 reg &= ~DSPFW_HPLL_CURSOR_MASK;
680 reg |= FW_WM(wm, HPLL_CURSOR);
681 I915_WRITE(DSPFW3, reg);
682 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
683
684 intel_set_memory_cxsr(dev_priv, true);
685 } else {
686 intel_set_memory_cxsr(dev_priv, false);
687 }
688 }
689
690 static bool g4x_compute_wm0(struct drm_device *dev,
691 int plane,
692 const struct intel_watermark_params *display,
693 int display_latency_ns,
694 const struct intel_watermark_params *cursor,
695 int cursor_latency_ns,
696 int *plane_wm,
697 int *cursor_wm)
698 {
699 struct drm_crtc *crtc;
700 const struct drm_display_mode *adjusted_mode;
701 int htotal, hdisplay, clock, cpp;
702 int line_time_us, line_count;
703 int entries, tlb_miss;
704
705 crtc = intel_get_crtc_for_plane(dev, plane);
706 if (!intel_crtc_active(crtc)) {
707 *cursor_wm = cursor->guard_size;
708 *plane_wm = display->guard_size;
709 return false;
710 }
711
712 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
713 clock = adjusted_mode->crtc_clock;
714 htotal = adjusted_mode->crtc_htotal;
715 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
716 cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
717
718 /* Use the small buffer method to calculate plane watermark */
719 entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
720 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
721 if (tlb_miss > 0)
722 entries += tlb_miss;
723 entries = DIV_ROUND_UP(entries, display->cacheline_size);
724 *plane_wm = entries + display->guard_size;
725 if (*plane_wm > (int)display->max_wm)
726 *plane_wm = display->max_wm;
727
728 /* Use the large buffer method to calculate cursor watermark */
729 line_time_us = max(htotal * 1000 / clock, 1);
730 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
731 entries = line_count * crtc->cursor->state->crtc_w * cpp;
732 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
733 if (tlb_miss > 0)
734 entries += tlb_miss;
735 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
736 *cursor_wm = entries + cursor->guard_size;
737 if (*cursor_wm > (int)cursor->max_wm)
738 *cursor_wm = (int)cursor->max_wm;
739
740 return true;
741 }
742
743 /*
744 * Check the wm result.
745 *
746 * If any calculated watermark values is larger than the maximum value that
747 * can be programmed into the associated watermark register, that watermark
748 * must be disabled.
749 */
750 static bool g4x_check_srwm(struct drm_device *dev,
751 int display_wm, int cursor_wm,
752 const struct intel_watermark_params *display,
753 const struct intel_watermark_params *cursor)
754 {
755 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
756 display_wm, cursor_wm);
757
758 if (display_wm > display->max_wm) {
759 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
760 display_wm, display->max_wm);
761 return false;
762 }
763
764 if (cursor_wm > cursor->max_wm) {
765 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
766 cursor_wm, cursor->max_wm);
767 return false;
768 }
769
770 if (!(display_wm || cursor_wm)) {
771 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
772 return false;
773 }
774
775 return true;
776 }
777
778 static bool g4x_compute_srwm(struct drm_device *dev,
779 int plane,
780 int latency_ns,
781 const struct intel_watermark_params *display,
782 const struct intel_watermark_params *cursor,
783 int *display_wm, int *cursor_wm)
784 {
785 struct drm_crtc *crtc;
786 const struct drm_display_mode *adjusted_mode;
787 int hdisplay, htotal, cpp, clock;
788 unsigned long line_time_us;
789 int line_count, line_size;
790 int small, large;
791 int entries;
792
793 if (!latency_ns) {
794 *display_wm = *cursor_wm = 0;
795 return false;
796 }
797
798 crtc = intel_get_crtc_for_plane(dev, plane);
799 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
800 clock = adjusted_mode->crtc_clock;
801 htotal = adjusted_mode->crtc_htotal;
802 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
803 cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
804
805 line_time_us = max(htotal * 1000 / clock, 1);
806 line_count = (latency_ns / line_time_us + 1000) / 1000;
807 line_size = hdisplay * cpp;
808
809 /* Use the minimum of the small and large buffer method for primary */
810 small = ((clock * cpp / 1000) * latency_ns) / 1000;
811 large = line_count * line_size;
812
813 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
814 *display_wm = entries + display->guard_size;
815
816 /* calculate the self-refresh watermark for display cursor */
817 entries = line_count * cpp * crtc->cursor->state->crtc_w;
818 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
819 *cursor_wm = entries + cursor->guard_size;
820
821 return g4x_check_srwm(dev,
822 *display_wm, *cursor_wm,
823 display, cursor);
824 }
825
826 #define FW_WM_VLV(value, plane) \
827 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
828
829 static void vlv_write_wm_values(struct intel_crtc *crtc,
830 const struct vlv_wm_values *wm)
831 {
832 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
833 enum pipe pipe = crtc->pipe;
834
835 I915_WRITE(VLV_DDL(pipe),
836 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
837 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
838 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
839 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
840
841 I915_WRITE(DSPFW1,
842 FW_WM(wm->sr.plane, SR) |
843 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
844 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
845 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
846 I915_WRITE(DSPFW2,
847 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
848 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
849 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
850 I915_WRITE(DSPFW3,
851 FW_WM(wm->sr.cursor, CURSOR_SR));
852
853 if (IS_CHERRYVIEW(dev_priv)) {
854 I915_WRITE(DSPFW7_CHV,
855 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
856 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
857 I915_WRITE(DSPFW8_CHV,
858 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
859 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
860 I915_WRITE(DSPFW9_CHV,
861 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
862 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
863 I915_WRITE(DSPHOWM,
864 FW_WM(wm->sr.plane >> 9, SR_HI) |
865 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
866 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
867 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
868 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
869 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
870 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
871 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
872 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
873 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
874 } else {
875 I915_WRITE(DSPFW7,
876 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
877 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
878 I915_WRITE(DSPHOWM,
879 FW_WM(wm->sr.plane >> 9, SR_HI) |
880 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
881 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
882 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
883 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
884 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
885 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
886 }
887
888 /* zero (unused) WM1 watermarks */
889 I915_WRITE(DSPFW4, 0);
890 I915_WRITE(DSPFW5, 0);
891 I915_WRITE(DSPFW6, 0);
892 I915_WRITE(DSPHOWM1, 0);
893
894 POSTING_READ(DSPFW1);
895 }
896
897 #undef FW_WM_VLV
898
899 enum vlv_wm_level {
900 VLV_WM_LEVEL_PM2,
901 VLV_WM_LEVEL_PM5,
902 VLV_WM_LEVEL_DDR_DVFS,
903 };
904
905 /* latency must be in 0.1us units. */
906 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
907 unsigned int pipe_htotal,
908 unsigned int horiz_pixels,
909 unsigned int cpp,
910 unsigned int latency)
911 {
912 unsigned int ret;
913
914 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
915 ret = (ret + 1) * horiz_pixels * cpp;
916 ret = DIV_ROUND_UP(ret, 64);
917
918 return ret;
919 }
920
921 static void vlv_setup_wm_latency(struct drm_device *dev)
922 {
923 struct drm_i915_private *dev_priv = dev->dev_private;
924
925 /* all latencies in usec */
926 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
927
928 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
929
930 if (IS_CHERRYVIEW(dev_priv)) {
931 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
932 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
933
934 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
935 }
936 }
937
938 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
939 struct intel_crtc *crtc,
940 const struct intel_plane_state *state,
941 int level)
942 {
943 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
944 int clock, htotal, cpp, width, wm;
945
946 if (dev_priv->wm.pri_latency[level] == 0)
947 return USHRT_MAX;
948
949 if (!state->visible)
950 return 0;
951
952 cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
953 clock = crtc->config->base.adjusted_mode.crtc_clock;
954 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
955 width = crtc->config->pipe_src_w;
956 if (WARN_ON(htotal == 0))
957 htotal = 1;
958
959 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
960 /*
961 * FIXME the formula gives values that are
962 * too big for the cursor FIFO, and hence we
963 * would never be able to use cursors. For
964 * now just hardcode the watermark.
965 */
966 wm = 63;
967 } else {
968 wm = vlv_wm_method2(clock, htotal, width, cpp,
969 dev_priv->wm.pri_latency[level] * 10);
970 }
971
972 return min_t(int, wm, USHRT_MAX);
973 }
974
975 static void vlv_compute_fifo(struct intel_crtc *crtc)
976 {
977 struct drm_device *dev = crtc->base.dev;
978 struct vlv_wm_state *wm_state = &crtc->wm_state;
979 struct intel_plane *plane;
980 unsigned int total_rate = 0;
981 const int fifo_size = 512 - 1;
982 int fifo_extra, fifo_left = fifo_size;
983
984 for_each_intel_plane_on_crtc(dev, crtc, plane) {
985 struct intel_plane_state *state =
986 to_intel_plane_state(plane->base.state);
987
988 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
989 continue;
990
991 if (state->visible) {
992 wm_state->num_active_planes++;
993 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
994 }
995 }
996
997 for_each_intel_plane_on_crtc(dev, crtc, plane) {
998 struct intel_plane_state *state =
999 to_intel_plane_state(plane->base.state);
1000 unsigned int rate;
1001
1002 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1003 plane->wm.fifo_size = 63;
1004 continue;
1005 }
1006
1007 if (!state->visible) {
1008 plane->wm.fifo_size = 0;
1009 continue;
1010 }
1011
1012 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1013 plane->wm.fifo_size = fifo_size * rate / total_rate;
1014 fifo_left -= plane->wm.fifo_size;
1015 }
1016
1017 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1018
1019 /* spread the remainder evenly */
1020 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1021 int plane_extra;
1022
1023 if (fifo_left == 0)
1024 break;
1025
1026 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1027 continue;
1028
1029 /* give it all to the first plane if none are active */
1030 if (plane->wm.fifo_size == 0 &&
1031 wm_state->num_active_planes)
1032 continue;
1033
1034 plane_extra = min(fifo_extra, fifo_left);
1035 plane->wm.fifo_size += plane_extra;
1036 fifo_left -= plane_extra;
1037 }
1038
1039 WARN_ON(fifo_left != 0);
1040 }
1041
1042 static void vlv_invert_wms(struct intel_crtc *crtc)
1043 {
1044 struct vlv_wm_state *wm_state = &crtc->wm_state;
1045 int level;
1046
1047 for (level = 0; level < wm_state->num_levels; level++) {
1048 struct drm_device *dev = crtc->base.dev;
1049 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1050 struct intel_plane *plane;
1051
1052 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1053 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1054
1055 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1056 switch (plane->base.type) {
1057 int sprite;
1058 case DRM_PLANE_TYPE_CURSOR:
1059 wm_state->wm[level].cursor = plane->wm.fifo_size -
1060 wm_state->wm[level].cursor;
1061 break;
1062 case DRM_PLANE_TYPE_PRIMARY:
1063 wm_state->wm[level].primary = plane->wm.fifo_size -
1064 wm_state->wm[level].primary;
1065 break;
1066 case DRM_PLANE_TYPE_OVERLAY:
1067 sprite = plane->plane;
1068 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1069 wm_state->wm[level].sprite[sprite];
1070 break;
1071 }
1072 }
1073 }
1074 }
1075
1076 static void vlv_compute_wm(struct intel_crtc *crtc)
1077 {
1078 struct drm_device *dev = crtc->base.dev;
1079 struct vlv_wm_state *wm_state = &crtc->wm_state;
1080 struct intel_plane *plane;
1081 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1082 int level;
1083
1084 memset(wm_state, 0, sizeof(*wm_state));
1085
1086 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1087 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1088
1089 wm_state->num_active_planes = 0;
1090
1091 vlv_compute_fifo(crtc);
1092
1093 if (wm_state->num_active_planes != 1)
1094 wm_state->cxsr = false;
1095
1096 if (wm_state->cxsr) {
1097 for (level = 0; level < wm_state->num_levels; level++) {
1098 wm_state->sr[level].plane = sr_fifo_size;
1099 wm_state->sr[level].cursor = 63;
1100 }
1101 }
1102
1103 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1104 struct intel_plane_state *state =
1105 to_intel_plane_state(plane->base.state);
1106
1107 if (!state->visible)
1108 continue;
1109
1110 /* normal watermarks */
1111 for (level = 0; level < wm_state->num_levels; level++) {
1112 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1113 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1114
1115 /* hack */
1116 if (WARN_ON(level == 0 && wm > max_wm))
1117 wm = max_wm;
1118
1119 if (wm > plane->wm.fifo_size)
1120 break;
1121
1122 switch (plane->base.type) {
1123 int sprite;
1124 case DRM_PLANE_TYPE_CURSOR:
1125 wm_state->wm[level].cursor = wm;
1126 break;
1127 case DRM_PLANE_TYPE_PRIMARY:
1128 wm_state->wm[level].primary = wm;
1129 break;
1130 case DRM_PLANE_TYPE_OVERLAY:
1131 sprite = plane->plane;
1132 wm_state->wm[level].sprite[sprite] = wm;
1133 break;
1134 }
1135 }
1136
1137 wm_state->num_levels = level;
1138
1139 if (!wm_state->cxsr)
1140 continue;
1141
1142 /* maxfifo watermarks */
1143 switch (plane->base.type) {
1144 int sprite, level;
1145 case DRM_PLANE_TYPE_CURSOR:
1146 for (level = 0; level < wm_state->num_levels; level++)
1147 wm_state->sr[level].cursor =
1148 wm_state->wm[level].cursor;
1149 break;
1150 case DRM_PLANE_TYPE_PRIMARY:
1151 for (level = 0; level < wm_state->num_levels; level++)
1152 wm_state->sr[level].plane =
1153 min(wm_state->sr[level].plane,
1154 wm_state->wm[level].primary);
1155 break;
1156 case DRM_PLANE_TYPE_OVERLAY:
1157 sprite = plane->plane;
1158 for (level = 0; level < wm_state->num_levels; level++)
1159 wm_state->sr[level].plane =
1160 min(wm_state->sr[level].plane,
1161 wm_state->wm[level].sprite[sprite]);
1162 break;
1163 }
1164 }
1165
1166 /* clear any (partially) filled invalid levels */
1167 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1168 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1169 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1170 }
1171
1172 vlv_invert_wms(crtc);
1173 }
1174
1175 #define VLV_FIFO(plane, value) \
1176 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1177
1178 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1179 {
1180 struct drm_device *dev = crtc->base.dev;
1181 struct drm_i915_private *dev_priv = to_i915(dev);
1182 struct intel_plane *plane;
1183 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1184
1185 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1186 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1187 WARN_ON(plane->wm.fifo_size != 63);
1188 continue;
1189 }
1190
1191 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1192 sprite0_start = plane->wm.fifo_size;
1193 else if (plane->plane == 0)
1194 sprite1_start = sprite0_start + plane->wm.fifo_size;
1195 else
1196 fifo_size = sprite1_start + plane->wm.fifo_size;
1197 }
1198
1199 WARN_ON(fifo_size != 512 - 1);
1200
1201 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1202 pipe_name(crtc->pipe), sprite0_start,
1203 sprite1_start, fifo_size);
1204
1205 switch (crtc->pipe) {
1206 uint32_t dsparb, dsparb2, dsparb3;
1207 case PIPE_A:
1208 dsparb = I915_READ(DSPARB);
1209 dsparb2 = I915_READ(DSPARB2);
1210
1211 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1212 VLV_FIFO(SPRITEB, 0xff));
1213 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1214 VLV_FIFO(SPRITEB, sprite1_start));
1215
1216 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1217 VLV_FIFO(SPRITEB_HI, 0x1));
1218 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1219 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1220
1221 I915_WRITE(DSPARB, dsparb);
1222 I915_WRITE(DSPARB2, dsparb2);
1223 break;
1224 case PIPE_B:
1225 dsparb = I915_READ(DSPARB);
1226 dsparb2 = I915_READ(DSPARB2);
1227
1228 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1229 VLV_FIFO(SPRITED, 0xff));
1230 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1231 VLV_FIFO(SPRITED, sprite1_start));
1232
1233 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1234 VLV_FIFO(SPRITED_HI, 0xff));
1235 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1236 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1237
1238 I915_WRITE(DSPARB, dsparb);
1239 I915_WRITE(DSPARB2, dsparb2);
1240 break;
1241 case PIPE_C:
1242 dsparb3 = I915_READ(DSPARB3);
1243 dsparb2 = I915_READ(DSPARB2);
1244
1245 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1246 VLV_FIFO(SPRITEF, 0xff));
1247 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1248 VLV_FIFO(SPRITEF, sprite1_start));
1249
1250 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1251 VLV_FIFO(SPRITEF_HI, 0xff));
1252 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1253 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1254
1255 I915_WRITE(DSPARB3, dsparb3);
1256 I915_WRITE(DSPARB2, dsparb2);
1257 break;
1258 default:
1259 break;
1260 }
1261 }
1262
1263 #undef VLV_FIFO
1264
1265 static void vlv_merge_wm(struct drm_device *dev,
1266 struct vlv_wm_values *wm)
1267 {
1268 struct intel_crtc *crtc;
1269 int num_active_crtcs = 0;
1270
1271 wm->level = to_i915(dev)->wm.max_level;
1272 wm->cxsr = true;
1273
1274 for_each_intel_crtc(dev, crtc) {
1275 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1276
1277 if (!crtc->active)
1278 continue;
1279
1280 if (!wm_state->cxsr)
1281 wm->cxsr = false;
1282
1283 num_active_crtcs++;
1284 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1285 }
1286
1287 if (num_active_crtcs != 1)
1288 wm->cxsr = false;
1289
1290 if (num_active_crtcs > 1)
1291 wm->level = VLV_WM_LEVEL_PM2;
1292
1293 for_each_intel_crtc(dev, crtc) {
1294 struct vlv_wm_state *wm_state = &crtc->wm_state;
1295 enum pipe pipe = crtc->pipe;
1296
1297 if (!crtc->active)
1298 continue;
1299
1300 wm->pipe[pipe] = wm_state->wm[wm->level];
1301 if (wm->cxsr)
1302 wm->sr = wm_state->sr[wm->level];
1303
1304 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1305 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1306 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1307 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1308 }
1309 }
1310
1311 static void vlv_update_wm(struct drm_crtc *crtc)
1312 {
1313 struct drm_device *dev = crtc->dev;
1314 struct drm_i915_private *dev_priv = dev->dev_private;
1315 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1316 enum pipe pipe = intel_crtc->pipe;
1317 struct vlv_wm_values wm = {};
1318
1319 vlv_compute_wm(intel_crtc);
1320 vlv_merge_wm(dev, &wm);
1321
1322 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1323 /* FIXME should be part of crtc atomic commit */
1324 vlv_pipe_set_fifo_size(intel_crtc);
1325 return;
1326 }
1327
1328 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1329 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1330 chv_set_memory_dvfs(dev_priv, false);
1331
1332 if (wm.level < VLV_WM_LEVEL_PM5 &&
1333 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1334 chv_set_memory_pm5(dev_priv, false);
1335
1336 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1337 intel_set_memory_cxsr(dev_priv, false);
1338
1339 /* FIXME should be part of crtc atomic commit */
1340 vlv_pipe_set_fifo_size(intel_crtc);
1341
1342 vlv_write_wm_values(intel_crtc, &wm);
1343
1344 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1345 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1346 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1347 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1348 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1349
1350 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1351 intel_set_memory_cxsr(dev_priv, true);
1352
1353 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1354 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1355 chv_set_memory_pm5(dev_priv, true);
1356
1357 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1358 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1359 chv_set_memory_dvfs(dev_priv, true);
1360
1361 dev_priv->wm.vlv = wm;
1362 }
1363
1364 #define single_plane_enabled(mask) is_power_of_2(mask)
1365
1366 static void g4x_update_wm(struct drm_crtc *crtc)
1367 {
1368 struct drm_device *dev = crtc->dev;
1369 static const int sr_latency_ns = 12000;
1370 struct drm_i915_private *dev_priv = dev->dev_private;
1371 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1372 int plane_sr, cursor_sr;
1373 unsigned int enabled = 0;
1374 bool cxsr_enabled;
1375
1376 if (g4x_compute_wm0(dev, PIPE_A,
1377 &g4x_wm_info, pessimal_latency_ns,
1378 &g4x_cursor_wm_info, pessimal_latency_ns,
1379 &planea_wm, &cursora_wm))
1380 enabled |= 1 << PIPE_A;
1381
1382 if (g4x_compute_wm0(dev, PIPE_B,
1383 &g4x_wm_info, pessimal_latency_ns,
1384 &g4x_cursor_wm_info, pessimal_latency_ns,
1385 &planeb_wm, &cursorb_wm))
1386 enabled |= 1 << PIPE_B;
1387
1388 if (single_plane_enabled(enabled) &&
1389 g4x_compute_srwm(dev, ffs(enabled) - 1,
1390 sr_latency_ns,
1391 &g4x_wm_info,
1392 &g4x_cursor_wm_info,
1393 &plane_sr, &cursor_sr)) {
1394 cxsr_enabled = true;
1395 } else {
1396 cxsr_enabled = false;
1397 intel_set_memory_cxsr(dev_priv, false);
1398 plane_sr = cursor_sr = 0;
1399 }
1400
1401 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1402 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1403 planea_wm, cursora_wm,
1404 planeb_wm, cursorb_wm,
1405 plane_sr, cursor_sr);
1406
1407 I915_WRITE(DSPFW1,
1408 FW_WM(plane_sr, SR) |
1409 FW_WM(cursorb_wm, CURSORB) |
1410 FW_WM(planeb_wm, PLANEB) |
1411 FW_WM(planea_wm, PLANEA));
1412 I915_WRITE(DSPFW2,
1413 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1414 FW_WM(cursora_wm, CURSORA));
1415 /* HPLL off in SR has some issues on G4x... disable it */
1416 I915_WRITE(DSPFW3,
1417 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1418 FW_WM(cursor_sr, CURSOR_SR));
1419
1420 if (cxsr_enabled)
1421 intel_set_memory_cxsr(dev_priv, true);
1422 }
1423
1424 static void i965_update_wm(struct drm_crtc *unused_crtc)
1425 {
1426 struct drm_device *dev = unused_crtc->dev;
1427 struct drm_i915_private *dev_priv = dev->dev_private;
1428 struct drm_crtc *crtc;
1429 int srwm = 1;
1430 int cursor_sr = 16;
1431 bool cxsr_enabled;
1432
1433 /* Calc sr entries for one plane configs */
1434 crtc = single_enabled_crtc(dev);
1435 if (crtc) {
1436 /* self-refresh has much higher latency */
1437 static const int sr_latency_ns = 12000;
1438 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1439 int clock = adjusted_mode->crtc_clock;
1440 int htotal = adjusted_mode->crtc_htotal;
1441 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1442 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1443 unsigned long line_time_us;
1444 int entries;
1445
1446 line_time_us = max(htotal * 1000 / clock, 1);
1447
1448 /* Use ns/us then divide to preserve precision */
1449 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450 cpp * hdisplay;
1451 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1452 srwm = I965_FIFO_SIZE - entries;
1453 if (srwm < 0)
1454 srwm = 1;
1455 srwm &= 0x1ff;
1456 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1457 entries, srwm);
1458
1459 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1460 cpp * crtc->cursor->state->crtc_w;
1461 entries = DIV_ROUND_UP(entries,
1462 i965_cursor_wm_info.cacheline_size);
1463 cursor_sr = i965_cursor_wm_info.fifo_size -
1464 (entries + i965_cursor_wm_info.guard_size);
1465
1466 if (cursor_sr > i965_cursor_wm_info.max_wm)
1467 cursor_sr = i965_cursor_wm_info.max_wm;
1468
1469 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1470 "cursor %d\n", srwm, cursor_sr);
1471
1472 cxsr_enabled = true;
1473 } else {
1474 cxsr_enabled = false;
1475 /* Turn off self refresh if both pipes are enabled */
1476 intel_set_memory_cxsr(dev_priv, false);
1477 }
1478
1479 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1480 srwm);
1481
1482 /* 965 has limitations... */
1483 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1484 FW_WM(8, CURSORB) |
1485 FW_WM(8, PLANEB) |
1486 FW_WM(8, PLANEA));
1487 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1488 FW_WM(8, PLANEC_OLD));
1489 /* update cursor SR watermark */
1490 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1491
1492 if (cxsr_enabled)
1493 intel_set_memory_cxsr(dev_priv, true);
1494 }
1495
1496 #undef FW_WM
1497
1498 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1499 {
1500 struct drm_device *dev = unused_crtc->dev;
1501 struct drm_i915_private *dev_priv = dev->dev_private;
1502 const struct intel_watermark_params *wm_info;
1503 uint32_t fwater_lo;
1504 uint32_t fwater_hi;
1505 int cwm, srwm = 1;
1506 int fifo_size;
1507 int planea_wm, planeb_wm;
1508 struct drm_crtc *crtc, *enabled = NULL;
1509
1510 if (IS_I945GM(dev))
1511 wm_info = &i945_wm_info;
1512 else if (!IS_GEN2(dev))
1513 wm_info = &i915_wm_info;
1514 else
1515 wm_info = &i830_a_wm_info;
1516
1517 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1518 crtc = intel_get_crtc_for_plane(dev, 0);
1519 if (intel_crtc_active(crtc)) {
1520 const struct drm_display_mode *adjusted_mode;
1521 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1522 if (IS_GEN2(dev))
1523 cpp = 4;
1524
1525 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1526 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1527 wm_info, fifo_size, cpp,
1528 pessimal_latency_ns);
1529 enabled = crtc;
1530 } else {
1531 planea_wm = fifo_size - wm_info->guard_size;
1532 if (planea_wm > (long)wm_info->max_wm)
1533 planea_wm = wm_info->max_wm;
1534 }
1535
1536 if (IS_GEN2(dev))
1537 wm_info = &i830_bc_wm_info;
1538
1539 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1540 crtc = intel_get_crtc_for_plane(dev, 1);
1541 if (intel_crtc_active(crtc)) {
1542 const struct drm_display_mode *adjusted_mode;
1543 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1544 if (IS_GEN2(dev))
1545 cpp = 4;
1546
1547 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1548 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1549 wm_info, fifo_size, cpp,
1550 pessimal_latency_ns);
1551 if (enabled == NULL)
1552 enabled = crtc;
1553 else
1554 enabled = NULL;
1555 } else {
1556 planeb_wm = fifo_size - wm_info->guard_size;
1557 if (planeb_wm > (long)wm_info->max_wm)
1558 planeb_wm = wm_info->max_wm;
1559 }
1560
1561 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1562
1563 if (IS_I915GM(dev) && enabled) {
1564 struct drm_i915_gem_object *obj;
1565
1566 obj = intel_fb_obj(enabled->primary->state->fb);
1567
1568 /* self-refresh seems busted with untiled */
1569 if (obj->tiling_mode == I915_TILING_NONE)
1570 enabled = NULL;
1571 }
1572
1573 /*
1574 * Overlay gets an aggressive default since video jitter is bad.
1575 */
1576 cwm = 2;
1577
1578 /* Play safe and disable self-refresh before adjusting watermarks. */
1579 intel_set_memory_cxsr(dev_priv, false);
1580
1581 /* Calc sr entries for one plane configs */
1582 if (HAS_FW_BLC(dev) && enabled) {
1583 /* self-refresh has much higher latency */
1584 static const int sr_latency_ns = 6000;
1585 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1586 int clock = adjusted_mode->crtc_clock;
1587 int htotal = adjusted_mode->crtc_htotal;
1588 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1589 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1590 unsigned long line_time_us;
1591 int entries;
1592
1593 line_time_us = max(htotal * 1000 / clock, 1);
1594
1595 /* Use ns/us then divide to preserve precision */
1596 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1597 cpp * hdisplay;
1598 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1599 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1600 srwm = wm_info->fifo_size - entries;
1601 if (srwm < 0)
1602 srwm = 1;
1603
1604 if (IS_I945G(dev) || IS_I945GM(dev))
1605 I915_WRITE(FW_BLC_SELF,
1606 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1607 else if (IS_I915GM(dev))
1608 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1609 }
1610
1611 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1612 planea_wm, planeb_wm, cwm, srwm);
1613
1614 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1615 fwater_hi = (cwm & 0x1f);
1616
1617 /* Set request length to 8 cachelines per fetch */
1618 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1619 fwater_hi = fwater_hi | (1 << 8);
1620
1621 I915_WRITE(FW_BLC, fwater_lo);
1622 I915_WRITE(FW_BLC2, fwater_hi);
1623
1624 if (enabled)
1625 intel_set_memory_cxsr(dev_priv, true);
1626 }
1627
1628 static void i845_update_wm(struct drm_crtc *unused_crtc)
1629 {
1630 struct drm_device *dev = unused_crtc->dev;
1631 struct drm_i915_private *dev_priv = dev->dev_private;
1632 struct drm_crtc *crtc;
1633 const struct drm_display_mode *adjusted_mode;
1634 uint32_t fwater_lo;
1635 int planea_wm;
1636
1637 crtc = single_enabled_crtc(dev);
1638 if (crtc == NULL)
1639 return;
1640
1641 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1642 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1643 &i845_wm_info,
1644 dev_priv->display.get_fifo_size(dev, 0),
1645 4, pessimal_latency_ns);
1646 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1647 fwater_lo |= (3<<8) | planea_wm;
1648
1649 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1650
1651 I915_WRITE(FW_BLC, fwater_lo);
1652 }
1653
1654 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1655 {
1656 uint32_t pixel_rate;
1657
1658 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1659
1660 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1661 * adjust the pixel_rate here. */
1662
1663 if (pipe_config->pch_pfit.enabled) {
1664 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1665 uint32_t pfit_size = pipe_config->pch_pfit.size;
1666
1667 pipe_w = pipe_config->pipe_src_w;
1668 pipe_h = pipe_config->pipe_src_h;
1669
1670 pfit_w = (pfit_size >> 16) & 0xFFFF;
1671 pfit_h = pfit_size & 0xFFFF;
1672 if (pipe_w < pfit_w)
1673 pipe_w = pfit_w;
1674 if (pipe_h < pfit_h)
1675 pipe_h = pfit_h;
1676
1677 if (WARN_ON(!pfit_w || !pfit_h))
1678 return pixel_rate;
1679
1680 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1681 pfit_w * pfit_h);
1682 }
1683
1684 return pixel_rate;
1685 }
1686
1687 /* latency must be in 0.1us units. */
1688 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1689 {
1690 uint64_t ret;
1691
1692 if (WARN(latency == 0, "Latency value missing\n"))
1693 return UINT_MAX;
1694
1695 ret = (uint64_t) pixel_rate * cpp * latency;
1696 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1697
1698 return ret;
1699 }
1700
1701 /* latency must be in 0.1us units. */
1702 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1703 uint32_t horiz_pixels, uint8_t cpp,
1704 uint32_t latency)
1705 {
1706 uint32_t ret;
1707
1708 if (WARN(latency == 0, "Latency value missing\n"))
1709 return UINT_MAX;
1710 if (WARN_ON(!pipe_htotal))
1711 return UINT_MAX;
1712
1713 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1714 ret = (ret + 1) * horiz_pixels * cpp;
1715 ret = DIV_ROUND_UP(ret, 64) + 2;
1716 return ret;
1717 }
1718
1719 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1720 uint8_t cpp)
1721 {
1722 /*
1723 * Neither of these should be possible since this function shouldn't be
1724 * called if the CRTC is off or the plane is invisible. But let's be
1725 * extra paranoid to avoid a potential divide-by-zero if we screw up
1726 * elsewhere in the driver.
1727 */
1728 if (WARN_ON(!cpp))
1729 return 0;
1730 if (WARN_ON(!horiz_pixels))
1731 return 0;
1732
1733 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1734 }
1735
1736 struct ilk_wm_maximums {
1737 uint16_t pri;
1738 uint16_t spr;
1739 uint16_t cur;
1740 uint16_t fbc;
1741 };
1742
1743 /*
1744 * For both WM_PIPE and WM_LP.
1745 * mem_value must be in 0.1us units.
1746 */
1747 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1748 const struct intel_plane_state *pstate,
1749 uint32_t mem_value,
1750 bool is_lp)
1751 {
1752 int cpp = pstate->base.fb ?
1753 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1754 uint32_t method1, method2;
1755
1756 if (!cstate->base.active || !pstate->visible)
1757 return 0;
1758
1759 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1760
1761 if (!is_lp)
1762 return method1;
1763
1764 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1765 cstate->base.adjusted_mode.crtc_htotal,
1766 drm_rect_width(&pstate->dst),
1767 cpp, mem_value);
1768
1769 return min(method1, method2);
1770 }
1771
1772 /*
1773 * For both WM_PIPE and WM_LP.
1774 * mem_value must be in 0.1us units.
1775 */
1776 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1777 const struct intel_plane_state *pstate,
1778 uint32_t mem_value)
1779 {
1780 int cpp = pstate->base.fb ?
1781 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1782 uint32_t method1, method2;
1783
1784 if (!cstate->base.active || !pstate->visible)
1785 return 0;
1786
1787 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1788 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1789 cstate->base.adjusted_mode.crtc_htotal,
1790 drm_rect_width(&pstate->dst),
1791 cpp, mem_value);
1792 return min(method1, method2);
1793 }
1794
1795 /*
1796 * For both WM_PIPE and WM_LP.
1797 * mem_value must be in 0.1us units.
1798 */
1799 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1800 const struct intel_plane_state *pstate,
1801 uint32_t mem_value)
1802 {
1803 /*
1804 * We treat the cursor plane as always-on for the purposes of watermark
1805 * calculation. Until we have two-stage watermark programming merged,
1806 * this is necessary to avoid flickering.
1807 */
1808 int cpp = 4;
1809 int width = pstate->visible ? pstate->base.crtc_w : 64;
1810
1811 if (!cstate->base.active)
1812 return 0;
1813
1814 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1815 cstate->base.adjusted_mode.crtc_htotal,
1816 width, cpp, mem_value);
1817 }
1818
1819 /* Only for WM_LP. */
1820 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1821 const struct intel_plane_state *pstate,
1822 uint32_t pri_val)
1823 {
1824 int cpp = pstate->base.fb ?
1825 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1826
1827 if (!cstate->base.active || !pstate->visible)
1828 return 0;
1829
1830 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1831 }
1832
1833 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1834 {
1835 if (INTEL_INFO(dev)->gen >= 8)
1836 return 3072;
1837 else if (INTEL_INFO(dev)->gen >= 7)
1838 return 768;
1839 else
1840 return 512;
1841 }
1842
1843 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1844 int level, bool is_sprite)
1845 {
1846 if (INTEL_INFO(dev)->gen >= 8)
1847 /* BDW primary/sprite plane watermarks */
1848 return level == 0 ? 255 : 2047;
1849 else if (INTEL_INFO(dev)->gen >= 7)
1850 /* IVB/HSW primary/sprite plane watermarks */
1851 return level == 0 ? 127 : 1023;
1852 else if (!is_sprite)
1853 /* ILK/SNB primary plane watermarks */
1854 return level == 0 ? 127 : 511;
1855 else
1856 /* ILK/SNB sprite plane watermarks */
1857 return level == 0 ? 63 : 255;
1858 }
1859
1860 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1861 int level)
1862 {
1863 if (INTEL_INFO(dev)->gen >= 7)
1864 return level == 0 ? 63 : 255;
1865 else
1866 return level == 0 ? 31 : 63;
1867 }
1868
1869 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1870 {
1871 if (INTEL_INFO(dev)->gen >= 8)
1872 return 31;
1873 else
1874 return 15;
1875 }
1876
1877 /* Calculate the maximum primary/sprite plane watermark */
1878 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1879 int level,
1880 const struct intel_wm_config *config,
1881 enum intel_ddb_partitioning ddb_partitioning,
1882 bool is_sprite)
1883 {
1884 unsigned int fifo_size = ilk_display_fifo_size(dev);
1885
1886 /* if sprites aren't enabled, sprites get nothing */
1887 if (is_sprite && !config->sprites_enabled)
1888 return 0;
1889
1890 /* HSW allows LP1+ watermarks even with multiple pipes */
1891 if (level == 0 || config->num_pipes_active > 1) {
1892 fifo_size /= INTEL_INFO(dev)->num_pipes;
1893
1894 /*
1895 * For some reason the non self refresh
1896 * FIFO size is only half of the self
1897 * refresh FIFO size on ILK/SNB.
1898 */
1899 if (INTEL_INFO(dev)->gen <= 6)
1900 fifo_size /= 2;
1901 }
1902
1903 if (config->sprites_enabled) {
1904 /* level 0 is always calculated with 1:1 split */
1905 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1906 if (is_sprite)
1907 fifo_size *= 5;
1908 fifo_size /= 6;
1909 } else {
1910 fifo_size /= 2;
1911 }
1912 }
1913
1914 /* clamp to max that the registers can hold */
1915 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1916 }
1917
1918 /* Calculate the maximum cursor plane watermark */
1919 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1920 int level,
1921 const struct intel_wm_config *config)
1922 {
1923 /* HSW LP1+ watermarks w/ multiple pipes */
1924 if (level > 0 && config->num_pipes_active > 1)
1925 return 64;
1926
1927 /* otherwise just report max that registers can hold */
1928 return ilk_cursor_wm_reg_max(dev, level);
1929 }
1930
1931 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1932 int level,
1933 const struct intel_wm_config *config,
1934 enum intel_ddb_partitioning ddb_partitioning,
1935 struct ilk_wm_maximums *max)
1936 {
1937 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1938 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1939 max->cur = ilk_cursor_wm_max(dev, level, config);
1940 max->fbc = ilk_fbc_wm_reg_max(dev);
1941 }
1942
1943 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1944 int level,
1945 struct ilk_wm_maximums *max)
1946 {
1947 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1948 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1949 max->cur = ilk_cursor_wm_reg_max(dev, level);
1950 max->fbc = ilk_fbc_wm_reg_max(dev);
1951 }
1952
1953 static bool ilk_validate_wm_level(int level,
1954 const struct ilk_wm_maximums *max,
1955 struct intel_wm_level *result)
1956 {
1957 bool ret;
1958
1959 /* already determined to be invalid? */
1960 if (!result->enable)
1961 return false;
1962
1963 result->enable = result->pri_val <= max->pri &&
1964 result->spr_val <= max->spr &&
1965 result->cur_val <= max->cur;
1966
1967 ret = result->enable;
1968
1969 /*
1970 * HACK until we can pre-compute everything,
1971 * and thus fail gracefully if LP0 watermarks
1972 * are exceeded...
1973 */
1974 if (level == 0 && !result->enable) {
1975 if (result->pri_val > max->pri)
1976 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1977 level, result->pri_val, max->pri);
1978 if (result->spr_val > max->spr)
1979 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1980 level, result->spr_val, max->spr);
1981 if (result->cur_val > max->cur)
1982 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1983 level, result->cur_val, max->cur);
1984
1985 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1986 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1987 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1988 result->enable = true;
1989 }
1990
1991 return ret;
1992 }
1993
1994 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1995 const struct intel_crtc *intel_crtc,
1996 int level,
1997 struct intel_crtc_state *cstate,
1998 struct intel_plane_state *pristate,
1999 struct intel_plane_state *sprstate,
2000 struct intel_plane_state *curstate,
2001 struct intel_wm_level *result)
2002 {
2003 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2004 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2005 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2006
2007 /* WM1+ latency values stored in 0.5us units */
2008 if (level > 0) {
2009 pri_latency *= 5;
2010 spr_latency *= 5;
2011 cur_latency *= 5;
2012 }
2013
2014 if (pristate) {
2015 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2016 pri_latency, level);
2017 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2018 }
2019
2020 if (sprstate)
2021 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2022
2023 if (curstate)
2024 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2025
2026 result->enable = true;
2027 }
2028
2029 static uint32_t
2030 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2031 {
2032 const struct intel_atomic_state *intel_state =
2033 to_intel_atomic_state(cstate->base.state);
2034 const struct drm_display_mode *adjusted_mode =
2035 &cstate->base.adjusted_mode;
2036 u32 linetime, ips_linetime;
2037
2038 if (!cstate->base.active)
2039 return 0;
2040 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2041 return 0;
2042 if (WARN_ON(intel_state->cdclk == 0))
2043 return 0;
2044
2045 /* The WM are computed with base on how long it takes to fill a single
2046 * row at the given clock rate, multiplied by 8.
2047 * */
2048 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2049 adjusted_mode->crtc_clock);
2050 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2051 intel_state->cdclk);
2052
2053 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2054 PIPE_WM_LINETIME_TIME(linetime);
2055 }
2056
2057 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2058 {
2059 struct drm_i915_private *dev_priv = dev->dev_private;
2060
2061 if (IS_GEN9(dev)) {
2062 uint32_t val;
2063 int ret, i;
2064 int level, max_level = ilk_wm_max_level(dev);
2065
2066 /* read the first set of memory latencies[0:3] */
2067 val = 0; /* data0 to be programmed to 0 for first set */
2068 mutex_lock(&dev_priv->rps.hw_lock);
2069 ret = sandybridge_pcode_read(dev_priv,
2070 GEN9_PCODE_READ_MEM_LATENCY,
2071 &val);
2072 mutex_unlock(&dev_priv->rps.hw_lock);
2073
2074 if (ret) {
2075 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2076 return;
2077 }
2078
2079 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2080 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2081 GEN9_MEM_LATENCY_LEVEL_MASK;
2082 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2083 GEN9_MEM_LATENCY_LEVEL_MASK;
2084 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2085 GEN9_MEM_LATENCY_LEVEL_MASK;
2086
2087 /* read the second set of memory latencies[4:7] */
2088 val = 1; /* data0 to be programmed to 1 for second set */
2089 mutex_lock(&dev_priv->rps.hw_lock);
2090 ret = sandybridge_pcode_read(dev_priv,
2091 GEN9_PCODE_READ_MEM_LATENCY,
2092 &val);
2093 mutex_unlock(&dev_priv->rps.hw_lock);
2094 if (ret) {
2095 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2096 return;
2097 }
2098
2099 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2100 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2101 GEN9_MEM_LATENCY_LEVEL_MASK;
2102 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2103 GEN9_MEM_LATENCY_LEVEL_MASK;
2104 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2105 GEN9_MEM_LATENCY_LEVEL_MASK;
2106
2107 /*
2108 * WaWmMemoryReadLatency:skl
2109 *
2110 * punit doesn't take into account the read latency so we need
2111 * to add 2us to the various latency levels we retrieve from
2112 * the punit.
2113 * - W0 is a bit special in that it's the only level that
2114 * can't be disabled if we want to have display working, so
2115 * we always add 2us there.
2116 * - For levels >=1, punit returns 0us latency when they are
2117 * disabled, so we respect that and don't add 2us then
2118 *
2119 * Additionally, if a level n (n > 1) has a 0us latency, all
2120 * levels m (m >= n) need to be disabled. We make sure to
2121 * sanitize the values out of the punit to satisfy this
2122 * requirement.
2123 */
2124 wm[0] += 2;
2125 for (level = 1; level <= max_level; level++)
2126 if (wm[level] != 0)
2127 wm[level] += 2;
2128 else {
2129 for (i = level + 1; i <= max_level; i++)
2130 wm[i] = 0;
2131
2132 break;
2133 }
2134 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2135 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2136
2137 wm[0] = (sskpd >> 56) & 0xFF;
2138 if (wm[0] == 0)
2139 wm[0] = sskpd & 0xF;
2140 wm[1] = (sskpd >> 4) & 0xFF;
2141 wm[2] = (sskpd >> 12) & 0xFF;
2142 wm[3] = (sskpd >> 20) & 0x1FF;
2143 wm[4] = (sskpd >> 32) & 0x1FF;
2144 } else if (INTEL_INFO(dev)->gen >= 6) {
2145 uint32_t sskpd = I915_READ(MCH_SSKPD);
2146
2147 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2148 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2149 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2150 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2151 } else if (INTEL_INFO(dev)->gen >= 5) {
2152 uint32_t mltr = I915_READ(MLTR_ILK);
2153
2154 /* ILK primary LP0 latency is 700 ns */
2155 wm[0] = 7;
2156 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2157 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2158 }
2159 }
2160
2161 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2162 {
2163 /* ILK sprite LP0 latency is 1300 ns */
2164 if (IS_GEN5(dev))
2165 wm[0] = 13;
2166 }
2167
2168 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2169 {
2170 /* ILK cursor LP0 latency is 1300 ns */
2171 if (IS_GEN5(dev))
2172 wm[0] = 13;
2173
2174 /* WaDoubleCursorLP3Latency:ivb */
2175 if (IS_IVYBRIDGE(dev))
2176 wm[3] *= 2;
2177 }
2178
2179 int ilk_wm_max_level(const struct drm_device *dev)
2180 {
2181 /* how many WM levels are we expecting */
2182 if (INTEL_INFO(dev)->gen >= 9)
2183 return 7;
2184 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2185 return 4;
2186 else if (INTEL_INFO(dev)->gen >= 6)
2187 return 3;
2188 else
2189 return 2;
2190 }
2191
2192 static void intel_print_wm_latency(struct drm_device *dev,
2193 const char *name,
2194 const uint16_t wm[8])
2195 {
2196 int level, max_level = ilk_wm_max_level(dev);
2197
2198 for (level = 0; level <= max_level; level++) {
2199 unsigned int latency = wm[level];
2200
2201 if (latency == 0) {
2202 DRM_ERROR("%s WM%d latency not provided\n",
2203 name, level);
2204 continue;
2205 }
2206
2207 /*
2208 * - latencies are in us on gen9.
2209 * - before then, WM1+ latency values are in 0.5us units
2210 */
2211 if (IS_GEN9(dev))
2212 latency *= 10;
2213 else if (level > 0)
2214 latency *= 5;
2215
2216 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2217 name, level, wm[level],
2218 latency / 10, latency % 10);
2219 }
2220 }
2221
2222 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2223 uint16_t wm[5], uint16_t min)
2224 {
2225 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2226
2227 if (wm[0] >= min)
2228 return false;
2229
2230 wm[0] = max(wm[0], min);
2231 for (level = 1; level <= max_level; level++)
2232 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2233
2234 return true;
2235 }
2236
2237 static void snb_wm_latency_quirk(struct drm_device *dev)
2238 {
2239 struct drm_i915_private *dev_priv = dev->dev_private;
2240 bool changed;
2241
2242 /*
2243 * The BIOS provided WM memory latency values are often
2244 * inadequate for high resolution displays. Adjust them.
2245 */
2246 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2247 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2248 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2249
2250 if (!changed)
2251 return;
2252
2253 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2254 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2255 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2256 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2257 }
2258
2259 static void ilk_setup_wm_latency(struct drm_device *dev)
2260 {
2261 struct drm_i915_private *dev_priv = dev->dev_private;
2262
2263 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2264
2265 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2266 sizeof(dev_priv->wm.pri_latency));
2267 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2268 sizeof(dev_priv->wm.pri_latency));
2269
2270 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2271 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2272
2273 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2274 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2275 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2276
2277 if (IS_GEN6(dev))
2278 snb_wm_latency_quirk(dev);
2279 }
2280
2281 static void skl_setup_wm_latency(struct drm_device *dev)
2282 {
2283 struct drm_i915_private *dev_priv = dev->dev_private;
2284
2285 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2286 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2287 }
2288
2289 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2290 struct intel_pipe_wm *pipe_wm)
2291 {
2292 /* LP0 watermark maximums depend on this pipe alone */
2293 const struct intel_wm_config config = {
2294 .num_pipes_active = 1,
2295 .sprites_enabled = pipe_wm->sprites_enabled,
2296 .sprites_scaled = pipe_wm->sprites_scaled,
2297 };
2298 struct ilk_wm_maximums max;
2299
2300 /* LP0 watermarks always use 1/2 DDB partitioning */
2301 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2302
2303 /* At least LP0 must be valid */
2304 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2305 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2306 return false;
2307 }
2308
2309 return true;
2310 }
2311
2312 /* Compute new watermarks for the pipe */
2313 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2314 {
2315 struct drm_atomic_state *state = cstate->base.state;
2316 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2317 struct intel_pipe_wm *pipe_wm;
2318 struct drm_device *dev = state->dev;
2319 const struct drm_i915_private *dev_priv = dev->dev_private;
2320 struct intel_plane *intel_plane;
2321 struct intel_plane_state *pristate = NULL;
2322 struct intel_plane_state *sprstate = NULL;
2323 struct intel_plane_state *curstate = NULL;
2324 int level, max_level = ilk_wm_max_level(dev), usable_level;
2325 struct ilk_wm_maximums max;
2326
2327 pipe_wm = &cstate->wm.ilk.optimal;
2328
2329 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2330 struct intel_plane_state *ps;
2331
2332 ps = intel_atomic_get_existing_plane_state(state,
2333 intel_plane);
2334 if (!ps)
2335 continue;
2336
2337 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2338 pristate = ps;
2339 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2340 sprstate = ps;
2341 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2342 curstate = ps;
2343 }
2344
2345 pipe_wm->pipe_enabled = cstate->base.active;
2346 if (sprstate) {
2347 pipe_wm->sprites_enabled = sprstate->visible;
2348 pipe_wm->sprites_scaled = sprstate->visible &&
2349 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2350 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2351 }
2352
2353 usable_level = max_level;
2354
2355 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2356 if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2357 usable_level = 1;
2358
2359 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2360 if (pipe_wm->sprites_scaled)
2361 usable_level = 0;
2362
2363 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2364 pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2365
2366 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2367 pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2368
2369 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2370 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2371
2372 if (!ilk_validate_pipe_wm(dev, pipe_wm))
2373 return -EINVAL;
2374
2375 ilk_compute_wm_reg_maximums(dev, 1, &max);
2376
2377 for (level = 1; level <= max_level; level++) {
2378 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2379
2380 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2381 pristate, sprstate, curstate, wm);
2382
2383 /*
2384 * Disable any watermark level that exceeds the
2385 * register maximums since such watermarks are
2386 * always invalid.
2387 */
2388 if (level > usable_level)
2389 continue;
2390
2391 if (ilk_validate_wm_level(level, &max, wm))
2392 pipe_wm->wm[level] = *wm;
2393 else
2394 usable_level = level;
2395 }
2396
2397 return 0;
2398 }
2399
2400 /*
2401 * Build a set of 'intermediate' watermark values that satisfy both the old
2402 * state and the new state. These can be programmed to the hardware
2403 * immediately.
2404 */
2405 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2406 struct intel_crtc *intel_crtc,
2407 struct intel_crtc_state *newstate)
2408 {
2409 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2410 struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2411 int level, max_level = ilk_wm_max_level(dev);
2412
2413 /*
2414 * Start with the final, target watermarks, then combine with the
2415 * currently active watermarks to get values that are safe both before
2416 * and after the vblank.
2417 */
2418 *a = newstate->wm.ilk.optimal;
2419 a->pipe_enabled |= b->pipe_enabled;
2420 a->sprites_enabled |= b->sprites_enabled;
2421 a->sprites_scaled |= b->sprites_scaled;
2422
2423 for (level = 0; level <= max_level; level++) {
2424 struct intel_wm_level *a_wm = &a->wm[level];
2425 const struct intel_wm_level *b_wm = &b->wm[level];
2426
2427 a_wm->enable &= b_wm->enable;
2428 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2429 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2430 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2431 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2432 }
2433
2434 /*
2435 * We need to make sure that these merged watermark values are
2436 * actually a valid configuration themselves. If they're not,
2437 * there's no safe way to transition from the old state to
2438 * the new state, so we need to fail the atomic transaction.
2439 */
2440 if (!ilk_validate_pipe_wm(dev, a))
2441 return -EINVAL;
2442
2443 /*
2444 * If our intermediate WM are identical to the final WM, then we can
2445 * omit the post-vblank programming; only update if it's different.
2446 */
2447 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2448 newstate->wm.need_postvbl_update = false;
2449
2450 return 0;
2451 }
2452
2453 /*
2454 * Merge the watermarks from all active pipes for a specific level.
2455 */
2456 static void ilk_merge_wm_level(struct drm_device *dev,
2457 int level,
2458 struct intel_wm_level *ret_wm)
2459 {
2460 const struct intel_crtc *intel_crtc;
2461
2462 ret_wm->enable = true;
2463
2464 for_each_intel_crtc(dev, intel_crtc) {
2465 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2466 const struct intel_wm_level *wm = &active->wm[level];
2467
2468 if (!active->pipe_enabled)
2469 continue;
2470
2471 /*
2472 * The watermark values may have been used in the past,
2473 * so we must maintain them in the registers for some
2474 * time even if the level is now disabled.
2475 */
2476 if (!wm->enable)
2477 ret_wm->enable = false;
2478
2479 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2480 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2481 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2482 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2483 }
2484 }
2485
2486 /*
2487 * Merge all low power watermarks for all active pipes.
2488 */
2489 static void ilk_wm_merge(struct drm_device *dev,
2490 const struct intel_wm_config *config,
2491 const struct ilk_wm_maximums *max,
2492 struct intel_pipe_wm *merged)
2493 {
2494 struct drm_i915_private *dev_priv = dev->dev_private;
2495 int level, max_level = ilk_wm_max_level(dev);
2496 int last_enabled_level = max_level;
2497
2498 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2499 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2500 config->num_pipes_active > 1)
2501 last_enabled_level = 0;
2502
2503 /* ILK: FBC WM must be disabled always */
2504 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2505
2506 /* merge each WM1+ level */
2507 for (level = 1; level <= max_level; level++) {
2508 struct intel_wm_level *wm = &merged->wm[level];
2509
2510 ilk_merge_wm_level(dev, level, wm);
2511
2512 if (level > last_enabled_level)
2513 wm->enable = false;
2514 else if (!ilk_validate_wm_level(level, max, wm))
2515 /* make sure all following levels get disabled */
2516 last_enabled_level = level - 1;
2517
2518 /*
2519 * The spec says it is preferred to disable
2520 * FBC WMs instead of disabling a WM level.
2521 */
2522 if (wm->fbc_val > max->fbc) {
2523 if (wm->enable)
2524 merged->fbc_wm_enabled = false;
2525 wm->fbc_val = 0;
2526 }
2527 }
2528
2529 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2530 /*
2531 * FIXME this is racy. FBC might get enabled later.
2532 * What we should check here is whether FBC can be
2533 * enabled sometime later.
2534 */
2535 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2536 intel_fbc_is_active(dev_priv)) {
2537 for (level = 2; level <= max_level; level++) {
2538 struct intel_wm_level *wm = &merged->wm[level];
2539
2540 wm->enable = false;
2541 }
2542 }
2543 }
2544
2545 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2546 {
2547 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2548 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2549 }
2550
2551 /* The value we need to program into the WM_LPx latency field */
2552 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2553 {
2554 struct drm_i915_private *dev_priv = dev->dev_private;
2555
2556 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2557 return 2 * level;
2558 else
2559 return dev_priv->wm.pri_latency[level];
2560 }
2561
2562 static void ilk_compute_wm_results(struct drm_device *dev,
2563 const struct intel_pipe_wm *merged,
2564 enum intel_ddb_partitioning partitioning,
2565 struct ilk_wm_values *results)
2566 {
2567 struct intel_crtc *intel_crtc;
2568 int level, wm_lp;
2569
2570 results->enable_fbc_wm = merged->fbc_wm_enabled;
2571 results->partitioning = partitioning;
2572
2573 /* LP1+ register values */
2574 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2575 const struct intel_wm_level *r;
2576
2577 level = ilk_wm_lp_to_level(wm_lp, merged);
2578
2579 r = &merged->wm[level];
2580
2581 /*
2582 * Maintain the watermark values even if the level is
2583 * disabled. Doing otherwise could cause underruns.
2584 */
2585 results->wm_lp[wm_lp - 1] =
2586 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2587 (r->pri_val << WM1_LP_SR_SHIFT) |
2588 r->cur_val;
2589
2590 if (r->enable)
2591 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2592
2593 if (INTEL_INFO(dev)->gen >= 8)
2594 results->wm_lp[wm_lp - 1] |=
2595 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2596 else
2597 results->wm_lp[wm_lp - 1] |=
2598 r->fbc_val << WM1_LP_FBC_SHIFT;
2599
2600 /*
2601 * Always set WM1S_LP_EN when spr_val != 0, even if the
2602 * level is disabled. Doing otherwise could cause underruns.
2603 */
2604 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2605 WARN_ON(wm_lp != 1);
2606 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2607 } else
2608 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2609 }
2610
2611 /* LP0 register values */
2612 for_each_intel_crtc(dev, intel_crtc) {
2613 enum pipe pipe = intel_crtc->pipe;
2614 const struct intel_wm_level *r =
2615 &intel_crtc->wm.active.ilk.wm[0];
2616
2617 if (WARN_ON(!r->enable))
2618 continue;
2619
2620 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2621
2622 results->wm_pipe[pipe] =
2623 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2624 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2625 r->cur_val;
2626 }
2627 }
2628
2629 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2630 * case both are at the same level. Prefer r1 in case they're the same. */
2631 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2632 struct intel_pipe_wm *r1,
2633 struct intel_pipe_wm *r2)
2634 {
2635 int level, max_level = ilk_wm_max_level(dev);
2636 int level1 = 0, level2 = 0;
2637
2638 for (level = 1; level <= max_level; level++) {
2639 if (r1->wm[level].enable)
2640 level1 = level;
2641 if (r2->wm[level].enable)
2642 level2 = level;
2643 }
2644
2645 if (level1 == level2) {
2646 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2647 return r2;
2648 else
2649 return r1;
2650 } else if (level1 > level2) {
2651 return r1;
2652 } else {
2653 return r2;
2654 }
2655 }
2656
2657 /* dirty bits used to track which watermarks need changes */
2658 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2659 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2660 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2661 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2662 #define WM_DIRTY_FBC (1 << 24)
2663 #define WM_DIRTY_DDB (1 << 25)
2664
2665 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2666 const struct ilk_wm_values *old,
2667 const struct ilk_wm_values *new)
2668 {
2669 unsigned int dirty = 0;
2670 enum pipe pipe;
2671 int wm_lp;
2672
2673 for_each_pipe(dev_priv, pipe) {
2674 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2675 dirty |= WM_DIRTY_LINETIME(pipe);
2676 /* Must disable LP1+ watermarks too */
2677 dirty |= WM_DIRTY_LP_ALL;
2678 }
2679
2680 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2681 dirty |= WM_DIRTY_PIPE(pipe);
2682 /* Must disable LP1+ watermarks too */
2683 dirty |= WM_DIRTY_LP_ALL;
2684 }
2685 }
2686
2687 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2688 dirty |= WM_DIRTY_FBC;
2689 /* Must disable LP1+ watermarks too */
2690 dirty |= WM_DIRTY_LP_ALL;
2691 }
2692
2693 if (old->partitioning != new->partitioning) {
2694 dirty |= WM_DIRTY_DDB;
2695 /* Must disable LP1+ watermarks too */
2696 dirty |= WM_DIRTY_LP_ALL;
2697 }
2698
2699 /* LP1+ watermarks already deemed dirty, no need to continue */
2700 if (dirty & WM_DIRTY_LP_ALL)
2701 return dirty;
2702
2703 /* Find the lowest numbered LP1+ watermark in need of an update... */
2704 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2705 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2706 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2707 break;
2708 }
2709
2710 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2711 for (; wm_lp <= 3; wm_lp++)
2712 dirty |= WM_DIRTY_LP(wm_lp);
2713
2714 return dirty;
2715 }
2716
2717 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2718 unsigned int dirty)
2719 {
2720 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2721 bool changed = false;
2722
2723 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2724 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2725 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2726 changed = true;
2727 }
2728 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2729 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2730 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2731 changed = true;
2732 }
2733 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2734 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2735 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2736 changed = true;
2737 }
2738
2739 /*
2740 * Don't touch WM1S_LP_EN here.
2741 * Doing so could cause underruns.
2742 */
2743
2744 return changed;
2745 }
2746
2747 /*
2748 * The spec says we shouldn't write when we don't need, because every write
2749 * causes WMs to be re-evaluated, expending some power.
2750 */
2751 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2752 struct ilk_wm_values *results)
2753 {
2754 struct drm_device *dev = dev_priv->dev;
2755 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2756 unsigned int dirty;
2757 uint32_t val;
2758
2759 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2760 if (!dirty)
2761 return;
2762
2763 _ilk_disable_lp_wm(dev_priv, dirty);
2764
2765 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2766 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2767 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2768 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2769 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2770 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2771
2772 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2773 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2774 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2775 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2776 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2777 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2778
2779 if (dirty & WM_DIRTY_DDB) {
2780 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2781 val = I915_READ(WM_MISC);
2782 if (results->partitioning == INTEL_DDB_PART_1_2)
2783 val &= ~WM_MISC_DATA_PARTITION_5_6;
2784 else
2785 val |= WM_MISC_DATA_PARTITION_5_6;
2786 I915_WRITE(WM_MISC, val);
2787 } else {
2788 val = I915_READ(DISP_ARB_CTL2);
2789 if (results->partitioning == INTEL_DDB_PART_1_2)
2790 val &= ~DISP_DATA_PARTITION_5_6;
2791 else
2792 val |= DISP_DATA_PARTITION_5_6;
2793 I915_WRITE(DISP_ARB_CTL2, val);
2794 }
2795 }
2796
2797 if (dirty & WM_DIRTY_FBC) {
2798 val = I915_READ(DISP_ARB_CTL);
2799 if (results->enable_fbc_wm)
2800 val &= ~DISP_FBC_WM_DIS;
2801 else
2802 val |= DISP_FBC_WM_DIS;
2803 I915_WRITE(DISP_ARB_CTL, val);
2804 }
2805
2806 if (dirty & WM_DIRTY_LP(1) &&
2807 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2808 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2809
2810 if (INTEL_INFO(dev)->gen >= 7) {
2811 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2812 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2813 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2814 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2815 }
2816
2817 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2818 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2819 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2820 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2821 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2822 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2823
2824 dev_priv->wm.hw = *results;
2825 }
2826
2827 bool ilk_disable_lp_wm(struct drm_device *dev)
2828 {
2829 struct drm_i915_private *dev_priv = dev->dev_private;
2830
2831 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2832 }
2833
2834 /*
2835 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2836 * different active planes.
2837 */
2838
2839 #define SKL_DDB_SIZE 896 /* in blocks */
2840 #define BXT_DDB_SIZE 512
2841
2842 /*
2843 * Return the index of a plane in the SKL DDB and wm result arrays. Primary
2844 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2845 * other universal planes are in indices 1..n. Note that this may leave unused
2846 * indices between the top "sprite" plane and the cursor.
2847 */
2848 static int
2849 skl_wm_plane_id(const struct intel_plane *plane)
2850 {
2851 switch (plane->base.type) {
2852 case DRM_PLANE_TYPE_PRIMARY:
2853 return 0;
2854 case DRM_PLANE_TYPE_CURSOR:
2855 return PLANE_CURSOR;
2856 case DRM_PLANE_TYPE_OVERLAY:
2857 return plane->plane + 1;
2858 default:
2859 MISSING_CASE(plane->base.type);
2860 return plane->plane;
2861 }
2862 }
2863
2864 static void
2865 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2866 const struct intel_crtc_state *cstate,
2867 struct skl_ddb_entry *alloc, /* out */
2868 int *num_active /* out */)
2869 {
2870 struct drm_atomic_state *state = cstate->base.state;
2871 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2872 struct drm_i915_private *dev_priv = to_i915(dev);
2873 struct drm_crtc *for_crtc = cstate->base.crtc;
2874 unsigned int pipe_size, ddb_size;
2875 int nth_active_pipe;
2876 int pipe = to_intel_crtc(for_crtc)->pipe;
2877
2878 if (WARN_ON(!state) || !cstate->base.active) {
2879 alloc->start = 0;
2880 alloc->end = 0;
2881 *num_active = hweight32(dev_priv->active_crtcs);
2882 return;
2883 }
2884
2885 if (intel_state->active_pipe_changes)
2886 *num_active = hweight32(intel_state->active_crtcs);
2887 else
2888 *num_active = hweight32(dev_priv->active_crtcs);
2889
2890 if (IS_BROXTON(dev))
2891 ddb_size = BXT_DDB_SIZE;
2892 else
2893 ddb_size = SKL_DDB_SIZE;
2894
2895 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2896
2897 /*
2898 * If the state doesn't change the active CRTC's, then there's
2899 * no need to recalculate; the existing pipe allocation limits
2900 * should remain unchanged. Note that we're safe from racing
2901 * commits since any racing commit that changes the active CRTC
2902 * list would need to grab _all_ crtc locks, including the one
2903 * we currently hold.
2904 */
2905 if (!intel_state->active_pipe_changes) {
2906 *alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
2907 return;
2908 }
2909
2910 nth_active_pipe = hweight32(intel_state->active_crtcs &
2911 (drm_crtc_mask(for_crtc) - 1));
2912 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
2913 alloc->start = nth_active_pipe * ddb_size / *num_active;
2914 alloc->end = alloc->start + pipe_size;
2915 }
2916
2917 static unsigned int skl_cursor_allocation(int num_active)
2918 {
2919 if (num_active == 1)
2920 return 32;
2921
2922 return 8;
2923 }
2924
2925 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2926 {
2927 entry->start = reg & 0x3ff;
2928 entry->end = (reg >> 16) & 0x3ff;
2929 if (entry->end)
2930 entry->end += 1;
2931 }
2932
2933 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2934 struct skl_ddb_allocation *ddb /* out */)
2935 {
2936 enum pipe pipe;
2937 int plane;
2938 u32 val;
2939
2940 memset(ddb, 0, sizeof(*ddb));
2941
2942 for_each_pipe(dev_priv, pipe) {
2943 enum intel_display_power_domain power_domain;
2944
2945 power_domain = POWER_DOMAIN_PIPE(pipe);
2946 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2947 continue;
2948
2949 for_each_plane(dev_priv, pipe, plane) {
2950 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2951 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2952 val);
2953 }
2954
2955 val = I915_READ(CUR_BUF_CFG(pipe));
2956 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2957 val);
2958
2959 intel_display_power_put(dev_priv, power_domain);
2960 }
2961 }
2962
2963 /*
2964 * Determines the downscale amount of a plane for the purposes of watermark calculations.
2965 * The bspec defines downscale amount as:
2966 *
2967 * """
2968 * Horizontal down scale amount = maximum[1, Horizontal source size /
2969 * Horizontal destination size]
2970 * Vertical down scale amount = maximum[1, Vertical source size /
2971 * Vertical destination size]
2972 * Total down scale amount = Horizontal down scale amount *
2973 * Vertical down scale amount
2974 * """
2975 *
2976 * Return value is provided in 16.16 fixed point form to retain fractional part.
2977 * Caller should take care of dividing & rounding off the value.
2978 */
2979 static uint32_t
2980 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
2981 {
2982 uint32_t downscale_h, downscale_w;
2983 uint32_t src_w, src_h, dst_w, dst_h;
2984
2985 if (WARN_ON(!pstate->visible))
2986 return DRM_PLANE_HELPER_NO_SCALING;
2987
2988 /* n.b., src is 16.16 fixed point, dst is whole integer */
2989 src_w = drm_rect_width(&pstate->src);
2990 src_h = drm_rect_height(&pstate->src);
2991 dst_w = drm_rect_width(&pstate->dst);
2992 dst_h = drm_rect_height(&pstate->dst);
2993 if (intel_rotation_90_or_270(pstate->base.rotation))
2994 swap(dst_w, dst_h);
2995
2996 downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
2997 downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
2998
2999 /* Provide result in 16.16 fixed point */
3000 return (uint64_t)downscale_w * downscale_h >> 16;
3001 }
3002
3003 static unsigned int
3004 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3005 const struct drm_plane_state *pstate,
3006 int y)
3007 {
3008 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3009 struct drm_framebuffer *fb = pstate->fb;
3010 uint32_t down_scale_amount, data_rate;
3011 uint32_t width = 0, height = 0;
3012 unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3013
3014 if (!intel_pstate->visible)
3015 return 0;
3016 if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3017 return 0;
3018 if (y && format != DRM_FORMAT_NV12)
3019 return 0;
3020
3021 width = drm_rect_width(&intel_pstate->src) >> 16;
3022 height = drm_rect_height(&intel_pstate->src) >> 16;
3023
3024 if (intel_rotation_90_or_270(pstate->rotation))
3025 swap(width, height);
3026
3027 /* for planar format */
3028 if (format == DRM_FORMAT_NV12) {
3029 if (y) /* y-plane data rate */
3030 data_rate = width * height *
3031 drm_format_plane_cpp(format, 0);
3032 else /* uv-plane data rate */
3033 data_rate = (width / 2) * (height / 2) *
3034 drm_format_plane_cpp(format, 1);
3035 } else {
3036 /* for packed formats */
3037 data_rate = width * height * drm_format_plane_cpp(format, 0);
3038 }
3039
3040 down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3041
3042 return (uint64_t)data_rate * down_scale_amount >> 16;
3043 }
3044
3045 /*
3046 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3047 * a 8192x4096@32bpp framebuffer:
3048 * 3 * 4096 * 8192 * 4 < 2^32
3049 */
3050 static unsigned int
3051 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3052 {
3053 struct drm_crtc_state *cstate = &intel_cstate->base;
3054 struct drm_atomic_state *state = cstate->state;
3055 struct drm_crtc *crtc = cstate->crtc;
3056 struct drm_device *dev = crtc->dev;
3057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3058 const struct drm_plane *plane;
3059 const struct intel_plane *intel_plane;
3060 struct drm_plane_state *pstate;
3061 unsigned int rate, total_data_rate = 0;
3062 int id;
3063 int i;
3064
3065 if (WARN_ON(!state))
3066 return 0;
3067
3068 /* Calculate and cache data rate for each plane */
3069 for_each_plane_in_state(state, plane, pstate, i) {
3070 id = skl_wm_plane_id(to_intel_plane(plane));
3071 intel_plane = to_intel_plane(plane);
3072
3073 if (intel_plane->pipe != intel_crtc->pipe)
3074 continue;
3075
3076 /* packed/uv */
3077 rate = skl_plane_relative_data_rate(intel_cstate,
3078 pstate, 0);
3079 intel_cstate->wm.skl.plane_data_rate[id] = rate;
3080
3081 /* y-plane */
3082 rate = skl_plane_relative_data_rate(intel_cstate,
3083 pstate, 1);
3084 intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3085 }
3086
3087 /* Calculate CRTC's total data rate from cached values */
3088 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3089 int id = skl_wm_plane_id(intel_plane);
3090
3091 /* packed/uv */
3092 total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3093 total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3094 }
3095
3096 WARN_ON(cstate->plane_mask && total_data_rate == 0);
3097
3098 return total_data_rate;
3099 }
3100
3101 static uint16_t
3102 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3103 const int y)
3104 {
3105 struct drm_framebuffer *fb = pstate->fb;
3106 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3107 uint32_t src_w, src_h;
3108 uint32_t min_scanlines = 8;
3109 uint8_t plane_bpp;
3110
3111 if (WARN_ON(!fb))
3112 return 0;
3113
3114 /* For packed formats, no y-plane, return 0 */
3115 if (y && fb->pixel_format != DRM_FORMAT_NV12)
3116 return 0;
3117
3118 /* For Non Y-tile return 8-blocks */
3119 if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3120 fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3121 return 8;
3122
3123 src_w = drm_rect_width(&intel_pstate->src) >> 16;
3124 src_h = drm_rect_height(&intel_pstate->src) >> 16;
3125
3126 if (intel_rotation_90_or_270(pstate->rotation))
3127 swap(src_w, src_h);
3128
3129 /* Halve UV plane width and height for NV12 */
3130 if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3131 src_w /= 2;
3132 src_h /= 2;
3133 }
3134
3135 if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3136 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3137 else
3138 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3139
3140 if (intel_rotation_90_or_270(pstate->rotation)) {
3141 switch (plane_bpp) {
3142 case 1:
3143 min_scanlines = 32;
3144 break;
3145 case 2:
3146 min_scanlines = 16;
3147 break;
3148 case 4:
3149 min_scanlines = 8;
3150 break;
3151 case 8:
3152 min_scanlines = 4;
3153 break;
3154 default:
3155 WARN(1, "Unsupported pixel depth %u for rotation",
3156 plane_bpp);
3157 min_scanlines = 32;
3158 }
3159 }
3160
3161 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3162 }
3163
3164 static int
3165 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3166 struct skl_ddb_allocation *ddb /* out */)
3167 {
3168 struct drm_atomic_state *state = cstate->base.state;
3169 struct drm_crtc *crtc = cstate->base.crtc;
3170 struct drm_device *dev = crtc->dev;
3171 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3172 struct intel_plane *intel_plane;
3173 struct drm_plane *plane;
3174 struct drm_plane_state *pstate;
3175 enum pipe pipe = intel_crtc->pipe;
3176 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3177 uint16_t alloc_size, start, cursor_blocks;
3178 uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3179 uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3180 unsigned int total_data_rate;
3181 int num_active;
3182 int id, i;
3183
3184 if (WARN_ON(!state))
3185 return 0;
3186
3187 if (!cstate->base.active) {
3188 ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3189 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3190 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3191 return 0;
3192 }
3193
3194 skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3195 alloc_size = skl_ddb_entry_size(alloc);
3196 if (alloc_size == 0) {
3197 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3198 return 0;
3199 }
3200
3201 cursor_blocks = skl_cursor_allocation(num_active);
3202 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3203 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3204
3205 alloc_size -= cursor_blocks;
3206
3207 /* 1. Allocate the mininum required blocks for each active plane */
3208 for_each_plane_in_state(state, plane, pstate, i) {
3209 intel_plane = to_intel_plane(plane);
3210 id = skl_wm_plane_id(intel_plane);
3211
3212 if (intel_plane->pipe != pipe)
3213 continue;
3214
3215 if (!to_intel_plane_state(pstate)->visible) {
3216 minimum[id] = 0;
3217 y_minimum[id] = 0;
3218 continue;
3219 }
3220 if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3221 minimum[id] = 0;
3222 y_minimum[id] = 0;
3223 continue;
3224 }
3225
3226 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3227 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3228 }
3229
3230 for (i = 0; i < PLANE_CURSOR; i++) {
3231 alloc_size -= minimum[i];
3232 alloc_size -= y_minimum[i];
3233 }
3234
3235 /*
3236 * 2. Distribute the remaining space in proportion to the amount of
3237 * data each plane needs to fetch from memory.
3238 *
3239 * FIXME: we may not allocate every single block here.
3240 */
3241 total_data_rate = skl_get_total_relative_data_rate(cstate);
3242 if (total_data_rate == 0)
3243 return 0;
3244
3245 start = alloc->start;
3246 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3247 unsigned int data_rate, y_data_rate;
3248 uint16_t plane_blocks, y_plane_blocks = 0;
3249 int id = skl_wm_plane_id(intel_plane);
3250
3251 data_rate = cstate->wm.skl.plane_data_rate[id];
3252
3253 /*
3254 * allocation for (packed formats) or (uv-plane part of planar format):
3255 * promote the expression to 64 bits to avoid overflowing, the
3256 * result is < available as data_rate / total_data_rate < 1
3257 */
3258 plane_blocks = minimum[id];
3259 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3260 total_data_rate);
3261
3262 /* Leave disabled planes at (0,0) */
3263 if (data_rate) {
3264 ddb->plane[pipe][id].start = start;
3265 ddb->plane[pipe][id].end = start + plane_blocks;
3266 }
3267
3268 start += plane_blocks;
3269
3270 /*
3271 * allocation for y_plane part of planar format:
3272 */
3273 y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3274
3275 y_plane_blocks = y_minimum[id];
3276 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3277 total_data_rate);
3278
3279 if (y_data_rate) {
3280 ddb->y_plane[pipe][id].start = start;
3281 ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3282 }
3283
3284 start += y_plane_blocks;
3285 }
3286
3287 return 0;
3288 }
3289
3290 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3291 {
3292 /* TODO: Take into account the scalers once we support them */
3293 return config->base.adjusted_mode.crtc_clock;
3294 }
3295
3296 /*
3297 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3298 * for the read latency) and cpp should always be <= 8, so that
3299 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3300 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3301 */
3302 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3303 {
3304 uint32_t wm_intermediate_val, ret;
3305
3306 if (latency == 0)
3307 return UINT_MAX;
3308
3309 wm_intermediate_val = latency * pixel_rate * cpp / 512;
3310 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3311
3312 return ret;
3313 }
3314
3315 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3316 uint32_t horiz_pixels, uint8_t cpp,
3317 uint64_t tiling, uint32_t latency)
3318 {
3319 uint32_t ret;
3320 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3321 uint32_t wm_intermediate_val;
3322
3323 if (latency == 0)
3324 return UINT_MAX;
3325
3326 plane_bytes_per_line = horiz_pixels * cpp;
3327
3328 if (tiling == I915_FORMAT_MOD_Y_TILED ||
3329 tiling == I915_FORMAT_MOD_Yf_TILED) {
3330 plane_bytes_per_line *= 4;
3331 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3332 plane_blocks_per_line /= 4;
3333 } else {
3334 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3335 }
3336
3337 wm_intermediate_val = latency * pixel_rate;
3338 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3339 plane_blocks_per_line;
3340
3341 return ret;
3342 }
3343
3344 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3345 struct intel_plane_state *pstate)
3346 {
3347 uint64_t adjusted_pixel_rate;
3348 uint64_t downscale_amount;
3349 uint64_t pixel_rate;
3350
3351 /* Shouldn't reach here on disabled planes... */
3352 if (WARN_ON(!pstate->visible))
3353 return 0;
3354
3355 /*
3356 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3357 * with additional adjustments for plane-specific scaling.
3358 */
3359 adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
3360 downscale_amount = skl_plane_downscale_amount(pstate);
3361
3362 pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3363 WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3364
3365 return pixel_rate;
3366 }
3367
3368 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3369 struct intel_crtc_state *cstate,
3370 struct intel_plane_state *intel_pstate,
3371 uint16_t ddb_allocation,
3372 int level,
3373 uint16_t *out_blocks, /* out */
3374 uint8_t *out_lines, /* out */
3375 bool *enabled /* out */)
3376 {
3377 struct drm_plane_state *pstate = &intel_pstate->base;
3378 struct drm_framebuffer *fb = pstate->fb;
3379 uint32_t latency = dev_priv->wm.skl_latency[level];
3380 uint32_t method1, method2;
3381 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3382 uint32_t res_blocks, res_lines;
3383 uint32_t selected_result;
3384 uint8_t cpp;
3385 uint32_t width = 0, height = 0;
3386 uint32_t plane_pixel_rate;
3387
3388 if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
3389 *enabled = false;
3390 return 0;
3391 }
3392
3393 width = drm_rect_width(&intel_pstate->src) >> 16;
3394 height = drm_rect_height(&intel_pstate->src) >> 16;
3395
3396 if (intel_rotation_90_or_270(pstate->rotation))
3397 swap(width, height);
3398
3399 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3400 plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3401
3402 method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3403 method2 = skl_wm_method2(plane_pixel_rate,
3404 cstate->base.adjusted_mode.crtc_htotal,
3405 width,
3406 cpp,
3407 fb->modifier[0],
3408 latency);
3409
3410 plane_bytes_per_line = width * cpp;
3411 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3412
3413 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3414 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3415 uint32_t min_scanlines = 4;
3416 uint32_t y_tile_minimum;
3417 if (intel_rotation_90_or_270(pstate->rotation)) {
3418 int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3419 drm_format_plane_cpp(fb->pixel_format, 1) :
3420 drm_format_plane_cpp(fb->pixel_format, 0);
3421
3422 switch (cpp) {
3423 case 1:
3424 min_scanlines = 16;
3425 break;
3426 case 2:
3427 min_scanlines = 8;
3428 break;
3429 case 8:
3430 WARN(1, "Unsupported pixel depth for rotation");
3431 }
3432 }
3433 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3434 selected_result = max(method2, y_tile_minimum);
3435 } else {
3436 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3437 selected_result = min(method1, method2);
3438 else
3439 selected_result = method1;
3440 }
3441
3442 res_blocks = selected_result + 1;
3443 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3444
3445 if (level >= 1 && level <= 7) {
3446 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3447 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3448 res_lines += 4;
3449 else
3450 res_blocks++;
3451 }
3452
3453 if (res_blocks >= ddb_allocation || res_lines > 31) {
3454 *enabled = false;
3455
3456 /*
3457 * If there are no valid level 0 watermarks, then we can't
3458 * support this display configuration.
3459 */
3460 if (level) {
3461 return 0;
3462 } else {
3463 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3464 DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3465 to_intel_crtc(cstate->base.crtc)->pipe,
3466 skl_wm_plane_id(to_intel_plane(pstate->plane)),
3467 res_blocks, ddb_allocation, res_lines);
3468
3469 return -EINVAL;
3470 }
3471 }
3472
3473 *out_blocks = res_blocks;
3474 *out_lines = res_lines;
3475 *enabled = true;
3476
3477 return 0;
3478 }
3479
3480 static int
3481 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3482 struct skl_ddb_allocation *ddb,
3483 struct intel_crtc_state *cstate,
3484 int level,
3485 struct skl_wm_level *result)
3486 {
3487 struct drm_device *dev = dev_priv->dev;
3488 struct drm_atomic_state *state = cstate->base.state;
3489 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3490 struct drm_plane *plane;
3491 struct intel_plane *intel_plane;
3492 struct intel_plane_state *intel_pstate;
3493 uint16_t ddb_blocks;
3494 enum pipe pipe = intel_crtc->pipe;
3495 int ret;
3496
3497 /*
3498 * We'll only calculate watermarks for planes that are actually
3499 * enabled, so make sure all other planes are set as disabled.
3500 */
3501 memset(result, 0, sizeof(*result));
3502
3503 for_each_intel_plane_mask(dev, intel_plane, cstate->base.plane_mask) {
3504 int i = skl_wm_plane_id(intel_plane);
3505
3506 plane = &intel_plane->base;
3507 intel_pstate = NULL;
3508 if (state)
3509 intel_pstate =
3510 intel_atomic_get_existing_plane_state(state,
3511 intel_plane);
3512
3513 /*
3514 * Note: If we start supporting multiple pending atomic commits
3515 * against the same planes/CRTC's in the future, plane->state
3516 * will no longer be the correct pre-state to use for the
3517 * calculations here and we'll need to change where we get the
3518 * 'unchanged' plane data from.
3519 *
3520 * For now this is fine because we only allow one queued commit
3521 * against a CRTC. Even if the plane isn't modified by this
3522 * transaction and we don't have a plane lock, we still have
3523 * the CRTC's lock, so we know that no other transactions are
3524 * racing with us to update it.
3525 */
3526 if (!intel_pstate)
3527 intel_pstate = to_intel_plane_state(plane->state);
3528
3529 WARN_ON(!intel_pstate->base.fb);
3530
3531 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3532
3533 ret = skl_compute_plane_wm(dev_priv,
3534 cstate,
3535 intel_pstate,
3536 ddb_blocks,
3537 level,
3538 &result->plane_res_b[i],
3539 &result->plane_res_l[i],
3540 &result->plane_en[i]);
3541 if (ret)
3542 return ret;
3543 }
3544
3545 return 0;
3546 }
3547
3548 static uint32_t
3549 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3550 {
3551 if (!cstate->base.active)
3552 return 0;
3553
3554 if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3555 return 0;
3556
3557 return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3558 skl_pipe_pixel_rate(cstate));
3559 }
3560
3561 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3562 struct skl_wm_level *trans_wm /* out */)
3563 {
3564 struct drm_crtc *crtc = cstate->base.crtc;
3565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3566 struct intel_plane *intel_plane;
3567
3568 if (!cstate->base.active)
3569 return;
3570
3571 /* Until we know more, just disable transition WMs */
3572 for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3573 int i = skl_wm_plane_id(intel_plane);
3574
3575 trans_wm->plane_en[i] = false;
3576 }
3577 }
3578
3579 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3580 struct skl_ddb_allocation *ddb,
3581 struct skl_pipe_wm *pipe_wm)
3582 {
3583 struct drm_device *dev = cstate->base.crtc->dev;
3584 const struct drm_i915_private *dev_priv = dev->dev_private;
3585 int level, max_level = ilk_wm_max_level(dev);
3586 int ret;
3587
3588 for (level = 0; level <= max_level; level++) {
3589 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3590 level, &pipe_wm->wm[level]);
3591 if (ret)
3592 return ret;
3593 }
3594 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3595
3596 skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3597
3598 return 0;
3599 }
3600
3601 static void skl_compute_wm_results(struct drm_device *dev,
3602 struct skl_pipe_wm *p_wm,
3603 struct skl_wm_values *r,
3604 struct intel_crtc *intel_crtc)
3605 {
3606 int level, max_level = ilk_wm_max_level(dev);
3607 enum pipe pipe = intel_crtc->pipe;
3608 uint32_t temp;
3609 int i;
3610
3611 for (level = 0; level <= max_level; level++) {
3612 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3613 temp = 0;
3614
3615 temp |= p_wm->wm[level].plane_res_l[i] <<
3616 PLANE_WM_LINES_SHIFT;
3617 temp |= p_wm->wm[level].plane_res_b[i];
3618 if (p_wm->wm[level].plane_en[i])
3619 temp |= PLANE_WM_EN;
3620
3621 r->plane[pipe][i][level] = temp;
3622 }
3623
3624 temp = 0;
3625
3626 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3627 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3628
3629 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3630 temp |= PLANE_WM_EN;
3631
3632 r->plane[pipe][PLANE_CURSOR][level] = temp;
3633
3634 }
3635
3636 /* transition WMs */
3637 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3638 temp = 0;
3639 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3640 temp |= p_wm->trans_wm.plane_res_b[i];
3641 if (p_wm->trans_wm.plane_en[i])
3642 temp |= PLANE_WM_EN;
3643
3644 r->plane_trans[pipe][i] = temp;
3645 }
3646
3647 temp = 0;
3648 temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3649 temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3650 if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3651 temp |= PLANE_WM_EN;
3652
3653 r->plane_trans[pipe][PLANE_CURSOR] = temp;
3654
3655 r->wm_linetime[pipe] = p_wm->linetime;
3656 }
3657
3658 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3659 i915_reg_t reg,
3660 const struct skl_ddb_entry *entry)
3661 {
3662 if (entry->end)
3663 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3664 else
3665 I915_WRITE(reg, 0);
3666 }
3667
3668 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3669 const struct skl_wm_values *new)
3670 {
3671 struct drm_device *dev = dev_priv->dev;
3672 struct intel_crtc *crtc;
3673
3674 for_each_intel_crtc(dev, crtc) {
3675 int i, level, max_level = ilk_wm_max_level(dev);
3676 enum pipe pipe = crtc->pipe;
3677
3678 if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3679 continue;
3680 if (!crtc->active)
3681 continue;
3682
3683 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3684
3685 for (level = 0; level <= max_level; level++) {
3686 for (i = 0; i < intel_num_planes(crtc); i++)
3687 I915_WRITE(PLANE_WM(pipe, i, level),
3688 new->plane[pipe][i][level]);
3689 I915_WRITE(CUR_WM(pipe, level),
3690 new->plane[pipe][PLANE_CURSOR][level]);
3691 }
3692 for (i = 0; i < intel_num_planes(crtc); i++)
3693 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3694 new->plane_trans[pipe][i]);
3695 I915_WRITE(CUR_WM_TRANS(pipe),
3696 new->plane_trans[pipe][PLANE_CURSOR]);
3697
3698 for (i = 0; i < intel_num_planes(crtc); i++) {
3699 skl_ddb_entry_write(dev_priv,
3700 PLANE_BUF_CFG(pipe, i),
3701 &new->ddb.plane[pipe][i]);
3702 skl_ddb_entry_write(dev_priv,
3703 PLANE_NV12_BUF_CFG(pipe, i),
3704 &new->ddb.y_plane[pipe][i]);
3705 }
3706
3707 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3708 &new->ddb.plane[pipe][PLANE_CURSOR]);
3709 }
3710 }
3711
3712 /*
3713 * When setting up a new DDB allocation arrangement, we need to correctly
3714 * sequence the times at which the new allocations for the pipes are taken into
3715 * account or we'll have pipes fetching from space previously allocated to
3716 * another pipe.
3717 *
3718 * Roughly the sequence looks like:
3719 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3720 * overlapping with a previous light-up pipe (another way to put it is:
3721 * pipes with their new allocation strickly included into their old ones).
3722 * 2. re-allocate the other pipes that get their allocation reduced
3723 * 3. allocate the pipes having their allocation increased
3724 *
3725 * Steps 1. and 2. are here to take care of the following case:
3726 * - Initially DDB looks like this:
3727 * | B | C |
3728 * - enable pipe A.
3729 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3730 * allocation
3731 * | A | B | C |
3732 *
3733 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3734 */
3735
3736 static void
3737 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3738 {
3739 int plane;
3740
3741 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3742
3743 for_each_plane(dev_priv, pipe, plane) {
3744 I915_WRITE(PLANE_SURF(pipe, plane),
3745 I915_READ(PLANE_SURF(pipe, plane)));
3746 }
3747 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3748 }
3749
3750 static bool
3751 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3752 const struct skl_ddb_allocation *new,
3753 enum pipe pipe)
3754 {
3755 uint16_t old_size, new_size;
3756
3757 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3758 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3759
3760 return old_size != new_size &&
3761 new->pipe[pipe].start >= old->pipe[pipe].start &&
3762 new->pipe[pipe].end <= old->pipe[pipe].end;
3763 }
3764
3765 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3766 struct skl_wm_values *new_values)
3767 {
3768 struct drm_device *dev = dev_priv->dev;
3769 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3770 bool reallocated[I915_MAX_PIPES] = {};
3771 struct intel_crtc *crtc;
3772 enum pipe pipe;
3773
3774 new_ddb = &new_values->ddb;
3775 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3776
3777 /*
3778 * First pass: flush the pipes with the new allocation contained into
3779 * the old space.
3780 *
3781 * We'll wait for the vblank on those pipes to ensure we can safely
3782 * re-allocate the freed space without this pipe fetching from it.
3783 */
3784 for_each_intel_crtc(dev, crtc) {
3785 if (!crtc->active)
3786 continue;
3787
3788 pipe = crtc->pipe;
3789
3790 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3791 continue;
3792
3793 skl_wm_flush_pipe(dev_priv, pipe, 1);
3794 intel_wait_for_vblank(dev, pipe);
3795
3796 reallocated[pipe] = true;
3797 }
3798
3799
3800 /*
3801 * Second pass: flush the pipes that are having their allocation
3802 * reduced, but overlapping with a previous allocation.
3803 *
3804 * Here as well we need to wait for the vblank to make sure the freed
3805 * space is not used anymore.
3806 */
3807 for_each_intel_crtc(dev, crtc) {
3808 if (!crtc->active)
3809 continue;
3810
3811 pipe = crtc->pipe;
3812
3813 if (reallocated[pipe])
3814 continue;
3815
3816 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3817 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3818 skl_wm_flush_pipe(dev_priv, pipe, 2);
3819 intel_wait_for_vblank(dev, pipe);
3820 reallocated[pipe] = true;
3821 }
3822 }
3823
3824 /*
3825 * Third pass: flush the pipes that got more space allocated.
3826 *
3827 * We don't need to actively wait for the update here, next vblank
3828 * will just get more DDB space with the correct WM values.
3829 */
3830 for_each_intel_crtc(dev, crtc) {
3831 if (!crtc->active)
3832 continue;
3833
3834 pipe = crtc->pipe;
3835
3836 /*
3837 * At this point, only the pipes more space than before are
3838 * left to re-allocate.
3839 */
3840 if (reallocated[pipe])
3841 continue;
3842
3843 skl_wm_flush_pipe(dev_priv, pipe, 3);
3844 }
3845 }
3846
3847 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3848 struct skl_ddb_allocation *ddb, /* out */
3849 struct skl_pipe_wm *pipe_wm, /* out */
3850 bool *changed /* out */)
3851 {
3852 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
3853 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3854 int ret;
3855
3856 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3857 if (ret)
3858 return ret;
3859
3860 if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3861 *changed = false;
3862 else
3863 *changed = true;
3864
3865 return 0;
3866 }
3867
3868 static int
3869 skl_compute_ddb(struct drm_atomic_state *state)
3870 {
3871 struct drm_device *dev = state->dev;
3872 struct drm_i915_private *dev_priv = to_i915(dev);
3873 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3874 struct intel_crtc *intel_crtc;
3875 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3876 unsigned realloc_pipes = dev_priv->active_crtcs;
3877 int ret;
3878
3879 /*
3880 * If this is our first atomic update following hardware readout,
3881 * we can't trust the DDB that the BIOS programmed for us. Let's
3882 * pretend that all pipes switched active status so that we'll
3883 * ensure a full DDB recompute.
3884 */
3885 if (dev_priv->wm.distrust_bios_wm)
3886 intel_state->active_pipe_changes = ~0;
3887
3888 /*
3889 * If the modeset changes which CRTC's are active, we need to
3890 * recompute the DDB allocation for *all* active pipes, even
3891 * those that weren't otherwise being modified in any way by this
3892 * atomic commit. Due to the shrinking of the per-pipe allocations
3893 * when new active CRTC's are added, it's possible for a pipe that
3894 * we were already using and aren't changing at all here to suddenly
3895 * become invalid if its DDB needs exceeds its new allocation.
3896 *
3897 * Note that if we wind up doing a full DDB recompute, we can't let
3898 * any other display updates race with this transaction, so we need
3899 * to grab the lock on *all* CRTC's.
3900 */
3901 if (intel_state->active_pipe_changes) {
3902 realloc_pipes = ~0;
3903 intel_state->wm_results.dirty_pipes = ~0;
3904 }
3905
3906 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
3907 struct intel_crtc_state *cstate;
3908
3909 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
3910 if (IS_ERR(cstate))
3911 return PTR_ERR(cstate);
3912
3913 ret = skl_allocate_pipe_ddb(cstate, ddb);
3914 if (ret)
3915 return ret;
3916 }
3917
3918 return 0;
3919 }
3920
3921 static int
3922 skl_compute_wm(struct drm_atomic_state *state)
3923 {
3924 struct drm_crtc *crtc;
3925 struct drm_crtc_state *cstate;
3926 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3927 struct skl_wm_values *results = &intel_state->wm_results;
3928 struct skl_pipe_wm *pipe_wm;
3929 bool changed = false;
3930 int ret, i;
3931
3932 /*
3933 * If this transaction isn't actually touching any CRTC's, don't
3934 * bother with watermark calculation. Note that if we pass this
3935 * test, we're guaranteed to hold at least one CRTC state mutex,
3936 * which means we can safely use values like dev_priv->active_crtcs
3937 * since any racing commits that want to update them would need to
3938 * hold _all_ CRTC state mutexes.
3939 */
3940 for_each_crtc_in_state(state, crtc, cstate, i)
3941 changed = true;
3942 if (!changed)
3943 return 0;
3944
3945 /* Clear all dirty flags */
3946 results->dirty_pipes = 0;
3947
3948 ret = skl_compute_ddb(state);
3949 if (ret)
3950 return ret;
3951
3952 /*
3953 * Calculate WM's for all pipes that are part of this transaction.
3954 * Note that the DDB allocation above may have added more CRTC's that
3955 * weren't otherwise being modified (and set bits in dirty_pipes) if
3956 * pipe allocations had to change.
3957 *
3958 * FIXME: Now that we're doing this in the atomic check phase, we
3959 * should allow skl_update_pipe_wm() to return failure in cases where
3960 * no suitable watermark values can be found.
3961 */
3962 for_each_crtc_in_state(state, crtc, cstate, i) {
3963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3964 struct intel_crtc_state *intel_cstate =
3965 to_intel_crtc_state(cstate);
3966
3967 pipe_wm = &intel_cstate->wm.skl.optimal;
3968 ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
3969 &changed);
3970 if (ret)
3971 return ret;
3972
3973 if (changed)
3974 results->dirty_pipes |= drm_crtc_mask(crtc);
3975
3976 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
3977 /* This pipe's WM's did not change */
3978 continue;
3979
3980 intel_cstate->update_wm_pre = true;
3981 skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
3982 }
3983
3984 return 0;
3985 }
3986
3987 static void skl_update_wm(struct drm_crtc *crtc)
3988 {
3989 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3990 struct drm_device *dev = crtc->dev;
3991 struct drm_i915_private *dev_priv = dev->dev_private;
3992 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3993 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3994 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
3995
3996 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
3997 return;
3998
3999 intel_crtc->wm.active.skl = *pipe_wm;
4000
4001 mutex_lock(&dev_priv->wm.wm_mutex);
4002
4003 skl_write_wm_values(dev_priv, results);
4004 skl_flush_wm_values(dev_priv, results);
4005
4006 /* store the new configuration */
4007 dev_priv->wm.skl_hw = *results;
4008
4009 mutex_unlock(&dev_priv->wm.wm_mutex);
4010 }
4011
4012 static void ilk_compute_wm_config(struct drm_device *dev,
4013 struct intel_wm_config *config)
4014 {
4015 struct intel_crtc *crtc;
4016
4017 /* Compute the currently _active_ config */
4018 for_each_intel_crtc(dev, crtc) {
4019 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4020
4021 if (!wm->pipe_enabled)
4022 continue;
4023
4024 config->sprites_enabled |= wm->sprites_enabled;
4025 config->sprites_scaled |= wm->sprites_scaled;
4026 config->num_pipes_active++;
4027 }
4028 }
4029
4030 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4031 {
4032 struct drm_device *dev = dev_priv->dev;
4033 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4034 struct ilk_wm_maximums max;
4035 struct intel_wm_config config = {};
4036 struct ilk_wm_values results = {};
4037 enum intel_ddb_partitioning partitioning;
4038
4039 ilk_compute_wm_config(dev, &config);
4040
4041 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4042 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4043
4044 /* 5/6 split only in single pipe config on IVB+ */
4045 if (INTEL_INFO(dev)->gen >= 7 &&
4046 config.num_pipes_active == 1 && config.sprites_enabled) {
4047 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4048 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4049
4050 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4051 } else {
4052 best_lp_wm = &lp_wm_1_2;
4053 }
4054
4055 partitioning = (best_lp_wm == &lp_wm_1_2) ?
4056 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4057
4058 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4059
4060 ilk_write_wm_values(dev_priv, &results);
4061 }
4062
4063 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4064 {
4065 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4066 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4067
4068 mutex_lock(&dev_priv->wm.wm_mutex);
4069 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4070 ilk_program_watermarks(dev_priv);
4071 mutex_unlock(&dev_priv->wm.wm_mutex);
4072 }
4073
4074 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
4075 {
4076 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4077 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4078
4079 mutex_lock(&dev_priv->wm.wm_mutex);
4080 if (cstate->wm.need_postvbl_update) {
4081 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4082 ilk_program_watermarks(dev_priv);
4083 }
4084 mutex_unlock(&dev_priv->wm.wm_mutex);
4085 }
4086
4087 static void skl_pipe_wm_active_state(uint32_t val,
4088 struct skl_pipe_wm *active,
4089 bool is_transwm,
4090 bool is_cursor,
4091 int i,
4092 int level)
4093 {
4094 bool is_enabled = (val & PLANE_WM_EN) != 0;
4095
4096 if (!is_transwm) {
4097 if (!is_cursor) {
4098 active->wm[level].plane_en[i] = is_enabled;
4099 active->wm[level].plane_res_b[i] =
4100 val & PLANE_WM_BLOCKS_MASK;
4101 active->wm[level].plane_res_l[i] =
4102 (val >> PLANE_WM_LINES_SHIFT) &
4103 PLANE_WM_LINES_MASK;
4104 } else {
4105 active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
4106 active->wm[level].plane_res_b[PLANE_CURSOR] =
4107 val & PLANE_WM_BLOCKS_MASK;
4108 active->wm[level].plane_res_l[PLANE_CURSOR] =
4109 (val >> PLANE_WM_LINES_SHIFT) &
4110 PLANE_WM_LINES_MASK;
4111 }
4112 } else {
4113 if (!is_cursor) {
4114 active->trans_wm.plane_en[i] = is_enabled;
4115 active->trans_wm.plane_res_b[i] =
4116 val & PLANE_WM_BLOCKS_MASK;
4117 active->trans_wm.plane_res_l[i] =
4118 (val >> PLANE_WM_LINES_SHIFT) &
4119 PLANE_WM_LINES_MASK;
4120 } else {
4121 active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
4122 active->trans_wm.plane_res_b[PLANE_CURSOR] =
4123 val & PLANE_WM_BLOCKS_MASK;
4124 active->trans_wm.plane_res_l[PLANE_CURSOR] =
4125 (val >> PLANE_WM_LINES_SHIFT) &
4126 PLANE_WM_LINES_MASK;
4127 }
4128 }
4129 }
4130
4131 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4132 {
4133 struct drm_device *dev = crtc->dev;
4134 struct drm_i915_private *dev_priv = dev->dev_private;
4135 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4137 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4138 struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4139 enum pipe pipe = intel_crtc->pipe;
4140 int level, i, max_level;
4141 uint32_t temp;
4142
4143 max_level = ilk_wm_max_level(dev);
4144
4145 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4146
4147 for (level = 0; level <= max_level; level++) {
4148 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4149 hw->plane[pipe][i][level] =
4150 I915_READ(PLANE_WM(pipe, i, level));
4151 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4152 }
4153
4154 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4155 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4156 hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4157
4158 if (!intel_crtc->active)
4159 return;
4160
4161 hw->dirty_pipes |= drm_crtc_mask(crtc);
4162
4163 active->linetime = hw->wm_linetime[pipe];
4164
4165 for (level = 0; level <= max_level; level++) {
4166 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4167 temp = hw->plane[pipe][i][level];
4168 skl_pipe_wm_active_state(temp, active, false,
4169 false, i, level);
4170 }
4171 temp = hw->plane[pipe][PLANE_CURSOR][level];
4172 skl_pipe_wm_active_state(temp, active, false, true, i, level);
4173 }
4174
4175 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4176 temp = hw->plane_trans[pipe][i];
4177 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4178 }
4179
4180 temp = hw->plane_trans[pipe][PLANE_CURSOR];
4181 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4182
4183 intel_crtc->wm.active.skl = *active;
4184 }
4185
4186 void skl_wm_get_hw_state(struct drm_device *dev)
4187 {
4188 struct drm_i915_private *dev_priv = dev->dev_private;
4189 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4190 struct drm_crtc *crtc;
4191
4192 skl_ddb_get_hw_state(dev_priv, ddb);
4193 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4194 skl_pipe_wm_get_hw_state(crtc);
4195
4196 if (dev_priv->active_crtcs) {
4197 /* Fully recompute DDB on first atomic commit */
4198 dev_priv->wm.distrust_bios_wm = true;
4199 } else {
4200 /* Easy/common case; just sanitize DDB now if everything off */
4201 memset(ddb, 0, sizeof(*ddb));
4202 }
4203 }
4204
4205 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4206 {
4207 struct drm_device *dev = crtc->dev;
4208 struct drm_i915_private *dev_priv = dev->dev_private;
4209 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4210 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4211 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4212 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4213 enum pipe pipe = intel_crtc->pipe;
4214 static const i915_reg_t wm0_pipe_reg[] = {
4215 [PIPE_A] = WM0_PIPEA_ILK,
4216 [PIPE_B] = WM0_PIPEB_ILK,
4217 [PIPE_C] = WM0_PIPEC_IVB,
4218 };
4219
4220 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4221 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4222 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4223
4224 memset(active, 0, sizeof(*active));
4225
4226 active->pipe_enabled = intel_crtc->active;
4227
4228 if (active->pipe_enabled) {
4229 u32 tmp = hw->wm_pipe[pipe];
4230
4231 /*
4232 * For active pipes LP0 watermark is marked as
4233 * enabled, and LP1+ watermaks as disabled since
4234 * we can't really reverse compute them in case
4235 * multiple pipes are active.
4236 */
4237 active->wm[0].enable = true;
4238 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4239 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4240 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4241 active->linetime = hw->wm_linetime[pipe];
4242 } else {
4243 int level, max_level = ilk_wm_max_level(dev);
4244
4245 /*
4246 * For inactive pipes, all watermark levels
4247 * should be marked as enabled but zeroed,
4248 * which is what we'd compute them to.
4249 */
4250 for (level = 0; level <= max_level; level++)
4251 active->wm[level].enable = true;
4252 }
4253
4254 intel_crtc->wm.active.ilk = *active;
4255 }
4256
4257 #define _FW_WM(value, plane) \
4258 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4259 #define _FW_WM_VLV(value, plane) \
4260 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4261
4262 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4263 struct vlv_wm_values *wm)
4264 {
4265 enum pipe pipe;
4266 uint32_t tmp;
4267
4268 for_each_pipe(dev_priv, pipe) {
4269 tmp = I915_READ(VLV_DDL(pipe));
4270
4271 wm->ddl[pipe].primary =
4272 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4273 wm->ddl[pipe].cursor =
4274 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4275 wm->ddl[pipe].sprite[0] =
4276 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4277 wm->ddl[pipe].sprite[1] =
4278 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4279 }
4280
4281 tmp = I915_READ(DSPFW1);
4282 wm->sr.plane = _FW_WM(tmp, SR);
4283 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4284 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4285 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4286
4287 tmp = I915_READ(DSPFW2);
4288 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4289 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4290 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4291
4292 tmp = I915_READ(DSPFW3);
4293 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4294
4295 if (IS_CHERRYVIEW(dev_priv)) {
4296 tmp = I915_READ(DSPFW7_CHV);
4297 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4298 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4299
4300 tmp = I915_READ(DSPFW8_CHV);
4301 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4302 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4303
4304 tmp = I915_READ(DSPFW9_CHV);
4305 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4306 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4307
4308 tmp = I915_READ(DSPHOWM);
4309 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4310 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4311 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4312 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4313 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4314 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4315 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4316 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4317 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4318 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4319 } else {
4320 tmp = I915_READ(DSPFW7);
4321 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4322 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4323
4324 tmp = I915_READ(DSPHOWM);
4325 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4326 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4327 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4328 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4329 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4330 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4331 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4332 }
4333 }
4334
4335 #undef _FW_WM
4336 #undef _FW_WM_VLV
4337
4338 void vlv_wm_get_hw_state(struct drm_device *dev)
4339 {
4340 struct drm_i915_private *dev_priv = to_i915(dev);
4341 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4342 struct intel_plane *plane;
4343 enum pipe pipe;
4344 u32 val;
4345
4346 vlv_read_wm_values(dev_priv, wm);
4347
4348 for_each_intel_plane(dev, plane) {
4349 switch (plane->base.type) {
4350 int sprite;
4351 case DRM_PLANE_TYPE_CURSOR:
4352 plane->wm.fifo_size = 63;
4353 break;
4354 case DRM_PLANE_TYPE_PRIMARY:
4355 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4356 break;
4357 case DRM_PLANE_TYPE_OVERLAY:
4358 sprite = plane->plane;
4359 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4360 break;
4361 }
4362 }
4363
4364 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4365 wm->level = VLV_WM_LEVEL_PM2;
4366
4367 if (IS_CHERRYVIEW(dev_priv)) {
4368 mutex_lock(&dev_priv->rps.hw_lock);
4369
4370 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4371 if (val & DSP_MAXFIFO_PM5_ENABLE)
4372 wm->level = VLV_WM_LEVEL_PM5;
4373
4374 /*
4375 * If DDR DVFS is disabled in the BIOS, Punit
4376 * will never ack the request. So if that happens
4377 * assume we don't have to enable/disable DDR DVFS
4378 * dynamically. To test that just set the REQ_ACK
4379 * bit to poke the Punit, but don't change the
4380 * HIGH/LOW bits so that we don't actually change
4381 * the current state.
4382 */
4383 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4384 val |= FORCE_DDR_FREQ_REQ_ACK;
4385 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4386
4387 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4388 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4389 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4390 "assuming DDR DVFS is disabled\n");
4391 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4392 } else {
4393 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4394 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4395 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4396 }
4397
4398 mutex_unlock(&dev_priv->rps.hw_lock);
4399 }
4400
4401 for_each_pipe(dev_priv, pipe)
4402 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4403 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4404 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4405
4406 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4407 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4408 }
4409
4410 void ilk_wm_get_hw_state(struct drm_device *dev)
4411 {
4412 struct drm_i915_private *dev_priv = dev->dev_private;
4413 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4414 struct drm_crtc *crtc;
4415
4416 for_each_crtc(dev, crtc)
4417 ilk_pipe_wm_get_hw_state(crtc);
4418
4419 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4420 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4421 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4422
4423 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4424 if (INTEL_INFO(dev)->gen >= 7) {
4425 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4426 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4427 }
4428
4429 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4430 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4431 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4432 else if (IS_IVYBRIDGE(dev))
4433 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4434 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4435
4436 hw->enable_fbc_wm =
4437 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4438 }
4439
4440 /**
4441 * intel_update_watermarks - update FIFO watermark values based on current modes
4442 *
4443 * Calculate watermark values for the various WM regs based on current mode
4444 * and plane configuration.
4445 *
4446 * There are several cases to deal with here:
4447 * - normal (i.e. non-self-refresh)
4448 * - self-refresh (SR) mode
4449 * - lines are large relative to FIFO size (buffer can hold up to 2)
4450 * - lines are small relative to FIFO size (buffer can hold more than 2
4451 * lines), so need to account for TLB latency
4452 *
4453 * The normal calculation is:
4454 * watermark = dotclock * bytes per pixel * latency
4455 * where latency is platform & configuration dependent (we assume pessimal
4456 * values here).
4457 *
4458 * The SR calculation is:
4459 * watermark = (trunc(latency/line time)+1) * surface width *
4460 * bytes per pixel
4461 * where
4462 * line time = htotal / dotclock
4463 * surface width = hdisplay for normal plane and 64 for cursor
4464 * and latency is assumed to be high, as above.
4465 *
4466 * The final value programmed to the register should always be rounded up,
4467 * and include an extra 2 entries to account for clock crossings.
4468 *
4469 * We don't use the sprite, so we can ignore that. And on Crestline we have
4470 * to set the non-SR watermarks to 8.
4471 */
4472 void intel_update_watermarks(struct drm_crtc *crtc)
4473 {
4474 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4475
4476 if (dev_priv->display.update_wm)
4477 dev_priv->display.update_wm(crtc);
4478 }
4479
4480 /*
4481 * Lock protecting IPS related data structures
4482 */
4483 DEFINE_SPINLOCK(mchdev_lock);
4484
4485 /* Global for IPS driver to get at the current i915 device. Protected by
4486 * mchdev_lock. */
4487 static struct drm_i915_private *i915_mch_dev;
4488
4489 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4490 {
4491 u16 rgvswctl;
4492
4493 assert_spin_locked(&mchdev_lock);
4494
4495 rgvswctl = I915_READ16(MEMSWCTL);
4496 if (rgvswctl & MEMCTL_CMD_STS) {
4497 DRM_DEBUG("gpu busy, RCS change rejected\n");
4498 return false; /* still busy with another command */
4499 }
4500
4501 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4502 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4503 I915_WRITE16(MEMSWCTL, rgvswctl);
4504 POSTING_READ16(MEMSWCTL);
4505
4506 rgvswctl |= MEMCTL_CMD_STS;
4507 I915_WRITE16(MEMSWCTL, rgvswctl);
4508
4509 return true;
4510 }
4511
4512 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4513 {
4514 u32 rgvmodectl;
4515 u8 fmax, fmin, fstart, vstart;
4516
4517 spin_lock_irq(&mchdev_lock);
4518
4519 rgvmodectl = I915_READ(MEMMODECTL);
4520
4521 /* Enable temp reporting */
4522 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4523 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4524
4525 /* 100ms RC evaluation intervals */
4526 I915_WRITE(RCUPEI, 100000);
4527 I915_WRITE(RCDNEI, 100000);
4528
4529 /* Set max/min thresholds to 90ms and 80ms respectively */
4530 I915_WRITE(RCBMAXAVG, 90000);
4531 I915_WRITE(RCBMINAVG, 80000);
4532
4533 I915_WRITE(MEMIHYST, 1);
4534
4535 /* Set up min, max, and cur for interrupt handling */
4536 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4537 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4538 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4539 MEMMODE_FSTART_SHIFT;
4540
4541 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4542 PXVFREQ_PX_SHIFT;
4543
4544 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4545 dev_priv->ips.fstart = fstart;
4546
4547 dev_priv->ips.max_delay = fstart;
4548 dev_priv->ips.min_delay = fmin;
4549 dev_priv->ips.cur_delay = fstart;
4550
4551 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4552 fmax, fmin, fstart);
4553
4554 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4555
4556 /*
4557 * Interrupts will be enabled in ironlake_irq_postinstall
4558 */
4559
4560 I915_WRITE(VIDSTART, vstart);
4561 POSTING_READ(VIDSTART);
4562
4563 rgvmodectl |= MEMMODE_SWMODE_EN;
4564 I915_WRITE(MEMMODECTL, rgvmodectl);
4565
4566 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4567 DRM_ERROR("stuck trying to change perf mode\n");
4568 mdelay(1);
4569
4570 ironlake_set_drps(dev_priv, fstart);
4571
4572 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4573 I915_READ(DDREC) + I915_READ(CSIEC);
4574 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4575 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4576 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4577
4578 spin_unlock_irq(&mchdev_lock);
4579 }
4580
4581 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4582 {
4583 u16 rgvswctl;
4584
4585 spin_lock_irq(&mchdev_lock);
4586
4587 rgvswctl = I915_READ16(MEMSWCTL);
4588
4589 /* Ack interrupts, disable EFC interrupt */
4590 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4591 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4592 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4593 I915_WRITE(DEIIR, DE_PCU_EVENT);
4594 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4595
4596 /* Go back to the starting frequency */
4597 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4598 mdelay(1);
4599 rgvswctl |= MEMCTL_CMD_STS;
4600 I915_WRITE(MEMSWCTL, rgvswctl);
4601 mdelay(1);
4602
4603 spin_unlock_irq(&mchdev_lock);
4604 }
4605
4606 /* There's a funny hw issue where the hw returns all 0 when reading from
4607 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4608 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4609 * all limits and the gpu stuck at whatever frequency it is at atm).
4610 */
4611 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4612 {
4613 u32 limits;
4614
4615 /* Only set the down limit when we've reached the lowest level to avoid
4616 * getting more interrupts, otherwise leave this clear. This prevents a
4617 * race in the hw when coming out of rc6: There's a tiny window where
4618 * the hw runs at the minimal clock before selecting the desired
4619 * frequency, if the down threshold expires in that window we will not
4620 * receive a down interrupt. */
4621 if (IS_GEN9(dev_priv)) {
4622 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4623 if (val <= dev_priv->rps.min_freq_softlimit)
4624 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4625 } else {
4626 limits = dev_priv->rps.max_freq_softlimit << 24;
4627 if (val <= dev_priv->rps.min_freq_softlimit)
4628 limits |= dev_priv->rps.min_freq_softlimit << 16;
4629 }
4630
4631 return limits;
4632 }
4633
4634 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4635 {
4636 int new_power;
4637 u32 threshold_up = 0, threshold_down = 0; /* in % */
4638 u32 ei_up = 0, ei_down = 0;
4639
4640 new_power = dev_priv->rps.power;
4641 switch (dev_priv->rps.power) {
4642 case LOW_POWER:
4643 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4644 new_power = BETWEEN;
4645 break;
4646
4647 case BETWEEN:
4648 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4649 new_power = LOW_POWER;
4650 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4651 new_power = HIGH_POWER;
4652 break;
4653
4654 case HIGH_POWER:
4655 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4656 new_power = BETWEEN;
4657 break;
4658 }
4659 /* Max/min bins are special */
4660 if (val <= dev_priv->rps.min_freq_softlimit)
4661 new_power = LOW_POWER;
4662 if (val >= dev_priv->rps.max_freq_softlimit)
4663 new_power = HIGH_POWER;
4664 if (new_power == dev_priv->rps.power)
4665 return;
4666
4667 /* Note the units here are not exactly 1us, but 1280ns. */
4668 switch (new_power) {
4669 case LOW_POWER:
4670 /* Upclock if more than 95% busy over 16ms */
4671 ei_up = 16000;
4672 threshold_up = 95;
4673
4674 /* Downclock if less than 85% busy over 32ms */
4675 ei_down = 32000;
4676 threshold_down = 85;
4677 break;
4678
4679 case BETWEEN:
4680 /* Upclock if more than 90% busy over 13ms */
4681 ei_up = 13000;
4682 threshold_up = 90;
4683
4684 /* Downclock if less than 75% busy over 32ms */
4685 ei_down = 32000;
4686 threshold_down = 75;
4687 break;
4688
4689 case HIGH_POWER:
4690 /* Upclock if more than 85% busy over 10ms */
4691 ei_up = 10000;
4692 threshold_up = 85;
4693
4694 /* Downclock if less than 60% busy over 32ms */
4695 ei_down = 32000;
4696 threshold_down = 60;
4697 break;
4698 }
4699
4700 I915_WRITE(GEN6_RP_UP_EI,
4701 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4702 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4703 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4704
4705 I915_WRITE(GEN6_RP_DOWN_EI,
4706 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4707 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4708 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4709
4710 I915_WRITE(GEN6_RP_CONTROL,
4711 GEN6_RP_MEDIA_TURBO |
4712 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4713 GEN6_RP_MEDIA_IS_GFX |
4714 GEN6_RP_ENABLE |
4715 GEN6_RP_UP_BUSY_AVG |
4716 GEN6_RP_DOWN_IDLE_AVG);
4717
4718 dev_priv->rps.power = new_power;
4719 dev_priv->rps.up_threshold = threshold_up;
4720 dev_priv->rps.down_threshold = threshold_down;
4721 dev_priv->rps.last_adj = 0;
4722 }
4723
4724 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4725 {
4726 u32 mask = 0;
4727
4728 if (val > dev_priv->rps.min_freq_softlimit)
4729 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4730 if (val < dev_priv->rps.max_freq_softlimit)
4731 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4732
4733 mask &= dev_priv->pm_rps_events;
4734
4735 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4736 }
4737
4738 /* gen6_set_rps is called to update the frequency request, but should also be
4739 * called when the range (min_delay and max_delay) is modified so that we can
4740 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4741 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4742 {
4743 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4744 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4745 return;
4746
4747 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4748 WARN_ON(val > dev_priv->rps.max_freq);
4749 WARN_ON(val < dev_priv->rps.min_freq);
4750
4751 /* min/max delay may still have been modified so be sure to
4752 * write the limits value.
4753 */
4754 if (val != dev_priv->rps.cur_freq) {
4755 gen6_set_rps_thresholds(dev_priv, val);
4756
4757 if (IS_GEN9(dev_priv))
4758 I915_WRITE(GEN6_RPNSWREQ,
4759 GEN9_FREQUENCY(val));
4760 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4761 I915_WRITE(GEN6_RPNSWREQ,
4762 HSW_FREQUENCY(val));
4763 else
4764 I915_WRITE(GEN6_RPNSWREQ,
4765 GEN6_FREQUENCY(val) |
4766 GEN6_OFFSET(0) |
4767 GEN6_AGGRESSIVE_TURBO);
4768 }
4769
4770 /* Make sure we continue to get interrupts
4771 * until we hit the minimum or maximum frequencies.
4772 */
4773 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4774 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4775
4776 POSTING_READ(GEN6_RPNSWREQ);
4777
4778 dev_priv->rps.cur_freq = val;
4779 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4780 }
4781
4782 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4783 {
4784 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4785 WARN_ON(val > dev_priv->rps.max_freq);
4786 WARN_ON(val < dev_priv->rps.min_freq);
4787
4788 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4789 "Odd GPU freq value\n"))
4790 val &= ~1;
4791
4792 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4793
4794 if (val != dev_priv->rps.cur_freq) {
4795 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4796 if (!IS_CHERRYVIEW(dev_priv))
4797 gen6_set_rps_thresholds(dev_priv, val);
4798 }
4799
4800 dev_priv->rps.cur_freq = val;
4801 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4802 }
4803
4804 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4805 *
4806 * * If Gfx is Idle, then
4807 * 1. Forcewake Media well.
4808 * 2. Request idle freq.
4809 * 3. Release Forcewake of Media well.
4810 */
4811 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4812 {
4813 u32 val = dev_priv->rps.idle_freq;
4814
4815 if (dev_priv->rps.cur_freq <= val)
4816 return;
4817
4818 /* Wake up the media well, as that takes a lot less
4819 * power than the Render well. */
4820 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4821 valleyview_set_rps(dev_priv, val);
4822 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4823 }
4824
4825 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4826 {
4827 mutex_lock(&dev_priv->rps.hw_lock);
4828 if (dev_priv->rps.enabled) {
4829 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4830 gen6_rps_reset_ei(dev_priv);
4831 I915_WRITE(GEN6_PMINTRMSK,
4832 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4833 }
4834 mutex_unlock(&dev_priv->rps.hw_lock);
4835 }
4836
4837 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4838 {
4839 mutex_lock(&dev_priv->rps.hw_lock);
4840 if (dev_priv->rps.enabled) {
4841 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4842 vlv_set_rps_idle(dev_priv);
4843 else
4844 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4845 dev_priv->rps.last_adj = 0;
4846 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4847 }
4848 mutex_unlock(&dev_priv->rps.hw_lock);
4849
4850 spin_lock(&dev_priv->rps.client_lock);
4851 while (!list_empty(&dev_priv->rps.clients))
4852 list_del_init(dev_priv->rps.clients.next);
4853 spin_unlock(&dev_priv->rps.client_lock);
4854 }
4855
4856 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4857 struct intel_rps_client *rps,
4858 unsigned long submitted)
4859 {
4860 /* This is intentionally racy! We peek at the state here, then
4861 * validate inside the RPS worker.
4862 */
4863 if (!(dev_priv->mm.busy &&
4864 dev_priv->rps.enabled &&
4865 dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4866 return;
4867
4868 /* Force a RPS boost (and don't count it against the client) if
4869 * the GPU is severely congested.
4870 */
4871 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4872 rps = NULL;
4873
4874 spin_lock(&dev_priv->rps.client_lock);
4875 if (rps == NULL || list_empty(&rps->link)) {
4876 spin_lock_irq(&dev_priv->irq_lock);
4877 if (dev_priv->rps.interrupts_enabled) {
4878 dev_priv->rps.client_boost = true;
4879 queue_work(dev_priv->wq, &dev_priv->rps.work);
4880 }
4881 spin_unlock_irq(&dev_priv->irq_lock);
4882
4883 if (rps != NULL) {
4884 list_add(&rps->link, &dev_priv->rps.clients);
4885 rps->boosts++;
4886 } else
4887 dev_priv->rps.boosts++;
4888 }
4889 spin_unlock(&dev_priv->rps.client_lock);
4890 }
4891
4892 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4893 {
4894 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4895 valleyview_set_rps(dev_priv, val);
4896 else
4897 gen6_set_rps(dev_priv, val);
4898 }
4899
4900 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
4901 {
4902 I915_WRITE(GEN6_RC_CONTROL, 0);
4903 I915_WRITE(GEN9_PG_ENABLE, 0);
4904 }
4905
4906 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4907 {
4908 I915_WRITE(GEN6_RP_CONTROL, 0);
4909 }
4910
4911 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4912 {
4913 I915_WRITE(GEN6_RC_CONTROL, 0);
4914 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4915 I915_WRITE(GEN6_RP_CONTROL, 0);
4916 }
4917
4918 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4919 {
4920 I915_WRITE(GEN6_RC_CONTROL, 0);
4921 }
4922
4923 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4924 {
4925 /* we're doing forcewake before Disabling RC6,
4926 * This what the BIOS expects when going into suspend */
4927 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4928
4929 I915_WRITE(GEN6_RC_CONTROL, 0);
4930
4931 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4932 }
4933
4934 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
4935 {
4936 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4937 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4938 mode = GEN6_RC_CTL_RC6_ENABLE;
4939 else
4940 mode = 0;
4941 }
4942 if (HAS_RC6p(dev_priv))
4943 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4944 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4945 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4946 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4947
4948 else
4949 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4950 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4951 }
4952
4953 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
4954 {
4955 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4956 bool enable_rc6 = true;
4957 unsigned long rc6_ctx_base;
4958
4959 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4960 DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4961 enable_rc6 = false;
4962 }
4963
4964 /*
4965 * The exact context size is not known for BXT, so assume a page size
4966 * for this check.
4967 */
4968 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4969 if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
4970 (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
4971 ggtt->stolen_reserved_size))) {
4972 DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4973 enable_rc6 = false;
4974 }
4975
4976 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4977 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4978 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4979 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4980 DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4981 enable_rc6 = false;
4982 }
4983
4984 if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4985 GEN6_RC_CTL_HW_ENABLE)) &&
4986 ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4987 !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4988 DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4989 enable_rc6 = false;
4990 }
4991
4992 return enable_rc6;
4993 }
4994
4995 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
4996 {
4997 /* No RC6 before Ironlake and code is gone for ilk. */
4998 if (INTEL_INFO(dev_priv)->gen < 6)
4999 return 0;
5000
5001 if (!enable_rc6)
5002 return 0;
5003
5004 if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5005 DRM_INFO("RC6 disabled by BIOS\n");
5006 return 0;
5007 }
5008
5009 /* Respect the kernel parameter if it is set */
5010 if (enable_rc6 >= 0) {
5011 int mask;
5012
5013 if (HAS_RC6p(dev_priv))
5014 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5015 INTEL_RC6pp_ENABLE;
5016 else
5017 mask = INTEL_RC6_ENABLE;
5018
5019 if ((enable_rc6 & mask) != enable_rc6)
5020 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
5021 enable_rc6 & mask, enable_rc6, mask);
5022
5023 return enable_rc6 & mask;
5024 }
5025
5026 if (IS_IVYBRIDGE(dev_priv))
5027 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5028
5029 return INTEL_RC6_ENABLE;
5030 }
5031
5032 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5033 {
5034 uint32_t rp_state_cap;
5035 u32 ddcc_status = 0;
5036 int ret;
5037
5038 /* All of these values are in units of 50MHz */
5039 dev_priv->rps.cur_freq = 0;
5040 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5041 if (IS_BROXTON(dev_priv)) {
5042 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5043 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5044 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5045 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
5046 } else {
5047 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5048 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
5049 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5050 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5051 }
5052
5053 /* hw_max = RP0 until we check for overclocking */
5054 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5055
5056 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5057 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5058 IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5059 ret = sandybridge_pcode_read(dev_priv,
5060 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5061 &ddcc_status);
5062 if (0 == ret)
5063 dev_priv->rps.efficient_freq =
5064 clamp_t(u8,
5065 ((ddcc_status >> 8) & 0xff),
5066 dev_priv->rps.min_freq,
5067 dev_priv->rps.max_freq);
5068 }
5069
5070 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5071 /* Store the frequency values in 16.66 MHZ units, which is
5072 the natural hardware unit for SKL */
5073 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5074 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5075 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5076 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5077 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5078 }
5079
5080 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5081
5082 /* Preserve min/max settings in case of re-init */
5083 if (dev_priv->rps.max_freq_softlimit == 0)
5084 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5085
5086 if (dev_priv->rps.min_freq_softlimit == 0) {
5087 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5088 dev_priv->rps.min_freq_softlimit =
5089 max_t(int, dev_priv->rps.efficient_freq,
5090 intel_freq_opcode(dev_priv, 450));
5091 else
5092 dev_priv->rps.min_freq_softlimit =
5093 dev_priv->rps.min_freq;
5094 }
5095 }
5096
5097 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5098 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5099 {
5100 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5101
5102 gen6_init_rps_frequencies(dev_priv);
5103
5104 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5105 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5106 /*
5107 * BIOS could leave the Hw Turbo enabled, so need to explicitly
5108 * clear out the Control register just to avoid inconsitency
5109 * with debugfs interface, which will show Turbo as enabled
5110 * only and that is not expected by the User after adding the
5111 * WaGsvDisableTurbo. Apart from this there is no problem even
5112 * if the Turbo is left enabled in the Control register, as the
5113 * Up/Down interrupts would remain masked.
5114 */
5115 gen9_disable_rps(dev_priv);
5116 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5117 return;
5118 }
5119
5120 /* Program defaults and thresholds for RPS*/
5121 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5122 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5123
5124 /* 1 second timeout*/
5125 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5126 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5127
5128 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5129
5130 /* Leaning on the below call to gen6_set_rps to program/setup the
5131 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5132 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5133 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5134 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5135
5136 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5137 }
5138
5139 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5140 {
5141 struct intel_engine_cs *engine;
5142 uint32_t rc6_mask = 0;
5143
5144 /* 1a: Software RC state - RC0 */
5145 I915_WRITE(GEN6_RC_STATE, 0);
5146
5147 /* 1b: Get forcewake during program sequence. Although the driver
5148 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5149 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5150
5151 /* 2a: Disable RC states. */
5152 I915_WRITE(GEN6_RC_CONTROL, 0);
5153
5154 /* 2b: Program RC6 thresholds.*/
5155
5156 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5157 if (IS_SKYLAKE(dev_priv))
5158 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5159 else
5160 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5161 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5162 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5163 for_each_engine(engine, dev_priv)
5164 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5165
5166 if (HAS_GUC(dev_priv))
5167 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5168
5169 I915_WRITE(GEN6_RC_SLEEP, 0);
5170
5171 /* 2c: Program Coarse Power Gating Policies. */
5172 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5173 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5174
5175 /* 3a: Enable RC6 */
5176 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5177 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5178 DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5179 /* WaRsUseTimeoutMode */
5180 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5181 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5182 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5183 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5184 GEN7_RC_CTL_TO_MODE |
5185 rc6_mask);
5186 } else {
5187 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5188 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5189 GEN6_RC_CTL_EI_MODE(1) |
5190 rc6_mask);
5191 }
5192
5193 /*
5194 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5195 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5196 */
5197 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5198 I915_WRITE(GEN9_PG_ENABLE, 0);
5199 else
5200 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5201 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5202
5203 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5204 }
5205
5206 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5207 {
5208 struct intel_engine_cs *engine;
5209 uint32_t rc6_mask = 0;
5210
5211 /* 1a: Software RC state - RC0 */
5212 I915_WRITE(GEN6_RC_STATE, 0);
5213
5214 /* 1c & 1d: Get forcewake during program sequence. Although the driver
5215 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5216 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5217
5218 /* 2a: Disable RC states. */
5219 I915_WRITE(GEN6_RC_CONTROL, 0);
5220
5221 /* Initialize rps frequencies */
5222 gen6_init_rps_frequencies(dev_priv);
5223
5224 /* 2b: Program RC6 thresholds.*/
5225 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5226 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5227 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5228 for_each_engine(engine, dev_priv)
5229 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5230 I915_WRITE(GEN6_RC_SLEEP, 0);
5231 if (IS_BROADWELL(dev_priv))
5232 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5233 else
5234 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5235
5236 /* 3: Enable RC6 */
5237 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5238 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5239 intel_print_rc6_info(dev_priv, rc6_mask);
5240 if (IS_BROADWELL(dev_priv))
5241 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5242 GEN7_RC_CTL_TO_MODE |
5243 rc6_mask);
5244 else
5245 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5246 GEN6_RC_CTL_EI_MODE(1) |
5247 rc6_mask);
5248
5249 /* 4 Program defaults and thresholds for RPS*/
5250 I915_WRITE(GEN6_RPNSWREQ,
5251 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5252 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5253 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5254 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5255 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5256
5257 /* Docs recommend 900MHz, and 300 MHz respectively */
5258 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5259 dev_priv->rps.max_freq_softlimit << 24 |
5260 dev_priv->rps.min_freq_softlimit << 16);
5261
5262 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5263 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5264 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5265 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5266
5267 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5268
5269 /* 5: Enable RPS */
5270 I915_WRITE(GEN6_RP_CONTROL,
5271 GEN6_RP_MEDIA_TURBO |
5272 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5273 GEN6_RP_MEDIA_IS_GFX |
5274 GEN6_RP_ENABLE |
5275 GEN6_RP_UP_BUSY_AVG |
5276 GEN6_RP_DOWN_IDLE_AVG);
5277
5278 /* 6: Ring frequency + overclocking (our driver does this later */
5279
5280 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5281 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5282
5283 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5284 }
5285
5286 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5287 {
5288 struct intel_engine_cs *engine;
5289 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5290 u32 gtfifodbg;
5291 int rc6_mode;
5292 int ret;
5293
5294 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5295
5296 /* Here begins a magic sequence of register writes to enable
5297 * auto-downclocking.
5298 *
5299 * Perhaps there might be some value in exposing these to
5300 * userspace...
5301 */
5302 I915_WRITE(GEN6_RC_STATE, 0);
5303
5304 /* Clear the DBG now so we don't confuse earlier errors */
5305 gtfifodbg = I915_READ(GTFIFODBG);
5306 if (gtfifodbg) {
5307 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5308 I915_WRITE(GTFIFODBG, gtfifodbg);
5309 }
5310
5311 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5312
5313 /* Initialize rps frequencies */
5314 gen6_init_rps_frequencies(dev_priv);
5315
5316 /* disable the counters and set deterministic thresholds */
5317 I915_WRITE(GEN6_RC_CONTROL, 0);
5318
5319 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5320 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5321 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5322 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5323 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5324
5325 for_each_engine(engine, dev_priv)
5326 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5327
5328 I915_WRITE(GEN6_RC_SLEEP, 0);
5329 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5330 if (IS_IVYBRIDGE(dev_priv))
5331 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5332 else
5333 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5334 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5335 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5336
5337 /* Check if we are enabling RC6 */
5338 rc6_mode = intel_enable_rc6();
5339 if (rc6_mode & INTEL_RC6_ENABLE)
5340 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5341
5342 /* We don't use those on Haswell */
5343 if (!IS_HASWELL(dev_priv)) {
5344 if (rc6_mode & INTEL_RC6p_ENABLE)
5345 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5346
5347 if (rc6_mode & INTEL_RC6pp_ENABLE)
5348 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5349 }
5350
5351 intel_print_rc6_info(dev_priv, rc6_mask);
5352
5353 I915_WRITE(GEN6_RC_CONTROL,
5354 rc6_mask |
5355 GEN6_RC_CTL_EI_MODE(1) |
5356 GEN6_RC_CTL_HW_ENABLE);
5357
5358 /* Power down if completely idle for over 50ms */
5359 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5360 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5361
5362 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5363 if (ret)
5364 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5365
5366 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5367 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5368 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5369 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5370 (pcu_mbox & 0xff) * 50);
5371 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5372 }
5373
5374 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5375 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5376
5377 rc6vids = 0;
5378 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5379 if (IS_GEN6(dev_priv) && ret) {
5380 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5381 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5382 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5383 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5384 rc6vids &= 0xffff00;
5385 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5386 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5387 if (ret)
5388 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5389 }
5390
5391 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5392 }
5393
5394 static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5395 {
5396 int min_freq = 15;
5397 unsigned int gpu_freq;
5398 unsigned int max_ia_freq, min_ring_freq;
5399 unsigned int max_gpu_freq, min_gpu_freq;
5400 int scaling_factor = 180;
5401 struct cpufreq_policy *policy;
5402
5403 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5404
5405 policy = cpufreq_cpu_get(0);
5406 if (policy) {
5407 max_ia_freq = policy->cpuinfo.max_freq;
5408 cpufreq_cpu_put(policy);
5409 } else {
5410 /*
5411 * Default to measured freq if none found, PCU will ensure we
5412 * don't go over
5413 */
5414 max_ia_freq = tsc_khz;
5415 }
5416
5417 /* Convert from kHz to MHz */
5418 max_ia_freq /= 1000;
5419
5420 min_ring_freq = I915_READ(DCLK) & 0xf;
5421 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5422 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5423
5424 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5425 /* Convert GT frequency to 50 HZ units */
5426 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5427 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5428 } else {
5429 min_gpu_freq = dev_priv->rps.min_freq;
5430 max_gpu_freq = dev_priv->rps.max_freq;
5431 }
5432
5433 /*
5434 * For each potential GPU frequency, load a ring frequency we'd like
5435 * to use for memory access. We do this by specifying the IA frequency
5436 * the PCU should use as a reference to determine the ring frequency.
5437 */
5438 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5439 int diff = max_gpu_freq - gpu_freq;
5440 unsigned int ia_freq = 0, ring_freq = 0;
5441
5442 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5443 /*
5444 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5445 * No floor required for ring frequency on SKL.
5446 */
5447 ring_freq = gpu_freq;
5448 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5449 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5450 ring_freq = max(min_ring_freq, gpu_freq);
5451 } else if (IS_HASWELL(dev_priv)) {
5452 ring_freq = mult_frac(gpu_freq, 5, 4);
5453 ring_freq = max(min_ring_freq, ring_freq);
5454 /* leave ia_freq as the default, chosen by cpufreq */
5455 } else {
5456 /* On older processors, there is no separate ring
5457 * clock domain, so in order to boost the bandwidth
5458 * of the ring, we need to upclock the CPU (ia_freq).
5459 *
5460 * For GPU frequencies less than 750MHz,
5461 * just use the lowest ring freq.
5462 */
5463 if (gpu_freq < min_freq)
5464 ia_freq = 800;
5465 else
5466 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5467 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5468 }
5469
5470 sandybridge_pcode_write(dev_priv,
5471 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5472 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5473 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5474 gpu_freq);
5475 }
5476 }
5477
5478 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5479 {
5480 if (!HAS_CORE_RING_FREQ(dev_priv))
5481 return;
5482
5483 mutex_lock(&dev_priv->rps.hw_lock);
5484 __gen6_update_ring_freq(dev_priv);
5485 mutex_unlock(&dev_priv->rps.hw_lock);
5486 }
5487
5488 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5489 {
5490 u32 val, rp0;
5491
5492 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5493
5494 switch (INTEL_INFO(dev_priv)->eu_total) {
5495 case 8:
5496 /* (2 * 4) config */
5497 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5498 break;
5499 case 12:
5500 /* (2 * 6) config */
5501 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5502 break;
5503 case 16:
5504 /* (2 * 8) config */
5505 default:
5506 /* Setting (2 * 8) Min RP0 for any other combination */
5507 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5508 break;
5509 }
5510
5511 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5512
5513 return rp0;
5514 }
5515
5516 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5517 {
5518 u32 val, rpe;
5519
5520 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5521 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5522
5523 return rpe;
5524 }
5525
5526 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5527 {
5528 u32 val, rp1;
5529
5530 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5531 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5532
5533 return rp1;
5534 }
5535
5536 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5537 {
5538 u32 val, rp1;
5539
5540 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5541
5542 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5543
5544 return rp1;
5545 }
5546
5547 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5548 {
5549 u32 val, rp0;
5550
5551 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5552
5553 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5554 /* Clamp to max */
5555 rp0 = min_t(u32, rp0, 0xea);
5556
5557 return rp0;
5558 }
5559
5560 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5561 {
5562 u32 val, rpe;
5563
5564 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5565 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5566 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5567 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5568
5569 return rpe;
5570 }
5571
5572 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5573 {
5574 u32 val;
5575
5576 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5577 /*
5578 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5579 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5580 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5581 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5582 * to make sure it matches what Punit accepts.
5583 */
5584 return max_t(u32, val, 0xc0);
5585 }
5586
5587 /* Check that the pctx buffer wasn't move under us. */
5588 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5589 {
5590 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5591
5592 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5593 dev_priv->vlv_pctx->stolen->start);
5594 }
5595
5596
5597 /* Check that the pcbr address is not empty. */
5598 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5599 {
5600 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5601
5602 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5603 }
5604
5605 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5606 {
5607 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5608 unsigned long pctx_paddr, paddr;
5609 u32 pcbr;
5610 int pctx_size = 32*1024;
5611
5612 pcbr = I915_READ(VLV_PCBR);
5613 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5614 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5615 paddr = (dev_priv->mm.stolen_base +
5616 (ggtt->stolen_size - pctx_size));
5617
5618 pctx_paddr = (paddr & (~4095));
5619 I915_WRITE(VLV_PCBR, pctx_paddr);
5620 }
5621
5622 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5623 }
5624
5625 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5626 {
5627 struct drm_i915_gem_object *pctx;
5628 unsigned long pctx_paddr;
5629 u32 pcbr;
5630 int pctx_size = 24*1024;
5631
5632 mutex_lock(&dev_priv->dev->struct_mutex);
5633
5634 pcbr = I915_READ(VLV_PCBR);
5635 if (pcbr) {
5636 /* BIOS set it up already, grab the pre-alloc'd space */
5637 int pcbr_offset;
5638
5639 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5640 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5641 pcbr_offset,
5642 I915_GTT_OFFSET_NONE,
5643 pctx_size);
5644 goto out;
5645 }
5646
5647 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5648
5649 /*
5650 * From the Gunit register HAS:
5651 * The Gfx driver is expected to program this register and ensure
5652 * proper allocation within Gfx stolen memory. For example, this
5653 * register should be programmed such than the PCBR range does not
5654 * overlap with other ranges, such as the frame buffer, protected
5655 * memory, or any other relevant ranges.
5656 */
5657 pctx = i915_gem_object_create_stolen(dev_priv->dev, pctx_size);
5658 if (!pctx) {
5659 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5660 goto out;
5661 }
5662
5663 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5664 I915_WRITE(VLV_PCBR, pctx_paddr);
5665
5666 out:
5667 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5668 dev_priv->vlv_pctx = pctx;
5669 mutex_unlock(&dev_priv->dev->struct_mutex);
5670 }
5671
5672 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5673 {
5674 if (WARN_ON(!dev_priv->vlv_pctx))
5675 return;
5676
5677 drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5678 dev_priv->vlv_pctx = NULL;
5679 }
5680
5681 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5682 {
5683 dev_priv->rps.gpll_ref_freq =
5684 vlv_get_cck_clock(dev_priv, "GPLL ref",
5685 CCK_GPLL_CLOCK_CONTROL,
5686 dev_priv->czclk_freq);
5687
5688 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5689 dev_priv->rps.gpll_ref_freq);
5690 }
5691
5692 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5693 {
5694 u32 val;
5695
5696 valleyview_setup_pctx(dev_priv);
5697
5698 vlv_init_gpll_ref_freq(dev_priv);
5699
5700 mutex_lock(&dev_priv->rps.hw_lock);
5701
5702 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5703 switch ((val >> 6) & 3) {
5704 case 0:
5705 case 1:
5706 dev_priv->mem_freq = 800;
5707 break;
5708 case 2:
5709 dev_priv->mem_freq = 1066;
5710 break;
5711 case 3:
5712 dev_priv->mem_freq = 1333;
5713 break;
5714 }
5715 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5716
5717 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5718 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5719 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5720 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5721 dev_priv->rps.max_freq);
5722
5723 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5724 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5725 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5726 dev_priv->rps.efficient_freq);
5727
5728 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5729 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5730 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5731 dev_priv->rps.rp1_freq);
5732
5733 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5734 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5735 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5736 dev_priv->rps.min_freq);
5737
5738 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5739
5740 /* Preserve min/max settings in case of re-init */
5741 if (dev_priv->rps.max_freq_softlimit == 0)
5742 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5743
5744 if (dev_priv->rps.min_freq_softlimit == 0)
5745 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5746
5747 mutex_unlock(&dev_priv->rps.hw_lock);
5748 }
5749
5750 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5751 {
5752 u32 val;
5753
5754 cherryview_setup_pctx(dev_priv);
5755
5756 vlv_init_gpll_ref_freq(dev_priv);
5757
5758 mutex_lock(&dev_priv->rps.hw_lock);
5759
5760 mutex_lock(&dev_priv->sb_lock);
5761 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5762 mutex_unlock(&dev_priv->sb_lock);
5763
5764 switch ((val >> 2) & 0x7) {
5765 case 3:
5766 dev_priv->mem_freq = 2000;
5767 break;
5768 default:
5769 dev_priv->mem_freq = 1600;
5770 break;
5771 }
5772 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5773
5774 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5775 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5776 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5777 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5778 dev_priv->rps.max_freq);
5779
5780 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5781 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5782 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5783 dev_priv->rps.efficient_freq);
5784
5785 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5786 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5787 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5788 dev_priv->rps.rp1_freq);
5789
5790 /* PUnit validated range is only [RPe, RP0] */
5791 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5792 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5793 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5794 dev_priv->rps.min_freq);
5795
5796 WARN_ONCE((dev_priv->rps.max_freq |
5797 dev_priv->rps.efficient_freq |
5798 dev_priv->rps.rp1_freq |
5799 dev_priv->rps.min_freq) & 1,
5800 "Odd GPU freq values\n");
5801
5802 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5803
5804 /* Preserve min/max settings in case of re-init */
5805 if (dev_priv->rps.max_freq_softlimit == 0)
5806 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5807
5808 if (dev_priv->rps.min_freq_softlimit == 0)
5809 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5810
5811 mutex_unlock(&dev_priv->rps.hw_lock);
5812 }
5813
5814 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5815 {
5816 valleyview_cleanup_pctx(dev_priv);
5817 }
5818
5819 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5820 {
5821 struct intel_engine_cs *engine;
5822 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5823
5824 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5825
5826 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5827 GT_FIFO_FREE_ENTRIES_CHV);
5828 if (gtfifodbg) {
5829 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5830 gtfifodbg);
5831 I915_WRITE(GTFIFODBG, gtfifodbg);
5832 }
5833
5834 cherryview_check_pctx(dev_priv);
5835
5836 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5837 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5838 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5839
5840 /* Disable RC states. */
5841 I915_WRITE(GEN6_RC_CONTROL, 0);
5842
5843 /* 2a: Program RC6 thresholds.*/
5844 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5845 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5846 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5847
5848 for_each_engine(engine, dev_priv)
5849 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5850 I915_WRITE(GEN6_RC_SLEEP, 0);
5851
5852 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5853 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5854
5855 /* allows RC6 residency counter to work */
5856 I915_WRITE(VLV_COUNTER_CONTROL,
5857 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5858 VLV_MEDIA_RC6_COUNT_EN |
5859 VLV_RENDER_RC6_COUNT_EN));
5860
5861 /* For now we assume BIOS is allocating and populating the PCBR */
5862 pcbr = I915_READ(VLV_PCBR);
5863
5864 /* 3: Enable RC6 */
5865 if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
5866 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5867 rc6_mode = GEN7_RC_CTL_TO_MODE;
5868
5869 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5870
5871 /* 4 Program defaults and thresholds for RPS*/
5872 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5873 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5874 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5875 I915_WRITE(GEN6_RP_UP_EI, 66000);
5876 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5877
5878 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5879
5880 /* 5: Enable RPS */
5881 I915_WRITE(GEN6_RP_CONTROL,
5882 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5883 GEN6_RP_MEDIA_IS_GFX |
5884 GEN6_RP_ENABLE |
5885 GEN6_RP_UP_BUSY_AVG |
5886 GEN6_RP_DOWN_IDLE_AVG);
5887
5888 /* Setting Fixed Bias */
5889 val = VLV_OVERRIDE_EN |
5890 VLV_SOC_TDP_EN |
5891 CHV_BIAS_CPU_50_SOC_50;
5892 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5893
5894 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5895
5896 /* RPS code assumes GPLL is used */
5897 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5898
5899 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5900 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5901
5902 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5903 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5904 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5905 dev_priv->rps.cur_freq);
5906
5907 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5908 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5909 dev_priv->rps.idle_freq);
5910
5911 valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5912
5913 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5914 }
5915
5916 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5917 {
5918 struct intel_engine_cs *engine;
5919 u32 gtfifodbg, val, rc6_mode = 0;
5920
5921 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5922
5923 valleyview_check_pctx(dev_priv);
5924
5925 gtfifodbg = I915_READ(GTFIFODBG);
5926 if (gtfifodbg) {
5927 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5928 gtfifodbg);
5929 I915_WRITE(GTFIFODBG, gtfifodbg);
5930 }
5931
5932 /* If VLV, Forcewake all wells, else re-direct to regular path */
5933 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5934
5935 /* Disable RC states. */
5936 I915_WRITE(GEN6_RC_CONTROL, 0);
5937
5938 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5939 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5940 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5941 I915_WRITE(GEN6_RP_UP_EI, 66000);
5942 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5943
5944 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5945
5946 I915_WRITE(GEN6_RP_CONTROL,
5947 GEN6_RP_MEDIA_TURBO |
5948 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5949 GEN6_RP_MEDIA_IS_GFX |
5950 GEN6_RP_ENABLE |
5951 GEN6_RP_UP_BUSY_AVG |
5952 GEN6_RP_DOWN_IDLE_CONT);
5953
5954 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5955 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5956 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5957
5958 for_each_engine(engine, dev_priv)
5959 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5960
5961 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5962
5963 /* allows RC6 residency counter to work */
5964 I915_WRITE(VLV_COUNTER_CONTROL,
5965 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5966 VLV_RENDER_RC0_COUNT_EN |
5967 VLV_MEDIA_RC6_COUNT_EN |
5968 VLV_RENDER_RC6_COUNT_EN));
5969
5970 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5971 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5972
5973 intel_print_rc6_info(dev_priv, rc6_mode);
5974
5975 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5976
5977 /* Setting Fixed Bias */
5978 val = VLV_OVERRIDE_EN |
5979 VLV_SOC_TDP_EN |
5980 VLV_BIAS_CPU_125_SOC_875;
5981 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5982
5983 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5984
5985 /* RPS code assumes GPLL is used */
5986 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5987
5988 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5989 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5990
5991 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5992 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5993 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5994 dev_priv->rps.cur_freq);
5995
5996 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5997 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5998 dev_priv->rps.idle_freq);
5999
6000 valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
6001
6002 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6003 }
6004
6005 static unsigned long intel_pxfreq(u32 vidfreq)
6006 {
6007 unsigned long freq;
6008 int div = (vidfreq & 0x3f0000) >> 16;
6009 int post = (vidfreq & 0x3000) >> 12;
6010 int pre = (vidfreq & 0x7);
6011
6012 if (!pre)
6013 return 0;
6014
6015 freq = ((div * 133333) / ((1<<post) * pre));
6016
6017 return freq;
6018 }
6019
6020 static const struct cparams {
6021 u16 i;
6022 u16 t;
6023 u16 m;
6024 u16 c;
6025 } cparams[] = {
6026 { 1, 1333, 301, 28664 },
6027 { 1, 1066, 294, 24460 },
6028 { 1, 800, 294, 25192 },
6029 { 0, 1333, 276, 27605 },
6030 { 0, 1066, 276, 27605 },
6031 { 0, 800, 231, 23784 },
6032 };
6033
6034 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6035 {
6036 u64 total_count, diff, ret;
6037 u32 count1, count2, count3, m = 0, c = 0;
6038 unsigned long now = jiffies_to_msecs(jiffies), diff1;
6039 int i;
6040
6041 assert_spin_locked(&mchdev_lock);
6042
6043 diff1 = now - dev_priv->ips.last_time1;
6044
6045 /* Prevent division-by-zero if we are asking too fast.
6046 * Also, we don't get interesting results if we are polling
6047 * faster than once in 10ms, so just return the saved value
6048 * in such cases.
6049 */
6050 if (diff1 <= 10)
6051 return dev_priv->ips.chipset_power;
6052
6053 count1 = I915_READ(DMIEC);
6054 count2 = I915_READ(DDREC);
6055 count3 = I915_READ(CSIEC);
6056
6057 total_count = count1 + count2 + count3;
6058
6059 /* FIXME: handle per-counter overflow */
6060 if (total_count < dev_priv->ips.last_count1) {
6061 diff = ~0UL - dev_priv->ips.last_count1;
6062 diff += total_count;
6063 } else {
6064 diff = total_count - dev_priv->ips.last_count1;
6065 }
6066
6067 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6068 if (cparams[i].i == dev_priv->ips.c_m &&
6069 cparams[i].t == dev_priv->ips.r_t) {
6070 m = cparams[i].m;
6071 c = cparams[i].c;
6072 break;
6073 }
6074 }
6075
6076 diff = div_u64(diff, diff1);
6077 ret = ((m * diff) + c);
6078 ret = div_u64(ret, 10);
6079
6080 dev_priv->ips.last_count1 = total_count;
6081 dev_priv->ips.last_time1 = now;
6082
6083 dev_priv->ips.chipset_power = ret;
6084
6085 return ret;
6086 }
6087
6088 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6089 {
6090 unsigned long val;
6091
6092 if (INTEL_INFO(dev_priv)->gen != 5)
6093 return 0;
6094
6095 spin_lock_irq(&mchdev_lock);
6096
6097 val = __i915_chipset_val(dev_priv);
6098
6099 spin_unlock_irq(&mchdev_lock);
6100
6101 return val;
6102 }
6103
6104 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6105 {
6106 unsigned long m, x, b;
6107 u32 tsfs;
6108
6109 tsfs = I915_READ(TSFS);
6110
6111 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6112 x = I915_READ8(TR1);
6113
6114 b = tsfs & TSFS_INTR_MASK;
6115
6116 return ((m * x) / 127) - b;
6117 }
6118
6119 static int _pxvid_to_vd(u8 pxvid)
6120 {
6121 if (pxvid == 0)
6122 return 0;
6123
6124 if (pxvid >= 8 && pxvid < 31)
6125 pxvid = 31;
6126
6127 return (pxvid + 2) * 125;
6128 }
6129
6130 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6131 {
6132 const int vd = _pxvid_to_vd(pxvid);
6133 const int vm = vd - 1125;
6134
6135 if (INTEL_INFO(dev_priv)->is_mobile)
6136 return vm > 0 ? vm : 0;
6137
6138 return vd;
6139 }
6140
6141 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6142 {
6143 u64 now, diff, diffms;
6144 u32 count;
6145
6146 assert_spin_locked(&mchdev_lock);
6147
6148 now = ktime_get_raw_ns();
6149 diffms = now - dev_priv->ips.last_time2;
6150 do_div(diffms, NSEC_PER_MSEC);
6151
6152 /* Don't divide by 0 */
6153 if (!diffms)
6154 return;
6155
6156 count = I915_READ(GFXEC);
6157
6158 if (count < dev_priv->ips.last_count2) {
6159 diff = ~0UL - dev_priv->ips.last_count2;
6160 diff += count;
6161 } else {
6162 diff = count - dev_priv->ips.last_count2;
6163 }
6164
6165 dev_priv->ips.last_count2 = count;
6166 dev_priv->ips.last_time2 = now;
6167
6168 /* More magic constants... */
6169 diff = diff * 1181;
6170 diff = div_u64(diff, diffms * 10);
6171 dev_priv->ips.gfx_power = diff;
6172 }
6173
6174 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6175 {
6176 if (INTEL_INFO(dev_priv)->gen != 5)
6177 return;
6178
6179 spin_lock_irq(&mchdev_lock);
6180
6181 __i915_update_gfx_val(dev_priv);
6182
6183 spin_unlock_irq(&mchdev_lock);
6184 }
6185
6186 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6187 {
6188 unsigned long t, corr, state1, corr2, state2;
6189 u32 pxvid, ext_v;
6190
6191 assert_spin_locked(&mchdev_lock);
6192
6193 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6194 pxvid = (pxvid >> 24) & 0x7f;
6195 ext_v = pvid_to_extvid(dev_priv, pxvid);
6196
6197 state1 = ext_v;
6198
6199 t = i915_mch_val(dev_priv);
6200
6201 /* Revel in the empirically derived constants */
6202
6203 /* Correction factor in 1/100000 units */
6204 if (t > 80)
6205 corr = ((t * 2349) + 135940);
6206 else if (t >= 50)
6207 corr = ((t * 964) + 29317);
6208 else /* < 50 */
6209 corr = ((t * 301) + 1004);
6210
6211 corr = corr * ((150142 * state1) / 10000 - 78642);
6212 corr /= 100000;
6213 corr2 = (corr * dev_priv->ips.corr);
6214
6215 state2 = (corr2 * state1) / 10000;
6216 state2 /= 100; /* convert to mW */
6217
6218 __i915_update_gfx_val(dev_priv);
6219
6220 return dev_priv->ips.gfx_power + state2;
6221 }
6222
6223 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6224 {
6225 unsigned long val;
6226
6227 if (INTEL_INFO(dev_priv)->gen != 5)
6228 return 0;
6229
6230 spin_lock_irq(&mchdev_lock);
6231
6232 val = __i915_gfx_val(dev_priv);
6233
6234 spin_unlock_irq(&mchdev_lock);
6235
6236 return val;
6237 }
6238
6239 /**
6240 * i915_read_mch_val - return value for IPS use
6241 *
6242 * Calculate and return a value for the IPS driver to use when deciding whether
6243 * we have thermal and power headroom to increase CPU or GPU power budget.
6244 */
6245 unsigned long i915_read_mch_val(void)
6246 {
6247 struct drm_i915_private *dev_priv;
6248 unsigned long chipset_val, graphics_val, ret = 0;
6249
6250 spin_lock_irq(&mchdev_lock);
6251 if (!i915_mch_dev)
6252 goto out_unlock;
6253 dev_priv = i915_mch_dev;
6254
6255 chipset_val = __i915_chipset_val(dev_priv);
6256 graphics_val = __i915_gfx_val(dev_priv);
6257
6258 ret = chipset_val + graphics_val;
6259
6260 out_unlock:
6261 spin_unlock_irq(&mchdev_lock);
6262
6263 return ret;
6264 }
6265 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6266
6267 /**
6268 * i915_gpu_raise - raise GPU frequency limit
6269 *
6270 * Raise the limit; IPS indicates we have thermal headroom.
6271 */
6272 bool i915_gpu_raise(void)
6273 {
6274 struct drm_i915_private *dev_priv;
6275 bool ret = true;
6276
6277 spin_lock_irq(&mchdev_lock);
6278 if (!i915_mch_dev) {
6279 ret = false;
6280 goto out_unlock;
6281 }
6282 dev_priv = i915_mch_dev;
6283
6284 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6285 dev_priv->ips.max_delay--;
6286
6287 out_unlock:
6288 spin_unlock_irq(&mchdev_lock);
6289
6290 return ret;
6291 }
6292 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6293
6294 /**
6295 * i915_gpu_lower - lower GPU frequency limit
6296 *
6297 * IPS indicates we're close to a thermal limit, so throttle back the GPU
6298 * frequency maximum.
6299 */
6300 bool i915_gpu_lower(void)
6301 {
6302 struct drm_i915_private *dev_priv;
6303 bool ret = true;
6304
6305 spin_lock_irq(&mchdev_lock);
6306 if (!i915_mch_dev) {
6307 ret = false;
6308 goto out_unlock;
6309 }
6310 dev_priv = i915_mch_dev;
6311
6312 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6313 dev_priv->ips.max_delay++;
6314
6315 out_unlock:
6316 spin_unlock_irq(&mchdev_lock);
6317
6318 return ret;
6319 }
6320 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6321
6322 /**
6323 * i915_gpu_busy - indicate GPU business to IPS
6324 *
6325 * Tell the IPS driver whether or not the GPU is busy.
6326 */
6327 bool i915_gpu_busy(void)
6328 {
6329 struct drm_i915_private *dev_priv;
6330 struct intel_engine_cs *engine;
6331 bool ret = false;
6332
6333 spin_lock_irq(&mchdev_lock);
6334 if (!i915_mch_dev)
6335 goto out_unlock;
6336 dev_priv = i915_mch_dev;
6337
6338 for_each_engine(engine, dev_priv)
6339 ret |= !list_empty(&engine->request_list);
6340
6341 out_unlock:
6342 spin_unlock_irq(&mchdev_lock);
6343
6344 return ret;
6345 }
6346 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6347
6348 /**
6349 * i915_gpu_turbo_disable - disable graphics turbo
6350 *
6351 * Disable graphics turbo by resetting the max frequency and setting the
6352 * current frequency to the default.
6353 */
6354 bool i915_gpu_turbo_disable(void)
6355 {
6356 struct drm_i915_private *dev_priv;
6357 bool ret = true;
6358
6359 spin_lock_irq(&mchdev_lock);
6360 if (!i915_mch_dev) {
6361 ret = false;
6362 goto out_unlock;
6363 }
6364 dev_priv = i915_mch_dev;
6365
6366 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6367
6368 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6369 ret = false;
6370
6371 out_unlock:
6372 spin_unlock_irq(&mchdev_lock);
6373
6374 return ret;
6375 }
6376 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6377
6378 /**
6379 * Tells the intel_ips driver that the i915 driver is now loaded, if
6380 * IPS got loaded first.
6381 *
6382 * This awkward dance is so that neither module has to depend on the
6383 * other in order for IPS to do the appropriate communication of
6384 * GPU turbo limits to i915.
6385 */
6386 static void
6387 ips_ping_for_i915_load(void)
6388 {
6389 void (*link)(void);
6390
6391 link = symbol_get(ips_link_to_i915_driver);
6392 if (link) {
6393 link();
6394 symbol_put(ips_link_to_i915_driver);
6395 }
6396 }
6397
6398 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6399 {
6400 /* We only register the i915 ips part with intel-ips once everything is
6401 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6402 spin_lock_irq(&mchdev_lock);
6403 i915_mch_dev = dev_priv;
6404 spin_unlock_irq(&mchdev_lock);
6405
6406 ips_ping_for_i915_load();
6407 }
6408
6409 void intel_gpu_ips_teardown(void)
6410 {
6411 spin_lock_irq(&mchdev_lock);
6412 i915_mch_dev = NULL;
6413 spin_unlock_irq(&mchdev_lock);
6414 }
6415
6416 static void intel_init_emon(struct drm_i915_private *dev_priv)
6417 {
6418 u32 lcfuse;
6419 u8 pxw[16];
6420 int i;
6421
6422 /* Disable to program */
6423 I915_WRITE(ECR, 0);
6424 POSTING_READ(ECR);
6425
6426 /* Program energy weights for various events */
6427 I915_WRITE(SDEW, 0x15040d00);
6428 I915_WRITE(CSIEW0, 0x007f0000);
6429 I915_WRITE(CSIEW1, 0x1e220004);
6430 I915_WRITE(CSIEW2, 0x04000004);
6431
6432 for (i = 0; i < 5; i++)
6433 I915_WRITE(PEW(i), 0);
6434 for (i = 0; i < 3; i++)
6435 I915_WRITE(DEW(i), 0);
6436
6437 /* Program P-state weights to account for frequency power adjustment */
6438 for (i = 0; i < 16; i++) {
6439 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6440 unsigned long freq = intel_pxfreq(pxvidfreq);
6441 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6442 PXVFREQ_PX_SHIFT;
6443 unsigned long val;
6444
6445 val = vid * vid;
6446 val *= (freq / 1000);
6447 val *= 255;
6448 val /= (127*127*900);
6449 if (val > 0xff)
6450 DRM_ERROR("bad pxval: %ld\n", val);
6451 pxw[i] = val;
6452 }
6453 /* Render standby states get 0 weight */
6454 pxw[14] = 0;
6455 pxw[15] = 0;
6456
6457 for (i = 0; i < 4; i++) {
6458 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6459 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6460 I915_WRITE(PXW(i), val);
6461 }
6462
6463 /* Adjust magic regs to magic values (more experimental results) */
6464 I915_WRITE(OGW0, 0);
6465 I915_WRITE(OGW1, 0);
6466 I915_WRITE(EG0, 0x00007f00);
6467 I915_WRITE(EG1, 0x0000000e);
6468 I915_WRITE(EG2, 0x000e0000);
6469 I915_WRITE(EG3, 0x68000300);
6470 I915_WRITE(EG4, 0x42000000);
6471 I915_WRITE(EG5, 0x00140031);
6472 I915_WRITE(EG6, 0);
6473 I915_WRITE(EG7, 0);
6474
6475 for (i = 0; i < 8; i++)
6476 I915_WRITE(PXWL(i), 0);
6477
6478 /* Enable PMON + select events */
6479 I915_WRITE(ECR, 0x80000019);
6480
6481 lcfuse = I915_READ(LCFUSE02);
6482
6483 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6484 }
6485
6486 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6487 {
6488 /*
6489 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6490 * requirement.
6491 */
6492 if (!i915.enable_rc6) {
6493 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6494 intel_runtime_pm_get(dev_priv);
6495 }
6496
6497 if (IS_CHERRYVIEW(dev_priv))
6498 cherryview_init_gt_powersave(dev_priv);
6499 else if (IS_VALLEYVIEW(dev_priv))
6500 valleyview_init_gt_powersave(dev_priv);
6501 }
6502
6503 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6504 {
6505 if (IS_CHERRYVIEW(dev_priv))
6506 return;
6507 else if (IS_VALLEYVIEW(dev_priv))
6508 valleyview_cleanup_gt_powersave(dev_priv);
6509
6510 if (!i915.enable_rc6)
6511 intel_runtime_pm_put(dev_priv);
6512 }
6513
6514 static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6515 {
6516 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6517
6518 gen6_disable_rps_interrupts(dev_priv);
6519 }
6520
6521 /**
6522 * intel_suspend_gt_powersave - suspend PM work and helper threads
6523 * @dev_priv: i915 device
6524 *
6525 * We don't want to disable RC6 or other features here, we just want
6526 * to make sure any work we've queued has finished and won't bother
6527 * us while we're suspended.
6528 */
6529 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6530 {
6531 if (INTEL_GEN(dev_priv) < 6)
6532 return;
6533
6534 gen6_suspend_rps(dev_priv);
6535
6536 /* Force GPU to min freq during suspend */
6537 gen6_rps_idle(dev_priv);
6538 }
6539
6540 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6541 {
6542 if (IS_IRONLAKE_M(dev_priv)) {
6543 ironlake_disable_drps(dev_priv);
6544 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6545 intel_suspend_gt_powersave(dev_priv);
6546
6547 mutex_lock(&dev_priv->rps.hw_lock);
6548 if (INTEL_INFO(dev_priv)->gen >= 9) {
6549 gen9_disable_rc6(dev_priv);
6550 gen9_disable_rps(dev_priv);
6551 } else if (IS_CHERRYVIEW(dev_priv))
6552 cherryview_disable_rps(dev_priv);
6553 else if (IS_VALLEYVIEW(dev_priv))
6554 valleyview_disable_rps(dev_priv);
6555 else
6556 gen6_disable_rps(dev_priv);
6557
6558 dev_priv->rps.enabled = false;
6559 mutex_unlock(&dev_priv->rps.hw_lock);
6560 }
6561 }
6562
6563 static void intel_gen6_powersave_work(struct work_struct *work)
6564 {
6565 struct drm_i915_private *dev_priv =
6566 container_of(work, struct drm_i915_private,
6567 rps.delayed_resume_work.work);
6568
6569 mutex_lock(&dev_priv->rps.hw_lock);
6570
6571 gen6_reset_rps_interrupts(dev_priv);
6572
6573 if (IS_CHERRYVIEW(dev_priv)) {
6574 cherryview_enable_rps(dev_priv);
6575 } else if (IS_VALLEYVIEW(dev_priv)) {
6576 valleyview_enable_rps(dev_priv);
6577 } else if (INTEL_INFO(dev_priv)->gen >= 9) {
6578 gen9_enable_rc6(dev_priv);
6579 gen9_enable_rps(dev_priv);
6580 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6581 __gen6_update_ring_freq(dev_priv);
6582 } else if (IS_BROADWELL(dev_priv)) {
6583 gen8_enable_rps(dev_priv);
6584 __gen6_update_ring_freq(dev_priv);
6585 } else {
6586 gen6_enable_rps(dev_priv);
6587 __gen6_update_ring_freq(dev_priv);
6588 }
6589
6590 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6591 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6592
6593 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6594 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6595
6596 dev_priv->rps.enabled = true;
6597
6598 gen6_enable_rps_interrupts(dev_priv);
6599
6600 mutex_unlock(&dev_priv->rps.hw_lock);
6601
6602 intel_runtime_pm_put(dev_priv);
6603 }
6604
6605 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6606 {
6607 /* Powersaving is controlled by the host when inside a VM */
6608 if (intel_vgpu_active(dev_priv))
6609 return;
6610
6611 if (IS_IRONLAKE_M(dev_priv)) {
6612 ironlake_enable_drps(dev_priv);
6613 mutex_lock(&dev_priv->dev->struct_mutex);
6614 intel_init_emon(dev_priv);
6615 mutex_unlock(&dev_priv->dev->struct_mutex);
6616 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6617 /*
6618 * PCU communication is slow and this doesn't need to be
6619 * done at any specific time, so do this out of our fast path
6620 * to make resume and init faster.
6621 *
6622 * We depend on the HW RC6 power context save/restore
6623 * mechanism when entering D3 through runtime PM suspend. So
6624 * disable RPM until RPS/RC6 is properly setup. We can only
6625 * get here via the driver load/system resume/runtime resume
6626 * paths, so the _noresume version is enough (and in case of
6627 * runtime resume it's necessary).
6628 */
6629 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6630 round_jiffies_up_relative(HZ)))
6631 intel_runtime_pm_get_noresume(dev_priv);
6632 }
6633 }
6634
6635 void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6636 {
6637 if (INTEL_INFO(dev_priv)->gen < 6)
6638 return;
6639
6640 gen6_suspend_rps(dev_priv);
6641 dev_priv->rps.enabled = false;
6642 }
6643
6644 static void ibx_init_clock_gating(struct drm_device *dev)
6645 {
6646 struct drm_i915_private *dev_priv = dev->dev_private;
6647
6648 /*
6649 * On Ibex Peak and Cougar Point, we need to disable clock
6650 * gating for the panel power sequencer or it will fail to
6651 * start up when no ports are active.
6652 */
6653 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6654 }
6655
6656 static void g4x_disable_trickle_feed(struct drm_device *dev)
6657 {
6658 struct drm_i915_private *dev_priv = dev->dev_private;
6659 enum pipe pipe;
6660
6661 for_each_pipe(dev_priv, pipe) {
6662 I915_WRITE(DSPCNTR(pipe),
6663 I915_READ(DSPCNTR(pipe)) |
6664 DISPPLANE_TRICKLE_FEED_DISABLE);
6665
6666 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6667 POSTING_READ(DSPSURF(pipe));
6668 }
6669 }
6670
6671 static void ilk_init_lp_watermarks(struct drm_device *dev)
6672 {
6673 struct drm_i915_private *dev_priv = dev->dev_private;
6674
6675 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6676 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6677 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6678
6679 /*
6680 * Don't touch WM1S_LP_EN here.
6681 * Doing so could cause underruns.
6682 */
6683 }
6684
6685 static void ironlake_init_clock_gating(struct drm_device *dev)
6686 {
6687 struct drm_i915_private *dev_priv = dev->dev_private;
6688 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6689
6690 /*
6691 * Required for FBC
6692 * WaFbcDisableDpfcClockGating:ilk
6693 */
6694 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6695 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6696 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6697
6698 I915_WRITE(PCH_3DCGDIS0,
6699 MARIUNIT_CLOCK_GATE_DISABLE |
6700 SVSMUNIT_CLOCK_GATE_DISABLE);
6701 I915_WRITE(PCH_3DCGDIS1,
6702 VFMUNIT_CLOCK_GATE_DISABLE);
6703
6704 /*
6705 * According to the spec the following bits should be set in
6706 * order to enable memory self-refresh
6707 * The bit 22/21 of 0x42004
6708 * The bit 5 of 0x42020
6709 * The bit 15 of 0x45000
6710 */
6711 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6712 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6713 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6714 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6715 I915_WRITE(DISP_ARB_CTL,
6716 (I915_READ(DISP_ARB_CTL) |
6717 DISP_FBC_WM_DIS));
6718
6719 ilk_init_lp_watermarks(dev);
6720
6721 /*
6722 * Based on the document from hardware guys the following bits
6723 * should be set unconditionally in order to enable FBC.
6724 * The bit 22 of 0x42000
6725 * The bit 22 of 0x42004
6726 * The bit 7,8,9 of 0x42020.
6727 */
6728 if (IS_IRONLAKE_M(dev)) {
6729 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6730 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6731 I915_READ(ILK_DISPLAY_CHICKEN1) |
6732 ILK_FBCQ_DIS);
6733 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6734 I915_READ(ILK_DISPLAY_CHICKEN2) |
6735 ILK_DPARB_GATE);
6736 }
6737
6738 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6739
6740 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6741 I915_READ(ILK_DISPLAY_CHICKEN2) |
6742 ILK_ELPIN_409_SELECT);
6743 I915_WRITE(_3D_CHICKEN2,
6744 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6745 _3D_CHICKEN2_WM_READ_PIPELINED);
6746
6747 /* WaDisableRenderCachePipelinedFlush:ilk */
6748 I915_WRITE(CACHE_MODE_0,
6749 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6750
6751 /* WaDisable_RenderCache_OperationalFlush:ilk */
6752 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6753
6754 g4x_disable_trickle_feed(dev);
6755
6756 ibx_init_clock_gating(dev);
6757 }
6758
6759 static void cpt_init_clock_gating(struct drm_device *dev)
6760 {
6761 struct drm_i915_private *dev_priv = dev->dev_private;
6762 int pipe;
6763 uint32_t val;
6764
6765 /*
6766 * On Ibex Peak and Cougar Point, we need to disable clock
6767 * gating for the panel power sequencer or it will fail to
6768 * start up when no ports are active.
6769 */
6770 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6771 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6772 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6773 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6774 DPLS_EDP_PPS_FIX_DIS);
6775 /* The below fixes the weird display corruption, a few pixels shifted
6776 * downward, on (only) LVDS of some HP laptops with IVY.
6777 */
6778 for_each_pipe(dev_priv, pipe) {
6779 val = I915_READ(TRANS_CHICKEN2(pipe));
6780 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6781 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6782 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6783 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6784 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6785 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6786 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6787 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6788 }
6789 /* WADP0ClockGatingDisable */
6790 for_each_pipe(dev_priv, pipe) {
6791 I915_WRITE(TRANS_CHICKEN1(pipe),
6792 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6793 }
6794 }
6795
6796 static void gen6_check_mch_setup(struct drm_device *dev)
6797 {
6798 struct drm_i915_private *dev_priv = dev->dev_private;
6799 uint32_t tmp;
6800
6801 tmp = I915_READ(MCH_SSKPD);
6802 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6803 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6804 tmp);
6805 }
6806
6807 static void gen6_init_clock_gating(struct drm_device *dev)
6808 {
6809 struct drm_i915_private *dev_priv = dev->dev_private;
6810 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6811
6812 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6813
6814 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6815 I915_READ(ILK_DISPLAY_CHICKEN2) |
6816 ILK_ELPIN_409_SELECT);
6817
6818 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6819 I915_WRITE(_3D_CHICKEN,
6820 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6821
6822 /* WaDisable_RenderCache_OperationalFlush:snb */
6823 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6824
6825 /*
6826 * BSpec recoomends 8x4 when MSAA is used,
6827 * however in practice 16x4 seems fastest.
6828 *
6829 * Note that PS/WM thread counts depend on the WIZ hashing
6830 * disable bit, which we don't touch here, but it's good
6831 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6832 */
6833 I915_WRITE(GEN6_GT_MODE,
6834 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6835
6836 ilk_init_lp_watermarks(dev);
6837
6838 I915_WRITE(CACHE_MODE_0,
6839 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6840
6841 I915_WRITE(GEN6_UCGCTL1,
6842 I915_READ(GEN6_UCGCTL1) |
6843 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6844 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6845
6846 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6847 * gating disable must be set. Failure to set it results in
6848 * flickering pixels due to Z write ordering failures after
6849 * some amount of runtime in the Mesa "fire" demo, and Unigine
6850 * Sanctuary and Tropics, and apparently anything else with
6851 * alpha test or pixel discard.
6852 *
6853 * According to the spec, bit 11 (RCCUNIT) must also be set,
6854 * but we didn't debug actual testcases to find it out.
6855 *
6856 * WaDisableRCCUnitClockGating:snb
6857 * WaDisableRCPBUnitClockGating:snb
6858 */
6859 I915_WRITE(GEN6_UCGCTL2,
6860 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6861 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6862
6863 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6864 I915_WRITE(_3D_CHICKEN3,
6865 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6866
6867 /*
6868 * Bspec says:
6869 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6870 * 3DSTATE_SF number of SF output attributes is more than 16."
6871 */
6872 I915_WRITE(_3D_CHICKEN3,
6873 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6874
6875 /*
6876 * According to the spec the following bits should be
6877 * set in order to enable memory self-refresh and fbc:
6878 * The bit21 and bit22 of 0x42000
6879 * The bit21 and bit22 of 0x42004
6880 * The bit5 and bit7 of 0x42020
6881 * The bit14 of 0x70180
6882 * The bit14 of 0x71180
6883 *
6884 * WaFbcAsynchFlipDisableFbcQueue:snb
6885 */
6886 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6887 I915_READ(ILK_DISPLAY_CHICKEN1) |
6888 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6889 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6890 I915_READ(ILK_DISPLAY_CHICKEN2) |
6891 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6892 I915_WRITE(ILK_DSPCLK_GATE_D,
6893 I915_READ(ILK_DSPCLK_GATE_D) |
6894 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6895 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6896
6897 g4x_disable_trickle_feed(dev);
6898
6899 cpt_init_clock_gating(dev);
6900
6901 gen6_check_mch_setup(dev);
6902 }
6903
6904 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6905 {
6906 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6907
6908 /*
6909 * WaVSThreadDispatchOverride:ivb,vlv
6910 *
6911 * This actually overrides the dispatch
6912 * mode for all thread types.
6913 */
6914 reg &= ~GEN7_FF_SCHED_MASK;
6915 reg |= GEN7_FF_TS_SCHED_HW;
6916 reg |= GEN7_FF_VS_SCHED_HW;
6917 reg |= GEN7_FF_DS_SCHED_HW;
6918
6919 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6920 }
6921
6922 static void lpt_init_clock_gating(struct drm_device *dev)
6923 {
6924 struct drm_i915_private *dev_priv = dev->dev_private;
6925
6926 /*
6927 * TODO: this bit should only be enabled when really needed, then
6928 * disabled when not needed anymore in order to save power.
6929 */
6930 if (HAS_PCH_LPT_LP(dev))
6931 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6932 I915_READ(SOUTH_DSPCLK_GATE_D) |
6933 PCH_LP_PARTITION_LEVEL_DISABLE);
6934
6935 /* WADPOClockGatingDisable:hsw */
6936 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6937 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6938 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6939 }
6940
6941 static void lpt_suspend_hw(struct drm_device *dev)
6942 {
6943 struct drm_i915_private *dev_priv = dev->dev_private;
6944
6945 if (HAS_PCH_LPT_LP(dev)) {
6946 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6947
6948 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6949 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6950 }
6951 }
6952
6953 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
6954 int general_prio_credits,
6955 int high_prio_credits)
6956 {
6957 u32 misccpctl;
6958
6959 /* WaTempDisableDOPClkGating:bdw */
6960 misccpctl = I915_READ(GEN7_MISCCPCTL);
6961 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6962
6963 I915_WRITE(GEN8_L3SQCREG1,
6964 L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
6965 L3_HIGH_PRIO_CREDITS(high_prio_credits));
6966
6967 /*
6968 * Wait at least 100 clocks before re-enabling clock gating.
6969 * See the definition of L3SQCREG1 in BSpec.
6970 */
6971 POSTING_READ(GEN8_L3SQCREG1);
6972 udelay(1);
6973 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6974 }
6975
6976 static void kabylake_init_clock_gating(struct drm_device *dev)
6977 {
6978 struct drm_i915_private *dev_priv = dev->dev_private;
6979
6980 gen9_init_clock_gating(dev);
6981
6982 /* WaDisableSDEUnitClockGating:kbl */
6983 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6984 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6985 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6986
6987 /* WaDisableGamClockGating:kbl */
6988 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6989 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6990 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6991 }
6992
6993 static void skylake_init_clock_gating(struct drm_device *dev)
6994 {
6995 gen9_init_clock_gating(dev);
6996 }
6997
6998 static void broadwell_init_clock_gating(struct drm_device *dev)
6999 {
7000 struct drm_i915_private *dev_priv = dev->dev_private;
7001 enum pipe pipe;
7002
7003 ilk_init_lp_watermarks(dev);
7004
7005 /* WaSwitchSolVfFArbitrationPriority:bdw */
7006 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7007
7008 /* WaPsrDPAMaskVBlankInSRD:bdw */
7009 I915_WRITE(CHICKEN_PAR1_1,
7010 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7011
7012 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7013 for_each_pipe(dev_priv, pipe) {
7014 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7015 I915_READ(CHICKEN_PIPESL_1(pipe)) |
7016 BDW_DPRS_MASK_VBLANK_SRD);
7017 }
7018
7019 /* WaVSRefCountFullforceMissDisable:bdw */
7020 /* WaDSRefCountFullforceMissDisable:bdw */
7021 I915_WRITE(GEN7_FF_THREAD_MODE,
7022 I915_READ(GEN7_FF_THREAD_MODE) &
7023 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7024
7025 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7026 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7027
7028 /* WaDisableSDEUnitClockGating:bdw */
7029 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7030 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7031
7032 /* WaProgramL3SqcReg1Default:bdw */
7033 gen8_set_l3sqc_credits(dev_priv, 30, 2);
7034
7035 /*
7036 * WaGttCachingOffByDefault:bdw
7037 * GTT cache may not work with big pages, so if those
7038 * are ever enabled GTT cache may need to be disabled.
7039 */
7040 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7041
7042 /* WaKVMNotificationOnConfigChange:bdw */
7043 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7044 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7045
7046 lpt_init_clock_gating(dev);
7047 }
7048
7049 static void haswell_init_clock_gating(struct drm_device *dev)
7050 {
7051 struct drm_i915_private *dev_priv = dev->dev_private;
7052
7053 ilk_init_lp_watermarks(dev);
7054
7055 /* L3 caching of data atomics doesn't work -- disable it. */
7056 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7057 I915_WRITE(HSW_ROW_CHICKEN3,
7058 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7059
7060 /* This is required by WaCatErrorRejectionIssue:hsw */
7061 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7062 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7063 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7064
7065 /* WaVSRefCountFullforceMissDisable:hsw */
7066 I915_WRITE(GEN7_FF_THREAD_MODE,
7067 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7068
7069 /* WaDisable_RenderCache_OperationalFlush:hsw */
7070 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7071
7072 /* enable HiZ Raw Stall Optimization */
7073 I915_WRITE(CACHE_MODE_0_GEN7,
7074 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7075
7076 /* WaDisable4x2SubspanOptimization:hsw */
7077 I915_WRITE(CACHE_MODE_1,
7078 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7079
7080 /*
7081 * BSpec recommends 8x4 when MSAA is used,
7082 * however in practice 16x4 seems fastest.
7083 *
7084 * Note that PS/WM thread counts depend on the WIZ hashing
7085 * disable bit, which we don't touch here, but it's good
7086 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7087 */
7088 I915_WRITE(GEN7_GT_MODE,
7089 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7090
7091 /* WaSampleCChickenBitEnable:hsw */
7092 I915_WRITE(HALF_SLICE_CHICKEN3,
7093 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7094
7095 /* WaSwitchSolVfFArbitrationPriority:hsw */
7096 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7097
7098 /* WaRsPkgCStateDisplayPMReq:hsw */
7099 I915_WRITE(CHICKEN_PAR1_1,
7100 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7101
7102 lpt_init_clock_gating(dev);
7103 }
7104
7105 static void ivybridge_init_clock_gating(struct drm_device *dev)
7106 {
7107 struct drm_i915_private *dev_priv = dev->dev_private;
7108 uint32_t snpcr;
7109
7110 ilk_init_lp_watermarks(dev);
7111
7112 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7113
7114 /* WaDisableEarlyCull:ivb */
7115 I915_WRITE(_3D_CHICKEN3,
7116 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7117
7118 /* WaDisableBackToBackFlipFix:ivb */
7119 I915_WRITE(IVB_CHICKEN3,
7120 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7121 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7122
7123 /* WaDisablePSDDualDispatchEnable:ivb */
7124 if (IS_IVB_GT1(dev))
7125 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7126 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7127
7128 /* WaDisable_RenderCache_OperationalFlush:ivb */
7129 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7130
7131 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7132 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7133 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7134
7135 /* WaApplyL3ControlAndL3ChickenMode:ivb */
7136 I915_WRITE(GEN7_L3CNTLREG1,
7137 GEN7_WA_FOR_GEN7_L3_CONTROL);
7138 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7139 GEN7_WA_L3_CHICKEN_MODE);
7140 if (IS_IVB_GT1(dev))
7141 I915_WRITE(GEN7_ROW_CHICKEN2,
7142 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7143 else {
7144 /* must write both registers */
7145 I915_WRITE(GEN7_ROW_CHICKEN2,
7146 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7147 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7148 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7149 }
7150
7151 /* WaForceL3Serialization:ivb */
7152 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7153 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7154
7155 /*
7156 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7157 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7158 */
7159 I915_WRITE(GEN6_UCGCTL2,
7160 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7161
7162 /* This is required by WaCatErrorRejectionIssue:ivb */
7163 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7164 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7165 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7166
7167 g4x_disable_trickle_feed(dev);
7168
7169 gen7_setup_fixed_func_scheduler(dev_priv);
7170
7171 if (0) { /* causes HiZ corruption on ivb:gt1 */
7172 /* enable HiZ Raw Stall Optimization */
7173 I915_WRITE(CACHE_MODE_0_GEN7,
7174 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7175 }
7176
7177 /* WaDisable4x2SubspanOptimization:ivb */
7178 I915_WRITE(CACHE_MODE_1,
7179 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7180
7181 /*
7182 * BSpec recommends 8x4 when MSAA is used,
7183 * however in practice 16x4 seems fastest.
7184 *
7185 * Note that PS/WM thread counts depend on the WIZ hashing
7186 * disable bit, which we don't touch here, but it's good
7187 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7188 */
7189 I915_WRITE(GEN7_GT_MODE,
7190 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7191
7192 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7193 snpcr &= ~GEN6_MBC_SNPCR_MASK;
7194 snpcr |= GEN6_MBC_SNPCR_MED;
7195 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7196
7197 if (!HAS_PCH_NOP(dev))
7198 cpt_init_clock_gating(dev);
7199
7200 gen6_check_mch_setup(dev);
7201 }
7202
7203 static void valleyview_init_clock_gating(struct drm_device *dev)
7204 {
7205 struct drm_i915_private *dev_priv = dev->dev_private;
7206
7207 /* WaDisableEarlyCull:vlv */
7208 I915_WRITE(_3D_CHICKEN3,
7209 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7210
7211 /* WaDisableBackToBackFlipFix:vlv */
7212 I915_WRITE(IVB_CHICKEN3,
7213 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7214 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7215
7216 /* WaPsdDispatchEnable:vlv */
7217 /* WaDisablePSDDualDispatchEnable:vlv */
7218 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7219 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7220 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7221
7222 /* WaDisable_RenderCache_OperationalFlush:vlv */
7223 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7224
7225 /* WaForceL3Serialization:vlv */
7226 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7227 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7228
7229 /* WaDisableDopClockGating:vlv */
7230 I915_WRITE(GEN7_ROW_CHICKEN2,
7231 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7232
7233 /* This is required by WaCatErrorRejectionIssue:vlv */
7234 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7235 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7236 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7237
7238 gen7_setup_fixed_func_scheduler(dev_priv);
7239
7240 /*
7241 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7242 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7243 */
7244 I915_WRITE(GEN6_UCGCTL2,
7245 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7246
7247 /* WaDisableL3Bank2xClockGate:vlv
7248 * Disabling L3 clock gating- MMIO 940c[25] = 1
7249 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7250 I915_WRITE(GEN7_UCGCTL4,
7251 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7252
7253 /*
7254 * BSpec says this must be set, even though
7255 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7256 */
7257 I915_WRITE(CACHE_MODE_1,
7258 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7259
7260 /*
7261 * BSpec recommends 8x4 when MSAA is used,
7262 * however in practice 16x4 seems fastest.
7263 *
7264 * Note that PS/WM thread counts depend on the WIZ hashing
7265 * disable bit, which we don't touch here, but it's good
7266 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7267 */
7268 I915_WRITE(GEN7_GT_MODE,
7269 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7270
7271 /*
7272 * WaIncreaseL3CreditsForVLVB0:vlv
7273 * This is the hardware default actually.
7274 */
7275 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7276
7277 /*
7278 * WaDisableVLVClockGating_VBIIssue:vlv
7279 * Disable clock gating on th GCFG unit to prevent a delay
7280 * in the reporting of vblank events.
7281 */
7282 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7283 }
7284
7285 static void cherryview_init_clock_gating(struct drm_device *dev)
7286 {
7287 struct drm_i915_private *dev_priv = dev->dev_private;
7288
7289 /* WaVSRefCountFullforceMissDisable:chv */
7290 /* WaDSRefCountFullforceMissDisable:chv */
7291 I915_WRITE(GEN7_FF_THREAD_MODE,
7292 I915_READ(GEN7_FF_THREAD_MODE) &
7293 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7294
7295 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7296 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7297 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7298
7299 /* WaDisableCSUnitClockGating:chv */
7300 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7301 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7302
7303 /* WaDisableSDEUnitClockGating:chv */
7304 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7305 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7306
7307 /*
7308 * WaProgramL3SqcReg1Default:chv
7309 * See gfxspecs/Related Documents/Performance Guide/
7310 * LSQC Setting Recommendations.
7311 */
7312 gen8_set_l3sqc_credits(dev_priv, 38, 2);
7313
7314 /*
7315 * GTT cache may not work with big pages, so if those
7316 * are ever enabled GTT cache may need to be disabled.
7317 */
7318 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7319 }
7320
7321 static void g4x_init_clock_gating(struct drm_device *dev)
7322 {
7323 struct drm_i915_private *dev_priv = dev->dev_private;
7324 uint32_t dspclk_gate;
7325
7326 I915_WRITE(RENCLK_GATE_D1, 0);
7327 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7328 GS_UNIT_CLOCK_GATE_DISABLE |
7329 CL_UNIT_CLOCK_GATE_DISABLE);
7330 I915_WRITE(RAMCLK_GATE_D, 0);
7331 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7332 OVRUNIT_CLOCK_GATE_DISABLE |
7333 OVCUNIT_CLOCK_GATE_DISABLE;
7334 if (IS_GM45(dev))
7335 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7336 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7337
7338 /* WaDisableRenderCachePipelinedFlush */
7339 I915_WRITE(CACHE_MODE_0,
7340 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7341
7342 /* WaDisable_RenderCache_OperationalFlush:g4x */
7343 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7344
7345 g4x_disable_trickle_feed(dev);
7346 }
7347
7348 static void crestline_init_clock_gating(struct drm_device *dev)
7349 {
7350 struct drm_i915_private *dev_priv = dev->dev_private;
7351
7352 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7353 I915_WRITE(RENCLK_GATE_D2, 0);
7354 I915_WRITE(DSPCLK_GATE_D, 0);
7355 I915_WRITE(RAMCLK_GATE_D, 0);
7356 I915_WRITE16(DEUC, 0);
7357 I915_WRITE(MI_ARB_STATE,
7358 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7359
7360 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7361 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7362 }
7363
7364 static void broadwater_init_clock_gating(struct drm_device *dev)
7365 {
7366 struct drm_i915_private *dev_priv = dev->dev_private;
7367
7368 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7369 I965_RCC_CLOCK_GATE_DISABLE |
7370 I965_RCPB_CLOCK_GATE_DISABLE |
7371 I965_ISC_CLOCK_GATE_DISABLE |
7372 I965_FBC_CLOCK_GATE_DISABLE);
7373 I915_WRITE(RENCLK_GATE_D2, 0);
7374 I915_WRITE(MI_ARB_STATE,
7375 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7376
7377 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7378 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7379 }
7380
7381 static void gen3_init_clock_gating(struct drm_device *dev)
7382 {
7383 struct drm_i915_private *dev_priv = dev->dev_private;
7384 u32 dstate = I915_READ(D_STATE);
7385
7386 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7387 DSTATE_DOT_CLOCK_GATING;
7388 I915_WRITE(D_STATE, dstate);
7389
7390 if (IS_PINEVIEW(dev))
7391 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7392
7393 /* IIR "flip pending" means done if this bit is set */
7394 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7395
7396 /* interrupts should cause a wake up from C3 */
7397 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7398
7399 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7400 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7401
7402 I915_WRITE(MI_ARB_STATE,
7403 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7404 }
7405
7406 static void i85x_init_clock_gating(struct drm_device *dev)
7407 {
7408 struct drm_i915_private *dev_priv = dev->dev_private;
7409
7410 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7411
7412 /* interrupts should cause a wake up from C3 */
7413 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7414 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7415
7416 I915_WRITE(MEM_MODE,
7417 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7418 }
7419
7420 static void i830_init_clock_gating(struct drm_device *dev)
7421 {
7422 struct drm_i915_private *dev_priv = dev->dev_private;
7423
7424 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7425
7426 I915_WRITE(MEM_MODE,
7427 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7428 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7429 }
7430
7431 void intel_init_clock_gating(struct drm_device *dev)
7432 {
7433 struct drm_i915_private *dev_priv = dev->dev_private;
7434
7435 dev_priv->display.init_clock_gating(dev);
7436 }
7437
7438 void intel_suspend_hw(struct drm_device *dev)
7439 {
7440 if (HAS_PCH_LPT(dev))
7441 lpt_suspend_hw(dev);
7442 }
7443
7444 static void nop_init_clock_gating(struct drm_device *dev)
7445 {
7446 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7447 }
7448
7449 /**
7450 * intel_init_clock_gating_hooks - setup the clock gating hooks
7451 * @dev_priv: device private
7452 *
7453 * Setup the hooks that configure which clocks of a given platform can be
7454 * gated and also apply various GT and display specific workarounds for these
7455 * platforms. Note that some GT specific workarounds are applied separately
7456 * when GPU contexts or batchbuffers start their execution.
7457 */
7458 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7459 {
7460 if (IS_SKYLAKE(dev_priv))
7461 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7462 else if (IS_KABYLAKE(dev_priv))
7463 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7464 else if (IS_BROXTON(dev_priv))
7465 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7466 else if (IS_BROADWELL(dev_priv))
7467 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7468 else if (IS_CHERRYVIEW(dev_priv))
7469 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7470 else if (IS_HASWELL(dev_priv))
7471 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7472 else if (IS_IVYBRIDGE(dev_priv))
7473 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7474 else if (IS_VALLEYVIEW(dev_priv))
7475 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7476 else if (IS_GEN6(dev_priv))
7477 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7478 else if (IS_GEN5(dev_priv))
7479 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7480 else if (IS_G4X(dev_priv))
7481 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7482 else if (IS_CRESTLINE(dev_priv))
7483 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7484 else if (IS_BROADWATER(dev_priv))
7485 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7486 else if (IS_GEN3(dev_priv))
7487 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7488 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7489 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7490 else if (IS_GEN2(dev_priv))
7491 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7492 else {
7493 MISSING_CASE(INTEL_DEVID(dev_priv));
7494 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7495 }
7496 }
7497
7498 /* Set up chip specific power management-related functions */
7499 void intel_init_pm(struct drm_device *dev)
7500 {
7501 struct drm_i915_private *dev_priv = dev->dev_private;
7502
7503 intel_fbc_init(dev_priv);
7504
7505 /* For cxsr */
7506 if (IS_PINEVIEW(dev))
7507 i915_pineview_get_mem_freq(dev);
7508 else if (IS_GEN5(dev))
7509 i915_ironlake_get_mem_freq(dev);
7510
7511 /* For FIFO watermark updates */
7512 if (INTEL_INFO(dev)->gen >= 9) {
7513 skl_setup_wm_latency(dev);
7514 dev_priv->display.update_wm = skl_update_wm;
7515 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7516 } else if (HAS_PCH_SPLIT(dev)) {
7517 ilk_setup_wm_latency(dev);
7518
7519 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7520 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7521 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7522 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7523 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7524 dev_priv->display.compute_intermediate_wm =
7525 ilk_compute_intermediate_wm;
7526 dev_priv->display.initial_watermarks =
7527 ilk_initial_watermarks;
7528 dev_priv->display.optimize_watermarks =
7529 ilk_optimize_watermarks;
7530 } else {
7531 DRM_DEBUG_KMS("Failed to read display plane latency. "
7532 "Disable CxSR\n");
7533 }
7534 } else if (IS_CHERRYVIEW(dev)) {
7535 vlv_setup_wm_latency(dev);
7536 dev_priv->display.update_wm = vlv_update_wm;
7537 } else if (IS_VALLEYVIEW(dev)) {
7538 vlv_setup_wm_latency(dev);
7539 dev_priv->display.update_wm = vlv_update_wm;
7540 } else if (IS_PINEVIEW(dev)) {
7541 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7542 dev_priv->is_ddr3,
7543 dev_priv->fsb_freq,
7544 dev_priv->mem_freq)) {
7545 DRM_INFO("failed to find known CxSR latency "
7546 "(found ddr%s fsb freq %d, mem freq %d), "
7547 "disabling CxSR\n",
7548 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7549 dev_priv->fsb_freq, dev_priv->mem_freq);
7550 /* Disable CxSR and never update its watermark again */
7551 intel_set_memory_cxsr(dev_priv, false);
7552 dev_priv->display.update_wm = NULL;
7553 } else
7554 dev_priv->display.update_wm = pineview_update_wm;
7555 } else if (IS_G4X(dev)) {
7556 dev_priv->display.update_wm = g4x_update_wm;
7557 } else if (IS_GEN4(dev)) {
7558 dev_priv->display.update_wm = i965_update_wm;
7559 } else if (IS_GEN3(dev)) {
7560 dev_priv->display.update_wm = i9xx_update_wm;
7561 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7562 } else if (IS_GEN2(dev)) {
7563 if (INTEL_INFO(dev)->num_pipes == 1) {
7564 dev_priv->display.update_wm = i845_update_wm;
7565 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7566 } else {
7567 dev_priv->display.update_wm = i9xx_update_wm;
7568 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7569 }
7570 } else {
7571 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7572 }
7573 }
7574
7575 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7576 {
7577 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7578
7579 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7580 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7581 return -EAGAIN;
7582 }
7583
7584 I915_WRITE(GEN6_PCODE_DATA, *val);
7585 I915_WRITE(GEN6_PCODE_DATA1, 0);
7586 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7587
7588 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7589 500)) {
7590 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7591 return -ETIMEDOUT;
7592 }
7593
7594 *val = I915_READ(GEN6_PCODE_DATA);
7595 I915_WRITE(GEN6_PCODE_DATA, 0);
7596
7597 return 0;
7598 }
7599
7600 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7601 {
7602 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7603
7604 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7605 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7606 return -EAGAIN;
7607 }
7608
7609 I915_WRITE(GEN6_PCODE_DATA, val);
7610 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7611
7612 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7613 500)) {
7614 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7615 return -ETIMEDOUT;
7616 }
7617
7618 I915_WRITE(GEN6_PCODE_DATA, 0);
7619
7620 return 0;
7621 }
7622
7623 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7624 {
7625 /*
7626 * N = val - 0xb7
7627 * Slow = Fast = GPLL ref * N
7628 */
7629 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7630 }
7631
7632 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7633 {
7634 return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7635 }
7636
7637 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7638 {
7639 /*
7640 * N = val / 2
7641 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7642 */
7643 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7644 }
7645
7646 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7647 {
7648 /* CHV needs even values */
7649 return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7650 }
7651
7652 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7653 {
7654 if (IS_GEN9(dev_priv))
7655 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7656 GEN9_FREQ_SCALER);
7657 else if (IS_CHERRYVIEW(dev_priv))
7658 return chv_gpu_freq(dev_priv, val);
7659 else if (IS_VALLEYVIEW(dev_priv))
7660 return byt_gpu_freq(dev_priv, val);
7661 else
7662 return val * GT_FREQUENCY_MULTIPLIER;
7663 }
7664
7665 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7666 {
7667 if (IS_GEN9(dev_priv))
7668 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7669 GT_FREQUENCY_MULTIPLIER);
7670 else if (IS_CHERRYVIEW(dev_priv))
7671 return chv_freq_opcode(dev_priv, val);
7672 else if (IS_VALLEYVIEW(dev_priv))
7673 return byt_freq_opcode(dev_priv, val);
7674 else
7675 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7676 }
7677
7678 struct request_boost {
7679 struct work_struct work;
7680 struct drm_i915_gem_request *req;
7681 };
7682
7683 static void __intel_rps_boost_work(struct work_struct *work)
7684 {
7685 struct request_boost *boost = container_of(work, struct request_boost, work);
7686 struct drm_i915_gem_request *req = boost->req;
7687
7688 if (!i915_gem_request_completed(req, true))
7689 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7690
7691 i915_gem_request_unreference(req);
7692 kfree(boost);
7693 }
7694
7695 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7696 {
7697 struct request_boost *boost;
7698
7699 if (req == NULL || INTEL_GEN(req->i915) < 6)
7700 return;
7701
7702 if (i915_gem_request_completed(req, true))
7703 return;
7704
7705 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7706 if (boost == NULL)
7707 return;
7708
7709 i915_gem_request_reference(req);
7710 boost->req = req;
7711
7712 INIT_WORK(&boost->work, __intel_rps_boost_work);
7713 queue_work(req->i915->wq, &boost->work);
7714 }
7715
7716 void intel_pm_setup(struct drm_device *dev)
7717 {
7718 struct drm_i915_private *dev_priv = dev->dev_private;
7719
7720 mutex_init(&dev_priv->rps.hw_lock);
7721 spin_lock_init(&dev_priv->rps.client_lock);
7722
7723 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7724 intel_gen6_powersave_work);
7725 INIT_LIST_HEAD(&dev_priv->rps.clients);
7726 INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7727 INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7728
7729 dev_priv->pm.suspended = false;
7730 atomic_set(&dev_priv->pm.wakeref_count, 0);
7731 atomic_set(&dev_priv->pm.atomic_seq, 0);
7732 }
This page took 0.304336 seconds and 5 git commands to generate.